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ABSTRACT 
 
 
 

FROM TREES TO STANDS: PRODUCTION ECOLOGY, GROWTH DOMINANCE AND 

CARBON PARTITIONING 

 
 
 

Growth of a stand is the sum of the growth of individual trees, and it can be distributed 

among trees proportional to their size or a group of trees may produce a disproportional share of 

the stand’s growth. Large trees within a stand usually have higher growth rates than smaller 

trees. The production ecology of trees shows that this is the result of large trees’ greater resource 

acquisition, and greater efficiency of wood production per unit of resource used. However, the 

fact that large trees grow faster than small trees does not necessarily imply that these trees 

produce a disproportional share of the stand growth. The distribution of a stand’s growth among 

trees is influenced by how trees compete for resources (symmetric or asymmetric competition) 

and by the efficiency with which trees used those resources to grow. This dissertation had two 

main questions: (1) how growth distribution relates to patterns of competition and patterns of 

resource use efficiency with tree size (Chapter I, II and III), and (2) why large trees have greater 

resource use efficiency for wood production than small trees within a stand (Chapter IV). 

In the first chapter, I proposed a specific connection between production ecology of trees 

and growth dominance patterns. Growth dominance is a measure of how the growth of a stand is 

distributed among trees. It can be negative or positive whether small or large trees account for a 

greater proportion of stand growth than its contribution to stand biomass, or null if all trees 

contribute a similar proportion to the growth and biomass of a stand (Fig. 1). Specifically, 

positive growth dominance should relate to asymmetric competition for resources and (or) to 
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increasing resource use efficiency with tree size in a stand. Null growth dominance should result 

from symmetric competition for resources and similar resource use efficiency among trees in a 

stand. Reverse growth dominance should arise from symmetric competition for resources and 

(or) from a decreasing resource use efficiency with tree size in a stand. 

In the second chapter, I used a Pinus ponderosa stand undergoing strong negative growth 

dominance (growth dominance negative = −0.22) to test the corresponding pattern proposed in 

Chapter I. Dominant trees were 5-times larger than suppressed trees but captured a less-than-

proportional amount of light relative to their size compared with suppressed trees (90.4 vs. 20.9 

GJ year-1 tree-1) and light use efficiency declined with tree size. Suppressed trees were twice as 

efficient as dominant trees (0.11 vs. 0.05 kg[wood] GJ [PAR]-1). 

In the third chapter, I studied the relationship between growth dominance and production 

ecology across species including conifer and broadleaf. Both light competition and patterns of 

resource use efficiency with tree size explained a large portion of the variation in the distribution 

of growth across tree sizes. Growth dominance increased with the asymmetry of competition for 

light (i.e., growth dominance increased as larger trees increased their share of light interception) 

and as light use efficiency increased with tree size. 

In the fourth chapter, I analyzed the pattern of water use efficiency across trees in 

eucalyptus experimental plots. I hypothesized that differences in water use efficiency related to 

changes in carbon partitioning between trees. Specifically, dominant trees should partition less 

photosynthate belowground than smaller trees, resulting in greater wood growth per unit of 

resource used. I combined tree transpiration and integrated crown water use efficiency to 

estimate tree-scale gross primary production, and belowground fluxes were estimated by 

subtracting aboveground production and respiration from gross primary production. Dominant 
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trees produced 2.3-times more wood per unit of water transpired (0.87 vs. 0.38 gC LH2O-1), fixed 

1.1-more carbon per unit of water transpired (3.4 vs. 3 gC LH2O-1) and partitioned 2.2-times 

more carbon to wood production than suppressed trees (0.26 vs 0.12). Belowground partitioning 

decreased with tree size; however, the uncertainty in transpiration measurements showed that 

this pattern might be the result of the underestimation of gross primary production in dominant 

trees. 

Overall, this study indicated that growth distribution (growth dominance) and production 

ecology patterns were related, but in variable ways. Stands with asymmetric distributions of 

growth are likely to have greater asymmetries in resource interception and resource use 

efficiency among trees. Variation in resource use efficiency related to both photosynthetic 

efficiency of trees and carbon partitioning to wood. However, the evidence supporting lower 

belowground carbon partitioning by dominant trees needs to be corroborated with future tests. 
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Tree  1 2 3 ... 14 15 

 

Tree mass (kg) 20 40 60 ... 280 300 

Tree growth (kg) 45 62 72 ... 111 113 

Cumulative mass 
(kg) 

20 60 120 ... 2100 2400 

Cumulative growth 
(kg) 

45 107 179 ... 1259 1372 

Cum. prop. mass 0.01 0.03 0.05 ... 0.88 1 

Cum. prop. growth 0.03 0.08 0.13 ... 0.92 1 

        
       

 

       
Tree growth (kg) 8 16 24 ... 112 120 

Cumulative growth 
(kg) 

8 24 48 ... 840 960 

Cum. prop. growth 0.01 0.03 0.05 ... 0.88 1 

        
       

 

       
Tree growth (kg) 1 3 7 ... 142 162 

Cumulative growth 
(kg) 

1 4 11 ... 747 909 

Cum. prop. growth 0.001 0.004 0.01 ... 0.82 1 

Figure 1. Growth dominance describes how the growth of a stand is distributed among trees. It is 
calculated by ordering the trees by size and plotting the proportional cumulative size on the x-
axis and the proportional cumulative growth on the y-axis. Growth dominance is negative if 
small trees produce disproportional share of stand growth relative to their contribution to stand 
biomass (top). Growth dominance is null if all trees in a stand produce a proportional share of 
growth relative to their contribution to stand biomass (middle). Finally, growth dominance is 
positive if large trees produce a disproportional share of stand growth relative to their 
contribution to the stand biomass (bottom). 
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INTRODUCTION 
 
 
 

Productivity of stands and trees have been a core subject of forestry (Assmann 1970). In 

the early stages of forestry, productivity of stands was described by age, a measure of density 

and a representation of the potential productivity of the site - usually the height of dominant trees 

at a specific age (site index). Later, Oliver and Larson (1990) developed the concept of growing 

space. Growing space refers to the amount of resources available for a stand or tree that can be 

used for photosynthesis. The main idea behind growing space is that the larger the growing space 

the greater the amount of resources available to grow. However, this concept has the 

disadvantage that is not quantifiable, limiting the opportunities for hypothesis testing. 

An alternative to the study of the productivity of stand and trees is the production ecology 

equation (Monteith and Moss 1977). According to this equation the productivity of a tree or a 

stand depends on supply of resources (light, water, nutrients) in the environment, the amount of 

resources captured by a tree or stand, the efficiency of converting the resources into 

photosynthates, and the partitioning of photosynthates into the various tree compartments. This 

approach allows for quantitative tests of hypothesis (Ryan et al. 1997, Binkley et al. 2004, 2010, 

Stape et al. 2008) and modelling (Landsberg and Waring 1997). 

In tree populations, productivity of trees increases with tree size (Stephenson et al. 2014) 

as a result of greater resource acquisition and resource use efficiency to produce wood of large 

trees (Binkley et al. 2002, 2010, Campoe et al. 2013b, 2013a, Otto et al. 2014). Within a stand, 

trees compete among each other for resources, and large trees have the potential to preempt 

resources - especially light (Weiner 1990, Schwinning and Weiner 1998). On the other hand, 

mechanisms explaining differences in resource use efficiency to produce wood might be related 
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to differences in rates of photosynthesis per unit of resource and differences in carbon 

partitioning patterns to wood production among trees. Evidence at the stand level showed that 

increasing carbon partitioning to wood production was associated with a decreasing carbon 

partitioning to belowground carbon fluxes (Giardina et al. 2003, Litton et al. 2007, Epron et al. 

2012). 

Growth dominance (Binkley 2004, Binkley et al. 2006) described how growth is 

distributed among trees within a stand. Growth dominance provides a quantitative description of 

the relative contribution of individual trees -ranked in increasing order of size- to stand growth 

and biomass. If all trees in a stand grow in proportion to their biomass the stand shows null 

growth dominance. If large trees account for a greater proportion of stand growth than its 

contribution to stand biomass, the stand shows positive growth dominance. Conversely, if small 

trees account for a greater proportion of growth than biomass, the stand shows negative or 

reverse growth dominance (Binkley 2004, Binkley et al. 2006). 

The magnitude and pattern of growth dominance varies between species. Withing a broad 

range of patterns, usually eucalyptus stands tend to have high-positive growth dominance 

(Binkley et al. 2003, Binkley 2004, Doi et al. 2010) whereas pine stands tend to have high-

negative or low-positive growth dominance (Martin and Jokela 2004, Binkley et al. 2006, 

Fernández and Gyenge 2009, Bradford et al. 2010, Fernández Tschieder et al. 2012). It remains 

the question if growth dominance patterns are related to patterns of resource acquisition and 

resource use efficiency with tree size. 

This dissertation was divided in four chapters. In the first chapter, I analyzed how 

competition can be examined with two stand metrics: the Gini coefficient and growth dominance 

and proposed a relationship between these metrics and the production ecology equation. This 
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chapter is a conceptual chapter and I only used data together with simulated stands to illustrate 

some points. In the second chapter, I studied an old-growth stand of ponderosa pine (Pinus 

ponderosa) in Colorado undergoing strong negative growth dominance. I used this stand as case 

of study to evaluate the relationships between growth dominance and production ecology 

proposed in the first Chapter for a stand with negative growth dominance. In the third chapter, I 

studied the relationship between growth dominance and production ecology across species 

including conifers and broadleaf species. I used two indices to assess competition and differences 

in resource use efficiency between trees within a stand and correlated these indices with growth 

dominance. In the last chapter, I evaluated in eucalyptus trees if greater resource use efficiency 

for wood production in large trees was related to greater rate of photosynthesis per unit of 

resource (photosynthetic efficiency) or changes in the carbon partitioning pattern between trees. 
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CHAPTER 1: LINKING COMPETITION WITH GROWTH DOMINANCE AND 
PRODUCTION ECOLOGY1 

 
 
 
Introduction 

Competition occurs between neighboring individuals and involves the effect on the 

partitioning of environmental resources (light, water and nutrients) among individuals, and the 

efficiency with which these resources are used to support growth. Competition may be defined as 

the difference in growth between an individual growing in a crowded stand and a same-size 

individual growing under isolated conditions (Hara 1993). Competition is difficult to study as a 

process, and it has been often assessed as a pattern. Most work on competition has concentrated 

on studying the size structure of populations. Some degree of size hierarchy is common in 

forests, and even homogeneous clonal plantations often have coefficients of variation in tree size 

of more than 15% (Binkley et al. 2010). 

In this paper, we analyze how competition can be examined with two stand metrics: the 

Gini coefficient and Growth dominance coefficient. We also explore how these indices relate to 

the production ecology equation (Monteith and Moss 1977). Patterns of Gini and growth 

dominance coefficients derive from the combined influence of resource use (resource uptake) 

and resource use efficiency distribution among trees within a population. We use case studies 

and simulated stands to illustrate some points. This focus on size and growth of individuals is not 

identical to reproductive success, but if competitive dominance and genotype are correlated, size 

and growth will relate to evolutionary fitness (Weiner 1990). This paper concerns processes that 

 
1 Fernández-Tschieder, E., Binkley, D., 2018. Linking competition with Growth Dominance and production 
ecology. For. Ecol. Manage. 414, 99-107. doi:https://doi.org/10.1016/j.foreco.2018.01.052 
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lead to differences in growth rate of tress, without analyzing the effect of competition on fitness 

of individuals trees (see Table 1.1 for definition of terms used in this paper). 

 

Table 1.1. A glossary of terms used in forest competition and forest production ecology. 
 
Term Definition Source 

Complete size 
asymmetric 
competition 

One individual, the largest, captures all the contested 
resources (also called absolute size asymmetric 
competition). 

Schwinning and 
Weiner (1998) 

Complete symmetric 
competition 

All individuals capture the same amount of resources 
irrespective of their sizes (also called absolute size 
symmetric competition). 

Schwinning and 
Weiner (1998) 

Growth dominance Growth dominance describes the growth distribution 
of trees in relation to size distribution of trees in a 
stand. 

Binkley (2004) 

Partial size symmetric 
competition 

Capture of contested resources increases with size 
but less than proportionally. 

Schwinning and 
Weiner (1998) 

Partial size 
asymmetric 
competition 

Capture of contested resources increases with size 
and larger individuals obtain a disproportionate 
share of resources. 

Schwinning and 
Weiner (1998) 

Perfect size symmetric 
competition 

Capture of contested resources is proportional to size 
(also called relative size symmetric competition). 

Schwinning and 
Weiner (1998) 

Resource An element or form of energy used by plants in 
direct or indirect processes of production; light 
(energy form), water (lost in transpiration), and 
nutrients (catalysts for biochemical reactions, and 
components of cells) are the resources of interest. 

Binkley et al. (2004) 

Resource use The quantity of resources used by a plant at a 
defined scale of space and time (= resource capture, 
resource uptake, resource acquisition). 

Binkley et al. (2004) 

Resource use 
efficiency 

Production per unit of resource used. It needs to be 
defined clearly for any particular plant component 
(e.g., stem production). 

Binkley et al. (2004) 

Size hierarchy Size hierarchy described the degree to which 
biomass is concentrated among a few individuals. 

Weiner and Solbrig 
(1984) 

Size-growth 
relationship 

Functions relating growth to size of individuals 
plants in a population at a point in time (also called 
distribution modifying functions). 

Westoby (1982) 
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Competition and stand structure 

Competition is usually considered as a continuum between absolute symmetric 

competition and absolute asymmetric competition. Asymmetric competition develops when 

larger individuals have a disproportional competitive advantage over small individuals, resulting 

from greater proportional preemption of resources (Weiner 1990, Schwinning and Weiner 1998). 

A crown of a large tree intercepts light, preempting the supply to a smaller tree with little or no 

influence of a smaller tree’s light capture on the larger tree. Symmetric competition implies that 

the competitive effects of larger and smaller individuals are similar, with either equal resource 

use (absolute symmetry), or resource use that scales less than proportional with tree size (partial 

size symmetry) or proportionally with tree size (perfect or relative size symmetry) (Weiner 1990, 

Schwinning and Weiner 1998). For example, equal use of soil water by all plants would be 

symmetric competition, and water use in constant proportion to tree size would be relative-size 

symmetric. 

Size hierarchy described the degree to which biomass is concentrated among a few 

individuals, and refers to a concept of size inequality or concentration in the size distribution of a 

population (Weiner and Solbrig 1984). Scientists have assumed size hierarchy as the outcome of 

competition, and various characteristics of size distribution have been used to evaluate size 

hierarchy. These include: skewness, bimodality, size inequality or size variation, and growth 

distribution (Ford 1975, Westoby 1982, Weiner and Solbrig 1984, Bendel et al. 1989, Damgaard 

and Weiner 2000). The Gini coefficient has been recommended as a statistic to measure size 

hierarchy in plant populations (Weiner and Solbrig 1984). 

The effect of competition on size hierarchy varies according to the mode of competition. 

While asymmetric competition increases size hierarchy over time (in a stand without intense 
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mortality), symmetric competition sustains the current size hierarchy over time (Westoby 1982, 

Weiner 1990). 

The size distribution of a forest results in part from the distribution of growth of the stand 

among trees, with feedback effects on subsequent growth among trees. The “distribution 

modifying functions” (Westoby 1982) (also called size-growth relationships) are functions 

relating growth to size of individuals plants in a population at a point in time. The shape of these 

functions influences the development of size distributions, and relates to the mode of competition 

(Weiner 1990). Using the relationship between growth and size, competition is considered size-

symmetric if individuals grow proportional to their size (all individuals experience similar 

relative growth rate), and competition is considered size-asymmetric if large individuals grow 

more than proportionally to size (larger individuals experience higher relative growth rate). 

Finally, competition is considered inverse size-asymmetric (also called partial size-symmetric) 

when small individuals grow disproportionately more relative to their size (Weiner 1990, Weiner 

and Damgaard 2006, Metsaranta and Lieffers 2010, Pretzsch and Biber 2010). Asymmetric 

competition is the most likely explanation for those cases with size-asymmetric growth, 

however, size-asymmetric growth is not a good measure of the strength of asymmetric 

competition (Weiner and Damgaard 2006). 

Another representation of the relationship between growth and stand structure is growth 

dominance (Binkley 2004, Binkley et al. 2006). Growth dominance describes the distribution of 

a stand’s growth among individual trees in relation to tree size and has been used as a 

quantitative method to evaluate stand structure. Growth dominance varies across species and 

forest stands. For example, stands of Eucalyptus species often show high positive Growth 

Dominance at young ages (Binkley et al. 2003), declining but remaining positive with age (Doi 
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et al. 2010). In contrast, stands of Pinus species show a relatively small positive growth 

dominance or null growth dominance (Fernández and Gyenge 2009, Bradford et al. 2010, 

Fernández Tschieder et al. 2012). Fernandez et al. (2011) proposed that differences in Growth 

Dominance patterns could be related to species traits as leaf physiological plasticity. Explicitly or 

implicitly, Growth dominance has been related to symmetric or asymmetric competition 

(Fernández and Gyenge 2009, Bradford et al. 2010, Doi et al. 2010, Keyser 2012, Fernández 

Tschieder et al. 2012, Pothier 2017). Positive Growth Dominance has been related to asymmetric 

competition, null Growth Dominance to perfect symmetric competition, and reverse Growth 

Dominance to absolute or partial symmetric competition (Doi et al. 2010, Fernández Tschieder et 

al. 2012, Pothier 2017). 

Size hierarchy and competition: the Gini coefficient 

Weiner and Solbrig (1984) introduced the Lorenz Curve (Lorenz 1905) and the Gini 

coefficient (Gini 1912, see Ceriani and Verme 2012 for a futher discussion) into the ecological 

literature. Both concepts come from economics and can be used as a metric to characterize the 

degree of hierarchy or inequality in a size distribution of a tree population. The Lorenz curve 

graphically represents the degree of hierarchy in the distribution of biomass, and the Gini 

coefficient condenses the information of the Lorentz curve into a single coefficient (Fig. 1.1). 

The degree to which the observed curve departs from the line of equality describes the degree of 

size hierarchy in the size distribution (Weiner and Solbrig 1984). The Gini coefficient represents 

the area between the line of equality and the Lorenz curve as a proportion of the total area under 

the diagonal. The Gini coefficient (GC) can be calculated as the mean of the difference between 

every possible pair of individuals 𝐺𝐶 = ∑ ∑ |𝑥𝑖 − 𝑥𝑗|𝑛𝑗𝑛𝑖 2𝑛2�̅�⁄ , where xi is the size of tree i, xj is 

the size of tree j, n is the number of individual trees in the sample, and ͞x is the mean tree size 
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(Damgaard and Weiner 2000). The Gini coefficient has a minimum value of 0, when all plants in 

a population have exactly the same biomass and approaches a maximum of 1 as the population 

moves toward mostly very small trees with one large tree. 

The Gini coefficient has been used to infer the process of competition (Weiner 1990, 

Cordonnier and Kunstler 2015). Weiner and Thomas (1986) found that inequality increased in 

most of the plant populations they analyzed, and concluded that asymmetric competition was the 

prevailing mode of competition (at least for light). The results from Weiner and Thomas (1986) 

have been used to assume asymmetric competition in plant populations, supporting the use of the 

Gini coefficient to evaluate competition. A larger Gini coefficient implies a higher degree of 

asymmetric competition, assuming that competition is asymmetric. Before the onset of self-

thinning and assuming that density-dependent mortality affects small individuals more than large 

ones, asymmetric competition accentuates size hierarchy over time (increasing the Gini 

coefficient) as larger individuals grow disproportionally more than the smaller individuals (large 

individuals have higher relative growth compared to smaller individuals). 

However, asymmetric competition is not always the dominant mode of competition (Stoll 

et al. 1994, see for example Binkley et al. 2006, Pretzsch and Biber 2010, Castagneri et al. 2012). 

The correspondence between Gini coefficient and degree of competition is not always simple, 

and inferences about the degree of competition may be wrong. A stand undergoing symmetric 

competition would develop a size hierarchy that remained relatively constant, and inversely 

asymmetric competition would lead to a declining Gini coefficient over time. In these cases, 

accurate inferences about competition could be gained only if the pattern of the Gini coefficient 

was followed over time. 
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Stands could also have the same Gini coefficient and stand structures but could have 

developed from different modes of competition. For example, three stands with the same Gini 

coefficient at time t will develop different Gini coefficients at time t+1 depending on the type of 

competition among trees (Fig. 1.1). Stand A experiencing size-asymmetric competition 

developed to a more hierarchical stand at time t+1 (higher Gini coefficient). On the other hand, 

Stand B under size-symmetric competition maintained the same degree of hierarchy between 

time t and t+1 (identical Gini coefficient). Stand C under inverse size-asymmetric competition 

developed to a more uniform stand at time t+1 (lower Gini coefficient). A comparison of the 

stands only at time t would lead to an erroneous conclusion that the three stands were 

experiencing the same degree of competition. In addition, a high degree of size variability could 

or could not be related to size-asymmetric competition. For example, an age chronosequence of 

lodgepole pine (Pinus contorta) stands in Yellowstone National Park never showed size-

asymmetric competition despite high size variability among trees within stands (Kashian et al. 

2005, Binkley et al. 2006). This pattern resulted from a of declining growth per unit of leaf area 

(a proxy of light use efficiency) with tree size and age (Binkley and Kashian 2015). 

The same reasoning could be applied for two stands with different Gini coefficient but 

undergoing the same type of competition. We calculated the Gini coefficient for two poplar 

stands with different densities (Fernandez-Tschieder, unpublished data). The denser stand 

showed a higher Gini coefficient (0.19 vs. 0.12) at time t. After 6 years, the denser stand was still 

showing higher size hierarchy, but both stands had experienced a decrease in the Gini coefficient 

(0.17 vs. 0.09). Using solely the Gini coefficient at time t as a measure of competition would 

have implied that the denser stand was experiencing a more intense asymmetric competition, 

missing the fact that both stands were experiencing inverse asymmetric competition. The results 
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from Castagneri et al. (2012) for long-term data on three Norway spruce plots showed a similar 

limitation of the information conveyed by Gini coefficient. One plot had the lowest Gini 

coefficient yet showed a trend from inverse asymmetric to asymmetric competition and the 

greatest asymmetric competition index. 

Stand hierarchy structure develops from growth distribution among individuals 

composing the population (Westoby 1982, Weiner 1990), and the Gini coefficient can be used to 

characterize the size hierarchy of a stand. However, inferences about competition using the Gini 

coefficient at a single point in time are robust only when the mode of competition is asymmetric. 

Stand development needs to be followed over time to be sure about the mode of competition 

using the Gini coefficient. 
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Figure 1.1. A set of hypothetical stands with the same size distribution and Gini coefficient (GC) 
at time t but experiencing distinct types of competition. Stand A is under size-asymmetric 
competition, while stand B is under size-symmetric competition. As a result of size-asymmetric 
competition size inequality increases in stand A as reflected by the Gini coefficient. On the other 
hand, size inequality in stand B remains relative constant trough time; the Gini coefficient at time 
t is similar to Gini coefficient at time t+1. This figure shows that a single Lorenz curve (and Gini 
coefficient) represents one point in time and can be paired with more than one sort of Growth 
dominance curve, and Growth dominance coefficient (GDC, see next section), depending on the 
nature of competition. We simulated tree biomass development in each plot as stem biomass at 
time t plus growth between t and t+1. For stand A, growth of each tree was estimated with an 
exponential relationship, and for stand B with a linear relationship with intercept equal zero. The 
exponential size-growth relationship represents a stand undergoing size-asymmetric competition, 
whereas the linear relationship represents a stand undergoing size-symmetric competition. Tree 
biomass distribution at time t and t+1 was used to estimate the Gini coefficient (GC) using the 

ineq function (Zeileis 2014) from the ineq R package (R Core Team 2018). 𝐺𝐶 =  ∑ (2𝑖−𝑛−1)𝑥𝑖𝑛𝑖=1 𝑛2𝜇  

where n = sample of trees ordered by increasing size plant, xi = size of tree i, µ = average tree 
size (Damgaard and Weiner 2000). 

 

Growth dominance and competition 

The starting point of the analysis of size hierarchy in size distributions can be expanded 

by assessing the relationship between biomass distribution and growth distribution. In practice, 

this requires following a stand over at least two points in time during the stand development. 

The relationship between tree sizes and growth rates can be examined simultaneously 

with the growth dominance approach (Binkley 2004, Binkley et al. 2006). This approach relates 

the relative contribution of individual trees, ranked in increasing order of size, to stand growth 

and biomass (Binkley 2004). Similar to the Gini coefficient, the growth dominance coefficient 

represents the departure from a line of equality (the null growth dominance line) and can be 

graphically represented by the growth dominance curve. The degree of departure from the line of 

null growth dominance can be measured by the growth dominance coefficient (GDC) as 𝐺𝐷𝐶 =1 − ∑ (𝑠𝑖 − 𝑠𝑖−1) ∙ (𝑑𝑖 + 𝑑𝑖−1)𝑖=1…𝑛 , where si is the cumulative proportional size, di is the 

cumulative proportional growth, and n is the sample size (Binkley et al. 2006, West 2014). The 

growth dominance coefficient can take theoretical values between -1 and 1 (unlike Gini 



14 

coefficients which cannot be negative). The growth dominance curve considers the growth of 

each tree (even though the y-axis is cumulative) in relation to the tree’s position in the size 

hierarchy of a stand. A stand might experience null growth dominance (GDC = 0; all individuals 

in a stand grow in proportion to their biomass), positive growth dominance (GDC > 0; larger 

individuals account for a greater proportion of stand growth than their contribution to stand 

biomass), and reverse growth dominance (GDC < 0; smaller trees account for a greater 

proportion of growth than to stand biomass). 

As with the Gini coefficient, the growth dominance coefficient can be related to the mode 

of competition. Mathematically, the growth dominance concept is related to the relative growth 

of trees (Ducey 2010). Positive growth dominance in stands should reflect asymmetric 

competition, with larger trees showing larger relative growth rate. Null growth dominance should 

reflect symmetric competition, with all trees having similar relative growth rate. Reverse growth 

dominance entails smaller trees showing greater relative growth rates, reflecting inverse 

asymmetric competition (Table 1.2). However, these simple inferences about modes of 

competition may be confounded if growth differences among trees within stands includes 

differences in the efficiency of resource use (see section Production ecology and competition and 

Table 1.2). 

Both the growth dominance and the Gini coefficient represent characteristics at the stand 

level and are based on similar concepts. However, there are some distinctive differences in the 

ecological processes these inequality indices express. The Gini coefficient summarizes the size 

hierarchy of the size structure of a population at time t and does not entail any information on 

growth distribution. The growth dominance coefficient summarizes the inequality in growth 

distribution in relation to size structure between time t and t+1. Growth dominance does not 
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represent the size structure: a stand could have a high degree of size hierarchy (high Gini 

coefficient) and a still have null growth dominance if all trees were growing proportionally to 

their size (as the lodgepole stand described in Binkley et al. 2006). These two indices are directly 

related only if the prevailing competition mode is size-asymmetric. In such situation, both 

coefficients are positively correlated: a higher size hierarchy should reflect a higher growth 

dominance. Under size-symmetric or inverse size-asymmetric competition (stands B and C, 

respectively, in Fig. 1.1) a single Lorenz curve at time t) could be paired with more than one 

growth dominance curve depending on the mode of competition (see the resulting growth 

dominance curves at time t+1 for Stand B and C in Fig. 1.1). The Gini coefficient and the growth 

dominance coefficient provide complementary (but not identical) information. 

Unlike the Gini coefficient, size-growth relationships and growth dominance hold the 

same information: growth distribution among trees in a stand. The basic difference between these 

two approaches is how they express the information (see section Competition and stand 

structure). However, each size-growth relationship (Metsaranta and Lieffers 2010, Pretzsch and 

Biber 2010) can be associated with a particular pattern of growth dominance (Table 1.2). The 

symmetric size-growth relationship is equivalent to the concept of null growth dominance, the 

asymmetric size-growth relationship is equivalent to the concept of positive growth dominance, 

and the inversely asymmetric size-growth relationship is equivalent to the concept of reverse 

growth dominance. 

The growth dominance approach may offer some advantages over size-growth 

relationships. First, the information contained in the growth dominance curve can be summarized 

in a unitless coefficient, and this coefficient would be sufficient to evaluate the mode of 

competition and the degree of growth dominance. Such a coefficient is particularly useful to 
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compare stands across ages or productivity gradients. For example, to compare across stand ages 

on sites of similar quality, differences in growth and stand biomass among stands ages are 

removed and brought into a common scale between -1 and 1 (see Binkley et al. 2006). A single 

condensed coefficient loses some detailed information that is embodied in the growth dominance 

curve. Thus, in some cases comparisons may be useful with only the growth dominance 

coefficient, and others may require evaluation of the full growth dominance curve (Damgaard 

and Weiner 2000, Pommerening et al. 2016). 

 

Production ecology and competition 

Explanations about competition have typically focused on resource partitioning (light, 

water and nutrients) among neighboring individuals. As mentioned in the Introduction section, 

growth of individual trees also depends on how efficiently these resources are being used to fix 

carbon to produce biomass, and any substantial differences in resource use efficiency could 

confound competition inferences that rely only on resource partitioning. These components 

comprise the production ecology equation (Monteith and Moss 1977, Binkley et al. 2010). 

According to the production ecology equation the growth of a tree based on the supply of 

photosynthetically active radiation (PAR) can be expressed as: 𝑁𝑒𝑡 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑘𝑔𝐶 𝑡𝑟𝑒𝑒−1 𝑦𝑒𝑎𝑟−1) = 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑠𝑢𝑝𝑝𝑙𝑦 (𝑀𝐽 𝑡𝑟𝑒𝑒−1 𝑦𝑒𝑎𝑟−1)  𝑥 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑠𝑢𝑝𝑝𝑙𝑦 𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑  𝑥 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑢𝑠𝑒 (𝑘𝑔𝐶 𝑀𝐽−1)  [1] 
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When the focus is on a particular tissue, such as stemwood, growth is also influenced by 

carbon partitioning within individual trees (Landsberg and Waring 1997, Ryan et al. 1997, 

Binkley et al. 2010). 

Competition can be quantified with the production ecology equation. The production 

ecology equation shows that growth differences between trees could result from differences in 

resource use (resource supply x proportion of resource supply acquired) and from differences in 

resource use efficiency for producing growth. Therefore, any disproportionality in growth in 

relation to size among trees should be related to size patterns in resource use and (or) resource 

use efficiency. Simultaneously, this disproportionality in growth is reflected in the growth 

dominance pattern. According to this description, growth dominance should result from 

differences in resource use and (or) resource use efficiency among trees within a stand. In the 

next section, we developed an analytical approach between growth dominance and production 

ecology. As it was shown (section 1.2), size hierarchy may be related to more than one mode of 

competition (Fig. 1.1). In addition, size hierarchy – as measured with the Gini coefficient- does 

not include any information on growth. For these reasons, we did not develop a link between size 

hierarchy and the production ecology concept. 

Analytical approach: Growth dominance and the production ecology equation 

The patterns of growth dominance (Binkley 2004) and production ecology (Monteith and 

Moss 1977) provide the context for partitioning of growth among trees within stands. Growth 

dominance expresses the growth partitioning in relation to biomass partitioning in a stand. In a 

stand with null growth dominance, trees grow proportionally to their size (i.e., if a tree 

contributes with 2% of the stand biomass, it also contributes with 2% of stand growth): 
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𝑔𝑟𝑜𝑤𝑡ℎ𝑖(𝑘𝑔𝑤𝑜𝑜𝑑 𝑦𝑒𝑎𝑟−1) 𝑔𝑟𝑜𝑤𝑡ℎ𝑠𝑡𝑎𝑛𝑑 (𝑘𝑔𝑤𝑜𝑜𝑑 𝑦𝑒𝑎𝑟−1)⁄ =𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑖(𝑘𝑔𝑤𝑜𝑜𝑑) 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑠𝑡𝑎𝑛𝑑 (𝑘𝑔𝑤𝑜𝑜𝑑)⁄           [2] 

Null growth dominance means that the ratio between growth and biomass of each tree is 

the same among all trees and equal to the ratio at stand level. With some rearrangement from 

equation 2: 𝑔𝑟𝑜𝑤𝑡ℎ𝑖(𝑘𝑔𝑤𝑜𝑜𝑑 𝑦𝑒𝑎𝑟−1) 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑖(𝑘𝑔𝑤𝑜𝑜𝑑)⁄ =𝑔𝑟𝑜𝑤𝑡ℎ𝑠𝑡𝑎𝑛𝑑(𝑘𝑔𝑤𝑜𝑜𝑑 𝑦𝑒𝑎𝑟−1) 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑠𝑡𝑎𝑛𝑑(𝑘𝑔𝑤𝑜𝑜𝑑)⁄           [3] 

Where growthi is the stem growth of the tree i defined as mass accumulation per unit of 

time, biomassi is the stem biomass of the tree i, growthstand is the stem growth of the stand and 

biomassstand is the stem biomass of the stand. The equality in equation 3 is true for all trees in the 

stand (1, 2, ............n): 𝑔𝑟𝑜𝑤𝑡ℎ1 𝑏𝑖𝑜𝑚𝑎𝑠𝑠1⁄ = 𝑔𝑟𝑜𝑤𝑡ℎ2 𝑏𝑖𝑜𝑚𝑎𝑠𝑠2⁄ = ⋯ ⋯ ⋯ = 𝑔𝑟𝑜𝑤𝑡ℎ𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑛⁄       [4] 

Stem growth of an individual tree can be regarded as NPPsw (kgwood year-1), and by 

equation 1, growth of tree i is the product of its resource use (RUi, MJPAR year-1) and its resource 

use efficiency for producing stemwood (RUEsw, kgwood MJPAR
-1). Substituting for growthi in 

equation 4 results in: 𝑅𝑈1(𝑀𝐽𝑃𝐴𝑅 𝑦𝑒𝑎𝑟−1) 𝑏𝑖𝑜𝑚𝑎𝑠𝑠1(𝑘𝑔𝑤𝑜𝑜𝑑)⁄ × 𝑅𝑈𝐸1(𝑘𝑔𝑤𝑜𝑜𝑑 𝑀𝐽𝑃𝐴𝑅−1 ) = 𝑅𝑈2 𝑏𝑖𝑜𝑚𝑎𝑠𝑠2⁄ ×𝑅𝑈𝐸2 = ⋯ ⋯ ⋯ = 𝑅𝑈𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑛⁄ × 𝑅𝑈𝐸𝑛    [5] 

By definition, any change in this equality must derive from differences in the amount of 

resource captured per unit of biomass and time (symmetric or asymmetric competition concept) 

and (or) differences in the resource use efficiency for stem wood production among trees in the 

stand. 
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Depending on the shape of the relation between resource use and resource use efficiency 

with tree size, growth dominance patterns may be reverse, null or positive. Stands with reverse 

growth dominance have smaller trees growing proportionally more than larger trees because 

smaller trees capture either obtain resources beyond their proportional size (Table 1.2. a) or 

smaller trees capture size-proportional amounts of resources and use them more efficiently than 

larger trees (Table 1.2. e). Stands with null growth dominance have all trees either obtaining 

resources in proportion to their sizes and similar efficiency of use or have offsetting patterns of 

resource acquisition and efficiency of use (Table 1.2. b). In stands with positive growth 

dominance, larger trees grow disproportionally faster than smaller trees because they acquire a 

disproportionate amount of resources and use those resources equally efficiently (Table 1.2. c 

and Table 1.2. d) or more efficiently (Table 1.2. f). A positive growth dominance pattern also 

would be compatible with symmetric competition for resources and a higher resource use 

efficiency by larger trees (Table 1.2. f). 

Given the multiplicative nature of the definition of growth and the ratios between 

variables involved, other patterns may arise. For example, larger trees could capture a 

disproportionate amount of resources but using those resources with a lower efficiency and still 

show some degree of growth dominance. The same pattern of resource use and resource use 

efficiency could lead to null growth dominance if the higher resource use efficiency of smaller 

trees could offset the disproportionate amount of resources captures by larger trees. Dominating 

the use of resources is not enough to show growth dominance, the higher proportions of resource 

acquisition should translate into a proportional increase of stem growth. 

Do the various types of growth dominance patterns reflect consistently different 

processes, or does a given pattern often develop from various trends in resource use and 
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efficiency of resource use? If a given pattern of growth dominance always has a given 

production ecology distribution among tree sizes, then the growth dominance could indicate both 

pattern and process. However, if a given growth dominance pattern results from more than one 

pattern of resource use and resource use efficiency among tree sizes, or varies according to the 

relative effect of each other, then growth dominance alone cannot support simple inferences. 
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Table 1.2. Patterns in growth dominance, and hypothetical patterns in resource use and resource use efficiency. We suggest that 
growth dominance reflects different patterns in resource use and resource use efficiency with tree size. Part A of the table describes 
patterns where only resource use (RU, MJPAR tree-1 time-1) changes with tree size (stem mass, kg), whereas Part B of describes 
patterns where resource use and resource use efficiency (RUE, productivity/resource use = kgwood MJPAR

-1) change with tree size. 
When possible, each growth dominance pattern was linked to a size-growth relationship proposed by Pretzsch and Biber (2010) and to 
a type of competition proposed by Schwinning and Weiner (1998). GDC stands for growth dominance coefficient. We only 
differentiated between negative, null and positive growth dominance coefficients. Cum. prop. mass stands for Cumulative proportional 
mass, and Cum. prop. growth stands for cumulative proportional growth. 
 

 Part A. Only resource use varies with tree size. Resource use efficiency remains constant. 
 

Growth dominance Resource use Resource use efficiency 
Expected size-growth relationship and 

Resource competition 
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Size-growth relationship: partial size-
symmetric. Growth increases less than 
proportionally with tree size (Pretzsch and 
Biber 2010). 
Y-intercept of RU = f (stem mass) is 
positive, and competition is partial size-
symmetric (Schwinning and Weiner 1998). 
Resource use increases less than 
proportionally with tree size. 
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Size-growth relationship: perfect size-
symmetric. Growth increases proportionally 
with tree size (Pretzsch and Biber 2010). 
Y-intercept of RU = f (stem mass) equals 0, 
and competition is perfect size symmetric. 
Resource use increases proportionally with 
tree size (Schwinning and Weiner 1998). 
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Table 1.2. Continued. 
 

 Part A. Only resource use varies with tree size. Resource use efficiency remains constant. 

 Growth dominance Resource use Resource use efficiency 
Expected size-growth relationship and 

Resource competition 
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Size-growth relationship: size-asymmetric. 
Growth increases more than proportionally 
with tree size (Pretzsch and Biber 2010). 

Y-intercept of RU = f (stem mass) is 
negative, and competition is partial size 
asymmetric (Schwinning and Weiner 1998). 
Resource use increases more than 
proportionally with tree size. Larger trees 
account for a disproportionate share of 
resources. 
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Size-growth relationship: convex size-
asymmetric. Growth increases progressively 
with tree size (Pretzsch and Biber 2010). 

Y-intercept of RU = f (stem mass) is 0 or 
greater than 0 and the curve is convex. 
Competition is partial size asymmetric 
(Schwinning and Weiner 1998). Resource 
use increases more than proportionally with 
tree size at an increasing rate. 
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Table 1.2. Continued. 
 

 Part B. Both resource use and resource use efficiency vary with tree size 

 Growth dominance Resource use Resource use efficiency 
Expected size-growth relationship and 

Resource competition 
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Size-growth relationship: depending on the 
combination of RU and RUE many size-
growth relationships can be expected. For 
example: perfect symmetric, partial size-
symmetric and concave size-symmetric 
(Pretzsch and Biber 2010). In all cases 
growth increases with tree size, but less than 
proportionally. 
Y-intercept of RU = f (stem mass) is 0, 
negative or positive. Any combination of 
increasing resource use and decreasing 
resource use efficiency with stem mass, 
where the RUE effect offsets the RU effect, 
leads to a competition where smaller trees 
growth proportionally more than larger trees. 
There is not a definition for this situation in 
the literature, but we can use an analogy 
with the inverse asymmetric size growth 
relationship (Metsaranta and Lieffers 2010). 
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Table 1.2. Continued. 
 

 Part B. Both resource use and resource use efficiency vary with tree size 

 Growth dominance Resource use Resource use efficiency 
Expected size-growth relationship and 

Resource competition 
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Size-growth relationship: convex size-
asymmetric. Growth increases progressively 
with tree size (Pretzsch and Biber 2010). 
Any combination of increasing resource use 
and increasing resource use efficiency with 
stem mass leads to competition that is partial 
size asymmetric (Schwinning and Weiner 
1998). We exemplified this idea with an 
exponential x linear combination, but it 
could be also an exponential x exponential 
or linear x linear combination. 
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Ultimately, growth dominance expresses the partitioning of environmental resources and 

the efficiency with which these resources are used among individuals within a stand in relation to 

their size. The proposed relation between growth dominance patterns and production ecology 

(Table 1.2) should be empirically explored and can be evaluated with information about growth 

dominance at the plot scale combined with information about resource use and resource use 

efficiency at individual tree scale. To illustrate these ideas, we re-analyzed two plots with 

contrasting growth dominance patterns (Fig. 1.2). We compared a six-year-old Eucalyptus 

grandis (W. Hill ex Maiden) plot with a relative strong positive growth dominance (GDC = 

0.233) (Campoe et al. 2012, 2013b), and an eight-year-old Pinus taeda L. plot with a relative low 

reverse growth dominance (GDC = -0.027) (Campoe et al. 2013a). Absorbed photosynthetically 

active radiation at tree scale was estimated using the MAESTRA model (Campoe et al. 2012, 

2013b, 2013a), and growth dominance was estimated for this manuscript from growth inventory 

data following West (2014). The Eucalyptus plot displayed asymmetric competition for light 

(exponential increase in the use of light with tree size) and a linear increase in the light use 

efficiency for stem growth (Fig. 1.2) (Table 1.2. f). The loblolly pine plot showed a partial size-

symmetric competition in the use of light (light use increased with tree size, but less than 

proportionally), and a similar light use efficiency among trees (Fig. 1.2) (Table 1.2. a). Other 

plots might show different combinations of factors in the production ecology equation that could 

lead to other patterns of growth dominance. The application of this approach to a wide variety of 

forests will provide two valuable outcomes: a clearer characterization of how competition 

influences stand development, and how growth dominance patterns are explained by quantifiable 

resource use and efficiency of use patterns. The analysis of two plots showed that positive 

growth dominance was related to asymmetric competition for light and an increase in light use 
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efficiency with tree size. On the other hand, a relatively low negative growth dominance was 

related to a symmetric competition for light and a similar light use efficiency among trees. 
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Figure 1.2. Patterns in growth dominance and its relationship with patterns in resource use and 
resource use efficiency. Positive growth dominance in Eucalyptus grandis plot related to 
asymmetric competition for light (large trees used light more than proportionally to their size) 
and a higher light use efficiency by large trees. Reverse growth dominance in Pinus taeda plot 
related to size-symmetric competition for light (large trees used more light than small trees, but 
less than proportionally to their size), and a similar light use efficiency among trees. APAR: 
absorbed photosynthetically active radiation; GDC: growth dominance coefficient; LUE: light 
use efficiency; ns: slope of the regression is non-significant (p-value > 0.05), R2: multiple R-
squared. Growth dominance coefficient was estimated following West (2014). Regressions lines 
were fit with lm function in R (R Core Team 2018). The original values of APAR and light use 
efficiency correspond to a re-analysis of data in Campoe et al. (Campoe et al. 2012, 2013b, 
2013a). 
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CHAPTER 2: PRODUCTION ECOLOGY AND REVERSE GROWTH DOMINANCE IN AN 
OLD-GROWTH PONDEROSA PINE FOREST2 

 
 
 
Introduction 

The rate of tree growth can be described as a function of the amount of available 

resources captured by an individual tree and how efficiently the resources are converted into 

biomass (usually referred as the production ecology equation) (Monteith and Moss 1977, 

Binkley et al. 2010). Typically, large trees in a stand grow faster than small trees because large 

trees capture a greater amount of light and use the light more efficiently (see the special issue 

Light interception and growth of trees and stands in Forest Ecology and Management 2013). The 

amount of light captured by a tree depends in part on the competition with other neighboring 

trees. Competition can be symmetric, if all trees intercept light proportional to their size or 

asymmetric if a group of trees intercepts light more than proportional to their size (Schwinning 

and Weiner 1998). Competition for light has been described as strictly asymmetric (Weiner and 

Thomas 1986, Weiner 1990, Onoda et al. 2014). However, light interception has also been found 

to increase proportional or less than proportional with tree leaf area, indicating that symmetric 

competition for light is possible (Binkley et al. 2010, 2013, Campoe et al. 2013a, Gspaltl et al. 

2013). In this article, we explored the growth dominance-production ecology connection in an 

old-growth ponderosa pine stand. Specifically, we explored if negative growth dominance could 

be explained by symmetric competition for light and a declining light use efficiency with tree 

size. 

 
2 Fernández-Tschieder, E., Binkley, D., Bauerle, W., 2020. Production ecology and reverse growth dominance in an 
old-growth ponderosa pine forest. For. Ecol. Manage. 460, 117891. 
doi:https://doi.org/10.1016/j.foreco.2020.117891 
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The growth dominance concept merges the distribution of individual growth and the 

distribution of individual size as a function of population percentile in a single curve; the 

“Growth dominance curve” (Binkley 2004, Binkley et al. 2006). If all trees in a stand grow 

proportionally to their size, growth dominance is neutral. Growth dominance is negative (also 

called reverse growth dominance) when small trees grow more than proportionally to their size, 

and growth dominance is positive when large trees grow more than proportionally to their size. 

The patterns of growth dominance appear to differ among genera, though too few studies are 

available to provide robust generalizations. For example, eucalyptus species (Eucalyptus spp.) 

tend to show positive growth dominance even at advanced age and high stand biomass (Binkley 

et al. 2003, Doi et al. 2010), whereas pines (Pinus spp.) typically show slightly positive, null or 

negative growth dominance during stand development (Binkley et al. 2003, 2006, Martin and 

Jokela 2004, Fernández and Gyenge 2009, Bradford et al. 2010, Doi et al. 2010, Fernández 

Tschieder et al. 2012). 

Do differences in growth dominance patterns emerge from consistent, predictable 

interactions between resource use and resource use efficiency patterns at the individual-tree 

scale? Fernández-Tschieder and Binkley (2018) developed a theoretical framework relating 

patterns of growth dominance to particular trends in the production ecology of trees. Some 

evidence for this question can be found in eucalyptus and pine studies. Both large eucalyptus and 

pine trees intercept more light than small trees, but the differences in light use efficiency between 

large and small trees are larger in eucalyptus stands (Binkley et al. 2002, 2010, Campoe et al. 

2013b, 2013a). Moreover, in eucalyptus stands large trees capture proportionally more light than 

small trees, whereas the opposite may be true in pine stands (Binkley et al. 2013, Campoe et al. 

2013a, 2013b). More evidence for the connection between growth dominance and production 
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ecology came from two pine species studies that used growth efficiency (growth/leaf area or leaf 

biomass) as a proxy for light use efficiency. Fernandez-Tschieder et al. (2012) found that on 

average large loblolly pine (Pinus taeda) trees had 1.4-fold greater growth efficiency than small 

trees, and that differences in growth efficiency were positively correlated with growth 

dominance. A similar correlation was found in lodgepole pine stands (Pinus contorta) with 

growth dominance ranging from strongly negative to slightly positive (from -0.5 to 0.1) (Binkley 

and Kashian 2015). In these stands, small trees had greater growth efficiency than large trees for 

growth dominance values lower than -0.1 (Binkley and Kashian 2015). 

We examined the production ecology of growth dominance in an old-growth stand of 

ponderosa pine (Pinus ponderosa) in Colorado. This stand had strong negative (reverse) growth 

dominanace (Binkley et al. 2006), implying that small trees are growing proportionally more 

than large trees. Negative growth dominance may result from the following combinations 

between light interception and light use efficiency as a function of tree size (from Fernández-

Tschieder and Binkley 2018) 

• light interception by individual trees increases proportionally with tree size but 

light use efficiency decreases with tree size, 

• light interception by individual trees increases more than proportionally with tree 

size but light use efficiency decreases with tree size counterbalancing the effect of light 

competition, 

• light interception by individual trees increases but less than proportional to tree 

size and light use efficiency decreases with tree size (or remains constant), 

• light interception by individual trees increases but less than proportional to tree 

size and light use efficiency does not change with tree size. 
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In this paper, we combined the analysis of growth dominance and production ecology to 

evaluate which combination between light competition and light use efficiency was responsible 

for the observed negative growth dominance in the old-growth ponderosa pine stand. This 

ponderosa pine stand represents the statistical population of inference in our study. However, this 

analysis has broader interest beyond this single site because results could be extrapolated to other 

stands under reverse growth dominance based on the production ecology mechanisms behind 

reverse growth dominance. 

 

Methods 

Site description and data preparation 

We used an existing data set from a 9.3 ha plot of monospecific old-growth ponderosa 

pine established by the USDA Forest Service in 1974 (Fig. 2.1). The plot is located in the 

Manitou Experimental Forest close to Colorado Spring, Colorado, USA. All trees in the plot 

taller than 1.4 m were tagged and mapped using an x-y-coordinate system. Diameters of all trees 

were measured (dbh, diameter at 1.4-m height) in 1974, 1983, 1991, 2001 and 2010. A sample of 

trees in the plot was measured for total height during 1974, 1991, 2001 (n = 3423), for height to 

the base of crown during 1974 and 1991 (n = 1061), and for right-angled crown radius during 

2011 (n = 99). A sample of trees (n = 27) located close to the plot were destructively sampled for 

needle biomass during September and October 2016. All samples, except the needle biomass 

sample, included trees representing the size range of trees in the plot. Trees in the needle biomass 

sample ranged between 16.7 and 60.8 cm in dbh. 
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Figure 2.1. The old-growth ponderosa pine stand in the Manitou Experimental Forest was 
dominated by a cohort of large trees (>150 years old) with patchy smaller cohorts. Tree density 
was approximately 400 trees per hectare in 2010. Minor selective harvesting occurred in the late 
1880s. See Boyden et al. (2005) for a further description of the stand structure. 

 

A complete description of the plot’s structure and characteristics can be found in Boyden 

et al. (2005) and Boyden and Binkley (2016). Briefly, the plot has an uneven-aged structure with 

major cohorts of trees dating to periods around 1780, 1880, and 1960, with a few trees remaining 

from the early 1600s. About 30 trees ha-1 (15% of the estimated stand density at the time) were 

removed during the last selective logging of large tree between 1880 and 1886. Plot density 

increased from 270 trees ha-1 (basal area ≈ 19 m2 ha-1) in 1974 to 420 trees ha-1 in 2001 (basal 

area ≈ 21 m2 ha-1). Density of small trees (< 6 cm dbh) increased from 20 trees ha-1 in 1974 to 

150 trees ha-1 in 2001. Overall, trees in the plot were clustered, except for large trees (dbh > 40 

cm) that were regularly dispersed. Mortality in the stand was less than 1% per year (Boyden et 

al. 2005). 

For the purpose of this study, we analyzed the period between years 2001 and 2010. 

Because the equation used to estimate needle biomass included only trees larger than 16 cm in 

dbh, trees smaller than 10 cm in dbh were omitted from the analysis. This included a group of 

401 trees from the subplot (see below) mostly regenerated after year 2001with 75% of trees 
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smaller than 4.1 cm in dbh, that represented 0.2% and 5% of the subplot biomass and growth, 

respectively. We considered the uncertainty of estimating needle biomass in this group of trees, 

where error in the estimation could have large effects. We assumed that the crown structure of a 

tree 10 cm in dbh is similar to the structure of a tree 16 cm in dbh. We evaluated if trends in 

growth dominance and production ecology (see section 2.3) would substantially change by the 

presence/absence of trees smaller than 10 cm in dbh. We found no considerable change in the 

patterns (data not shown). 

Any tree present at time t that did not survive to time t+1 (mortality) or any tree present 

at time t+1 that was not present at time t (recruitment) was omitted from the analysis. We 

checked for missing values, extremely large growth values and negative growth values in dbh. 

When possible, errors were corrected by interpolation between time t and time t+2 to obtain time 

t+1 dbh. When it was not possible to interpolate, trees were deleted from the data set. We 

assigned a stem biomass growth value equal to 0.001 kg period-1 to growth values of zero to 

avoid model fitting problems. 

Because the number of trees in the plot exceeded the maximum number of plot trees the 

MAESTRA model (Wang and Jarvis 1990, Medlyn 2004. See section Light interception and 

light use efficiency for a description of the MAESTRA model) can accommodate, we used a 

subplot of the 9.3 ha-original plot for our analysis (Fig. 2.2). The MAESTRA model simulates 

the light absorption by individual trees. A 2.6 ha subplot in the middle of the plot contained 28% 

the total tree count (1044 out of 3767 live trees). For the simulations we included a 15 m border 

surrounding the 2.6 ha subplot. Trees included in the border were used only as neighboring trees 

during the MAESTRA simulation (Fig. 2.2). 

 



33 

 

 Plot Subplot 

Area (ha) 9.3 2.6 

Density (trees 
ha-1) 

405 402 

dbh (cm) 
21.7 (1.0 – 
68.6) 

21.8 (1.3-
65) 

height (m) 
11.7 (1.9 – 
22.1) 

11.9 (2.0-
22.0) 

Basal area (m2 
ha-1) 

23.0 23.1 

Stem biomass 
(Mg ha-1) 

97.3 97.5 

Growth (Mg ha-

1 year-1) 
0.7 0.6 

Leaf area index 
(m2 m-2) 

1.8 1.8 

Figure 2.2. Spatial distribution of trees during year 2010 across a 9.3 ha old-growth ponderosa 
pine plot located at the Manitou Experimental Forest. For our analysis we selected a 2.6 ha 
subplot surrounded by a 15-meter border (delimited by dashed line) that had a similar structure 
to the main plot. Trees (denoted by open black circles) inside the subplot limit were used for the 
analysis. Values within parenthesis are the minimum and maximum. 

 

Variables estimation 

We estimated three principal variables: stand growth dominance, absorbed 

photosynthetically active radiation, and individual tree light use efficiency. For general 

comparisons, we classified trees based on their biomass distribution rather than their crown 

position in the canopy. Suppressed trees were defined as the lower 40% tile of the stem biomass 

distribution, intermediate trees were defined as trees between the 40% tile and the 80% tile of the 

stem biomass distribution, and dominant trees were defined as the upper 20% tile of the stem 

biomass distribution. The subplot contained 48 dominant trees, 146 intermediate trees and 449 

suppressed trees (after removing trees smaller than 10 cm in dbh). Average diameter was 52 cm 

(range: 47-64 cm), 41 cm (range: 37-47 cm) and 25 cm (range: 10-37 cm) for dominant, 

intermediate and suppressed trees, respectively. Average height was 22 m (range: 21-22 m), 20 
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m (range: 20-21 m) and 15 m (range: 6-20 m) for dominant, intermediate and suppressed trees, 

respectively. A positive relationship between tree size and age was found for this stand (Boyden 

et al. 2005). 

Stem biomass and growth 

Stem biomass (without bark) was estimated using a volume equation developed from 

trees along the Colorado Front Range (Edminster et al. 1980) and wood density: 

stem biomass (kg dry mass) = (0.0000325 × dbh2 × height) × wd, 

where dbh is diameter in cm at 1.4 meters, height is tree height in meters, and wd is wood density 

(537 kg/m3; Hall et al., unpublished data cf. Boyden and Binkley (2016)). Stem growth (kg tree-1 

year-1) was calculated as the difference between stem biomass at time t+1 (2010) and time t 

(2001) divided by the numbers of years between t and t+1. 

Height of trees was estimated using a Gompertz model fit with the height - dbh data pairs 

from this stand: 

height (m) = 1.4 + 20.8372 *exp (-3.9936 *exp (-0.0934 *dbh (cm))) [1] (R2= 0.96; s = 1.5 m, n= 

3423, where s is the residual standard deviation). 

Growth dominance 

Growth dominance coefficient (GD) was estimated following West (2014) as GD = 1 - 

∑i=1....n (x[i]-x[i-1])*(z[i]+z[i-1]) where x is the cumulative proportional size and z is the 

cumulative proportional growth. Individual stem biomass was used as the “size” variable and 

stem biomass growth as the “growth” variable. A coefficient smaller than zero indicates a 

negative growth dominance, a coefficient equal to zero indicates null growth dominance, and a 

coefficient bigger than zero indicates positive growth dominance. 
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Light interception and light use efficiency 

Absorbed photosynthetically active radiation (APAR) by individual trees during a whole 

year (GJ[APAR] tree-1 year-1), was simulated using the MAESPA model (Duursma and Medlyn 

2012) set in the MAESTRA mode which runs the original MAESTRA code (Wang and Jarvis 

1990, Medlyn 2004). MAESPA is a model of an array of trees in a stand that uses radiative 

transfer calculations and leaf physiology to calculate radiation absorption, photosynthesis and 

transpiration of individual trees (Duursma and Medlyn 2012). In MAESTRA, light absorption by 

individual trees is modeled based on the x-y co-coordinates of each tree, shape of the crown, 

length and radii of the crown in x and y directions, height to the crown base, and leaf area and 

distribution within each crown. Factors considered within the model include shading within the 

crown as well as shading by neighboring tree, the location of the sun, and both direct and diffuse 

radiation (Wang and Jarvis 1990, Duursma and Medlyn 2012). 

Light use efficiency for each tree (LUE; kg[wood] GJ[APAR]-1) was calculated as the 

ratio of mean annual stem biomass growth between 2001-2010 to APAR during a complete year. 

Absorbed photosynthetically active radiation by individual trees and light use efficiency of trees 

were used as independent in the analysis of production ecology (Table 2.1). 

Maestra parametrization 

MAESTRA simulations were run hourly for a complete year using air temperature (oC), 

percent relative humidity (%), photosynthetically active radiation (PAR, μmol m-2 s-1) and wind 

speed (m s-1). Annual meteorological data was obtained as the average values from years 2001 to 

2010 (except year 2004 since this year had incomplete data) to represent the mean climatic 

conditions during the growth period. Meteorological data was obtained from Manitou 

Experimental Forest meteorology data (Asherin 2016). 
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Parameterization of the model was performed by estimation of tree attributes using 

regression models and parameters obtained from the literature. All parameters related to 

photosynthesis and transpiration of individual trees and tree dimensions remained constant 

during simulations. 

Radii of crown in the x- and y-direction was estimated using an exponential model: 

crown radius (m) = 0.5976*exp (0.0298*dbh (cm)) [2] (R2 = 0.76, s = 0.5 m, n = 99). 

Height to crown base was estimated with an S-shape model: 

height to crown base (m) = 8.0273/(1+16.8877*exp(-0.1598*dbh(cm)) [3] (R2 = 0.74, s =1.8 m, 

n = 1061). 

Individual leaf area was estimated by multiplying needle mass by specific leaf area. We 

used a specific leaf area value of 2.58 (m2 kg-1) (Marshall and Monserud 2003) and needle mass 

was estimated using a power model: 

needle mass (kg) = 0.1269*dbh(cm)1.5238 [4] (R2= 0.70; s = 9.7 kg, n = 27). 

Light interception validation 

We compared the average light interception from the MAESTRA simulation for all trees 

with plot-scale measurements of light interception measured in the field. The MAESTRA 

average light interception was estimated as the ratio of total absorbed PAR by trees (GJ day-1) 

and total incoming PAR in the plot (GJ day-1) on June 21 using the average values between years 

2001 and 2010. Field measurements of PAR were taken with a ceptometer at 15 m x 15 m grid 

points across the 9.3-ha plot in June 2012. For this study we used 159 points inside the 2.6-ha 

subplot. At each point, ceptometer readings were averaged from samples taken in each of 4 

cardinal directions, so light interception estimates represented a footprint of about 6-8 m2. We 



37 

compared the MAESTRA average light interception with the bootstrap 95% confidence interval 

of field light interception. 

Production ecology analysis 

The continuum between symmetric and asymmetric competition can be described by a set 

of simple models (Weiner and Damgaard 2006, Pretzsch and Biber 2010, Fernández-Tschieder 

and Binkley 2018). Symmetric competition is related to a proportional or less than proportional 

increase in growth rate or light interception with tree size, while asymmetric competition 

involves a more than proportional increase in growth or light interception with tree size. A 

proportional increase in the y variable can be described with a linear model with intercept zero, 

while an increase in the y variable at a decreasing rate can be described by a linear model with 

positive intercept or a non-linear model with concave shape. On the other hand, an increase in 

the y variable at an increasing rate can be described by a linear model with negative intercept or a 

non-linear model with convex shape (Table 2.1). To assess the mode of competition we fit a 

simple linear model with and without intercept, power and exponential functions to growth vs. 

tree size data, light interception vs. tree size data and light use efficiency vs. tree size data (where 

stem biomass was used as the measure of tree size) (Table 2.1). To facilitate comparisons with 

other stands all models were also fit with tree rank as the x-variable; where tree rank represents 

the ith-position of the ith-tree with respect to the total number of trees sorted by size from smallest 

to largest in the plot. For example, a tree with a tree rank of 0.2 in the subplot represents a tree 

that occupies the position 129 in the rank of trees sorted from smallest to largest. 

Regressions were fit using the lm and nls function in R for linear and non-linear models, 

respectively (R Core Team 2018) and compared using the Akaike’s information criterion (AIC). 

To obtain the maximum likelihood estimation of the variance (σ2) AIC was corrected by n-
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(p+1))/n, where n is the sample size and p is the number of parameters in the model (Burnham 

and Anderson 1998). 

 

Table 2.1. Models representing the continuum between symmetric and asymmetric competition. 
These models were used to fit regressions between tree growth vs. tree size, tree light 
interception vs. tree size and tree light use efficiency vs. tree size. In the first two cases the 
models were associated to a specific mode of competition, in the last case the models only 
describe the light use efficiency pattern with tree size. Light interception by trees were the output 
of the MAESTRA simulation. 
 

Model Type Mathematical expression Mode of Competition represented by the Model* and 
light use efficiency pattern 

Linear model y = a + b x (a < 0) Size-asymmetric competition 
Decreasing light use efficiency pattern 

y = a + b x (a = 0) Perfect size-symmetric competition 
Increasing light use efficiency pattern 

y = a + b x (a > 0) Partial size-symmetric competition 
Increasing light use efficiency pattern 

Power model y = a xb (0 < b < 1) 
(concave shape) 

Partial size-symmetric competition 
Increasing light use efficiency pattern 

y = a xb (b > 1) (convex 
shape) 

Size-asymmetric competition 
Increasing light use efficiency pattern 

y = a xb (b < 1) Decreasing light use efficiency pattern 

Exponential 
model 

y = a ebx (b > 0) Size-asymmetric competition 
Exponential increasing light use efficiency pattern 

y = a ebx (b < 0) Exponential decreasing light use efficiency pattern 

*Perfect size-symmetric competition: capture of contested resources or growth is proportional to 
size, partial size-symmetric competition: capture of contested resources or growth increases with 
size but less than proportionally, size-asymmetric competition: capture of contested resources or 
growth increases more than proportional with size (large individuals obtain a disproportionate 
share of resources). 

 

Results 

MAESTRA evaluation 

MAESTRA estimated an average light interception of 45% for all trees, matching the 

45% stand-level value estimated from the ceptometer measurements (sd = 33%, n = 159, with a 

95% bootstrap confidence interval between 40 – 50%). Since ceptometer measurements included 
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light interception by leaves and branches, whereas MAESTRA does not, an underestimation of 

light interception by MAESTRA would have been expected but was not observed. 

Growth dominance pattern 

Growth dominance was negative during the period 2001-2010 in the old growth 

ponderosa pine plot, with a growth dominance coefficient of -0.22. Suppressed trees (lower 40% 

tile of the stem biomass distribution) accounted for 56% of stand growth, whereas dominant trees 

(upper 20% tile of the stem biomass distribution) contributed only 13% of stand growth (Fig. 

2.3). Suppressed trees represented 70% of the tree population in the subplot, while dominant 

trees only 7%. Intermediate trees (trees comprised between the lower 40% tile and the upper 

20% tile of the stem biomass distribution) accounted for 31% of stand growth and represented 

23% of the tree population. 

Tree growth pattern 

Mean growth of all trees was 2.4 kg year-1 tree-1 (range = 0.0 - 23.1 kg year-1 tree-1) and 

tree productivity increased with tree size but at a decreasing rate (Fig. 2.4). On average, 

dominant trees were 5 times larger than suppressed trees (1024 vs. 211 kg tree-1) but grew only at 

about twice the rate of suppressed trees (4.3 kg year-1 tree-1 vs. 1.9 kg year-1 tree-1) (Table 2.2). 

The growth-size relationship was best described by the power model with concave shape 

(parameter b confidence interval95%: 0.373 - 0.552), explaining about 20% of the variation in 

growth with tree size. The AIC difference (∆i) with the linear zero intercept (a = 0) model was 85 

units as compared to 17 with the exponential model (Table 2.3). The pattern of tree growth in 

relation to tree rank was best described by a linear positive intercept model (Table 2.3). The 

median dominant tree (974 kg) in the subplot, that represented approximately a 96th percentile 
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tree, grew 3.5 times more than the median suppress tree (187 kg), that represented approximately 

a 35th percentile tree (Fig. 2.4). 

 

 
Figure 2.3. Negative growth dominance in an old-growth ponderosa pine stand. Negative growth 
dominance shows that smaller trees represent a larger proportion of stand growth than stand 
biomass. The largest trees comprised in the upper 20%-tile of stem mass distribution accounted 
for about 13% of stand growth while the smallest trees comprised in the lower 20%-tile of stem 
mass distribution contributed 35% of stand growth. This larger proportional growth in small trees 
corresponded with size-growth relationships where growth increased with tree size but less than 
of equal proportion (see Fig. 2.4.A and Table 2.2). 
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Table 2.2. Production ecology parameters for dominant, intermediate and suppressed trees in an 
old-growth ponderosa pine stand. Dominant trees were almost 5 times larger than suppressed 
trees and captured nearly 4 times more light but grew only slightly more than 2 times faster than 
suppressed trees (a result of a declining light use efficiency with tree size). 
 

Tree classa 
Average 
size (kg 
tree-1) 

Average 
growth 
(kg year -
1 tree-1) 

Average light 
interception 
(GJ year-1 
tree-1) 

Average 
Light use 
efficiency 
(kg[wood] 
GJ[PAR]-1) 

Dominant 
1024    
(817-1548) 

4.3       
(0-9.2) 

90.4       
(62.5-132.9) 

0.05            
(0-0.11) 

Intermediate 
604      
(473-807) 

3.3       
(0-23.1) 

53.4       
(20.4-82.1) 

0.06            
(0-0.36) 

Suppressed 
211         
(11-473) 

1.9       
(0-12.4) 

20.9         
(1.5-56.3) 

0.11            
(0-0.78) 

Dominant 
vs. 
suppressed 

4.8 2.3 4.3 0.5 

a suppressed trees: trees comprised in the lower 40% tile of the stem biomass distribution (n = 
449), intermediate trees: trees comprised between the 40% tile and the 80% tile of the stem 
biomass distribution (n = 146), dominant trees: trees comprised in the upper 20% tile of the stem 
biomass distribution (n = 48). In parenthesis are the minimum and maximum values for each 
variable. 

 

Light interception by individual trees 

Mean light interception across all trees was 33.4 GJ year-1 tree-1 (range = 1.5 – 132.9 GJ 

year-1 tree-1). Similar to tree productivity, the amount of light intercepted by trees increased with 

tree size but less than proportionally (Fig. 2.4). On average, dominant trees captured more than 4 

times as much light as suppressed trees (90.4 vs. 20.9 GJ year-1 tree-1) but they were 5 times 

larger than suppressed trees (Table 2.2). The relationship between light interception and tree size 

was best described by a linear model with a positive intercept. The linear model explained almost 

95% of the variation present in light interception by trees and had a ∆i of 49 units with the linear 

model with a zero intercept (a = 0) and 686 with the exponential model (Table 2.3). The pattern 

of light interception with tree rank was best characterized by a positive exponential function 

(Table 2.3). The median dominant tree in the subplot, approximately a 96th percentile tree, 
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intercepted 2.9 times more than the median suppress tree, approximately a 35th percentile tree 

(Fig. 2.4). 

Light use efficiency of trees 

Light use efficiency for stem wood production averaged 0.09 kg[wood] GJ[PAR]-1 across 

all trees (range = 0 – 0.78 kg[wood] GJ[PAR]-1), decreasing with tree size (Fig. 2.4). Light use 

efficiency of dominant trees was half the efficiency of suppressed trees (0.05 vs. 0.11 kg[wood] 

GJ[PAR]-1) (Table 2.2). The light use efficiency pattern with tree size was best described by a 

negative exponential model (Table 2.3). The exponential model explained about 10% of the 

variation in light use efficiency and the AIC difference with the power model and linear model 

were 5 and 10 units, respectively (Table 2.3). Because of the relatively low variation explained 

by the tested models, we explored other models such as logarithmic, hyperbolic, rational and 

generalized additive models. All of the models confirmed the same declining pattern in light use 

efficiency and the exponential model resulted in the best AIC value (the maximum ∆i was 1.9; 

data not shown). The pattern of light use efficiency with tree rank was described equally well by 

a negative exponential model or a negative linear model (Table 2.3). 
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Figure 2.4. Growth pattern as a function of tree size (A) or tree rank (B) can be combined with 
light interception (C, D) and light use efficiency patterns (E, F) to explain growth dynamics. 
Growth increased with tree size but less than proportional as the result of a less than proportional 
light interception increase with tree size and a declining light use efficiency pattern. The less 
than proportional increase in growth with tree size results in a negative growth dominance in the 
stand (see Fig. 2.3). Dashed lines correspond to the best fit model representing each relationship 
(see Table 2.3). Light interception points are the output from MAESTRA simulations. Light use 
efficiency was estimated as growth/light interception. 
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Table 2.3. Regressions between tree growth vs. tree size, tree light interception vs. tree size, and 
tree light use efficiency vs. tree size. Tree growth and tree light interception increased with tree 
size but less than proportional. In contrast, light use efficiency decreased with tree size. Patterns 
where the y-variable increased with the x-variable but less than proportional, were best described 
by concave models and linear models with a positive intercept. Patterns where the y-variable 
decreased with the x-variable are best described by a negative linear or negative exponential 
model. Unless noted otherwise, model parameters were significant (p-value < 0.001). Number of 
observations n = 643. 
 

 Models for tree size (kg) Models for tree rank (percentile) 

Model 
Param 

AIC R2 
Param 

AIC R2 
a b a b 

Growth (kg year-1 tree-1) 

Linear (a = 0) ----- 0.0054 2798 0.07 ----- ----- ----- ----- 

Linear 1.194 0.0033 2717 0.18 0.761 3.2690 2717 0.18 

Power 0.176 0.4586 2713 0.19 3.853 0.6232 2721 0.18 

Exponential 1.586 0.0011 2730 0.17 1.141 1.3416 2720 0.18 
Light interception (GJ[APAR] tree-1 year-1) 

Linear (a = 0) ----- 0.0897 4162 0.94 ----- ----- ----- ----- 

Linear 2.768 0.0850 4113 0.94 -5.617 77.993 4829 0.83 

Power 0.130 0.9429 4142 0.94 82.561 1.5710 4649 0.87 

Exponential 17.65 0.0016 4799 0.84 7.062 2.5771 4450 0.90 
Light use efficiency (kg[wood] GJ[APAR]-1) 

Linear 0.126 -0.0001 -1384 0.10 0.142 -0.0100 -1393 0.11 

Power 0.338 -0.2450 -1389 0.11 0.074 -0.1959 -1369 0.08 

Exponential 0.140 -0.0014 -1394 0.11 0.151 -1.0907 -1393 0.11 

R2 is the coefficient of determination estimated as R2 = (sst - sse)/sst where sst is the total sum of 
squares and sse is the error sum of squares. 

 

Discussion 

Previous studies in ponderosa pine stands suggest that growth dominance ranges from 

negative to zero (Biondi 1996, Fernández and Gyenge 2009, Ex and Smith 2013, McGown et al. 

2016). The old-growth ponderosa pine stand analyzed here showed a strong negative growth 

dominance (growth dominance coefficient: -0.22), similar to the -0.25 growth dominance 

coefficient estimated for the stand during the previous decade (Binkley et al. 2006). Growth 

dominance of a stand expresses patterns of tree growth as a function of tree size (the so called 

size-growth relationship) (Pothier 2017, Fernández-Tschieder and Binkley 2018) and these 
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patterns are defined by competitive interactions among individual trees (Weiner and Damgaard 

2006, Pretzsch and Biber 2010). Consequently, the interaction between resource competition and 

size-related differences in resource use efficiency across trees account for differences in the 

degree of growth dominance (Fernández-Tschieder and Binkley 2018).  

Growth of ponderosa pine trees increased monotonically with trees size, but in 

accordance with negative growth dominance, the difference in growth between larger and 

smaller trees was less than the difference in tree sizes (Fig. 2.4. A and Table 2.2). This growth 

pattern, defined as partial size-symmetric competition (Pretzsch and Biber 2010), was described 

by a concave power function with a b parameter between 0 and 1 (Table 2.1 and Table 2.3). A 

similar concave size-growth relationship was found in the same stand during the previous decade 

(Boyden and Binkley 2016). The increase in growth with tree size has been well documented 

(Stephenson et al. 2014), however the specific shape of the size-growth relationship can vary 

among species, age, management and environmental conditions (Metsaranta and Lieffers 2010, 

Pretzsch and Dieler 2011, Castagneri et al. 2012, Trouvé et al. 2014, Dye et al. 2019). A few 

studies suggest that species with negative growth dominance showed either concave size-growth 

relationships or positive intercepts in linear size-growth relationships (Binkley et al. 2006, 

Binkley and Kashian 2015, Macinnis-Ng et al. 2017, Pothier 2017). On the contrary, species 

with positive growth dominance showed convex size-growth curves or negative intercepts in 

linear size-growth relationships (Campoe et al. 2013b, Pothier 2017). However, the degree of 

growth dominance not only depends on the size-growth relationships but also on the size 

distribution of the stand (Forrester 2019). 

In this old-growth ponderosa pine stand, negative growth dominance was supported by an 

increasing light interception with tree size, but it was less than proportional (Fig. 2.4. C and 
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Table 2.2). This pattern, defined as partial size-symmetric competition (Schwinning and Weiner 

1998), was described by a linear model with positive intercept (Table 2.1 and Table 2.3). Similar 

to our findings, Forrester (2019) found a strong positive correlation between growth dominance 

and the partitioning of light (i.e. the mode of competition) in some species (Picea abies, Fagus 

sylvatica, Abies alba, Larix decidua and L. kaempferi) in central Europe and one eucalyptus 

species in Australia. This implies that growth dominance changes from negative to positive as 

competition moves from partial size-symmetric to asymmetric competition. However, other 

species either lacked (Pinus sylvestris) or showed a weak correlation (Pseudotsuga menziesii) 

(Forrester 2019) suggesting that the effect of light competition on the degree of growth 

dominance might be species-specific. Other studies analyzed the relationship between light 

interception and trees size. For example, large loblolly pine trees captured proportionally less 

light than small trees (a concave model to describe this pattern using tree rank as the independent 

variable) (Campoe et al. 2013a) suggesting negative or low growth dominance. Contrary, large 

eucalyptus and Norway spruce (Picea abies) trees captured a disproportionate amount of light 

relative to their wood biomass or leaf area (size asymmetric competition) suggesting positive 

growth dominance (Binkley et al. 2010, Campoe et al. 2013b, Gspaltl et al. 2013). Different from 

the relationship between light interception and tree size, tree light interception across tree rank 

was supported by a positive exponential model (Table 2.3), showing that light interception 

increased more than proportionally with tree rank (see below). 

Our results agree with a positive correlation between growth dominance and size-related 

differences in resource use efficiency. Light use efficiency followed the expected declining 

pattern with tree size for stands with negative growth dominance (Table 2.2 and Fig. 2.4. E). The 

same was true when light use efficiency was analyzed as a function of tree rank (Fig. 2.4. F). 
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Similar to our results, most lodgepole pine stands with negative growth dominance were 

associated with greater growth efficiency of small trees relative to large trees (Binkley and 

Kashian 2015) and growth dominance increased in loblolly pine stands under positive growth 

dominance as large trees became more efficient relative to small trees (Fernández Tschieder et 

al. 2012). Forrester (2019) also found a positive correlation between size-related differences in 

the resource use efficiency between trees and the degree of growth dominance. However, some 

species showed no trend between the variables. The light use efficiency pattern in ponderosa 

pine contrasts with most studies carried out with MAESTRA, where light use efficiency 

increased with tree size (Binkley et al. 2010, Campoe et al. 2013a, 2013b, Gspaltl et al. 2013, le 

Maire et al. 2013) or was relatively similar among trees (Forrester et al. 2013, le Maire et al. 

2013). The exception being juvenile white spruce (Picea glauca) trees where light use efficiency 

showed a slight decline with tree size (Nelson et al. 2016). However, it is not possible to evaluate 

the correlation between size-related differences in resource use efficiency and growth dominance 

in these studies. 

Contrary to our results, Ex and Smith (2013) found that large trees had about 20% greater 

growth efficiency (growth/leaf area) than small trees in a stand undergoing negative growth 

dominance. The growth efficiency approach does not consider shading by neighbors or self-

shading. Shading by neighbors can be important when considering light competition (Gspaltl et 

al. 2013) and have a larger impact on small trees (Binkley et al. 2013). As with light use 

efficiency dominant trees had lower growth efficiency than suppressed trees, but relative 

differences based on growth efficiency were smaller than differences based on light use 

efficiency. On average light use efficiency was 1.5 greater than growth efficiency on dominant 

trees, and 2.8 times on suppressed trees. Differences in stand structure and spatial distribution of 
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trees might be part of the reason explaining the different patterns between these two ponderosa 

stands. Neither study considered the spatial distribution of the trees in the stand, but leaf area 

index and stand density index were lower in our stand, indicating a lower competition for light 

between trees and potentially less shading in small trees. 

The trend of light interception depended on the explanatory variable: tree size or tree 

rank. In both cases light interception increased, but when tree size was used as the explanatory 

variable light interception increased less than proportionally. In contrast, when tree rank was 

used as the explanatory variable light interception increased more than proportionally. This 

difference can be explained by the highly hierarchical size structure of the stand (Gini coefficient 

= 0.43, coefficient of variation = 0.78). High hierarchy in the size structure implies that a large 

number of trees that are relatively similar size account for a small proportion of biomass and a 

small number of large trees account for a large proportion of the biomass. When plotted as a 

percentile in the x-axis, trees are “spread” across the axis as compared to when trees are plotted 

with size as the x-axis. The spread of the trees in the x-axis implies relatively small changes in 

light interception among the lower percentiles because changes in tree size are also relatively 

small. On the contrary, in the upper percentiles changes in light interception are relatively large 

because changes in tree size are large. For example, an 80th percentile tree is 1.5 times larger 

than a 60th tree, but the largest tree in the plot is almost three times larger than an 80th percentile 

tree. 

Because of the unidirectional nature of light, competition for light has been defined as 

asymmetric (Weiner 1990, Onoda et al. 2014). However, the results in this and other studies 

show symmetric competition. Differences in mode of competition for light among studies can be 

explained by tree allometry (especially the relationship between leaf area and stem biomass), tree 
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plasticity (either morphological and/or physiological) and the spatial patterns of competitors 

(Schwinning and Weiner 1998, Berntson and Wayne 2000). The symmetry or asymmetry notion 

of competition is conditioned to a “measure of size”, on what Schwinning and Weiner (1998) 

called the “allometry of resource uptake”. Depending on which “measure of size” is used, the 

interpretation of the results can change. For example, Onoda et al. (2014) found a consistent 

pattern using leaf area and aboveground biomass as measures of size, but Berntson and Wayne 

(2000) observed that light competition was size asymmetric in relation to leaf area and size 

symmetric in relation to total plant biomass. 

The mechanisms driving the observed decline in light use efficiency with tree size remain 

elusive. Light use efficiency for stem wood production is the result of the combination of the 

amount of carbon fixed (gross primary production) per unit of light captured and carbon 

partitioning. Hydraulic conductance was suggested to limit photosynthesis in large (old) 

ponderosa pine trees (Ryan and Yoder 1997, Hubbard et al. 1999). Hubbard et al. (1999) found 

that assimilation (μmol[CO2] m-2[Leaf area] s-1) was 21% lower for older large ponderosa pine 

trees as compared to young short trees, despite similar photosynthetic capacity between tree 

classes. Belowground partitioning remains challenging at the individual tree level. Nevertheless, 

if this mechanism was involved in the explanation of the declining light use efficiency as a 

function of tree size, dominant trees should be partitioning a larger amount of carbon to sinks 

other than stem growth. In this sense, Vanninen and Mäkelä (2005) using a semi-empirical 

method found that dominant Scots pine trees (Pinus silvestris) allocated less carbon to stem 

growth. 

In this study we focused on light and light use efficiency as major drivers of tree growth 

and patterns of growth dominance. However, water and nutrients are also likely to influence the 
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pattern of tree growth and therefore growth dominance. Tree growth of ponderosa pine was 

strongly influenced by nitrogen supply on this same stand (Boyden and Binkley 2016) and by 

nitrogen efficiency in plantations of ponderosa pine (Gyenge and Fernández 2014). Considering 

the variation between locations and treatments, a multiple resource use approach (Han et al. 

2016) might prove useful in untangling the interactions among the supply of resources and the 

use efficiency of those resources. 

 

Conclusions 

We combined the pattern-focused approach of growth dominance with the process-

focused approach of production ecology in an old-growth ponderosa pine stand undergoing a 

relatively strong negative growth dominance to test the link between growth dominance and 

production ecology. Light interception of individual trees increased with tree size but less than 

proportional and light use efficiency declined as a function of tree size. These patterns matched 

the expected trends in the production ecology for negative growth dominance (Fernández-

Tschieder and Binkley 2018) and add evidence to the correlation between growth dominance and 

production ecology obtained in lodgepole pine (Binkley and Kashian 2015) and conifer and 

broadleaves in central Europe (Forrester 2019). However, these studies represent too few 

assessments to establish a strong connection between production ecology and growth dominance 

patterns. 
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CHAPTER 3: CONNECTING PRODUCTION ECOLOGY AND GROWTH DOMINANCE 
ACROSS FOREST TYPES 

 
 
 
Introduction 

Growth of a stand is the summation of individual tree growth. Within a stand, growth is 

distributed non-uniformly among trees. Growth dominance quantifies how growth is apportioned 

between trees in relation to size within a stand (Binkley 2004, Binkley et al. 2006). The 

distribution of growth across tree sizes varies with species, age, management, the competitive 

environment and climate (Binkley et al. 2006, Metsaranta and Lieffers 2010, Bradford et al. 

2010, Fernández et al. 2011, Trouvé et al. 2014, Soares et al. 2017, 2020). Based on the 

production ecology of trees, growth distribution across trees would result from the patterns of 

production ecology among the trees, including resource acquisition, resource use efficiency, and 

allocation to stem growth (Schwinning and Weiner 1998, Pothier 2017, Fernández-Tschieder and 

Binkley 2018, Forrester 2019). 

The production ecology of trees describes growth as the product of the supply of 

resources from the environment, the amount of resources captured by trees and the amount of 

wood produced per unit of resource (resource use efficiency) (Monteith and Moss 1977, Binkley 

et al. 2004). Within a stand, environmental resources are distributed between individual trees 

depending on the mode and degree of competition. Competition ranges along a continuum from 

symmetric -if all trees capture a proportional share of environmental resources- and asymmetric 

competition -if a group of trees capture a disproportional share of resources (Weiner 1990, 

Schwinning and Weiner 1998). Studies at the tree level showed that large trees obtained a greater 

amount of resources and that the amount of wood produced per unit of resource can increase 

with tree size (Binkley et al. 2002, 2010, Campoe et al. 2013b, 2013a, Otto et al. 2014), be 
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relatively similar among trees (Forrester et al. 2013, le Maire et al. 2013) or decline (Onoda et al. 

2014, Fernández-Tschieder et al. 2020). 

How do patterns of competition (symmetric or asymmetric) relate to growth distribution, 

and how do these interact with resource use efficiency patterns? Forrester (2019) found that 

growth distribution showed a wide range of relationships with resource partitioning and size-

related difference in resource use efficiency in central European forests. In a similar study 

carried out in an old-growth Pinus ponderosa stand, negative growth dominance was associated 

to a slight size-symmetric competition for light and a greater use efficiency of light by small 

trees (Fernández-Tschieder et al. 2020). 

In this study we explored this question further, using data from a variety of conifer and 

broadleaf forests around the world. We expected to find a positive correlation between growth 

dominance, the degree of asymmetric competition and the increasing light use efficiency with 

tree size. Species with positive growth dominance would show asymmetric competition for light 

and increasing light use efficiency with tree size. In species with null growth dominance all trees 

would capture light in proportion to their size and use these resources with similar efficiency. 

Lastly, species with reverse growth dominance would have a symmetric competition for light but 

light use efficiency would decrease with tree size. 

 

Methods 

Data 

We explored data from conifer and deciduous species covering a wide range of ages, sites 

and management (Table 3.1). All data sets had tree-scale estimates for stem size (biomass or 

volume), growth, interception of photosynthetically active radiation (APAR) based on the 



53 

MAESTRA simulations (Wang and Jarvis 1990, Medlyn 2004) and light use efficiency of wood 

production (LUE = growth/APAR). Some of the data sets also have information about the leaf 

area of trees. Specific details of each data set can be found on the original papers (Table 3.1). 

Before the analysis, we performed an error checking for each data set. For each plot and 

age, trees with negative or zero growth value, and extreme values for any of the variables (values 

larger than 3 times the interquartile range of the data) were removed from the data sets. 

 

Table 3.1. Characteristics of the data sets used to evaluate the link between production ecology 
and growth dominance. 
 

ID Source Species Location Management n 
Age 
(year)a 

Density   
(trees ha-

1) 

Trees 
per 
plotb 

1.A 

Binkley et 
al. (2010) 

Eucalyptus 

grandis x 
urophylla 
(hybrid A) 

Brazil (4 
sites) 

Homogeneous & 
heterogenous 
stand structures 

11 
1.4 - 
5.5 

1100 

34 

1.B 

Eucalyptus 

grandis x 
urophylla 
(hybrid B) 

6 1.4 34 

1.C 

Eucalyptus 

grandis x 
urophylla 
(hybrid C) 

6 5.5 33 

1.D 

Eucalyptus 

grandis x 
urophylla 
(hybrid D) 

6 1.4 36 

2 
Campoe et 
al. (2012, 
2013b) 

Eucalyptus 
grandis 

Brazil 
Productivity 
gradient 

12 6 1600 77 

3 
Campoe et 
al. (2013a) 

Pinus taeda USA 
Fertilization & 
irrigation 

16 8 1200 40 
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Table 3.1. Continued. 
 

ID Source Species Location Management n 
Age 
(year)a 

Density   
(trees ha-

1) 

Trees 
per 
plotb 

4 
Fernández-
Tschieder et al. 
(2020) 

Pinus 

ponderosa 
USA 

Unmanaged 
uneven-aged 
forest 

1 ---- 400 643 

5 
Forrester et al. 
(2013)c 

Eucalyptus 

nitens 
Australia 

Thinning & 
fertilization 

12 
3.4 - 
8.1 

1000 39 

6 
Gspaltl et al. 
(2013) 

Picea abies Austria 
Thinning & age 
classes 

8 
38 - 
128 

---- 230 

7 
le Maire et al. 
(2013)d 

Acacia 

mangium 
Brazil None 3 1 - 6 1100 34 

8 
Eucalyptus 

grandis 
Brazil Fertilization 6 1 - 6 1100 35 

n = number of plots included in this study, a age indicates the range of age for each data set, b 
trees per plot is the mean number of trees in each plot included in this study, c data set included 4 
remeasurements of plots, d data set included 5 remeasurements of plots. Density corresponds to 
an approximation of the density that would correspond with the planted tree distance. 

 

Growth distribution, resource competition and resource use efficiency asymmetry 

We quantified the distribution of growth, light interception, and light use efficiency in 

relation to tree sizes within plots. The distributions were condensed into coefficients, analogous 

to the Gini coefficient, but ranging between -1 and 1. 

Growth distribution was assessed using the growth dominance coefficients (DGROWTH) 

following West (2014). The growth dominance coefficient quantifies both the degree of growth 

distribution (the absolute value of the coefficient) and whether larger trees (positive growth 

dominance), smaller trees (negative growth dominance) or any tree (nil dominance) in the stand 
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are producing a disproportional amount of growth with respect to their share of the stand 

biomass. 

Resource distribution was assessed the same way, but with light interception rather than 

stem growth. Light interception was estimated using the MAESTRA. The light dominance 

coefficient (DLIGHT) was estimated with stem biomass or volume of trees as the size variable for 

all data sets and with leaf area of trees as the size variable for 5 of the data sets. A negative light 

dominance coefficient indicates that small trees intercept light more than proportional to their 

size, and positive light dominance indicates that large trees intercept light more than proportional 

to their size. Nil light dominance coefficient indicates that all trees acquire light proportional to 

the proportion they represent of stand biomass or leaf area. Negative values correspond to the 

concept partial size-symmetric (capture of contested resources increases with tree size but less 

than proportionally), nil values correspond to the concept of symmetric competition (capture of 

contested resources is proportional to size), and positive values to the concept of partial size 

asymmetric competition (capture of contested resources increases with size and dominant trees 

obtain a disproportionate share of resources) (Schwinning and Weiner 1998). 

To assess difference in light use efficiency (LUE = growth/light interception) between 

trees we estimated a coefficient similar to growth dominance and light use dominance 

coefficients. We assessed the size-related differences in light use efficiency between trees using a 

modified formula of the growth dominance coefficient (West 2014). We replaced the cumulative 

proportional size in (the x-axis in the graphical description of growth dominance) by the 

cumulative proportion of trees. Then we estimated a dominance of light use efficiency (DLUE) 

that indicated if light use efficiency increases with tree size (0 > DLUE ≤ 1), is the same for all 

trees (DLUE = 0) or decreases with tree size (-1 ≤ DLUE < 0). 
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Statistical analysis 

We performed our analysis at two levels: within and across species. Within species, we 

analyzed for each data set described in Table 3.1 how growth dominance (DGROWTH) varied with 

light competition (DLIGHT) and size-related differences in light use efficiency (DLUE) using 

regression analysis. Sample size for each species corresponded to the number of plots included in 

this study (Table 3.1). The data sets used in this study had different experimental designs. Based 

on the experimental design of each data set, we used linear regression or linear mixed-effects 

models to fit regressions. For mixed-effects models we used age nested within plot, as the 

random effect. Multiple regressions were fitted using the lm function and mixed-effects models 

were fitted using lme function (Pinheiro et al. 2019) in R (R Core Team 2018).  

For the analysis across species, we used the mean value of growth dominance, light 

competition, and size-related differences in light use efficiency of each species to fit the 

regression between growth dominance, light competition and size-related differences in light use 

efficiency. Sample size for this analysis was n = 11. We used the bootstrap technique to estimate 

the mean and the 95% confidence interval (CI95%) for each species. 

Within and across species, we compared models including both DLIGHT and DLUE as 

predictor variables or only one of them using Akaike’s information criterion (AIC). Akaike’s 

information criterion was estimated as AIC = 2p - 2 ln L(𝜃), where L(𝜃) is the likelihood of the 

estimated model, p is the total number of parameters that were estimated in the model. For 

regression fit with ordinary least squares AIC was corrected by n-(p+1))/n, where n is the sample 

size and p is the number of parameters in the model (Burnham and Anderson 1998). 
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Results 

Across all data points (study x species x treatment x age x plot, n = 159) growth 

dominance averaged 0.01 and ranged between -0.22 and 0.23 (Fig. 3.1). The maximum DGROWTH 

was observed in a plot corresponding to E. grandis (data set #2), whereas the minimum DGROWTH 

corresponded to P. ponderosa (data set #4). 

Mean growth dominance of across species (n = 11) averaged -0.01 (CI95%: -0.05, 0.04) 

and ranged between -0.22 for P. ponderosa (single plot) and 0.15 (CI95%: 0.13, 0.18) for E. 

grandis in the data set #2 (Table 3.2). Overall DGROWTH was relatively close to zero for all data 

sets, except for E. grandis (data set #2) and E. grandis x urophylla (hybrid A, data set #1.A) that 

showed some degree of positive growth dominance, and for P. ponderosa that showed a 

relatively strong negative growth dominance (Fig. 3.1 and Table 3.2). 

Growth dominance (DGROWTH) related strongly with light partitioning (DLIGHT) and 

differences in light use efficiency between trees (DLUE) (Fig. 3.2). Across species and within 

each species, DGROWTH increased with DLIGHT and DLUE (Table 3.2, Fig. 3.2). DLIGHT and DLUE 

together explained approximately 90% of the variability in DGROWTH (Table 3.2). For E. grandis 

x urophylla hybrid D, DGROWTH did not show a relationship with DLIGHT or DLUE, and for hybrid 

C DLIGHT was unrelated to DGROWTH (Table 3.2). Within each data set, age and treatments did not 

modify the relationship of DGROWTH with DLIGHT and DLUE except for hybrid A (Table 3.2). 
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Figure 3.1. Distribution of growth dominance across species. Growth dominance within species 
ranged approximately between -0.05 negative growth dominance and 0.05 positive growth 
dominance except for E. grandis from data set #2 and one hybrid of E. grandis x urophylla 
(hybrid A) that showed a positive growth dominance, and P. ponderosa that showed a strong 
negative growth dominance. Numbers between parenthesis in the legend indicate the data set 
identification on Table 3.1. Grey dashed line indicates null growth dominance. Each box shows 
the median (horizontal line), first and third quartile (hinges), maximin and minimum values 
(vertical lines) and outliers (point beyond vertical lines) of growth dominance for each species. 

 

To evaluate the influence of the point with strong positive DGROWTH (E. grandis) and the 

point with strong negative DGROWTH (P. ponderosa) we fit the same model without these two 

points. The general pattern of the model fit without the two extreme points (n = 9) was similar to 

the pattern including all points (n = 11). 
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Figure 3.2. Growth dominance (DGROWHT) increased as the result of both light dominance 
(DLIGHT) and increasing size-related differences in light use efficiency with trees size (DLUE) (A). 
Plots B and C show the patterns for individual species; the solid black line is the overall average 
across species. Plots B and C used species-specific models in Table 3.2 and mean values of DLUE 
for each species for lines in plot B and mean values of DLIGHT for each species for lines in plot C. 
Negative values of DLIGHT indicates that small trees are intercepting light more than proportional 
to their size, whereas positive values of DLIGHT indicates that large trees are intercepting light 
more than proportional to their size. Similarly, negative values of DLUE indicates that light use 
efficiency decrease with tree size, whereas positive values indicates that light use efficiency 
increase with tree size. See Table 3.1 for characteristics of each species. 

 

 

 

 

B C 

A 
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Table 3.2. Coefficients and statistics of the regressions of growth dominance (DGROWTH) as a 
function of light competition (DLIGHT) and size-related difference in light use efficiency between 
trees (DLUE). Within species and across species growth dominance of large trees increased with 
asymmetric competition and with increasing difference in light use efficiency with tree size. 
Fitted model correspond to the form DGROWTH = a + b x DLIGHT + c x DLUE + d x age + e x 
treatment. Values in parenthesis are the 95% confidence interval for the mean of DGROWTH 
estimated using the bootstrap technic. 
 

ID Species DGROWTH 
Coefficients 

R2 rse df 
a b c d e 

 Across 
species 

-0.01                 
(-0.05, 
0.04) 

-0.0141 0.9336 0.7818 --- --- 0.97 0.02 8 

1.A 

Hybrid A 
(E. grandis 
x 
urophylla)a 

0.07          
(0.04, 
0.09) 

-0.0308 0.4990 0.3913 0.0604 0.0414 0.94 0.02 6 

1.B 
Hybrid B 
(E. grandis 
x urophylla) 

-0.02                 
(-0.03, -
0.00) 

ns 0.5239 0.2141 --- ns 0.94 0.01 4 

1.C 
Hybrid C 
(E. grandis 
x urophylla) 

-0.01               
(-0.04, 
0.02) 

-0.0635 ns 1.5871 --- ns 0.84 0.02 4 

1.D 
Hybrid D 
(E. grandis 
x urophylla) 

-0.05               
(-0.06, -
0.04) 

-0.0495 ns ns --- ns --- 0.02 5 

2 E. grandis 
0.15              
(0.13, 
0.18) 

ns 0.8129 0.6432 --- --- 0.98 0.03 10 

3 P. taeda* 
0.00                  
(-0.01, 
0.02) 

ns 1.0300 0.8425 --- ns --- --- 11 

4 
P. 

ponderosa 
-0.22 --- --- --- --- --- --- --- --- 

5 E. nitens* 

-0.01                
(-0.02, 
0.01) 

ns 0.7634 0.9493 ns ns --- --- 35 

6 P. abies 

0.01                  
(-0.01, 
0.03) 

ns 0.7203 0.7777 --- ns 0.93 0.01 6 

7 
A. 

mangium* 

-0.02               
(-0.05, 
0.01) 

ns 1.0368 0.8897 ns --- --- --- 11 

8 E. grandis* 

-0.01                
(-0.03, 
0.02) 

ns 1.0252 0.9023 ns ns --- --- 23 

ID refers to the identification of each data set on Table 3.1, R2 = coefficient of determination (R2 
= (sst − sse)/sst where sst is the total sum of squares and sse is the error sum of squares); rse = 
residual standard error (rse = √sse/df); df = residual degree of freedom. *Regressions fit with 
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mixed-effects models. a where age is 0 for the reference level of age 1.4 and 1 for level of age 
5.5, and treatment is 0 for the reference level of heterogenous structure and 1 for uniform 
structure. ns = no significant with a probability alpha of 0.05. 

 

Discussion 

According to the production ecology of trees, patterns of growth dominance within stands 

should be driven by the combined effect of competition for resources and size-related differences 

in resource use efficiency between trees in the stand (Schwinning and Weiner 1998, Pothier 

2017, Fernández-Tschieder and Binkley 2018, Forrester 2019). Resource use efficiency results 

from either greater photosynthetic efficiency (carbon fixed per unit of resource used) or greater 

carbon partitioning of carbon to wood growth. Our results showed that light competition and 

size-related difference in light use efficiency strongly correlated with the variation in growth 

dominance, and that growth dominance increase with increasing competition for light and 

increasing light use efficiency with tree size. Forrester (2019) analyzed the relationship between 

growth dominance and light competition, and growth dominance and sized-related difference in 

light use efficiency separately for central European forests. Most species showed a strong 

positive correlation for both variables; however, some species showed a low or no correlation 

with either competition for light or sized-related difference in light use efficiency. 

For most species, we observed that small trees captured a greater proportion of light 

relative to their size. We used stem mass or volume as the measure of tree size, however, using 

leaf area as the measure of size to estimate competition can modify this pattern (Berntson and 

Wayne 2000, Onoda et al. 2014). Using leaf area as the size variable might indicate that large 

trees capture a greater proportion of light relative to size if light interception of trees is relatively 

proportional to leaf area, and the loss of light interception due to shading by neighbors is greater 

for small trees (Binkley et al. 2013). However, the estimation of competition using stem mass 
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and the estimation of competition using leaf area as the measure of size have been shown to be 

positively correlated, showing the same pattern with growth dominance (Onoda et al. 2014, 

Forrester 2019). This suggested that the overall pattern found in our analysis is unlikely to 

change using tree leaf area as the measure of size. 

The pattern between growth dominance and light use efficiency of trees could emerge 

because both variables have growth as their numerator. We explored whether autocorrelation 

could explain the pattern between growth dominance and light use efficiency of trees. For this 

purpose, we compared a “null pattern” explained by autocorrelation with the “current pattern” 

between the variables. The “null pattern” was defined as growth/mean size (mean of size of all 

trees in a plot) as a function of growth/mean APAR (mean of APAR of all trees in a plot). If the 

“current pattern” matches the “null pattern” autocorrelation could be the responsible of the 

pattern between growth dominance and light use efficiency. If both patterns differ substantially, 

then autocorrelation is at most responsible for only part of the correlation between variables. We 

found that for most plots the “current pattern” differed from the “null patten” showing that light 

use efficiency explained some of the variation in the growth dominance pattern. 

Most of the forests we examined showed values closed to null growth dominance. Only 

two data sets of eucalyptus showed a relatively strong positive growth dominance, and the data 

set of P. ponderosa showed a strong negative growth dominance. This contrast particularly with 

the strong positive growth dominance above 0.4 reported for a 11 years old seed-origin stand of 

E. saligna (Binkley et al. 2003, 2006). However, Soares et al. (2020) analyzed monoclonal plots 

of a variety of eucalyptus clones and sites up to five years old and found that growth dominance 

varied mostly between -0.1 and 0.1. Greater or lower values of growth dominance were rather 

unusual (Soares et al. 2020). Similarly to previous studies, conifers showed low-positive to high-
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negative growth dominance (Fernández and Gyenge 2009, Bradford et al. 2010, Fernández 

Tschieder et al. 2012, e.g. Binkley and Kashian 2015). Since growth dominance can increases 

with age (Binkley et al. 2006, Fernández Tschieder et al. 2012, Soares et al. 2020), low growth 

dominance in some broadleaf species could be partially explained by young ages included in 

these species. For example, A. mangium showed an increase of growth dominance with age. 

However, some of the eucalyptus plots with low growth dominance had their canopy was fully 

closed, and tree interaction should be well stablished. 

Growth dominance combined with size distributions functions is important to understand 

and predict the response of stand growth to changes in stand structure or management practices 

(Forrester 2019). For example, Soares et al. (2020) found that stand growth decreases with 

negative and positive growth dominance (i.e. stand growth was greater with null growth 

dominance). This pattern was related to the bell-shaped distributions of tree diameter in 

eucalyptus mono-clonal plantations (Soares et al. 2020). In this paper we showed that changes in 

growth dominance were related to changes in light competition and changes in the pattern of 

light use efficiency with tree size. The information about the patterns of light competition and 

light use efficiency provided by growth dominance could be helpful to plan management 

interventions. However, the outcome of these intervention depends on the size distribution of the 

stand (Forrester 2019). For example, in a stand undergoing negative growth dominance 

improving the growing conditions of small trees might or might not increase stand productivity. 

If size distribution of a stand is right side skewed, releasing resources for small trees (the most 

efficient) by thinning large trees might increase stand productivity. On the contrary, if size 

distribution is left side skewed thinning large trees might decrease productivity because the 

proportion of small trees is low compare with the proportion of large trees. The increase in 
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resource supply for small trees might not be sufficient to offset the productivity loss of thinned 

trees. 

Overall, we found that the growth distribution between trees within a stand reflects the 

patterns of competition for light and the pattern of light use efficiency between trees. Growth 

dominance increased as large trees intercepted an increasingly disproportional amount of light 

and as larger trees increased their light use efficiency compare with small trees. Differences in 

light use efficiency suggest that carbon partitioning or photosynthetic capacity changes among 

trees of different size. Despite the diversity of species included in our study, growth dominance 

was close to zero and relatively similar between species with a few exceptions. However, when 

growth dominance deviated from null growth dominance it was correlated with competition for 

light and differences in light use efficiency among trees. Growth dominance showed to be an 

effective link between processes at the tree scale (competition and resource use efficiency) and 

processes at the stand scale (growth distribution). 
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CHAPTER 4: A METHOD TO ESTIMATE GROSS PRIMARY PRODUCTION AT THE 
TREE LEVEL: DO DOMINANT EUCALYPTUS TREES PARTITION LESS CARBON 

BELOWGROUND? 
 
 
 
Introduction 

Wood productivity of individual trees depends on the supply of resources in the 

environment, the proportion of these resources captured by trees and how efficiently these 

resources are used to produce wood (Monteith and Moss 1977, Binkley et al. 2004). Within tree 

populations, wood productivity of trees increases with tree size (Stephenson et al. 2014) as a 

result of positive feedbacks between increasing size and resource capture. In some Eucalyptus 

plantations, large trees also have greater efficiency of wood production per unit of resource use 

(Binkley et al. 2002, 2010, Campoe et al. 2013b, Otto et al. 2014). Large trees can have as much 

as 1.8-times greater light use efficiency than small trees (Binkley et al. 2010). Higher wood 

growth per unit of resource use could result from either greater photosynthetic efficiency (carbon 

fixed per unit of light intercepted) or greater carbon partitioning of carbon to wood production. 

Differences in photosynthetic efficiency of leaves would likely be too small to account 

for large differences in wood growth per unit of resource use. Photosynthetic capacity of 

dominant Eucalyptus globulus trees was greater than suppressed trees (O’Grady et al. 2008); 

however, greater photosynthetic capacity of dominant trees reflected acclimation to the improved 

light environment (Field 1983). However, no systematic differences in the photosynthetic 

capacity between size class of trees were observed because dominant and suppressed trees shared 

the same the relationship between height and saturated photosynthesis (O’Grady et al. 2008). 

Because light interception increases with tree height and trees intercept light proportional to tree 
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leaf area (Binkley et al. 2013, Campoe et al. 2013b), photosynthetic efficiency is expected to be 

similar between dominant and suppressed trees. 

We expect that greater wood production per unit of resource use results primarily from 

differences in carbon partitioning between trees. Aboveground production is easy to measure, but 

belowground production on an individual-tree basis has not been feasible under field conditions. 

Belowground production by individual trees could be estimated from whole-tree photosynthesis, 

minus aboveground production and respiration. Hu et al. (2010b) proposed a method to estimate 

individual-tree gross primary production combining tree transpiration and integrated water use 

efficiency derived from carbon stable isotope in soluble sugars from leaves. This approach can 

be modified using carbon isotopes in phloem sap as an integration of the whole canopy (Rascher 

et al. 2010, Ubierna and Marshall 2011). The analysis of carbon isotopes in phloem sap (Pate and 

Arthur 1998) has been proposed is an integrative δ13C signal of the short-term (in the scale of 

days) influence of environmental conditions over the whole plant canopy activity (Keitel et al. 

2003, Gessler et al. 2004). 

We explored the applicability of using carbon isotopic composition of phloem contents 

and canopy transpiration to estimate photosynthetic carbon flux of individual eucalyptus trees. 

By subtracting aboveground production and respiration, we tested the hypothesis that 

belowground partitioning for an individual tree decreased with increasing tree size in Eucalyptus 

plantations. 
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Methods 

Study site and experiment description 

Our study was conducted in a eucalyptus experiment on a tropical site located near Mogi 

Guaçu at an altitude of 633 m (SP, Brazil) (Lat −22.35 Long −46.97) on an Oxisol soil (Binkley 

et al. 2017). This experiment corresponded to site #20 in a larger project on the influence of 

climate, silviculture, and genetics on productivity (TECHS Project, Clonal Eucalyptus Tolerance 

to the Hydrous and Thermal Stresses, Binkley et al. 2020). For this study, we used a relatively 

drought tolerant E. grandis × E. camaldulensis hybrid clone, in treatments with and without rain 

reduction (Table 4.1). The rain reduction treatment removed 30% of rain, with the under-canopy 

troughs installed for the final four years of the six-year rotation. The experiment was planted on 

16-February-2012 in a single plot of 0.2 ha at 3 × 3 m spacing. Rain reduction treatment was 

applied to half of the plot (rainfed subplot and rain reduction subplot). Plot was fertilized 

intensively during the first year to alleviate any nutrient limitation and weeds were controlled. 

Our analysis spanned an 18-months period from age 53 to 71 months. 

We selected nine trees representing the diameter distribution from each sub-plot for 

carbon isotope analysis of stem phloem sap, sap flow density and growth measurements (Table 

4.1). Three trees were selected from small (suppressed), medium (intermediate) and large 

(dominant) size classes in each plot, giving a total of 18 trees for the study. 

Meteorological data was obtained from an automatic weather station located in the study 

site and meteorological variables were measured hourly. During our study period (July 2016-

January 2018) mean annual temperature averaged 22.1°C, precipitation 1193 mm year-1, relative 

humidity 70%, and vapor pressure deficit during daylight hours, 1.4 kPa. These meteorological 
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conditions were similar to the environmental characteristics for the entire period of the rotation 

(Binkley et al. 2020). 

 

Table 4.1. Biometric characteristics (mean ± standard deviation) of plots and individual trees 
sampled from each treatment for phloem sap. Wood mass includes stem wood + bark + branch. 
Stem dry matter represented 89% of wood dry matter, stem bark 9% and branches 2%. Plot mean 
and standard deviation were based on approximately 80 trees. 
 

 Plot level Sample of trees 
Rain 
treatment 

Age 
(month) 

dbh 
(cm) 

Height 
(m) 

Basal area 
(m2 ha-1) 

Wood mass    
(Mg ha-1) 

LAI n 
dbh 
(cm) 

Height 
(m) 

control 51 
14.3 
(1.5) 

22.3 
(1.3) 

18 77 
1.3 
(0.2) 

9 
14.6 
(2.3) 

21.9 
(1.3) 

reduction 51 
13.7 
(1.2) 

20.9 
(1.1) 

17 68 
1.3 
(0.2) 

9 
14.0 
(1.8) 

20.7 
(1.3) 

dbh = tree diameter at 1.3-m height, LAI = leaf area index corresponds to the mean LAI between 
ages 52 and 73 months old, n = number of trees sampled for carbon isotope, transpiration, and 
growth. 

 

Phloem sap sampling and carbon isotope analysis 

Samples of phloem sap were extracted following the phloem exudation technique 

(Schneider et al. 1996, Rennenberg et al. 1996) in pure distilled water (Gessler et al. 2004, 

Devaux et al. 2009). This method simply consists in the extraction of soluble sugars by osmosis 

in distilled water from phloem samples. Each tree was sampled at four dates between July 2016 

and January 2018 (18-July-2016, 9 & 10-November-2016, 17-April-2017 and 19-January-2018). 

On each date two discs (phloem + bark) from every tree were extracted at approximately 1.3 m 

above ground from the main stem using a 10 mm diameter cork-borer. Samples were washed 

with distilled water and the set of two phloem discs placed in vials with 4 mL of distilled water 

for a minimum of 4-5 hours at ambient temperature (Schneider et al. 1996, Devaux et al. 2009). 

Discs were removed, and the sample solution dried at 65°C and stored at -28°C for transport to 

the laboratory. Samples were collected within the same day, or on two consecutive days for 
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November 2016 sampling. Samples were rehydrated and filtered in the laboratory. Aliquots of 

the solution were placed in tin cups, dried at 65°C, packed and processed for determination of 

carbon isotopic composition of phloem sap (δ13Cph) at the EcoCore Analytical Facility laboratory 

(Natural Resource Ecology Laboratory, Colorado State University, USA). The δ13Cph values 

were expressed in delta notation (‰ units) relative to the Vienna Pee Dee Belemnite (VPDB).  

Estimation of integrated water use efficiency 

We estimated the average crown integrated water use efficiency for each of i trees 

(ciwuei) across the four sampling dates using δ13C of sap phloem as an integration of the tree 

crowns (δ13Cph). Integrated water use efficiency is defined as the molar ratio of net CO2 

assimilation rate to transpiration, and was estimated with the leaf-level formulation (Farquhar 

and Richards 1984, Farquhar et al. 1989) adapted for canopy averages as: 

ciwueid = cA:cE = Ca (1-cCi/Ca)/1.6 VPDd, 

where ciwueid is the integrated water use efficiency for tree i at date d (µmol CO2 µmol H2O-1), 

cA is the net carbon assimilation rate of tree crown (µmol CO2 m-2 s-1), cE is the transpiration rate 

of tree crown (µmol H2O m-2 s-1), cCi is the tree crown photosynthesis-weighted average of 

partial pressure of CO2 in leaf intercellular spaces, Ca is the partial pressure of CO2 in the 

atmosphere (kPa), 1.6 is the ratio of the diffusivities of water vapor and CO2 in air, and VPDd is 

the water vapor pressure difference between the intercellular spaces of the leaf and the well-

mixed atmosphere outside the leaf at date d (kPa). Previous studies have shown that δ13C of stem 

phloem sap or needle sugars was highly correlated with weather dynamics during the few days 

before sample collection (Pate and Arthur 1998, Keitel et al. 2003, Gessler et al. 2004, Hu et al. 

2010a). VPD was the average for four days prior to each phloem sap sampling, expecting that 

δ13C of stem phloem sap was the integration of the tree crown over the prior four days. Weather 
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was generally consistent for the days before each sampling period. We used a Ca value of 0.041 

kPa (406 ppm) corresponding to the average CO2 concentration between 2016 and 2018 at 

Mauna Loa, Hawaii (Dlugokencky et al. 2019). 

The average crown integrated water use efficiency for each of i trees was estimated as: 

ciwuei = ciwueid / 4. 

The tree crown average ratio between intercellular to atmospheric partial pressure of CO2 

(cCi:CCa) was estimated using a linear model (Farquhar et al. 1982b) that relates isotopic 

discrimination against 13C linearly to the ratio of intercellular to atmospheric concentration: 

cCi:Ca =(c∆-a)/(b-a), 

where c∆ is the tree crown average discrimination against 13C during photosynthesis, a (4.4 ‰) is 

the 13C fractionation caused by diffusion of CO2 in air; and b (27 ‰) is the 13C fractionation 

during carboxylation by ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) (Farquhar 

et al. 1982a). 

Assuming that δ13C of stem phloem sap contents integrates the recent activity of the 

entire tree crown, crown average discrimination during photosynthesis (c∆) was calculated as 

(Farquhar et al. 1982b): 

c∆ = δ13Ca – δ13Cph / 1 + δ13Cph/1000, 

where δ13Ca is the carbon isotopic composition of the ambient air and δ13Cph is the carbon 

isotopic composition of stem phloem sap contents. We used a δ13Ca value of -8.4 ‰ 

corresponding to the average isotopic composition of the air for the year 2014, the last available 

record at Mauna Loa Observatory (White et al. 2015). 
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Water vapor pressure difference between the intercellular spaces of the leaf and the atmosphere 

Integrated mean daily leaf-to-air water pressure deficit (VPDday) was estimated as the 

average between hourly VPD (VPDhour) using hours of the day with solar radiation greater than 

zero. The VPDhour was estimated as the difference between the water vapor pressure in the 

intercellular spaces of the leaf (eleaf) and water vapor pressure in the atmosphere (eatmos). Water 

vapor pressure in the intercellular spaces of the leaf was estimated as the saturation partial 

pressure of water vapor (es) (where eleaf = es) as a function of temperature of the air (Tair) using 

the equation: 

es (kPa) = (6.1121 * exp (17.368 * Tair /( 238.88 + Tair))) * f *0.1, 

where Tair is the mean hourly temperature of the air (°C) estimated from the maximum and 

minimum temperature, f is an enhancement factor to account for small differences between pure 

water and moist air f = 1.0007 + (3.46*10^-6 * P) where P is the atmospheric pressure in mb 

(Buck 1981). The value 0.1 was used to convert mb in the original equation to kPa. 

Water vapor pressure in the atmosphere (eatmos) was estimated using daily average 

relative humidity (RH, estimated from the maximum and minimum hourly relative humidity) and 

saturation vapor pressure (es) for four days prior to each phloem sap sampling as: 

eatmos = es * RH/100. 

Leaf temperature was assumed to match air temperature, with a constant temperature 

profile with crown depth. These assumptions are expected in a canopy well-coupled with the 

atmosphere, which is likely in Eucalyptus plantations for wind speeds of > 2.5 m s-1 (Barnard 

and Ryan 2003). 
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Estimation of tree transpiration 

Sap flux density (v, g cm-2 s-1) was measured on each tree between 18-July-2016 and 19-

January-2018 using the Granier style heat dissipation method (Granier 1987) as described in 

Hubbard et al. (2010, 2020). Briefly, a single pair of 2-cm long thermal dissipation probes were 

installed in a randomly selected cardinal direction for each tree approximately 10 cm above 

breast height. Sensors were moved every three months to account for the variation in sap velocity 

with circumference and to prevent over-growth on probes. Temperature differences between the 

upper and lower needle were measured every minute and 15-minute averages recorded. Sap flux 

density was estimated using a modified Granier equation calibrated for Eucalyptus plantations 

(Hubbard et al. 2010) and tree transpiration as the product of sap flux density and sapwood area. 

Sapwood area was estimated using a regression model between diameter at the probe location 

and sapwood area developed from harvested trees (n = 9 trees for each plot) at the end of the 

study. For specific details on estimation of tree transpiration see Hubbard et al. (2020). 

Transpiration for each tree (E, L H20 day-1 tree-1) was estimated as the average of daily 

transpiration between 18-July-2016 and 19-January-2018. This long-term average of 

transpiration tended to underestimate transpiration compared to short-term average (using 

between 1 and 7 days prior to each phloem sampling date) by about 10%. However, the 

underestimation was similar for all trees irrespective of tree size and did not, therefore, would 

not modify the patterns we found. To reduce the effect of nighttime transpiration that leaves no 

isotopic trace, we only used transpiration measurements during day light hours (solar radiation 

values > 0). 
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Estimation of tree fluxes and carbon partitioning 

Tree gross primary productivity (GPP, g C tree-1 day-1) was estimated as product of 

average integrated water use efficiency (ciwuei, g C L H2O-1) and average daily transpiration (E, 

L H20 tree-1 day-1). Wood (stem + branch + bark) net primary productivity (NPPwood, g C tree-1 

day-1) was calculated as the difference between wood dry matter at time t (18-July-2016) and 

time t+1 (19-January-2018) divided by the number of days between t and t+1 (551 days). Dry 

mass of wood was estimated from dbh of each tree at the beginning and at the end of the study 

period using allometric equations (Table 4.2). Water use efficiency of wood production was 

estimated as the ratio between NPPwood and transpiration (WUEwood = NPPwood / E, g C /L H2O). 

Leaf net primary production of trees (NPPleaf, g C tree-1 day-1) was estimated from leaf 

production in each sub-plot. First, we estimated leaf production of each sub-plot as leaf litterfall 

(kg C year-1 plot-1) plus changes in the stock of leaf between t and t+1 (kg C year-1 plot-1). Then 

we broke down the sub-plot leaf production to an individual tree basis using the proportion of the 

sub-plot leaf area carried by each tree at t+1 NPPleaf = plot leaf productivity times the proportion 

of leaf aera of tree i. A tree that carried 5% of the plot’s leaf mass would be assigned 5% of the 

plot’s leaf production. This approach to estimate leaf production of each tree assumed that leaf 

lifespan of all trees was similar. Litterfall of leaves was collected monthly in 9 traps in the 

control sub-plot. We assumed that litterfall for the rain reduction treatment was similar to the 

control treatment since leaf area index (LAI) was very similar between treatments during the 

studied period (Table 4.1).We used a carbon content for leaf litterfall of 0.48 g g-1 (Stape et al. 

2008). The proportion of plot’s leaf area carried by each tree (tree leaf area/plot leaf area) was 

estimated at the end of the studied period. Leaf area of each tree was estimated using allometric 

equations with dbh as the independent variable (Table 4.2). Plot leaf area was computed by 
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summing the estimated leaf area of all trees within each plot. Change in the stock of leaf was 

estimated from LAI values at time t and time t+1 and specific leaf area specific leaf area for each 

clone (9.4 m2/kg) at 72 months of age. LAI was estimated from interception of 

photosynthetically active radiation following Mattos et al. (2020). We used this approach 

because the relationship between tree size and leaf area or biomass is affected by age (le Maire et 

al. 2019) and because after canopy closure litterfall is a large component of leaf production 

(Stape et al. 2008, Ryan et al. 2010, Epron et al. 2012). Destructive sampling of trees was carried 

out at the end of the rotation. Since the ratio leaf area:dbh decreased with age, using leaf area 

model fitted with data at the end of the rotation would likely underestimate leaf area at younger 

ages. 

Leaf respiration of trees (Rf, gC tree-1 day-1) was estimated as Rf = tree leaf area x 0.66 

μmol C m-2
leaf area s-1 at 20 °C x temperature correction (Ryan et al. 2009, 2010). Leaf area of 

trees was estimated using the mean LAI between age 52 and 73-months for each plot and the 

proportion of the plot leaf area carried by each tree at age 72-months. We assumed that the 

proportion of plot leaf area carried by each tree was constant through the study period. Foliar 

respiration was adjusted by mean temperature at night between t and t+1 using a Q10 of 2. Wood 

respiration of trees (Rw, g C tree-1 day-1) was estimated as Rw = (0.7163 - 0.0579 x age (month) / 

12) x (NPPwood, gC tree-1 day-1)) x temperature correction (Ryan et al. 2009, 2010). Wood 

respiration was estimated as the average between respiration at age 53-months (t) and 71-months 

(t+1). Wood respiration was corrected for mean temperature between t and t+1 using a Q10 value 

of 2. Aboveground respiration (Ra, g C tree-1 day-1) was estimated as the sum between Rf and Rw. 

Total belowground carbon fluxes (TBCF) were estimated as the difference between gross 
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primary productivity of trees and aboveground fluxes (aboveground net primary production + 

aboveground respiration). 

Mass estimation 

Dry mass (kg) of wood (stem + bark + branch dry mass) and leaf area was estimated 

using the allometric model ln(Wi) = a + ln(dbh) x b where Wi is the wood dry mass (kg) or leaf 

area (m2) of tree i, dbh is tree diameter at 1.3-m height, and a and b are the intercept and slope 

parameters to be estimated. We tested for differences in intercepts and slopes between rainfall 

treatments. We selected the minimum adequate model using Akaike’s information criterion 

(AIC), analysis of variance between models (model A vs. model B, where model A included one 

term for different intercepts and one term for different slopes and the significance of the terms in 

the model (we used a significance level of  = 0.05) (Table 4.2). Selected models were tested for 

normality, homogeneity of variance and error distribution. Regressions were fitted using 

ordinary least squares with lm function in R (R Core Team 2018). We used the correction factor 

proposed by Baskerville (1972) to account for the bias introduced during the back-transformation 

from logarithmic to arithmetic units. 

Nine trees representing the diameter distribution of each treatment were selected for 

destructive sampling at 72 months of age (Table 4.2). Trees were harvested and divided into 

stem wood, stem bark, branch, and foliage compartments. Each tree was weighed in the field and 

representative subsamples of each compartment were collected for water content determination 

(dried at 65 °C until constant weight) to calculate dry matter. The crown of each tree was divided 

in lower, mid and upper crown, and a subsample of leaves from each third was used to determine 

specific leaf area (m2 kg-1). Leaf area of trees was estimated as the sum of the product of leaf dry 

mass and specific leaf area of each third of the crowns. Leaf area of two trees (11.9 and 12.6 cm 
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in dbh) were excluded from model fitting. These trees had extremely high or low dry mass 

values for the size and were highly influential on parameters estimation. 

We used a carbon concentration value of 0.451 g g−1 (n = 6; sd = 0.022) to convert wood 

mass to C mass and 0.503 g g−1 to convert leaves mass to C mass (n = 4; sd = 0.004) (Giardina et 

al. 2003, Stape et al. 2008, Campoe et al. 2012, Epron et al. 2012). Wood carbon concentration 

value represents the average among carbon concentration for stem wood, branch wood and bark. 

 

Table 4.2. Coefficients and statistics of wood dry mass (kg) and leaf area (m2) allometric 
equations for eucalyptus trees. Fitted model correspond to the form ln (dry mass, kg) = a + ln 
(dbh, cm) x b. Wood dry mass equation has a common slope and clone-specific intercept. Leaf 
area equation has a clone-specific slope and a clone-treatment-specific intercept. 

Compartment Rain treatment coef a coef b R2 rse df CF dbh range (cm) 

Wood (kg) 
control 

-2.736 2.614 0.99 0.06 33 0.002 11.8-18.7 
reduction 

Leaf area (m2) 
control -3.631 

2.036 0.87 0.30 29 0.046 
11.9-18.7 

reduction -3.250 11.8-16.7 
R2 = coefficient of determination (R2 = (sst − sse)/sst where sst is the total sum of squares and 
sse is the error sum of squares); rse = residual standard error (rse = √sse/df); df = residual degree 
of freedom; CF = correction factor following Baskerville (1972). Control treatment refers to 
rainfed treatment and reduction treatment refers to rain reduction of about 30%. 

 

Statistical analysis 

Simple linear regressions were used to examine patterns of water use efficiency of wood 

production (WUEwood), crown integrated water use efficiency (ciwuei), fluxes (wood net primary 

production, leaf net primary production, aboveground respiration and gross primary production) 

and carbon partitioning with tree size. Carbon partitioning was defined as the fraction of gross 

primary productivity allocated to a given flux (Litton et al. 2007). Wood mass (kg tree-1) at the 

beginning of the studied period was used as the measure of tree size. For most variables, rainfall 

reduction did not have any effect on the slope or intercept of the regressions of fluxes or 

efficiencies with tree size. For simplicity, we pooled data from control and rainfall reduction 
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treatments. Models were tested for normality and homogeneity of variance. Regressions were 

fitted using ordinary least squares with lm function in R (R Core Team 2018). 

To compare between dominant and suppressed trees we used the mean tree size (wood 

mass = stem + bark + branch dry mass) of dominant and suppressed trees (n = 6 for each size 

class) and models fitted for each variable. Mean size of suppressed trees and dominant trees was 

42 and 94 kg tree-1 respectively. Wood mass was estimated using the equations in Table 4.2. 

 

Results 

Isotopic composition of phloem sap (δ13Cph) averaged 28.0 ‰ (sd = 0.42‰, n = 18) and 

increased (became less negative) with tree size and rainfall reduction (Table 4.3). Accordingly, 

crown discrimination during photosynthesis (c∆) decreased with tree size. 

Aboveground net primary production (ANPP = NPPwood + NPPleaf) and aboveground 

respiration (Ra) increased with tree size (Fig 4.1. A, B, C). Dominant trees produced 

approximately 2.2-times as much wood as suppressed trees (10.8 vs. 4.8 gC tree-1 day-1) and 1.8-

times as much foliage as suppressed trees (9.9 vs. 5.5 gC tree-1 day-1). Dominant trees respired 

aboveground 2.2-times as much carbon as suppressed trees (10.2 vs. 4.6 gC tree-1 day-1). 

Wood productivity increased with tree size as the result of both increasing transpiration 

(E) and water use efficiency for wood production (WUEwood) (Fig. 4.1. F, G). Dominant trees 

transpired 1.2-times as much water as suppressed trees (12.9 vs. 11.1 L H2O tree-1 day-1) and 

produced 2.3-times as much wood per unit of water transpired as suppressed trees (0.87 vs. 0.38 

gC LH2O-1). WUEwood correlated positively with integrated water use efficiency of the crown 

(ciwuei) (one tailed Pearson correlation coefficient r = 0.44, p-value = 0.03) and carbon 

partitioning to wood production (r = 0.99, p-value < 0.001). 
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Gross primary production (GPP) of individual trees increased with tree size as the result 

of increasing transpiration and water use efficiency of trees crown (ciwuei) with tree size (Fig. 

4.1. E, F, H). Dominant trees fixed 1.3-times as much carbon as suppressed trees (44.6 vs. 33.7 

gC tree-1 day-1) and their canopies fixed 1.1-times as much carbon per unit of water transpired as 

suppressed trees (3.4 vs. 3.0 gC LH2O-1). 

Total belowground carbon fluxes of trees (TBCF) -estimated subtracting aboveground net 

primary production and aboveground respiration from GPP- did not vary with tree size (Fig 4.1. 

D). Belowground carbon flux of dominant trees was 90% of the belowground productivity of 

suppressed trees (16.3 vs. 18.3 gC tree-1 day-1). Tree size explained around 2% of the variation in 

TBCF (Table 4.3) and the slope of the relationship was not different from zero (p-value = 0.54). 

Carbon partitioning to aboveground fluxes increased with tree size (Fig. 4.1. I, J, K). In 

contrast, belowground carbon partitioning decreased with tree size (Fig. 4.1. L). Dominant trees 

partitioned 2.2-times as much carbon to wood production (0.26 vs. 0.12), 1.4-times to leaf 

production (0.23 vs. 0.16) and 1.6-times to aboveground respiration (0.23 vs. 0.14) as suppressed 

trees, respectively. Belowground carbon partitioning for dominant trees was 60% of that by 

suppressed trees (0.34 vs. 0.55). 
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Table 4.3. Regressions models used to describe the production ecology patterns with tree size in 
eucalyptus plots with and without rainfall reduction. The model corresponds to the form y = a + 
b x tree size (kg). 

 Coefficients  
Variable a b R2 rse df 
δ13Cph -28.9735 0.0136 0.60 0.27 16 
NPPwood ns 0.1141 0.9 2.78 17 
NPPleaf 1.9873 0.0844 0.93 0.58 16 
Ra ns 0.1082 0.97 1.51 17 
TBCFa 19.9133 -0.0385 0.03 5.69 15 
Transpiration 9.5387 0.0359 0.25 1.51 16 
WUEwood ns 0.0092 0.9 0.23 17 
GPP 24.9228 0.2089 0.39 6.36 16 
ciwuei 2.7147 0.0078 0.66 0.13 16 
NPPwood:GPP ns 0.0028 0.89 0.07 17 
NPPleaf:GPP 0.1124 0.0012 0.55 0.03 16 
Ra:GPP 0.0654 0.0018 0.49 0.04 16 
TBCF:GPPa 0.73 -0.0042 0.46 0.11 15 

R2 = coefficient of determination (R2 = (sst − sse)/sst where sst is the total sum of squares and 
sse is the error sum of squares); rse = residual standard error (rse = √sse/df); df = residual degree 
of freedom. ns = no significant with a probability alpha = 0.05. aone tree with negative TBCF 
estimation was not considered for model fitting. 
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Figure 4.1. Aboveground fluxes (NPPwood, NPPleaf and Ra) increased with tree size and 
belowground fluxes (TBCF) were relatively similar between trees. Similarly, transpiration (E), 
water use efficiency (WUEwood and cwuei) and aboveground carbon partitioning all increased 
with tree size. In contrast, belowground carbon partitioning decreased with tree size in 
eucalyptus experimental plots. Solid lines represent least squares regressions as described in 
Table 4.3. Grey shaded areas reflect 95% confidence interval. 
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Discussion 

Production ecology and carbon partitioning 

As observed in previous studies about the production ecology of eucalyptus trees, wood 

productivity of trees increased with tree size as the result of a greater transpiration and higher 

water use efficiency of large trees (Binkley et al. 2002, Otto et al. 2014). A similar pattern has 

been observed for light interception and light use efficiency in eucalyptus and pine plantations 

(Binkley et al. 2002, 2010, Campoe et al. 2013b). However, other studies showed no trend in 

light use efficiency with tree size in eucalyptus (Forrester et al. 2013, le Maire et al. 2013). 

Higher transpiration of large trees is explained by the positive correlation between leaf area of 

trees and transpiration (Hatton and Wu 1995, Vertessy et al. 1995). Changes in water use 

efficiency to produce wood can be explained by changes in the integrated water use efficiency of 

tree crowns (the amount of carbon fixed during photosynthesis per unit of water transpired) and 

by the amount of carbon partitioned to wood production by trees. 

Water use efficiency to produce wood was strongly correlated with both the integrated 

water use efficiency of tree crowns and the carbon partitioned to wood production. However, the 

increasing integrated water use efficiency of tree crowns was likely too small to account for 

differences in wood production per unit of water use. Water use efficiency for wood production 

between dominant and suppressed trees was about 2.3-times that in suppressed trees, whereas 

integrated water use efficiency for dominant trees was only about 1.1-times. Results from E. 

globulus trees also suggested that photosynthetic efficiency might be relatively similar between 

trees (O’Grady et al. 2008). 

The size of the change in carbon partitioning to wood production between dominant and 

suppressed trees was similar to that for water use efficiency for wood production. Dominant trees 
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partitioned 2.2-times more carbon to wood production that suppressed trees. Partitioning for 

dominant and suppressed trees were similar to the partitioning values in young E. tereticornis 

trees (Drake et al. 2019). Using whole tree chambers, Drake et al. (2019) found that trees 

partitioned between 0.4 and 0.5 of the carbon fixed during photosynthesis to aboveground net 

primary production. Dominant and suppressed eucalyptus trees partitioned around 0.5 and 0.3 of 

to the carbon fixed by photosynthesis to produce aboveground biomass. 

In support of our hypothesis, we found that belowground carbon partitioning decreased 

with tree size. This pattern was the result of increasing gross primary production with tree size 

and a similar belowground carbon flux between trees. In contrast to our results, Drake et al. 

(2019) found that belowground carbon flux of trees increased with gross primary production. An 

analysis of the relationship between belowground carbon flux and gross primary production -Fig. 

7.c in Drake et al. (2019)3- suggested that belowground carbon partitioning increased with tree 

gross primary production in ambient temperature treatment but was constant in warming 

treatment. 

A similar belowground carbon flux between trees was an unexpected result. Total 

belowground carbon flux was estimated by subtracting aboveground production and 

aboveground respiration from gross primary production. Therefore, any bias in the estimation of 

gross primary production would affect the estimation of total belowground carbon flux and 

belowground partitioning. 

Similar to Hu et al. (2010b), estimates of gross primary production relied strongly on 

transpiration. Dominant trees transpired 1.2-times more water than suppressed trees as the result 

of a slightly greater sap flux density in suppressed trees (6.6 vs. 5.9 g cm-2 h-1) but a larger 

 
3 We used the R package metaDigitise (Pick et al. 2019) to extract and analyze the pattern of belowground carbon 
partitioning. 
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sapwood area of dominant trees compare to suppressed trees (91.4 vs. 67.7 cm2). However, 

dominant trees had almost 2-times more leaf area (10.8 vs. 5.7 m2 leaf area tree-1), and 

consequently, dominant trees transpired 40% less water per unit of leaf area than suppressed 

trees (1.2 vs. 1.9 L H2O m-2 leaf area day-1). Since transpiration of individual trees is related to 

leaf area (Hatton and Wu 1995, Vertessy et al. 1995), the discrepancy between tree leaf area and 

tree transpiration might indicate that transpiration of dominant trees was underestimated. 

Any underestimation of transpiration for large trees would be confounded with an 

underestimation of gross primary production for dominant trees. If gross primary production was 

underestimated for large trees total belowground carbon flux and belowground carbon 

partitioning would be underestimated. Therefore, underestimating transpiration of dominant trees 

would be confounded with the test of the hypothesis of this study, i.e., increasing water use 

efficiency for wood production and decreasing belowground carbon partitioning with tree size. A 

similar analysis would be true if transpiration of suppressed trees was overestimated. 

Assuming that transpiration of dominant trees was underestimated, we explored how 

increasing transpiration of dominant trees would modify the water use efficiency for wood 

production and belowground carbon partitioning patterns. We simulated three scenarios where 

transpiration of dominant trees was increased 1.5-, 2- and 2.5- times relative to transpiration of 

suppressed trees, scenario A, B and C, respectively (Fig. 4.2). 

Water use efficiency for wood production of dominant trees was greater than suppressed 

trees even when transpiration of dominant trees was simulated to be 2.5-times than the 

transpiration of suppressed trees (Fig. 4.2. A, B and C). Similar to water use efficiency for wood 

production, growth efficiency of trees (GE = NPPwood / leaf area) increased linearly with tree size 

(GE = 0.379 + 0.007 x tree size, R2 = 0.4). On averaged, dominant trees produced 1.6-more 
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wood per unit of leaf area compared with suppressed trees (1.1 vs 0.7 gC m-2 leaf area). In 

contrast, a simulated transpiration of dominant trees about 2-times greater than the transpiration 

of suppressed trees, was sufficient to equal belowground partitioning between trees (Fig. 4.2. B). 

The increase in the partitioning of carbon to belowground fluxes in dominant trees was matched 

with a decrease of carbon partitioning to leaf production and aboveground respiration. 

 

 

Figure 4.2. Effect of increasing the transpiration of dominant trees on the relative difference in 
water use efficiency for wood production and belowground carbon partitioning between 
dominant and suppressed trees. We simulated three different scenarios where transpiration of 
dominant trees was increased to be 1.5-times greater than the transpiration of suppressed trees 
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(Scenario A), transpiration of dominant trees was increased to be 2-times greater than the 
transpiration of suppressed trees (Scenario B), and transpiration of dominant trees was increased 
to be 2.5-times greater than the transpiration of suppressed trees (Scenario C). Scenario D were 
the calculations based on the original experimental data (see Fig. 4.1). Relative difference equal 
to 1 means that dominant and suppressed trees have the same absolute value for the variable. 

 

Conclusion 

We used a combination of transpiration and carbon isotopes of phloem sap contents to 

estimate gross primary production of trees. Together with aboveground net primary production 

measurements and estimates of respiration (estimated from wood productivity and leaf area), we 

assessed the hypothesis that greater water use efficiency for wood production in large trees was 

driven by an increasing partitioning of carbon to wood production and a decreasing partitioning 

to belowground fluxes with tree size. At the scale of individual trees, carbon partitioning to wood 

production was an important driver of the differences in water use efficiency for wood 

production between dominant and suppressed trees. Carbon partitioning to belowground fluxes 

showed the opposite pattern than partitioning to wood production; it decreased with tree size. 

However, estimates of belowground partitioning were uncertain because were conditioned to the 

uncertainty in the estimates of gross primary production and respiration. Gross primary 

production at the tree scale might have been underestimated in dominant trees as the result of 

underestimating the transpiration of dominant trees. Underestimating gross primary production 

had two consequences. First, because belowground fluxes were estimated subtracting 

aboveground fluxes (net productivity and respiration) from gross primary production, 

belowground fluxes might have been underestimated in dominant trees. Second, and as a 

consequence of the former, partitioning to belowground fluxes could have been underestimated 

for dominant trees. With a simple simulation exercise, we showed that if the relative difference 
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in transpiration between dominant and suppressed trees were similar to the relative difference in 

leaf area, belowground carbon partitioning would be similar between trees. 

The ratio between photosynthesis and water use (integrated water use efficiency) was 

only slightly greater in dominant trees, and wood growth per unit leaf area (both well measured) 

was larger for the dominant trees. These two facts suggested that decreasing belowground 

partitioning with tree size as being an important driver explaining the greater wood production 

and higher resource use efficiency of wood production in dominant trees. The method used in 

this paper has the potential to estimate gross primary production and belowground fluxes at the 

scale of individual trees. Best results would likely be obtained with an accurate calibration for 

sap flux for a given site that includes trees of different sizes and social positions to estimate 

transpiration. We conclude that differences in water use efficiency for wood production between 

trees were explained by both the amount of carbon fixed per unit of water transpired by tree 

crowns and by the pattern of carbon partitioning to wood production. However, a robust test of 

the pattern of belowground carbon partitioning with tree size was not possible because the size 

effect of belowground partitioning was within the range of the uncertainty of the estimation of 

transpiration for individual trees. 
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CONCLUSION 
 
 
 

In this dissertation I combined the pattern-focused approach of growth dominance with 

the process-focused approach of production ecology to test the link between growth dominance 

with competition and the variation in resource use efficiency between trees. I also explored a 

method to estimate belowground carbon partitioning of trees by subtracting aboveground 

productivity and respiration from gross primary production of trees. Gross primary production 

was estimated from tree transpiration and integrated water use efficiency of tree crowns. With 

this approach I analyzed whether the resource use efficiency variation observed between large 

and small trees was related to the variation in photosynthetic efficiency or to the variation in 

carbon partitioning patterns between trees. 

The production ecology equation was a useful approach to decompose growth dominance 

into competition for resources between trees and into patterns of resource use efficiency with tree 

size. I proposed specific growth dominance – production ecology patterns that were tested. 

Growth dominance reflected the patterns of competition for resources between trees and 

the patterns of light use efficiency. In a single ponderosa stand undergoing strong growth 

dominance, small trees showed higher light use efficiency for wood production than large trees. 

In addition, light interception was size-symmetric; light interception of individual trees increased 

with tree size but less than proportional. Also, across species growth dominance was positively 

related with the degree of symmetric-asymmetric competition for light and with the asymmetry 

in light use efficiency between trees. Growth dominance increased as large trees intercepted an 

increasingly disproportional amount of light and as larger trees increase their light use efficiency 

compare with small trees. 
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Growth dominance was a simple approach to quantify the growth distribution within 

stands and was an effective link between processes at the tree scale -competition and resource 

use efficiency- and processes at the stand scale -growth distribution. 

At the scale of individual trees, carbon partitioning to wood production was an important 

driver of the relative differences in water use efficiency for wood production between dominant 

and suppressed trees. Differences in the amount of carbon fixed per unit of water transpired by 

tree crowns also explained the pattern in water use efficiency for wood production, but it had a 

smaller effect. Estimates of belowground partitioning were conditioned to the uncertainty of 

gross primary production estimation, therefore this pattern could not be tested with confidence. 

The combination of transpiration and carbon isotopes of phloem sap contents to estimate 

gross primary production of trees has potential to calculate belowground fluxes at the scale of 

individual trees. However, it needs an accurate site- and possible tree class size-specific 

calibration at the tree level to estimate transpiration. 
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APPENDIX 
 
 
 
Uncertainties of the estimates of gross primary production 

Here we discussed the uncertainties of the estimates of gross primary production, 

transpiration, and respiration in Chapter 4, and how these uncertainties might affect our 

conclusions. 

Originally, our data set included an E. urophylla × sp. clone. However, this clone was 

discarded from the analysis because we suspected that transpiration was largely underestimated. 

The underestimation of transpiration affected the estimation of gross primary production of trees. 

When the aboveground net primary production and aboveground respiration were subtracted 

from gross primary production to calculate total belowground carbon flux, we obtained negative 

values for almost 80% of the trees that were sampled. 

The decision to remove this clone from our analysis was based on three points. First, the 

consumption of rainfall by trees was low compared to other eucalyptus plantations. Transpiration 

represented about 33% of rainfall (1193 mm year-1). Other eucalyptus plantations with similar 

LAI than the plots of E. urophylla × sp. clone accounted for more than 60% of precipitation 

(Almeida et al. 2007, Stape et al. 2008, Hubbard et al. 2010, Battie-Laclau et al. 2016, Attia et al. 

2019). Second, the transpiration rate per unit of leaf area (145 L H2O m-2
leaf area year-1) was about 

the half compared to other eucalyptus plantations (Stape et al. 2008, Hubbard et al. 2010, Attia et 

al. 2019). Third, gross primary production estimated scaling up individual tree estimations to the 

area level was around half than the gross primary production based on the carbon budget 

approach (1.5 vs. 3 kg C m-2 year-1) (see below for details on the carbon budget estimates). 
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Gross primary production 

We assessed the accuracy of gross primary production estimations at the tree level 

scaling up individual tree estimations and compared them with stand level estimations based on 

carbon budget approach. We scaled up the tree level gross primary production to the area level as 

GPParea-scaled (kg m-2 year-1) = mean GPPtree / average area per tree (9 m2 tree-1). The stand-level 

gross primary production was summed as: 

GPParea = WNPP + FNPP + Ra + TBCF, 

where WNPP is wood net primary production (WNPP = NPP stem wood + branch litterfall + 

bark litterfall), FNPP is foliage net primary production (FNPP = NPP foliage + foliage litterfall, 

with NPP leaves estimated from change in LAI), Ra is above ground respiration (sum of wood 

respiration (Rw) and foliage respiration (Rf) estimated as Rw = (0.7163 - 0.0579 * age (month) / 

12)*(WNPP))* temperature correction and Rf = leaf area x 0.66 μmol C m-2
leaf area s-1 x 

temperature correction (Ryan et al. 2009, 2010), TBCF is total below ground carbon flux (TBCF 

= ANPP x 0.66, where ANPP is above ground net primary production and 0.66 was obtained 

from Campoe et al. (2020) for based on younger ages at the same plots). 

Stand level gross primary production based on δ13Cph and transpiration was similar than 

gross primary production based on the carbon budget approach (1.6 kg C m-2 year-1 for both 

methods). Our estimation of gross primary production was low compared to other estimations for 

eucalyptus stands that were closer or above 4.0 kg C m-2 year-1 (Stape et al. 2008, Ryan et al. 

2010, Campoe et al. 2012, Epron et al. 2012). We speculate that the low gross primary 

production of these plots was related to the influence of pests. Hybrids between E. camaldulensis 

x grandis are susceptible to a number of pests (Gonçalves et al. 2013). In the site we analyzed 

trees were affected by several pests (Stape, personal communication) that might have affected 
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the wood productivity component of the carbon budget of trees. Potential evidence for this 

includes that analyzed clone displayed a similar leaf litterfall than other clones in the same site, 

despite carrying less than half the LAI. This implies a leaf lifespan for this clone of about half 

than leaf lifespan of other clones. 

Transpiration 

Because the estimated gross primary production of individual trees relies on the 

estimation of tree transpiration, any bias in the estimation of transpiration between small and 

large trees can influence our results and conclusions. Similarly, any underestimation of 

transpiration will be reflected in the estimation of gross primary productivity. We extrapolated 

tree transpiration to the stand level and compared this value with other published values from the 

bibliography. 

Transpiration typically accounts for 60% to 90% of precipitation (Almeida et al. 2007, 

Stape et al. 2008, Hubbard et al. 2010, Battie-Laclau et al. 2016, Attia et al. 2019). Estimates of 

tree transpiration at the plot level showed that transpiration represented 41% of rainfall (1193 

mm year-1). However, LAI of the E. grandis × E. camaldulensis clone was about half of typical 

LAI found in highly productive eucalyptus plantations (LAI ≈ 3) (Table 4.1). Transpiration rate 

per unit leaf area was 375 L H2O m-2
leaf area year-1 for the studied clone. This rate was similar than 

others eucalyptus plantations (Stape et al. 2008, Hubbard et al. 2010, Attia et al. 2019). 

Aboveground respiration 

We did not directly measure wood and foliar respiration, instead we estimated these two 

fluxes from wood net primary production and leaf area of trees. Our results showed that 

aboveground respiration and carbon partitioning flux increased with tree, implying that 

aboveground respiration increased relatively more than GPP with tree size. Here we briefly 
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discussed how this pattern might be affected by the approach we used to estimate foliar and 

wood respiration. 

Similar to our results O’Grady et al. (2008) found that leaf respiration rate was higher in 

dominant trees compared to suppressed trees, though for a similar crown height suppressed trees 

had a higher ratio of respiration:photosynthesis than dominant trees. We estimated leaf 

respiration from leaf area of trees and the rate of respiration per unit of leaf area (Ryan et al. 

2009). Respiration of leaves is also correlated with nitrogen content of leaves (Ryan et al. 2004, 

2009). As nitrogen concentration of leaves within the crown declines with tree height at a similar 

rate between dominant and suppressed trees (O’Grady et al. 2008), we would expect a similar 

respiration pattern using nitrogen content of leaves or leaf area of trees. We did not estimate 

construction respiration of leaves, we expected that construction respiration would increase with 

tree size. Construction respiration can be estimated as a proportion of leaf primary production 

(Ryan 1991), and our estimations of leaf primary production increase with tree size. This 

approach assumes a similar tissue composition and similar leaves lifespan between dominant and 

suppressed trees. 

Other studies have found that that wood respiration increase with tree size. Wood 

respiration is comprised of CO2 derived from construction of new tissue and CO2 derived from 

maintenance of existing tissues (Ryan 1990). Growth respiration is related to the carbon 

concentration on tissues, the energy costs for the construction of wood and productivity (Ryan 

1991). Assuming that wood composition is relatively similar between dominant and suppressed 

trees, is expected that construction respiration increases with tree size relatively proportional to 

wood productivity. Maintenance respiration of woody tissues is associated with phloem and 

xylem tissues in the sapwood. Their respective respiration rates appear to be strongly related to 
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temperature (Lavigne 1987, Bosc et al 2003) and nitrogen concentration (Ryan 1991). Total 

wood CO2 efflux (construction and maintenance) (Liberloo et al. 2008, Fan et al. 2017, Zhao et 

al. 2019) and maintenance CO2 efflux (Bosc et al. 2003, Kim et al. 2007) to the atmosphere from 

woody tissues calculated on a unit volume basis (µmol m-3 s-1) decreased with stem and branch 

diameter. Usually, when CO2 efflux is measured on an unit area basis (µmol m-2 s-1) it shows an 

increase with tree size (see for e.g. Rowland et al. 2018). However, when CO2 efflux is scaled up 

to the tree level, respiration increase with tree size regardless the scaling method (Kim et al. 

2007, Zhao et al. 2019). 

Overall, depending on the relative increase between gross primary production and 

aboveground respiration with tree size, it is expected that carbon partitioning to aboveground 

respiration might increase or be relatively similar across a sized-range of trees and would only 

explain any or a minor part of the decreasing carbon partitioning to wood production in small 

trees. 


