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ABSTRACT 
 
 
 

AN INVESTIGATION INTO THE FORMATION OF REPRESENTATIONAL ASSOCIATIONS IN 

VISUAL CATEGORY LEARNING 

 
 

Category learning allows us to use previous information we have accumulated, and extend it to 

new situations. Multiple systems are proposed to underlie learning, including: an explicit, rule-based 

system, and an implicit, procedural system. Information integration tasks are thought to load heavily onto 

the latter. In these tasks, a high degree of accuracy is reached only if participants can integrate 

incommensurable dimensions, often without being able to verbally describe how they are categorizing 

each stimulus. Learning in this type of task is thought to occur as participants associate a given stimulus 

with a category label, and then that label to a motor response. The present study sought to examine 

whether there may be an additional associative stage in which a stimulus is first associated with a 

“category representation” – a representation of the critical characteristics of a given category – which is 

then associated with a category label. Two experiments were conducted which attempted to determine 

whether this form of category representation is learned in information integration tasks. Both experiments 

reversed the category representation – category label association for a subset of stimuli and tested if 

subjects would transfer this reversal to the remaining stimuli, as should happen if they learned to associate 

each label with a single abstract category representation. Experiment 1 trained subjects with two sets of 

labels, each of which was associated with the same abstract category representation, to see if reversing 

one set of labels would alter the other. Experiment 2 trained subjects with 1 set of labels and tested if 

learning to reverse half of the stimulus space would transfer to the remaining half. In addition, the 

consistency of category label and motor response associations were manipulated in Experiment 2, with 

the hypothesis that subjects learning under inconsistent mappings would be forced to learn category labels 

and be more likely form an abstract category representation, whereas subjects learning under consistent 

conditions might only learn basic stimulus – response associations. Subjects in Experiment 1 did not 
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transfer the reversal to the second set of category labels, inconsistent with the hypothesis that subjects 

would form an abstract category representation.  However, over half the subjects in Experiment 2 did 

transfer reversed category label associations to untrained stimuli. Furthermore, a greater number of 

subjects transferred the reversals in the Inconsistent mapping condition. This is the first study to present 

evidence suggesting the existence of an abstract category representation and to provide a unique 

dissociation between consistent and inconsistent mappings for an information-integration task. 
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CHAPTER 1: INTRODUCTION 
 
 
 

Categorization is necessary for survival. In addition to helping us recognize threats, individuals, 

and locations, categorization is necessary for forming meaningful associations between similar items, and 

in the case of encountering something unknown, allowing us to extrapolate based on past experiences. We 

can even use previously acquired representations from memory to imagine what the future could be like. 

This is because our minds store commonalities in addition to specific representations. In general, 

categorization is something humans can do quickly and effectively (Seger & Miller, 2010). While 

research into how we learn to categorize stretches across several domains (e.g. somatosensory, auditory, 

emotion), visual categorization is the most studied area (Richler & Palmeri, 2014).  

 Categorization, decision making, and generalization may all be intertwined to a greater degree 

than is currently emphasized in the literature (Seger & Peterson, 2013). Research into the latter two areas, 

therefore, may benefit through a greater understanding of category learning. For example, understanding 

the mechanisms of how we learn to categorize stimuli might elucidate how we use this information to 

make a decision to act. Furthermore, category representations allow us to generalize and transfer our 

knowledge to new situations and new task demands. Therefore, by adding to the available knowledge on 

category learning, other applied research areas can benefit as well (e.g. neuroeconomics, top-down 

mediation of perception). 

I begin by describing the types of tasks used in category learning studies, as much of this 

terminology will be used throughout the paper. Next, I discuss early theories of category learning, which 

form the basis for modern theories of category learning. Afterwards, I discuss the single- versus multiple-

systems debate, presenting evidence from both sides on the nature of how category representations are 

formed and used. I will focus largely on behavioral dissociation studies, along with some evidence from 

neuroimaging, that are relevant for understanding the formation of associations between stimuli, 

categories, and motor responses. Finally, I describe two studies conducted to investigate whether 
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intermediate category representations between stimuli and category labels are formed during information 

integration category learning. 

Categorization tasks 

It is important to begin by introducing some of the terminology used in describing the different 

types of category learning tasks. While there are others, the tasks most relevant for the proposed study are 

rule-based (RB) and information-integration (II) tasks. (Ashby & Maddox, 2011). Rule-based tasks are 

ones in which the categories can be determined through logical reasoning. Generally, the rule by which 

stimuli can be most optimally categorized can be explicitly stated by participants, and it is often a one-

dimensional rule (e.g. “if blue, category A, if green, category B”), although it does not necessarily have to 

be. One example is the Wisconsin Card Sorting Task (WCST), in which participants must learn rules to 

sort cards into groups (Maddox, Ashby, & Bohil, 2003). These types of tasks are thought to rely on 

declarative memory systems, including both working and episodic memory, along with executive function 

systems. 

             Information-integration tasks are thought to rely more on implicit, procedural memory systems. 

In information integration tasks, participants must integrate information from two, often 

incommensurable dimensions. A commonly used task, and one which is directly relevant to the proposed 

study, presents circular, sine-wave gradient stimuli which vary in bar rotation and bar width. The 

perceptual space the stimuli are sampled from is divided by a line moving through the space at a 45-

degree angle. In this way, as one dimension moves along the x-axis, the characteristic of the y-axis 

increases as well. To succeed, participants cannot rely on a verbal rule (e.g. when is width greater than 

rotation?) but instead must learn to associate responses with regions of perceptual space (Ashby, Paul, & 

Maddox, 2011; refer to figure 4 and 8 in methods for illustration). The procedural system is commonly 

associated with skills learned through practice, and there is generally little conscious recollection of the 

associated memories. Learning in this domain also requires consistent feedback, and is slow and 

incremental. Accuracy in some information-integration tasks is often maximized when information from 

two or more stimulus dimensions is integrated at some predecisional stage, but in general, learning in 
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information-integration tasks takes place at an unconscious level. An example of a procedural learning 

task is the Serial Reaction Time (SRT) task, in which reaction-time performance to rapid button presses is 

reduced through repetition of extended patterns of stimulus presentation; this occurs even when 

participants are not aware of the repetition (Maddox, Ashby, Ing, & Pickering, 2004).  

Early Theories: The Prototype Model 

There have been several competing theories put forth over the decades in regards to the 

mechanisms through which category representations are learned and used. Each makes assumptions about 

how stimuli representations are created, what information is needed to recognize a category, and how a 

category decision is eventually made (Ashby & Maddox, 1993). One commonality across theories is an 

emphasis on how category learning utilizes fundamental memory systems. In the early years of category 

learning research theories typically assumed that learning relied on a single memory system. The question 

of which memory system that may be, and in what manner the memory system is recruited to facilitate 

category learning, was a common subject of debate (Ashby & O’Brien, 2005). An early theory of 

category learning suggested that all categories are learned through the acquisition of logical rules, which 

are determined through simple, explicit hypothesis testing. This was even suggested to apply to how 

animals might learn categories (Bourne, 1970). However, this explanation was argued as being too 

artificial (Richler & Palmeri, 2014), and although rule based category learning is still accepted as one 

form of category learning it is not thought to encompass all learning. Instead, it is thought that there may 

be several different forms of category learning. 

An appreciation of the limitations of rule based theory led to the development of prototype 

theory, which argued that a prototypical representation is learned. Effectively, the prototype serves as an 

internal representation of a category, and it is constructed from features abstracted from exemplars of that 

category (Goldman & Homa, 1977). Posner and Keele (1968) proposed that, during learning, the 

commonalities within a group are abstracted from individual exemplars and stored in memory. To 

demonstrate this, they used a visual categorization task in which, during a training phase, participants 

learned highly distorted versions of different dot-pattern prototypes until they had correctly identified two 
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sets of stimuli with perfect accuracy. The dot-pattern stimuli presented during training were generated by 

first creating a “prototype” for each group (composed of 9 dots, arbitrarily arranged in a 30 x 30 point 

matrix), and varying the deviation of each of the starting points of the dots to different degrees based on 

certain statistical procedures. As the deviation of the dots from their original starting points increased, 

they were said to have greater perceptual variability from the prototype. In the test phase, participants 

were shown the trained stimuli as well as other related ones: new stimuli with equal perceptual variability, 

stimuli with greater perceptual variability, and the prototype stimuli they were all based on. They found 

that identification of the prototypes was less error prone, and elicited quicker responses, compared to 

other exemplars, even those which were presented during training. They suggested that during learning, 

participants learned the central tendency of the category (the prototype) through being exposed to stimuli 

which varied in their perceptual dimensions. Therefore, when presented with the prototype stimuli the 

trained stimuli were based on, they were quickly able to identify the most representative member of the 

categories they had learned. 

 Prototype theory accounted well for the results from several category learning studies. The quick 

and accurate identification of the prototype in Posner and Keele’s study suggested that participants 

learned the prototypical features of each category even without direct observation of the prototype. 

Another study, which used similar methods but different stimuli, inserted a one-week delay between the 

training and testing phase and found that while training stimuli were mostly forgotten, prototypes and 

new patterns were easily identified. The forgetting of specific stimuli and their features suggested that 

category learning happens at a more abstract level and that the prototype representation is the important 

part of the category learning process (Goldman & Homa, 1977).  

  One criticism leveled towards the prototype theory was that, at the time, almost all category 

learning models predicted excellent classification of a prototypical stimulus (Reed, 1972). A prototype, by 

definition, has the greatest number of similarities to its exemplars, and additionally, it is highly unlikely 

that one prototype would be similar to exemplars from any other category. The next wave of category 

learning theories was exemplar driven. They suggested that, instead of learning a prototype through 
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abstraction, categories were learned by combining features only from exemplars which had been 

previously presented. This process did not require abstraction, but could still account for effects in the 

prototype theory literature. It also emphasized the importance of a participant’s contextual knowledge (i.e. 

presented exemplars) in how categories are learned as well (Richler & Palmeri, 2014). 

Early Theories: The Exemplar Model 

One specific exemplar based model was called the context theory of classification (Medin & 

Schaffer, 1978). It proposed that when a stimulus is presented, its features should activate an associative 

network created by aggregating features from similar, previously presented stimuli. One important 

difference is that, rather than the categorization decision depending on a comparison utilizing an equally 

weighted average of known diagnostic features, as in prototype theory, the context model specified a 

multiplicative combination rule, wherein high similarity to some features is more important than average 

similarity overall. An example is that, while a mannequin may very closely resemble a human (e.g. 

anatomical similarity, clothing, etc.) the lack of animacy (i.e. one feature) is a far greater determinate of 

category membership than its average similarity (Medin & Schaffer, 1978). In a series of four 

experiments, Medin and Schaffer (1978) utilized stimuli with several different binary dimensions (e.g. 

geometric shapes; size: big or small). They found that their statistical models not only outperformed many 

other existing theories in accounting for their results, but they were also able to account for the results of 

studies originally interpreted as supporting other theories as well. They suggested that this was evidence 

of their model being more broadly applicable.  

An extension to the context model came in the form of the generalized context model (GCM; 

Nosofsky, 1986). One advantage of the GCM included accommodating stimuli with multivalued, 

continuous features instead of just binary ones. This was important because while the context model was 

proposed with the idea that natural stimuli are more arbitrarily constrained, they only used binary-choice 

features. The GCM also proposed that the development of categories through exposure to exemplars was 

more complicated than initially proposed. It was suggested that as participants focus on certain salient 

features of stimuli, they may inappropriately infer that some continuous measure of a particular stimulus 
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feature reflects category membership. This would alter the psychological dimensions for category 

membership between participants, which they interpreted as meaning that each different subject could 

potentially maintain a different mental representation of each category. A small study Nosofsky (1986) 

conducted concurred with these hypotheses, and he cautioned interpreting results in other studies as 

suggesting “a direct reflection of the underlying similarity representation, or of attention and decision 

processes that operate on this representation” (p. 54). 

Early Theories: The Decision-Bound Model 

Another well-supported theory was known as the decision-bound model. This model had its basis 

in general recognition theory (GRT; Ashby & Townsend, 1986). General recognition theory assumes that 

participants learn categories by associating specific responses with a corresponding region in perceptual 

space. Because repeated presentations of a stimulus do not always necessarily generate the same 

perceptual event due to perceptual noise, the likelihood of whether a stimulus will be perceived as 

belonging to one category or another follows a normal distribution. This causes categories to be separated 

into groups by more than just their corresponding exemplars, but also “as a probability mixture of the 

individual exemplar distributions” (Ashby & Maddox, 1992, p.53). This model proposes that participants 

divide the representational stimulus space into response regions each associated with a category label, and 

this partition between response regions is referred to as the decision bound. The GRT assumes 

participants attempt to respond optimally, but encounter certain limitations: “perceptual noise, selection of 

a sub-optimal decision bound, variability in the memory of this bound, response bias, and variability in 

the memory of the response criterion” (Ashby & Maddox, 1993, p. 377). This model predicts that, 

eventually, categorization should become automatic once a category becomes associated with a particular 

region. This is in contrast to exemplar theory, in which it is proposed that a participant must make a 

comparison between the current exemplar and all other presented exemplars every time (Ashby & 

Maddox, 1990).  

It was common for researchers to conduct a category learning study in which they would apply 

several different models to the data in an attempt to see which one best could account for the data. The 
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“best fitting” model would then be assumed to be correct. Eventually, however, some concerns arose 

concerning the efficacy of this approach (Chandrasekaran, Koslov, & Maddox, 2014). Ashby and 

Maddox (1993) demonstrated that, at the level of the data, the prototype, exemplar, and decision-bound 

models were mathematically equivalent. Additionally, some data emerged which demonstrated behavioral 

dissociations between category learning tasks which could not be explained easily by any single-system 

model (Ashby, Alfonso-Reese, Turken, & Waldron, 1998). Finally, neuroimaging evidence began to 

emerge suggesting that, based on certain category learning task demands, multiple neural regions 

associated with different learning and memory functions could be recruited simultaneously; sometimes in 

parallel (both increasing), sometimes competitively (one increasing while the other decreased). 

Commonly examined learning and memory regions included components of the medial temporal lobe 

(MTL; hippocampus) responsible for declarative memory, and the basal ganglia, which can be involved in 

skills and instrumental learning. This suggested that different learning systems were engaged in a context 

driven manner, and that category learning may actually rely on more than one representational system 

(Poldrack & Packard, 2003). The single- versus multiple-system debate is complex, and arguments from 

both sides will be considered.  

Single- versus Multiple-systems views 

Current models of category learning are much more complicated than the early models, and 

involve converging evidence from behavior, neurological, and computational modeling domains (Richler 

& Palmeri, 2014). Early theories of category learning never specified which memory system may be in 

use during the categorization process. However, as research from the memory literature began to suggest 

there may be multiple memory systems, inquiry into which system(s) may be responsible for which 

aspects of category learning began. This interest was supplemented by advances in imaging methods (e.g. 

functional magnetic resonance imaging; fMRI) which allowed for localization of activity in the brain. In 

the beginning, virtually all category learning theories assumed a single-system model. While the term 

“single-system” may have at first referred to a single neural system, single-system proponents now take 

the view that there is a single representational system which may be used differently depending on the 
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circumstances and is not necessarily confined to a single neural system. Single-system theorists suggest 

that one representation may be shared across different types of tasks and demands, while multiple-system 

theorists argue that separate and independent systems are recruited based on the task to be performed 

(Richler & Palmeri, 2014).  

Single- versus Multiple-systems views: Multiple interpretations 

On a broad, conceptual level, the main argument put forth by single-system theorists is one of 

parsimony: that the evidence put forth to suggest a multiple-systems model can be explained using 

computational models that do not involve multiple systems. The argument, then, is that the single-systems 

view is preferable (Poldrack & Foerde, 2008). To explain evidence from neuroscience demonstrating 

differential neural activity during certain tasks, single-systems theorists argue that the activity reflects the 

use of different neural systems for different computations, but that it still reflects the usage of one 

representation. Additionally, some systems may be recruited more than others for certain category 

learning tasks (Richler & Palmeri, 2014). There are even relatively modern category learning models that 

reflect this single-systems perspective. The attention learning covering map (ALCOVE; Kruschke, 1992) 

is an extension of the exemplar-based general context model, and incorporates “perceptual processing, 

perceptual memories, selective weighting based on diagnosticity, learned associations between exemplars 

and categories, and categorization decision mechanisms, all of which can be subject to top-down 

executive control” (Richler & Palmeri, 2014, p. 85). This model, however, has had a hard time accounting 

for data from recently conducted dissociation studies, which will be discussed later (Maddox et al., 2003). 

While some published studies claim that “many researchers now accept the strength of the evidence 

supporting multiple systems” (Ashby & Maddox, 2011), there is still some debate regarding the 

interpretation of this evidence.  

One such example comes from an fMRI study which investigated differences in intentional 

(explicit) or incidental (implicit) learning tasks using dot-prototype stimuli (Reber, Gitelman, Parrish, & 

Mesulam, 2003). The participants in the intentional condition were told they would see a number of dots 

and that the configuration reflected category membership (for only one category); they were told that 
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should try to learn this relationship. In the incidental condition participants were told nothing regarding 

the categorical nature of the task or stimuli. Instead, they were told it was a mental imagery study, and 

they were instructed to imagine pointing at the dot in the center of the screen. During the testing phase, 

the categorical nature of the task was revealed, and they were instructed to respond as to whether each 

presented stimulus did or did not belong to the previously presented category. While accuracy between 

groups was equal, they found different patterns of brain activity between tasks. The intentional group 

showed greater activity in the hippocampus and some cortical regions; areas proposed to be associated 

with explicit category learning tasks, while the incidental group showed a reduced activation in the right 

middle occipital cortex (primary visual) for novel stimuli from the trained category. Repetition 

suppression (RS), a phenomena which describes reduced neural activation in response to repeated stimuli 

(Grill-Spector, Henson, & Martin, 2006), could have possibly accounted for the latter effect, however, the 

authors suggested that RS models do not suggest this effect can generalize to novel, related stimuli. 

Therefore, based on previous research, the authors interpreted these data as representing fluent category 

processing. Taking these results in combination, the researchers argued that their results demonstrated 

separate category representations, in support of the multiple-systems view (Reber et al., 2003).  

A criticism leveled at this study had to do with the way the task was explained to participants; the 

separate “representations” could have been due to differences in stimulus-encoding processes. A study by 

Gureckis, James, and Nosofsky (2011) replicated and extended the Reber and colleagues (2003) paper to 

decouple factors which they claimed could have produced data in favor of multiple-systems. In addition 

to directly replicating the conditions used in the Reber et al. (2003) paper, they also added two additional 

conditions. In an additional intentional condition, participants were still told they would be learning 

categories, but that the most important diagnostic feature was the center dot and that they should imagine 

pointing to it. The additional incidental condition was a similar reversal in that, while they were still not 

told about the categorical nature of the task, they were asked to focus on the configuration of the dots. 

They found that their encoding instructions (attention to the center dot versus overall configuration) 

strongly influenced the observed patterns of activation, regardless of the explicit/implicit nature of the 
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task, and they suggested that the observed activity was better explained by how participants visually 

processed the stimuli rather than evidence for multiple-systems (Gureckis et al., 2011).  

This example demonstrates the complexity of this debate, and how easily critics from both sides 

can interpret the evidence as favoring their views. Typically, criticisms originating from single-system 

views are often methodological in nature, focusing on critique of a single experiment supporting multiple 

systems. While evidence in favor of the multiple-systems view is large and still growing (Ashby & 

Maddox, 2005; Ashby & Maddox, 2011), critics suggest, in light of studies such as the aforementioned 

fMRI study, the current amount of evidence may not be enough to completely reject the single-system 

view. While they do not suggest that the multiple-systems view is entirely incorrect either, they place a 

high burden of proof on these complex, multiple-system models (Zaki & Kleinschmidt, 2014). While the 

single-system view has some valid criticisms, it cannot entirely account for evidence to the contrary, 

either. Additionally, proponents of this theory are at a loss to describe the broader set of results from 

neuroscience and animal data (Poldrack & Foerde, 2008). 

Competition between verbal and implicit systems (COVIS); a multiple-systems model 

The COVIS model is a well-supported multiple-systems model which the proposed study is based 

on. COVIS attempted to incorporate modern behavioral, neurological, and computational modeling data 

into one coherent format. As suggested by its name, this model proposed that category learning was a 

COmpetition between Verbal and Implicit Systems (COVIS; Ashby et al., 1998; Ashby et al., 2011). For 

the studies proposed here, the implicit system within the COVIS model will be the primary focus. 

COVIS has been experimentally tested primarily through the use of rule-based and information-

integration tasks, which were described earlier.  Ashby and colleagues argued that each of these tasks 

recruited primarily one of the COVIS mechanisms, with rule-based involving the verbal system, and 

information integration the implicit system. They proposed that performance on rule-based tasks was 

governed by a verbal, explicit system that relied on semantic knowledge and was under conscious control. 

Information-integration performance, they suggested, was conversely governed by a non-verbal, implicit 

knowledge system which utilizes procedural learning (Ashby et al., 1998), although the latter aspect has 
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endured some criticisms (Smith, 2008), and the nature of their explanation for the implicit system was not 

entirely refined at that point. The authors suggested that during category learning, performance should 

initially be dominated by the verbal system. However, the implicit system should eventually take over and 

begin to “automate” performance. In general, which system ends up being the most dominant should 

depend on the dimensions of the stimuli to be categorized: a stimulus with separable dimensions in which 

only one dimension is relevant should be easy to categorize using a unidimensional rule, hence, the 

explicit system should dominate. However, if the dimensions are inseparable and more than one 

dimension is relevant, it should be difficult, if not impossible, to develop a rule, leaving the implicit 

system to dominate (Ashby et al., 1998).  

Ashby and colleagues furthermore proposed neural loci for the explicit and implicit systems, and 

presented behavioral data on category learning tasks from special populations, such as those with 

Parkinson’s and Huntington’s disease, as evidence of dissociations in performance; possibly related to 

specific insults to the verbal or implicit category learning system. They suggested that the verbal system 

relies on a network connecting the prefrontal cortex, head of the caudate, and the anterior cingulate, 

which allows for switching from ineffective rules and selecting the appropriate rule respectively. The 

implicit system, they suggested, functioned via an associative learning mechanism in which the tail of the 

caudate receives projections from visual areas and projects to premotor cortex; synaptic plasticity within 

the tail of the caudate then can result in a learned association between each stimulus and a particular 

response. This would, in essence, form a direct stimulus-response relationship (Ashby et al., 1998).  

Dissociation studies: Feedback differences 

Although COVIS has been supported by a wide variety of evidence from behavioral, 

neurological, and computational studies, the focus here will be on the studies that not only support the 

existence of multiple mechanisms, but that further characterize the nature of the implicit and explicit 

systems.  

 The first area that will be covered is the relationship between feedback and task performance. The 

COVIS model predicted that, due to the conscious nature of the explicit system, in rule based tasks the 
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form of feedback and how it is processed should not constrain task performance. In contrast the implicit 

system was predicted to rely, in part, on neurally constrained reinforcement learning; implying that the 

nature of feedback presentation in information integration tasks should be much more critical for learning. 

An early study found that rule-based learning was not impeded by the lack of feedback, compared to a 

severe decrement in performance due to lack of feedback in an information-integration task. Ashby, 

Queller, and Berretty (1999) investigated the ability of participants to perform simple (rule-based) or 

complex (information-integration) tasks with or without feedback. Without feedback, participants in the 

rule-based task were still able to perform with almost perfect accuracy, while those in the information-

integration performed sub-optimally. Ashby, Maddox, and Bohil (2002) trained participants using either 

observational training, in which a stimulus and its label are presented simultaneously and no response is 

collected, or feedback training, in which participants must respond with their best guess of category 

membership and are given feedback afterwards. On the basis of predictions made by COVIS, they 

proposed that these two conditions would have differing effects on rule-based and information-integration 

systems. Rule-based systems, are based on working memory and executive attention, thus the timing and 

nature of the category membership information in both conditions should not matter. However, implicit 

systems involved in information-integration learning rely on dopaminergic reward signaling after a 

stimulus and response; if the label is presented alongside the stimulus as in the observational condition, 

without a response, these systems will not be recruited. Therefore, they hypothesized a deficit in 

performance in the observational training condition for the information-integration task, but not in the 

rule-based task. They found that participants performing the information-integration task in the 

observational training condition performed less accurately than all other groups, and were also more 

likely to use sub-optimal rule-based strategies compared to their counterparts in the feedback training 

condition, suggesting the implicit system was not utilized (Ashby et al., 2002). 

 The finding that that feedback in information-integration tasks is more effective when presented 

after the response raises the question of what amount of delay between response and feedback is most 

optimal for learning. As COVIS suggests that the implicit learning system is dopamine mediated, there 
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should be an optimal period of time after dopamine is released but before it disappears during which 

learning is most effective. A study by Maddox and colleagues (2003) varied the time between response 

and feedback in rule based and information integration category learning tasks (conditions: Immediate, 

2.5 s, 5 s, 10 s). For the rule-based task there was no difference in performance related to the timing of the 

feedback. For the information-integration task, they found that performance was best in the immediate 

feedback condition compared with the 2.5 s, 5 s, and 10 s delays. The authors suggested that since 2.5 s 

was enough time to see a decrease in synaptic efficacy and a weakening of the reward response, the 

optimal amount of time might lie between a 0 and 2.5 second delay (Maddox et al., 2003). A later study 

(Worthy, Markman, & Maddox, 2013), hypothesized, based on neuroscience studies (Lindskog, Kim, 

Wikstrӧm, Blackwell, & Kotaleski, 2006) published after the Maddox et al. (2003) paper, that “learning is 

best when calcium (mediated by glutamate) and dopamine levels peak simultaneously, and that this is 

likely to occur when feedback is given 500 ms after a response has been made” (p. 292). Worthy and 

colleagues (2013) found that, in the rule-based task, there was no effect for feedback timing. In the 

information-integration task, they found that the optimal feedback delay was 500 milliseconds.  

 These studies on feedback timing seem to support the predictions made by COVIS in regards to 

the different mechanisms between explicit and implicit category learning systems; as the explicit system 

is conscious, feedback can be processed at will, whereas implicit systems learn more automatically and 

rely on more biological constraints.   

Dissociation studies: Dual-task performance 

Another area of research examining dissociations between rule-based and information-integration 

tasks is in the domain of dual-task performance. Another prediction by COVIS had to do with the nature 

of how each system relies on cognitive resources such as executive functions. The implicit mechanism in 

COVIS is independent of these resources, whereas the explicit mechanism relies on them for learning. In 

a dual-task study, participants must keep track of and respond to two different tasks with different 

performance goals. If tasks loading onto the explicit or implicit system were given the same dual-task, 

one which required the use of an executive function system, it was predicted that the explicit task would 
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suffer greater performance deficits. This is because the explicit system was proposed to rely on areas 

responsible for executive function, whereas the implicit system was proposed to rely more on procedural 

learning systems. Therefore, a simultaneous executive function task should affect the explicit task more 

so than the implicit task due to the competition for the same system’s resources.  

Waldron and Ashby (2001) taught participants to categorize geometric shapes varying in a binary 

fashion across shape, background color, shape color, and numerosity, using either a unidimensional rule 

(rule-based) or a complex, three-dimensional rule (information-integration). During a second session, 

participants had to learn new, additional rules, and also were required to perform a numerical analog of 

the Stroop task as a dual task. In this concurrent Stroop task, a number was presented on either side of the 

screen during presentation of the stimuli to be categorized. The numbers varied in physical size as well as 

numerical value, and after the participant responded to the categorization aspect of the task, they were 

asked “value” or “size,” and had to indicate which was larger for whichever option was presented. They 

were also instructed to prioritize performance on the Stroop task, and to think about the categorization 

task as a secondary priority. The researchers suggested that, as they had to hold these value and size 

aspects of the numbers in working memory while categorizing, it should add to the difficulty of the task. 

What they found was that the concurrent Stroop task produced severe decrements in performance on the 

arguably easier explicit categorization task, while performance on the more complicated implicit task was 

largely spared. These results are contrary to a single-system model, which would predict performance 

becoming worse with a concurrent task the more complex the category structure becomes (Waldron & 

Ashby, 2001).  

A study attempting to determine the generalizability of Waldron and Ashby’s work was 

conducted using almost identical procedures (including the concurrent numerical Stroop task), except 

instead of stimuli varying along binary dimensions, they used stimuli which varied on continuous ones. In 

the experiment, which similarly compared performance on a rule-based versus information-integration 

task, they found results which were identical: poorer performance in the rule-based compared to the 

information-integration task during concurrent administration of the numerical Stroop task (Zeithamova 
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& Maddox, 2006). These dissociation studies of dual-task loading seem to support COVIS as well: 

specifically, the idea that explicit and implicit systems function using separate neural systems. Executive 

function tasks interfered with the explicit, declarative system proposed to be in use during rule-based 

tasks, while the implicit, procedural system seemed not to suffer serious performance decrements. 

Additionally, that these systems can function independently during the same task is a direct prediction of 

COVIS (Ashby et al., 1998). 

Dissociation studies: Motor responses 

 Another area of dissociation research, and a very important one in the context of the proposed 

study, involves the differential effects of motor response manipulations. COVIS postulates that the 

implicit system involves the procedural memory system (Ashby et al., 1998), suggesting a much closer 

link between information integration categories learned via procedural systems and a motor response.  

 One of the first studies that attempted to investigate this procedural memory aspect of COVIS 

was conducted by Ashby, Ell, and Waldron (2003). There were three different response conditions that 

participants completed while they performed either a rule-based or information-integration task. The 

study was broken up into a training phase and a transfer phase, and there were three different possible 

conditions which were identical across both types of tasks. In the control condition, participants used their 

left and right hands, positioned on the left- and right-hand side of a keyboard, to respond as to whether a 

stimulus belonged to categories A or B respectively; the transfer phase was identical. In the hand-switch 

condition, participants used their right hand on the left-hand side of the keyboard and their right hand on 

the left-side of the keyboard during training, and they uncrossed them during transfer (similar to the 

control condition). The button-switch condition had participants begin the training phase identically to the 

control condition, but in the transfer phase, instead of changing hand positions, the category label that 

each button referred to was reversed. In this way, during the hand-switch condition, only the motor 

responses were reversed, whereas in the button-switch condition, the response locations as well as the 

motor responses reversed.  
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In the rule-based task, there was no interference across all experimental manipulations. The 

experimenters suggested this was due to the fact that participants learned abstract category labels 

mediated by an explicit, rule-based system, and as the explicit system does not involve a motor 

component they were able to easily adjust their responses. The results for the information-integration task, 

however, were quite different. The hand-switch condition exhibited a slight decrease in accuracy which 

was eventually recovered from, but the button-switch condition produced significant interference which 

did not decrease with practice. The authors suggested this was due to the fact that in the hand-switch 

condition, while the motor response was changed, the actual response keys remained the same. However, 

in the button-switch condition, they suggested that the performance deficit likely occurred due to the fact 

that in information-integration tasks, participants learn to execute a specific response location (category 

A, left-hand side of keyboard) more so than a specific motor response (category A, left hand) (Ashby et 

al., 2003). 

A follow-up to this study was conducted by Maddox, Bohil, and Ing (2004). In their study, they 

attempted to provide further evidence of the procedural aspect of the implicit learning system. 

Participants were assigned to one of two conditions in a rule-based or information-integration task. In 

what they referred to as the “A-B” condition, stimuli identical to those presented in the Ashby et al. 

(2003) study were presented along with the query “Is this an A or B?” Participants pressed one key for 

category A, and another key for category B. The other condition was referred to as the “yes-no” 

condition. In this case, participants were either asked “Is this an A?” or “Is this a B?” and were then 

supposed to respond with one key for “yes” or another key for “no” with the idea being that in the yes-no 

condition, the response locations were constantly changing. They hypothesized that if there is a 

procedural element to information-integration tasks, then an inconsistent set of response mappings should 

prevent stimulus-response associations from being formed as effectively compared to having response 

locations consistently mapped. They found a decrease in performance for the yes-no condition relative to 

the A-B condition for the information-integration task that was not present in the rule-based tasks. They 

suggested this was further evidence that the explicit system does not require a consistent response 
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mapping; the only thing that participants need to learn is an abstract representation of category labels. 

This is in stark contrast to the results from the information-integration task, providing further evidence 

that these may be multiple-representational systems (Maddox et al., 2004). 

While the previously mentioned evidence seems to suggest that a consistent response location is 

crucial for effective category learning, one study provides evidence which appears to contradict that idea. 

Ashby and colleagues (2003) provided evidence that changing response locations after learning severely 

disrupted performance, and while Maddox and colleagues (2004) seemed to present evidence that 

inconsistent response locations during training can be problematic, the nature of the yes-no component of 

the task led to some criticisms as to what systems exactly were being recruited. Therefore, Spiering and 

Ashby (2008) wanted to further investigate the effect of inconsistent response locations during 

performance of an information-integration task. In their first experiment, participants completed an 

information-integration in which the category labels were represented by either two circles of different 

colors or the letters A and B. In one condition, the circles remained in the same location, whereas in the 

other two, the location of the circles and letters varied randomly. They found that while the random 

locations started with worse performance and took longer to learn, the asymptotic difference between the 

consistent and inconsistent group performance was non-significant. They suggested that, in regards to the 

Ashby et al. (2003) paper, it was the blocked nature of the task which caused the interference when 

participants suddenly switched to inconsistent mappings. This was because they had been able to rely on 

both a spatial and feature association, and they suggested that the spatial association may be the more 

effective of the two. The participants in the Spiering and Ashby (2008) study never had a spatial 

association to rely on, so they were forced to learn the weaker, feature association instead.  

In the second experiment reported by Spiering and Ashby (2008), they wished to examine the 

yes-no aspect of the Maddox and colleagues (2004) paper. They performed a similar version of that study, 

using an information-integration task, however instead of the prompt being “Is this an A?” or “Is this a 

B?” each side of the screen just had the words yes or no, which remained stationary, and instead at the 

bottom of the screen one of the two colored circles would be presented randomly with a question mark. 
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They reasoned that it could be either the extra logical decision or the inconsistent response locations for 

the yes-no keys in the Maddox et al. (2004) paper which caused such poor performance. In their study, 

then, they wanted to test the logical decision aspect only. What they found was that performance in the 

yes-no experiment was worse than the random location condition from their first experiment. They 

suggested that the logical decision of the yes-no task must have been the reason for the performance 

deficit in the study by Maddox and colleagues, not the varying response locations. They further reasoned 

that the yes-no task might recruit executive processes in neural regions which are poorly connected to 

where the implicit learning takes place; this communication problem would cause the observed 

performance deficit. Recall, also, that previously reported studies found that dual-task performance 

affected rule-based tasks more than information-integration tasks. While this seems to be contrary to their 

results, they argued that the difference between their task and others is that the yes-no task does not load 

as heavily onto working memory as the other dual-tasks which reported opposite behavioral patterns. In 

other words, the amount of working memory required for the yes-no condition is relatively light, which 

does not challenge the capacity required for the basic, rule-based category decisions (Spiering & Ashby, 

2008).  

Data from the serial reaction time (SRT) task literature provide some supporting evidence in 

favor of effector flexibility. In these tasks, sequences of stimuli are presented, and participants must 

respond to each stimulus with a specified motor effector (e.g. stimuli at four locations of on the screen are 

mapped to four different response buttons, each of which is pressed, with a separate finger). Reaction 

time in these tasks decreases for repeated sequences in comparison with random sequences, but without 

conscious awareness of the sequence by participants. SRT tasks are thought to utilize the implicit, 

procedural system, (especially the basal ganglia; Curran 1995; Wӓchter et al., 2009) similarly to 

information-integration tasks, and there has been some research looking at effector specificity in this 

domain. One study found that participants trained to responded using 3 separate fingers on the same hand 

were able to transfer their sequence knowledge when using one finger to press all three buttons which 

required them to use the arm as the effector rather than individual fingers (Cohen, Ivry, & Keele, 1990, 
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Experiment 2). Two additional SRT tasks found that effector programs could be “mirrored” and maintain 

the response time (RT) reduction for trained patterns versus random ones (Verwey & Clegg, Experiment 

1; Verwey & Wright, 2004), which the authors of both studies suggested as evidence of implicit motor 

programs which can exist independently of or dependent on a specific effector (but still be separate 

representations). It is possible in information-integration tasks that the procedural system may acquire 

motor programs which are both effector dependent (e.g. the index finger from either hand), and effector 

independent (e.g. respond “A” to category “A” stimuli regardless of which effector is required). Another 

study using monkeys found that effector specificity transfer was a function of the amount of time that 

effector was used to perform a specific pattern, with less time spent in practice resulting in easier transfer 

(Rand et al., 2000). Given that the length of time it took to interfere with effector transfer was several 

days of practice, it is not improbable that the procedural system can be malleable with regards to which 

effector it requires to perform procedural tasks well. 

All together, these papers provide strong evidence that the implicit system, specifically in the 

context of information-integration tasks, has a procedural memory component (Ashby et al., 2003, 

Spiering & Ashby, 2008). At the time COVIS was proposed, and later while these papers were being 

published, the involvement of the procedural memory system in implicit category learning was not 

entirely known, however, it is currently much more widely accepted (Cantwell, Crossley, & Ashby, 

2015). However, recently it has been suggested that the initially hypothesized direct mapping of a 

stimulus to its associated response could be more complicated. Instead, it has been proposed that there is 

an additional component that mediates this linkage in the form of a category label association that links a 

stimulus to a response. 

A two-stage representational model  

The classic COVIS framework postulates that the explicit and implicit systems form different 

direct relationships between stimuli and other representations. In the explicit system, stimuli become 

associated with abstract labels via rules. In the implicit system, small regions of perceptual space 

surrounding each stimulus become associated with a motor response. Many other models, including 
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exemplar-based models such as ALCOVE (Kruschke, 1992), theorize a similar stimulus-response 

relationship. Recently, evidence has emerged that suggests that implicit category learning is more 

complicated than just the stimulus-response association postulated by the COVIS framework. This 

evidence suggests that, in-between the stimulus and response representations, there could be a mediating 

category label representation (Kruschke, 1996; see Figure 1 for a visualization of the one- and two-stage 

association models). This means that instead of a direct stimulus-response relationship, an association is 

formed between a stimulus and a category label, and it is this category label that then becomes associated 

with the appropriate response. 

An early theory including an intermediate category label was the AMBRY model (Kruschke, 

1996), a variant of the ALCOVE model (Kruschke, 1992; AMBRY is not an acronym as ALCOVE is, 

instead, it is a play on words as an ambry is a special type of alcove). The AMBRY model postulated that 

exemplars in a category, rather than being individually mapped to a specific response, were instead first 

linked to a common category membership (Kruschke, 1996). 

The possibility that a category label representation is formed when learning information 

integration tasks was investigated by Maddox, Glass, O’Brien, Filoteo, and Ashby (2010). They used a 

four-category task with three different conditions: a control condition, a category-switch condition, and a 

response-switch condition. Once participants had trained to a specific accuracy criterion, either the 

category labels changed or the responses used to indicate category membership changed, dependent on 

the assigned condition. Participants were told that the categories had changed, and were instructed to re-

Figure 1: A diagram of the one-association, stimulus – motor response model, 
and the two-association, stimulus – category label – motor response model 
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learn the task using the trial-by-trial feedback. Maddox and colleagues hypothesized that if direct 

stimulus-response associations form the basis of information integration learning, then these two 

conditions should result in identical performance because the stimulus – response associations formed 

during training are broken in both conditions. They further hypothesized that if learning involves forming 

two associations, there might be differential effects on performance between the category label and 

response location conditions. They found that the category label group suffered a greater performance 

cost, but also experienced a faster recovery, than the response location group. These findings were 

consistent with the two-association hypothesis, but not with the classic COVIS model limited to a single 

stimulus-response association.  Maddox and colleagues suggested that COVIS might be extended to 

account for these results, but that more neurological and behavioral evidence would be needed (Maddox 

et al., 2010).  

Since this study, the two-stage associative model has become more accepted, and a formal model 

of COVIS incorporating these stages has been proposed. In this model, input from cortical visual 

association areas projects to the body and tail of the caudate nucleus, and then on to the pre-

supplementary motor area (preSMA). Projections from the preSMA extend to the posterior putamen, 

which in turn projects to the supplementary motor area (SMA). Learning to associate a stimulus with the 

appropriate category label occurs on the path from cortical visual areas to the preSMA (via the tail of the 

caudate), and learning to associate a category label with the desired motor response takes place on the 

path from the preSMA to the SMA (via the putamen) (Cantwell et al., 2015). Learning occurs via synaptic 

plasticity driven by a dopamine mediated reinforcement signal at cortical-striatal synapses in the body and 

tail of the caudate (for the first stage), and in the posterior putamen (for the second stage) (Crossley, 

Ashby, & Maddox, 2014). 

 

 

 

 



  
 

 22 

 

Three stage models  

The two-stage model allows for stimuli to be assigned to a category with a common label, but 

does not account for the possible learning of a particular category structure, e.g., a prototype. Some early 

research studies posited that another mediating representational layer may exist between the stimulus and 

the category label (Kendler & Kendler, 1962; Sanders, 1971; see Figure 2). This “category 

representation” could exist as an abstract conceptualization of the category structure as a whole; it would 

maintain the features that relate individual stimuli within categories.   

A method was developed by Wills, Noury, Moberly, and Newport (2006) to test whether such a 

mediating category representation exists through a manipulation involving the category label – motor 

response association. They hypothesized that if a unique category representation is formed for each 

encountered categorization problem, and learning is manipulated for a subset of category members, such 

as reversing the category labels, then participants should later extend the learned manipulation to the 

remaining category members as well. This is because, in the context of this reversal example, reversal of 

the category labels will cause an alteration to the association between the category representation and its 

category label. However, the association between the stimuli and the category representation remains 

unchanged. When the stimuli which were not subjected to response reversal are presented later, they still 

will activate the same category representation, but now this representation has been linked to a new 

category label, and subsequently, to a different motor response.  

Wills and colleagues (2006, experiment 2) tested this hypothesis by training participants in their 

study on two separate “family resemblance” categorization problems using a single set of category labels.  

Figure 2: A diagram of the three-association model proposed 
by Wills 



  
 

 23 

 

All the stimuli and features were unique to an individual category problem, but across the two problems 

the same labels for the alternative categories were used (A and B). Once they reached a certain accuracy 

criterion, one of the categorization problems was selected, and participants were trained to reverse the 

category labels for only a subset of stimuli from both categories. In a final testing phase, all stimuli from 

both categorization problems were presented. They found that the reversal of the label-response 

relationship for a subset of stimuli affected the label-response relationship for the entire categorization 

problem; participants applied the reversal to all of the stimuli from the categorization problem, even those 

stimuli they had not been trained to reverse. They interpreted this result as indicating that the relationship 

of the category representation to the category label had been altered in the reversal phase. When the 

remaining stimuli which had not been presented during the reversal phase appeared, they still activated 

the same category representation, however, now the representation was associated with the opposite 

category label, which caused a reversed response.  

Overview of studies 

The Wills et al. (2006) study provides evidence for an additional category representational layer 

between stimuli and category labels. However, they used a family resemblance category learning task, 

and it is unclear whether a similar mediating representational layer is formed when learning information 

integration tasks (Maddox et al., 2004). Although there is an array of supporting evidence for a two-stage 

association model for implicit information integration learning, it is unclear whether this two-stage model 

can fully account for learning, and whether an abstract category representation might be learned as well.  I 

used the method developed by Wills et al. (2006) to test whether an abstract category representation is 

formed during information-integration category learning. In Study 1, participants learned one information 

integration category structure with two sets of labels for the individual categories. One set of labels was 

then trained in reverse, and a final testing phase investigated if they learned one category representation 

for both sets of labels by examining reversal behavior for the label set that was not trained in reverse. 

Study 2 trained participants on one information integration category structure with one set of labels. A 



  
 

 24 

 

spatially defined subset of each category was then trained in reverse, and a final testing phase examined 

reversal behavior for all stimuli, including those that were not trained in reverse. 
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CHAPTER 2: STUDY 1 
 
 
 

Introduction  

The goal of this study was to investigate whether or not an intermediate category representation 

between stimuli and category labels is learned in information-integration tasks. The design was based on 

the one used in the Wills et al. (2006) paper in which participants learned two category learning tasks, 

learned to reverse a subset of stimuli from one category, and then completed a final task in the absence of 

feedback testing to examine whether or not they extended the reversal to untrained stimuli. Participants 

were told they would learn via trial-by-trial feedback to categorize stimuli for two different categorization 

problems using two sets of category labels.  In reality, the two categorization problems shared the same 

stimuli, and there were merely two sets of labels assigned to the same stimulus distributions. After 

reaching the accuracy criterion on label set 1 and on label set 2, the entire set of stimuli belonging to label 

set 1 was reversed, and participants again trained to the same accuracy criterion. In the final phase, stimuli 

with either set of labels were presented intermixed with each other, and feedback was no longer given. 

My hypothesis was that, if mediating category representations are acquired in information integration 

learning, that participants would learn a single representation of the category and would learn to assign 

both label sets to this category representation.  Reversing one label set should therefore lead to 

participants reversing the other label set, because the category representation-category label was changed.  

Alternatively, if participants did not show reversal of the second label set, that would suggest several 

alternative possibilities:  that completely independent category representations and/or label associations 

were formed for each label set such that reversal of one set did not affect the other, or that no category 

representation was formed.  

Methods 

Participants 

Participants were recruited from the PSY100 and PSY250 research pool. Each student in those 

courses is required to participate in research studies for class credit. In total, 98 students participated, 
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however, only 58 students completed the task. Initially, the task was scheduled for one hour, but a large 

proportion could not complete the task in that amount of time; extending the time to two hours reduced 

attrition to reasonable levels.  

Stimuli 

The task was presented to participants using Psychtoolbox (Brainard, 1997; Pelli, 1997; Kleiner 

et al, 2007). This set of programming tools functions as a Matlab extension. Stimuli were Gabor patches: 

circular sine-wave gradients which vary in terms of the bar rotation (orientation) and bar width (spatial 

frequency). These were generated by first defining a point in perceptual space to serve as the base for 

generating other stimuli (black dots on Figure 3; both clusters: mean Y = 225, SD Y = 20, SD X = 14; 

Category A: mean X = 260; Category B: mean X = 440) within an arbitrary 0:700 space (wherein the 

initial arbitrary values of the x and y axis had been transformed into orientation and frequency values 

respectively) which had been rotated 45º. A y-range of approximately 425 “units”, split evenly around 

both sides of the black dot, was used to generate each set of category stimuli. Approximately 1000 stimuli 

were generated by sampling randomly from a bivariate normal distribution, which was constrained by the 

mean and y-range specified. The resulting stimulus distributions for each category are shown in Figure 3. 

On each trial, a randomly sampled stimulus was presented on the computer screen.  Each stimulus was 

approximately 4 cm in diameter, and subtended a visual angle of 30º on average. We did not control 

visual angle for each participant by fixing head position, so this value likely differed between participants 

and changed across the experiment due to factors such as shifting posture and chair distance from the 

screen. 

Procedure 

Participants were told by the experimenter that they would be participating in a visual 

categorization task, and that the goal was to learn to categorize stimuli as accurately as possible. They 



  
 

 27 

 

were also told they would have to learn the task via trial and error, but that they would receive feedback 

on their responses. Participants were instructed to categorize stimuli into two categories; each category 

would have a category label (e.g., R and I).  They were further told that at first the labels would always be 

on the same location on the screen and that they should select the desired category by pressing the button 

on the corresponding side of the screen with their left or right hand.  After reaching a certain accuracy 

criterion for a number of blocks, the labels on the bottom of the screen indicating category membership 

would begin alternating locations; for example, for the category labels R and I, sometimes the R label 

would be in the lower left hand corner, and sometimes in the lower right hand corner. They would then 

have to continue to respond by pressing the button (right or left hand) corresponding with the side of the 

screen that the category label appeared on.    

 The task began with an instruction screen reiterating the verbal instructions, and then the training 

portion of the task began. Participants trained first with one set of category labels and then with the 

second set.  The two category label sets were R-I and E-O and were assigned to the first or second 

learning task in a counter-balanced fashion.  Training continued on each label set until they reached 80% 

Figure 3: The perceptual space from which the stimuli were sampled. 
Black dots denote the center point from which stimuli were generated, 
black line represents decision bound. 
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accuracy for five 30-trial blocks. Each stimulus was presented for two seconds or until the participant 

responded; this was followed by a half-second of a blank screen, then feedback was presented for another 

half-second. The feedback indicated whether they were correct, incorrect, or had been too slow to 

respond. After reaching the accuracy criterion two times, the labels began alternating between lower left 

and lower right corners in a pseudorandom sequence and continued to do so until they completed the 

training block for that set of labels (See Figure 4). Afterwards, the other set of labels was presented, and 

the task progressed identically until they reached the accuracy criterion five more times.  

Afterwards, the reversal phase began in which the first set of labels they had been presented with 

during training was now selected to be trained in reverse; the correct responses for each category were 

switched. First, an instruction screen was displayed which told them that they were entering a new portion 

of the task and that they should continue to categorize stimuli as accurately as possible. The nature of the 

change and the presence of the reversal was not disclosed. The reversal phase proceeded just like the 

training phase; participants had to complete five 30-trial blocks with 80% accuracy.  

After completing the reversal phase, the final test portion of the task began. The procedure for 

this section was different from the training tasks. Instead of 30-trial blocks, 300 trials were presented 

back-to-back without feedback and without breaks. Both sets of category labels were used and trials with 

the different label sets were intermixed randomly.  Labels from different sets were not mixed within a 

single trial; the options were still either R-I or E-O. At the end of this block, the task was completed, and 

instructions displayed telling participants they had finished. 

 

Figure 4: An example of alternating category label positions 
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Results 

It took participants 36 blocks on average to complete the initial training (range: 16-83), and 10 

blocks to complete the reversal training (range: 5-24), collapsed across both sets of labels; there were no 

significant differences in performance as a function of which category label set was reversed. For the 

transfer phase, the dependent variable was the percentage of stimuli categorized as belonging to category 

R or E (equivalent labels) within each of the originally trained categories R/E and I/O. This measure was 

chosen to avoid the ambiguity inherent in judging which categorization choice is correct (in accordance 

with original training, or the reversal training).  For each subject, proportion of R/E responses was 

calculated separately for stimuli from originally trained categories R/E and I/O (factor 1; category), and 

for stimuli from labels in phase 2 that subjects trained to reverse [trained stimuli], and labels that were not 

trained to be reversed [transfer stimuli]; (factor 2; training). A 2x2x2 ANOVA was conducted on factors 1 

and 2, with the RI and EO reversal conditions as a third, between-subjects factor (see Figures 5 and 6 

respectively).  There was an interaction effect for all factors(F(1,48) = 7.58, p < .01), with trained stimuli 

receiving a significantly higher proportion of reversed responses than transfer stimuli in both label 

reversal conditions. Post-hoc tests (see Table 1), indicated that trained  

 

Table 1
Pair-wise comparison, by condition, for category labels trained in reverse

Label Reversal Mean Difference SE p -value 95% CI

RI -24.71 8.38 0.005* -41.56 | -7.87

EO -50.27 8.38 0.0001* -67.11 | -33.42

Pair-wise comparison, by condition, for transfer stimuli

Label Reversal Mean Difference SE p -value 95% CI

RI 28.85 6.68 0.0001* 15.41 | 42.82

EO 48.15 6.68 0.0001* 34.72 | 61.58

Note:  mean difference is calculated by subtracting the percent endorsement for categories R/E when 

presented with category R/E stimuli from the percent endorsement of category R/E for category I/O stimuli.

Negative values indicate reversal, positive values indicate maintenance of original category

* Significant at 0.05 level
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Figure 6: Mean percent category R/E responses for trained and 
transfer stimuli when the EO category labels are reversed 

Figure 5: Mean percent category R/E responses for trained and transfer 
stimuli when the RI category labels are reversed 
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stimuli continued to receive reversed responses, while transfer stimuli received responses in-line with 

how they were originally trained. These data showed a non-significant amount of reversal transfer, 

consistent across both label reversal conditions.  

Individual participant performance was examined, to ensure there was no masking of  

reversal behavior through group analysis. Only 2 participants were identified who appeared to extend the 

reversal to the transfer stimuli (one from each label reversal condition).                                                                                            

Discussion 

My hypothesis that reversal training for one set of labels would transfer to the non-reversed label 

sets was not supported. Instead, participants continued to respond to each set of labels consistent with 

how they had most recently been trained; the label set trained with reversed responses continued to 

receive reversed responses, and the label set that was not subjected to reversal training maintained the 

responses consistent with initial training. These results indicated that participants may not have formed a 

single category representation. Additionally, accuracy for the transfer phase dropped below the criterion 

they had been trained to, although why this occurred is unknown. It is possible that the removal of 

feedback led to an overall decrease in accuracy due to a lack of any sort of response monitoring system 

for performance. Furthermore, if they treated each set of category labels as separate categorization 

problems, some sort of extra-logical steps may have also been implemented. These steps could be in 

response to having to transition between label sets, in combination with having to account for trail-by-trial 

alternations of response locations. There could be several possible reasons for the lack of reversal of the 

second label set. One possibility is that, even though the stimuli for both sets of labels were identical, 

participants could have learned two separate category representations, and therefore each label set could 

have a separate category representation – category label association. In that case, when one set of labels 

were reversed, it did not change the association for the other set because they had separate associative 

links. Another explanation could be that participants did learn a single, shared representation, but they 

may have learned multiple separate category label associations for the category representation. Therefore, 

reversing one set only altered that particular category representation – category label association. A third 



  
 

 32 

 

explanation is that there could have been a shared representation learned during initial training, but that 

reversal may have led the to the acquisition of a new category representation for the labels presented 

during the reversal training due to participants partitioning each portion of the task separately. Finally, 

there may not be a category representation formed in information-integration tasks. Without an 

intermediate category representation, reversing one set of labels had no effect on the other because the 

stimulus – category label associations for each set of labels are entirely separate.   

Another possibility is that subjects may not have completed enough training to solidify a category 

representation. Kruschke (1996), in their paper describing the AMBRY model, suggested that training 

strengthens a category representation. It is possible that the 5 blocks necessary to progress through each 

segment of the task were insufficient. In the Wills et al. (2006; Experiment 2) study, participants took an 

average of 27 blocks to reach criterion in the initial training phase, and an average of 3 blocks in the 

partial reversal phase. However, the average number of blocks for training and reversal in Study 1 was 36 

and 10 blocks respectively.  

Alternatively, participants may not have had enough reversal practice to significantly alter the 

category representation, if there was one shared between both sets of labels, and may have instead 

responded in the transfer phase based on however they had most recently been trained for a given label 

set. It could therefore have been a combination of difficulty and length of practice that precluded the 

formation of a strong enough category representation during the reversal phase. Finally, it is possible that 

the difference in results is due to differences in the category learning task itself, as the Wills et al. (2006) 

study used a family resemblance task. 

The difference in results between Study 1 and the study by Wills and colleagues (2006) could 

also be due, in part, to the difference in methods. Their study used two unique sets of stimuli within the 

category, and only trained participants on a partial reversal for one set of stimuli, whereas this study used 

two sets of labels, applied to a common set of stimuli, and participants were trained using a full reversal 

for all stimuli with one set of category labels.  With that in mind, Study 2 mirrored much more directly 

the Wills et al. (2006) study by examining a partial reversal of a subset of the stimuli within the category. 
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CHAPTER 3: STUDY 2 
 
 
 

In Experiment 1, I tested whether a category representation stage might be formed when learning 

information integration tasks and be shared between two sets of category labels. In this study, I used a 

method which was simpler, in that it used a single set of category labels, which is more similar to the 

methods used by the Wills et al. (2006) study. This study examined if reversing the category labels for a 

subset of stimuli would transfer to the remaining category members. If participants transferred the 

reversal to untrained stimuli, it would suggest that a single category representation had been learned, and 

that the category label association with the category representation had been altered. Participants were 

trained on one information integration categorization problem with a single set of category labels. After 

they reached a predetermined accuracy criterion, one half of the stimuli within each category (clustered 

together in perceptual space, see Figure 8) received reversal training. In the final phase, all stimuli were 

presented again without feedback, resulting in two types of stimuli: those that had received reversal 

training, and those that had not.         

In addition to manipulating stimulus-label reversal, I also manipulated the consistency of the 

label-response mappings.  In the Consistent condition, the category labels on the bottom of the screen 

indicating the appropriate button press response remained on the same side on every trial, creating a 

consistent category label- motor response relationship.  In the Inconsistent condition, the labels alternated 

sides in a pseudorandom sequence as in Study 1. I hypothesized that this manipulation might affect the 

degree to which subjects learned category labels and formed an accompanying abstract category 

representation.  In the Inconsistent mapping condition, subjects cannot perform the task without learning 

the category labels; this condition at the least forces learning of a category label representation, and may 

provide the best condition within which to identify category representation formation.  However, under 

Consistent mapping conditions, participants may ignore the labels and instead learn direct stimulus-

response relationship, effectively bypassing learning category labels and not forming abstract category 

representation.  
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The primary hypothesis was that abstract category representations are developed during 

information integration tasks.  The primary prediction was that reversal of a subset of category label – 

category mappings for a subset of category members would be extended to the remaining members.  

The secondary hypothesis was that the consistency of category label – response mapping might 

modulate learning of the category representation and category label – category mappings. The COVIS 

theory (Ashby et al., 1998), based on data from experiments using consistent response mappings, found 

that learning of information integration categories is based on direct stimulus-response relationships 

which would preclude developing both a mediating category representation and a category label 

association.  If participants in the consistent group only learn direct stimulus-response relationships, there 

should be no reversal during the testing phase for transfer stimuli. If reversal is found in the consistent 

mapping condition, that would imply that subjects did learn category labels and an abstract category 

representation, in opposition to the COVIS model of category learning.   Unlike consistent response 

mappings, training with inconsistent response mappings forces subjects to learn the category labels.  If 

learning category labels increased abstract category representation learning it should result in greater 

transfer of reversal in inconsistent mapping conditions. In contrast, if there is a similar amount of transfer 

of reversal for untrained stimuli in both mapping conditions, it would suggest that each group learned all 

associative stages equally.  

An exploratory hypothesis was that participants might utilize different category learning models, 

which would predict that the reversal manipulation might have different effects (see Figure 7 for the three  

models of interest). For instance, if participants only learn direct stimulus – response relationships, the 

reversal phase would require relearning of every stimulus – response association. During the transfer 

phase, reversal should only occur for stimuli trained in reverse, since the stimulus – response association 

for the transfer stimuli has not been altered. Furthermore, both training phases should take longer for 

participants in the Inconsistent mapping group, due to the inability of participants to associate a stimulus 
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with a consistent response (see Ashby et al., 2003 and Maddox et al. 2004 for examples of this effect). 

For the two-stage model, during reversal training, only the stimulus – category label association would be  

changed, leaving the category label – motor response association intact. Since the stimulus – label 

association is separate from the label – response association, only the stimuli which have had their 

stimulus – label association reversed should continue that response pattern in the transfer phase. There 

should be a similar decrement in performance for the Inconsistent group, again, due to the inability to 

associate a category label with a motor response. Finally, the predictions for the three-stage model are as 

mentioned above: that the reversal training should extend to the transfer stimuli, and that this effect 

should be greatest for participants in the Inconsistent mapping group. 

Methods 

Participants 

Participants were recruited from the PSY100 and PSY250 research pool. Each student in these 

courses is required to participate in research studies for class credit.   An a priori power analysis using 

G*Power 3.1.9.2 (Faul, Erdfelder, Lang, & Buchner, 2007), allowing for a moderate effect size (f=.25; 

based on data from Cantwell et al., 2015) with 0.95 power, suggested 36 participants per mapping 

condition. 
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Figure 7: Diagrams of each separate category learning model. From top to bottom: 1-stage, 
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Stimuli 

The stimuli were identical to those from study 1, except for a few changes to the stimulus space 

parameters: the distance from the bound was reduced (Category A: mean X = 270, Category B: mean X = 

430), the range of perceptual space sampled was increased from 425 to 624, and the number of stimuli 

generated was doubled (from 1000 to 2000; see Figure 8). During the partial reversal, one half of each 

cluster (top or bottom, counterbalanced) was selected for retraining (see boxes on Figure 8 for example)  

Procedure 

Participants were told that they were participating in a visual categorization task, and that their 

goal was to perform as accurately as possible. They were also told that they will have to learn through 

trial and error, but that it is possible to perform the task with a high degree of accuracy. Details were 

given on the response keys they should use, and for the inconsistent group, the alternating-response nature 

Figure 8: Proposed sampling space of stimuli. Black boxes represent 
areas of perceptual space to be trained in reverse during reversal phase 
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of the task was elaborated. Participants were assigned to either use consistent or inconsistent response 

mappings throughout the task; these mappings did not change.  

 After an initial instruction screen, which reiterated the verbal instructions, participants began the 

training portion of the task. Each trial proceeded like this: a stimulus was presented in the center of the 

screen, with the two category labels presented beneath it and nearer to the edge of the screen. Participants 

had two seconds to respond, and after a half-second delay, feedback was presented for a half-second 

indicating whether they were: “correct,” “incorrect,” or “too slow.” This section was divided into thirty-

trial blocks, and at the end of each block, the participants were told whether or not they met the 80% 

accuracy criterion. During this time, they were also able to take a break, as the task only began again once 

they hit a response key. Once they reached this criterion ten times, the training phase ended.  

 In the reversal phase, a sub-set of stimuli from each category (refer to black boxes in Figure 8) 

was presented again, however, the category labels for the stimuli were reversed. Whether the top or 

bottom half of the stimuli space was sampled was counter-balanced across participants, resulting in two 

separate groups for each mapping condition. As in the training phase, stimuli were presented in 30 trial 

blocks, and at the end of each block, accuracy was assessed. Once subjects reached the 80% accuracy 

criterion on ten blocks, they moved on to the final phase. In this final, transfer phase, stimuli were drawn 

from the full distribution, including both regions that underwent reversal, and regions that were not 

reversed. As in Study 1, feedback was longer given, and stimuli were also not presented in blocks. 

Participants completed 300 trials in this manner.  

Results                                                                                                                                                            

 Overall, 239 subjects were recruited, of which 87 had complete data which could be analyzed. 

128 subjects failed to complete the task within the two hours allotted, and data from an additional 24 

subjects were lost due to technical problems. 40 subjects were in the consistent mapping group (22 with 

top quadrant reversed, ConTop, 18 with bottom quadrant reversed, ConBot), and 47 were in the 

inconsistent mapping group (24 with top quadrant reversed, IncTop, and 23 with bottom quadrant 
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reversed, IncBot). The average number of blocks to complete each training phase for each condition is 

listed in Table 2. As can be seen, the range of blocks necessary to meet criterion in each training phase  

 

 

varied greatly between participants. There were, however, no significant group differences between 

blocks to criterion for either training phase. 

For the analysis of the transfer phase (phase 3), the dependent variable was the percentage of 

stimuli categorized as belonging to category A within each of the originally trained categories A and B. 

This measure was chosen to avoid the ambiguity inherent in judging which categorization choice is 

correct (in accordance with original training, or the reversal training).  For each subject, proportion of A 

responses was calculated separately for stimuli from originally trained categories A and B (factor 1), and 

for stimuli from regions in phase 2 that subjects trained to reverse [trained stimuli], and regions that were 

not trained to be reversed [transfer stimuli]; (factor 2). Data were collapsed across reversal region (e.g. 

top quadrant vs bottom quadrant) since initial examination of the data indicated that the results for each 

reversal condition did not differ. Separate 2x2 ANOVAs were conducted on factors 1 and 2 (within-

subjects) for the Consistent and Inconsistent response mapping condition (between-subjects; see Figures 9 

and 10 respectively).  For both mapping conditions, there was a significant interaction effect  

Table 2
Number of blocks to reach accuracy criterion in each training phase
Training

Group Average blocks SD Range

ConTop 47 18.7 17-84
ConBot 52.2 15.8 21-81
IncTop 45.6 13.2 22-76
IncBot 53.6 16.3 28-83
Reversal Training

Group Average blocks SD Range

ConTop 17 8 11-46
ConBot 17.5 9.3 11-47
IncTop 15.3 8.2 10-51
IncBot 15 3.6 10-24
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Figure 10: mean percent category A responses in the Inconsistent mapping group 
for Transfer and Trained stimuli  

Figure 9: mean percent category A responses in the Consistent mapping group 
for Transfer and Trained stimuli  
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(Consistent, F(1,39) = 21.78, p<.001; Inconsistent, F(1,46) = 26.38, p<.001), with a  higher proportion of 

stimuli from category B being categorized as members of category A for trained stimuli than for transfer 

stimuli.  

There was a main effect for training only in the Consistent mapping condition, F(1,39) = 4.68, 

p<.05. The main effects for category were significant in both response mapping conditions (Consistent, 

F(1,39) = 4.56, p<.05; Inconsistent, F(1,46) = 10.92, p<.01), with both groups responding to category B 

with an A response significantly more often than responding to category A with an A response. Post-hoc 

tests (see Table 3), indicated that the only pairwise significant differences were within the trained  

 

conditions.  This suggests that, on average, both Consistent and Inconsistent groups maintained the 

reversal training they experienced prior to the final transfer phase, but that extension of the reversal to the 

transfer region was not reliable within each group. Across all three phases of the task, there was a 

significant difference in response time between the Consistent and Inconsistent mapping groups (phase 1: 

F(1,83) = 50.32, p < .001; phase 2: F(1,83) = 40.68, p < .001; phase 3: F(1,83) = 49.2, p < .001), with 

those in the Consistent group responding about 180 ms faster on average (this was relatively constant 

across all 3 phases). This is not surprising, given that those with Inconsistent mappings had to take a brief 

amount of time each trial to ascertain which side of the screen each category label was positioned in.  

Table 3
Pair-wise comparison by category, for stimuli trained in reverse

Consistent -11.14 2.9 0.001* -17 | -5.28
Inconsistent -14.24 3.26 0.0001* -20.79 | -7.69

Pair-wise comparison by category, for transfer stimuli

Consistent 0.44 2.56 0.865 -4.75 | 5.63
Inconsistent -4.88 2.79 0.087 -10.51 | .743
Note:  mean difference is calculated by subtracting the percent endorsement for category A when 

presented with category A stimuli from the percent endorsement of category A for category B stimuli.

Negative values indicate reversal, positive values indicate maintenance of original category

* Significant at 0.05 level

Mapping Group Mean Difference SE p-value 95% CI

Mapping Group Mean Difference SE p-value 95% CI
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The large amount of variability in the group analyses suggested that there may be significant 

individual differences in strategy.  I examined each individual’s performance and identified four 

qualitatively different patterns of reversal responses (see Table 4). One group, Reversal Transfer,  

 

continued to consistently respond with the reversed labels on the trained stimuli and completely 

transferred the reversal training to the transfer stimuli; subjects in this group met a criterion of at least a 

60% reversal responses in both trained and transfer regions. These reversal patterns are in line with the 

hypothesis that if subjects learn a category representation, any change in the relationship between the 

representation and category labels should alter the relationship for other stimuli that belong to the same 

category representation. 

The second group of participants, Reversal Training Only, continued to reverse the trained 

stimuli, but did not reverse transfer stimuli, as evidenced by a skewed reversal percent in favor of the 

trained stimuli (at least a 20% difference in reversal rate between trained and transfer). This group’s 

responses are not consistent with the hypothesis, which stated that if a single category representation was 

learned, reversal of part of the stimuli the should be extended to all. A third group of participants, 

Response Reversion, reverted to their original training, seemingly ignoring the reversal training they had 

Table 4
Reversal strategies

Consistent Mapping

Strategy n

Reversal transfer 27

Reversal training only 7

Response reversion 8

Indeterminate strategies 5

Note:  reversal transfer represents a strong transfer of reversed responses to

the untrained category, partial reversal represents a moderate transfer, reversal

training is for participants who continued to reverse the stimuli they had just been

trained to reverse, but did not effectively transfer to the untrained stimuli, response

reversion is participants who seemingly ignored the reversal training they had just

completed, and those with indeterminate strategies were either guessing or 

using some unknown strategy

9

n

Inconsistent Mapping

14

12

5
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just completed, as judged by a less than 35% reversal response rate on both the trained and transfer 

stimuli. Finally, the fourth group of participants appeared to either be using no strategy, or one which was 

not obvious. They had a reversal rate between 35% and 60%, suggesting that they may have been 

guessing, or not attempting to respond accurately.  

 While the number of participants who reverted to responding based on their original training, as 

well as those with indeterminate strategies, was similar across mapping conditions, the other strategies 

had a greater variety of endorsement. There were almost twice as many participants who fell into the 

“Reversal transfer” group in the Inconsistent relative to the Consistent mapping group, suggesting that 

something about how they learned the task was more conducive to extending the learned category 

representation – category label reversal. Furthermore, fewer participants in the Inconsistent group 

maintained only the reversal training (“Reversal training only”) relative to the Consistent group. Taken 

together, these data seem to suggest that something about how the Inconsistent mapping group had to 

learn the task allowed for easier transfer of the reversed associations relative to the Consistent group.  

Discussion 

Overall, the results indicate that for trained stimuli, both Consistent and Inconsistent mapping 

groups maintained the reversal training they had just experienced, as evidenced by a greater proportion of 

responses endorsing category A when presented with category B stimuli, relative to category A, for 

trained stimuli. However, the group results for the transfer phase showed no overall significant reversal or 

maintenance of original category membership.  This pattern may be due to subsets of subjects using 

different strategies during the transfer phase. The most relevant strategy relates to the initial hypothesis: 

that the reversal of a sub-set of each category would alter the category representation – category label 

association for the untrained, transfer stimuli (i.e. “reversal transfer” strategy), with this transference 

manifesting behaviorally as a reversal of category membership. Within the consistent/inconsistent 

mapping groups, this was the most common strategy (40% and 66% of all participants for each mapping 

group respectively). These participants responded to the transfer stimuli at a similar rate as the trained 

stimuli (and at a rate mostly approaching the 80% training criterion; approximately 70% reversals for 
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both categories on average, for each mapping condition), suggesting that the reversal training did alter the 

category label – category associations for all stimuli, trained and untrained both. That this strategy was 

the most common (54% of all participants, across conditions) directly supports the hypothesis that 

reversing a sub-set responses for each category would alter the category representation – category label 

association for the remaining stimuli. 

Furthermore, the much higher rate of the Reversal Transfer strategy within the Inconsistent 

mapping condition provides evidence in favor of the secondary, exploratory hypothesis that consistency 

of response mapping might modulate degree of transfer.  Specifically, the lower rate of transfer in the 

Consistent mapping condition may be due to subjects learning direct stimulus – response associations 

rather than learning the category labels or creating a separate category representation.  Alternatively, the 

consistent mapping condition could also be accounted for by the creation of a separate “category 

representation” for the reversed sub-set during reversal training, which did not extend to the entire set of 

stimuli. Subjects in the Inconsistent group, consistent with the secondary hypothesis, were required to 

learn the category labels as they could not rely on a stimulus – response relationship only.  Focus on the 

category labels may have facilitated learning an abstract category representation linked to each category 

label. 

 Further supporting the hypothesis that Inconsistent mapping would facilitate learning of a abstract 

category representation, the inconsistent mapping group also had a lower proportion of participants who 

reversed only the trained stimuli, relative to the consistent mapping group (15% versus 30%). This may 

indicate that those in the inconsistent mapping condition formed a stronger abstract category 

representation than in the consistent mapping condition.  

The “response reversion” strategy is especially interesting. Each participant had to complete at 

least 10 blocks of 30 trials at 80% accuracy to proceed through each successive phase of the task so this 

strategy cannot be attributed to subjects merely failing to learn the reversal. Why these participants 

reverted to responding based on their original training can only be speculated. In a strict stimulus – 

response model, the reversal training should have completely reset the learned response associations, 



  
 

 44 

 

making reversion to phase 1 category endorsement impossible, so the existence of this strategy is also 

inconsistent with simple stimulus-response category theories. It is possible that there was some 

“participant bias” from these subjects, who may have thought that the reversal was some sort of “trick” 

manipulation to affect their responding on the last block. To these participants, the reversal must have 

been quite obvious (and to anybody who spent much time in the first training phase, it should have been), 

so they may have purposefully reverted to their initial training.  If so, this indicates that categorization is 

subject to executive control by subjects.  Alternatively, subjects may have treated the reversal training 

phase as a novel categorization learning task, and partitioned their learning in this phase in a way which 

resulted in formation of a new category representation that did not interfere with the category 

representation formed during in the first phase, allowing this representation to reemerge to control 

responding in the final phase. Regardless, it is unclear why this occurred to the degree that it did.  

Those with ‘indeterminate strategies’ may have been merely guessing. The maximum time 

allowed for completion of the task was 2 hours, and many participants took almost that entire time. Many 

of them became audibly frustrated (e.g. sighing, asking how long the task was), and undergraduate 

students at this university in general are not necessarily always the most motivated, as they are only 

incentivized with class credit. Furthermore, as evidenced by the high rate of participants who did not 

complete the task, this was a difficult task. Making the task difficult was necessary to prevent participants 

from being able to use a rule-based strategy, and force an information integration strategy.  

Overall, this study provide evidence in favor of the primary hypothesis: that at least some subjects 

learn a mediating “category representation” association in implicit, information integration tasks, and that 

altering the relationship between this category representation and the associated category label may alter 

the same relationship for all other stimuli which belong to the altered category representation. 
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CHAPTER 4: GENERAL DISCUSSION 
 
 
 

For Study 1, I hypothesized that reversing one of two sets of category labels, which were shared 

by one set of stimuli, would cause participants to reverse the other. For Study 2, I hypothesized that 

reversing a subset of a category would cause participants to extend the reversal to the remaining stimuli. 

For Study 1, the hypothesis that a shared, mediating category representation would form for both sets of 

labels, and that reversing one set of labels would reverse the other, was not supported. While participants 

continued to reverse the trained set, this reversal did not transfer to the untrained set, inconsistent with the 

results found by Wills and colleagues (2006).  One interpretation is that subjects failed to acquire a shared 

category representation.  However, other interpretations are also possible. Participants in Experiment 1 

may have partitioned each set of labels and the associated stimuli into separate category representations, 

even though the stimuli from both sets of labels were identical, rather than acquiring a shared category 

representation.  It is also possible that no abstract category representation was acquired, consistent with 

early S-R theories of information integration learning such as COVIS. These results led to Experiment 2, 

in which more closely followed the method used by Wills et al. (2006; Experiment 2). The results from 

this experiment supported the hypothesis that subjects can acquire a mediating category representation, 

and that altering its association with a category label could alter the association for all stimuli belonging 

to that category. Previous studies of information integration task have not examined whether mediating 

category representations might be learned. In fact, one study which was examining behavioral 

dissociations for the two-stage model (i.e. stimulus – category label – motor response) mentioned that 

they explicitly attempted to design their study to control for the possibility of a category representation 

association (Maddox et al., 2010).  

 Although there was no significant reversal transfer effect in Study 1, a small number of 

participants did appear to either transfer the reversal (n=2), or ignore the reversal entirely and revert to 

their original training (n=5). One participant even reversed the reversal (reverted their responses for the 

reversed label set, and reversed their responses for the transfer stimuli). In Study 2, although more than 
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half of the participants transferred the reversal, there was also a wide variety of other strategies (see Table 

3). The reason for the variety of strategies is difficult to explain. Failure to transfer the reversal, as shown 

by the majority of participants in Study 1 and the subset of participants in Study 2 who fell into the 

“reversal training only” category, can be accounted for by the original COVIS model (Ashby et al., 1998), 

the other strategies do not fit any established theories so neatly.  

 Previous theories on category representations suggest that, during a full reversal, a new 

association is formed between the implicit cue and appropriate motor response (Kendler & Kendler, 

1962), and that furthermore, it is the presence of this cue which triggers the reversed behavioral response. 

In information-integration tasks, the stimulus and the labels may be a part of the implicit cue. Therefore, 

in Experiment 1, the presence of the labels may have been as important as the presence of the stimulus 

itself, and it is this entire cue “package” which had its association changed. Thus, when one set of labels 

was reversed, the other set may not have been affected, which would not prompt the reversed response. It 

could also be the case that only the label – response association was altered, and only then for the one set 

trained in reverse. This might suggest a shared category representation, but separate category label 

associations.  

 In the Wills et al. (2006; Experiment 2) study, participants were presented with two separate 

categorization problems with an identical set of labels (i.e. A and B). They reasoned that if a category 

representation did not exist, reversing the label – response association for a subset of one categorization 

problem might alter it for the other categorization problem, due to the shared category labels. However, 

they found that it only altered responses for the categorization problem that had the subset trained, and 

that furthermore, the reversal extended to the untrained stimuli. They reasoned that each separate 

categorization problem developed its own category representation, and that even though the labels were 

identical, the reversal did not extend to the other categorization problem due to the fundamental 

difference in the associative properties of each set of categories (i.e. separate problems, separate 

representations; Wills et al., 2006). In Experiment 1, I attempted to see if a category representation could 
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be shared somehow with separate labels; a design opposite of that done by Wills and colleagues. Perhaps 

it is simply not possible to share a category representation between separate sets of labels. 

 The secondary hypothesis in Study 2 that there would be a difference in likelihood that the 

reversal would extend to transfer stimuli for each mapping condition was also supported. Although simple 

S-R based category learning theories such as COVIS imply that information-integration learning should 

be impossible under conditions of inconsistent response mappings, there is some empirical support for 

learning under these conditions. Spiering and Ashby (2008) suggested that much of the previous literature 

which suggested information-integration learning requires consistent mapping only attempted to introduce 

inconsistent mapping after a period of training (often several hundred trials) exclusively with consistent 

mapping. In their study, they had participants begin the task with inconsistent mappings (or a consistent 

control), and although they found block 1 differences in accuracy, with the control group scoring higher, 

asymptotic accuracy did not significantly vary across conditions. The authors suggested that a consistent 

feature identity (category label; they used letters or colored circles) was sufficient for learning to take 

place, although a consistent spatial identity (response location) and a consistent feature identity promoted 

slightly quicker learning. The authors further suggested that previous studies demonstrating performance 

issues when there was a switch from consistent to inconsistent mapping may have had to do with forcing 

participants to suddenly switch their reliance from primarily spatial cues to feature cues only (Spiering & 

Ashby, 2008). Additionally, this theory could possibly explain the results of Study 1 as well; participants 

had no consistent spatial or feature identity to rely on (different labels, alternating locations), therefore, a 

shared representation may have been impossible to develop for that reason alone. 

 One additional explanation from the SRT literature concerns awareness of the procedural element 

of the task (i.e. the pattern of stimulus presentation). It has been suggested that sequence learning can rely 

on different internal representations depending on whether or not there is conscious awareness of the 

pattern (Willingham, Wells, Farrell, & Stemwedel, 2000). Given that SRT tasks and information-

integration tasks rely on the procedural system and the basal ganglia to primarily guide learning, it is 
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possible that strategy differences in Study 2 could have had to do with varying levels of conscious 

awareness participants may have had in regards to the “rule” that guided proper categorization. 

Implications for theories of category learning 

The original COVIS model (Ashby et al., 1998) predicted information integration learning would 

be based on direct stimulus – response relationships; this theory predicts that complete reversion, or a full 

reversal, should not be possible. While there is still debate over single- versus multiple-system 

explanations for category learning (Ashby et al., 2011; Zaki & Kleinschmidt, 2014), several different 

updates have been proposed to the COVIS model, most notably, the addition of a mediating category 

label association, and the inclusion of a multiple-systems view for explicit and implicit systems (Ashby et 

al., 2003; Maddox et al., 2004; Maddox et al., 2010). The data from Study 2 compliment this, and add 

further evidence to the multiple-systems theory of category learning. 

However, it is unclear how to incorporate learning with inconsistent mappings into these recent 

extensions of the COVIS model. Although Spiering and Ashby (2008) published results demonstrating 

that information-integration category learning is as equally possible with inconsistent as with consistent 

response mappings, these data have received practically no acknowledgement. Relatively recent reviews 

of COVIS have not discussed the role of inconsistent mapping in implicit category learning, choosing 

instead to focus on the role of consistent mapping in the two-stage associational model (Ashby et al., 

2011; Ashby & Maddox, 2011). Outside of Spiering and Ashby’s (2008) study which demonstrated 

information-integration learning is possible under inconsistent response mapping conditions, the topic has 

been largely avoided. Even within their paper, however, they only sought to demonstrate that previous 

dissociation studies that suggested information-integration learning was only possible with consistent 

mapping may have overlooked some methodological issues in their tasks which incidentally biased their 

results. This makes interpreting the results of Study 1, but especially Study 2, difficult. Clearly, across 

Study 1 and Study 2, participants were able to learn the task to a high-degree of accuracy despite 

inconsistent response mappings. The current results highlight the need to extend COVIS to be able to 

account for learning under inconsistent response mapping conditions. 
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Limitations and future directions 

One of the biggest limitations of these Experiments, especially Experiment 2, is participant 

motivation. This limitation is present in almost any research conducted with unpaid, undergraduate 

volunteers, but it seems especially relevant in this case. To ensure that participants could not rely on a 

rule-based strategy, the task was made exceptionally difficult, with the sampling space for the stimuli 

being extended parallel to and close enough to the decision bound that a unidimensional rule was not 

possible to achieve the accuracy criterion.  It was necessary to prevent rule-based strategies because in 

rule-based tasks response location or category label manipulations have little effect on performance, due 

to the explicit nature of the rule-based system (Ashby et al., 2003; Ashby & Maddox, 2005; Maddox et 

al., 2004).  However, as a result, the perceptual differences between category A and category B were very 

small, and within category variability was relatively large, making the task very difficult.  More 

participants failed to complete the task than did finish. Even those who did finish often became frustrated 

or despondent near completion of the task (which often took participants the full 2 hours for Study 2).  

        Furthermore, it is difficult to assess whether individual differences played a role in the probability 

that a participant would complete the task. While working memory differences affect performance on 

rule-based tasks (working memory is important for developing and maintaining complex rules), there is 

no such effect for information-integration tasks (Ashby & O’Brien, 2005). Since the procedural system is 

heavily implicated in information-integration tasks, any possible differences may be related to the basal 

ganglia; specifically, individual differences in the strength of dopamine mediated learning. However, little 

to no research has studied differences in the basal ganglia system with regards to information-integration 

tasks.  

In future studies, it would be informative to collect a variety of individual difference measures 

(e.g., working memory capacity, cognitive flexibility, or depressive symptoms, which at high levels, have 

been shown to enhance reflexive-optimal category learning tasks [Maddox, Gorlick, Worthy, & Beevers, 

2012]) during a task similar to Study 2. Since there has not been much research on individual differences 

in information-integration tasks, and due to the wide variety of strategies present in Study 2, identifying 
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the individual difference factors correlating with strategy could potentially help elucidate the reported 

results. It is unclear, currently, why some participants followed one strategy over another. Debriefing 

questionnaires could be used in future studies as well which could ask participants about their strategy for 

the task, and their thoughts on the various phases (e.g. “did you purposefully choose to revert to your 

original training”). It might also be informative to see if a particular task manipulation could induce 

certain strategies in participants. 

In general, there is little to no research on the existence of abstract category representations in 

information-integration tasks. While research has been conducted using other tasks which suggest that 

abstract representations underlie performance (Kendler & Kendler, 1962; Sanders, 1971; Wills et al., 

2006), the only information-integration task that acknowledged that abstract representations might play a 

role at all treated them merely as a possibly confound that they needed to control for (Maddox et al., 

2010). The data from Study 2 provide the only evidence specifically addressing abstract category 

representations and behavioral response mapping dissociations. I believe this perspective is valuable, and 

that follow-up research studies may further elucidate the exact nature of how these results fit into 

currently established theories of category learning.  
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