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I I. INTRODUCTION 

A, The Problem 

The research c~rried out by the author was primarily directed toward 
gaining knowledge of the basic hydrologic processes in an effort to draw 
conclusions concerning the amount of statistical predictability inherent in 
streamflow amounts. In carrying out this basic objectiv~ it was, of course, 
necessary to investigate certain other related problems. 

The following itemized questions are those that the author feels were, 
with some degree of profit, investigated by this phase of the project, 

(1) What are some of the basic statistical relationships of 
measured precipitation to stream runoff? 

(2) Is there any statistical predictability in precipitation 
or streamflow amounts or are they indistinguishable from 
random numbers? 

(3) What significance has an answer to (2) for practical hydro­
logical purposes? 

(4) What are the causes of the observed decrease of runoff 
efficiency of the Upper Colorado Basin in the past 50-60 
years? 

(5) Are there reasonably good relationships between large­
scale (that is, hemispheric) atmospheric circulation para­
meters and specific Basin weather? 

The question might legitimately be asked as to why the approach involv­
ing streamflow amounts and statistics was chosen rather than an effort toward 
solving some of the basic problems of why the atmosphere behaves as it does 
and attempting to make a long-term forecast of precipitation within the 
Basin; The answer to this question can be stated rather simply. The author's 
familiarity with the meteorological forecast problem and with the applica­
tion of statistical methods to meteorological problems led him to the 
conclusion that the greatest promise of producing something of value lay 
in the statistical approach rather than with investigations into ordinary 
physical prediction problems of the atmosphere. 

It should be remembered that the physical processes by which the atmo­
sphere operates and by which the hydrologic cycle operates are extremely 
complex, and that only a major effort involving a great deal of expense, 
time , and scientific manpower is going to solve these problems. A limited 
research effort must therefore place its emphasis where, in the opinion of 
the scientists involved, the limited effort will produce the greatest results. 

B. The Use of the Statistical Method 

Since the ultimate goal of research into atmospheric and hydrologic 
problems is prediction, it will behoove us to examine briefly the prediction 
problem in meteorology. Similar remarks could be made concerning hydrology, 
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--~At the risk of . oversimplification, the process of prediction of a 
physical system can be approached in two ways. The first of these, herein 
called the physical approach, is dependent upon the description of the physi­
cal system, in our case the atmosphere, in terms of mathematical equations. 
The appropriate equations for the atmosphere are non-linear differential 
eqµations describing the motions of the atmosphere using Newtonian mechanics 
which are, of course, time dependent. The prediction problem involves 
(1) determining which equations are appropriate, (2) determining the proper 
boundary conditions for the system, (3) determining the proper initial 
specification of the atmosphere (since the problem is a time-dependent one), 
and (4) determining how to solve the equations. Such a scheme might be 
called a deterministic one, since theoretically at least, the -equations would 
be capable of specifying the future behavior of the atmosphere for an 
infinitely long period. It should be obvious that such a deterministic 
prediction scheme is, at present, an unrealistic one. Meteorologists are 
just beginning to have an idea how to handle the four problems outlines 
above and the determination of the future behavior of the atmosphere in any 
detailed sense by the physical approach is practical only over a few days 
at most. 

The second approach is the statistical one. In this scheme, the actual 
physical processes occurring within the system are not necessarily important. 
A mathematical model is used, to be sure, but the prediction is done by 
using past (in time) information in a form which may have no connection 
with the actual physical system itself. Thus, a statistical prediction 
model similar in all respects could be used to predict future weather con­
ditions, stock market prices, or the population of the United States -­
totally different physical systems. Statistical prediction schemes work by 
considering the amount of information in the past record of a quantity --

-that is, whether the past record has any characteristics which are systematic-­
=so that the systematic component can be utilized for prediction. Examples 

- - or-systematic characteristics in a time series might be cycles, trends, or 
=linkages between adjacent values. 

The systematic portion of the time-series may be called the determin­
istic component; the portion of the series which is statistically independ­
ent from year-to year (random in time) is called the non-deterministic 

-- ........or -stochastic component. The series is assumed to be composed of the 
: sum of these mutually independent components, The crux of any sta­
tistical prediction scheme is simply the determination of the relative 

· importance or magnitude of these two components. For the purposes 
of this study the naturally-occuring time-series will be compared with 
a completely random series--that is, a series of numbers drawn inde­
pendently from some frequency distribution. Any significant deviation 
from this hypothetical series will be considered as a deterministic 
component and a mathematical model used to reproduce this component. 
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The_a:dvantages _of t he statistical approach may be summed up as follows: 
It can be applied when. ll'lO or very little knowledge of the physical situation 
is available. The resoJl.~ ing forecasts are made in terms of probability 
statements, and: a c onf:ul~nce limit may be placed on each forecast. This 
foregoing advantage to many people might seem like a disadvantage since it 
demands that a . person t:lm:ink in statistical terms. However, when we realize 
that statements' imrolV'i.lm.g future happenings at our present level of knowledge 
always involve a ciert.ai.n amount of indeterminacy whether explici tly recog­
nized or not, the accep~ance of probabiiity statements as forecasts is 
largely a matter of Uilll:le.rstanding and education. For many operational 
problems, stati..stical £~recasts may be efficiently utilized. 

The hydro.Iogical pr,ofession has made use of one type of statistical 
model already. Imt designing equipment to cope with floods, eng i neers have 
come to depend; cm .extreme value theory -- a part of statistics concerned 
with the probaoili ty 0£ extremely unlikely events. Thus, design char­
acteristics for a hundred-year flood, etc., are being utilized and these 
design characteris~ics a re, it should be recognized, a form of statistical 
forecast. The eogineer.s are gambling, in this case, that the l i kelihood 
of a larger than hundrei -year flood is small enough that building costs to 
attempt to handle anything larger are prohibitive. This risk is inherent 
jn any design problem w ere events detrimental to the structure under design 
have a small bu:t: finite chance of occurrence; and underlying the choice of 
design paramet·ers is a s tatistical model -- in this case the model is based 
on the economic: considerations of the cost of construction taking into 
account the likeliliood o f the meteorological event occurring, against the 
cost of loss of t:he sys~em if that event occurs. 

In other fields of the hydrological profession, statistical methods 
are aiso used •. For example, multiple regression or multi-variate techniques 
are used to forecast ~ t spring and summer's runoff using precipitation, 
snow-pack, etc .. dalta :[r((!)lll this winter. - The forecasts made-by this scheme 
Qave a certain probab le error associated with them and a confidence level 
can thus be giYen 

_· __ Thus,. although s tatistical methods are not new to hydrology, the approach 
taker} in this s tudy will apply statistical methods to precipitat ion and 

_streamflow data: m a f ashion which has not appeared to date (to the author's 
knowledge). In t:he nexlt section, some literature which has appeared in the 
] ~~~ _few years·_wi.U. be d:iscussed which,along with this study, can be said to 

· belaying the groundworl< for the practical utilization of statistical methods 
_for pre_dtc;_Uon-,_a-f 'S_!= ~e a.I!l~ low _~mou~!S, ______ _______ _ 

C. Literature Pertfne.n t to ~he Discussion 

The following publications will be briefly discussed ·-- not because they 
throw light on the procedures utilized by the author , but because they 
are what he consid~rs to be the most important sources in contributing to 
our knowledge ~f the variations in precipitation and streamflow. 
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The first of these is The Prediction of Long-Continuing Drought in 

· Southand Southwest Texas by Dr. Don G. Friedman of the Travelers Weather 
- Research Group (11). This study is an excellent example of a statistical 
evaluation of predictability in rainfall amounts together with a particu­
larly cogent review of problems connected with the definition of a drought 

- and with prediction of rainfall using related data. Friedman uses some 
- fairly sophisticated tests on rainfall amounts in southern and southwest 
Texas in an effort to ascertain whether any trends or cycles are present. 
By a "trend" we mean a systematic movement throughout a limited length of 
record; it can be thought of as a fluctuation with a period much greater 
than the length of record. Specifically, the following questions were asked 
o.f the data: (1) Is the climate of south and southwest Texas becoming 
progressively dryer? (2) Are there regularly recurring cycles of wet and 
dry periods in Texas climate? (3) Is there any year-to-year persistence 
in the wet and dry spells (climatic persistence from year to year)? From 
the statistical tests on ten rainfall stations, Friedman concluded that there 
is no statistical evidence for the existence of trends, cycles , or persis­
tence in south Texas rainfall. Except for different, individual stations 
appearing significant in one test ~r another, as approximately 5% of them 
would do considering the significance level Friedman chose, the rainfall 
data resembled random numbers. 

- Friedman proceeds then to illustrate how the conclusion of independence 
of rainfall amounts together with their frequency distribution can be used 
to make useful statements about the probability of future rainfall amounts 
and how such studies are of value in the Farm Mortgage Loan Program in Texas. 

The second reference to be discussed is Geological Survey Circular 410, 
Probability Analysis Applied to~ Water-Supply Problem by Luna B. Leopold 
(22). This paper presents in a forthright and lucid manner some very 
important · conclusions concerning streamflow variations and their estimation 
by the use of simple statistical analysis. The analysis happens to be of 
the- flow of the Colorado River at Lee Ferry which makes the study of even 
greater importance here, The more important conclusions of this paper are: 

- ·(l) Strearnflow amounts by water-year are ' not independent of each other; some 
seri~l or sequential correlation is present. (2) The effect of this serial 
interdependence is to effectively reduce the length of record for the 

: estimation of mean values over any length of time. Thus, for example, a 
~ 100-year actual record may have the same effective length as a 25-year 

record of independent, random values, and, thus, only 25 independent 
estimates of the long-term mean rather- than 100. (3) An illustration is 
given calculating the probability of a mean over a given length of future 
record being higher or lower than the comparable mean value over the past 
record. For example, there is by Leopold' o method of calculation a 9% 
chance that the next 10-year mean of flow at Lee Ferry will be less than 
12.3 million acre feet. 

These basic facts set out by Leopold are of fundamental importance in 
understanding the variations in streamflow and the use made of averages and 

- variabilitie~ in hydrologic problems. All of the important conclusions set 
out by him, as listed above, are reinforced by the results of the investi­
gation reported on here. 

. I 



- -

. - - 5 -

The third piece of literature to be _discussed is a small monograph 
by _P.A.P. Moran, Prqfessor of Statistics in the National University of 
Auscralia, Canberra, and is entitled The Theory of Storage (28). This 
book can be described largely as theoretical, but it is the type of theore­
tical treatise which provides the foundation for real, useful, practical 
advances. Moran considers situations in which a store exists; it may be a 
storage reservoir, a warehouse, etc., and thoroughly investigates the pro­
bability models such a storage system suggests. For example, given a 
storage reservoir with random imputs, i.e., water-year discharges, and a 
presc;ibed release rule, the probability of finding a given amount of water 
in the reservoir may be calculated. In more practical situations, that is, 
with more than one dam on a river, or with the release rule prescribed on a 
weekly or monthly basis, or with an empty reservoir to start, a direct 
analytic calculation is not possible. In these cases, Moran suggests the 
use of linear progrannning models and ''Monte Carlo" methods, and gives some 
references to work already done along those lines. The use of such linear 
progrannning models and ''Monte Carlo" methods to obtain the probability 
distribution of future reservoir contents is termed a "synthetic hydrology." 

The final item to be discussed is a paper concerned with the practical 
a~p~ication of the foregoing theory by Moran. It is entitled Queing Theory 
and Water Storage by W. B. Langbein and appeared in the Journal of the 
Hydrol~cs Division, Proceedings of the American Society of Civil Engineers 
(Proc ~ paper 1811) (19). Langbein gives examples of various release rules 
and how the probability distribution of reservoir contents can be calculated 
in specific instances. He also considers, and this is important to the 
present study, how the effect of non-randomness or serially correlated flows 
may be handled in certain simplified instances. Incidentally, he shows 
mathematically how the presence of non-randomness or sequential correlation 
serves to increase storage requirements over what a purely random sequence 
would -demand. - . 

-- -- -= ---The previous articles; although not complete by any means, are reviewed 
with the object of pointing up the emphasis that will be made in the ensuing 
report._ 

- - ·--- -
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II. ANALYSIS OF BASIC DATA 

A. Data Source 

The raw data for the meteorological and hydrological studies carried out 
were obtained from three sources: The precipitation data came from Bulletin W 

·and the Supplement to Bulletin W of the U.S. Weather Bureau and from the 
punch-card data prepared under this contract by Colorado State University. 
The streamflow data were taken from the USGS Water Supply Paper series. In 
all cases, gauged stream discharge measurements were corrected for all such 

- trans-mountain diversions or artificial regulatory data as were published, 

Throughout the remainder of this report, precipitation amounts refer to 
November through April totals unless otherwise indicated, and, when necessary, 
'winter 1959', for example, is taken to mean 1 November 1958 to 30 April 1959. 
All streamflow data are by water-year unless otherwise indicated. Missing 
monthly precipitation data were estimated when needed by the method given 
by Paulhus and Kohler (31) and recently tested by McDonald (25). 

B. Var~ability of Precipitation and Runoff 
= 
:..:..__ : __ -From "what is presently known about the runoff process, the following 
generalizations may be made. Neglecting the many complicating factors, 
indigenous to a given drainage basin, that affect streamflow, the average 
relation between precipitation and streamflow is not apparently a linear 

:one (20). The specific curve relating the two quantities is a function of 
climate -- or to use a specific but cruder measure -- of mean temperature. 
The efficiency of the runoff process is an important quantity defined rather 
simply as the percentage of precipitation falling within a basin that 
actually runs off. This runoff efficiency also varies with 'climate', or 
with mean temperature. The physical reason why this is so seems obviously to 
be the fact that evaporative and transpirative processes are more efficient 
at higher · temperatures.2, thereby reducing the efficiency of the runoff process. 

A simple model of the runoff process may be set up as in the following 
equation: 

Runoff (effective precipitation± natural storage)= Precipitation -
Evapotranspiration - X factor. 

All quantities above have their usual interpretation (see USGS Water Supply 
Paper /,!:1541) except for ,the quantity termed X factor. Into this quantity 
are lumped all factors tending to produce inhomogeneity in the historic 
records we possess. For ~xample, instrumental errors due to changing 
gauging methods or rain-gauge exposure, increasing losses to streamflow 
because of increasing water usage by man, changes in streamflow brought about 
by man-made changes in land cover, etc. Historic records of streamflow and 
point precipitation are available. Stream runoff can be obtained provided 
records of diversions, artificial storage, etc. are available. By using 
recession techniques, information on effective precipitation can be obtained 
by removing the storage term in the above equation. In the final report 
under this contract by Dr. V. Yevdjevich, Colorado State University, such a 
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technique is carried out. Two terms are not known -- the amount of inhomo-
geniety in the record, the X-factor, and the evapotranspirative term. In 
a semi-arid region, the lack of information on the latter can be serious. 
For example, using very rough estimates of average precipitation over the 
upper Basin, the runoff efficiency of the Colorado above Lee Ferry can be 
said to be something less than 20%. 

Thus, the runoff process may, crudely, be said to be a simple system 
in which the runoff represents the relatively small difference between rather 
larger amounts of p~ecipitation and evapotranspiration, which difference may· 
be .very small in the case of semi-arid to arid basins to moderate to large 
for more humid basins. The important point, however, is that the relative 
variability of the streamflow will always be larger than the relative varia­
bility of either the precipitation or the evapotranspiration because the 
temporal variability of these latter quantities is at least to some degree 
independent. In statistical terms, the variance of streamflow is equal to 
the sum of the variances of precipitation and evapotranspiration reduced by 
a factor proportional to the correlation between precipitation and evapotrans­
piration. Only if this correlation. were perfect, which, of course, it is 
not, would the variance of the streamflow be equal to the variance of either 
parameter. 

- ,. - • • • •• :- - - -- - ~ - L - .• - -- - - ---

: :.::- - -· In Table 11.:.1 are presented the coefficients of variation (standard 
deviations divided by means) of precipitation and streamflow records in the 
upper Colorado Basin. It will be noted that the coefficients of varia­
bility of the runoff data are at least roughly correlated with altitude 
(temperature) and basin size. They vary from 0.23 and 0.24 for high mountain 
small basin streams (Blue, Fraser, Roaring Fork, etc.) to 0.32 and 0.45 
(San Juan and Green) for the larger "main stem" tributaries. Lee Ferry's 
coefficient of variability is 0.31 (using Leopold's virgin flow figures, 
0.28)". The individual precipitation stations show variabilities in about 
the -same range, but it is extremely important to notice that these are for 

. ncffv1.dua ls tadons. rralC precipifaFion· stations- were comoined within- a 
basin so as to get a better estimate of 'actual' precipitation, the variab­
ility would be greatly reduced. For example, the coefficient of var-
iation for the sum of seven Basin stations--Silverton, Shoshone, Dillon, 
Gunnison, Ignacio, Montros~, and Grand Junction-- is 0.21. If it were 
possible to measure total Basin precipitation this figure would, without 
any doubt, be lower yet. 

To sum up, the temporal variability of runoff exceeds either that of 
precipitation or evapotranspiration because it represents the relatively 
small difference between the latter much larger quasi-independent quantities. 

The spatial variability of precipitation and runoff also are important 
basic facts. It is an accepted fact that gauge measurements of precipitation 
are affected to some fairly large but unknown degree by very localized con­
ditions. The degree to which gauge precipitation measurements are represen­
tative of true precipitation over a much wider area is a difficult question 
to answer. Many studies have been carried out correlating gauge precipita­
tion measurements with streamflow nearby; the wide range of correlation 
coefficients obtained merely emphasizes the sampling problems inherent in 
making precipitation measurements. 
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From a physical point of view, we would expect runoff measurements 
to be better spatially correlated than precipitation measurements, and indeed 
this is borne out. Table II-2 contains a summary of a number of correlation 
coefficients [by rank correlation method. See, for example (29)] between 
precipitation stations, between precipitation and streamflow stations, and 
between streamflow stations. First of all, note that the correlation coef­
ficients for stations within a few (less than 30) miles of each other --
even in extremely rugged terrain -- are weli correlated. The Silverton­
Trout Lakes-Ames threesome and the Dillon-Fraser and Delta-Montrose pairs 
illustrate this. As would be expected, as the distance separating the 
stations is increased, the correlation coefficient is reduced. No meaning­
ful, spatial pattern in these correlations, however, was evident to the 
author. Some seemingly anomalous correlation coefficients are evident, 
most likely due to topographic features: Ignacio and Shoshone, over 170 . 
miles apart are correlated +0.42 while Grand Junction anq Dillon, about 140 
miles apart are correlated -0.24. Although the variation of such spatial 
correlation coefficients is of interest in itself, the only conclusion 
drawn here is that such coefficients decrease with increasing distance such 
that very little or no correlation remains when the precipitation-observing 
stations are 150-200 miles apart. 

Examining the runoff correlations,a much more coherent picture emerges. 
Adjacent basins are extremely well correlated; the lowest correlation 
ob~ained (0.52) was for the two most widely separated basins, the San Juan 
at Rosa, New Mexico, and the Main Stem at Hot Sulphur Springs. The runoff 
of the smaller basins, separated by 150-200 miles, is thus better correlated 
(ori the order of 0. 6) than are precipitation amounts. The coefficients thus 
bear out what we wo~ld intuitively expect . 

. An important point here, moreover, is just why the runoff data are 
bet~er correlated. It does not follow that this better correlation is 
due solely to the sampling problems inherent in gauged precipitation measure­
ments, although this must certainly be a large factor. If the meteorological 
conditions affecting evaporation and transpiration are better correlated 
spatially than precipitation amounts, as may well be the case, more coherent 
runoff values than precipitation values would result. 

= - -~ In one instance two nearly adjacent basins were compared by calculating 
all the .possible correlation coefficients. The diagram below gives the 
results for precipitation-precipitation, precipitation-runoff, and runoff­
runof!L f~r the Blue and the Fraser. _ 

Dillon precipitation --.62 --Fraser precipitation 
- -- - ---- -- - I ~ . ---~ ::::::-:.-- -1 

.50 .5.:---:::: .58 .59 

Blue runoJf ~~-----~ ~ Fraser lunoff 

Again the highest coefficient involved is in the runoff values. 
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One final point of some interest is contained in the coefficients for 
the three main tributaries, the Green at Green River, Utah, the Main Stem 
at Cisco, and the San Juan at Bluff. The Green and the San Juan both corre­
late 0.85 with the sub-basin separating them. If the two were statistically 
independent of each other a correlation coefficient of (0.85)2 = 0.72 between 
them would be expected. This 0.72 correlation would then be due to the fact 
they are both correlated 0.85 with a third basin. The actual correlation is 
0.6~and the partial correlation coefficient r(Green - San Juan. Main 
Stem)= -0.39 which at least suggests that the Green and the San Juan are 
oppositely correlated over and above the tendency for the entire Basin to 
be correlated. In other words, although the whole upper Basin tends to be 
wet or dry at the same time (that is, in any given winter) the latitudinal 
extremes of the Basin, the Green and the San Juan, have a tendency to be 
slightly opposed so that, for example, one would be dry and the other 
not-so-dry or one wet and the other not-so-wet. 

It is possible that there is a reasonable physical explanation for this 
behavior. In the final report of the project written by Schleusener and 
Crow (Colorado State University), there is some material to suggest that 
large storms (as arbitrarily defined by Crow) have exhibited a trend in their 
behavior such that in the early part of the century large storms had a ten­
dency to occur in northern Colorado and in later years in southern Colorado. 
Such a fact, if significant, could be attributed to a shift in storm tracks 
over the century and could be classified as a climatic change. 

A somewhat closer look at the precipitation-runoff relationship was 
carried out for four basins. In each basin less than 130 square miles 
(Fraser, Blue, Ashley Creek), only one station measuring precipitation 
occurred,and in the largest (Animas-Durango) three stations (Silverton+ 
Trout Lake+ Cascade) were used. The runoff amounts by water-year were 
expressed in terms of specific yield or equivalent inches of water over the 
entire watershed. In addition, a quantity termed the runoff ratio, the quo­
tient of the specific yield and the November through April precipitation 
was also calculated. This quantity was introduced by McDonald (26) and 
follows his definition. It is a simple expression for the year-by-year 
efficiency of the runoff process. Those quantities for the four small 
basins are given in Table 11-3. 

Plotted in Figs. II-(1-4) are the April to July runoff against the 
November - April precipitation for the four basins. Subjective examination 
of these figures confirms what has been pointed out by many workers, namely, 
that the residuals from a regression line of precipitation on runoff are 
not random, independent quantities. For example, for Ashley Creek at Vernal 
every year from 1931 through 1937 is below the regression line and 1921-1926 
above the line. Roughly, the same conclusion can be drawn about the Blue 
at Dillon. This property, however, does not seem to be as marked in the 
other two basins. Oltman and Tracy (30) and Peck (32) have noted the 
tendency for the regression line to shift, so to speak, with time and ha.ve 
suggested that low-flow (winter) streamflow values b~ used as an additional 
variable in the regression equation. 
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For our purposes, however, the fact that the residuals from a precipi­
: tation-runoff regression line are not random simply indicates that other 
- hydrological forces are playing an important role in the precipitation-

- runoff process, and that the time-dependent structure of precipitation and 
stream runoff time-s·eries is of utmost importance. 

TABLE II-1. COEFFICIENT OF VARIATION 
Upper Colorado Basin Precipitation 

Station Year·•·s Record Winter Coefficient of Variability 

Nov-Apr S2 Nov-Apr Mean Coef. of Var. 

Silverton 52 16.69 12.57 0.32 

Trout Lake 43 14.27 14.38 0.26 

Shoshone 49 9.92 10.70 0.29 

__ D_illon 44 5.85 9.47 0.20 

~ °¥_!~Se!_ 
. -

42 7.526 - 10.92 0.25 
- - -- - • • ' .. _ 7 - · - - - - - - . - - - - - -- . -

. Gunnison __ · ~ _ 54 · 2. 864 4.55 : 0.37 

Ignacio 46 6.14 6.91 0.36 

Delta 52 1.166 3.42 0.32 

Montrose 56 1.572 3.92 0.32 

Grand Junction 61 1.419 3.88 0.31 

Laket?wn, Utah 60 9.586 7.41 0.42 

: Silverton + Trout 
- --Lake + Ames --43--- ~-- -- -- 6.195 --38.14 -- - 0.26 

Seven station sum= 0.21 

~ 
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Streamflow 
Station 

Lee Ferry 

Lee Ferry (virgin) 

Lee Ferry 
April-July 

San Juan (Bluff) 

Main Stem (Cisco) 

Green (Green River) 

Fraser 

Blue 

Gunnison (Gunnison) 

White (Meeker) 

Main Stem {Hot 
Sulphur Springs) 

Roaring Fork 
(Glenwood) 

Taylor 

San Juan (Rosa) 

Animas (Durango) 

TABLE II-1. COEFFICIENT OF VARIATION 
Upper Colorado Basin Runoff 

Year's Water-Year Coefficient of Variability 
Record Water-Year S2 Water-Year Mean Coef. of Var. 

44 16.61 13.28 m.a.f. 0.31 

61 18.70 15.03 m.a.f. 0.28 

44 11. 299 9.12 m.a.f. 0.37 

43 0.845 2.04 m.a.f. 0.45 

46 3.355 5.92 m.a.f. 0.31 

53 2.437 4.81 m.a.f. 0.32 

47 46.73:3 30.01 t.a.f. 0.23 

47 411.04 85.00 t.a.f. 0.24 

54 .14703 1.322 m.a.f. 0.29 

48 10054. 460.8 t.a. f. 0.24 

53 12465. 497.5 t.a. f. 0.23 

52 . 074398 1.053 m.a . f. 0.26 

47 4675. 253.4 t.a.f. 0.27 

48 143380. 896. 98 t.a.f. 0.42 

46 38703. 622.25 t.a.f. 0.32 · 
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TABLE II-2. RANK CORRELATION SUMMARY 

_!!ecipitation: 

Trout Lake - Ames 
Silverton - Trout Lake 
Silverton - Ames 
Delta - Montrose 
Dillon - Fraser 
Grand Junction - Delta 
Shoshone - Dillon 
Gunnison - Grand Junction 
Shoshone - Silverton 
Shoshone - Ignacio 
Gunnison - Silverton 
Grand Junction - Silverton 
Gunnison - Ignacio 
Dillon - Gunnison 
Silverton - Fraser 
Grand Junction - Fraser 
Ignacio - Dillon 
Grand Junction - Dillon 

Precipitation vs. Runoff: 

Animas (Durango) - Silverton+ Cascade+ Trout Lake 

R 

. 81 
,79 
.78 
.75 
.62 
.49 
.49 
.48 
.45 
.42 
.36 
.34 
.32 
. 27 
.10 
:06 

-.12 
-.24 

Nov-Apr precip. - Apr-Jul runoff .67 
Nov-Apr precip. - water-year runoff .65 

Fraser - Fraser 
Nov-Apr precip. - Apr-Jul runoff .64 
Nov-Apr precip. - water-year runoff .63 

Blue - Dillon 
Nov-Apr precip . - Apr-Jul runoff .56 
Nov-Apr precip. - water-year runoff .51 

Gunnison - Gunnison 
water-year runoff .32 

Ashley Creek - Vernal, Utah 
Nov-Apr precip. - Apr-Jul runoff .71 
Nov-Apr precip. - water-year runoff .67 

Runoff: 

Gunnison - Roaring Fork .93 
Roaring Fork - Main Stem (Hot Sulphur Springs) ·.82 
Main Stem - San Juan (Bluff) .85 
Gunnison - Main Stem (Hot Sulphur Springs) ,82 
Fraser - Blue .80 
Fraser White . 80 
Fraser - Taylor .76 
Taylor - White .73 
White - Animas (Durango) .68 
Green - San Juan (Bluff) .61 
Main Stem (Hot Sulphur Springs) - San Juan (Rosa) .52 

Approximate Distance 
Apart (miles) 

5 
12 
15 
20 
27 
35 
60 
95 

125 
170 

65 
100 
105 

90 
180 
160 
190 
140 
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~-=---- __ TABLE II-3 

---SILVERTON± TROUT LAKE+ CASCADE PRECIPITATION ANIMAS RIVER AT DURANGO 
Drainage area= 692 square miles 

water Runoff Apr-Jul Nov-Apr NA PreciE. NA Precip._ Runoff Runoff Total 
year in Inches 

in Inches in Inches Rune.ff A.J Runoff 

1914 22.57 17. 79 48.86 2.16 2.74 
1915 18.59 14.05 37.40 2.01 2.66 
1916 23.69 17 .16 67.69 2.85 3.94 
1917 26. 77 19.08 . 34.40 1. 28 1. 80 
1918 14.39 10.04 31.79 2.20 3.16 
1919 18.94 14.51 44.80 2.36 3.08 
1920 27. 70 22.52 41.94 1.51 1. 86 
1921 24.82 18. 26 36.49 1.47 1.99 
1922 21.50 17.51 50.96 2.37 2.91 
1923 18.14 13.44 40.14 2.21 · 2.98 
1924 14. 74 10.92 34.23 2.32 3.13 
1925 14.84 9.70 47.91 3.22 4.93 
1926 17.43 12.56 40.71 2.33 3.24 
1927 ---· 22.03_ 14.05 46.24 2.09 3.29 
1928 15.18 10.04 29.82 1.96 2.97 
1929 20.89 13. 77 46.51 2.22 3.37 
1930 14.68 9.82 23. 81 1.62 2.42 
1931 7. 89 4.98 19. 77 2.50 3.96 
1932 20.10 15.27 50.43 2.50 3.30 
1933 11.68 8.67 26.66 2.28 3.07 
1934 6. 77 4. l.8 23.65 3.49 5.65 
1935 15.37 11. 84 43.12 2.80 3.64 
1936 14.16 10.06 38.54 2.72 3. 83 
1937 14.65 11.34 39 .. 12 2.67 3.44 
193ff ___ -- 19 : 23 15.32 59.27 3.08 3. 86 
1939 11.55 . _7. 21 35.10 3.03 4.86 
1940 9. 77 6.74 39.28 4.02 5.82 
1941 25.71 20.18 59.00 2.29 2.92 
1942 22.54 14.63 45.08 2.00 3.08 
1943 14.59 10.46 49. 78 3.41 4.75 
1944 20.81 17 .19 56.87 2.73 3.30 
1945 14. 83 11.19 43 . 94 2.96 3.92 
1946 11.43 7.98 34.13 2.98 4.27 
1947 16.96 11.90 42. 71 2.51 3.58 
1948 20.84 15.91 56.50 2. 71 3.55 
1949 21.00 17 .56 51.11 2.43 2.91 
1950 11.12 7.92 38.42 3.45 4.85 
1951 8.79 6.09 37. 87 4.30 6.21 
1952 22.03 18.53 72. 72 3.30 3.92 
1953 10.62 7.56 36.24 3.41 4.79 
1954 9.86 6.93 25.21 2.55 3.63 
1955 11.10 7.34 31. 21 2.81 4.25 
1956 10.26 7.52 44.43 4.33 5.90 

r = 0.67 April-July runoff vs. precipitation 

r = 0.65 water-year runoff vs. precipitation 
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I TABLE II-4 

/ FRASER PRECIPITATION, FRASER RIVER NEAR W~NTER PARK 
, Drainage Area= 27.6 Square Miles 

- - - -

water Runoff in April-July Nov. -Apr. NA Precip. NA Precip. 
year in: /sq. mi. Runoff in Precip. in Total AJ Runoff 

in. /sg. mi. Inches --- Runoff 

1916 20.94 15.35 - 12.41 .59 .80 
1917 21.32 16.02 10.69 .50 .66 
1918 29.47 24.65 13.62 .46 .55 
1919 16.16 10.59 5.48 .33 .51 
1920 20.57 15.14 11.36 .55 .75 
1921 26.75 21.52 15.06 .56 · .69 
1922 17.11 12.90 11.25 .65 • 87 
1923 22.20 17 .18 11.39 .51 .66 
1924 20.57 16.02 9.32 .45 .58 
1925 19.28 13.31 7.21 .37 .54 
1926 26.62 20.64 10.11 .37 .48 
1927 21.39 15.35 13.18 .61 .85 
1928 27.70 21.39 11. 79 .42 .55 
1929 23. 83 16.70 9.05 .37 .54 
1930 22.00 15. 71 13 .14 .59 • 83 
1931 14.33 9.98 _ 5. 85 .40 .58 
1932 17.59 13.17 13.26 .75 1.00 
1933 22.88 18.40 13.40 .58 .72 
1934 14.46 _10. 73 6.65 .45 .61 
1935 18.33 13.92 7.15 ;39 .51 
1936 22.81 16.64 13.03 .57 . 78 
1937 16.43 11.48 7.81 .47 .68 
1938 23.56 17. 72 14.07 .59 .79 
1939 17.31 13 .04 11.85 .68 .90 
1940 15.01 10.94 10.23 .68 .93 
1941 19.22 14.37 13.02 .67 .90 
1942 20.91 16.50 14.16 .67 • 85 
1943 17.79 13.56 10.75 .60 .79 
1944 15.14 11.52 8.41 .55 .73 
1945 _17 .04 11. 71 10.64 .62 .90 
1946 16.64 12.24 7.32 .43 .59 
1947 23 .15 17.57 11.57 .49 .65 
1948 19. 83 14.74 10.60 .53 .71 
1949 21.80 17_.19 11.47 .52 .66 
1950 14.60 10.61 10.63 .72 1.00 
1951 18.54 14.42 15 . 08 .81 1.04 
1952 21.18 16.63 13.16 .62 .79 
1953 15.14 11.13 7.23 .47 .64 
1954 9.10 5.85 5.69 .62 .97 
1955 .14.33 9.54 10.39 .72 1.08 
1956 16.98 13.64 14.23 .83 1.04 
1957 25.73 20.02 15.73 .61 • 78 

r = 0.64 April-July runoff; precipitation 
-

r = 0.63 water-year runoff; precipitation 
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TABLE II-5 

DILLON PRECIPITATION, BLUE RIVER AT DILLON 

Drainage Area= 129 S_quare Miles 

Water Runoff in April-July Nov.-Apr. N.-A PreciE• NA PreciE, 
Year in./sq. mi. Runoff in Precip. in Total Runoff AJ Runoff 

in./sg. mi. Inches 

1914 19.56 14.99 10.25 .52 • 68 
1915 12.08 8.59 5.98 .49 .69 
1916 12.48 8.21 10.93 .87 1.33 
1917 15.31 11.45 9.12 .59 .79 
1918 16.33 13.10 10.85 • 66 .82 
19J.9 10.11 7.19 5.46 .54 .75 
1920 . 12.80 9.27 9.50 .74 1.02 
1921 17. 77 13.11 12.03 • 67 • 91 
1922 10.57 6.63 8.27 .78 1. 24 
1923 16.27 11. 76 8.44 .51 • 71 
1924 12.97 9.06 7.30 .56 ,80 
1925 10.30 6.34 6.42 .62 1.01 
1926 17.47 13.37 13.54 .77 1.01 
1927 13.34 9.69 11.30 .84 1.16 
1928 15.24 11.45 9.92 .65 .86 
1929 12.15 7. 71 8.34 .68 1.08 
1930 11. 99 7.63 5.58 .46 .73 
1931 9.45 6.58 5.44 .57 .82 
1932 11.01 7.99 9.52 .86 1.19 
1933 10.22 7.60 11. 71 1.14 1.54 
1934 7.90 5.39 9.37 1.18 1. 73 
1935 9.48 6.58 9.85 1.03 1.49 
1936 15.87 11.66 17.56 1.10 1.50 
1937 8.18 5.64 6.05 .73 1.07 
1938 12.86 9.52 10.59 .82 1.11 
1939 11.27 8,50 10.94 • 97 1.28 
1940 7.13 5.03 7.80 1.09 1.55 
1941 10.25 7.52 10.11 .98 1.34 
1942 11.32 8.40 10.44 .92 1.24 
1943 11.22 8.52 10. 92 • 97 1.28 
1944 9.09 7.08 8.99 .98 1.26 
1945 10.88 7.19 10. 71 .98 1.48 
1946 10.70 7.75 9.28 • 86 1.19 
1947 15.75 12.09 11.67 .74 .96 
1948 13.57 10.35 8.88 .65 • 85 · 
1949 13.78 10.52 8.24 .59 .78 
1950 10.35 7.55 8.00 .77 1.05 
1951 14.82 . 11.35 12.68 • 85 1.11 
1952 12.84 9.78 11. 78 .91 1. 20 
1953 12.17 9.26 9.89 .81 1 .06 
1954 5. 77 3.69 5.25 .90 1.42 
1955 8.90 5.20 7.09 .79 1.36 
1956 11.62 8.84 11.97 1.03 1.35 
1957 15.95 11. 74 8.93 .55 .76 

r = 0.56 April-July runoff; precipitation 

r ~ 0.51 water-year runoff; precipitation 
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TABLE II-6 

VERNAL 2 UTAH 1 PRECIPITATI0N1 ASHLEY CREEK AT VERNAL 1 UTAH 

I Drainage Area= 101 Square Miles 

water Runoff in April-July Nov.-Apr. NA Preci2, NA Preci2. 
Year in./sq. mi. Runoff in Precip. in Total Runoff A.J Runoff 

in./sq. mi. Inches 

1920 16.93 12.78 6.49 .38 .so 
1921 23.94 18.58 4.65 .19 .'25 
1922 23.57 17.81 6.94 • 29 .38 
1923 18.75 13.68 5.31 .28 .38 
1924 10.58 6.68 2.15 • 20 .32 
1925 10.86 6. 71 • 90 , .08 .13 
1926 13.49 8.23 2.09 .15 .25 
1927 16.02 10.14 4.60 • 28 .45 
1928 16.26 10.61 3.23 .19 .30 
1929 18.04 13.08 5.67 .31 • 43· 
1930 15.61 9.62 2.53 .16 • 26 
1931 7.91 3.76 2 •. 82 . • 35 .75 
1932 13.72 9.85 4.65 .33 .47 
1933 9.00 5. 71 3.44 .38 .60 
1934 5.81 3.26 2.72 .46 .83 
1935 11.87 8.76 6.52 .54 .74 
1936 7.74 4.56 1.91 • 24 .41 
1937 14.59 10.78 6.67 .45 .61 
1938 14.30 10.42 4.49 .31 .43 
1939 12.32 6.85 4. 92 .39 • 71 
1940 10.01 6.15 4.35 .43 .70 
1941 17.15 11. 77 5.10 .29 .43 
1942 18.75 11.75 3.81 .20 ·.32 
1943 11.74 8.20 2.85 • 24 .34 
1944 ·· 11.41 13.44 4.99 • 28 .37 
1945 11.60 7.55 3.47 .29 .45 
1946 8.78 5.38 2.86 .32 .53 
1947 17 .11 12.26 4.17 • 24 .34 
1948 12.59 8.69 2.59 • 20 .29 
1949 14.93 11.56 4.12 • 27 .35 
1950 16.22 11.77 5.20 .32 .44 
1951 11.06 6.94 2.13 .19 .30 
1952 19.02 13.74 5.63 • 29 .40 
1953 10.78 6.82 3.09 .28 .45 
1954 9.91 7.00 2.61 .26 • 37 
1955 9.18 6.28 1.81 .19 .28 
1956 10.83 8.07 2.82 .26 .34 
1957 13.21 9.37 2.73 • 20 • 29 
1958 12.38 8.87 4.15 .33 .46 
l959 7.72 5.23 2.38 .30 .45 

r = 0.71 April-July runoff; precipitation 

r = 0.67 water-year runoff; precipitation 
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Figure II-I. Ashley Creek at Vernal, Utah -Vernal, Utah precipitation. 
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III. STATISTICAL ANALYSIS OF PRECIPITATION AND STREAMFLOW DATA 

A. Introduction 

The primary purpose of this and the next few sections is to attempt 
to answer question two stated in the Introduction: Is there any statis­
tical predictability in precipitation and runoff series or are they 
indistinguishable from random numbers? Before beginning a discussion 
of the approach taken in this report a few facts concerning statistical 
analysis of time-series should be presented. 

B. Hypothesis Testing 

The first major subject to be discussed is that of hypothesis 
testing in time-series analysis. Only a brief discussion of certain 
applicabl.e points will be made here as this subject is a complicated 
and involved one. The primary object in analyzing natural time-series 
is, · of course, to be able to make statements concerning the presence 
or absence of regularities or uniformities in the series which then 
determines the degree of dominance of the random component in the 
~eries. There are many tests for randomness in time-series, and in a 
study such as this all are not appropriate and all th~se that are 
cannot be performed. The particular tests which are presented here 
are those the author chose to use on the basis of his knowledge. It 
is an extremely difficult problem to determine the 'best' test of 
randomness in a particular situation. This problem reaches into rather 
involved statistical theory and will not be gone into here. However, 
it is important to note all tests of randomness applied to the data 
are shown here, and not just those giving results favorable to one 
position or the other. 

Friedman (11) in his paper examining the randomness of precipita­
tion data used a series of non-parametric tests; these tests are called 
non-parametric because no assumption need be made, or information had, 
about ·the form of the frequency distribution from which the sample was 
drawn. This factor is a decided advantage as we need not worry about 
what the true frequency distribution might be. One of the three tests 
used by Friedman, that of Wald and Wolfowitz (40), is used in this 
report. A great many of the tests for randomness are tests on the 
serial correlation coefficients--that is, the series correlated with 
itself displaced in time. The serial correlation coefficients for a 
random series would by definition be zero. It can be shown, however, 
that the first serial correlation computed from a sample of data is 
not a good estimate of the true population serial correlation coef­
ficient. 

The more sophist i cated tests such as that described by Wald and 
Wolfowitz (40) attempt to modify the definition of the serial correla­
tion coefficient slightly to produce a statistic which does give a good 
estimate of the true serial correlation coefficient •. This test is used 
and explained in Sect i on VIII. 
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The application of the randomness tests will be fully explained 
in the appropriate section. In all cases, however, the null hypothesis 
will be tested at the 5~ level, This means that we will accept the 

..diypothesis that the· time-series tested consists of numbers sequentially 
drawn at random from some frequency distribution, and will accept the 
risk inherent in the testing of statistical data that five times out 
of a hundred, on the average, a false conclusion concerning the null 

-hypothesis will be made. namely that the null hypothesis is rejected when 
: it- is actually true. We are thus testing essentially how often a series 
of random numhers resembles the numbers making up our time-series. If 

-the series in band is sufficiently unlike a series of random numbers 
the null hypothesis will be rejected, and we can say with some degree 

_of confidence how often a mistake will be made in doing this. Note, 
then, that the testing of a single statistical hypothesis involves 
(1) the proving of a hypothesis false, and (2) a certain possiblilty 
that the conclusion reached is the wrong one. Such is the nature of 

-statistical reasoning. 

C, -The Definition of 'Time' 

The second major point to be discussed is that involving time, 
·we must ask the question, "What will be the nature of the statistical 
~model to be used to forecast the variable quantity?" The reason for 
=tfiis question appropoi th~ book by Moran ~ited in the Introduction 
~rs that in the case of a dam-reservoir system the time scale or time 
:base used in the prediction scheme is of utmost importance, Specifi­
~cally, will time be considered as discrete or continuous? If a 
-model is chosen, which only approximates reality, in which the flow 
·into the dam occurs all at once and the release from the reservoir 
also occurs instantaneously, the time scale is considered discrete, 

-such a discrete time scale may be applied to weekly, monthly, or annual 
data, but it stipulates that all inflow and drafts on storage occur 
instantanously once each .week, month, or year, A model using a con­

:tfnuous time base acknowledges that in nature the flow into a reservoir 
- is continuous and so in all probability -are the outflows·. Why, then, 
=is a discrete time scale used at all? There are a number of reasons: 
'First of all, the mathematics for the discrete model are much simpler 
and solutions: can be obtained in a wider variety of cases and situations. 
Secondly, some things of interest which occur in nature by their very 
:nature do not occur on a continuous time scale. Winter (or seasonal) 

- -·-precipitation values, for exampte, - represent- quantities which do not 
occur on a continuous time base. There is obviously a six-month gap 

-- between the six-month (October - April) precipitation totals used in 
· this report, and these quantities, then, are on a discontinuous or 

-·-discrete time -scale. -·- -· --- ---- ·-

Thus, it. is imperative to know the structure of the time-scale 
that the statistical model will assume. And the answer to the question 
of the randomness of the series will depend also on whether time is 
-to be- considered discrete or continuous. The runoff amounts at Lee 
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Ferry by water year can be looked upon as discrete numbers; that is, 
each year's runoff can be assumed to occur all at once, say, on each 
September 30th. If this discrete time scale is used the numbers 
giving the water-year totals can be subjected to statistical tests 
for randomness as they stand. The conclusions resulting from such 
tests however only apply to a situation involving discrete time. 
Conversely, if the flows at Lee Ferry are to be characterized on 
a continuous time scale, then appropriate measures must be taken to 
insure that the averaging effects (which are necessitated in expressing 
a continuous function by discrete values) are corrected for. If 
such corrections can be made, randomness tests may be run on the 
numbers, which now represent a continuously varying quantity. 

The point of this discussion is to clarify what is meant by 
randomness when the question, "Are serial stream-runoff values at 
Lee Ferry indistinguishable from random numbers?" is asked; randomness 
in time necessitates a definition of the time scale. 

--- -- --
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IV. VARIANCE SPECTRA AS A TEST OF RANDOMNESS 

A. - Introduction 

The principal _point of departure in this report in the examination 
of the time-series of precipitation and stream-runoff is the use of 

- variance ·spectra. The term •variance spectra I is applied to a special 
--form of harmonic analysis of the time-series; the term spectra comes 

from the fact that the total variance of the series is depicted as 
a function of frequency of oscillation. The advantages of this repre­
sentation are: (1) Any periodic movement or cycle contained in the 
record will show up as a narrow spike in the spectrum occuring at the 
particular frequency or period of the cycle. (2) Any deviation from 
randomness, and this includes the periodic movement just mentioned, 
will be determined by the distribution of variance over a frequency 
range. 'A random series, by definition, would have no more variance 

--associated with any one frequency that with any other. A spectrum of 
a series of random numbers would thus be a constant value over the 
frequency scale. A third advantage for rather sophisticated analysis 
is that the shape of the spectrum is rather easily related to various 
time-series models that have been proposed, mainly the auto-regressive 
and moving average model. 

The auto-regressive scheme can be mathematically represented by 
Xt = aXt 1 + bXt + ... -t f , where X i t is the value of the 
variable-at the ttme given bytthe subscripg!cinH the f's are a series 
of random uncorrelated numbers, and a,b,c, etc., are constants. The 
moving average scheme can be represented by 

xt = aE t + be t-1 + ct t-2 + 

Both of these ~chemes involve a random component, the E's, together 
with a component which depends upon either the past his,tory of the 
ser·ies or upon some specified combination of the random component. 
It should be noted that either of these schemes allow a statistical 
prediction to be made. A great deal of previous work on the statis­
tlcal properties of these model series has been carried out. See, for 
example, Wold (43). 

The use of variance spectra in this report will thus be to examine 
the questions: (1) Are time-series of naturally occuring precipitation 
and streamflow random, uncorrelated, or is some statistical predictabil­
ity present? (2) Can either the auto-regressive or moving-average 
scheme be used to simulate the flow of the Colorado River or its 
tributaries? 

B. Mathematical Basis of the Spectrum 

· A brief mathematical description of spectrum analysis will be 
given below. For more complete details the reader is referred to Lee 
(21), Hanna (12), and to Blackman and Tukey (6). Ordinary harmonic 
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analysis should be fa~ili..ar to most engineers and those having some advanced 
ma.tnema.tics courses. A continuous periodic function f(t), that is, a func­
tion which repeats itsel£ exactly every T units of time, can be expressed 
by an infinite number ·of sine and cosine tenns of increasing frequency. 
Using complex notation f or simplicity, 

in which F (n) 

ca 

f{t) = L F(n)e1milt 

n = -co 

1 
T/2 J f(t)e -inrul tdt 

-_.T./2 

21! 
n = o, ±1, ±2, ••• ru1 = T 

and is called the complex: spectrum of f(t). Note that the harmonic order n 
assumes only discrete valu-es; this comes about because of the strict periodi­
city of the function f(t) assumed. Such a discrete spectrum is called a 
line spectrum. rt is i mportant to note that when f(t) is not specified as 
a continuous function of time, as in practice it rarely is, the complex line 
spectrum is restricted t o a finite number of ha'!'lTlonics; namely, a number 
equal to the number of dLscrete values used to approximate the function f(t) 
within the period of record T. 

- . 

Norbert Weiner, in a work published a nu~ber of years ago (41), showed 
how the concept of harmoID..c analysis could be extended to functions which 
we;-e not assumed to be periodic outside the length of record by use of the 
Fourier integral. Instead of (1) and (2), we now have 

CXI 

f(t) = J 
-00. 

fmt F(co) e dm,-- F(m) = 
1 

2 ,r 

- CXI 

J 
Here F(ru) is a continuous function of frequency and is called the complex 
continuous spectrum of the function f(t). Instead of synthesizing the origi­
nal record f(t) by an infinite number of finite harmonics at particular 
frequencies as in the periodic case, the continuous spectrum represents an 
aggregate of infinitesimal sinusoids of all frequencies from -oo to oo. The 
same remarks concerning the representation of f(t) by a finite number of 
equally-spaced values as applied in the periodic case also apply here. In 
other words, in the case t~at time is made discrete, 

• 
f(t) = J --

irut F(ru)e dru, 

and the frequency domain Ls restricted to -1t to 1t, using an angular frequency 
structure such that 

Tl = 21t 
(l)l 
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Thus, when a discrete time scale is used, oscillations with freqµencies 
,:.:outside _the range -1C_ to 1( are indistinguishable from oscillations with 
__ . frequency inside the range according to cos ((l) + 2k1C) t = cos (l)t, 

where tare positive integers and k = O, ±1, ±2, ••• etc. This property 
of confusion of frequencies in discrete time is called 'aliasing' by 
Blackman and Tukey (6). If the continuous record being . analyzed is 
approximated by values in discrete time some attention must be given 
to this problem. 

If we now· define a new quantity f (w) = 2rr I F(w)f
2 

and call it 
the power (or variance) density spect~um, then tne tolal 'energy' 
or variance of the original aperiodic function f(t) is Joo~ 
The use of negative frequencies in the foregoing (w)dw. 
theory is simply for mathematical convenience since, 
of course, a negative frequency has no physical meaning:

00 
In actual 

practice the spectrum is depicted over a frequency range from Oto 
w', where w' is called the Nyquist frequency and is equal to _1_, 
~t being the interval between successive observations. ~t 
This 'folding' of the negative frequency scale onto the positive scale 
res~lts in the plotting of a quantity 

-- - - ---- - - - - - - - - p (w)dw 

which then gives the total variance or 'energy' of the series between 
any two frequencies wa and wb. Representation of the variance on such 
a frequency scale, it should be kept in mind, requires that while the 
amount of variance in any frequency band is finite, the variance at 
any particular frequency is zero. . 

The details of estimating the spectra from a data sample will not 
be aiscussed in- detail here since they are available from a wide source 
of the literature (6) (12) (24). Suffice it to say that the theory 
regarding the estimation of variance spectrum was outlined by Bartlett (5), 
Tukey (39), and others apparently more or less independently. The 
basic idea is a harmonic analysis of the autocorrelation or serial 

=correlation function, and the mechanics of the computation can be 
- -=---s-hown to be related to the calculation of a smoothed periodogram. The 

=- ·periodogram, originally developed by Schuster, (34)° is simply a 
- - harmonic decomposition of the original record by a finite number of 

sines and cosines as in (1). Plotted against the order of the harmonic 
- ~re the coefficients of the Fourier terms. Thus, 

n/2 

f(t) = f + L [Ai sin i~ + Bi cos i~] and 

i=l 

- - -P 
e 

where T equals the total length of the series consisting of N 
observations or data points and P are the periodogram estimates. 

e 
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The periodogram enjoyed a wide usage in natural time-series for 
, a good many years. Bartlett, however, showed that if the length of 
data, T, is not to be considered as strictly periodic and therefore 
a continuous spectrum is inferred,the periodogram is not a satisfactory 
tool for the estimation of the continuous spectrum. This undoubtedly 
is the explanation for the fact that the application of the sampling 
theory of the periodogram seldom met with success--that is, independent 
data, especially of economic and meteorological series, failed to 
confirm the existence of supposedly significant periodicities. 

Bartlett (5) and others apparently independently suggested that 
a 'smoothed' periodogram would be a satisfactory estimate of the 
spectrum and showed how such a smoother harmonic analysis could be 
carried out using the autocorrelation function. The crux of the matter, 
however, is that the continuous variance spectrum is estimated by 
computing the first few terms of the ordinary harmonic analysis which 
would normally result in the 'line' spectrum mentioned above and then 
smoothing adjacent values on the frequency scale. Such an estimate 
is essentially a harmonic analysis using a broad 'window' for analysis 
on the frequency scale. This windo~, using the Tukey method, has an 
equivalent width of 

1 
~t 

where ~tis the sampling interval or time between observations and m 
is the number of serial correlation coefficients used. The choice of 
min the analysis is critical. It must be kept small in proportion 
to N, the total number of observations in the series, in order to 
maintain some degree of statistical reliability, but it should be large 
enough to resolve significant characteristics on the frequency scale. 
The greater m, the less is the statistical reliability of the estimates; · 
they will fluctuate greatly from one adjacent frequency band to another. 

The sampling theory of the spectral estimates has been the subject 
of some work by Tukey (39) and also .Lominicki and Zaremba (24). In 
this . paper the Tukey analysis will be used. The purpose of the sampling 
theory is to obtain confidence limits on the population or universe 
spectrum against which the estimated spectrum obtained from a truncated 
sample of data can be compared. Assuming that the numbers of the time­
series are drawn from random from a normal distribution, Tukey has 
reasoned that the sample spectrum estimates should be distributed about 
the population spectrum according to the chi-squared distribution 
divided by the number of degrees of freedom. The actual number of 
degrees of freedom is somewhat difficult to determine but Tukey has 
given evidence that a good approximation is given by 

2N - m/2 
Number of degrees of freedom=---­

m 

where N equals the total number of observations in the time-series 
am m the number of serial correlation coefficients used. The preceding 
remarks concerning the statistical reliability of the spectral estimates 
as dependent on m should now be clear to the reader. 



The sampling theory juHt presented makes one very important 
assumption about the nature of the time-series being examined. This 
assumption, which can be stated precisely in mathematical terms, can be 
qualitatively interpreted as stipulating that the statistics used in 
estimating the spectrum, namely the serial correlation coefficients, 
should be dependent only on differences in time, not upon the time-scale 
itself. That is, the probability laws controlling the course of the 
time-series through time should not change with time. A precise dis­
cussion of the physical implications of the mathematical-statistical 
requirements for stationarity, as the assumption is called, is a bit 
difficult at our present state of knowledge. It seems, however, that 
since we are unable to decide the validity of stationarity in meteoro­
logical time-series from physical grounds the best protection against 
non-stationarity is to have independent data with which to test the 
results. In the case of hydrometeorological records, the relatively 
brief span of time covered prevents independent-in-time-series being 
used for this purpose. Instead, in this paper it will be assumed that 
the series of precipitation and stream-runoff in the upper Colorado 
Basin can be said to be stationary time-series, and independent-in­
space series can be used to check this assumption. For example, 
examination oJ: winter precip-itation series from other parts of the 
United States suffici~ntly far removed from the upper Basin as to be 
uncorrelated can be consideFed as independent data. 

- - :: The author readily admits that tre problem of stationarity may 
prove to be a serious one with regard to the analysis presented here. 
Much work of a theoretical nature needs yet to be done on this 
question. 

" 
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I V. RESULTS OF THE SPECTRAL ANALYSIS 

A, ·Analysis of Winter (Nov. ·- April) Precipitation 

Examination of the precipitation records for the stations located 
in western Colorado indicated that ten of them had sufficiently homo­
geneous records to be of some use. Each station was checked by means 
o! independent double-mass techniques. Special credit should go to 
Mr. Eugene Peck of the U.S. Weather Burear Water Forecast Unit in 
Salt Lake City for supplying data to check with the author's own 
analysis. These ten stations were corrected for gauge location changes 
if the results of the double mass~curves agreed with historical moves. 
Table V-1 lists the stations, their lengths of records, elevation, 
and other pertinent data. table V-2 lists the first six serial correl­
ation coefficients for each station. These are used in the computation 
of the variance spectra and are shown for the benefit of those readers 
who are accustomed to using correlation analysis of time-series data. 
An interesting but probably not significant fact is that the majority 
of the coefficients for lags of one and two years are negative. None 
of the correlations shown are very large; none of the six average serial 
correlations given are greater than 0.1. 

The spectral estimates for all ten stations are plotted in Fig. 
V-1. No effort is made to distinguish between stations in this Figure. 
The ordinate portrays normalized variance (total variance equal to 
unity) per frequency interval or band and the abscissa is marked as 
a frequency and period scale. For reasons too complicated to cover 
here, this frequency scale is only approximate: However, this fact 
in no way vitiates the conclusions to be drawn. For most spectra shown 
in this report seven frequency bands are used: a half-band at the 
zero frequency and Nyquist frequency (0.5 per year) ends of the scale, 
and six full bands in between. It is important to realize that the 
plotted points represent the estimate of the variance contained in 
the frequency band about which the point is plotted and not just at 
the particular frequency represented by the point. 

A number g f points need to be made clear at once, A 'white-noise' 
or constant spectrum of a series of random numbers would be at constant 
at 1.00/7 or about 0.143 ordinate value. The resolution or discrimin­
ation of adjacent frequencies of the spectra shown here is 0.0833 
cycles per year which is rather broad. In other words, all the variance 
is being distributed over a finite frequency range, 0 per year to 0.5 
per year, in just seven increments. It can be argued that such poor 
resolution is not sufficient to detect cycles or fluctuations with a 
given, constant period in the record. This objection is certainly 
true and can be answered as follows: in spite of various claims, no 
statistically significant cycle with a period greater than two years 
has been demonstrated to exist in any meteorological or hydrological 
record by any means whatever~ The lengths of annual records, especially 
in this country, are simply too short to allow satisfactory determin­
ation of such cycles, if they exist at all. Thus, the analysis used 
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here recognizes the random appearance of precipitation and runoff data 
and analyzes the time-se ries as possessing fluctuations over a contin­
uous distribution of f r equencies. 

Referring again t o Fig. V-1, the foilowing features are of some 
interest. The points of the spectra of the ten precipitation stations 
scatter about the ordinate value 0.143. Only two points in all of the 
ten spectra exceed the Sia confidence limits shown. These limits are 
for a random process with the uncorrelated elements drawn from a normal 
distribution according t o Tukey's theory. The limits shown are based 
on an average length of record for the ten stations; when each station 
is considered individual ly only one of the points exceeds the 5% limits. 
We can safely conclude, t hen, that winter precipitation amounts over 
periods of time less t han roughly 60-90 years are indistinguishable 
from a series of random numbers. Also of note is the fact that the 
spectral estimates in the lowest frequency band, that is the variance 
in the band Oto 0.0833 per year, is not greater than we would expect 
from a random series. There is even a suggestion (not str,tistically 
significent) that there is systematically less variance here than we 

_would expect from a r andom series. 

: this conclusion o n the randomness of precipitation is in good 
agreement with other workers (11), (38), (18). 

B. Analysis of Water-year Stream-runoff Spectra .:. (Discrete time) 

Figs. V-2 through V-6 show the variance spectra for the streams 
in the upper Colorado Basin. Table V-3 gives tre first six serial 
correlation coefficients for six of the smaller basins. The values 
used in all instances ex cept where noted are those for water years, 
and t 'ime is taken as d iscrete. 

Cofidence limits analagous to those shown for the precipitation 
spectra are given, in each case based on the length of the record for 
the stream shown. 

First of all note Fig. V-5; these graphs contain spectra of 
various combinations of Lee Ferry data. Runoff amounts by water year, 
calendar year, and April-July runoff are shown for the gauged plus 
corrections for divers ions and storage data for 1914-1957. Also shown 
is the spectra for the v irgin flow data given by Leopold (22). 

The main conclus ions to be drawn are: (1) There is not much 
difference between the Lee Ferry spectra for any of the various data 
used except for the April-July totals. (2) the April-July totals 
contain about the same l ow frequency vari.ance as the water--year spectrum 
and more medium frequency variance, with less of the high frequency 
component (about 2 years). 
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Figs. V-2 through V-4 giving the variance spectra of the smaller 

basins (discrete time) indicace that none of the spectra differ from 
a ~andom number spectrum .by Tukey's significance criteria on the 5% 
level. An interesting ( and reassuring) feature is that nearly all 
of t~1se spectra show a '~ump' at frequencies on the order of 0.33 
year which is also apparent in the precipitation spectra. Neither 
t~e runoff or precipitation spectra individually suggest that this 
hump is significant, but collectively the implication is that a bit 
more variance exists in this frequency band than elsewhere. Nothing 
will be claimed for this hump, however, as a universal property of 
hydrologic series, as examination of precipitation and stream-runoff 
reco·rds in other Basins fails to indicate and such 'hump 1 • 

The spectra for the three major basins--the Colorado Main Stem, 
the Green, and the San Juan--are shown in Fig. V-4. The similarities _ 
are obvious and it should be noted that the peak at three years is the 
greatest in the San Juan and least in the Green. None of the three 
depart from a random number spectrum using the Tukey significance test. 

C. Stream-runoff Spectra--(Continuous Time) 

The results of the previous section apply only if time is discrete. 
The spectra shown, then, do not represent the true spectrum of a con­
tinuously varying runoff over the frequency range Oto 0.5 per year. 
In order that they do represent the true spectrum in continuous time 
some notion must begotten of the effects that aliasing and averaging 
(into water year totals, in this case) have upon the estimated spec­
trum. The considerations that apply here are rather complicated and 
are expanded upon in Appendix Two. The problem might simply be stated 
thusly: In continuous time the spectrum will be distributed over a 
continuous frequency range and will not be limited as in the case of 
discrete time to, for example, 0 to 0.5 per year. The true spectrum 
of continuously varying stream-runoff will have some variance (small, 
but nevertheless finite) associated with fluctuations on the order of 
seconds, minutes, hours, etc., on up to the range of years just consid­
ered. If we estimate the 'true' spectrum (for continuous time) using 
water-year totals then we must know the effect that averaging and 
aliasing have on our estimate; effects brought about because we are 
trun~ating the spectrum at 0.5 per year whereas the true spectrum 
contains variance at higher frequencies. 

As brought out in Appendix Two there is no satisfactory method 
of making corrections for these effects unless the true spectrum is 
known. One practical solution, however, is to utilize data taken more 
frequently in time--in this case, monthly runoff data is used to 
estimate the spectrum from Oto 0.5 per month. The aliasing and aver­
aging effects are thereby greatly reduced since the frequency range 
0 to 0.5 per year is but a small portion of the frequency range covered. 
This small protion is at the low frequency end of the spectrum where 
such effects are the smallest (see Appendix Two). This procedure has 
two advantages: (1) It allows a crude estimate of the continuous 
spectrum over the lower frequencies to be made, and (2) it is of interest 
in itself by allowing any peaks, or periodicities, in the spectrum 
to be revealed if they are present. 
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For this analysis monthly gauged flows at Lee Ferry from 1914-
- 1957 were first subjected to a normalizing procedure to remove the 
~annual variation and to create ae near a stationary time-series as 
possible. The 44 years were stratified by month of the year, and each 
month's data were normalized so that the mean was zero and the variance 
unity. The spectrum of these normalized monthly data was then computed. 

-Fig. V-6 presents the estimated spectra. No peak at a frequency of 
i/12 months (period equal to one year) is noted since the normalizing 
precedure effectively removed the annual variation. The resulting 
apectrum is smooth; that is, no significant peaks are present. The 
variance exhibited by the normalized monthly series is strongly concen­
trated in the very low frequencies, corresponding to periods on the 
order of years. The spectra presented in the previous Figures, of course, 
covered a frequency range which is spanned in this Pigure by the region 
to the left of the dotted line. The general decreasing variance from 
low to high frequencies in the range Oto 0.5 per year indicated in 
Fig. V-5 is seen in this Figure. According to this wider frequency 
range the decrease continues into the higher frequencies but changes 
slope abruptly at about 1/12 per month (annual period). 

Thus, the following conclusions seem warranted: (1) the continuous 
_spectrum of the runoff process at Lee Ferry in the frequency range 0 
-to o:s per year is roughly given by the discrete spectrum, Fig. V-5 
-The effects of aliasing, which adds variance to the high frequency 
-end of the spectrum estimated from annual data are apparently offset 
'by the effects of averaging, which removes variance from the high 
frequency end. For a more complete discussion of this point, see 
Appendix Two. (2) Most of the serial correlation present between 
monthly runoff totals ( considering the annual variation removed) is 
due to the very long-period movements (with periods on the order of 
years) in the record. (3) There are no significant periodicities 

-(except, of course, the annual period) with periods between one year 
and two months. 

- -· · The results and conclusions from the spectra shown can be sunnnarized 
as follows: (1) The random component of streamflow is large and 
dominates all of the spectra. Only one set of data tested, namely the 

·gauged plus published corrections for trans-mountain diversions and 
:regulation water-year totals for Lee Ferry 1914-1957, differed sign­
ificantly from a set of random numbers. This conclusion applies only 
to the numbers representing the water-year runoff amounts in discrete 
time. When considering the spectra between O frequency and 0.5 per year 
as a limited frequency range spectra of a process in continuous time 
extending over a much wider range of frequencies no such conclusion 
concerning statistical significance could be drawn. The spectrum of 
normalized monthly flows of gauged Lee Ferry data 1914-1957 also differed 
significantly from a random number spectrum. From this spectrum, more­
over, the conclusion was drawn that the spectrum of annual or water­
year flows in continuous time was not greatly different from that spec­
·trum in discrete time. 
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(2) The shape of the Lee Ferry spectrum is apparently relatively 
· insensitive to what particular data are used. Leopold's virgin flow 
. figures 1896-1957 give a spectrum differing only slightly from the 
- uncorrected gauged data. However, the difference is sufficient to reduce 
the significance level of the virgin flow spectrum to slightly below 
the 5'%. level. 

(3) The spectra of the smaller basins show no significant diff­
erences from those of the three main sub-basins. All spectra indicate 
approximately the same amount of variance in the zero-frequency band 
(the very low frequencies) and further this variance is no more or less 
than could be expected in a series of random numbers. 

(4) The Lee Ferry spectrum indicates a general decrease of 
variance from low to high frequency. Such a spectrum is consistent 
with a varying quantity with a slight amount of persistence or serial 
correlation from one value to the next. (this point is more fully 
discussed in Appendix I.) 

Such an interpretation of the spectra of streamflow records is 
consisten~ with the analysis by V. 'tevdjevich (CSU report) who utilized 
serial correlation analysis. The physical reasons why streamflow values 
exhibit persistence may be summarized as follows: First, carryover 
of runoff from one water-year to the next because of all forms of stor­
age; second, inhomogenieties in the records (see Section IIB); third, 
a true persistence or serial correlation in either precipitation, 
evapotranspiration, or both. Although Yevdjevich's report considers 
these factors in some detail, it must be remarked here that the spectra 
of point precipitation totals suggest that no persistence is present 
in precipitation; the observed persistence in streamflow must then be 
accounted f?r by the remaining factors. 

TABLE V-1 

Station Name Elevation Length of Record Double-Mass Corrections 

(1) -_ Trout Lake 9700 1914-1956 (43) none 

(2) Silverton 9400 1906-1957 (52) 1936 

~3) Dillon 8900 1914-1957 (44) 1919 

(4) Fraser 8560 1916-1957 (42) 1936, 1951 

(5) · Gunnison 7694 1904-1957 (54) 1950 

(6) Ignacio 6424 1914-1959 (46) none 

. (7) Shoshone 5918 1911-1959 (49) 1933 

(8) Montrose {Fl 5830 1902-1957 (56) none 

(9) Delta 5115 1906-1957 (52) 1946 

(1_0) . Grand Junction 4849 1897-1957 (61) none 



1 
2 
3 
4 
5 
6 

-1 
2 
3 
~ -. 
.,5 : 
~6 

Gunnison 

1.00 
+o.oo 
+o.18 
-0.17 
+o.24 
+o.02 
-0.15 
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TABLE V-2 

COLORADO BASIN 

Delta Montrose Grand Junction 

1.00 
-0.10 
-0.05 
+o.05 
-0.07 
-0.09 
-0.04 

1.00 
-0.11 
-0.19 
+o.19 
+o.06 
+o.oo 
-0.05 

1.00 
-0.18 
+o.07 
-0.11 
-0.00 
-0.19 
-0.03 

Trout Lake Ignacio Fraser Shoe shone 

1.00 
0.04 

-0.06 
0.17 
0.04 

-0.19 
0.09. 

1 
2 
3 
4 
5 
6 

1.00 
--0.11 
-0.20 
0.20 

-0.01 
-0.12 
0.12 

1 
2 
3 
4 
5 
6 

1.00 
-0.01 
-0.26 
-0.15 
-0.19 
. 0.00 

0.30 

1.00 
-0.19 
-0.03 
0.05 
0.06 

-0.00 
0.19 

No. Positive No. Negative 

3 7 
2 8 
6 4 
5 5 
5 5 
6 4 

Average 

1 .---00 
-0.07 
-0.08 
+o.03 
+0.01 
-o.os 
+o.07 

Silverton 

1.00 
+o.07 
-0.06 
+o.19 
+o.10 
+o.09 
+o.18 

Dillon 

1.00 
-0.07 
-0.18 
-0.10 
-0.12 

-- 0.01 
__ ·· 0.10 
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TABLE V-3 

STREAM-RUNOFF SPECTRA 

Fraser Blue - White R. F. Taylor Animas 

1.00 1.00 1.00 1.00 1.00 1.00 

1 .23 .09 .16 .10 . .24 • 21 

2 .26 ~17 -.13 .14 .12 -.as 
3 .34 .15 .06 .22 .16 .,28 

4 • 20 .11 .11 .16 .18 -.oo 
5 .18 .10 .06 .31 .28 .16 

6 .21 .18 -.06 • 27 .37 • 25 

Lag No. Positive No. Negative 

l 6 0 
2 4 2 
3 6 0 
4 5 1 
5 6 0 
6 5 1 
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VI. CONFIDENCE IN ESTIMATES OF FUTURE VARIABILITY 
I 

A. Comparison of Leopold Approach with that of the Present Report 

The material in this Section bears directly on Leopold's paper 
(22) in which he essentially assumes a model of the persistence exist­
ing in the Lee Ferry flow figures and proceeds to calculate the prob­
able variations of future means of different lengths. Briefly Leopold's 
approach was to estimate the degree2of persistence in the Lee _Ferry 
data by showing that the variance S of the means over 5, 10, 15, and 20 
(N), years did not show a decrease by a factor 1/N as would be expected 
from a series of random numbers but instead decreased less rapidly. 
By drawing a smooth curve through the 

\~ v: 
values, Leopold was in actual fact assuming a persistence model for the 
Colorado at Lee Ferry. 

The following section will 
with Leopold I s t ;reatment. (1) 

examine a number of points associated 
Leopold's estimates of the ratio of 

S2 
N 

S2 

contained sampling errors, and the question of the magnitude of these 
errors might be legitimately asked. In point of fact, how good was 
his estimate of the degree of the persistence using this method? 

(2) it can be shown that an analysis of the variability of future 
means can convenie2tly be calculated once knowledge of the spectrum 
is obtained. If SN represents the variance of means of N years and 

<p (w) 

is the spectrum of the runoff process, then 

If 

S2 = 
N 

n: 

J 
' -n: 

2 

~(w)dw 

(tu) dtu 

is a constant as it is for a random process, then 

S2 =L 
N N 

VI-1 
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which is the property of a random series that Leopold tested against. 
With the estimates that we have of the spec2rum of the Lee Ferry flow, 

·_w~ are in a position to (1) calculate the SN's using the estimated 
-spect~um and (2) calculate the spectrum Leopold assumed by comparing 
his SN's with those estimated in VI-1. . 

It is convenient at this point to ask what the relationships 
-above would reduce to in the case of a particular autoregressive scheme 
khown as a Markov process. These processes have been extensively 
studied and may be written as 

. xt+l - ext + { , ~ - constant< 1. 

Interpreted, this auto-regressive scheme of order one simply says that 
the succeeding value of the variable X depends only upon its present 
value plus a random component. It is an open question as to whether 
such a ;process can represent observed streamflow series, although it 
has been suggested by various investigators, including the author 
(19), (10), (14). The limitation imposed by the length of the records 

. we possess plus the uncertainties in the degree of the homogeneity 
of our records require that it remain an open question • 

. . -: ~-- -
-ii; -to return to the original argument, we assume that stream-

flow may be represented by a Markov process the above equations 
~educe to 

S2 
. N ;_ ! (1 +e) 
8 2 N (1 -~) 

1 

2~(1 -pH) 
N2(1 -~) 2 

This follows because the spectrum of a Markov process may be written 
as 

. [1 (w)dw] 
. ~ 

l-02 r, 1 
:I --l;.----e· < w < re 

rc(l +ef' - 2~cos w) 

·Assuming a value of the 'carry-over' coefficient we can then calculate 

S2 
N -· 

S2 
1 

Assuming the Lee Ferry spectrum to be a Markov spectrum taking 
into account sampling variations a value of(=>= 0,25 can be used. 
That is, we will assume that 

Xt • O. 25Xt-l + € 
can represent the series of flows at Lee Ferry, The spectrum of such 
a model is shown in Fig. VI-1 compared with the estimated spectrum. 
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I 
Using a simple Chi-squared test of fit indicates that the differences 
are not significant on the 5% level; the length of record is too short 
to be able to distinguish the actual estimated spectrum from a Markov 
(P = 0.25) process~ This same comment also holds for more sophisticated 
auto-regressive or moving average models which might be suggested, i.e. 
higher order models. 

Table VI-1 contrasts the variance of five and ten year means 
ebtimated by three different methods: 
(1) Leopold, using observed 

S2 
N 

S2 
1 

(2) Markov process, f> = O. 25 from equation VI-2. 
(3) A purely random series. 

Examination of the comparison indicates that the estimated variance 
of the averages is, of course, in excess of that calculated for a random 
series and that they are in fair agreement with Leopold's values. 

The question of why Leopold's values differ from the author's 
can be answered by examining just what parameters were used to estimate 

S2 
N -· S2 
1 

This report considers a simple Markov process with~= 0.25, an adequate 
model to use from comparison of the two spectra (fig. VI-1). Leopold 
plotted points for 

. /\2 
where S was calculated from contiguous values of ¾t• th't is, X's 
average~ over non-overlapping lengths of N years. ~he s20 calculated 
by him was thus based on only three values (61 years total length of 
recoi;J}• Leopold gives no consideration to sampling fluctuations of 
his ' SN and is open to criticism on that account. _On the other hand 
the analysis used in this report is incapable of distinguishing between 
a Markov process with p = 0. 25 and the estimated spectrum, and the 
resulting uncertainty ln the variance of future means is therefore 
quite large. (Refer to Table VI-1.) The analysis~ capable, however, 
of saying that the ratio 

S2 
N 

S2 
1 

is significantly greater than 1/N on the 5% level. 
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TABLE VI-1 

N = 10 Variance of Ten-year-means 

(1) Leopold 
(2) Markov, (' = 0.25 
(3) Random 

N .. 5 Variance of Five-year-means 

(1) Leopold 
(2) Markoy, E>= 0.25 
(3) Random 

N= 20 Variance of · Twenty-year-means 

(1) Leopold 
(2) Markov, O= 0. 25 
(3) Random ~ 

Since Leopold's estimates of 2 
SN 

S2 

.193 

.159 

.100 
S2 

5 
S2. 

. 1 

.345 

.298 

.200 
2 

S20 
2 

sl 

.122 

.081 

.050 

were rather conveniently calculated, it is of interest to determine 
just what spectral estimates correspond to his values of 

S2 
N - . 

S2 

This would give an idea of the spectrum he assumed which could then 
· be . compared with the Tukey estimate of the spectrum. Appendix III 
giy~s the calculation of spectrum assumed by using the 

/\2 
SN 

s2 
· calculated by Leopold. The solution to this problem is roughly the 
inverse of the analysis just presented. We use the 

·s2 
N 

s2 
to estimate ;t' (w). 
-Fig. V!-2 gives the r~sul'ts of the calculation. The spectrum i~plicitly 
assumed . by Leopold in his analysis contains an excess of very low 

. freiluency variance compared with high frequency variance whereas the Tukey 
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spectrum is much more 'flat' over the medium to low frequencies. 
I 

From statistical theory it can be argued that the procedure by way 
of the Tukey spectrum is to be preferred since this class of methods 
of estimation of the spectrum has received much theoretical attention 
in the last few years. Leopold's method should not be criticized too 
heavily, however, because it is easy for the statistical layman to 
u~derstand, and with the length of record available• gives results 
comparable to the more sophisticated methods. 

B. Probability Analysis Using Hypothesized Markov Model 

A probability analysis similar to Leopold's using the results 
of Table VI-1 can be made. For example, the variance of five or ten­
year means of a Markov process with(?= 0.25 gives a distribution as 
shown in fig. VI-3. To this must be added the error associated with 
assuming the 1914-1959 mean to be the true mean. In such .a Markov 
process, it can be shown that there are 46 x (1 - 0.25)/(1 + 0.25) = 29 
independent observations of the true mean. The standard error of the 
mean is thus= 4.07/~or 0.75 mi_llion acre feet. 

~To obtain the overall variation in future 10-year periods, the 
standard error of the- mean must be combined with the standard error 
of the 10-year means. These can be considered independent quantities 
and add in their squares. 

: Variability of future 10- ear means is equal to 
2 2 

(0.75) + (1.62) = 1.78 m.a.f. 

Thus the probability is 68% that a future 10-year mean will be between 
13.19 ± l.78 m.a.f. at Lee Ferry and thus there is a probability of 
roughly 16'7. that such a mean will be below 11. 4 m. a.£. 

·-- Fig. IV-4 shows graphically that the effect of the non-randomness is 
the positioning df the confidence limits. The dashed line indicates 
the probability that a 10-year mean would fall within the limits 
delineated while the solid indicates the same limits taking into account 
the non-randomness of the data. 

- This analysis differs from that of Leopold's because, (1) the 
sample mean and variance were different (he used the so-called virgin 
flow, 1896-1956) and (2) a different model of the non-random component 
was used; the 

S2 
N 

S2 
ratios for a Markov process from table Vl-1. It should be emphasized 
that those limits are for stream-runoff at Lee Ferry, not stream dis­
charge. No depletion model has been used or other such considerations 
made. 
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VII. THE APPLICATION OF STATISTICAL FILTERING TECHNIQUES 

TO THE HYDROLOGIC TIME-SERIES 

A.~ Introduction 

The variance spectrum technique depicts the structure of a time­
series by distributing the total variance of the quantity over a 
f~equency scale in a number of finitely-wide frequency bands. Such 
a representation is capable of revealing strict periodicities in the 
series if the band-width of the analysis is sufficiently narrow. 
Records of precipitation and streamflow in the basin are too short 
to reliably (from a statistical point of view) determine the presence, 
or absence, of any periodicities in these records, as pointed out in 
a previous section. 

There is, however, a method by which such periodicities can be 
investigated in short lengths of record provided the hypothesis is 
made that the periodicity retains a constant phase throughout the 
length of record. This method, using weighted running averages operat­
ing on the time-series, has been described as a band-pass filtering 
technique, The weights of the running averages are determined so as to 
filter out or retain a particular portion of the spectrum • 

. --
Let x

1
, x , ... x represent the time-series of interest and 

w
0

, w
1

, w
2

, ••. ~k1 (k~) the weights of a meaning operation on the 
x-series aefinea as 

k 

yn = Lwj(xn-J + xn+Jl 

j=O 

VII-1 

This running average is thus symmetric with w being the central weight 
0 and the total length of the running mean 2k + 1 values of the series. 

The new series, y, that is generated by the meaning process is thus . n 
shorter than the x-series by 2k items (k items on each end) and has 
a different appearance since certain of the frequencies in the x-series 
have been suppressed and certain others retained. 

If we consider a periodic function 

x c A cos (2nft + 0), = A cos(wt + ~) 

which in case of discrete time can be written 

x = A cos (wn o( + ~) , 
n 

ol~ interval between each of then observations. Operating on thi~ 



with the symmetric weighted running mean filter, it can be shown that 

- k --

yn = A cos (run«+ ¢) I: 
j = 0 

ru. cosruo:j 
J 

Th~ effect of filtering is to thus preserve the -period and phase of the 
original periodic function and to change its amplitude by a factor 

k 

L 
j = 0 

ill. COS(l)(Xj 
J 

VII-2 

Thus, by taking o:: equal to unity and specifying the particular weights 
used, the amplitude response function of the running average may be calculated. 
Taking the square of the amplitude response function results in a quantity 
termed the admittance function or filter factor. This function gives the por­
tion of the spectrum "passed" by the filter and the portion suppressed. For 
example, consider a simple unweighted running average; all the weights, m., 
in this case, are equal and equal to 1/(Zk + 1). Suppose the x series J 
consists of yearly values and a symmetrical moving average of n five terms 
(2k + 1 = 5) is selected. The filter function of this averaging process would 
look like this: .:.. 

% variance 
transmitted 

- - --

100~ 
50 -

0 ---0 ,125 .250 .375 ,500 
8 4 2 

frequency (per year) 
period (years) 

: - The filter transmits no variance associated with 5-year periodicities 
and an . increasing amount at longer periods (lower frequencies) • . This filter 
also transmits a small amount of variance associated with periods less than 
five years as shown. This rather undesirable feature can be suppressed by 
using weights with higher values at the central part of the filter (j = O) 
and decreasing values toward the "ends" of the filter (j = k). 

A complete description of these techniques has been given by the 
Labroustes (16), Carruthers (8), Craddock (9), Brier (7), and others, 
Appendix I also covers a few of the subjects under this heading. 

Because the running mean filter will modify the spectrum of the original 
series, oscillations will result in the Yn series which may not have been pre­
sent in the original record. Consider, for example, a random number spectrum. 
If the random numbers are treated with the five-year running average used as 
an example just previously, the spectrum of the resulting series will be given 
by the shape of the filter function curve. It can be shown, moreover, that 
the spectral value of the filtered series at any given frequency, ru, will be the 
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product of the f~lter function and the spectral value of the original 
series both at the given frequency, 

A limited length of random record filtered with a five-year running 
average will thus emphasiz,e oscillation with periods greater than five 
years, whereas in the original series these oscillations were no more 
marked than those with any other periods. 

A possible method used to insure that the oscillations remaining 
after filtering are actually in the record and are not the result of 
the filtering itself, is to specify that the resulting oscillations 
retain a constant phase throughout the record, 

The band-pass filtering technique will be used in this report 
for two different purposes, Because the filtering preserves the 
phase information of any periodicity which might be in the record, 

-- it will be used to examine the series for a 'hidden periodicity' of 
- -constant phase as suggested, In particular the technique will be used 

to - examine the precipitation and streamflow records in the Upper 
Colorado Basin for a direct constant phase relationship with the sun­
spot number. Such relationships, although lacking any physical basis, 
have been suggested by many workers, for example, (3), (37), (42), 
The particular running average used for this investigation and its 
filter function are shown in Fig, VII-1. This particular filter was 
taken directly from Craddock (9), 

Another use of the band-pass filters will be to investigate the 
very long periods (low frequencies) in the precipitation and streamflow 
records by means of a low-frequency band-pass filter. The particular 

_filter used for this is also taken from Craddock and is shown in 
Fig VII-1~ 1 Note that this filter has zero transmission at a frequency 
1/12 year , or where the previously mentioned filter had a maximum 
transmission, The low-frequency filter is thus preserving mainly the 

-~ oscillations with periods on the order of or larger than the length of 
the record. A study of the so-called 'trends' in the records can 
thus be conveniently made. 

B, Results 

The two fitters were applied to the majority of the ten precipita­
tion stations chosen for analysis in this report and all of the stream­
flow stations. 'nle following discussion surveys the results of the 
filter emphasizing the 11-year period band as shown in the solid curve 
of Fig. VII-1. To assist in drawing firm quantitative conclusions the 
stipulation was made that the phase of the 11-year oscillations remaining 
after filtering as measured from the years of maximum and minimum 
values, must remain constant within three years with respect to the 
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11-year sunspot cycle throughout the entire record. Fig. VII-2 gives 
· the results at the Lee Ferry strearnflow and Silverton winter precipit­
ation. The vertical · lines extending upward and downward from the 
abscissa represent the years of maximum and minimum sunspot number 
respectively. Inspection of these curves suggests that a constant 
phase relationship exists for Lee Ferry, For example, the maxima in 
streamflow occurred with a lag of 1, 3, and 3 years following 
sttnspot maxima and lags of 2, 0, 3 following sunspot minima. Such 
a relationship is within the limitation imposed above. Silverton's 
precipitation, however, does not so qualify as a glance at the curve 
will indicate. 

In Fig. Vll-3 we show the winter precipitation at Grand Junction 
and the annual precipitation at Yellowstone Park. Grand Junction does 
not qualify because of a changing phase relationship in the beginning 
of the record. Yellowstone 1s record of annual precipitation also 
is not indicative of any relationship, (This record was included 
because it represents a long record of good precipitation measurements; 
it is, of course, not within the Upper Colorado Basin,) Fig. VII-4, 
Shoshone and Gunnison precipitation, and Fig. VII-5, Animas and Roaring 
Fork strearnflow, also indicate that no consistent phase relationship 
is present. 

As the Lee Ferry record is the only record meeting the imposed 
restrictions favorable to a sunspot-runoff relationship, the three 
major sub-basins ar.e shown in Fig. VII-6 to check on the individual 
behavior of the major sub-basins, In this figure, the Green, the data 
for which extend back to the early part of the century, fails to meet 
the criterion, as the minimum in 1912 comes one year before the 1913 
sunspot minimum. In addition, the Main Stern data show a secondary 
maxirnu~ in 1945 which is as strong as the 1940 maximum. Although the 
three basins are reasonably well correlated in this portion of the spec­
trum, particularly between 1920 and 1940, the individual behavior shown 
here and ~he failure of the smaller basins and precipitation records 
to indicate a phase relationship which meets t~ imposed criterion, 
suggest that the Lee Ferry record's success was likely fortuitous. 

If, however, the Lee Ferry record would in fact ultimately show 
a consistent phase relationship with the sunspot cycle in the 11-year 
frequency band, the knowledge of this fact will not benefit us any 
in actual forecasting practice. First of all, no relationship between 
the amplitudes is present so that all that would be forecastable would 
be the date of maxima and minima, In addition, the fraction of the 
total variance represented by this frequency band is so small that 
even if such a date could be forecast only a very small degree of 
predictability would be gained. 

Another filter was used to investigate the very low frequency 
oscillations in the series under consideration, This filter has a 
filter function curve as shown in Fig. VII-1 by the dashed curve. 
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_Note that the filter effectively blocks everything with a period less 
than 11 years and that the 50 per cent transmission level is about 
25 years. This filter thus places emphasis on the movement of the 
series which have periods equal to, or greater than, the length of 
the record, and it should be pointed out that this is a much 
narrower filter than that involved in the Tukey method of estimating 
the spectrum used in Section V. The filter functions inherent in 
the Tukey method is shown as the dotted line in Fig. VII-1. 

Because the filter function for this particular filter is known, 
the effect on the variance of the filtered series by equation VII-2 
and an estimate of the amount of variance within this frequency band 
in the original series, or in other words, an estimate of the spectrum, 
can be obtained. In the following analysis this spectral estimate will 
be normalized so that a value of unity would correspond to the amount 
of variance in the frequency band expected from a random series. 

Table VII-1 presents the normalized low-frequency band variance 
for the ten precipitation stations and for the runoff series used in 
Section V. 

TABLE VII-1 

NORMALIZED ZERO-FREQUENCY-BAND FILTER VARIANCE 

Precipitation (Nov.-Apr.): 

Trout Lake 
Silverton 
Gunnison 
Montrose #2 
Shoshone 

Stream- runoff: 

Taylor 

Roaring Fork 
Blue 
White 
Animas 

1.22 
0.90 
0.75 
0.68 
0.68 

3.16 

2.89 
2.28 
1. 78 
1.66 

Delta 
Dillon 
Ignacio 
Grand Jun ct ion 
Fraser 

Green 
(Green River, U.) 

Main Stem (Cisco) 
San Juan (Bluff) 
Lee Ferry 

0.51 
0.50 
0.35 
0.32 
0.19 

2 .. 96 
2.07 
1.24 
2.11 

The immediate conclusions to be drawn f r om this table are, (1) 
All but a single precipitation station have less low-frequency variance 
than would be expe cted from a random series (1.0). (2) All stream­
runoff stations have~ variance, most by a factor two, than a random 
series would be expected to have. It is precisely the latter fact that 
suggests that the runoff data is non-random in nature. It should be 
emphasized again, that the differences in Table VII-1 and the Tukey 
spectra concerning the amount of zero-frequency variance, arise because 
of the difference in band-width of the two analyses. 
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It is also of interest to plot each of the series after filtering as 
was done in the previous discussion on correlation with solar activity. 
This has been done in Figs. VII-7 to VII-9 for selected stations only, 
in the interest of saving space. The precipitation data, first two 
figures, indicate that no general trend has occurred in the precipitaion 
measured in the basin since the turn of the century. The precipitaion 
stations shown were not picked because they illustrated this point; 
all ten stations agreed with respect to this conclusion. The runoff 
data, however, all show a pronounced downward trend. This fact need 
not be pointed out to most readers and the author makes no claim as 
to the originality of the illustrated precipitation-runoff ratio trend. 
Kohler and Linsley made the point very well in 1949 (15). 

The possible reasons that Kohler and Linsley gave for the decreasing 
efficiency of the upper Colorado runoff process are still valid today: 
(a) sampling variations of precipitation data, (b) sampling variations 

_in streamflow data. (c) increase of natural evaporative losses, (d) 
increase in consumptive loss due to man-made control of the river. The 
interesting fact about these conclusions is that all of them could 
very possibly have worked in the same direction, namely, to decrease 
the basin efficiency. Reason (d) is certainly valid; the critical 
question is one of magnitude, Reason (c) is also very probably valid 
since an increase in temperature over the last 60 years seems a 
legitimate statistical conclusion. Much less likely, but still possible, 
are the sampling errors inherent in both precipitation and streamflow 
measurements. As reason (c) is a factor over which man has no control, 
an investigation into secular temperature changes over the last century 
might be of some value. 
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VIII. AN ADDITIONAL STATISTICAL TEST 

A. Introduction 

An additional test for persistence in winter precipitation and 
streamflow was carried out: This test due to Wald and Wolfowitz (40) 
is identical with the one Friedman applied to south-Texas rainfall 
data. The test involves a measure of the correlation between successive 
observations (the serial correlation coefficient of lag one). It is a 
non-parametric test which means it is not sensitive to the parent 
frequency distribution from which .the data were drawn. The statistic 
tested is 

n-1 

R ~ I xtxt+l + xnxl t = 1, 2, 3, .•. n 

t=l 

The magnitude of R gives a measure of the year-to-year persistence 
present in the precipitation or strearnflow data. Wald and Wolfowitz 
hav.e shown that the magnitude of R may be tested for significance if 
N exceeds about 20. Computing the mean of expected value of R from 

S2 S2 
M(R) = _N_l -1-

and its variance from 

where 

2 
S2 - S4 

Var (R) = N _ l + 
S4 

1 

N 

=' .L 
1 

When M(R) and Var(R) are computed we may specify the level of signi­
ficance by requiring that the mean of R exceed by a given amount its 
standard deviation. In the case of the 5% level, · 

R - M(R) > +1.64 
'4J Var(R) 

for the null hypothesis to be rejected, that is, for the data at hand 
to exhibit more persistence than a series of random numbers. 
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B. Results 

Table VIII-1 below gives the stations tested, the magnitude of 

R - M(R) 

'V Var(R) 

and the decision concerning the null hypothesis. From this test, we 
conclude that the Lee Ferry runoff data contain an element of persis­
tence which, with a risk of five out of one hundred, can be said to be 
too great for a series of random numbers. For the precipitation stations, 
on the other hand, we accept the null hypothesis that winter precipita­
tion totals are random numbers. Agreement with the randomness tests of 
the spectral analysis is good. The tests agree on the precipitation 
data aad disagree on the Lee Ferry Virgin Flow data with the level of 
significance of the 5% value. Note that with the spectral· analysis 
test the corrected flow was non-random on the 5% level while the virgin 
flow figures had a spectrum which did not reach the 5% level of sign i ­
ficance. (DisagreerneJ:?.t is also noted on Tay_lor at Almont and Fraser 
streamflow.) It is with some ass l·rance, then, that we can conclude 
that the stream-runoff values at Lee Ferry exhibit significant year­
to-year persistence, whereas the precipitation figures do not. The 
smaller, higher streams, also, appear to exhibit random flows. 



Station 

November-April precip i tation 

Silverton 
Montrose 
Ames+ Trout Lake 

+ Silverton 
Ignacio 
Delta 
Dillon 
Fraser 
Shoshone 
Gunnison 
Grand Junction 

Streamflow 

Lee Ferry gaged 
Lee Ferry gaged plus 

corrections 
Lee Ferry virgin 

(Leopold) 
Lee Ferry, April-July 

gaged 
Animas (Durango) 
San Juan (Rosa) 

. Roaring Fork (Glenwood 
Springs) 

Gunnison (below tunnel) 
Taylor (Almont) 
Blue (Dillon) 
White (Meeker) 
Fraser 
Colorado (Hot Sulphur 

Springs) 
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TABLE VIII-1 

N 

52 
56 

43 
46 
52 
44 
42 
49 
54 
61 

46 

46 

61 

46 
46 
48 

52 
54 
47 
47 
47 
47 

52 

R-M(R) 
Var(R) 

+o.64 
-1.00 

+o.03 
-1.08 
-0.42 
-0.30 
+o.19 
-1.15 
+o.19 
-1.13 

+1.65 

+1.69 

+1.96 

+l.32 
+1.56 
+l.00 

+1.17 
+1.18 
+2.22 
+o.76 
+1.09 
+1.82 

-0.16 

Null Hypothesis 

accept 
accept 

accept 
accept 
accept 
accept 
accept 
accept 
accept 
accept 

reject 

reject 

reject 

accept 
accept 
accept 

accept 
accept 
reject 
accept 
accept 
reject 

accept 



I 

I - 69 -

' IX, HEMISPHERIC UPPER-AIR CIRCULATION PATTERNS AND PRECIPITATION 
IN WESTERN COLORADO 

A, Introduction 

It was suggested to the author by Mr. N, MacDonald, that a follow­
up to an earlier study by N, LeSeur (23) might be of value for the 
overall objectives of the project, Therefore, as a side-study, an 
objective test of a specific suggestion made by LeSeur was undertaken. 

Relations between large-scale (i.e. hemispheric) perameters which 
describe the general circulation of the atmosphere and regional and 
local .meteorological pararreters are of extreme importance because of 
the fact that dynamical prediction schemes will involve the former, 
whereas the latter are of practical interest. For some time, the 
tr~pospheric circulation of the northern hemisphere has been recognized 
to be an eccentric one; that is, the center of circulation of the cir­
cumpolar westerly winds quite often does not coincide with the geo­
gra~hic pole 

An excellent discussion of this feature together with a treatment 
of some of the problems in characterizing hemispheric circulation 
resulting from such an eccentricity was given in 1954 by N. E. LeSeur 
(23). LeSeur suggested, in addition to other things, that during 
periods when the degree of eccentricity of the circumpolar westerlies 
was marked, preferred climatic anomalies occurred over the western 
United States. Specifically, he suggested a negative correlation 
between vortex eccentricity and precipitation anomaly (that is, devia­
tions from long-term expected value) in the southwest. It is the 
purpose of this inquiry to examine LeSeur's suggestion further by 
using a large amount of dat'a, 

B. Treatment of Basic Data 

For this study, ordinary harmonic analyses of five-day average 
500-mb height about 50° N. Latitude were used, These analyses were 
kindly supplied to Mr. Norman J. MacDonald by Mr, Y. Arai of the Meteoro­
logical Agency of Japan, The data covered roughly a ten-year interval 
of non-overlapping five-day intervals, extending from 1 January 1947 
to 6 March, 1957 for the winter months of December, January, and 
February only. The period of time between 6 March and 1 April each year 
was analyzed in like fashion by Mr. Frank Weinhold so that the months 
of December through March for the ten-year period were completely 
covered, For use as monthly means, the five-day periods were so com­
bined as to give a thirty-day average most closely coinciding with the 
actual calendar month. In addition, monthly average 500-mb charts 
for the same winter months for the winters 57-58 and 58-5& were analyzed 
to give additional data, The height data were read at 10 longitude 
intervals and 18 harmonics computed, Only the amplitude and phase of 
the first harn~nic (A

1
) will concern us here. As LeSeur points out, 
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·a mean of the positions of the· circulation pole determined from a number 
of contours is to be preferred in order to best approximate the cir­
culation pole. With Arai's data, only one position of the circulation 
pole is available, namely that determined by the contour height variation 

0 
along 50 N. latitude. This estimate, however, should be very well 
correlated with the circulation pole determined by a number of contours. 

In Fig. IX-1 are plotted the amplitude of the first harmonic against 
the phase angle. In agreement with LeSeur 1s conclusions, the marked 
preference for the eccentricity to extend down the 180th meridian is 
quite noticeable, particularly when the amplitude is large. In an effort 
to ascertain if a large amplitude of the wave number one implied a pre­
ferred positioning of the higher wave numbers, phase angles of the 
2nd, 3rd, and 4th harmonics were plotted against the amplitude, A

1
• 

No correlation was detected in all instances. 

C. Investigation of Precipitation Anomalies 

To check LeSeur's suggestion that specific anomalies occur over 
the southwestern United States during periods of large eccentric cir­
eulation, precipitation records for a number of Colorado western slope 
stations were tabulated. Attempts to formulate a precipitation index 
to correlate with the A

1 
values were hampered by the fact that a large 

riumber of five-day periods were precipitationless. Averaging over 
longer periods than five days is, of course, a method of obviating the 
foregoing difficulty. Therefore monthly averages of A

1 
were obtained 

and plotted against a number of different precipitation indices. The 
first ( and only one presented here) was a simple average of fifteen 
Colorado western slope stations; these stations were chosen on the basis 
of geographic distribution, elevation, and lack of station moves during 
the ten-year period. These stations are listed in Table IX-1. 

Fig. IX-2 shows a plot of average monthly amplitude of the first 
harmonic against the 15-station monthly precipitation total. No notice­
able relationship is suggested and what little correlation is present 
must be due to the two points representing very large monthly precipi­
tation totals at relatively small amplitudes. Of course, if more 
points representing large amounts of precipitation were available, the 
question could be better answered. 

Fig. IX-3 presents a month-by-month plot of the same two parameters 
for the thirteen-year period. There is a noticeable trend in the annual 
averages of A

1
, with low values in 1947 and 1959 and high values in 

1952 and 1953. Such a trend is very well negatively correlated with 
the last sunspot cycle, but any claim of a relationship would be pre­
mature and unjustified. Incidentally, the trend just mentioned can be 
shown to be the exp anation for the sunspot-500 mb circulation pattern 



--

70 .ao.G. 

60 

50 

u 
C 
0 
E 
o 40 
:c -Cl) 
~ 

LL .. 
~ 30 
::, -Q, 

E 
<l 

20 

•• 

• -
• • • 
• • 

-
X 

• 
• 

• • 

• 
• 

• 

• • 
• 

• 
• ... 
• 
• 
• • 

•• • 
• 
• 

• • )C. 

!,(,. • • 
• •• • 

• X XX 
• •• 

•• 
, ·" • • X • 

• 

• 

1orr:~·: 1 •• ----- ~ .. • • X •• • • X 

• 

:. 

• 

• • • 

• 
X 

• • 

X • • • • • • 
• • • • • ,. 

- 71 - · 

• 5 - doy average 

X 30-day overage 

• • 

• 

• 
• 

• 

• • 
• • • • 

• 

• 

• • • 

• 

• • 
X 

• 
• 

• 

• 

• 
• 
• 

• 
• 
• 

• • 

X 

• • • 

• 
• 

• 
• 

• 
• • 

• 
• • 

X 

• • 

•73_5 
• 

• 
X 

• 

• 
• 

• ••• 
• • .... 

• . .. X.' .-. 
I • • • 

--:- . • 
• • 

.... • x . l )( -x • *-; 
Jt..·· 

• • • • 
.x ••• • • •• -~. X 

• • • • • • - >< X 
• • X • 

• 
• 

• • 
: X 

X• )( 

~ . 
X 

• 
.;,• 

• 

• • 
X 

•• X 
• 
X 

• • •• 
• 

• 
X 

o._ __ __,, ___ __.,, ___ __._ _______ ....,__ ___ ......_ ___ ....._ ______ _ 
0 40 80 120 L60 200 

Phase, First Harmonic 
~'Q"- '"lX -\ . Am.-,H~ud-, v• . Pha• e. Firat- Harmonic. 

240 280 320 360 



72 ':"' 

60 I I ko52 J I . I I I I I 

50 

. 40 
l I 

... , 
. r 

'! 
l 

A1i 30 

'I 

. ' 

t I 

I. 
,.t 

20 

10 

X 

X 

)C 

)( 

X 

X 

X 

X >t 

X 

X 
X X 

>' X 

)( 

X 

>< 

,c. 

X 
X 

X 
>( 

)( 

" 
~ l \I ' 

X 
)( X 

X 

X 

X 
I 

051 
I 

)( 
)( 

X X 

X ,,. 
l' . X 

X 

,c. )( ·~ J!57 
>t )C. X 

X X 
X 

O O 10 20 30 40 50 60 70 ! 80 
· " ' · .. Precipitation (inches) 

,s,- \ ~,-- 'T"Jlt - ? l\.rnl"'\ihuio of Fir,t Harmoni c (monthly m e an) vs. Fiff'een Station Monthly Precipitation. - • I ...,.......,. -· "".,......,_.,_ __ ,.. k ;.... ~-,.,,,,,, • . ., ......... ~..-.. 4lr~·---------



- 73 -

80 
I 
I 
I 
I 
I 

70 I 
I 
I 
I j I 

60 
I 
I I 

I 
,, 

I I I 
I I I 
I I I 

C 50 
I I I 

.2 I - I 

I I 
0 - I I 
·0. I I 

°2 40 
, ' I I 

'- I & 
I I 

a. I \ " I 
I II I \ I 

,::, I \ " 
I . 

C , I I 
I \ I I 

0 I I I I I ' I I 

-ti 30 
I \ 

I \ I . I ,\ I \ I 

, ..... _ I • I I I I I 

I I I / I \ 

I I ' ' ' 
~ 

I / I 

I ~ 
I I I , \ 

I I 
, , I ,, w I \ 

I I ' I\ I y I \ 

20 
I I ' 

I 

I !"'" 

J 
\ \ I I I ' \ 
\ 

\ I I 
I I 

\ v ""'°' I ' 
10 

\: 
V 

O JFM DJFM DJFM DJFM DJFM DJFM DJFM DJFM DJFM DJFM DJFM DJFM DJFM 
1947 · 1945 1949 1950 1951 1952 1953 1954 1955 1956 · 1957 1958 1959 

F,gut"e 1X-3. Month-by-month A1 vs. Monthly 15-station Precipitation, winter 1947-1959. 

~ .... ~ .... ~-j 



I 
-

- 74 ..; -: --r--
connection claimed by Arai (4). From the figure, a good negative 
correlation can be noticed in some years, namely 1950, 1952, 1957, 
1958. In 1947, 1956, and 1951, however, a positive correlation is 
suggested. 

- We can conclude from the two figures that no good relationship 
exists between the average eccentricity of the circumpolar westerly 
vortex and monthly preci pitation amounts in western Colorado. 

and 

Rejecting the suggestion of a relationship between the eccentricity 
of the circulation and precipitation in the upper Colorado Basin on a 
monthly basis, the next problem is to determine if such a relationship 
holds on a shorter-term basis. The difficulty of specifying a preci­
pitation index in the case of five-day periods has already been mentioned! 
A plot of A over the five-day periods against total precipitation 
in the five-!ay period (not reproduced) shows .a congestion of points 
near zero precipitation, as is to be expected. To circumvent this 
difficulty, the problem was redefined slightly, Twenty five-day periods 
were chosen from the ten-year 1947-1957 analysis on the basis of the 
~gnitude of the five-day A

1 
value, The periods with the ten highest 

and ten lowest amplitudes were chosen. The five-day total precipitation 
from twelve of the fifteen stations were obtained for each period. 
No five-day period of those twenty chosen was completely precipitation­
less. Three stations did not have daily precipitation records during 
the desired periods and were therefore omitted. Table IX-2 lists the 
five-day periods with the highest and lowest A

1 
values together with 

the total precipitation and the rank (from 1 to 20) of that precipitation 
total. To avoid complications introduced by using estimated five-day 
precipitation distributions and sampling problems, a simple, ranking, 
non-parametric test was used. This test asks the question of whether 
the observed ranking of the precipitation amounts of the ten most 
eccentric and the ten least eccentric five-day periods could have 
occurred by chance. If any linear correlation between A and five-
day precipitation totals exists, it would be detectable !y this test. 
These ranking tests are completely described by Moroney (29) or Seigel 
(35) for example. 

} Briefly the test determines the probability of getting a rank 
total of 85 (in this case) from the lowest of the two sums of ten ranks, 
when the expected sum is 105. Using the null hypothesiR at the 5% 

- l evel, the rank s~ of 85 is not significant; a rank sum of 78 would 
be needed. Thus, although the relationship is definitely in the right 
direction, it is not significant at the 5% level and we must conclude 
that the relationship is not proven. The fact that all twenty cases may 
not be independent only serves to reduce what significance was found. 

D, Discussion of the Physical Interpretation ~f LeSeur's Correlations 

LeSeur makes the following conclusions about the eccentric circum­
polar vortex . The circumpolar westerly flow is strongest about the 
vortex center at times of the greatest eccentricity values; and futher, 
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. at_ such times the average "meridional" flow, that is, flow normal to the 
~ asymmetric vortex, is the least. Although not very explicit about the 
- explanation of the temperature and precipitation anomalies in terms of 

these conclusions, apparently LeSeur felt that at times of great eccen­
tricity, similar 500 mb flow patterns tended to occur over the United 
States, in turn producing similar temperature and precipitation patterns. 
The data analyzed here, however, suggest that there is no good relation-

c ship between the amplitude of the first harmonic and the phase of any of 
the higher harmonics. Lacking any additional quant i tative measures of 
circulation, we may conclude that insofar as the phase angles of the 
higher harmonics indicate the preference for ridge or trough conditions 
over the southwestern United States, no relation exists between the 
eccentricity of the vortex and the preference for ridging or troughing 
over the western United States. 

A subjective evaluation of the 500 mb charts for the ten five-day 
periods with the greatest eccentricity resulted in the feeling that a 
relationship might be present but that quantitative measures need to be 
worked out. The evaluation revealed that these periods were marked by 

_ '.yery strong zonal flow in the Pacific displaced equatorward of its 
~~"u~ual" position (this is in good agreement with LeSeur's quantitative 

--=~con~lustons) and · that ridging was definitely present either slightly off 
·· the west coast of the United States or over the western part of the 

country. Such a configuration has the attributes of the so-called 
blocking situations Rex, (33) and if this is to be the preferred situation, 
the ridging might result in lower than normal precipitation in the Upper 
Colorado l3asin. 

From the foregoing quantitative study, however, we can conclude 
that any relationship between the degree of eccentricity of the 

_. spheric circumpolar vortex and precipitat i on anomaly along the west­
.· ·ern slopes of the Colorado Rockies must be a weak one. 

TABLE IX-1 

STATIONS USED IN COMPUTING PRECIPITATION TOTALS 

1. Aspen 
2. ~. Cascad°e 
3. Crested Butte 
4. Dillon 
5. Grand Lake, 1 N 
6. Green Mountain Dam 
7. Ignacio 

8. Meeker 
9. Montrose ffa2 

10. Rifle 
11. Shoshone 
12. Silverton 
13. Steamboat Springs 
14. Taylor Park 
15. Winter Park 
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~ - - Te~ Periods with Greatest ·--

- - - A1-Precipitation-Rank 

March 11-15, 1948 3.54 
March 2-6, 1950 1.89 

-Nov. 27-Dec. 
-

1~ 1951 0.03 
Dec. 2-6, 1952 1.95 
Dec. 22-26, 1952 0.84 
Dec. 27-31, 1952 0.43 

-Jan. 1-5, 1953 2.61 
Jan. 16-20, 1953 7.22 
Dec. 2-6, 1953 3.15 
Dec. 17-21, 1954 0.26 

Sum 
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TABLE IX-2 

~en Periods with Smallest 
A

1
-Precipitation-RanK 

7 Feb. 25-March 1, 1947 12.45 1 
13 March 16-20, 1948 8 67 2 
20 March 26-30, 1948 5.21 5 
12 Feb. 10-14, 1949 2.21 11 
16 Jan. 6-iO, 1950 2.51 10 
18 March 12-16, 1951 1.07 14 

9 March 21-25, 1952 4.90 6 
3 Feb. 15-19, 1956 7.01 4 
8 March 16-20, 1956 0.53 17 

19 Jan. 16-20, 1957 · 0.85 15 

125 Sum 85 
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X. CONCLUSIONS 

In this section the author will attempt to sum up the salient 
points of the investigation. The conclusions pertaining to each of the 
five questions outlined in the Introduction will be given separately. 

(1) What are some of the basic statistical relationships of measured· 
precipitation to stream-runoff? The runoff process can be represented 
by a simple system in which the actual runoff is a variable but generally 
small residual of the larger quantities, precipitation and evapotrans­
piration. The radiative variability of runoff values will always be 
larger than the relative variabilities of either precipitation or 
evaporative losses because precipitation and evaporation averaged over 
seasons are to some degree statistically independent, 

Stream-runoff amounts are better areally correlated than point 
precipitation amounts. There are two reasons for this fact which are 
obvious from physical considerations but there is no statistical method 
whereby the two might be separated with present data. The first is, 
that point precipitation data give only an imperfect estimate of the 
true areal 'coherence' of precipitation. This is, of course, due to 
the fact that such data include to an unkown degree precipitation 
variability due to small-scale gauge effects and very small-scale local 
t~rrain effects. 

The second reason why runoff values may be better spatially 
correlated than precipitation data is because evaporative and trans­
pirative may be better correlated than the precipitation data. Because, 
as mentioned above, stream-runoff is in semi-arid climate a small residual, 
its areal correlation will be influenced, that is , increased, if evapo­
transpiration is more areally coherent than precipitation. Again, 
there seems to be no way at present of assigning quantitative numbers 
to the magnitude of each of these two causes. 

A simple plot of specific yield against point precipitation amounts 
or runoff amounts vs. precipitation amounts indicates that ordinary 
linear regression analysis cannot be applied because the residuals from 
a regression line are not random, but serially linked. This result has 
been well known for some time and present analyses (13), (36), circum­
venting this difficulty are being utilized. The point is made here to 
emphas ize the fact that the serial correlation structure of streamflow 
data, whatever it may be, pervades all types of statistical analyses 
of the data and must, in some manner or other, be taken into account. 

(2) Is there any statistical predictability in precipitation and 
streamflow amounts, or are they indistinguishable from a set of random 
numbers? 

Two different statistical tests were used to test the null hypothesis 
that winter precipitation and water-year stream-runoff amounts from the 
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upper Colorado Basin are random numbers. On the 5% level the null 
hypothesis was accepted in all cases involving precipitation and rejected 
only once in the case of runoff. This rejection was for the gauged 
water-year plus published corrections (USGS Water Supply Papers) for 
Lee Ferry 1914-1957. The type of non-randomness exhibited by the 
stream-runoff data was that of an auto-regressive or moving average 
nature, with the stream-runoff amounts exhibiting various degrees of 
persistence from water-year to water-year. This means that a small 
measure of statistical predictability is present and can be utilized. 
By making use of the estimated variance spectrum of the Lee Ferry flows, 
some statistical estimates of future flows may be obtained. In this 
regard, Leopold's paper (22) was shown, by these independent approaches 
to have given reasonable estimates of the variability of future means 
of the Lee Ferry flow. With the limited data sample available, the 
confidence with which the variability of five or ten year means, say, 
can be estimated is not very great, but rejecting the null hypothesis 
results in the fact that this variability must be greater than would 
be expected if the Lee Ferry data were random in time. 

Attempts to derive a statistical model to represent the Lee Ferry 
flow resulted in a very crude model because of the limited length of the 
data and the resulting crudeness of the estimated spectrum. For purposes 
of the probability analysis . a simple Markov model X = 0.25 X 

1 
+ ~ . t t- ~ 

was adopted. 

Various other important aspects of the question of predictability 
were investigated. No direct linear correlation (or relationship) 
between Basin precipitation and streamflow with sunspot number was 
detected. This negative result means that no predictive element can 
be gained by using the quasi-periodicity of the sunspot numbers. 

The pertinent d_iscussion to question (3), "what significance 
has an answer to (2) for practical hydrological purposes?" was not 
explicitly included in the previous sections. However, the general 
discussion of Moran's The Theory of Storage, and the mention of a syn­
thetic hydrology in Section I, apply. The question of the time-series 
structure of streamflow has relevance not only because it may allow some 
predictive scheme to be used, but because ordinary 'cook-book' type 
statistics used by many people in decision making positions are affected. 
For example, the emphasis laid on means or averages of streamflow over 
different periods of time, and the attempts by legal processes to define 
the long-term mean of a river's discharge, are cases in point. When 
dealing with woefully short historical records of a highly variable 
quantity such as streamflow, it should not surprise anyone that the 
so-called long-term means prove to be unstable ones. 

But the critical point is in deciding quantitatively just how 
unstable such means are. If the streamflow were serially random (thus, 
each year independent of the adjacent years,) sixty years of data would 
give us sixty, independent estimates of the true long-tenn mean. In 
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actual fact the data are frequently not random, resulting in a decrease 
in the number of independent estimates of the mean, and . for that matter, 
any statistic computed from the data. The non-random component of the 
ser.ies need not be very large to make an appreciable difference in this 
regard. (See Leopold Fig. 5.) Of practical importance, then, is the 
fact that our historical data are deceiving us into thinking we have 
more insight into averages, low flows, etc., etc., than we really do. 

The magnitude of the random component in a hydrologic system will 
be· large because according to the findings herein, the precipitation 
which initiates the process is random, Any non-randomness in the stream­
flow data is thus reduced by physical processes, such as evapotrans­
piration, regulation, etc., operating upon the fallen precipitation. 
In addition, inhomogenieties in streamflow data introduced by changes 
in streamflow regimen or gauging methods and by artificial regulation 
and usage could introduce a non-random component. If it were possible 
to decide upon a statistical model representing the effects of these 
processes upon the initially random data, then future flows could be 
simulated by use of this model and random numbers. As pointed out 
above, this is the idea behind a synthetic hydrology. 

Although one of the principal objectives of this investigation 
was the development of such a statistical model, the attempt must be 
said to have been only partially successful. The Markov process is the 
simplest and easiest to use and Langbein has already shown (19) how 
Moran's theory can be modified to a streamflow model using the Markov 
process. Our historical data are of such duration, however, that we 
cannot reliably distinguish between the Markov model and others which 
might be mentioned. As an example, the question of the order of the 
statistical model is particularly important for the filling of Powell 
Reservoir. If a Markov model is truly appropriate then Leopold's or 
the author's estimates of future five or ten year means may be used to 
adjudge statistical variations to be encountered during the critical 
filling period. This is because a Markov process is of first order: 
that is, dependent only on one previous value. Suppose now, that the 
true state of affairs is such that stream-runoff is a higher order 
process--say tenth. This means that values as much as ten (years) ago 
are still "affecting" the current (years') value, Then the question 
that must be asked of Leopold's probability approach in questions 
involving the filling of Powell Reservoir is "What is the variability 
of the next five-year or ten-year flows?" not "What is the variability 
of five-year mean flows taken at random?" which is what Leopold and 
Se.ction VI actually are concerned with. · The very practical answer as 
to what to expect of Lee Ferry in the next ten years thus depends upon 
a property of the data which we cannot at present learn much about, 

To sum up the foregoing discussion, the determination of the 
serial correlation structure, or non-random, element in streamflow 
series is practically important because (1) significant serial 
correlation increases the amount of data necessary to gain knowledge 
of means, ranges, and other statistics. (2) The variability of means 
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of a given length, and hence the uncertainty involved in such numbers, 

· is increased if serial correlation is present. (3) A significant amount 
of such correlation makes a certain amount of statistical prediction of 
future flows feasible, and if sufficient knowledge of this correlation 
exists, the knowledge may be made ~ae of in linear progrannning models, 
etc., for purposes of optimum basin Of~Lations. 

Question (4), "What are the causes of the observed decrease in 
runoff efficiency in the past 50-60 years?" is one question which did 
not receive the attention during the course of the project that it 
deserved. In Section II the runoff ratios were shown for four small 
basins, all of which upon subjective examination indicate a decrease in 
runoff efficiency since the records began. The filtering process de­
scribed in Section VII and the resulting filtered predipitation and 
streamflow records, Figs. VII 7 to 9, also show the effect as the stream­
flow data all indicate a downward movement whereas the precipitation data 
do not. Such results, however, merely confirm that the decrease has 
taken place, as indeed, many people have pointed out. The author would 
like to venture the opinion that attr~buting such a decrease to sampl i ng 
errors in precipitation and streamflow as included in the suggestions 
by Kohler and Linsley in 1949 (15) does not now seem very likely although 
it cannot be dismissed altogether. Two other reasons, an increase in 
man-made losses and an increase in natural evaporative losses, seem 
much more probable. The first has certainly taken place; the question 
of the magnitude of these losses has not been resolved. The second, an effect 
not mentioned by Kohler and Linsley, has quite probably also been in 
operation. There is good evidence (17), (27) for a secular temperature 
rise having taken place in the Colorado Basin (and elsewhere) covering 
the period of our records. To the degree that increased evaporation and 
transpiration was brought about by this temperature rise, the observed 
loss in ·runoff efficiency can be explained by natural processes. Both 
of these mechanisms should have worked in the same direction, namely, 
to increase evaporative losses and thereby decrease the runoff efficiency. 
It should be emphasized t hat the latter cause is beyond the ability of 
mankind to control and simply reflects the natural variability of the 
~unoff process (the remarks of Section II and in the first part of these 
Conclusions are appropriate here). 

It might be appropriate to add that the direction of the man-made 
effect upon future flows is, of course, predictable. The influence 
natural evaporative losses will have on future flows is not predictable 
since long range meteorological forecasts are not now possible. The 
point, once again, is simply that streamflow is a much more highly 
variable quantity than our short, historical records indicate to us. 
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APPENDIX I 

Running Averages, Spectra, and Time Series - - - - - -------

by Max Woodbury* and Paul Julian 

A model of the annual series of water flow at Lee 1s Ferry is that it 
-ts a sample from a stationary time-series. Luna Leopold (22) has 
made use of this feature in his report on probability analysis of 
Colorado streamflow data. Leopold notes that the average streamflow 
over 5, 10, 15, and 20 year periods shows a variance in excess of that 
calculated for a random series and correctly attributes it to cor­
relation between the streamflow in different years. For a number of 
streams the greatest deviation from randomness as measured by the 
calculated variances occurs in the Niagara River flow at Buffalo, 
while the Mississippi at St. Louis shows very little departure from 
a random series for 5, 10, 15, and 20 years. 

- . Leopold aggregates streamflow data from a number of rivers and 
uses the modal value of the variance of various averages as a correc­
~ion in his further work on the Colorado at Lee Ferry. Here we will 
lllake better use of the information available to get at approximate 
·confidence intervals for the variance of various averages. 

Section 1. Moving Averages in Time-Series 

Elementary concepts will be presented briefly; the reader is 
referred to these references (6), (12), (41) for a more thorough 
background. Here we need the notion of a transfer (or system) 
function. 

= If a (stationary) time-series is "smoothed" by a (uniform) moving 
-average we find on inspection that it "removes corners" and short 
period variations but allows long period variations to pass with 
little change in amplitude and phase. It, of course, obliterates 
variations whose period is equal to the length of the (uniform) moving 
average.- - To examine-· the effect we will apply a moving average to -
various periodic functions to see what effect they have. 

We consider uniform centered moving averages of the form 
-- -- - -·. -·- -

xt-n + xt-n+l + •... + xt+n 
= --------------

(1) 
2N + 1 

where n can be any non-negative half integer. 

We first derive the result of smoothing a complex exponential; 
from that we derive the effect on sines and cosines. 

* College of Engineering, New York University. 
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eiw(t+n) + ••• + eiw(t-n) 
= 2n + 1 

= el,,,t ( eiwn + eiw(n-1) + ••• + e-iw(n-1)+ 
2n + 1 

e -iwn) 

1 + Zn 
- -· -!wt ( i + 2cos w + Zcos 2w + 

• e ... + 2cos nw) (Z) 

where also, 

Since 

it is readily seen 

M2n+l 

M2n-+l 

Or more . generally, 
-

Jt 

iwt 
• e y2n+l(w) 

= sin ( 2n / 1) w. 

w 
(2n + 1) sin-i 

-
-iwt -iwt · · -

= e y2n+l(-w) = e Yzn+l(w) 

that 

(si~(wt)] = Yzn+l (w) sin(wt) 

[ cos(wt)] = y2n+l (w) cos (wt) . 

if the representation 

~~-1. e iwt dZ (\;v) 
X 

-1t 

is valid, as it is for stationary time-series (functions obtained by 
:-addi~g together periodic components, etc.,) then 

1( 

M2n+l [ xt] =1 eiwtyin+l(w)dZx(w) 

where Y (w) is, then, the transfer function or system function of the 
averaging process. 

If the moving average is a weighted average then the transfer 
function is different. In particular, if 

(3) 

(4) 

(5) 

aOXt + al(Xt-1 + Xt+l) + ••• + an(Xt-n + Xt+n) 
y .. ---------------- (6) t a0 + 2a1 + 2a2 + 2a3 + ••• +Zan 
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then 
J{ 

"I - J . t (7) 

-JC 

where 
· ~ + 2a

1
cos w + 2a

2
cos 2w + ••• + 2ancos nw 

y (w) =- --------------------a a
0 

+ 2a1 + 2a2 + + Zan 
(8) 

An interesting weighted average is one that uses binomial weights: 

1 [ (:) Xt-N/2 + [r] Xt-Ni2+1 
+ ••• 

+ ( :) Xt+N/2 ] 
y =-

t 2N 

For this average. 
N 

YN {w) = [cos I] 
The Y(w) graphs for some .of these averages are shown in Fig. 1. Note 
that by operating on X(t) with a weighted running average as in (6), 
the variance of the resulting series y(t) may be easily obtained, and 
since the transfer function is known from (8) an estimate of the spectrum 
in a particular band may be obtained. That is, 

1t I 2 f (w)dw 
2 J I Y(w) sy(t) = 

-1( 

follows directly from (7). 

Section 2. Variance and SEectra 

The spectrum effectively gives an analysis of variance of a time­
series. The variance is partitioned into components corresponding to 
various frequency bands. The variance of a smoothed series can be 
found from the original spectrum and the transfer function. 

dZ (w) 
X [ 

2 --J1( S (µi)dw 

-1( 
and 

z 
§ 

M(x) 
= 

1( 2 D vw> [ S{w)dc, 

where YM(w) is the transfer function of the smoothing operation M(X) 
as suggested in the previous section. 

(9) 

(10) 
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If the original time-series is a series of independent terms, then 
the spectrum is "white," i.e., 

Then 

· 2 
(jx 

S(w) = --
21t 

2 
6 = 

X 

1t 

J 
-1t 

2 
6x dw 

21t 

2 
:z (1 

X 

The variance of a moving average .of N terms is 

]

2 

dw 

if the spectrum is 'white'.· 

2 
6x =--

N 

If, however, the spectrum is 'colored', i.e., S(w) is not constant, 
then 

2 

O' = 
N 

re [ i Nw s n-L N si: 
2 

S(w) dw 

so very rough estimates of certain functionals of the spectrum are 
available from estimates of 2 

6 
M 

M = 5, 10, 15, 20, as provided by Leopold. Better estimates of the 
spectrum may be obtained by other means. See Blackman and Tukey (6). 

Numerical estimates of the functions Y (w)
2 will be provided by 

M = 5(5)20 in Appendix III. M 

Section 3. Relation Between Serial Dependence of Model 
Time-Series and Variance Spectra. 

Referring to (6) we note that a one-sided moving average 

· [ ] a X + a1(xt_1) + a 2(xt_ 2) + ..•. + a X 
y(t) = M_ xt ~ 0 t n t-n 

-~ ao +al+ a2 + •••• + an 

would also have a transfer function Y (w) as in (8), but 
a 

(11) 

(12) 
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a + a1e . + a2e + ••• +a e i iZ o n ,,.J - w _; - w ya (w) = _______ N _________ "' 1 + '-' 1 e + ~ 2e • • • • 

I .J 
j=O 

It then follows from (4) that the spectra of y(t) and of x(t) are 
related very simply by 

f Y(w) 

1 x(w) 
""' y (w) 

a 

thus, knowledge of the spectrum of y(t) will give us exactly the 
structure of a moving average process _operating on a random series 

( f x (w) =- constant) 

representing the y(t) series. 

The inverse of the moving average scheme as (12) is call~d is the 
auto-regressive scheme. 

y(t) = X(t) - b1y(t-l) - h2y(t-2) - ••• - bny(t-n) 

In this case the relationship between the spectra is 

(3 - iw - i 2w ] 
2 

)- l 
+ Bi,• + B2 ~Z. +. • • 

or the inverse of (13). 

(14) 

(15) 

A qualitative look at (13) and (15) indicates that if the spectrum 
of y(t) decreases from low to high frequencies (w = 0 tow= n) the 
'weights' a of the moving average process decrease with increasing 

n n. Also, however, the same statements can be made of the auto-regressive 
scheme, the weights increasing in a negative direction (since in (14) 
the weights are given as negative). 

It is pointed out here that knowledge of the spectrum of a time­
series enables the representation of the structure of the series through 
either a moving average or auto-regressive scheme, 
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APPENDIX II 

Some Considerations of the Results of Averaging and Discrete Sampling 
Operations on the Estimation of Continuous Spectra 

The material given here is taken largely from Blackman and Tukey, 
(6) and is intended only to supply to the interested reader of the main 
body of the report enough supplemental information to enable an under­
standing of the procedures used by the author. 

The considerations here apply to the digital approximations made 
of a continuous record, f(t), in order to estimate the spectrum; the 
continuous record is considered to have been instantaneously sampled, 
or a value taken, at equally spaced intervals of time, 6t, or the 
values in discrete time of the record f(t) averaged over the interval 
L\t. 

For mathematical convenience consider the following operator 
D, to be operating on the continuous record • 

. c,o 

Dl (t,ll>t) = Et IJ (t - <Jl't) 

q=- I>" 

The (t - q6t) represents the Dirac or so-called delta func·tion which 
has the following defined properties: 

= 
= l = 

X Jjcx- X )dx 
0 

where J (X - X) 
0 

[CX> when x 
0 when X f: X 

- OP 

-- - --
The mathematical intricasies of this function need not concern 

0 

0 

us here. Suffice it to say that this operator, when operating on f(t), 
causes the function to be evaluated at equi-spaced intervals of time, 
L\t. The record f(t) now has the 'appearance' of a number of infinitely 
thin spikes spaced 6 t time units apart. Such an operation simulates 
the instantaneous reading of a record, f(t), at equally spaced intervals. 

To consider the result this operator has upon the spectrum we 
merely have to take the Fourier transform of the operator, D. The 
. transform of D defined as above is 
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where the f denotes the frequency scale upon which the transform was 
made. If the spectrum is to be defined only on the positive frequency 
scale, and if the Nyquist frequency 

f 
n 

is used, then 

1 · ---26. t 

be> 

J (f) + IJ (f - 2qfn) + J (f + 2qfn) 

q=O 

Physically this expression says that a delta-function operator 
operating on a con tinuous function has a spectrum which is defined 
as extending to i nfinite frequencies but where each frequency in the 
range Oto f (0 to :rc/6.t, using circular frequency w, since . n 

2:rcf = w = '!f./6.t) 
n n 

corresponds to frequency in the range qf + (q + l)f as given by the 
expression. Note that the frequency disrribution isnsymmetrical about 
2qf. Blackman. and Tukey thus picture the confusion of frequencies 

n or aliasing, as they term it, as the frequency scale folded upon 
itself about the qfn poin~i· 

n 

2£ 
n 

0 

f 
n 

Thus, because of the finite interval between samplings, the 6 t, 
- frequencies greater than i/ .26t cannot be resolved and become confused 

with frequencies in the range Oto f (0 to :re). As the Tukey estimation 
scheme contains the total variance 0¥ the discrete series within this 
range it is possible t ha t variance with a frequency greater than 
1/'lb.t will be folded back into the range Oto 1/'lb.t (0 to f, 0 to :re). 

n 

- - ·- - -- Now let us consider what the effect will be if instead of making 
instantaneous readings of f(t) at intervals 6 t, the record is averaged 
over 6 t, so that in general, f(t) F f( q6.t). The operator to be con-

- sidered now is the rectangular time function 

D (t) = 1 for [: 
> -6t/2 

0 < 6t/2 

and 

[: 
> 6t/2 

D (t) = 0 for 
0 < -6 t/2. 

Applying this operator to f(t) results in a series of steps of length 
6t where f(t) is, of course, a constant over each 6 t. 

The Fourier transform of this operator is given by 
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w 
sin(z6t) 

= 6t----­
w 
2.6t 

Squaring to obtain the response of this function on the spectrum the 
function can be plotted as shown in the following figure. 

I 
1.0 

I Figure 2 

0.5 

etc. 

1f6t 21f6t 
Thus averaging over an interval 6t, taken to be unity for conven­

ience (say 1 sec., 1 day, 1 year, etc.) will have an effect on the spec­
trum of the original record f(t). At the Nyquist frequency wN = rr, 
for example, the spectrum will be reduced to about 40% of its actual 
value. 

Combining the two operations just discussed, the aliasing and 
~averaging effects on the spectrum may be written as 

2 t (w) • [ f (w) + 1 (w - 2qfn) • • f (w + q2fn)] [ •l:/~/2 J II-1 

for unit time interval, 6 t. 

Note that unless the behavior of the true spectrum 

. T (w) 

is known beyond wN = rr that there is no way of recovering it. Generally 
enough must be known about the spectrum~ priori in order to insure 

· that aliasing of high frequency variance into the principal spectrum 
(0 to wN) is negligible. Note also that averaging over the interval 

-6t instead of using instantaneous f(t) protects somewhat against this 
aliasing problem as the function 

goes to zero at w = 2rr and is generally small in the region w = rr to 2rr. 

If a 'white-noise' spectrum is being considered, Fig 2 gives the 
result of the product of the random spectrum and the "averaging function," 
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-At the Nyquist frequency w = ~t, then the restored spectra would 
be twice the re.sult o-f the estimated spectrum after treatment by 
the 'averaging function.' The 'folding' about w = ~t would just 
double the estimate at that frequency. Thus the resulting spectrum 
would be about 80% ofthe true white-noise spectrum there. For fre­
quencies less than w = ~t the total effect of aliasing and averaging 
would approach 1004 rapidly, as can be seen from Fig. 2. For a random 
spectrum, then, the two effects tend to cancel each other, aliasing 
adding energy and averaging removing energy _in the spectrum near 
w - ~t. 

The spectrum of the streamflow and precipitation may be assumed 
to be random between 1/2 per year and 1/1 per year except, of course, 
for the rather sharp peak at the latter frequency arising because of 
the pronounced annual variation in these quantities. Since, however, 
the response of the averaging correction is zero at this frequency, 
no aliased energy is transmitted to the principal spectrum. By using 
observations made more frequently in time and estimating the spectrum 
over an expanded range of frequencies the effects of averaging and 
ali-asing may be minimized. This comes about because the expanded 
scale spectrum> say from Oto 3f or higher in terms of the original 
frequency scale, contains the po~tion Oto f on the low frequency end. 
Here the effects of averaging are very smalln( see Fig. 2) and the 
aliased variance will also be very small because ·it is effectively 
multiplied by the averaging function before it is 'folded' into this 
part of the spectrum (see Equation II-1). Thus, these effects may be 
minimized by essentially using observations of a .continuous record 
taken at, and averaged over varying time intervals and the spectrum 
estimated over varying frequency bands. 

It is repeated here for emphasis that if f(t) is considered to have 
no existence between observations and therefore time is discrete, none 
of the foregoing considerations apply and the spectra stand as estimated, 
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APPENDIX I II 

Examination of Variance Spectra from Variance 
of Means Over N Years 

by 

Paul Julian and Max Woodbury 

From the text it will be recalled that Leopold's statistic for 
measuring persistence was the ratio 

S2 
N 

2• s 
where s2 

N 

is the variance of means over N years. Although Leopold calculated 
these from contiguous blocks of data of length N, we will here consider 
these to be calculated from running means of N years. 

(1) 

It can be shown that the relation between s2 and the spectrum is 
N 

where~ i.s the effect of the averaging process upon the distribution 
of variance. For running means of length N, 

i\(w) =[sin ~w ] 2' 
N sin 2 

As suggested in the text, the problem to be considered here is the 
inverse of equation (1) 9 namely, the estimation of the spectrum from 
the 

S2 
N 

values in hand. 

To begin> we will assume 

(2) 

where a durmny index k (and later h) is substituted for N. Here 
the assumption is that the spectrum can be represented as a weighted 
sum of the power admi t tance functions for each k. 

Substituting in (1) 
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I , 

J( 

k I. ~Ax&. -~ ~k c:< k 

where ~k is defined as the 
J( 

Matrix= f ¾Axdw. 

-Jt 

Solving the system of 
. -1 kh 

equations by inverting the matrix M = . .ti. 

\ kh 2 
«k ,,.L M sh. 

h 

Therefore, by using (2) an estimate of i (w) can be obtained, since 

f (w) = ~k~ - -

A k 

f (w) = L L ~Mkhs! 

h k 

whereA sign denotes an estimate. Letting 
I\ 

f (w) · LL ~Mkhs! 

h k 

reduce to 

I\ 

(4) f (w) • 

where the s2 are the Leopold values of the variances of means of length 
h h. 

The problem now is to obtain values of 

. Fh(w) ·L ~Mkh. 

k 
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To evaluate ~k' it may first be recalled from work on time-series 
analysis (for example Bartlett (5), or Hannan (12)) that 

I J{ - . . 

Xt = J .eiwtdZ(w), 

-Jt 

where dZ(w) is the spectral process of the series X. Using (1) above 
k-1 k-1 n t 

s; -) f f J·lw(r-s) r (w)dw 

-(tt:l.) ~ -
2 2 n 

and '\(w) 
• ~2 L L .1wcr-•) 

r s 
k 

'\(w) 
1 l}-1p1l iwp 

=- e 
k2 

-k 
Jt 

slnce for p • r - s f 0, f elwpdw • O. 

-Jt 

where (k~h) = min(k,h). With further manipulation the matrix 

reducP.s to 

h 2 
~h = 3h2k2 (1+3kh - h ). 

The matrix actually inverted was 

h
2 

- 1 
k~h = h - 3kh 

The inverse of this matrix times the'\ function which was given 
under (1) above produces the Fh(w) values. Note that it is possible 
to calculate the Fh values for any w, that is, any frequency. Leopold's 
values for N = 1, 5, 10, 15, 20 were supplemented by the values 
~ = 1, 2, 5, 10, 20 to get a better distribution on the linear frequency 
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-scale, and values for w's comparable to those resulting from the Tukey 
approach calculated. This was done in order to have estimated points . 
in the two instances at the same frequencies. 

, C) Fl F5 1 to FlS F20 w 

0 -.0207 .0173 • 0017 .0006 20.3398 . 
30 .4921 5. 2117 -5.6115 .206i .2601 
60 1.2184 -1. 2376 .3377 • 2770 -.4629 
90 1.2173 -1. 1255 .3347 -.1993 -.2471 
120 1.2166 -1.0139 .0457 -.4522 .2345 
150 1. 2686 -1.4010 .0707 .0377 .0442 
180 1.2160 -.9022 -.5227 .4360 -.2470 

0 Fl F2 F5 FlO F20 w 

0 -.0280 .0195 .0054 .0016 20.)400 
30 -.1289 1.6435 4.2168 -5.5566 .3878 
60 .2270 2.6241 -2.8260 .4078 -.2936 
90 .9383 .7385 -1.5726 .2610 -.3832 
120 1.6650 -1. 1867 -.2956 -.0962 -.0587 
150 2.1712 -2.3898 .0456 .1047 .0822 
180 2.3623 -3.0347 .9348 -.3487 .0584 

Multiplying these 
. . 2 

values as indi-values by the corresponding SN 
cate.d in (4) will give the spectrum estimates. 

S2 
N 

Leopold 

N ill. ill QQ2. .i.!21 QQ2_ 

S2 17.64 7.29 4.00 3.24 1.96 
NMRM 1.000 0.413 0.227 0.184 0.111 

2 SN (From running 
5.49 3.87 3.11 2. 71 means) 17.46 

NORM 1.000 0.314 0.222 0.178 0.155 

Julian and 
Woodbury ill ill ill QQ2. QQ2_ 

17.46 10.85 5.49 3.87 2. 71 
NORM 1.000 0.621 0.314 0.222 0.155 
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S:eectra i ~~) M I 1 <w> . ~ 2(w) f 3(w) 

~~ 1Leopold (original) 00 .303 .374 .376 
30° .193 .114 .126 

i 2Leopold (running 60° .105 .104 .121 
means) 90° .102 .102 .108 

120° .100 .102 .096 

! 3woodbury and 150° .096 .102 .089 
Julian 180° .104 .101 .084 
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