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ABSTRACT 

 

 

EFFECTS OF CORN ON MICRORNA EXPRESSION WITHIN HORSES 

 

 

Nutrition has been shown to play a major role in the health of horses in all life stages and levels 

of work. In recent years the prevalence of equine obesity has increased as more horses are kept in 

stalls with lower workloads, while receiving high energy and calorically dense feeds like grain, 

many of which contain corn, in addition to forage. The increase in equine obesity has been 

accompanied by more cases of metabolic diseases developing, often linked to poor nutrition and 

diets high in non-structural carbohydrates (NSC). Although more cases of metabolic disorders 

are emerging there currently are no good biomarkers to diagnose these diseases or identify horses 

on diets providing them with poor nutrition. Diets high in NSCs have been linked to insulin 

resistance and laminitis within horses, two of the main components of Equine Metabolic 

Syndrome (EMS), however nutrigenomic studies looking at the interaction of diets high in NSCs 

on gene expression, specifically through the regulation of endogenous microRNAs (miRNA) are 

rare. Recent research on mice and human models has demonstrated the large impact diet has on 

levels of miRNAs within the body and mRNA targets for these miRNAs resulting in the 

regulation of gene expression, in addition to identifying miRNAs in circulation that can be used 

as biomarkers for obesity, type 2 diabetes, and metabolic syndrome. Research has also 

demonstrated the ability of diet-derived exogenous miRNAs to be absorbed from the digestive 

tract, appear within circulation, and be taken up by various tissues throughout the body. Diet-

derived miRNAs specifically from plants have been detected in tissue and circulating within the 

blood suggesting the possibility of cross-species gene regulation, but the exact role these 
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miRNAs play physiologically is still unknown. miRNAs are small non-coding molecules that 

affect post-transcriptional gene regulation and RNA silencing by translational repression or 

degradation. Previous research revealed that some plant miRNAs could be identified in equine 

serum exosomes and tissues but was not able to identify a corn specific miRNA within any 

equine samples.  

We first hypothesized that diet-derived corn miRNAs can be detected in equine serum 

and muscle after corn supplementation. For this study twelve mares were blocked by weight and 

BCS and assigned to one of two treatments (n=6/group): 1) control, (basal diet: 20 lbs./head/d of 

chopped mixed alfalfa-grass hay and ad libitum mixed grass hay), 2) basal diet supplemented 

with 1 lb./d steam flaked corn. Muscle biopsies of the Gluteus medius and serum samples were 

collected from all horses on d0 and d28. Samples were analyzed using real-time RT-qPCR for 3 

plant miRNAs. Our results revealed the presence of plant miRNAs in equine total serum and 

skeletal muscle. Our results also revealed the level of plant miRNAs, including the corn specific 

miRNA, within circulation vary after ingestion, suggesting plant miRNAs are capable of being 

taken up by equine tissues. These results are important for understanding how physiological 

processes may be impacted by diet-derived plant miRNAs. Moreover, these results suggest plant 

miRNAs could potentially serve a therapeutic role in helping to regulate endogenous gene 

expression in addition to the nutrients being provided by ingestion. The large impact diet can 

have on equine health and the association between diets high in NSC and insulin resistance, 

caused us to be interested in the effects a diet supplemented with corn would have on 

endogenous miRNAs within the horse. We hypothesized that supplementing horses with corn 

would alter the endogenous miRNA profiles within both serum and skeletal muscle. For this 

objective, we utilized the same serum and muscle samples collected for the feed trial horses as 
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the plant miRNAs. Samples were analyzed using real-time RT-qPCR for 277 endogenous equine 

miRNAs. Our results showed 13 differentially expressed (P<.05) miRNAs in equine serum after 

28 days of corn supplementation. Six of these miRNAs (eca-mir16, -4863p, -4865p, -126-3p, -

296, and -192), were linked to obesity and/or metabolic disease. Within skeletal muscle, our 

results showed three miRNAs differentially expressed (P<.05) and three miRNAs with a trend 

toward differential expression (.05<P<.1) after 28 days of corn supplementation. The differently 

expressed (P<.05) miRNAs in muscle (eca-mir1515p, eca-mir106b, and eca-mir133a)  were all 

associated with obesity or muscle insulin response, while two of the miRNAs with a trend 

towards differential expression (.05<P<.1), ecamir-10b and eca-mir129a5p, were associated with 

diabetes/hyperglycemia and glucose metabolism respectively. This data indicates that diet does 

influence levels of endogenous miRNAs.  

The results of our study indicate that diet-derived plant miRNAs can appear in 

circulation, be taken up into tissues, and hold the potential to regulate endogenous genes. This 

study also provides more information on how a diet high in NSCs, like diets containing corn, 

alters levels of endogenous miRNAs within serum and tissue and helps to better understand the 

relationship between diet, health, and disease within horses.   



v 

ACKNOWLEDGMENTS 

 

 

I have received constant support from many people throughout my Master’s Degree. I 

would first like to thank my advisor, Dr. Tanja Hess, for her continuous support throughout my 

entire academic career at Colorado State University. Thank you to my committee members Drs. 

Jason Brummer, Stephen Coleman, and Gabriele Landolt, who dedicated a portion of their 

valuable time to help me complete this degree. I would also like to thank Terry Engle for finding 

the time in his very busy schedule to help me throughout my master’s program and entertaining 

my anxious ramblings at times.  

Thank you to my family for continuously supporting me throughout this project and my 

life. I would not be where I am today without all the love and support that has been in my life.  

Thank you to my dear friends Rowan Seabolt, Nicole Tillquist, Meghan Thorndyke, and 

the MacNeil twins for all of your support and help throughout this project. 

I would like to especially thank all the graduate, undergraduate, and veterinary students 

that assisted me in feeding horses and collecting samples. This amazing group of volunteers 

willingly gave up the opportunity to sleep in during their summer and showed up every morning 

with a smile and often a corny joke or two.  

My combined program was sponsored by a donation from the Y-Cross Ranch, whom I 

would like to say a special thank you to as I have received scholarships from them as an 

undergraduate, graduate, and veterinary student allowing me to continue my pursuit of 

knowledge. 



vi 

TABLE OF CONTENTS 
 

 

ABSTRACT .................................................................................................................................................. ii 

ACKNOWLEDGMENTS ............................................................................................................................ v 

LIST OF FIGURES ................................................................................................................................... viii 

LIST OF TABLES ....................................................................................................................................... ix 

INTRODUCTION ........................................................................................................................................ 1 

CHAPTER I: LITERATURE REVIEW ....................................................................................................... 3 

MICRORNAS ........................................................................................................................................... 3 

Biogenesis ............................................................................................................................................. 4 

MiRNA modes of action ........................................................................................................................ 7 

Extracellular miRNAs ........................................................................................................................... 8 

UPTAKE OF DIETARY MIRNA ............................................................................................................ 9 

miRNA ROLE IN DISEASE .................................................................................................................. 13 

Obesity ................................................................................................................................................ 14 

Insulin Resistance ............................................................................................................................... 16 

Laminitis ............................................................................................................................................. 18 

DIETARY REGULATION OF ENDOGENOUS miRNA .................................................................... 19 

DIGESTION ........................................................................................................................................... 22 

Carbohydrate digestion and  metabolism ........................................................................................... 23 

Lipid digestion and metabolism .......................................................................................................... 24 

Protein digestion and metabolism ....................................................................................................... 25 

CONCLUSION ....................................................................................................................................... 25 

CHAPTER II: IDENTIFICATION OF PLANT MICRORNAS IN EQUINE SERUM AND SKELETAL 

MUSCLE .................................................................................................................................................... 28 

INTRODUCTION .................................................................................................................................. 28 

MATERIALS AND METHODS ............................................................................................................ 29 

Animal Care and Feeding Protocols ................................................................................................... 29 

Serum and Tissues Collection ............................................................................................................. 30 

RNA Isolation from Serum ................................................................................................................. 31 

RNA isolation from Tissue ................................................................................................................. 32 

Plant RNA Isolation ............................................................................................................................ 33 

Reverse Transcription ......................................................................................................................... 33 

Real-Time PCR Analysis .................................................................................................................... 34 



vii 

Statistical Analysis .............................................................................................................................. 34 

RESULTS ............................................................................................................................................... 35 

DISCUSSION ......................................................................................................................................... 39 

CHAPTER III: THE EFFECT OF CORN SUPPLEMENTATION ON THE ENDOGENOUS 

MIRCORNA PROFILE IN EQUINE SERUM AND SKELETAL MUSCLE .......................................... 46 

INTRODUCTION .................................................................................................................................. 46 

MATERIALS AND METHODS ............................................................................................................ 47 

Animal care and feeding protocols ..................................................................................................... 47 

Serum and Tissue Collection .............................................................................................................. 48 

RNA Isolation from Serum ................................................................................................................. 49 

RNA isolation from Tissue ................................................................................................................. 50 

Reverse Transcription ......................................................................................................................... 51 

Real-Time PCR Analysis .................................................................................................................... 51 

Statistical Analysis .............................................................................................................................. 52 

RESULTS ............................................................................................................................................... 52 

CHAPTER IV: DISCUSSION AND CONCLUSIONS ............................................................................. 65 

REFERENCES ........................................................................................................................................... 68 

APPENDICES ............................................................................................................................................ 78 

 

  



viii 

LIST OF FIGURES 
 

 

Figure1: Mammalian MicroRNA Synthesis and Mechanism of Gene Regulation…………….....5 

Figure 2: The Biogenesis of Plant miRNAs………………………………………………………6 

Figure 3: Diagram of A Possible Method of Dietary miRNA Uptake from The Digestive 

Tract……………………………………………………………………………………………...11 

Figure 4: Areas of evaluation when body conditioning horses with the Henneke system………16 

Figure 5: Level of Plant miRNA (ath-miR156a) in Serum Across Time…………..………...….36 

Figure 6: Level of Corn miRNA (zma-miR827-5p) in Serum Across Time…….................……37 

Figure 7: Level of osa-miR1866-3p in Serum………………………………………………..….37 

Figure 8: Level of Plant miRNA (ath-miR156a) in Muscle Across Time………………...…..…38 

Figure 9: Level of Corn miRNA (zma-mir 827-5p) in Muscle Across Time………………..…..38 

Figure 10: Level of osa-miR1866-3p in Muscle……………………………………………...….39 

Figure 11: Difference between day 0 and day 28 Serum Sample Endogenous miRNAs Related to 

Obesity or Metabolic Disorders………………….………………………………………………53 

Figure 12: Effect of Corn Supplementation on Serum Endogenous miRNA eca-mir129a5p...…54 

Figure 13: Effect of Corn Supplementation on Muscle Endogenous miRNAs………………….55 

 

 

 

  



ix 

LIST OF TABLES 

 

 

Table 1: Horse Body Condition Score and Weight………………………………………..…….36 

Table 2: Plant miRNA Expression Across Feeds…………………………………………..……36 

Table 3: Difference in Endogenous miRNAs within Serum from Day 0 to Day 28…………….54 

  

 



1 

INTRODUCTION 

 

 

The diet and feeding behaviors of horses today are dramatically different from those of 

their ancestors and tailored to human convenience, not physiologic make-up. Research has 

shown that equine performance is heavily influenced by many factors including genetics, 

nutrition, metabolism, exercise, and stress. The smaller two region stomach and lack of gall 

bladder in the equine make them more suited physiologically to periodic grazing throughout the 

day than the typical two concentrated meals per day that are implemented at most equine 

facilities. Many equine rations contain energy supplements like corn, which is a high energy feed 

and low cost to provide horses with the energy necessary to meet performance expectations. 

Corn contains starch, a highly fermentable carbohydrate, which is known to contribute to 

laminitis. Corn and other non-structural carbohydrates have been linked to a variety of metabolic 

issues including laminitis, insulin resistance, and obesity (Pollitt and Visser, 2010). These 

metabolic issues when displayed together may indicate the horse has Equine Metabolic 

Syndrome (EMS), a similar condition to diabetes mellitus type 2 in humans. These issues and 

conditions are not yet fully understood and investigations into the dietary role in the regulation 

and expression of genes are being conducted, as well as attempting to identify reliable markers to 

use in the diagnosis of these conditions. The role of small RNA molecules called microRNAs 

(miRNAs) in gene regulation and as disease markers are subject to recent and current research 

(Nulton, 2014; Santos et al., 2018), as well as the presence of plant-derived miRNAs in 

mammalian serum (Zhang et al., 2012).  

MicroRNAs are small non-coding molecules about 22 nucleotides in length that affect 

post-transcriptional gene regulation and RNA silencing found circulating freely in blood or 
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within micro-vesicles (Zhang et al., 2012). The miRNAs are partially complementary to a few 

target mRNAs which they inactivate (Zaiou et al.,2018). Nearly all cell functions are thought to 

have miRNAs involved in their regulation, with miRNAs circulating in the blood thought to have 

a large role in the regulation of cells from a distance and cell communication. Interest in 

miRNAs and their roles within diseases and cellular processes has led to increased research in 

both healthy and diseased individuals in many species (Garcia-Elias et al., 2017). Recent studies 

have found a connection between specific miRNAs in humans and higher rates of obesity and 

metabolic diseases like type 2 diabetes. Some miRNAs in horses have also been linked to 

metabolic disease, obesity, and insulin resistance (Santos et al., 2018). The trend of increasing 

metabolic issues within horses can be linked to the shift in their diets from the natural 16 hours a 

day of grazing to two meals a day with increased non-structural carbohydrate (NSC) content. 

This study is one of the first to investigate the impact of diet on the profiles of 

endogenous miRNA levels and the presence of diet-derived exogenous plant miRNAs in horses. 

This study will add to the body of work within other mammals investigating the idea that 

miRNAs can be taken up from the diet and how diet impacts miRNAs in different species. 

Specifically, the effects of a corn supplemented diet on endogenous miRNA levels compared to a 

control diet (grass and alfalfa only) will be examined. 
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CHAPTER I: LITERATURE REVIEW 
 

 

MICRORNAS 

MiRNAs are short non-coding RNAs ranging from 18-25 nucleotides in length 

responsible for inhibiting translation and degrading mRNAs by binding to the 3’ untranslated 

regions, coding sequences, or 5’ untranslated regions (Alemida et al.,2011). A large portion of 

the human genome is affected by miRNAs illustrating their large impact upon gene regulation 

within the body (Garcia et al, 2017). Many biological functions are influenced by miRNA 

regulated genes. The first miRNA identified was lin-4 located within the genes controlling larval 

stages in the nematode Caenorhabditis elegans in 1993. The second miRNA to be discovered, 

let-7, was found in 2000 and contributes to larval stage regulation in nematodes as well (Alemida 

et al., 2011). The discovery of let-7 and its conservation across species led to thousands more 

miRNAs being discovered in a variety of different species and the identification of more 

universally conserved miRNAs. The miRNA functions within plants and animals have been 

found to slightly differ. Plant miRNAs affect RNA cleavage and degradation while animal 

miRNAs inhibit translation and alter transcription (Taylor et al., 2014). In addition to their gene 

silencing activity, miRNAs have also been found to interfere with regulatory proteins through 

decoy activity. Decoy activity is when a miRNA binds to a region, instead of the normal gene, an 

example being when miR-328  was found to independently bind to the non-seed region of 

hnRNP E2 and prevented the binding of CEBPA with the protein (Alemida et al., 2011). The 

specific function of many miRNAs has yet to be discovered and new research continues to 

identify new functions. 
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Biogenesis 

 

MiRNA coding genes most frequently occur within the introns or intergenic regions of 

protein-coding genes. Intergenic regions are located in between genes, while introns are located 

within a gene and removed before protein assembly. For mammalian miRNAs, the miRNA 

coding gene is transcribed by RNA polymerase II (Lee et al, 2004) or in some cases RNA 

polymerase III (Gu et al, 2010). RNA polymerase II is the catalytic portion of the enzyme 

complex responsible for transcribing DNA in mRNA (Cramer, 2004), suggesting miRNA is an 

essential regulatory component for normal cellular function and can be derived from loci 

throughout the genome. Within the nucleus creating primary miRNAs (pri-miRNAs). Pri-

miRNAs have a 5’ cap and poly-adenylated 3’ and are converted by RNAse III Drosha and 

Pasha proteins within the nucleus to pre-miRNA (pre-miRNA) which are 60-100 nucleotides in 

length. The pre-miRNA is then transported into the cytoplasm by an exportin-5 dependent Ran 

protein and converted by the Dicer-1 enzyme and PACT proteins into a double-stranded miRNA 

duplex that is shorter in length than the pre-miRNA. The duplex is then unwound by helicase 

into a single-stranded mature miRNA ranging from 15-22 nucleotides in length. One strand of 

miRNA is degraded, while the other strand is incorporated into an Argonaute (AGO) protein 

complex to create the miRNA-induced silencing complex (miRISC), which acts as a mediator for 

gene silencing (Alemida et al., 2011). The biogenesis of mammalian miRNAs is illustrated in 

Figure 1. Some miRNAs contain additional sequences that control their location within the cell 

of the animal, for example, miR-29b contains an extra six nucleotide terminal motif that directs it 

back into the nucleus after formation and maturation (Hwang et al., 2007).  
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Figure 1: mammalian microRNA synthesis and mechanism of gene regulation.1. MicroRNAs are transcribed by 

RNA polymerase III (not shown in the figure) and form pri-miRNAs, one form of RNA precursors. 2.Pri-miRNAs 

are processed in the nucleus by Drosha and DGCR8, resulting in pre-miRNAs. 3. Pre-miRNAs are transported into 

the cytoplasm via exportin-5. 4. Once in the cytoplasm, Dicer continues to process the pre-miRNA forming a 

miRNA duplex with two complementary short miRNA sequences. 5. Helicase breaks apart the miRNA duplex into 

individual molecules. 6. One miRNA sequence is integrated into the RISC complex via an AGO protein (not 

pictured), while the other strand is degraded. 7. At this point, miRNAs can exert their regulatory effects on 

messenger RNAs (mRNAs) via mRNA cleavage or translational repression. Adapted from: Saif and Emanueli, 

2014. 

The biogenesis of plant miRNAs is very similar to that of mammalian miRNAs, but a few 

different plant enzymes are utilized within the process in place of their mammalian counterparts 

(Figure 2). miRNA coding genes are translated to pri-miRNAs within the nucleus by RNA 

polymerase II. The pri-miRNAs are then converted to pre-miRNAs through interactions with 

DCL1 (dicer-like 1), dsRNA-binding protein 1 (dRB1), and Hyponastic leaves1 (HYL1) which 

cleaves the RNA. The pre-miRNA is acted on a second time by DCL1 and HYL1 to form the 

mature miRNA duplex within the nucleus still. Before exiting the nucleus, the mature plant 

miRNA duplex is methylated by HUA Enhancer 1 (HEN1), an sRNA-specific methyltransferase, 

1 

2 

3 

4 

5 

6 

7 
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giving the mature plant miRNA the defining characteristic of a 2’-O-Me modification on 3’ end. 

The mature methylated miRNA is then transported into the cytoplasm by HASTY, the plant 

ortholog to Exportin-5. Within the cytoplasm plant miRNAs, like mammalian miRNAs, 

combines with an AGO protein (AGO1) to form the miRISC, however unlike mammalian 

miRNAs plant miRNAs need ATP and Hsc70/Hsp90 to help with the formation of the miRISC 

(Iwasaki et al., 2010; Nakanishi, 2016). 

 

 

Figure 2: The biogenesis of Plant miRNAs. Plant pri-miRNAs are produced from MIR genes by RNA polymerase II 

(Pol II). Pri-miRNAs are cleaved into pre-miRNAs by DCL1, DRB1, and HYL1. Pre-miRNAs are cleaved into miRNA 

duplexes by DCL1 and HEN1. MiRNA duplexes are methylated by HEN1 into mature miRNA duplexes and are 

exported to the cytoplasm through the action of HASTY. One strand is then degraded and the other is then loaded 

onto an AGO protein with the help of Hsc70/Hsp90  and ATP, to form a miRISC which influences gene silencing.  

Original Source: Liu, S. et al., 2017 
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MiRNA modes of action 

 

MiRNAs are a central component of RNA interference, a biologic process within which a 

targeted mRNA is silenced by an RNA molecule resulting in the inhibition of translation or gene 

expression. RNA interference begins when the Dicer enzyme cleaves the pre-miRNAs into 

miRNA duplexes before helicase breaks the duplex into 2 separate RNA sequences. One of the 

sequences degrades while the other miRNA sequences bind to an RNA-induced silencing 

complex (RISC), to form the miRISC complex that is ultimately responsible for the destruction 

of the target mRNA resulting in gene silencing (Sontheimer, 2005). The exact mechanism to 

achieve gene silencing differs between plant and mammalian miRNAs. Mammalian miRNAs 

target the untranslated regions of mRNAs and bind to the target region with the standard base 

pair matching conventions. The mechanism of gene silencing is determined by the degree and 

nature of complementary nucleotides within the target region compared to the miRNA. Cleavage 

of the target region by Ago2 endonucleases requires extensive near-perfect matches of base 

pairs, in contrast, translational inhibition requires multiple sites of complementary sequences 

with minimal base-pairing in each site; Hence, why translational inhibition is the more common 

mode of gene silencing for mammalian miRNAs (Bartel 2004, Yekta et al., 2004). Within 

mammals, the entire miRNA may not match the target mRNA completely resulting in RNA 

hybrids that contain bulges that alter the specificity and could impact the gene silencing ability of 

the miRNA (Brennecke et al., 2005). Plant miRNAs achieve gene silencing mainly through the 

process of mRNA cleavage, however, they can also do translation inhibition (Broderson et. al, 

2008). Plant miRNAs unlike mammalian miRNAs target the coding regions of mRNAs and 

cleave them apart. As a result of cleaving the mRNA apart, it decays, an irreversible process, 
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while translational inhibition can be reversed.  It is generally accepted that multiple miRNAs can 

bind to the same targets on genes and miRNAs can have multiple targets they can influence. This 

means that plant and mammalian miRNAs could potentially target some of the same genes 

resulting in silencing of the same gene, highlighting the importance of understanding where 

miRNAs are located within the body and how they can move throughout the body via 

circulation. 

 

Extracellular miRNAs 

 

The majority of identified miRNAs have been found within cells, but the presence of 

miRNAs outside of the cellular environment has also been well identified (Zhu et al, 2011, 

Lechhi et al, 2017). The ability of miRNAs to enter the extracellular environment and contribute 

to cell-to-cell communication occurs through secretion through five different mechanisms: 

microvesicles, exosomes, apoptotic bodies, high-density lipoproteins (HDL), or Ago protein 

complexes (Makarova et al., 2016, Sohel, 2016). Microvesicles are formed through the direct 

process of budding off the plasma membrane and fission of the two sides to encapsulate the 

contents now in the extracellular environment, they can be differentiated from exosome by 

surface markers and size (Lee et. al, 2012). Exosome also involves budding to transport their 

contents from the inside of the cell to the outside, however, they are completely formed within 

the cell by invagination of the cell wall and must receive a signal to bud off into the extracellular 

environment (Johnstone, 2006). Another potential method of transporting miRNA in the 

extracellular environment are apoptotic bodies, which are the largest of the possible methods and 

are a result of cell death via apoptosis. Apoptotic bodies are formed towards the end of the 

process of apoptosis and can contain a variety of nucleic acids in addition to miRNAs, the exact 
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impact and mechanism of miRNAs carried by apoptotic bodies are not currently known and 

future research is needed to better determine how much of a role this particular method of 

transportation impact cell to cell communication (Soehl, 2016). HDL is usually associated with 

the digestive and metabolic process, but its high affinity for water-insoluble compounds makes it 

capable of attracting and carrying miRNAs throughout the body and facilitate communication 

between cells all over the body. Unlike microvesicles, exosomes, and apoptotic bodies purified 

HDLs only contain small non-coding RNAs (Vickers et al., 2011). The fifth method potentially 

responsible for extracellular miRNAs has already been mentioned as AGO protein complexes 

form RISC complexes with miRNA, AGO2 is part of the RISC and has been found with miRNA 

in cell culture media (Turchinovich et al., 2011). A study by Arroyo et al. demonstrates that only 

about 10% of cell-free miRNA within human plasma was released through microvesicles, with 

potentially up to 90% of the cell-free miRNA found within circulation we found to co-fraction, 

using size-specific chromatography, with ribonucleo-protein complexes like the AGO family 

(Arroyo et al., 2011).  Looking at studies identifying the presence of extracellular miRNAs the 

sample type, method of extraction, quantification tests, and normalization procedures all seem to 

impact the ability to identify miRNAs within the extracellular environment, making it currently 

challenging to definitively identify which of the five potential methods has the most impact upon 

cell-to-cell communication and gene regulation.  

 

UPTAKE OF DIETARY MIRNA 

 

The uptake of miRNAs from the diet is not currently fully understood and is highly 

debated. The first studies to show the possibility of diet-derived miRNAs were conducted with 

rice, a common and staple food throughout the world. Many studies have found evidence of diet-
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derived plant miRNAs within mammals, however, many contradicting studies were not able to 

find plant miRNAs within mammals, with the reliability of detection and biologically significant 

levels being the largest issues. The low repeatability of identifying dietary miRNAs in circulation 

may be due to the short window of detectability, because of their rapid clearance and degradation 

by nucleases. When miRNAs were directly injected into the vein, they were completely cleared 

from circulation within three hours (Yang et al., 2015). The detection of miRNAs within 

circulation suggests nuclease resistant forms of miRNA exist and remain in circulation for longer 

periods than those that are not resistant (Yang et al. 2016). 

MiR2911 is found within plants and was found in increased levels in the circulation of 

mice fed diets containing various plants (Yang et al., 2015; Yang et al., 2016). Mice receiving 

feed with ground honeysuckle had miR2911 expression 39-fold higher at the end of a seven-day 

feeding trial compared with before the trial (Yang et al., 2015). This miRNA was also found to 

be the most stable during digestion when compared to miR168, a plant miRNA that has also 

been found in circulation (Zhang et al., 2012), and an artificial mRNA (Yang et al.,2016). In 

contrast, corn specific miRNA was not found in circulation when fed to mice with a water 

gavage, likely uptake into circulation may be inhibited by excessive and early degradation during 

the process of digestion (Huang et al., 2018). Corn specific miRNA was also not found in equine 

circulation six hours after consuming 1 pound of corn, however, a common plant miRNA, miR 

156a, was identified within serum exosomes at this time point as well as within the tissues 

(Nulton, 2014). Exosomes are endosome derived extracellular lipid-membrane bound vesicles 

that transport proteins and RNAs between cells. One theory of how miRNAs from food exit the 

lumen of the intestines and into other systems within the body involves the miRNA being 

encapsulated by nutrient particles from the food which are then absorbed into the lymphatic and 
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circulatory systems through the digestion process (Chan and Snow, 2017). This theory also states 

that potentially miRNA from the diet gets from the lumen of the gastrointestinal tract into 

circulation and subsequently various tissues by being packaged within exosomes or 

ribonucleoprotein (RNP) complexes, like HDL. Once packaged the RNP complexes or exosomes 

cross the epithelium by transcellular transportation, paracellular transportation, or immune 

conveyance mechanisms. Once through the barrier, they can go into the circulatory system, 

lymphatics system, or nearby connective tissue cells. Within the circulatory system, the 

exosomes and/or the RNP complexes are carried throughout the body for possible uptake by a 

wide variety of tissues (Chan and Snow, 2017). This process is illustrated in Figure 3. 

 

Figure 3: Diagram of a possible method of Dietary miRNA uptake from the digestive tract. To potentially 

impact gene expression within a mammal the miRNAs from the diet must be absorbed from the digestive tract into 

circulation or intestinal tissues. A) miRNAs from the diet ( potentially packed in 1) RNP complexes or 2) within a  

vesicle)  cross the epithelial barrier (white cells) via transcellular, paracellular, or immune cell conveyance (gray). 

Once through the epithelial barrier, the miRNAs are likely taken up by stromal cells (brown), neighboring cells, 

lymph systems (light grey) or enter the circulatory system (red). B) once in the circulatory system the miRNAs 

could exit via many mechanisms to a wide variety of cells, tissues, and organs. The molecular level of this process 

warrants more studies to develop a better understanding. Original Source: Chan and Snow, 2017. 
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Transcellular pathways through the epithelium involve the exosome binding to the cell 

membrane or transported whole into the cell via protein transporters before passing through the 

cytoplasm and being transported to the outside of the cell on the other side. Paracellular 

transportation involves the exosome or RNP complex to pass between the junctions between the 

epithelial cells. In a normal healthy individual, there should be tight junctions between the 

intestinal epithelial cells. The presence of tight junctions in a healthy individual would make 

paracellular transport unlikely, however, in an individual that has compromised epithelium 

within their intestines, these tight junctions may be weakened allowing paracellular transport to 

occur. Within humans the epithelial barrier begins to lose its function with age and allows for 

some paracellular transport, this can also potentially occur with inflammation, toxins, and 

infection (Chan and Snow, 2017). Horses also can have a breakdown in the integrity of their 

intestinal epithelium allowing for paracellular transport. This equine condition has also been 

termed ‘leaky gut’ as it has been in humans. Within horses, the breakdown of this barrier can be 

attributed to a variety of causes including stress, ischemic reperfusion injuries (as would occur 

after a colon torsion), pathogens, inflammatory bowel disease, microbiota, and nutrition. Within 

horses, the nutritional component most often believed to cause damage to the epithelium is an 

overabundance of starch which can lead to acidosis which damages the intestinal lining ( Stewart 

et al., 2017). This potential for more uptake in individuals with compromised epithelial barrier 

could explain why there is so much variation in the detection of miRNA uptake by individuals. 

The surface of the intestines is composed of more than just epithelial cells, there are also 

immune cells integrated within the surface that could also play a potential role in the uptake of 

miRNA from within the lumen. Immune cells that populate the surface of the intestines include 

M cells, B cells, T cells, macrophages, and dendritic cells (Peterson and Artis, 2014). Some plant 
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nanoparticles have been identified that target intestinal macrophages, but they do not appear to 

be dependent upon miRNAs and no data shows the delivery of miRNAs to other cells via 

immune cell delivery( Mu et al., 2014).  

Within mammals the possibility of miRNAs crossing the intestinal epithelium and 

becoming widely spread throughout the body is complicated and would likely require multiple 

rounds of ingestion, crossing the intestinal barrier, and uptake by cells to even hold the 

possibility of reaching distant tissues. This brings in to question the frequency and dosage of 

miRNAs within the food that would be needed to achieve systemic spread and uptake of these 

dietary miRNAs (Chan and Snow, 2017). Although there are many theories the exact 

mechanisms involved in the uptake of exogenous miRNA into mammalian circulation still need 

further exploration as current studies contradict each other and the mechanisms involved in 

miRNA absorption are still not fully understood.  

 

miRNA ROLE IN DISEASE 

 

The role of miRNA in disease has been an increasingly popular area of research since its 

discovery and categorization. The level of expression of certain miRNAs has been found to 

differ in diseased mammals versus healthy mammals. The use of miRNAs as biomarkers has 

largely been within patients suffering from a wide variety of cancers, viral infections, nervous 

system disorders, cardiovascular diseases, and metabolic diseases. Specific miRNA changes 

have been found for large B-cell lymphoma, lung cancer, breast cancer, liver cancer, pancreatic 

cancer, ovarian cancer, and prostate cancer (Wang et al., 2015). Due to the increased occurrence 

of human metabolic diseases like diabetes, research has been done to identify miRNAs that can 
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be used as biomarkers for the disease and their role as regulators of metabolic functions (Wang et 

al., 2015). These studies have identified many miRNAs that contribute to human metabolic 

diseases, with more research needed to confirm the validity of the current data. 

 

Obesity 

 

 Obesity and being overweight occur when an individual has a high percentage of their 

body composed of fat. Obesity is a complex metabolic disorder characterized by an excessive 

accumulation of fat in various body parts (Khan et al., 2015). Within horses, fat tends to 

accumulate along the crest of the neck, the withers, the loin, the tailhead, behind the shoulders, 

and over the ribs (Figure 4), or generally distributed where abnormal amounts of fat can be found 

all over the body.  Within horses using the Henneke body condition scoring system a score of 6-7 

is considered overweight and 8-9 is considered obese, description of each score within this 

scoring system can be found in Appendix Table IV. Fat is made up of adipose tissue and is not 

just an energy-storing tissue, it also releases adipokines which help to regulate immune function, 

energy metabolism, reproductive status, and cardiovascular function. The most well-known and 

studied adipokines are leptin, adiponectin, angiotensin, and more recently resistin (Radin et al. 

2009). Leptin is released from white adipose tissue and acts on the hypothalamus, which contains 

multiple nuclei responsible for regulating appetite and metabolism. 

When an animal has an increase in fat mass, like in the case of an animal becoming 

obese, dysregulation in the production of adipokines occurs resulting in diseases within patients. 

Recent studies have begun to identify miRNAs linked to the promotion and inhibition of 

adipogenesis and the development of obesity, and obesity-related diseases, which could also 

have impacts upon adipokines (Zaiou et al., 2018). Support for miRNA’s role in adipogenesis 
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came from studies showing that adipogenesis was altered when the DICER enzyme, which is a 

key factor in miRNA generation, was knocked out and decreased fatty acids were present within 

the body (Mudhasani, et al., 2010). Additionally, miRNAs circulating within the body have been 

found to change in patients with diseases like type 2 diabetes mellitus (T2DM), hypertension, 

hepatic injury, and atherosclerosis (Rottiers and Narr, 2012).  Type 2 diabetes mellitus is a 

metabolic condition in humans, dogs, and cats most commonly believed to be caused by insulin 

resistance with the majority of individuals with this disease being classified as obese or on the 

top end of overweight. The Let-7 family of miRNAs has been shown to regulate glucose 

metabolism in a variety of different organs, mice in which Let-7 was knocked down showed 

increased glucose tolerance and a reduction of fat mass (Frost and Olson, 2011). Within horse 

the reports of true cases of Diabetes mellitus are rare, but Equine Metabolic Syndrome (EMS) 

has many similar factors involved within it.  EMS is most often associated with obesity, insulin 

dysregulation, and laminitis signs similar to how T2DM can manifest in humans who are often 

obese, insulin-resistant, and can develop neuropathies in lower extremities if left unmanaged. 

There are currently no miRNAs within horses identified for use as biomarkers of EMS. Most 

Horses with EMS often are classified as obese, but the most consistent and important feature of 

EMS is insulin dysregulation, with laminitis being the consequence of horses with clinical EMS. 

The trend for horses with EMS also being obese is likely due to the decreased production of 

adiponectin which is associated with insulin sensitivity and a reduction in inflammation, making 

it inversely related to obesity and insulin resistance. (Durham et al., 2019). The reduction in 

adiponectin in obese individuals allows for a chronic state of low-grade inflammation to persist 

which also favors the development of insulin resistance.  
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Figure 4: Areas of evaluation when body conditioning horses with the Henneke system. When body condition 

scoring a horse area of interest for fat deposition are along the neck, withers, ribs, tailhead, behind the shoulder, and 

if a crease is formed down the back. Each area should be evaluated and scored to accurately give the horse’s overall 
score as not all horses evenly distribute fat across these areas. Source: Henneke et. al, 1983. 

 

Insulin Resistance 

 

Insulin resistance (IR) is a state of reduced responsiveness of tissues to insulin, regardless 

of if it is at normal or elevated levels within the blood; this mainly affects hepatic, skeletal 

muscle, and adipose cells within tissues (Bhattacharya et al. 2007, Frank and Tadros 2013). 

Insulin resistance is an area of special interest within horses as it not only plays an important role 

in EMS but also has been associated with the development of laminitis in horses (Bertin and de 

Laat, 2017).  In the early stages of insulin resistance, the beta cells of the pancreas compensate 

by producing more insulin to minimize the period during which blood glucose levels are 

elevated. As the condition continues the insulin receptors in the tissue become more desensitized 

to insulin and the pancreas continues to produce waves of insulin to produce a strong enough 

signal to bring glucose concentration down to basal levels.  There are a few mechanisms that 
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have been identified as contributing to the tissue insulin receptor. The first is pre-receptor 

abnormalities resulting in reduced insulin concentration or receptors for the tissue of interest. 

The second and more common one is for abnormalities in signal transduction to occur which 

results in IR. The abnormal signal transduction could be attributed to reduced tyrosine-kinase 

activity and reduced receptor phosphorylation which then causes a reduction in the 

phosphorylation of insulin receptor substrate-1 and decreased phosphatidylinositol 3-kinase 

activity. The third mechanism is abnormalities in the metabolism of glucose within cells, 

regulated by hexokinase and glycogen synthetase, which could be reduced by insulin-dependent 

uptake of glucose and its subsequent storage (Treiber et al., 2006). Hyperinsulinemia occurs 

when there is too much insulin within circulation for the amount of stimulus the body received 

and can occur intermittently or persistently (Frank and Tadros, 2013). Hyperinsulinemia doesn’t 

only occur as a result of tissue insulin resistance it can also happen for other physiological 

reasons like an exaggerated response to a meal containing carbohydrates resulting in transient 

hyperinsulinemia with no insulin-resistant tissue present (de Laat, McGree, and Sillence, 2016).  

When healthy horses were infused within insulin to create a hyperinsulinemia state some 

individuals did develop laminitis (Asplin et al., 2007) illustrating a link between laminitis and 

hyperinsulinemia. This suggests that insulin resistance and hyperinsulinemia could separately 

contribute to the development of laminitis in horses, rather than both factors needing to be 

present. Laminitis is a painful condition and can have a serious impact on a horse’s quality of 

life, there are currently no consistently effective ways to treat laminitis making prevention the 

best option for many horses, especially horses with EMS. Many different tests can be done to 

diagnose a horse with insulin resistance or hyperinsulinemia including fasting glucose tests, the 

euglycemic hyperinsulinemic clamp test, insulin sensitivity test, or the frequently sampled 
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intravenous glucose test (Bertin and de Laat, 2017), however many of these tests are time-

consuming and expensive minimizing their useful impact to the industry as a whole. The 

development of an economical test that could identify insulin-resistant horses before they 

develop EMS or develop laminitis there would be a large impact on the equine industry and 

general equine welfare. 

The profile of miRNAs endogenous to horses has recently been looked at to determine if 

they differ between horses that are insulin resistant and horses that are considered insulin 

sensitive or normal. Insulin resistant horses were found to have lower levels of five miRNAs 

(esa-mir-147b, esa-mir-370, esa-mir-376c, esa-mir-139- 5p, and esa-mir-1839), higher levels of 

three miRNAs (esa-mir-129a-5p, esa-mir-770, and esa-mir-140-3p) and lacking six miRNAs 

compared to the insulin-sensitive horses (Santos et al., 2018). The mir-376 family has been 

shown to have implications on the regulation of pancreatic beta-cells, cell growth, and could 

potentially serve as a predictive biomarker for obesity. Specifically, mir-376c has been found to 

lack expression in the pancreatic islets of rats with type 2 diabetes (Santos et al.,2018). More 

studies within horses should be conducted to confirm the potential biomarkers. 

Laminitis 

 

Equine laminitis can be caused by a wide range of events, most commonly the ingestion 

of a large amount of NSC within a short period. This large dose of NSC is usually through the 

ingestion of large quantities of grain or fresh grass. During the digestion of these feeds, dysbiosis 

occurs resulting in the release of toxins that weaken the laminae of the hoof and cause 

inflammation (Pollitt and Visser, 2010). In recent years the effect of long-term obesity on the 

incidence of laminitis has also been explored, in addition to miRNA biomarkers for this 

condition. Horses that are obese are in a chronic state of inflammation and have higher 
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mechanical loads for the laminae to support. This leads to the inflammation and weakening of 

the laminae over time from the strain of supporting the extra weight, in addition to hormonal 

changes that occur. Feeding horses NSC at low levels for a long period does not have the same 

detrimental effects as episodes of high NSC intake, such as grain overload, however, more 

research needs to be done to indicate if a diet with NSC at a low level alters the metabolism of 

circulating miRNAs associated with laminitis. Three miRNAs have been found to be expressed 

in different levels in animals displaying acute laminitis, with levels of miR-23b-3p, miR-145-5p, 

and miR-200b-3p being significantly higher in affected horses (Lecchi et al., 2017). The 

accuracy of the diagnosis of acute laminitis using the miRNA profile of horses was found to be a 

good indicator of acute laminitis and positively correlated with the composite pain scale and 

horse grimace scale that have been used to determine the severity of lameness. Although the 

grimace scale is a good indicator of pain, it is not completely reliable as a diagnostic tool as it 

becomes unreliable when looking at stills from videos or photos with no context of 

environmental factors that could be affecting the horse’s expression (Lecchi et al., 2017). Using 

miRNA as biomarkers for diseases in mammals is increasing in use as more studies identify 

miRNA expression linked to disease. 

 

DIETARY REGULATION OF ENDOGENOUS miRNA 

Diet has a huge impact on how mammalian systems function, with many studies about 

the impact of different foods and quantities on health being conducted, including on how diet 

impacts miRNAs. Nutrients and micronutrients within diet have been linked to modifications in 

miRNA profiles within mammals (Garcia-Segura et al., 2013). Diets deficient in amino acids 

have been found to produce proteins that compete with miRNAs for binding sites, altering the 



20 

regulatory abilities of miRNAs without the levels of miRNA changing (Bhattacharyya et al., 

2006). Amino acids can also cause an increase in miRNA expression, Drummond et al. found 

that after administering a mix of essential amino acids to human subjects there was an increase in 

levels of miR-1, -23a, -208b, and -499 within skeletal muscle biopsies (Drummond et al., 2009). 

The presence of some fatty acids within the diet has been found to alter miRNA expression. 

Diets supplemented with butyrate, a short-chain fatty acid produced by bacteria in mammalian 

colons, resulted in the upregulation of miR-10a and miR-24 which can target the HOXA1 and 

Notch1 genes, ultimately affecting the differentiation of cells (Tzur et al., 2008). Fish oil when 

added to the diet has been found to upregulate tumor-suppressing miRNAs within intestinal cells, 

as well as effect steam-cell regulatory pathways through changes in steady level miRNAs (Cui et 

al., 2017, Davidson et al., 2009). High-fat diets have also been found to increase miR-143 and -

145 in mice, the increase in miR143 resulted in increased fasting plasma insulin levels, impaired 

glucose, and insulin tolerance (Jordan et al., 2011). The nutritional status of pregnant animals is 

believed to have a tremendous impact on the likelihood of offspring developing metabolic 

diseases. Adult offspring of female mice fed a high-fat diet before conception showed reduced 

levels of let-7a, let7b, let7-c, miR-26a, -122, -192, -194, -483, -494-, and -709 during their 

pregnancy and lactation, in addition to increased expression in the liver of insulin-like growth 

factor-2 (Igf2), these findings indicate that epigenetic mechanisms may be involved in the 

maintenance of diet-induced gene expression being maintained into adulthood (Zhang et al. 

2009). The let-7 miRNA family regulates glucose metabolism in multiple organs (Frost and 

Olson, 2011), while miR-122 is a key regulator in cholesterol and fatty acid metabolism (Esau et 

al., 2006). The long-term impacts of gestational nutrition on offspring and miRNAs within the 

body still requires more research.  Carbohydrates within the diet are a major source of glucose 
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for many mammals, glucose level within the body has been identified as a factor influencing 

miRNA expression (Garcia-Segura et al., 2013). Hyperglycemia within mice increased 

expression of miR21 in the kidneys of type 1 diabetics mice and resulted in decreased expression 

of renal proteins responsible for suppressing tumors that result in diabetic nephropathy (Dey et 

al., 2011). On the other end of the spectrum, glucose depletion in mice has been shown to induce 

the production of miR-466h-5p, which plays a role in regulating myocardial hypertrophy, as a 

result of oxidative stress and the inhibition of histone deacetylation (Druz et al., 2012). 

Micronutrients including vitamins, vitamin derivatives, and phytochemicals have also been 

linked to changes in miRNAs levels (Garcia-Segura et al., 2013, Cui et al., 2017). Continued 

research into the effects of diet on miRNA expression could result in a better understanding of 

metabolic diseases and identify miRNA candidates for therapies of these conditions. 

Diet has been found to affect the endogenous miRNA profiles of horses. Nulton found in 

her study horses fed a corn supplemented diet had 37 miRNAs within serum exosomes with 

different levels of expression after 23 days on the diet. Decreased levels in several members of 

the let-7 family (let-7a,c,d, and g), miR-29a, and -143 were found, these miRNAs all relate 

insulin sensitivity and glucose tolerance (Rottiers and Näär, 2012), MiR-27b was also found to 

decrease after supplementation and is also decreased during the process of adipogenesis. In this 

same study three miRNAs linked to adipocyte development (miR 17, -20a, and -20b) and miR-

148, associated with increased insulin biosynthesis, were all found to increase after corn 

supplementation (Nulton,2014). Nulton found miR-20b also increased in horses supplemented 

with rice bran, in addition to an increase in levels of miR-129a-3p which is associated with 

prohibiting cell proliferation (Wu et al., 2010). The rice supplemented horses within Nulton’s 

study showed a decrease in miR-33b which has is associated with the control of fatty acid 
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oxidation and the formation of high-density lipoproteins (Dávalos et al., 2011). To better 

understand the impact of diet on equine miRNA profiles more studies should be conducted, 

perhaps with a wider variety of diets given to horses in different life stages and levels of work. 

DIGESTION 

Horses are considered hindgut fermenters as they are still able to utilize forages like 

ruminants but do not ferment plant matter until after the ingesta has passed through the length of 

the small intestine and into the hindgut. The primary sites for microbial fermentation in horses 

are the cecum and ascending colon. Unlike most monogastric animals, horses have a unique 

structure to their ascending colon, instead of simply traversing one side of the abdomen, the 

ascending colon of a horse doubles over on itself in a horseshoe shape and makes up a larger 

portion of the hindgut than other mammals. The increased volume of both the cecum and 

ascending colon allows microbes within to ferment forages, breaking the beta 1-4 linkages in 

cellulose and producing volatile fatty acids (VFAs) that are used within the body for the 

synthesis of lipids and glucose.  

The first step of digestion for animals is the mechanical reduction of food particles 

through mastication within the oral cavity. Also, within the oral cavity, the initial steps of 

enzymatic digestion will occur due to salivary enzymes before the food bolus is swallowed and 

travels through the esophagus to the stomach (Cheeke and Dierenfeld, 2010). The food bolus is 

moved through the esophagus by waves of muscular contraction called peristalsis. Within the 

equine stomach mechanical, enzymatic, and chemical digestion will occur to break food particles 

down further before the ingesta exits the stomach and enters the small intestine. The small 

intestine, mainly the duodenum, is the primary site of nutrient absorption in mono-gastric 

animals. Enzymes and bile enter the intestinal lumen through the duodenal papillae and continue 
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to break down food particles into absorbable compounds. As previously stated horses are hind-

gut fermenters and break down the cellulose found within plants through microbial fermentation 

within the cecum and ascending colon (Ralston, 2007). The transverse and descending colon of 

the horse mainly functions to absorb water from the ingesta and form fecal balls out of the 

indigestible portion of the feed.  

Carbohydrate digestion and  metabolism 

 

Most rations for horses today use a feed concentrate like corn, barley, or a grain mix to 

provide horses with the energy needed to perform at or above their owner’s standards. These 

feed concentrates contain non-structural carbohydrates (NSC), starches and sugars, and structural 

carbohydrates, cellulose, and lignin (Ralston, 2007). Mammals do not produce enzymes capable 

of breaking down beta1,4 linkages, as a result, they have developed means of microbial 

fermentation to break down these links in structural carbohydrates. As previously mentioned 

within horses this microbial formation happens within the cecum and large intestine and results 

in the production of VFAs which can then be utilized by the body. The production of these VFAs 

can contribute to meeting up to 30% of the horse’s energy needs for maintenance (Glinsky et. al, 

1976). The VFA produced in the largest amount is acetate which is readily usable by the body as 

an energy source, propionate and butyrate are also produced through microbial fermentation. 

Non-structural carbohydrates such as starch are primarily digested in the foregut of the 

horse. As food exits the stomach through the pylorus and into the duodenum a small amount of 

HCl also enters the intestines and triggers the release of pancreatic enzymes, including amylase, 

into the intestinal lumen which breaks down ingested carbohydrates particles until they have all 

been converted to glucose or glycogen. Some starches can be classified as resistant starches and 

pass through the small intestine into the large intestine without being broken down due to the 
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enzymes being unable to properly attach the starches (Englyst and Englyst, 2005).  Glucose is 

then absorbed through the intestinal wall and into the blood to be distributed throughout the body 

to cells in need of glucose. Cells put out insulin receptors when glucose is required and upon 

insulin binding glucose is brought through the cell membrane into the cytosol (Cheeke and 

Dierenfeld, 2010). A marked increase in insulin production occurs after a meal as a breakdown 

of the carbohydrates within the meal causes an increase in blood glucose concentration, requiring 

insulin to push the glucose into cells. Within the cytosol of the cell, glycolysis occurs which 

converts the glucose into pyruvate that can be utilized by the citric acid cycle and electron 

transport chain within the mitochondria to produce ATP. Recent studies have found the ingestion 

of large amounts of carbohydrates can lead to transient hyperinsulinemia  in some horses and 

long-term supplementation of diets high in NSC contribute to increased insulin resistance (de 

Laat, McGree, and Sillence, 2016, Durnham et al., 2019, Treiber et al., 2006) 

Lipid digestion and metabolism 

 

Lipids are an important part of the equine diet as well as integral to the structure of cells 

as cell membranes are made up of phospholipids. When a lipid is ingested the first step to 

breaking down the fat involves lipase enzymes emulsifying the triglyceride into free fatty acids 

and a mono-glyceride, this process starts in the mouth with lingual lipase and continues in the 

duodenal lumen with pancreatic lipase. Due to the hydrophobic nature of lipids they join and are 

surrounded by bile salts to form a micelle. The micelles are then absorbed through the intestinal 

wall into the enterocytes where they have broken down into fatty acids and mono-glycerides 

again (Cheeke and Dierenfeld, 2010). Within the enterocytes, the lipid by-products will either go 

through the mono-glycerol acetyltransferase (MAG) pathway or the Phosphatidic Acid 

Phosphatase (PAP) pathway to reassemble the triglyceride into either a chylomicron or a VLDL 



25 

(very low-density lipoprotein). The PAP pathway requires glucose to be converted into glycerol 

to use within the process of reassembling the triglyceride, unlike the MAG pathway which 

utilizes the mono-glyceride present within the cell to create triglycerides to put into VLDLs and 

chylomicrons. Once in the lymphatic system VLDLs and chylomicrons become mature and have 

the membrane receptors required to bind to high-density lipoproteins (HDL). After binding to 

HDL, the lipoproteins are transported to adipose tissues with lipoprotein lipase, this results in the 

fatty acids entering the adipose cell where they are reassembled into triglycerides and stored until 

use, while the glycerol backbones are transported to the liver and used in gluconeogenesis.  

Protein digestion and metabolism 

 

Protein metabolism in horses starts within the stomach where hydrochloric acid and 

pepsin denature the proteins through hydrolysis starting at the N-terminal. Pepsin is the activated 

form of pepsinogen which is secreted by chief cells within the mucosal layer of the stomach. As 

polypeptides enter the small intestine secretin and cholecystokinin are released. The proteases 

trypsin, chymotrypsin, and carboxypeptidase are also released into the small intestine from the 

pancreatic duct and further digest the proteins until they are individual amino acids. The amino 

acids are absorbed by the intestinal epithelial cells and released into circulation (Cheeke and 

Dierenfeld, 2010). The amino acids travel through the hepatic portal vein where the liver extracts 

any needed amino acids before the blood is pumped throughout the body to be used in protein 

synthesis, converted to fat, or used within the citric acid cycle in the form of acetyl CoA.  

CONCLUSION 

 

 The targets and impacts of miRNAs on various genes continue to be an area of research 

as we try to understand what roles they play in the everyday functioning of plants and animals, 
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identify new biomarkers, and investigate their ability to be used as a therapeutic agent. Early 

miRNA research largely focused on the role miRNAs play in cancers, tumors, and diseases 

afflicting humans, often using mouse models. Many conditions experienced by humans can be 

modeled within or are found within companion animals, making research into miRNAs profiles 

within animals like horses and dogs in addition to the normal animals used in studies like mice 

and pigs important in the development of information that can be used for translational medicine 

purposes. To better determine if the uptake of diet-derived miRNAs is truly possible more 

research needs to be conducted looking at the stability of miRNAs in the digestive tract and the 

exact method of miRNA transport from the intestinal lumen into circulation, this could also help 

to create ways of using oral supplementation of encapsulated miRNAs as a therapy for a variety 

of diseases. Diet is known to have a large impact on the overall health of animals and diets high 

in NSC have been associated with a higher incidence of insulin resistance within horses 

(Durnham et al., 2019). miRNAs hold a large potential to act as biomarkers for a variety of 

diseases and the creation of more economical tests for diagnosis of diseases and early detection 

of at-risk individuals to allow for appropriate preventive measures to be taken.  

 The equine industry has seen an increase in obesity as more horses are kept in stalls with 

lower activity levels, but many still receive some sort of concentrated feed. Many commercial 

grain mixes fed to horses contain corn, as it is a cheap form of concentrated energy. Corn has a 

large amount of NSC which has been linked to the development of insulin resistance (Durham et 

al., 2019). Recent studies within horses have identified miRNAs within horses that could be used 

as biomarkers for insulin resistance in horses (Santos et al., 2018). Based upon the evidence for 

diet affecting endogenous miRNA profiles within animals and the ability for diet-derived 

exogenous miRNAs to be taken up into circulation, we hypothesized that supplementing corn to 
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horses would result in the uptake of a corn specific miRNA (Zma-mir827-5p) and changes in the 

profiles of endogenous miRNAs within muscle and serum. 
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CHAPTER II: IDENTIFICATION OF PLANT MICRORNAS IN EQUINE SERUM AND 

SKELETAL MUSCLE 

 

 

INTRODUCTION 

Nutrigenomics is the study of the effects of food and its elements on the expression of 

genes and how the nutritional environment is impacted by genetic variation. This area of science 

focuses on trying to understand the interaction between specific nutrients and bioactive 

components of food with genome, proteome, and metabolome to understand how specific 

nutrients or dietary regimes affect health (Mead, 2007). But despite many studies being done 

within this area, there is still not a clear understanding of exactly how some elements of food, 

like miRNAs, impact health. The ability of mammals to uptake exogenous miRNAs from food 

has been demonstrated (Zhang et al., 2012; Mu et al., 2014, Yang et al., 2015; Yang et al., 2016) 

with both plant-derived and mammalian derived miRNAs being found within the circulation.  

miRNAs are small non-coding nucleotide sequences that affect post-transcriptional gene 

regulation and RNA silencing (Zhang et al. 2012). Plant miRNA specifically affects this process 

through RNA cleavage and degradation (Taylor et al., 2014). 

The ability of mammals to uptake plant-derived miRNAs has been previously shown and 

suggests that plant miRNAs might be able to play a role in gene regulation within mammals, 

however, the exact mechanism of transfer and the levels needed within cells to have an impact is 

still debated (Chan et al., 2017).  Some plant miRNAs have been found to have targets within 

mammals (Zhang et al., 2012, Liu, Y. et. al, 2017), suggesting that diet may have a bigger impact 

upon animal health than was previously thought. More studies confirming the presence of plant 

miRNA in mammalian circulation and identification of more target sequences could hold the 
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possibility of novel treatments and a further understanding of the interaction between diet, 

insulin resistance, and obesity.  

Previous studies looking at dietary miRNAs have mostly been conducted with mice, pigs, 

and human subjects, with few studies using horses. This study was most interested in if feeding 

corn would result in the presence of a corn specific miRNA within horses. We hypothesized that 

plant miRNAs can be found within equine serum and skeletal muscle.  

MATERIALS AND METHODS 

Animal Care and Feeding Protocols 

All experiments were approved by the Colorado State University Institutional Animal 

Care and Use Committee. Twelve horses were used within this study: two were leased from 

Colorado State University and ten were already being used for another project being conducted 

at Colorado State University’s Equine Reproduction Lab (Fort Collins, CO). All twelve horses 

were kept in a dry lot with free-choice water and hay for a 21-day adjustment period before the 

feeding trial. The horses were all Quarter Horse type mares. Before the start of the 28-day 

feeding trial, the horses were randomly assigned to either the control group or the corn 

supplemented diet group. Before starting the feeding trial, all horses were weighed, and body 

condition scored. The horses were fed to meet the minimum nutritional requirements for 

maintenance and feeds were analyzed to determine nutritional composition. The horses were fed 

chopped hay and corn, if in the treatment group, once daily in the morning. The control group 

received 20 lbs. (9kg) /hd/d of chopped mixed alfalfa and grass hay daily, while the corn 

supplemented group received 20lbs (9kg) /hd/d of chopped mixed alfalfa and grass hay and 1lb 

(453 g)/hd/d of steam-flaked corn, these diets were not iso-energetic and both groups had access 

to round bales. Chemical analysis of feeds was performed to determine nutrient composition 
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(Appendix Table III). The horses on the corn supplemented diet were gradually acclimated to the 

diet over 8 days with individual feed bags being utilized to ensure each horse had the correct 

amount of corn offered to them at each feeding. On days 1-3 horses were fed ¼ lb. (113 g) of 

corn at each feeding, on days 4 and 5 the horses were moved up to ½ lb. (226g)  per feeding, 

days 6-7 consisted of ¾ lb. (340 g)  per feeding. Horses received the full 1 lb. (453 g) of corn 

from day 8 on.  

Serum and Tissues Collection 

Serum Collection 

10 mL serum separator blood tubes (Becton, Dickinson, and Company (BD), Franklin 

Lakes, NJ)  were used for all blood collections with two 10mL tubes collected at each time point. 

Blood was collected before the feeding trial began through jugular venipuncture and after 28 

days of supplementation at 0, 15, 30, 45, 60, 75, 90, 105, and 120 minutes after eating through 

intravenous catheters. One sample was also collected 360 minutes after feeding through jugular 

venipuncture. The intravenous catheters were placed aseptically and secured with a suture at the 

start of the 120-minute collection period, after each blood collection the lines were flushed with 

heparinized saline to avoid clotting within the catheter and clamped. Blood samples were then 

allowed to clot at room temperature for 30 minutes at a 45° angle before centrifugation for 10 

minutes at 2,000g to separate serum. The serum was separated off and placed into a 

polypropylene tube and stored at -80° C until RNA isolation. 

Muscle Biopsy collection  

Before starting (day 0)  and after the completion of the feeding trial (day 28), muscle 

biopsies were taken from the Gluteus medius muscle of the horse. Biopsies were taken from the 

left side of the horse before the feeding trial and from the right side at the end of the trial. The 
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biopsies were obtained by first shaving the hair off and scrubbing the site with betadine and 

alcohol before locally blocking the area through subcutaneous administration of lidocaine around 

the biopsy area. Once blocked using an aseptic technique a biopsy needle was inserted midway 

between the tuber coxae and ischiatic tuberosity to a depth of 6cm to obtain the tissue sample. 

Biopsy samples were placed into sterile cryotubes, then snap-frozen in liquid nitrogen before 

being stored at -80°C until RNA isolation. 

RNA Isolation from Serum 

RNA was isolated from equine serum using the manufacturer’s protocols for TRI 

Reagent® BD (Molecular Research Center, Inc. Cincinnati, OH). 500µl of serum was added to a 

tube along with 10µl Polyacryl carrier and 750 µl of TRI Reagent® BD. After samples were 

lysed using the TRI Reagent® BD, 200µL of chloroform was used to separate the RNA, DNA, 

and protein portions of the sample and allowed to sit at room temperature for 15 minutes before 

centrifuging the samples for ten minutes at 12,000g at 4⁰C. The RNA portion was then 

transferred to a new tube and precipitated with isopropanol and a Sodium acetate salt solution 

(pH 5.4). After RNA precipitation had occurred samples were centrifuged for 10 minutes at 

12,000g and the supernatant was pipetted off. The pellet was then washed with 1 mL of 75% 

ethanol. This washing procedure was repeated two more times, for a total of three ethanol 

washes per sample. The sample was then tested on a Nanodrop® Spectrophotometer ND-2000 

(Thermo Scientific, Wilmington, DE) to determine RNA concentration. If samples had a 

concentration higher than 150 ng/ µL of RNA they were treated with DNA-free DNase 

Treatment and Removal Reagent (Invitrogen/Life Sciences, Grand Island, NY) to remove 

genomic DNA then RNA purity was re-assessed. If RNA concentrations were below 150ng/µL 

then they were not subjected to the DNase treatment to ensure enough RNA was present for 
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adequate amounts of cDNA to be generated later. Samples were then stored at -80°c until the 

generation of cDNA through reverse transcription occurred. 

RNA isolation from Tissue 

RNA isolation from skeletal muscle was accomplished through grinding the samples with 

a mortar and pestle that had been previously washed with ethanol and nanopure water to ensure 

all contamination was removed. The mortar and pestle were then conditioned with liquid 

nitrogen and the muscle sample was placed into liquid nitrogen within the mortar and ground 

into a fine powder. The powder was then transferred to a clean tube and Trizol (Thermo 

Scientific, Wilmington, DE) was added according to the manufacturer’s protocols to lyse the 

cells within the sample. After lysing the sample 200µL of chloroform was used to separate the 

RNA, DNA, and protein portions of the sample and allowed to sit at room temperature for 15 

minutes before centrifuging the samples for ten minutes at 12,000g at 4⁰C. The RNA supernatant 

portion was then transferred to a new tube and precipitated with isopropanol. After RNA 

precipitation had occurred samples were centrifuged for 10 minutes at 12,000g and the 

supernatant was pipetted off. The pellet was then washed with 1 mL of 75% ethanol. This 

washing procedure was repeated two more times, for a total of three ethanol washes per sample. 

The sample was then tested on a Nanodrop® Spectrophotometer ND-2000 (Thermo Scientific, 

Wilmington, DE) to determine RNA concentration the samples were treated with a DNA-free 

DNase treatment and removal reagent to remove any genomic DNA, then RNA purity and 

concentration were re-examined. Samples were then stored at -80°c until the generation of cDNA 

through reverse transcription occurred. 
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Plant RNA Isolation 

RNA was isolated from the hay and corn samples using TRI reagent and the protocols 

produced by the manufacturer with some modifications. After the sample was homogenized 

using a mortar and pestle, previously cleaned with ethanol and nanopore water, and allowed to 

dry, it was combined with 750 µL of TRI reagent in a 1.75-ml tube and homogenized. Any 

extracellular material was removed through centrifugation at 12,000g for 10 minutes and the 

supernatant was transferred to a new tube for further preparation. As mentioned above, the RNA 

phase was separated using 200 µL chloroform. The RNA precipitation was conducted through 

the addition of 250 μL isopropanol and 25 μL salt precipitation solution. After precipitation 

occurred the sample was centrifuged for 10 minutes at 12,000g and washed with 75% ethanol, 

this step was repeated two more times. The sample was treated with a DNA-free DNase 

treatment and removal reagent to remove any genomic DNA and RNA purity assessed with a 

Nanodrop® Spectrophotometer ND-2000 (Santos et al., 2018). Samples were then stored at -

80°c until the generation of cDNA. 

Reverse Transcription 

cDNA was generated using the miScriptII RT kit (Qiagen Valencia, CA). 4µL 5x HiSpec 

Buffer and 2µL 10x Nucleics mix was used for the master mix for each reaction. Each tube 

contained 6µl of the master mix, enough RNA for 1000ng per reaction, and nuclease-free water, 

the total volume of each tube was 18µl. After mixing the reaction 2µL of Reverse transcriptase 

mix was added to the tube and the tube placed in a thermocycler. The reaction was incubated for 

60 minutes at 37°C, then at 95°C for 5 minutes. The cDNA was then diluted with 100µL of 

nanopure water for a total volume of 120 µL and a cDNA concentration of 500 pg/μL. The 

diluted cDNA was stored at -20⁰C until further use in real-time PCR.  



34 

 

Real-Time PCR Analysis 

Three mature plant miRNAs were selected for analysis due to previous reports of their 

expression in serum, or expression in the specific plant material feed (Xue et al., 2008; Zhang et 

al., 2009; Jiao et al., 2011; Zhang et al., 2012, Nulton, 2014) (Appendix table II). The first plant 

miRNA used was Ath-miR156a which was found to be conserved across alfalfa and corn and 

identified within equine tissue and serum previously, Zma-miR827-5p was found to only be in 

corn feed, and Osa-mir1866-3p was found to only be in rice (Nulton, 2014). The relative level of 

the chosen three mature plant miRNAs was assessed in total equine serum and skeletal muscle. 

Each real-time PCR reaction contained 6 µL of total reaction, including 3µL 2x QuantiTect 

SYBR Green PCR Master Mix, .60µL 10x miScript Universal reverse primer,1.15 µl of 

nuclease-free water, 0.25 µL of cDNA, and 1µl miRNA specific forward primer. Cycle 

conditions consisted of reaction initiation at 95°C for 15 minutes, followed by 45 cycles of 94°C 

for 15 seconds to denature, 55°C for 30 seconds to anneal, and 70°C for 30 seconds for 

extension. Plates were run in duplicate and miRNAs were considered present if they were 

present at cycle number <37 and confirmed with amplification curves and singular melt peaks 

(Santos et al., 2018). A negative RT control, non-template control, and positive RNU1 control 

were included on all plates. 

Statistical Analysis 

To determine if plant and corn specific miRNAs are present within equine serum and 

muscle, raw Ct values were normalized to RNU1 (appendix table II), a small RNA used as a 

reference gene within human serum studies (Sanders et. al, 2012) and had a standard deviation of 

less than 2.5 for all samples.  This normalized value was considered ΔCt. The 1/ΔCt values were 
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not normally distributed, so data were analyzed using the Kruskal-Wallis test and Dunn’s test in 

R version 3.5 statistical software with P ≤0.05 being considered significant.  

RESULTS 

Horses were weighed and body condition scored on days 0 and day 28. No time, 

treatment, or time by treatment effect was found (Table 1). 

Analysis of samples from corn and hay fed by QuantiTect qRT-PCR revealed that ath-

miR156a was present in all feeds. The rice miRNA (osa-miR1866-3p) was only detectable in the 

corn feed and the corn miRNA (zma-miR827-5p) as expected was only present in the corn feed 

(Table 2).  

Plant miRNAs (ath-miR156a, zma-miR827-5p, and osa-miR1866-3p) were detectable in 

total serum miRNA on day 0 and day 28. Ath-miR156a was found in all horses at every time no 

treatment, time, or time by treatment effect was found (figure 5). Zma-miR827-5p was detectable 

in horses in both groups with a treatment effect (P<.05) present and horses fed corn having 

overall higher serum levels of this miRNA, no time or time by treatment effect were found 

(Figure 6). Osa-miR1866-3p was found in all horses at every time, no treatment, time, or time by 

treatment effect existed (Figure 7). 

All three plant miRNAs (ath-miR156a, zma-miR827-5p, and osa-miR1866-3p) were 

detected in muscle samples within each group (figures 8,9, and 10). No treatment, time, or time 

by treatment effects were found for any of the plant miRNAs tested.  
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Table 1: Horse Body Condition Score and Weight. Horses were weighed on a livestock scale on day 0 and day 28 

of the trial. All horses were body condition scored using the Henneke system on a scale of 1-9. Shown as group 

mean and SD 

Group Body Condition Score Bodyweight (kg) 

Corn Day 0 6.17±0.41 553.91±26.90 

Control Day 0 6.00±0.58 552.78±35.84 

Corn Day 28 6.17±0.61 582.11±43.50 

Control Day 28 6.08±0.74 567.07±33.07 

 

Table 2: Plant miRNA Expression Across Feeds. Levels of plant miRNAs were detected using qRT-PCR in the 

round bales, chopped hay, and corn fed to horses throughout the feed trial. 

miRNA RNA sample Ct 

Ath-miR156a Mixed Grass Hay Round Bale 33.3 

Ath-miR156a Chopped Mixed Grass Hay 34 

Ath-miR156a Steam Flaked Corn 26.3 

Zma-miR827-5p Mixed Grass Hay Round Bale Undetectable 

Zma-miR827-5p Chopped Mixed Grass Hay Undetectable 

Zma-miR827-5p Steam Flaked Corn 23.4 

Osa-mir1866-3P Mixed Grass Hay Round Bale Undetectable 

Osa-mir1866-3P Chopped Mixed Grass Hay Undetectable 

Osa-mir1866-3P Steam Flaked Corn 36 
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Figure 5: Level of Plant miRNA (ath-miR156a) in Serum Across Time. qRT-PCR was performed to determine 

levels of ath-miR156a in serum across all diets at day 0 and day 28.  No treatment, time, or time by treatment effect 

was found. Shown as group means with 95% CI. Data were normalized to RNU1. 

 

Figure 6: Level of Corn miRNA (zma-miR827-5p) in Serum Across Time. qRT-PCR was performed to 

determine levels of zma-mir 827-5p in serum across all diets at day 0 and day 28. A treatment effect for the corn 

group was found (P<.05). No time or time by treatment effect was found. Shown as group means with 95% CI. Data 

were normalized to RNU1. 

 

Figure 7: Level of osa-miR1866-3p in Serum. qRT-PCR was performed to determine levels of osa-mir1866-3p in 

serum across all diets at day 0 and day 28. No treatment, time, or time by treatment effect was found. Shown as 

group means with 95% CI. Data were normalized to RNU1. 
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Figure 8: Relative Level of Plant miRNA (ath-miR156a) in Muscle Across Time. qRT-PCR was performed to 

determine levels of ath-miR156a in muscle across all diets at day 0 and day 28. No treatment, time, or time by 

treatment effect was found Shown as group means with 95% CI. Data were normalized to RNU1. 

 

Figure 9: Level of Corn miRNA (zma-mir 827-5p) in Muscle Across time. qRT-PCR was performed to 

determine levels of zma-miR827- 5p in muscle across all diets at day 0 and day 28. No treatment, time, or time by 

treatment effect was found. shown as group means with 95% CI. Data were normalized to RNU1. 
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Figure 10: Level of osa-miR1866-3p in Muscle. qRT-PCR was performed to determine levels of osa-miR1866-3p 

in muscle across all diets at day 0 and day 28. No treatment, time, or time by treatment effect was found. Shown as 

group means with 95% CI. Data were normalized to RNU1. 

 

DISCUSSION  

To determine if plant miRNAs can be absorbed from feedstuffs into serum, samples were 

collected on Day 0 and Day 28 of a feeding trial. Serum on day 28 was collected before feeding, 

15, 30, 45, 60, 75, 90, 105, 120 minutes, and 360 minutes after feeding corn to the corn group 

(CORN). The control group (CONT) was not fed hay at the start of the collection period on day 

28 but it is unknown when the last time the horses ate as they had access to hay in their pens 

before removing them for sample collections. The presence of plant miRNAs  (ath-miR156a, 

zma-miR827-5p, osa-miR866-3p) in total serum samples is similar to the results from previous 

studies on mice, humans, and calves (Zhang et.al, 2012, Wang et al, 2012), while different from 

others that did not find plant miRNAs in total serum within mice (Dickinson et al., 2013) and 
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horses (Nulton 2014).  In Nulton’s study, the only plant miRNA identified in equine serum was 

ath-miR156a and it was only found in exosomes (Nulton, 2014). The body of research that exists 

looking at the uptake of dietary miRNAs into circulation shows many are inconsistently picked 

up or detected in individual animals (Yang et. al, 2015), the wide variation in detectability of 

plant miRNAs within circulation could be due to re-uptake of the miRNAs into tissues, 

extremely low levels undetectable within cycle cutoffs, or individual variations in the absorption 

of intestinal contents, but further research needs to be conducted to better understand the process 

of dietary miRNA uptake and could illuminate the inconsistently present in current studies. The 

results revealed that ath-miR156a and osa-miR18663p were both detectable in total serum of all 

horses with no difference between treatment or time and no time by treatment effect existed. 

Although the corn miRNA (zma-miR827-5p) was present in both groups before corn was 

supplemented to horses a treatment effect was found where the level within the serum of CORN 

was higher than CONT (P<.05). The reason for the corn and rice miRNAs being present before 

supplementation is not clear as all horses were on a forage only diet for 14 days before taking 

day 0 samples and to our knowledge did not receive anything other than forage during this 

adjustment period; However, the horses were on the same premises and had intermittent access 

to the same pen system as horses receiving grain containing corn and rice bran for a different 

study looking at the effects of nutrition on oocytes (Catandi et al., 2020). The mares used within 

our study were also being teased and palpated up to two times a week for an unrelated study after 

palpation had been done in the stocks the mares were let out into a large pen that had access to 

the pens used by Catandi et al. to feed their horses if any feed had been left on the ground horses 

from our study could have eaten them. Catandi et al.’s study started before and extended beyond 

the end of our study. The horses were kept in an open-air pen and high winds do occur in the 
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geographical area where the study occurred, so although the corn was contained in feed bags and 

the horses were taken out of the community pen when being fed corn flakes could have been 

blown into the pen unnoticed and consumed.   

The corn miRNA (zma-miR827-5p) had the most variation in detection within the horses 

in total serum in this study, as horses did not have it appear in every time point, and the horses 

for which the miRNA was undetectable varied with time. Levels of this miRNA spiked 15 

minutes after ingestion of corn (figure 6), the earliest point at which ingested food can exit the 

equine stomach and enter the duodenum for further digestion and absorption of nutrients. This 

spike was not found to be statistically significant but suggests that miRNAs are taken into 

circulation within the early portion of the digestive tract, like the small intestine. The 

disappearance and reappearance of the miRNA could be the result of tissue uptake and then later 

release back into the circulatory system, however the exact details of miRNA uptake and release 

into circulation are not completely known. A study utilizing labeled miRNAs could help to 

provide more clarity on why miRNA concentrations in circulation vary with time. Within our 

study horses had access to water throughout the whole sample collection process, the intake of 

water holds the potential to dilute miRNA concentrations within serum and cause fluctuations in 

detectable levels as water is absorbed by the body.  Another reason for the appearance and 

disappearance of the miRNA in total serum maybe this specific miRNA may be more highly 

expressed within exosomes in serum, which were not tested in this particular study, or has a 

higher rate of degradation within the GI system of horses than the other two plant-based 

miRNAs tested. Zma-miR827-5p was selected to be used based upon previous studies showing it 

was expressed in corn (Zhang et. al. 2009, Jiao et. al, 2011) and that it was detectable in corn 
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despite cooking method, although steaming the corn did result in a large decrease in levels of this 

miRNA in another study (Lou et. al, 2017).  

All plant miRNAs (plant, corn, and rice) tested were detectable in equine muscle at Day 0 

and Day 28, no treatment, time, or time by treatment effect existed. The presence of plant 

miRNAs in tissue is in line with other studies that have found plant miRNAs to be taken up into 

mammalian tissues (Lou et. al, 2017, Zhang et. al 2012). Unlike Nulton’s study which only 

found ath-miR156a present in equine tissues regardless of diet (Nulton,2014), our study also 

identified zma-miR827-5p and osa-miR18663p in equine tissue in addition to ath-miR156a. As 

was previously mentioned another feeding study was being conducted at the same time as our 

study with some shared facilities, with groups being fed grain containing corn and rice bran, 

creating a potential source of contamination despite horses having very minimal access to 

facilities where feed could have been present for the horses within our study to consume 

(Catandi et al., 2020). As the effect of feeding corn on miRNA presence in horses was the main 

focus of this study we had a special interest in the potential presence of corn miRNA in muscle.  

As previously stated no treatment effect was found for the corn specific miRNA (zma-miR827-

5p) within muscle, this may indicate that a larger amount of corn should be fed to horses if future 

studies are conducted in this area and specific care should be taken to avoid environmental 

contamination should always be included. Currently, there is no information on the exact 

mechanism of how exogenous miRNAs within circulation become incorporated into cells within 

the body. This study did not take samples from smooth muscle cells within the  GI organs, the 

proximity of these cells to the intestinal lumen creates the possibility that these cells could have 

higher levels of plant-derived miRNAs within them and may show a notable difference sooner 

and with lower levels of supplementation compared to skeletal muscles.  Although zma-miR827-
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5p was found in both groups on Day 0 the corn supplemented group maintained roughly the 

same level on Day 28, while the control group (hay only diet) had a reduction in the relative 

level from Day 0 to Day 28 (Figure 9).  

The presence of osa-miR1866-3p  a rice miRNA (Nulton, 2014, Xue et.al, 2008.) in the 

corn feed sample could be a result of where the corn was obtained from, the corn used within the 

study was obtained from a pile stored in a covered open-air shed with Brewer’s grains in the next 

bay over, which can contain rice, the area where this shed is can get windy at times and the same 

front loader is used on all feed piles to load the feed truck. Osa-miR1866-3p, a rice specific 

miRNA, had a Ct value of 36, just barely inside of the cutoff window of <37 cycles that were 

used within this study, indicating very little was present within the corn feed. This however does 

not explain why the rice specific miRNA was detected in samples from both groups before and 

after the feeding trial, this particular miRNA did not have any treatment effects for muscle. 

The unexpected detection of corn and rice miRNAs (zma-miR827-5p and osa-miR1866-

3p, respectively) in both muscle and serum before supplementation could also be caused by the 

primer binding to an equine miRNA of a similar sequence, although the primers were created 

specifically for each plant miRNA, an oxidizing agent was not added to any of the samples. Plant 

miRNAs are structurally different than mammalian miRNAs as they contain a 2’-O-Me 

modification on the 3’ end which makes them resistant to oxidation. Due to their resistance to 

oxidation, an oxidizing agent like periodate can help to degrade mammalian miRNAs, but it will 

also degrade immature plant miRNAs as they do not have the same modifications as mature 

miRNAs (Huang et al., 2017). Previous studies looking for the uptake of dietary miRNAs also 

did not treat samples with periodate and subsequently, some plant miRNAs that have been 

identified in human plasma have been found to match human miRNAs (Witwer, 2018). We did 
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conduct a BLAST search on zma-miR827-5p and did not find any equine sequences that 

matched this miRNA sequence, however Lou et al. did a study where they feed fresh corn to 

pigs, and zma-miR827-5p was detected in serum and muscle before the addition of an oxidizing 

agent after which it disappeared suggesting that it may not have been a true plant miRNA or a 

non-mature variant that was detected (Lou et.al, 2017). The possibility of primer mismatch 

cannot be entirely ruled out, although the guidelines for annealing temperatures were followed 

and the primer sequences were taken from Nulton’s study which was also conducted on horses 

(Nulton, 2014). The continued debate over the uptake of dietary miRNA likely will continue 

until a gold standard method is adopted by all researchers to ensure identified miRNAs are true 

plant miRNAs.  

Our study did not investigate the potential interaction between plant miRNA and 

mammalian genes. Currently, the corn miRNA (zma-miR827-5p)  and rice miRNA (osa-

miR1866-3p) used within our study do not have any predicted mammalian target genes 

identified. A previous study identified four potential mammalian gene targets for ath-miR156a; 

ALG2, SUCLG2, HIF3A, and F11R (Nulton, 2014).  ALG2 is a member of the 

glycosyltransferase 1 family, glycosyltransferases are involved in the biosynthesis of 

polysaccharides, disaccharides, and monosaccharides, this gene is predicted to be repressed by 

ath-miR156a along with HIF3A, a gene related to hypoxia. Ath-miR156a is predicted to cleave 

SUCLG2, a succinyl-COA ligase,  and F11r, an adhesion protein (Nulton, 2014). In future 

studies predicted mammalian gene targets for the three plant miRNAs used within our study 

should be further explored to see if diet-derived miRNAs play a role in preventing or causing 

disease within hosts. 
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Our study shows that plant-derived miRNAs can be detected in equine serum and tissue 

after ingestion, but more studies within horses should be conducted to confirm these findings as 

the majority of studies looking at this phenomenon have been conducted in mice, pigs, and 

humans which are physiologically different than horses making comparisons between studies 

hard. The specific plant miRNAs used in this study are not heavily used by other research studies 

in this area, so direct comparison is not possible for many studies, however, the ability to uptake 

diet-derived miRNA likely is not impacted by the individual miRNA itself. Continued research 

into the mechanism by which diet-derived miRNAs exit the intestinal lumen and into circulation, 

either as free miRNAs or encapsulated in microvesicles such as exosomes could help to resolve 

the current debate within the scientific community. The ability of plant miRNAs to be absorbed 

into circulation and tissues and determining the levels required per cell to have an impact on 

mammalian gene regulation holds the potential for new therapeutic or diagnostic techniques to 

be developed within horses and other mammals.  

  



46 

CHAPTER III: THE EFFECT OF CORN SUPPLEMENTATION ON THE ENDOGENOUS 

MIRCORNA PROFILE IN EQUINE SERUM AND SKELETAL MUSCLE 

 

 

INTRODUCTION 

The equine digestive system is evidence that through the course of evolution horses met 

their nutritional requirements through grazing, usually up to 16 hours a day. But due to the large 

role domesticated horses played as draft animals and the primary mode of transportation the diets 

of horses began to contain more grain to provide the animals with a concentrated source of 

energy to ensure they met the needs of their owners. Although not the primary source of 

transportation anymore, many horses today are fed some sort of grain concentrate. The variety of 

concentrate feeds that are available today is constantly growing, many of these feeds contain a 

concentrated form of energy in the form of cereal grains, like corn. Corn has a high energy 

concentration due to having a high non-structural carbohydrate (NSC) content, composed of 

starch and simple sugars. The combination of horses evolving to survive harsh winters and 

plentiful summers through the selection of thrifty genes, diets containing high levels of NSC, and 

many horses being confined to stalls with inadequate exercise has resulted in an increase of 

obesity within the equine population, often associated with insulin resistance and intolerance to 

glucose (Johnson et. al, 2012). Rapid ingestion of a large amount of NSC, like in the case of a 

horse getting into a grain bin, has also been associated with the onset of laminitis (Eades et. al, 

2014). The relationship between diet and metabolic disease is still not completely understood in 

many mammals and new studies are constantly being conducted.  

Diet has been shown to alter miRNA in previous studies with amino acids, carbohydrates, 

and fatty acids being linked to changes in miRNA expression  (García-Segura et al, 2013). As 
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incidences of equine obesity and metabolic diseases increase the role of diet on the body is 

becoming increasingly important. If diets can be designed to change miRNA profiles to prevent 

or treat a disease within mammals a whole new emphasis on the therapeutic uses of nutrition 

could develop.  The goal of this study is to compare levels of 277 endogenous equine miRNAs 

within horses on a forage only diet (CONT) to horses on a diet that includes corn 

supplementation (CORN). We hypothesize that feeding corn will result in a different profile of 

endogenous miRNAs within equine serum and skeletal muscle compared to horses on a forage 

only diet.  

MATERIALS AND METHODS 

Animal care and feeding protocols 

All experiments were approved by the Colorado State University Institutional Animal 

Care and Use Committee. Twelve horses were used within this study: two were leased from 

Colorado State University and ten were already being used for another project being conducted 

at Colorado State University’s Equine Reproduction Lab (Fort Collins, CO). All twelve horses 

were kept in a dry lot with free-choice water and hay for a 21-day adjustment period before the 

feeding trial. The horses were all Quarter Horse type mares. Before the start of the 28-day 

feeding trial, the horses were randomly assigned to either the control group or the corn 

supplemented diet group. Before starting the feeding trial, all horses were weighed, and body 

condition scored. The horses were fed to meet the minimum nutritional requirements for 

maintenance and feeds analyzed to determine nutritional composition. The horses were fed 

chopped hay and corn, if in the treatment group, once daily in the morning. The control group 

received 20 lbs. (9kg) /hd/d of chopped mixed alfalfa and grass hay daily, while the corn 

supplemented group received 20lbs (9kg) /hd/d of chopped mixed alfalfa and grass hay and 1lb 
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(453 g)/hd/d of steam-flaked corn, these diets were not iso-energetic and both groups had access 

to round bales. Chemical analysis of feeds was performed to determine nutrient composition 

(Appendix Table III). The horses on the corn supplemented diet were gradually acclimated to the 

diet over 8 days with individual feed bags being utilized to ensure each horse had the correct 

amount of corn offered to them at each feeding. On days 1-3 horses were fed ¼ lb. (113 g) of 

corn at each feeding, on days 4 and 5 the horses were moved up to ½ lb. (226g)  per feeding, 

days 6-7 consisted of ¾ lb. (340 g)  per feeding. Horses received the full 1 lb. (453 g) of corn 

from day 8 on.  

 

Serum and Tissue Collection 

Serum Collection 

10 mL serum separator blood tubes (Becton, Dickinson, and Company (BD), Franklin 

Lakes, NJ)  were used for all blood collections with two 10mL tubes collected at each time point. 

Blood was collected before the feeding trial began through jugular venipuncture and after 28 

days of supplementation at 0, 15, 30, 45, 60, 75, 90, 105, and 120 minutes after eating through 

intravenous catheters. One sample was also collected 360 minutes after feeding through jugular 

venipuncture. The intravenous catheters were placed aseptically and secured with a suture at the 

start of the 120-minute collection period, after each blood collection the lines were flushed with 

heparinized saline to avoid clotting within the catheter and clamped. Blood samples were then 

allowed to clot at room temperature for 30 minutes at a 45° angle before centrifugation for 10 

minutes at 2,000g to separate serum. The serum was separated off and placed into a 

polypropylene tube and stored at -80° C until RNA isolation. 
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Muscle Biopsy collection  

Before starting (day 0)  and after the completion of the feeding trial (day 28), muscle 

biopsies were taken from the Gluteus medius muscle of the horse. Biopsies were taken from the 

left side of the horse before the feeding trial and from the right side at the end of the trial. The 

biopsies were obtained by first shaving the hair off and scrubbing the site with betadine and 

alcohol before locally blocking the area through subcutaneous administration of lidocaine around 

the biopsy area. Once blocked using an aseptic technique a biopsy needle was inserted midway 

between the tuber coxae and ischiatic tuberosity to a depth of 6cm to obtain the tissue sample. 

Biopsy samples were placed into sterile cryotubes, then snap-frozen in liquid nitrogen before 

being stored at -80°C until RNA isolation. 

RNA Isolation from Serum 

RNA was isolated from equine serum using the manufacturer’s protocols for TRI 

Reagent® BD (Molecular Research Center, Inc. Cincinnati, OH). 500µl of serum was added to a 

tube along with 10µl Polyacryl carrier and 750 µl of TRI Reagent® BD. After samples were 

lysed using the TRI Reagent® BD, 200µL of chloroform was used to separate the RNA, DNA, 

and protein portions of the sample and allowed to sit at room temperature for 15 minutes before 

centrifuging the samples for ten minutes at 12,000g at 4⁰C. The RNA portion was then 

transferred to a new tube and precipitated with isopropanol and a Sodium acetate salt solution 

(pH 5.4). After RNA precipitation had occurred samples were centrifuged for 10 minutes at 

12,000g and the supernatant was pipetted off. The pellet was then washed with 1 mL of 75% 

ethanol. This washing procedure was repeated two more times, for a total of three ethanol 

washes per sample. The sample was then tested on a Nanodrop® Spectrophotometer ND-2000 

(Thermo Scientific, Wilmington, DE) to determine RNA concentration. If samples had a 
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concentration higher than 150 ng/ µL of RNA they were treated with DNA-free DNase 

Treatment and Removal Reagent (Invitrogen/Life Sciences, Grand Island, NY) to remove 

genomic DNA then RNA purity was re-assessed. If RNA concentrations were below 150ng/µL 

then they were not subjected to the DNase treatment to ensure enough RNA was present for 

adequate amounts of cDNA to be generated later. Samples were then stored at -80°c until the 

generation of cDNA through reverse transcription occurred. 

RNA isolation from Tissue 

RNA isolation from skeletal muscle was accomplished through grinding the samples with 

a mortar and pestle that had been previously washed with ethanol and nanopure water to ensure 

all contamination was removed. The mortar and pestle were then conditioned with liquid 

nitrogen and the muscle sample placed into liquid nitrogen within the mortar and ground into a 

fine powder. The powder was then transferred to a clean tube and Trizol (Thermo Scientific, 

Wilmington, DE) was added according to the manufacturer’s protocols to lyse the cells within 

the sample. After lysing the sample 200µL of chloroform was used to separate the RNA, DNA, 

and protein portions of the sample and allowed to sit at room temperature for 15 minutes before 

centrifuging the samples for ten minutes at 12,000g at 4⁰C. The RNA supernatant portion was 

then transferred to a new tube and precipitated with isopropanol. After RNA precipitation had 

occurred samples were centrifuged for 10 minutes at 12,000g and the supernatant was pipetted 

off. The pellet was then washed with 1 mL of 75% ethanol. This washing procedure was 

repeated two more times, for a total of three ethanol washes per sample. The sample was then 

tested on a Nanodrop® Spectrophotometer ND-2000 (Thermo Scientific, Wilmington, DE) to 

determine RNA concentration the samples were treated with a DNA-free DNase treatment and 

removal reagent to remove any genomic DNA, then RNA purity and concentration were re-
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examined. Samples were then stored at -80°c until the generation of cDNA through reverse 

transcription occurred. 

Reverse Transcription 

cDNA was generated using the miScriptII RT kit (QIAGEN). 4µL 5x HiSpec Buffer and 

2µL 10x Nucleics mix was used for the master mix for each reaction. Each tube contained 6µl of 

the master mix, enough RNA for 1000ng per reaction, and nuclease-free water, the total volume 

of each tube was 18µl. After mixing the reaction 2µL of Reverse transcriptase mix was added to 

the tube and the tube placed in a thermocycler. The reaction was incubated for 60 minutes at 

37°C, then at 95°C for 5 minutes. The cDNA was then diluted with 100µL of nanopure water for 

a total volume of 120 µL and a cDNA concentration of 500 pg/μL. The diluted cDNA was stored 

at -20⁰C until further use in real-time PCR.  

Real-Time PCR Analysis 

qRT-PCR was conducted using 277 endogenous equine miRNA primers (Appendix table 

I) previously used within this lab for other equine studies. qRT-PCR was performed on all 

muscle samples, day 0 serum, day 28 serum 1 and 6 hours after feeding, the choice to not test all 

serum samples was based on available supplies, funding, and time. Each real-time PCR reaction 

contained 6 µL of total reaction, including 3µL 2x QuantiTect SYBR Green PCR Master Mix, 

.60µL 10x miScript Universal reverse primer,1.28 µl of nuclease-free water, 0.12 µL of cDNA, 

and 1µl miRNA specific forward primer. Cycle conditions consisted of reaction initiation at 

95°C for 15 minutes, followed by 45 cycles of 94°C for 15 seconds to denature, 55°C for 30 

seconds to anneal, and 70°C for 30 seconds for extension. Plates will be run in duplicate and 

miRNAs will be considered present if they are present at cycle number <37 and confirmed with 
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amplification curves and singular melt peaks (Santos et al., 2018). A negative RT control, non-

template control, and positive RNU1 control were included on all plates. 

Statistical Analysis 

To determine the change in equine miRNA levels within serum between day 0 and day 

28 of the dietary treatments, raw Ct values were normalized to the geometric mean of 3 

endogenous controls (eca-mir376c, eca-mir14030, and ecamir770) that all had a standard 

deviation of less than 1.1 for all serum samples. The raw Ct values from the muscle samples 

were also normalized to the mean of 3 endogenous controls (eca-mir 15a, eca-mir6155p, eca-mir 

770) which had standard deviations of less than 2 amongst all muscle sample. Only miRNAs 

detected within all samples at all time points were used, 41 miRNAs in serum and 16 miRNAs in 

skeletal muscle fit these criteria and were used for statistical analysis. After normalizing all data 

this value was identified as ΔCt, the ΔCt for each gene on Day 0 was then used as the calibrator 

for calculating ΔΔCt (ΔΔCt=ΔCt-calibrator ) allowing each horse to act as its control. ΔΔCt was 

then used for further statistical analysis. Data were analyzed using a mixed model within the 

SAS statistical software, with P ≤0.05 being considered significant.   

RESULTS 

As stated in chapter II horses were weighed and body condition scored on days 0 and day 

28. No time, treatment, or time by treatment effect was found (Table 1). 

Analysis of equine serum found 12 of the 41  miRNAs chosen for statistical analysis, due 

to appearing in all horses at every time point, to have a significant treatment effect (P<.05) 

(figure 11 and table 3). 11 of the 12 miRNAs resulted in a significant downregulation of the gene 

within the CORN group compared to Day 0, while ecamir4903p had a significant upregulation 

within the CONT group compared to Day 0 (P<.05) (Table 3).  Analysis of eca-mir 129a5p 
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showed a time by treatment effect for CONT 1-hour post-feeding (P<.05), where it had 

significantly lower levels compared to CORN (figure 12). A time effect was found for eca-mir 

4865p for day 28 one after feeding (P<.05), both groups had a down-regulation of this miRNA at 

this time point compared to day 0. Although not a significant difference five of the 12 miRNAs 

that had a treatment effect  (eca-mir 4865p, eca-mir 598, eca-mir 195, eca-mir 192, eca-mir 

129a5p) had higher levels in CORN compared CONT on Day 28 at one-hour post-feeding. 

Analysis of equine skeletal muscle for 16 miRNAs found in all horses at every time point 

found three miRNAs (eca-mir 1515p, eca-mir 106b, and eca-mir 133a) to have a treatment effect 

post corn supplementation (P<.05) and 3 miRNAs (eca-mir 129a5p, eca-mir 191, eca-mir 10b)  

to have a trend towards a significant treatment effect (.1>P>.05) (Figure 13). No time or time by 

treatment effect was found. 

 

 

Figure 11: Difference between day 0 and day 28 Serum Sample Endogenous miRNAs Related to Obesity or 

Metabolic Disorders. qRT-PCR was performed to determine levels of endogenous miRNAs in serum across both 

diets at day 0 and day 28 1 hour and 6 hours post-feeding. Endogenous miRNAs associated with Obesity or 

Metabolic disorders with a significant treatment effect (P<.05) in serum represented as the mean difference between 

* 

*P<0.05 
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baseline and Day 28 1-hour post-feeding and 6 hours post-feeding with 95% CI. *Eca-mir486-5p also had a time 

effect 1-hour post-feeding corn (P<.05). No time by treatment effect was found for these miRNAs. 

Table 3: Difference in Endogenous miRNAs within Serum from Day 0 to Day 28.  qRT-PCR was performed to 

determine levels of endogenous miRNAs in serum across both diets at day 0 and day 28 1 hour and 6 hours post-

feeding. Represented as the mean difference between baseline and Day 28 1-hour post-feeding and 6 hours post-

feeding with 95% CI. No time or time by treatment effect was found.  

  Day 28 1-hour post feeding Day 28 6-hours post feeding  

miRNA Corn Group 

(ΔΔCt) 

Control 

Group(ΔΔCt) 

Corn Group 

(ΔΔCt) 

Control Group 

(ΔΔCt) 

ecamir598   2.36±1.25 0.95±1.25 2.86±1.25 0.64±1.25 

ecamir326 5.39±3.40 0.04±3.40 4.78±3.40 2.67±3.40 

ecamir3715p 2.89±3.02 -1.42±3.02 2.21±3.02 0.64±3.02 

ecamir1271 2.74±2.32 -1.62±2.32 2.66±2.32 -2.51±2.32 

ecamir195 7.99±4.28 0.63±4.28 7.48±4.28 -0.98±4.28 

ecamir4903p -1.17±3.11 -5.26±3.11 -1.11±3.11 -4.69±3.11 

 

 

Figure 12:Effect of Corn Supplementation on Serum Endogenous miRNA eca-mir129a5p. qRT-PCR was 

performed to determine levels of endogenous miRNAs in serum across both diets at day 0 and day 28 1 hour and 6 

hours post-feeding. Eca-mir129a5p had a significant time by treatment effect for the control at 1 hour (P<.05). 

* 

*P<0.05 
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Represented as the mean difference between baseline and Day 28 1-hour post-feeding and 6 hours post-feeding with 

95% CI. No treatment or time effect was found. 

 

Figure 13:Effect of Corn Supplementation on Muscle Endogenous miRNAs. qRT-PCR was performed to 

determine levels of endogenous miRNAs in muscle across both diets at day 0 and day 28. Eca-mir1515p, -106b, and 

-133a had a significant treatment effect (P<.05). Represented as the mean difference between baseline and Day 28 

with 95% CI. No time effect or time by treatment effect was found. 

DISCUSSION 

To determine how diet impacts endogenous miRNAs half of the horses (n=6) in our study 

were supplemented with corn for 28 days with serum samples being taken pre and post 

supplementation for comparison. Of the 277 miRNAs analyzed by qRT-PCR, 41 were found to 

appear in every horse at every time point and used for statistical analysis. Twelve miRNAs were 

found to have a treatment effect of which six, eca-mir16, -4863p, -4865p, -126-3p, -296, and -

192, have been linked to obesity or metabolic disease (Figure 11). Meerson et al. found mir16-2-

3p and mir126-5p could be used distinguish early from complicated T2DM in individuals with 

77% accuracy, these two miRNAs are in the same family as mir16 and mir126-3p respectively 

suggesting that these families could serve as biomarkers for metabolic diseases involving similar 

*P<0.05 
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components as T2DM (Meerson et al., 2019). Mir 126-3p has also been found to be upregulated 

in patients with diabetic kidney disease (Assmann et al., 2018), have decreased levels in plasma 

and circulating angiogenic cells of patients with T2DM compared to healthy individuals, 

however amongst human subjects with T2DM those with a history of a major cardiac event had 

lower levels of mir126-3p, suggests it can serve as a biomarker for systemic inflammation and 

angiogenic status (Olivieri et al., 2015). Within our study we found the equine variant of mir126-

3p  to be downregulated and have lower levels on day 28 in CORN compared to CONT which 

could suggest based on Olivieri et al.’s study that a diet supplemented with corn increases the 

chances of horses developing metabolic disease. We found eca-mir4863p to be downregulated 

form D0 and at similar or lower levels in CORN compared to CONT, this is in contrast to 

Nulton’s study which found this miRNA to be increased in horses fed corn (Nulton 2014), in 

addition to previous studies the have found circulating  mir4863p in humans to be increased in 

T2DM patients and obese children (Meerson et al., 2019, Marzano et al., 2018, Prats-Puig et al., 

2013). Within our study we observed higher circulating levels of eca-mir4865p in CORN 

compared to CONT on day 28 1 hour post-feeding, there was not a significant difference in the 

level within circulation between the groups but this observation is notable as mir4865p has 

previously been found to be present in higher levels in circulation within humans studies looking 

at pre-pubescent obesity and males with metabolic syndrome (Prats-Puig et al., 2013, Zaki et al., 

2019). Compared to D0 both groups had downregulation of mir4865p at 1-hour post-feeding on 

day 28 explaining the time effect that was found and the treatment effect is illustrated by CORN 

having more downregulation of this miRNA than CONT(figure 11). The next miRNA in serum 

that was found to be impacted by corn supplementation was eca-mir296, studies conducted in 

humans have illustrated an association between mir296 and regulation of adipose tissue, with 
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higher concentrations being found in the visceral adipose tissue of obese individuals and 

amongst obese individuals, those with T2DM had lower expression (Gentile et al., 2018). 

Although the Gentile et al. study linking mir296 to the regulation of adipose tissue was looking 

at miRNA levels within tissue and did not investigate circulating miRNAs, it investigated both 

visceral and subcutaneous adipose tissue which would require some form of non-paracellular 

communication as these two tissues are found in different areas of the body, the circulatory 

system is often utilized in this process, suggesting the possibility that circulating levels of mir296 

could also differ, especially during adipogenesis. Another miRNA found within our study linked 

to obesity and related disorders was mir192, within our study we found the miRNA to be 

downregulated in CORN compared to Day 0; however, circulating levels of this miRNA in 

CORN on day 28 at 1 hour was higher than CONT a notable observation but a significant 

difference did not exist. Previous studies have illustrated the possibility of mir192 as a conserved 

biomarker for obesity and metabolic states as it was found to have increased levels in the 

circulation in both mice and humans suffering from obesity and metabolic disorders (Jones et al., 

2017. Ortega et al., 2013). Multiple studies have also found increased levels of mir-192 in 

exosomes of individuals with insulin resistance, suggesting it plays a role in the problem(Castano 

et al., 2018, Parrizas et al., 2015, Shah et al., 2017, Jones et al., 2017). Mir192-5p which is in the 

same family as mir192 has been found to regulate lipid synthesis in non-alcoholic fatty liver 

disease and to be downregulated in patients with diabetic-related kidney disease(Liu, X-L et al., 

2017, Assmann et al., 2018). The studies associating mir192 with obesity, metabolic disorders, 

insulin resistance, and a possible role in lipid synthesis suggest that mir192 should be included in 

future studies looking at these disorders across species.  
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When searching through previous studies to determine if miRNAs found to have a 

treatment effect related to obesity and related metabolic diseases which in horses have been 

associated with diets high in NSC, eca-mir326 was not found to have an impact directly on these 

conditions and so was not included in figure 11; However, mir326 has been linked to reduced 

inflammation in pulmonary fibrosis when upregulation occurs (Xu et al., 2019). The association 

between reduction of inflammation suggests mir326 plays a role in regulating at least one 

pathway of inflammation and could impact inflammation due to other causes throughout the 

body. Within our study, mir326 was downregulated significantly in CORN horses on day 28 and 

had a larger downregulation than CONT (table 3), also lower circulating levels were observed in 

CORN compared to CONT suggesting that CORN may have had the potential for higher levels 

of inflammation. As obesity is considered to be a chronic state of inflammation, future studies 

looking at levels of mir326 in obese individuals could identify an association between levels of 

mir326 and obesity.  

Obesity is not usually associated with Type 1 Diabetes mellitus (T1DM), which like 

T2DM causes high glucose concentrations in blood, but unlike T2DM where the high glucose is 

a result of insulin resistance in tissues preventing insulin-dependent glucose uptake form 

occurring T1DM is associated with a lack of insulin being produced by the beta-cells within the 

pancreas. A potential miRNA biomarker for T1DM has been identified in mir326, as it is 

downregulated in individuals with T1DM (Azhir et al., 2019, Garcia-Diaz et al., 2018). Type 1 

diabetes has been linked to an increased risk of heart disease usually characterized by cardiac 

hypertrophy, silencing mir-195, which was found in our study to be downregulated in CORN 

horses after supplementation  (table 3), has been shown to reduce myocardial hypertrophy, 
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improve coronary blood flow, and myocardial function in mice with diabetes, suggesting mir-

195 could serve as a novel therapy for diabetic heart diseases (Zheng et al., 2015). 

Eca-mir129a5p was observed to have higher levels on day 28 in  CORN compared to the 

CONT horses at 1-hour post-feeding, not a significant difference, and was upregulated compared 

to day 0 in CORN. It has been proposed that mir129a3p, which is in the same family as 

mir129a5p, plays a role in glucose and lipid metabolism (Pescador et al.,2013), and mir129a5p 

specifically been shown to regulate glycolysis and cell proliferation by targeting glucose 

transporters on gastric cancer cells causing reduced glucose uptake and consumption (Chen et 

al., 2018) demonstrating it can affect glucose utilization and could potentially also impact normal 

gastric cells. Eca-mir129a5p was found to have higher levels in circulation within insulin 

resistant horses compared to insulin-sensitive horses (Santos et al., 2018), we observed higher 

levels in CORN suggesting they may have been at a higher risk of developing insulin resistance 

as a result of corn supplementation, but as previously stated there was not a significant difference 

in levels between the groups (Santos et al., 2018). Further studies looking at if mir129a5p affects 

glucose utilization of normal cells and how it is impacted by a meal could provide more 

information on how diet and genes interact within the body. Within horses specifically more 

studies should be conducted within normal and insulin-resistant horses, potentially on a variety 

of diets, to see how this particular miRNA is impacted by diet. 

The impact of diet on overall health has been investigated in horses for many years, but 

only one other study has looked at how diet impacts equine endogenous miRNAs specifically. In 

Nulton’s study, three different diets were given: alfalfa diet, alfalfa and corn diet, and alfalfa and 

rice diet to investigate how endogenous miRNA profiles in serum would change within horses 

given the different diets (Nulton 2014). In our study, we wanted to further investigate how a diet 
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supplemented with corn impacts endogenous miRNAs in equine serum and muscle. Unlike 

Nulton’s study which took serum samples six hours post-feeding, we decided to take serum 

samples every fifteen minutes up to two hours post-feeding, we only analyzed D0 and D28 1 

hour and 6 hours post-feeding samples due to time and material constraints, but future studies 

could test the stored serum samples to create a better picture of how endogenous miRNAs within 

serum vary post-meal. Our study only looked at circulating levels of miRNAs in total serum and 

did not look at the profiles of circulating miRNAs in exosomes, the possibility exists that the 

profiles of miRNAs within exosomes differed from that of total serum. We did not find any 

members of the Let-7 miRNA family to be significantly impacted by corn supplementation even 

though previous studies have linked them to obesity and T2DM in humans (Gentile et al., 2018) 

and found lower levels in serum exosomes after horses were fed corn (Nulton, 2014). The Let-7 

family has been shown to have a strong association with glucose tolerance and insulin sensitivity 

(Rottiers and Näär, 2012)., the absence of any significant changes in these miRNAs could be 

attributed to the level of corn being fed to the horses. Within this study, horses were fed 1 lb. of 

steam flaked corn a day, whereas in Nulton’s study they received 2 lbs. of kibbled corn feed, 

composed of 80% corn and 20% wheat resulting in roughly 1.6 pounds of corn a day (Nulton, 

2014). The difference in feed processing and composition between our study and Nulton’s could 

have impacted the digestibility of the corn and how the nutrients were metabolized. Analysis of 

the steam flaked corn fed in our study found it contained 78.6 % starch and 1.5% simple sugars 

(Appendix Table III-A), the two main groups within non-structural carbohydrates, Nulton’s 

study does not appear to have analyzed the feed for these specific components making it 

impossible to compare these particular feed components between the studies to determine if the 

difference in serum results could be attributed to nutritional makeup of feeds. More studies 
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looking at the impact of diet on circulating miRNA profiles in horses should be conducted to 

create a better picture of the interaction between diet and the overall health of horses. 

After completion of evaluating skeletal muscle for 277 equine miRNAs was completed, 

16 miRNAs were found to consistently appear within the equine muscle, with some miRNAs 

usually expressed in muscle not appearing within our study. Due to the low number of miRNAs 

appearing in every horse at every time point some miRNAs that appeared in the majority of 

horses at all time points were included to reach the 16 total miRNAs that were used for statistical 

analysis. Muscle samples were the first to be evaluated with qRT-PCR and after all 24 samples 

(12 from D0 and 12 from D28) had been analyzed in duplicate for all 277 equine miRNAs and 1 

housekeeping gene it was discovered that the endogenous primers had only been diluted to 

100µM instead of the intended 10µM, this is extremely likely to have resulted in the small 

number of miRNAs meeting analysis criteria. The primers were properly diluted for all of the 

serum evaluations. We had intended to reanalyze the muscle samples after all serum evaluations 

were completed but a lack of some reagents, time, and funds prevented analysis to be 

reconducted on the muscle samples.  

Statistical analysis of the 16 miRNAs selected for appearing in most samples found  eca-

mir1515p, eca-mir106b, and eca-mir133a to have a significant treatment effect (P<.05), all of 

which have been linked to obesity or muscle insulin response.   Within our study eca-mir1515p 

was found to be significantly Downregulated in CORN compared to D0 and CONT, mir1515p is 

differently expressed in humans considered obese compared to normal individuals, suggesting 

expression of this miRNA either plays a role in the regulation of obesity or is regulated itself by 

the process involved in obesity (Arner et al., 2012). Skeletal muscle is the main tissue 

responsible for post-prandial glucose uptake and over 70% of insulin-dependent glucose uptake 



62 

from the blood. Skeletal muscle insulin resistance has been demonstrated in individuals with 

T2DM and plays a role in the development of cardiovascular diseases (Ferland-McCollough et 

al., 2010, Gallagher et al., 2010). Within insulin-resistant skeletal muscle, mir106b was found to 

be upregulated and contribute to the regulation of skeletal muscle glucose uptake (Zheng, L-F. et 

al., 2019). Regulation of glucose uptake by this miRNA is due to targeting genes coding for 

mitofusin-2 (Mfn2) and glucose transporter (GLUT)-4 resulting in reduced levels of these 

proteins, reduced insulin sensitivity, and increased blood glucose concentrations. (Zhang Y et al., 

2013, Zhang Y et al., 2017). The findings of our study that eca-mir106b was downregulated in 

CORN after supplementation and compared to CONT, suggests that the amount of corn 

supplemented did not cause the muscle group samples to begin to develop or develop insulin 

resistance. 

 Previous studies of muscle across species show higher levels of mir133a in muscle tissue 

compared to other tissues and have shown it plays a role in myogenesis and regeneration (Rao et 

al., 2006). Within skeletal muscle, mir133a plays an important role in mitochondrial biogenesis 

and was found to be downregulated in skeletal muscle with insulin resistance and samples from 

T2DM patients (Nie et al. 2016, Zheng, L-F. et al., 2019, Gallagher et al., 2010). Within our 

study we did find mir133a to be downregulated in skeletal muscle on D28 compared to D0 in 

CORN, however, this miRNA had a more significant downregulation in CONT  which is in 

contrast to the previously mentioned studies examining this miRNA (Figure 13). The error that 

occurred with the concentration of primer very likely resulted in fewer miRNAs being identified 

as having significant changes as too much primer can prevent detection of SYBER green, as a 

result, we decided to also look at miRNAs that had a trend for significance to determine if any 

had associations with obesity, insulin resistance, or associated diseases.  
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A trend toward a significant treatment effect was found for eca-mi10b, eca-mir129a5-, 

and eca-mir191 (.05<P<.1) within skeletal muscle. Mir10b was found to be downregulated in 

CORN compared to D0 while remaining close to the same in CONT, this miRNA has been 

linked to T2DM, with downregulation noted in muscle tissue of hyperglycemic mice (Herrera et 

al., 2010). As previously mentioned  mir129a5p has been shown to regulate glycolysis within 

gastric cancer cells causing reduced glucose uptake and consumption (Chen et al., 2018), within 

our study we found this miRNA to be downregulated within CORN after supplementation. 

Considering the other miRNAs examined like mir106b which suggests the muscle tissue sampled 

was not insulin resistant, it would make sense that a miRNA responsible for reduced glucose 

intake would be downregulated when horses are feeding a diet higher in readily available glucose 

in the form of NSCs. A review of previous studies did not show any association between mir191 

and obesity or related diseases. 

As previously mentioned the Let-7 miRNA family has been strongly associated with 

diabetes when found in circulation and adipose tissue. This family of miRNA is also well known 

to act as a regulator of glucose within skeletal muscle with glucose intolerance and increased fat 

resulting from widespread overexpression of let-7 ( Frost and Olson, 2011). No changes were 

identified within our study for let-7 within skeletal muscle samples, but future studies looking at 

how this family is specifically impacted by diet would be beneficial in aiding to evaluate them as 

potential biomarkers for early detection of glucose intolerance in horses and aid in early diet 

interventions. Our study is the first equine study to look at the impact of diet on skeletal muscle 

miRNA profiles, as Nulton did not analyze tissue samples for endogenous miRNAs.  

Our study illustrates that diet does have a role in regulating levels of endogenous 

miRNAs in circulation and skeletal muscle of horses. The differing results we found for miRNAs 
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related to obesity and insulin resistance within our study compared to other studies could be due 

to all horses used within the study having no known history of insulin resistance, obesity, or 

EMS, whereas many of the studies linking miRNAs to conditions like obesity, insulin resistance, 

and diabetes utilized individuals already diagnosed with these conditions. The differences in 

upregulation or downregulation between our study and others should not be dismissed, but the 

ability of the corn supplemented diet to cause changes in expression levels of these miRNAs 

should also be recognized as it suggests the possibility that long term consumption of this diet 

could lead to more dramatic changes in miRNA expression more closely resembling the other 

studies. It should also be noted that making comparisons between studies can be difficult as the 

physiology of horses differs from humans and mice, this could also contribute to differences in 

findings. Despite multiple studies evaluating miRNA expression in serum and skeletal muscle of 

diabetic and insulin-resistant individuals, there are not many studies indicating exactly how these 

miRNAs are regulated and expression of miRNAs within serum and muscle likely involves 

complex crossovers of various metabolic pathways. Additional studies need to be conducted to 

better determine the physiologic role of skeletal muscle and serum miRNA expression in insulin 

resistance and metabolic disorders like EMS in horses. Future studies utilizing various diets 

should also be conducted and could serve to better illustrate and make associations between diet 

and changes in miRNAs related to obesity and insulin resistance within horses.  
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CHAPTER IV: DISCUSSION AND CONCLUSIONS 
 

 

Based upon the results from the first objective of this study we can conclude that plant 

miRNAs can be absorbed, released into circulation, and taken up by muscle tissue in horses. 

These findings suggest the possibility of interspecies gene regulation. The ability of diet-derived 

miRNAs to be absorbed and identified within total serum and muscle tissue is a major step in the 

process of gaining a better understanding of the mechanisms involved in the uptake of diet-

derived miRNAs and the roles they may play in gene regulation within animals. Additionally, 

this study is one of the first to demonstrate the ability of diet to impact endogenous miRNAs in 

serum and the first to demonstrate the impact on endogenous miRNAs in muscle. The potential 

for miRNAs within serum and muscle to be used as biomarkers for the detection of disease and 

nutritional status of horses could allow for earlier and more cost-effective detection of disease. 

This study aimed to identify the presence of diet-derived plant miRNAs within equine serum and 

muscle and to examine the effect of a corn supplemented diet on profiles of endogenous 

miRNAs in circulation and muscle.  

These findings add support to the hypothesis that diet-derived plant miRNAs, including 

corn-based miRNAs, are absorbed from the digestive tract and hold the potential via translational 

repression of endogenous mRNAs to regulate endogenous gene expression.  Based on this study 

there is not enough evidence to suggest that the presence of the corn miRNA (zma-miR827-5p) 

would cause changes in gene expression as zma-miR827-5p does not currently have any 

mammalian gene targets identified. As mammalian gene targets are identified for more plant 

miRNAs they will share targets with endogenous miRNAs and could emerge as competitors for 

binding to the targets changing overall gene expression. Our study was able to illustrate how 
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circulating levels of diet-derived miRNAs varied after ingestion of food over two hours and 6 

hours after ingesting corn. The results showed levels of diet-derived miRNAs in the corn feed 

(zma-miR827-5p) spiked 15 minutes after feeding corn to horses then began to vary in their 

appearance, the levels of ath-156a and osa-mir1866-3p also varied thought out the sampling 

window but to a lesser degree. The variation in the detection of these miRNAs could be a result 

of uptake into tissue, dilution within circulation, or incorporation into exosomes. Our study was 

not able to illustrate any changes in levels of plant miRNAs within tissue of horses, this could be 

due to multiple factors including insufficient levels of corn supplemented, changes occurring in 

other tissues, and it is unknown how long plant miRNAs remain detectable in skeletal muscle. 

Additionally, differences in digestion/metabolism of animal models need to be investigated and 

better normalizers developed or identified to be used within horses. 

Examination of serum and muscle samples at day 28 revealed several miRNAs that were 

differentially expressed from day 0 after corn supplementation. 11 miRNAs were differentially 

expressed in the serum of the horses fed a diet supplemented with corn on day 28 compared to 

day 0. The majority of these miRNAs have previously been reported to be linked with obesity, 

diabetes, and insulin resistance. 1 miRNA was found to be upregulated significantly in the corn 

group compared to the control group 1-hour post-feeding and previously was reported to be 

higher in insulin-resistant horses in addition to playing a role in glucose metabolism. Three 

miRNAs were differentially expressed in muscle tissue of horses fed corn, all of which have 

previous reports of association with obesity, insulin resistance, or diabetes. The dysregulation of 

these miRNAs within serum and muscle suggests that diets high in sugar and starch, like corn, 

initiate changes in miRNA expression that could lead to insulin resistance and obesity, two major 

components of Equine Metabolic Syndrome. The findings of this study contribute to developing 
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a better understanding of the role diet has to play in the management of equine metabolic 

diseases. 

Finally, this data supports the belief that diet plays a major role in the expression of 

endogenous miRNAs and the potential for diet-derived miRNAs to regulate mRNA expression 

within mammals. Further research should be conducted to determine mechanisms by which diet-

derived miRNAs are taken up into circulation in tissues and if they have a functional impact on 

endogenous gene expression. More studies should also be conducted within horses to examine 

the interaction between diet and genes linked to metabolic diseases, as the frequency of these 

diseases is increasing in the horse population. 

  



68 

REFERENCES 
 

 

Almeida, M. I., Reis, R. M., & Calin, G. A. (2011). MicroRNA history: Discovery, recent 

applications, and next frontiers. Mutation Research/Fundamental and Molecular 

Mechanisms of Mutagenesis, 717(1-2), 1-8. doi:10.1016/j.mrfmmm.2011.03.009 

Arner, E., Mejhert, N., Kulyte, A., Balwierz, P. J., Pachkov, M., Cormont, M., . . . Arner, P. 

(2012). Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity. 

Diabetes, 61(8), 1986-1993. doi:10.2337/db11-1508 

Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., . . . 

Tewari, M. (2011). Argonaute2 complexes carry a population of circulating microRNAs 

independent of vesicles in human plasma. Proceedings of the National Academy of 

Sciences, 108(12), 5003-5008. doi:10.1073/pnas.1019055108 

Asplin, K. E., Sillence, M. N., Pollitt, C. C., & Mcgowan, C. M. (2007). Induction of laminitis 

by prolonged hyperinsulinaemia in clinically normal ponies. The Veterinary Journal, 

174(3), 530-535. doi:10.1016/j.tvjl.2007.07.003 

Assmann, T. S., Recamonde-Mendoza, M., Souza, B. M., Bauer, A. C., & Crispim, D. (2018). 

MicroRNAs and diabetic kidney disease: Systematic review and bioinformatic analysis. 

Molecular and Cellular Endocrinology, 477, 90-102. doi:10.1016/j.mce.2018.06.005 

Azhir, Z., Dehghanian, F., & Hojati, Z. (2018). Increased expression of microRNAs, miR-20a 

and miR-326 in PBMCs of patients with type 1 diabetes. Molecular Biology Reports, 

45(6), 1973-1980. doi:10.1007/s11033-018-4352-z 

Bartel, D. P. (2004). MicroRNAs. Cell, 116(2), 281-297. doi:10.1016/s0092-8674(04)00045-5 

Bhattacharya, S., Dey, D., & Roy, S. S. (2007). Molecular mechanism of insulin resistance. 

Journal of Biosciences, 32(2), 405-413. doi:10.1007/s12038-007-0038-8 

Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I., & Filipowicz, W. (2006). 

Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to 

Stress. Cell, 125(6), 1111-1124. doi:10.1016/j.cell.2006.04.031 

Brennecke, J., Stark, A., Russell, R. B., & Cohen, S. M. (2005). Principles of MicroRNA–Target 

Recognition. PLoS Biology, 3(3). doi:10.1371/journal.pbio.0030085 

Castaño, C., Kalko, S., Novials, A., & Párrizas, M. (2018). Obesity-associated exosomal 

miRNAs modulate glucose and lipid metabolism in mice. Proceedings of the National 

Academy of Sciences, 115(48), 12158-12163. doi:10.1073/pnas.1808855115 



69 

Catandi, G., Obeidat, Y., Stokes, J., Chicco, A., Chen, T., & Carnevale, E. (2020). Maternal diet 

can alter oocyte mitochondrial number and function. Journal of Equine Veterinary Science, 

89, 103030. doi:10.1016/j.jevs.2020.103030 

Chan, S. Y., & Snow, J. W. (2017). Formidable challenges to the notion of biologically 

important roles for dietary small RNAs in ingesting mammals. Genes & Nutrition, 12(1). 

doi:10.1186/s12263-017-0561-7 

Cheeke, P. R. (2010). Comparative animal nutrition and metabolism (1st ed.). Wallingford, 

Oxfordshire, UK: CABI. 

Chen, D., Wang, H., Chen, J., Li, Z., Li, S., Hu, Z., . . . He, X. (2018). MicroRNA-129-5p 

Regulates Glycolysis and Cell Proliferation by Targeting the Glucose Transporter SLC2A3 

in Gastric Cancer Cells. Frontiers in Pharmacology, 9. doi:10.3389/fphar.2018.00502 

Cramer, P. (2004). Structure and Function of RNA Polymerase II. Advances in Protein 

Chemistry Proteins in Eukaryotic Transcription, 1-42. doi:10.1016/s0065-3233(04)67001-

x 

Cui, J., Zhou, B., Ross, S. A., & Zempleni, J. (2017). Nutrition, microRNAs, and Human Health. 

Advances in Nutrition: An International Review Journal, 8(1), 105-112. 

doi:10.3945/an.116.013839 

Davalos, A., Goedeke, L., Smibert, P., Ramirez, C. M., Warrier, N. P., Andreo, U., . . . 

Fernandez-Hernando, C. (2011). MiR-33a/b contribute to the regulation of fatty acid 

metabolism and insulin signaling. Proceedings of the National Academy of Sciences, 

108(22), 9232-9237. doi:10.1073/pnas.1102281108 

Davidson, L. A., Wang, N., Shah, M. S., Lupton, J. R., Ivanov, I., & Chapkin, R. S. (2009). N -3 

Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA 

signatures in rat colon. Carcinogenesis, 30(12), 2077-2084. doi:10.1093/carcin/bgp245 

Dey, N., Das, F., Mariappan, M. M., Mandal, C. C., Ghosh-Choudhury, N., Kasinath, B. S., & 

Choudhury, G. G. (2011). MicroRNA-21 Orchestrates High Glucose-induced Signals to 

TOR Complex 1, Resulting in Renal Cell Pathology in Diabetes. Journal of Biological 

Chemistry, 286(29), 25586-25603. doi:10.1074/jbc.m110.208066 

Dickinson, B., Zhang, Y., Petrick, J. S., Heck, G., Ivashuta, S., & Marshall, W. S. (2013). Lack 

of detectable oral bioavailability of plant microRNAs after feeding in mice. Nature 

Biotechnology, 31(11), 965-967. doi:10.1038/nbt.2737 

Drummond, M. J., Glynn, E. L., Fry, C. S., Dhanani, S., Volpi, E., & Rasmussen, B. B. (2009). 

Essential Amino Acids Increase MicroRNA-499, -208b, and -23a and Downregulate 

Myostatin and Myocyte Enhancer Factor 2C mRNA Expression in Human Skeletal 

Muscle. The Journal of Nutrition, 139(12), 2279-2284. doi:10.3945/jn.109.112797 



70 

Druz, A., Betenbaugh, M., & Shiloach, J. (2012). Glucose depletion activates mmu-miR-466h-5p 

expression through oxidative stress and inhibition of histone deacetylation. Nucleic Acids 

Research, 40(15), 7291-7302. doi:10.1093/nar/gks452 

Durham, A. E., Frank, N., Mcgowan, C. M., Menzies‐Gow, N. J., Roelfsema, E., Vervuert, I., . . 
. Fey, K. (2019). Response to letter to editor regarding ECEIM consensus statement on 

equine metabolic syndrome. Journal of Veterinary Internal Medicine, 33(3), 1125-1126. 

doi:10.1111/jvim.15503 

Eades, S., Fugler, L. A., & Mitchell, C. (2014). The management of equine acute laminitis. 

Veterinary Medicine: Research and Reports, 39. doi:10.2147/vmrr.s39967 

Englyst, K. N., & Englyst, H. N. (2005). Carbohydrate bioavailability. British Journal of 

Nutrition, 94(1), 1-11. doi:10.1079/bjn20051457 

Esau, C., Davis, S., Murray, S. F., Yu, X. X., Pandey, S. K., Pear, M., . . . Monia, B. P. (2006). 

MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell 

Metabolism, 3(2), 87-98. doi:10.1016/j.cmet.2006.01.005 

Ferland-Mccollough, D., Ozanne, S., Siddle, K., Willis, A., & Bushell, M. (2010). The 

involvement of microRNAs in Type 2 diabetes. Biochemical Society Transactions, 38(6), 

1565-1570. doi:10.1042/bst0381565 

Frank, N., & Tadros, E. M. (2013). Insulin dysregulation. Equine Veterinary Journal, 46(1), 103-

112. doi:10.1111/evj.12169 

Frost, R. J., & Olson, E. N. (2011). Control of glucose homeostasis and insulin sensitivity by the 

Let-7 family of microRNAs. Proceedings of the National Academy of Sciences, 108(52), 

21075-21080. doi:10.1073/pnas.1118922109 

Gallagher, I. J., Scheele, C., Keller, P., Nielsen, A. R., Remenyi, J., Fischer, C. P., . . . Timmons, 

J. A. (2010). Integration of microRNA changes in vivo identifies novel molecular features 

of muscle insulin resistance in type 2 diabetes. Genome Medicine, 2(2), 9. 

doi:10.1186/gm130 

Garcia-Elias, A., Alloza, L., Puigdecanet, E., Nonell, L., Tajes, M., Curado, J., . . . Benito, B. 

(2017). Defining quantification methods and optimizing protocols for microarray 

hybridization of circulating microRNAs. Scientific Reports, 7(1). doi:10.1038/s41598-017-

08134-3 

García-Díaz, D. F., Pizarro, C., Camacho-Guillén, P., Codner, E., Soto, N., & Pérez-Bravo, F. 

(2018). Expression of miR-155, miR-146a, and miR-326 in T1D patients from Chile: 

Relationship with autoimmunity and inflammatory markers. Archives of Endocrinology 

and Metabolism, 62(1), 34-40. doi:10.20945/2359-3997000000006 



71 

García-Segura, L., Pérez-Andrade, M., & Miranda-Ríos, J. (2013). The Emerging Role of 

MicroRNAs in the Regulation of Gene Expression by Nutrients. Journal of Nutrigenetics 

and Nutrigenomics, 6(1), 16-31. doi:10.1159/000345826 

Gentile, A., Lhamyani, S., Coín‐Aragüez, L., Clemente‐Postigo, M., Olivera, W. O., Romero‐
Zerbo, S., . . . Bekay, R. E. (2018). MiR‐20b, miR‐296, and Let‐7f Expression in Human 
Adipose Tissue is Related to Obesity and Type 2 Diabetes. Obesity, 27(2), 245-254. 

doi:10.1002/oby.22363 

Glinsky, M. J., Smith, R. M., Spires, H. R., & Davis, C. L. (1976). Measurement of Volatile 

Fatty Acid Production Rates in the Cecum of the Pony. Journal of Animal Science, 42(6), 

1465-1470. doi:10.2527/jas1976.4261465x 

Gu, T. J., Yi, X., Zhao, X. W., Zhao, Y., & Yin, J. Q. (2009). Alu-directed transcriptional 

regulation of some novel miRNAs. BMC Genomics, 10(1), 563. doi:10.1186/1471-2164-

10-563 

Henneke, D. R., Potter, G. D., Kreider, J. L., & Yeates, B. F. (1983). Relationship between 

condition score, physical measurements and body fat percentage in mares. Equine 

Veterinary Journal, 15(4), 371-372. doi:10.1111/j.2042-3306.1983.tb01826.x 

Herrera, B. M., Lockstone, H. E., Taylor, J. M., Ria, M., Barrett, A., Collins, S., . . . Lindgren, C. 

M. (2010). Global microRNA expression profiles in insulin target tissues in a spontaneous 

rat model of type 2 diabetes. Diabetologia, 53(6), 1099-1109. doi:10.1007/s00125-010-

1667-2 

Huang, H., Davis, C., & Wang, T. (2018). Extensive Degradation and Low Bioavailability of 

Orally Consumed Corn miRNAs in Mice. Nutrients, 10(2), 215. doi:10.3390/nu10020215 

Huang, H., Roh, J., Davis, C. D., & Wang, T. T. (2017). An improved method to quantitate 

mature plant microRNA in biological matrices using modified periodate treatment and 

inclusion of internal controls. Plos One, 12(4). doi:10.1371/journal.pone.0175429 

Hwang, H., Wentzel, E. A., & Mendell, J. T. (2007). A Hexanucleotide Element Directs 

MicroRNA Nuclear Import. Science, 315(5808), 97-100. doi:10.1126/science.1136235 

Iwasaki, S., Kobayashi, M., Yoda, M., Sakaguchi, Y., Katsuma, S., Suzuki, T., & Tomari, Y. 

(2010). Hsc70/Hsp90 Chaperone Machinery Mediates ATP-Dependent RISC Loading of 

Small RNA Duplexes. Molecular Cell, 39(2), 292-299. doi:10.1016/j.molcel.2010.05.015 

Jiao, Y., Song, W., Zhang, M., & Lai, J. (2011). Identification of novel maize miRNAs by 

measuring the precision of precursor processing. BMC Plant Biology, 11(1), 141. 

doi:10.1186/1471-2229-11-141 



72 

Johnson, P. J., Wiedmeyer, C. E., Lacarrubba, A., Ganjam, V. K., & Messer, N. T. (2012). 

Diabetes, Insulin Resistance, and Metabolic Syndrome in Horses. Journal of Diabetes 

Science and Technology, 6(3), 534-540. doi:10.1177/193229681200600307 

Johnstone, R. M. (2006). Exosomes biological significance: A concise review. Blood Cells, 

Molecules, and Diseases, 36(2), 315-321. doi:10.1016/j.bcmd.2005.12.001 

Jones, A., Danielson, K. M., Benton, M. C., Ziegler, O., Shah, R., Stubbs, R. S., . . . Macartney-

Coxson, D. (2017). MiRNA Signatures of Insulin Resistance in Obesity. Obesity, 25(10), 

1734-1744. doi:10.1002/oby.21950 

Jordan, S. D., Krüger, M., Willmes, D. M., Redemann, N., Wunderlich, F. T., Brönneke, H. S., . . 

. Brüning, J. C. (2011). Obesity-induced overexpression of miRNA-143 inhibits insulin-

stimulated AKT activation and impairs glucose metabolism. Nature Cell Biology, 13(4), 

434-446. doi:10.1038/ncb2211 

Khan, A. R., Awan, F. R., Najam, S., Islam, M., Siddique, T., & Zain, M. (2015). Elevated 

serum level of human alkaline phosphatase in obesity. Journal of Pakistan Medical 

Association, 65, 11th ser., 1182-1185. Retrieved 2019, from https://jpma.org.pk/article-

details/7522 

Laat, M. A., Mcgree, J. M., & Sillence, M. N. (2016). Equine hyperinsulinemia: Investigation of 

the enteroinsular axis during insulin dysregulation. American Journal of Physiology-

Endocrinology and Metabolism, 310(1). doi:10.1152/ajpendo.00362.2015 

Lecchi, C., Costa, E. D., Lebelt, D., Ferrante, V., Canali, E., Ceciliani, F., . . . Minero, M. (2017). 

Circulating miR-23b-3p, miR-145-5p and miR-200b-3p are potential biomarkers to 

monitor acute pain associated with laminitis in horses. Animal, 12(2), 366-375. 

doi:10.1017/s1751731117001525 

Lee, Y., Andaloussi, S. E., & Wood, M. J. (2012). Exosomes and microvesicles: Extracellular 

vesicles for genetic information transfer and gene therapy. Human Molecular Genetics, 

21(R1). doi:10.1093/hmg/dds317 

Lee, Y., Kim, M., Han, J., Yeom, K., Lee, S., Baek, S. H., & Kim, V. N. (2004). MicroRNA 

genes are transcribed by RNA polymerase II. The EMBO Journal, 23(20), 4051-4060. 

doi:10.1038/sj.emboj.7600385 

Liu, S., Zhou, J., Hu, C., Wei, C., & Zhang, J. (2017). MicroRNA-Mediated Gene Silencing in 

Plant Defense and Viral Counter-Defense. Frontiers in Microbiology, 8. 

doi:10.3389/fmicb.2017.01801 

Liu, X., Cao, H., Wang, B., Xin, F., Zhang, R., Zhou, D., . . . Fan, J. (2017). MiR-192-5p 

regulates lipid synthesis in non-alcoholic fatty liver disease through SCD-1. World Journal 

of Gastroenterology, 23(46), 8140-8151. doi:10.3748/wjg.v23.i46.8140 



73 

Liu, Y., Chen, W. L., Kung, W., & Huang, H. (2017). Plant miRNAs found in human circulating 

system provide evidences of cross kingdom RNAi. BMC Genomics, 18(S2). 

doi:10.1186/s12864-017-3502-3 

Luo, Y., Wang, P., Wang, X., Wang, Y., Mu, Z., Li, Q., . . . Li, M. (2017). Detection of 

dietetically absorbed maize-derived microRNAs in pigs. Scientific Reports, 7(1). 

doi:10.1038/s41598-017-00488-y 

Makarova, J. A., Shkurnikov, M. U., Wicklein, D., Lange, T., Samatov, T. R., Turchinovich, A. 

A., & Tonevitsky, A. G. (2016). Intracellular and extracellular microRNA: An update on 

localization and biological role. Progress in Histochemistry and Cytochemistry, 51(3-4), 

33-49. doi:10.1016/j.proghi.2016.06.001 

Marzano, F., Faienza, M. F., Caratozzolo, M. F., Brunetti, G., Chiara, M., Horner, D. S., . . . 

Tullo, A. (2018). Pilot study on circulating miRNA signature in children with obesity born 

small for gestational age and appropriate for gestational age. Pediatric Obesity, 13(12), 

803-811. doi:10.1111/ijpo.12439 

Mead, M. N. (2007). Nutrigenomics: The Genome–Food Interface. Environmental Health 

Perspectives, 115(12). doi:10.1289/ehp.115-a582 

Meerson, A., Najjar, A., Saad, E., Sbeit, W., Barhoum, M., & Assy, N. (2019). Sex Differences 

in Plasma MicroRNA Biomarkers of Early and Complicated Diabetes Mellitus in Israeli 

Arab and Jewish Patients. Non-Coding RNA, 5(2), 32. doi:10.3390/ncrna5020032 

Mu, J., Zhuang, X., Wang, Q., Jiang, H., Deng, Z., Wang, B., . . . Zhang, H. (2014). Interspecies 

communication between plant and mouse gut host cells through edible plant derived 

exosome‐like nanoparticles. Molecular Nutrition & Food Research, 58(7), 1561-1573. 

doi:10.1002/mnfr.201300729 

Mudhasani, R., Imbalzano, A. N., & Jones, S. N. (2010). An essential role for Dicer in adipocyte 

differentiation. Journal of Cellular Biochemistry, 110(4), 812-816. doi:10.1002/jcb.22625 

Nakanishi, K. (2016). Anatomy of RISC: How do small RNAs and chaperones activate 

Argonaute proteins? Wiley Interdisciplinary Reviews: RNA, 7(5), 637-660. 

doi:10.1002/wrna.1356 

Nie, Y., Sato, Y., Wang, C., Yue, F., Kuang, S., & Gavin, T. P. (2016). Impaired exercise 

tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR‐133a–deficient 

mice. The FASEB Journal, 30(11), 3745-3758. doi:10.1096/fj.201600529r 

Nulton, L. (2014). CROSS-KINGDOM MICRORNA DETECTION AND INFLUENCE OF DIET 

ON ENDOGENOUS EQUINE MICRORNAS (Unpublished master's thesis). Colorado State 

University. 



74 

Olivieri, F., Spazzafumo, L., Bonafè, M., Recchioni, R., Prattichizzo, F., Marcheselli, F., . . . 

Bonfigli, A. R. (2015). MiR-21-5p and miR-126a-3p levels in plasma and circulating 

angiogenic cells: Relationship with type 2 diabetes complications. Oncotarget, 6(34), 

35372-35382. doi:10.18632/oncotarget.6164 

Ortega, F. J., Mercader, J. M., Catalán, V., Moreno-Navarrete, J. M., Pueyo, N., Sabater, M., . . . 

Fernández-Real, J. M. (2013). Targeting the Circulating MicroRNA Signature of Obesity. 

Clinical Chemistry, 59(5), 781-792. doi:10.1373/clinchem.2012.195776 

Pescador, N., Pérez-Barba, M., Ibarra, J. M., Corbatón, A., Martínez-Larrad, M. T., & Serrano-

Ríos, M. (2013). Serum Circulating microRNA Profiling for Identification of Potential 

Type 2 Diabetes and Obesity Biomarkers. PLoS ONE, 8(10). 

doi:10.1371/journal.pone.0077251 

Peterson, L. W., & Artis, D. (2014). Intestinal epithelial cells: Regulators of barrier function and 

immune homeostasis. Nature Reviews Immunology, 14(3), 141-153. doi:10.1038/nri3608 

Pollitt, C. C., & Visser, M. B. (2010). Carbohydrate Alimentary Overload Laminitis. Veterinary 

Clinics of North America: Equine Practice, 26(1), 65-78. doi:10.1016/j.cveq.2010.01.006 

Prats-Puig, A., Ortega, F. J., Mercader, J. M., Moreno-Navarrete, J. M., Moreno, M., Bonet, N., . 

. . Fernández-Real, J. M. (2013). Changes in Circulating MicroRNAs Are Associated With 

Childhood Obesity. The Journal of Clinical Endocrinology & Metabolism, 98(10). 

doi:10.1210/jc.2013-1496 

Párrizas, M., Brugnara, L., Esteban, Y., González-Franquesa, A., Canivell, S., Murillo, S., . . . 

Novials, A. (2015). Circulating miR-192 and miR-193b Are Markers of Prediabetes and 

Are Modulated by an Exercise Intervention. The Journal of Clinical Endocrinology & 

Metabolism, 100(3). doi:10.1210/jc.2014-2574 

Radin, M. J., Sharkey, L. C., & Holycross, B. J. (2009). Adipokines: A review of biological and 

analytical principles and an update in dogs, cats, and horses. Veterinary Clinical 

Pathology, 38(2), 136-156. doi:10.1111/j.1939-165x.2009.00133.x 

Rao, P. K., Kumar, R. M., Farkhondeh, M., Baskerville, S., & Lodish, H. F. (2006). Myogenic 

factors that regulate expression of muscle-specific microRNAs. Proceedings of the 

National Academy of Sciences, 103(23), 8721-8726. doi:10.1073/pnas.0602831103 

Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., & Bartel, D. P. (2002). 

Prediction of Plant MicroRNA Targets. Cell, 110(4), 513-520. doi:10.1016/s0092-

8674(02)00863-2 

Rottiers, V., & Näär, A. M. (2012). Erratum: MicroRNAs in metabolism and metabolic 

disorders. Nature Reviews Molecular Cell Biology, 13(5), 1-1. doi:10.1038/nrm3328 



75 

Saif, J., & Emanueli, C. (2014). MiRNAs in post-ischaemic angiogenesis and vascular 

remodelling. Biochemical Society Transactions, 42(6), 1629-1636. 

doi:10.1042/bst20140263 

Sanders, I., Holdenrieder, S., Walgenbach-Brünagel, G., Ruecker, A. V., Kristiansen, G., Müller, 

S. C., & Ellinger, J. (2012). Evaluation of reference genes for the analysis of serum 

miRNA in patients with prostate cancer, bladder cancer and renal cell carcinoma. 

International Journal of Urology, 19(11), 1017-1025. doi:10.1111/j.1442-

2042.2012.03082.x 

Santos, H. D., Hess, T., Bruemmer, J., & Splan, R. (2018). Possible Role of MicroRNA in 

Equine Insulin Resistance: A Pilot Study. Journal of Equine Veterinary Science, 63, 74-79. 

doi:10.1016/j.jevs.2017.10.024 

Shah, R., Murthy, V., Pacold, M., Danielson, K., Tanriverdi, K., Larson, M. G., . . . Freedman, J. 

E. (2017). Extracellular RNAs Are Associated With Insulin Resistance and Metabolic 

Phenotypes. Diabetes Care, 40(4), 546-553. doi:10.2337/dc16-1354 

Sohel, M. H. (2016). Extracellular/Circulating MicroRNAs: Release Mechanisms, Functions and 

Challenges. Achievements in the Life Sciences, 10(2), 175-186. 

doi:10.1016/j.als.2016.11.007 

Sontheimer, E. J. (2005). Assembly and function of RNA silencing complexes. Nature Reviews 

Molecular Cell Biology, 6(2), 127-138. doi:10.1038/nrm1568 

Stewart, A. S., Pratt-Phillips, S., & Gonzalez, L. M. (2017). Alterations in Intestinal 

Permeability: The Role of the “Leaky Gut” in Health and Disease. Journal of Equine 

Veterinary Science, 52, 10-22. doi:10.1016/j.jevs.2017.02.009 

Supic, G., Jagodic, M., & Magic, Z. (2013). Epigenetics: A New Link Between Nutrition and 

Cancer. Nutrition and Cancer, 65(6), 781-792. doi:10.1080/01635581.2013.805794 

Taylor, R. S., Tarver, J. E., Hiscock, S. J., & Donoghue, P. C. (2014). Evolutionary history of 

plant microRNAs. Trends in Plant Science, 19(3), 175-182. 

doi:10.1016/j.tplants.2013.11.008 

Treiber, K. H., Kronfeld, D. S., & Geor, R. J. (2006). Insulin Resistance in Equids: Possible Role 

in Laminitis. The Journal of Nutrition, 136(7). doi:10.1093/jn/136.7.2094s 

Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., & Remaley, A. T. (2011). 

MicroRNAs are transported in plasma and delivered to recipient cells by high-density 

lipoproteins. Nature Cell Biology, 13(4), 423-433. doi:10.1038/ncb2210 

Wang, J., Chen, J., & Sen, S. (2015). MicroRNA as Biomarkers and Diagnostics. Journal of 

Cellular Physiology, 231(1), 25-30. doi:10.1002/jcp.25056 



76 

Wang, K., Li, H., Yuan, Y., Etheridge, A., Zhou, Y., Huang, D., . . . Galas, D. (2012). The 

Complex Exogenous RNA Spectra in Human Plasma: An Interface with Human Gut 

Biota? PLoS ONE, 7(12). doi:10.1371/journal.pone.0051009 

Wang, X., Elling, A. A., Li, X., Li, N., Peng, Z., He, G., . . . Deng, X. W. (2009). Genome-Wide 

and Organ-Specific Landscapes of Epigenetic Modifications and Their Relationships to 

mRNA and Small RNA Transcriptomes in Maize. The Plant Cell, 21(4), 1053-1069. 

doi:10.1105/tpc.109.065714 

Witwer, K. W. (2018). Alternative miRNAs? Human sequences misidentified as plant miRNAs 

in plant studies and in human plasma. F1000Research, 7, 244. 

doi:10.12688/f1000research.14060.1 

Wu, J., Qian, J., Li, C., Kwok, L., Cheng, F., Liu, P., . . . Lü, J. (2010). MiR-129 regulates cell 

proliferation by downregulating Cdk6 expression. Cell Cycle, 9(9), 1809-1818. 

doi:10.4161/cc.9.9.11535 

Xu, T., Yan, W., Wu, Q., Xu, Q., Yuan, J., Li, Y., . . . Ni, C. (2019). MiR-326 Inhibits 

Inflammation and Promotes Autophagy in Silica-Induced Pulmonary Fibrosis through 

Targeting TNFSF14 and PTBP1. Chemical Research in Toxicology, 32(11), 2192-2203. 

doi:10.1021/acs.chemrestox.9b00194 

Xue, L., Zhang, J., & Xue, H. (2008). Characterization and expression profiles of miRNAs in 

rice seeds. Nucleic Acids Research, 37(3), 916-930. doi:10.1093/nar/gkn998 

Yang, J., Farmer, L. M., Agyekum, A. A., Elbaz-Younes, I., & Hirschi, K. D. (2015). Detection 

of an Abundant Plant-Based Small RNA in Healthy Consumers. Plos One, 10(9). 

doi:10.1371/journal.pone.0137516 

Yang, J., Hotz, T., Broadnax, L., Yarmarkovich, M., Elbaz-Younes, I., & Hirschi, K. D. (2016). 

Anomalous uptake and circulatory characteristics of the plant-based small RNA MIR2911. 

Scientific Reports, 6(1). doi:10.1038/srep26834 

Yekta, S. (2004). MicroRNA-Directed Cleavage of HOXB8 mRNA. Science, 304(5670), 594-

596. doi:10.1126/science.1097434 

Zaiou, M., Amri, H. E., & Bakillah, A. (2018). The clinical potential of adipogenesis and 

obesity-related microRNAs. Nutrition, Metabolism and Cardiovascular Diseases, 28(2), 

91-111. doi:10.1016/j.numecd.2017.10.015 

Zaki, M. B., Abulsoud, A. I., Elsisi, A. M., Doghish, A. S., Mansour, O. A., Amin, A. I., . . . 

Goda, M. A. (2019). Potential role of circulating microRNAs (486-5p, 497, 509-5p and 

605) in metabolic syndrome Egyptian male patients. Diabetes, Metabolic Syndrome and 

Obesity: Targets and Therapy, Volume 12, 601-611. doi:10.2147/dmso.s187422 



77 

Zhang, J., Zhang, F., Didelot, X., Bruce, K. D., Cagampang, F. R., Vatish, M., . . . Byrne, C. D. 

(2009). Maternal high fat diet during pregnancy and lactation alters hepatic expression of 

insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics, 

10(1), 478. doi:10.1186/1471-2164-10-478 

Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., . . . Zhang, C. (2012). Exogenous plant 

MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom 

regulation by microRNA. Cell Research, 22(1), 107-126. doi:10.1038/cr.2011.158 

Zhang, Y., He, W., Gao, Y., Fan, Z., Gao, C., & Xia, Z. (2017). MicroRNA-106b regulates 

skeletal muscle insulin sensitivity and glucose homeostasis by targeting mitofusion-2. 

Molecular Medicine Reports, 16(5), 6858-6863. doi:10.3892/mmr.2017.7439 

Zhang, Y., Yang, L., Gao, Y., Fan, Z., Cai, X., Liu, M., . . . Xia, Z. (2013). MicroRNA-106b 

induces mitochondrial dysfunction and insulin resistance in C2C12 myotubes by targeting 

mitofusin-2. Molecular and Cellular Endocrinology, 381(1-2), 230-240. 

doi:10.1016/j.mce.2013.08.004 

Zheng, D., Ma, J., Yu, Y., Li, M., Ni, R., Wang, G., . . . Peng, T. (2015). Silencing of miR-195 

reduces diabetic cardiomyopathy in C57BL/6 mice. Diabetologia, 58(8), 1949-1958. 

doi:10.1007/s00125-015-3622-8 

Zheng, L., Chen, P., & Xiao, W. (2019). Roles and mechanism of microRNAs in the regulation 

of skeletal muscle insulin resistance [Abstract]. Acta Physiologica Sinica, 71(3), 497-504. 

doi:10.13294/j.aps.2018.0061 

 

  



78 

APPENDICES 
 

 

Appendix Table I: 277 Equine miRNA primer sequences 

Mature miRNA ID  Target miRNA Mature Sequence  

eca-let-7a  ugagguaguagguuguauaguu  

eca-let-7c  ugagguaguagguuguaugguu  

eca-let-7d  agagguaguagguugcauaguu  

eca-let-7e  ugagguaggagguuguauaguu  

eca-let-7f  ugagguaguagauuguauaguu  

eca-let-7g  ugagguaguaguuuguacaguu  

eca-mir-7  uggaagacuagugauuuuguugu  

eca-mir-9a  ucuuugguuaucuagcuguauga  

eca-mir-10a  uacccuguagauccgaauuugug  

eca-mir-10b  uacccuguagaaccgaauuugug  

eca-mir-15a  uagcagcacauaaugguuugug  

eca-mir-15b  uagcagcacaucaugguuuaca  

eca-mir-16  uagcagcacguaaauauuggcg  

eca-mir-17  caaagugcuuacagugcagguag  

eca-mir-18b  uaaggugcaucuagugcaguuag  

eca-mir-19a  ugugcaaaucuaugcaaaacuga  

eca-mir-19b  ugugcaaaucuaugcaaaacuga  

eca-mir-20a  uaaagugcuuauagugcagguag  

eca-mir-20b  caaagugcucauagugcagguag  

eca-mir-21  uagcuuaucagacugauguuga  

eca-mir-22  aagcugccaguugaagaacugu  

eca-mir-23a  aucacauugccagggauuucc  

eca-mir-23b  aucacauugccagggauuacc  

eca-mir-24  uggcucaguucagcaggaacag  

eca-mir-25  cauugcacuugucucggucuga  

eca-mir-26a  uucaaguaauccaggauaggcu  

eca-mir-27a  uucacaguggcuaaguuccgc  

eca-mir-27b  uucacaguggcuaaguucugc  

eca-mir-283p  cacuagauugugagcuccugga  

eca-mir-285p  aaggagcucacagucuauugag  

eca-mir-29a  uagcaccaucugaaaucgguua  

eca-mir-29c  uagcaccauuugaaaucgguua  

eca-mir-30b  uguaaacauccuacacucagcu  

eca-mir-30c  uguaaacauccuacacucucagc  

eca-mir-30e   uguaaacauccuugacuggaag  

eca-mir-31  aggcaagaugcuggcauagcu  

eca-mir-32  uauugcacauuacuaaguugca  
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eca-mir-34  uggcagugucuuagcugguugu  

eca-mir-92a  uauugcacuugucccggccugu  

eca-mir-92b  uauugcacucgucccggccucc  

eca-mir-93  caaagugcuguucgugcagguag  

eca-mir-96  uuuggcacuagcacauuuuugcu  

eca-mir-98  ugagguaguaaguuguauuguu  

eca-mir-99a  aacccguagauccgaucuugug  

eca-mir-99b  cacccguagaaccgaccuugcg  

eca-mir-100  aacccguagauccgaacuugug  

eca-mir-101  uacaguacugugauaacugaa  

eca-mir-103  agcagcauuguacagggcuauga  

eca-mir-105  ucaaaugcucagacuccuguggu  

eca-mir-106a  caaagugcuuacagugcagguag  

eca-mir-106b  uaaagugcugacagugcagau  

eca-mir-107b  agcagcauuguacagggcuauca  

eca-mir-122  uggagugugacaaugguguuug  

eca-mir-125a5p  ucccugagacccuuuaaccuguga  

eca-mir-125b  ucccugagacccuaacuuguga  

eca-mir-1263p  ucguaccgugaguaauaaugcg  

eca-mir-127  ucggauccgucugagcuuggcu  

eca-mir-128  ucacagugaaccggucucuuu  

eca-mir-129a3p  aagcccuuaccccaaaaaguau  

eca-mir-129a5p  cuuuuugcggucugggcuugc  

eca-mir-132  uaacagucuacagccauggucg  

eca-mir-133a  uuugguccccuucaaccagcug  

eca-mir-133b  uuugguccccuucaaccagcua  

eca-mir-134  ugugacugguugaccagagggg  

eca-mir-135a  uauggcuuuuuauuccuauguga  

eca-mir-135b  uauggcuuuucauuccuauguga  

eca-mir-136  acuccauuuguuuugaugaugg  

eca-mir-137  uuauugcuuaagaauacgcguag  

eca-mir-138  agcugguguugugaaucaggccg  

eca-mir-1393p  ggagacgcggcccuguuggagu  

eca-mir-1395p  ucuacagugcacgugucuccag  

eca-mir-1403p  uaccacaggguagaaccacgg  

eca-mir-1405p  cagugguuuuacccuaugguag  

eca-mir-141  uaacacugucugguaaagaugg  

eca-mir-1423p  uguaguguuuccuacuuuaugga  

eca-mir-143  ugagaugaagcacuguagcuc  

eca-mir-144  uacaguauagaugauguacu  

eca-mir-145  guccaguuuucccaggaaucccu  

eca-mir-146a  ugagaacugaauuccauggguu  

eca-mir-146b3p  ugcccuagggacucaguucugg  

eca-mir-146b5p  ugagaacugaauuccauaggcu  

eca-mir-147b  gugugccgaaaugcuucugcua  
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eca-mir-148a  ucagugcacuacagaacuuugu  

eca-mir-148b3p  ucagugcaucacagaacuuugu  

eca-mir-149  ucuggcuccgugucuucacuccc  

eca-mir-150  ucucccaacccuuguaccagug  

eca-mir-1515p  ucgaggagcucacagucuagu  

eca-mir-153  uugcauagucacaaaagugauc  

eca-mir-154  uagguuauccguguugccuucg  

eca-mir-155  uuaaugcuaaucgugauaggggu  

eca-mir-181a  aacauucaacgcugucggugagu  

eca-mir-181b  aacauucauugcugucggugggu  

eca-mir-182  uuuggcaaugguagaacucacacug  

eca-mir-184  uggacggagaacugauaagggu  

eca-mir-186  caaagaauucuccuuuugggcu  

eca-mir-187  ucgugucuuguguugcagccgg  

eca-mir-1883p  cucccacaugcaggguuugca  

eca-mir-1885p  caucccuugcaugguggaggg  

eca-mir-190b  ugauauguuugauauuggguu  

eca-mir-191  caacggaaucccaaaagcagcug  

eca-mir-192  cugaccuaugaauugacagcc  

eca-mir-193a5p  ugggucuuugcgggcgagauga  

eca-mir-193b  aacuggcccacaaagucccgcu  

eca-mir-194  uguaacagcaacuccaugugga  

eca-mir-195  uagcagcacagaaauauuggc  

eca-mir-196a  uagguaguuucauguuguuggg  

eca-mir-196b  uagguaguuuccuguuguuggg  

eca-mir-197  uucaccaccuucuccacccagc  

eca-mir-199b3p  acaguagucugcacauugguua  

eca-mir-199b5p  cccaguguuuagacuaucuguuc  

eca-mir-200b  uaauacugccugguaaugauga  

eca-mir-200c  uaauacugccggguaaugaugga  

eca-mir-204b  uucccuuugucauccuaugccu  

eca-mir-205  uccuucauuccaccggagucug  

eca-mir-206  uggaauguaaggaagugugugg  

eca-mir-211  uucccuuugucauccuuugccu  

eca-mir-215  augaccuaugaauugacagac  

eca-mir-216a  uaaucucagcuggcaacuguga  

eca-mir-216b  aaaucucugcaggcaaauguga  

eca-mir-217  uacugcaucaggaacugauugga  

eca-mir-218  uugugcuugaucuaaccaugu  

eca-mir-221  agcuacauugucugcuggguuuc  

eca-mir-222  agcuacaucuggcuacugggu  

eca-mir-223  ugucaguuugucaaauacccca  

eca-mir-224  caagucacuagugguuccguu  

eca-mir-296  gaggguuggguggaggcuuucc  

eca-mir-301b3p  cagugcaaugauauugucaaagc  
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eca-mir-302a  uaagugcuuccauguuuuaguga  

eca-mir-302b  uaagugcuuccauguuuuaguag  

eca-mir-302c  uaagugcuuccauguuucagugg  

eca-mir-302d  uaagugcuuccauguuuuagugu  

eca-mir-3233p  cacauuacacggucgaccucu  

eca-mir-3235p  aggugguccguggcgcguucgc  

eca-mir-3245p  cgcauccccuagggcauuggugu  

eca-mir-326  ccucugggcccuuccuccagc  

eca-mir-330  ucucugggccugugucuuaggc  

eca-mir-331  gccccugggccuauccuagaa  

eca-mir-335  ucaagagcaauaacgaaaaaugu  

eca-mir-3373p  cuccuaugagaugccuuuccuc  

eca-mir-3375p  gaacggcuucauacaggagcu  

eca-mir-3383p  uccagcaucagugauuuuguug  

eca-mir-3385p  aacaauauccuggugcugagug  

eca-mir-3405p  uuauaaagcaaugagacugauu  

eca-mir-3423p  ucucacacagaaaucgcacccgu  

eca-mir-3455p  gcugacuccuaguccagugcuc  

eca-mir-346  ugucugcccgcaugccugccucu  

eca-mir-3613p  ucccccaggcgugauucugauuu  

eca-mir-3615p  uuaucagaaucuccagggguac  

eca-mir-3623p  aacacaccuauucaaggauuca  

eca-mir-3625p  aauccuuggaaccuaggugugagu  

eca-mir-3693p  aauaauacaugguugaucuuu  

eca-mir-3695p  agaucgaccgugucauauucgc  

eca-mir-370  gccugcugggguggaaccuggu  

eca-mir-3715p  acucaaacugugggggcacu  

eca-mir-374b  auauaauacaaccugcuaagug  

eca-mir-376c  aacauagaggaaauuccacgu  

eca-mir-378  acuggacuuggagucagaagg  

eca-mir-379  ugguagacuauggaacguagg  

eca-mir-380  uauguaauaugguccacgucuu  

eca-mir-381  uauacaagggcaagcucucugu  

eca-mir-382  gaaguuguucgugguggauucg  

eca-mir-383  agaucagaaggugauuguggcu  

eca-mir-4093p  gaauguugcucggugaaccccu  

eca-mir-4095p  agguuacccgagcaacuuugcau  

eca-mir-411  uaguagaccguauagcguacg  

eca-mir-412  uucaccugguccacuagccg  

eca-mir-421  ggccucauuaaauguuuguug  

eca-mir-4235p  ugaggggcagagagcgagacuuu  

eca-mir-424  cagcagcaauucauguuuugaa  

eca-mir-429  uaauacugucugguaaugccg  

eca-mir-431  ugucuugcaggccgucaugcagg  

eca-mir-432  ucuuggaguaggucauugggugg  
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eca-mir-433  aucaugaugggcuccucggugu  

eca-mir-448  uugcauauguaggaugucccau  

eca-mir-449a  uggcaguguauuguuagcuggu  

eca-mir-450b5p  uuuugcaauauguuccugaaua  

eca-mir-451  aaaccguuaccauuacuguguu  

eca-mir-454  uagugcaauauugcuuauagggu  

eca-mir-4853p  gucauacacggcucuccucucu  

eca-mir-4855p  agaggcuggccgugaugaauuc  

eca-mir-4863p  cggggcagcucaguacaggau  

eca-mir-4865p  uccuguacugagcugccccgag  

eca-mir-487b  aaucguacagggucauccacuu  

eca-mir-488  uugaaaggcuauuucuugguc  

eca-mir-489  gugacaucacauauacggcggc  

eca-mir-4903p  caaccuggaggacuccaugcug  

eca-mir-4905p  ccauggaucuccaggugggu  

eca-mir-4913p  cuuaugcaagauucccuucuac  

eca-mir-4915p  aguggggaacccuuccaugagg  

eca-mir-493b  ugaaggucuuccgugugccagg  

eca-mir-494  ugaaacauacacgggaaaccuc  

eca-mir-495  aaacaaacauggugcacuucuu  

eca-mir-497  cagcagcacacugugguuugu  

eca-mir-4993p  aacaucacagcaagucugugcu  

eca-mir-500  uaauccuugcuaccugggugaga  

eca-mir-501  auccuucgucccugggugaga  

eca-mir-5023p  aaugcaccugggcaaggauuca  

eca-mir-5025p  auccuugcuaucugggugcua  

eca-mir-503  uagcagcgggaacaguacugcag  

eca-mir-504  agacccuggucugcacucuauc  

eca-mir-505  cgucaacacuugcugguuuccu  

eca-mir-507  auuggcaccucuuagagugaa  

eca-mir-5083p  ugauugucaccuuuuggaguaga  

eca-mir-5085p  uacuccagagggugucauucaca  

eca-mir-5095p  uacugcagacaguggcaauca  

eca-mir-514  auugacaccucugugagugga  

eca-mir-5325p  caugccuugaguguaggaccgu  

eca-mir-541  uggugggcacagaauccagucu  

eca-mir-5423p  ugugacagauugauaacugaaa  

eca-mir-5425p  cucggggaucaucaugucacga  

eca-mir-544b  auucugcauuuuuaacaaguuc  

eca-mir-545  ucaacaaacauuuauugugugc  

eca-mir-551a  gcgacccacucuugguuucca  

eca-mir-551b  gcgacccauacuugguuucag  

eca-mir-5823p  uaaccgguugaacaacugaacc  

eca-mir-5905p  gagcuuauucauaaaaguacag  

eca-mir-592  uugugucaauaugcgaugaugu  
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eca-mir-598  uacgucaucguugucaucguca  

eca-mir-6155p  ggggguccccggugcucggauc  

eca-mir-6153p  uccgagccugggucucccucuc  

eca-mir-628a  augcugacauauuuacuagagg  

eca-mir-632  gugccuguuuccuguggga  

eca-mir-652  aauggcgccacuaggguugug  

eca-mir-656  aauauuauacagucaaccucu  

eca-mir-660  uacccauugcauaucggaguug  

eca-mir-664  uauucauuuaucuccuagccuaca  

eca-mir-670  gucccugaguguauguggugaa  

eca-mir-6715p  aggaagcccuggaggggcuggag  

eca-mir-6713p  uccgguucucagggcuccacc  

eca-mir-672  ugagguugguguacuguguguga  

eca-mir-6745p  ggugcucacuuguccuccu  

eca-mir-684  aguuuucccuucaauucag  

eca-mir-703  aaaaccuucagaaggaaagga  

eca-mir-761  gcagcagggugaaacugacaca  

eca-mir-763  ccagcugggaggaaccaguggc  

eca-mir-7673p  ucugcucauacuccaugguuccu  

eca-mir-7695p  ggagaccucuggguucugagcu  

eca-mir-7693p  cugggaucucgggggucuugguu  

eca-mir-769b  ggaaaccucuggguucugagcu  

eca-mir-770  agcaccacgugucugggccaug  

eca-mir-872  aagguuacuuguuaguucagg  

eca-mir-873  gcaggaacuugugagucuccu  

eca-mir-874  cugcccuggcccgagggaccga  

eca-mir-8765p  uggauuucuuugugaaucacca  

eca-mir-8855p  uccauuacacuacccugccucu  

eca-mir-1179  aagcauucuuucauugguugg  

eca-mir-1180  uuuccggcucgagugggugugu  

eca-mir-1185  agaggauacccuuuguauguu  

eca-mir-1193  uaggucacccguuugacuauc  

eca-mir-1197  uaggacacauggucuacuucu  

eca-mir-1244  gagugguugguuuguaugagaugguu  

eca-mir-1248  uccuucuuguauaagcacugugcuaaa  

eca-mir-1255b  cggauaagcaaagaaagugguu  

eca-mir-1261  guggauuaggcuuuggcuu  

eca-mir-1271  cuuggcaccucguaagcacuca  

eca-mir-1291a  uggcccugacugaagaccagcagu  

eca-mir-1291b  aggcccugaaucaagaccagcagu  

eca-mir-1296  uuagggcccuggcuccaucucc  

eca-mir-1298  uucauucggcuguccagaugua  

eca-mir-1301  uugcagcugccugggagugauuuc  

eca-mir-13021  uugggacauacuuauacuaaa  

eca-mir-1302b2  uugggacauacuuauacuaga  
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eca-mir-1302d4  uugggacauacuuaugcuaaa  

eca-mir-1302e7  uugggauauacuuauacuaaa  

eca-mir-1302c5  uugcgacauacuuauacuaaa  

eca-mir-1461  aucucuacggguaaguguguga  

eca-mir-1468  cuccguuugccuguuuugcug  

eca-mir-1839  aagguagauagaacaggucuug  

eca-mir-1898  aggucaagguucacaggggauc  

eca-mir-1905a  caccacgagcccuaccacgcgguag  

eca-mir-1905b  caccagccccacuacgcgguag  

eca-mir-1905c  caccaccagccccaccacgcgguag  

eca-mir-1912  uacccagagcgugcagugugaa  

 

Appendix Table II: Non-Equine miRNA Primer Sequences. A.) Mammalian B.) Plant 

A) 

Mature miRNA ID Target Mature miRNA Sequence 

RNU 1A CGACTGCATAATTTGTGGTAGTGG 

 

B) 

Mature miRNA ID  Target Mature miRNA Sequence  

ath-mir-156a  UGACAGAAGAGAGUGAGCAC  

zma-mir-827-5p  UUUGUUGGUGGUCAUUUAACC  

osa-mir-1866-3p  UGAAAUUCCUGUAAAAUUCUUG  
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Appendix Table III: Feed Analyses. Reported on a dry matter basis. A.) Steam Flaked corn B.) 

Hays 

A) 

Analysis Parameters Steam Flaked Corn 

DM (%) 86.4 

DE (Mcal/kg) 3.96 

CP (%) 7.5 

Estimated Lysine (%) 0.21 

ADF (%) 2.4 

NDF (%) 6.2 

WSC (%) 2.1 

ESC (%) 1.5 

Starch (%) 78.6 

NFC (%) 80.7 

Dry Matter (DM), Digestible Energy (DE), Crude Protein(CP), Acid Detergent Fiber(ADF), 

Neutral Detergent Fiber (NDF), WSC (Water Sol. Carbs.), ESC (Simple Sugars) (%), Non- Fiber 

Carb. (NFC). 

 

B) 

Analysis Parameters Round Bale Chopped Hay mixture 

DM (%) 93.4 90.6 

DE (Mcal/kg) 2.21 2.18 

CP (%) 7.2 17.2 

Estimated Lysine (%) 0.25 0.60 

Lignin (%) 3.1 5.0 

ADF (%) 35.2 34.5 

NDF (%) 58.3 52.5 

WSC (%) 14.0 8.7 

ESC (%) 5.9 7.1 

Starch (%) 0.9 0.4 

NFC (%) 24.5 17.7 

Crude Fat (%) 2.6 3.0 

Ash (%) 7.4 9.7 

Dry Matter (DM), Digestible Energy (DE), Crude Protein(CP), Acid Detergent Fiber(ADF), 

Neutral Detergent Fiber (NDF), WSC (Water Sol. Carbs.), ESC (Simple Sugars) (%), Non- Fiber 

Carb. (NFC). 
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Appendix Table IV: Henneke Body Condition Score Chart 

Body Condition Score Description 

1 Poor Animal extremely emaciated; spinous 

processes, ribs, tailhead, tuber coxae, and 

ischia projecting prominently; the bone 

structure of withers, shoulders, and 

neck easily noticeable; no fatty tissue can be 

felt. 

2 Very Thin Animal emaciated; slight fat covering over 

base of spinous processes; 

transverse processes of lumbar vertebrae feel 

rounded; spinous process, ribs, tailhead, 

tuber coxae, and ischia  prominent; withers, 

shoulders, and neck structure 

faintly discernible. 

3 Thin Fat buildup about halfway on spinous 

processes; transverse processes cannot be 

felt; slight fat cover over ribs; spinous 

processes and ribs easily discernible; tailhead 

prominent, but individual vertebrae cannot be 

identified visually; tuber coxae 

appear rounded but easily discernible; tuber 

ischii not distinguishable; withers, 

shoulders and neck accentuated. 

4 Moderately Thin Slight ridge along the back; faint outline of 

ribs discernible; tailhead 

prominence depends on conformation, fat can 

be felt around it; tuber coxae not 

discernible; withers, shoulder, and neck not 

obviously thin. 

5 Moderate Back is flat (no crease or ridge); ribs not 

visually distinguishable but easily 

felt; fat around tailhead beginning to feel 

spongy; withers appear rounded over spinous 

processes; shoulder and neck blend smoothly 

into body. 

6 Moderately Fleshy May have slight crease down back; fat over 

ribs spongy; fat around 

tailhead soft; fat beginning to be deposited 

along the side of withers, behind shoulders 

and 

along the side of neck. 

7 Fleshy May have crease down back; individual ribs 

can be felt, but noticeable filling 
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between ribs with fat around tailhead soft; fat 

deposited along withers, behind shoulders, 

and along neck. 

8 Fat Crease down back; difficult to feel ribs; fat 

around tailhead very soft; area along 

withers filled with fat; area behind shoulder 

filled with fat; noticeable thickening of neck; 

fat deposited along inner thighs. 

9 Extremely fat Obvious crease down back; patchy fat 

appearing over ribs; bulging fat 

around tailhead, along withers, behind 

shoulders, and along neck; fat along inner 

thighs 

may rub together; flank filled with fat. 

Original Source: Henneke et. al, 1983. 

 


