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ABSTRACT

MODELING AND ANALYSIS OF NANOSCALE SURFACE PATTERNS PRODUCED BY BROAD

BEAM ION BOMBARDMENT

When a solid surface is exposed to broad beam ion bombardment, nanoscale patterns may

spontaneously form. This physical phenomenon is of interest to both the academic and nanofab-

rication communities. Ion bombardment has the potential to provide a cost-efficient method of

producing nanoscale patterns over a large area. As such, it has gathered substantial interest and

has been the focus of numerous studies, both experimental and theoretical. However, despite

more than half a century of study, there are still many unknowns which limit the application of

this method to fabrication.

In this dissertation, I present contributions to the field of ion bombarded surfaces (IBS).

The first is the development of a Python module which facilitates the rapid production and

analysis of simulations. This module provides a well-documented tool to allow collaborators to

numerically integrate a user-defined partial differential equation, specifically with IBS in mind.

Second is a study of dispersive effects on IBS. Dispersion can lead to the formation of raised

and depressed triangular regions traversed by parallel-mode ripples, highly ordered parallel-

mode ripples, protrusions and depressions that are elongated along the projected beam direc-

tion even when there is no transverse instability, and needle-like protrusions that are visually

similar to structures observed in experimental studies. Finally, we applied deep learning tech-

niques to estimate the parameters in the underlying equation of motion from an image of a

surface exposed to broad beam ion bombardment at a particular fluence. Our trained neural

network will allow experimentalists to quickly ascertain the parameters for a given sputtering

experiment.
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Chapter 1

Introduction

Nanoscale patterns spontaneously emerge on solid surfaces exposed to broad beam ion

bombardment. This physical phenomenon could potentially provide a technique to rapidly

fabricate large scale nanostructures. This dissertation describes the research contributions that

I have made to this topic during my time at Colorado State University.

In Chapter 2, an overview of key developments within the field of ion bombarded surfaces

(IBS) is provided. First, notable experimental findings that influenced the direction and evo-

lution of the field are discussed. Unfortunately, contamination of the surfaces occurs in many

experiments carried out before 2005. Therefore, it makes more sense to focus on the bom-

bardment of elemental surfaces instead of taking a purely historical approach. The emphasis

is on experimental studies in which great care was taken to preserve the purity of the surface

throughout the bombardment process. The theoretical models used to describe the bombard-

ment of these elemental surfaces are then presented. The bombardment of multi-element sur-

faces is then briefly addressed to make a connection with the contamination mentioned above.

Finally, applications of the emergent patterns are presented.

The work presented in this thesis is theoretical. Numerical simulations of a surface gov-

erned by a particular equation of motion (EoM) are carried out and analyzed. The mathemat-

ical methods used to produce these simulations are discussed in Chapter 3. First, a general

overview of numerical integration is provided. Then, the particular integration scheme utilized

for the work presented in this dissertation is described. The limitations and potential pitfalls

that can emerge when applying this method of integration are the last topics considered in

Chapter 3.

In Chapter 4, a high-level discussion of a software tool that I developed to produce simula-

tions of a user-defined partial differential equation (PDE) and that provides a suite of analysis

tools to assist in understanding the simulations is presented. The motivation for and benefits
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of having this software tool available, not only for myself but also for future members of the

research group, are then addressed. Next, a dialogue on the input which the user needs to pro-

vide to the tool to produce simulations and the potential problems that can emerge as well as

possible solutions are covered. Additionally, some insight into some of the techniques used by

the framework to provide accurate results quickly is included. Last is a brief discussion of some

of the built-in functions which assist in the analysis of the simulations.

Triangular structures have been observed in many experiments and cannot be reproduced

via the traditional theoretical model [1–8, 10, 11, 33]. There are also experimental results which

indicate that dispersion has a more substantial impact on the pattern formation than previously

thought [12]. These findings both motivated the study presented in Chapter 5. We included the

lowest order dispersive terms, along with the terms already present in the traditionally accepted

model. This expanded model produces four key features: the generation of ripple patterns with

significantly higher order than what is otherwise produced, the formation of transient trian-

gular protrusions with ripples superimposed on them which closely resemble experimentally

observed structures, ripples with wavevectors that are perpendicular to the beam projection in

the x−y plane, and the production of so-called "nano-needles". Both the triangular and needle

structures structures are experimentally observed [1–8, 10, 11, 13–15, 33] but not produced by

the traditionally accepted equation of motion (EoM).

The patterns that emerge on a surface depend on many factors such as the target mate-

rial, the ion species, the ion energy, and the orientation of the ion beam relative to the sur-

face [16–22]. These factors all influence the parameters in the equation of motion and alter

the observed pattern. Current work within the field of machine learning (ML) focuses on the

study of algorithms that utilize statistical inference to identify and associate meaning to pat-

terns that exist within data [135]. Ion sputtering produces nanoscale patterns; as such, ML

algorithms that can interpret these patterns are of direct interest. A brief introduction to ML

concepts and methodology used is presented in Chapter 6. This includes a discussion of using

well-understood data to "train" a ML algorithm through gradient descent. Next, a discussion of
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what artificial neural networks are, what their structure is, and why they have become such an

active area of study is included. Lastly, some of the challenges that exist when trying to imple-

ment machine learning algorithms and train a model are considered.

In Chapter 7, machine learning is used to estimate the parameters in the EoM discussed in

Chapter 2. A deep artificial neural network was trained to estimate the parameters in the gener-

ally accepted equation of motion for surfaces exposed to broad beam ion bombardment. This

deep learning model uses a single image of the surface to estimate all five parameters in the

equation of motion with root-mean-square errors that are under 3% of the parameter ranges

used for training. This provides a tool that will allow experimentalists to ascertain the param-

eters for a given sputtering experiment quickly. It could also provide an independent check

on other methods of estimating parameters such as atomistic simulations combined with the

crater function formalism.
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Chapter 2

Background

2.1 Experimental Findings

Before presenting original work, it is necessary to consider the current landscape of the field

and how it arrived at the current state of affairs. An overview of the key experimental results and

developments within the field is provided in this section.

The physical phenomenon of spontaneous nanopattern formation on solid surfaces ex-

posed to broad beam ion bombardment has been a point of interest for 60 years. In 1960 Cun-

ningham et al. [24] showed that bombarding a metal surface with Ar+ ions could produce rough,

disordered topographies of ripple patterns. Two years later, a study by Navez et al. [25] identi-

fied vital features of the pattern formation. A beam of ionized air was used to bombard a glass

surface. Intermediate beam angles relative to the surface normal caused ripples with wavevec-

tors~k parallel to the projection of the beam onto the surface to emerge. This particular type of

pattern is called "parallel mode ripples". This behavior indicates a crucial relationship between

the orientation of the ion beam and the emergent patterns on the solid surface.

Further studies have shown that beam angles below a critical threshold cause the surface

to smooth [26, 27, 29–31]. Beyond that critical angle, parallel mode ripples form. Then, as the

beam angle is increased even further, the ripple orientation rotates, causing the wave vector~k

to now be perpendicular to the beam projection onto the surface [26,27,32]. This type of ripple

pattern is named "perpendicular mode ripples".

Figure 2.1 shows experimental results of Si surfaces bombarded with 500 eV Ar+ at a variety

of angle of incidences, θ. No clear patterns form until the angle of incidence surpasses 55◦. At

this point parallel mode ripples are observed on the surface. Eventually the ripples "rotate" and

perpendicular mode ripples are observed for θ values 80◦ and 85◦.

4



Figure 2.1: AFM images of 500 eV Ar+ sputtered Si surfaces for ion incidence angles (a) 0◦, (b) 25◦, (c) 35◦,
(d) 45◦, (e) 55◦, (f) 57◦, (g) 60◦, (h) 65◦, (i) 70◦, (j) 75◦, (k) 80◦, and (l) 85◦. Inset shows the corresponding
spectral densities. White arrows indicate the ion beam direction for oblique incidence ion irradiation.
This image originally appeared in Ref. [33].
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Unfortunately, at this point, we must diverge from a purely chronological recount. Virtually

every early IBS experiment had unintended deposition of impurities onto the surface. In 2005,

Ozyadin et al. [34] established that these impurities have a significant influence on the pattern

formation. In this study, the growth of Mo "islands" on a Si surface during 1 keV bombardment

of Ar+ ions at normal incidence was studied. When the atomic flux of Mo incident on the sur-

face was large, disordered arrays of nanoscale mounds spontaneously formed on the surface.

Interestingly, Mo collected on the tops of these mounds. By contrast, when the atomic flux was

reduced to zero, no patterns emerged—indicating quite clearly that Mo had to be present on

the surface for nanodots to form. Therefore, the composition of the surface is critical to the

emergence of these patterns. Numerous studies since Ozyadin et al.’s discovery have probed

the influence that impurities have on the surface morphology [35–38].

The contaminants on the surface could come from a variety of sources, such as a highly di-

vergent ion beam. As the ion beam propagates through space, it diverges. If it diverges enough,

some of the ions can impact the walls of the chamber containing the target. These chambers

are typically constructed from stainless steel. Therefore, the ions which strike the chamber walls

sputter stainless steel from them. Some of the sputtered material would then be deposited on

the target surface. Before the influence of impurity co-deposition was understood, the changes

in the surface topography were attributed to the beam divergence [39].

The impact of impurities on the emergent patterns raises concerns about the experimental

setup used and requires careful consideration during experimental design. For example, if the

structure used to hold the sample can be sputtered and produce a significant deposition flux,

the surface dynamics can be changed, even if the holder is composed of the same material as

the sample [40]. Another component of an experiment that can lead to impurity co-deposition

is the grid used to accelerate the ions. The grid can be struck by ions and introduce contami-

nants as was the case in the experiments conducted by Ozaydin et al. [34].
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2.2 Bombardment of Elemental Targets

Due to the significant influence that the impurities have on the surface dynamics, it is chal-

lenging to extract understanding of the physical mechanisms from experiments in which im-

purities are deposited during sputtering. That is not to say it is impossible; progress has been

made in understanding ion bombardment with impurity co-deposition [35–38, 41]. However,

the impurity species, rate of co-deposition, and direction the impurities move along before they

strike the surface need to be known to understand the dynamics of these surfaces.

The discussion in this section focuses on experimental studies of elemental targets, specif-

ically experiments of Si surfaces bombarded by noble gas ions in which precautions have been

taken to ensure the purity of the surface material. By reducing the number of atomic species

present during the bombardment, the number of physical parameters in the EoM is reduced.

Additionally, the EoM which describes an elemental target is simpler than an EoM which ac-

counts for impurities and co-deposition.

Noble gas IBS of Si targets is a common experimental setup and has yielded insight into

spontaneous pattern formation. One finding is the existence of a critical angle of θc . When the

angle of incidence between the beam and the target normal is below θc , no patterns emerge,

and instead, the surface flattens. A study by Madi et al. found a critical angle θc ≈ 48◦ for 250

keV Ar+ ion bombardment of Si [26, 27]. For θ > θc , ripples emerge on the surface. Additional

studies of IBS on Si have found similar values of θc [29–31].

Another key observation is the relationship between the orientation of the ripples and the

beam angle. Between θc and a second critical angle θc,2, parallel mode ripples emerge on the

surface. Lastly, when the beam angle is above θc,2, perpendicular mode ripples emerge on the

surface. Experimental work by Madi et al. has determined that θc,2 is in the range [75◦,85◦] [26,

27,32]. Both of the critical angles depend on the ion energy, ion species, and the target material.

In addition to the possible patterns which can emerge, it is necessary also to consider how

the surface changes with time. A representative IBS experiment with a θ value between θc and

θc,2 will pass through three distinct regimes [42]. These are the linear regime, the coarsening
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regime, and the saturation regime. Sharp transitions between these regimes do not exist. Fur-

thermore, the duration of each regime depends on numerous factors such as ion flux, ion en-

ergy, the angle of incidence, and the temperature of the sample.

In the linear regime, the surface can be modeled well by a linear theory, which will be dis-

cussed at length in Sec. 2.3.2. A distinctive feature of this regime is that the surface roughness

increases exponentially with time. Exponential change is experimentally observed and mea-

sured using grazing incidence small angle X-ray scattering (GISAXS) [43–46]. The patterns that

emerge in this regime are ripples with roughly sinusoidal form. The ripple wavelength does not

change appreciably, and the surface exhibits up-down symmetry. The growth rate of the sur-

face width depends on the target material, ion species, ion energy, and the angle of incidence

between the target and incident ion beam. The linear regime lasts longer for θ values slightly

above θc than in experiments with θ values well above the critical angle [26,47]. Due to the many

contributing factors, the duration can vary greatly. However, for 700 eV Ar+ bombardment of Si,

the duration of the linear regime is a fluence on the order of 1017 ions/cm2 [1].

The next regime is the coarsening regime. In this regime, the dynamics deviate substan-

tially from the linear model, and the nonlinearities play an essential role. The change of the

ripple amplitude slows down and instead adheres to a power-law scaling [26, 27, 48, 49]. The

ripple wavelength also scales according to a power-law and increases with respect to time in

this regime. Another notable feature is that the ripple profile changes as well. These changes

are sensitive to the angle of incidence in an experimental setup. For angles less than θ ≈ 75◦

and greater than θc , the ripples develop into "humps" [48–51]. These experimentally observed

humps closely resemble parabolic arcs connected by sharp cusps. At this point, the up-down

symmetry observed in the linear regime is absent. These humps are not observed in experi-

ments in which a larger angle of incidence is used. Instead, the ripples coarsen into terraces

with two selected slopes [2,50–63]. Proposed explanations for terracing include shadowing [50,

51], the formation of under compressive shocks [22, 64], and ion reflection/redeposition [53].
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The final regime, and the least studied, is that of saturation. As the name indicates, in this

regime, the ripple amplitude and characteristic lateral length scale stop increasing. This phe-

nomenon is known as "interrupted coarsening" [42, 65–67]. Unfortunately, there are signifi-

cantly fewer experimental studies that look at this regime. It can take a very long time for a

bombarded surface to reach this final regime.

2.3 Theoretical Considerations

The spontaneous pattern formation that comes from IBS has motivated many theoretical ef-

forts to understand this physical phenomenon. To facilitate the discussion of these approaches,

I will categorize them into two groups: atomistic and continuum.

Molecular dynamics (MD) is a type of atomistic simulation method which is useful for ana-

lyzing the physical movements of atoms and molecules. The atoms and molecules are allowed

to interact for some duration of time, during which the trajectories of the atoms are calculated

and the positions updated. The trajectories are typically determined by numerically solving

Newton’s equations for all of the interacting atoms and molecules. The potential which governs

the forces that affect a particle are calculated using quantum mechanics [68]. In the the particu-

lar case of ion bombardment, the solid surface consists of an assembly of atoms and molecules.

When an ion strikes the solid, the particles interact.

MD simulations provide highly accurate models of ion bombarded surfaces but have a sig-

nificant computation cost. Each simulation utilizes an assembly which consists of a large num-

ber of particles. The complexity of these systems generally means that the system cannot be

solved analytically, instead the potentials between all of the particles in the assembly and the

incident ion need to be calculated with numerical methods. Quite simply, due to the computa-

tional requirements for the implementation of this method, MD simulations are only useful for

low energy ions and simple monoatomic or diatomic target materials at early times and short

length scales.
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Another atomistic method is commonly employed to overcome some of these computa-

tional limitations. Rather than calculate the interactions between all of the particles in the as-

sembly and with the incoming ion as is done in MD simulations, this method statistically sam-

ples a discrete number of "moves" to simulate the evolution of the surface. Due to the stochastic

nature of the sampling, this method is commonly referred to as the Monte Carlo (MC) method.

Statistically sampling the possible "moves" provides a very significant decrease in computa-

tional resources required and, as a consequence, this method can be used to analyze longer

times and larger length scales than is possible with MD methods. MC methods have been used

quite successfully to model solid surfaces exposed to ion bombardment [69].

Continuum theories further increase the length and time scales that can be considered. The

height of the surface as a function of position and of time is described by continuum models.

The continuous height field h(x, y, t ) describes the height of the surface above a point (x, y) at

a time t . An equation of motion which describes the time evolution of the surface h can be

constructed. Continuum models offer multiple advantages over atomistic models. Unfortu-

nately, the PDE is typically not exactly solvable. If this is the case, numerical integration can be

conducted to approximate the time evolution of the surface.

While continuum models have significant advantages, limitations still exist. For example,

when a numerical integration is performed, error is introduced from the approximation of that

integral. The surface itself consists of discrete particles like the MD and MC methods consider;

this information is obscured by approximating the surface as continuous. Another source of

error comes from the truncation of the EoM. As is common in physics, we tend to truncate the

EoM to a particular order rather than utilize the full nonlinear EoM; this introduces additional

sources of error. Lastly, any faults or limitations of the underlying model directly affect the EoM.

2.3.1 The Sigmund Model

Continuum theories were used for all of the work presented in this dissertation. Therefore,

the underlying model from which the EoM was derived needs to be addressed. In 1973 Peter
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Sigmund proposed a model for the impact of an ion on a solid surface, and the material which

is sputtered from the surface as a result [70].

When a sufficiently energetic ion strikes a surface it penetrates the surface and moves into

the solid. As the ion penetrates the solid, it collides with atoms. The atoms in the solid recoil

and collide with other atoms in a so-called collision cascade. Collisions continue as the ion

continues to propagate through the solid until the ion has dissipated all of its energy and comes

to rest. The Sigmund model predicts that energy from the incident ion is on average distributed

to the surrounding atoms according to ellipsoidal contours.

Figure 2.2 illustrates an ion impact on a solid surface. The surface height of the solid is de-

scribed by h(x, y, t ). The ion moves along the −ê direction and strikes the surface at a location~r ′

as measured from the origin O. The ion penetrates into the solid, depositing energy as it moves

through it. The point of maximal energy deposition is at the location~r0 =~r ′− aê. The energy

is not equally distributed along the parallel and perpendicular directions. This asymmetry pro-

duces ellipsoidal contours of equal energy deposition instead of spherical ones. The orientation

of the ellipsoids depends on the beam direction ê, but not on h(x, y, t ). The average energy per

unit volume deposited at a point~r from many ion impacts at~r ′ is given by

E(~r ,~r ′, t ) = E0e
−d 2

∥ /2α2−d 2
⊥/2β2

, (2.1)

where d∥ and d⊥ and the parallel and perpendicular components of ~d =~r −~r0, respectively. α

and β are parameters that describe how quickly the energy deposited attenuates along the par-

allel and perpendicular directions, respectively. The Sigmund model also makes the assump-

tion that the erosion rate at a particular point on the surface is directly proportional to power

per unit volume deposited at that point.

Unfortunately, the Sigmund model of ion sputtering has limitations. If the energy of the in-

cident ions is sufficiently small, sputtering is negligible, and the Sigmund model fails to explain

pattern formation. The Sigmund model does not apply to solids that are not amorphous since

the crystal lattice can significantly affect the contours of equal energy deposition and therefore

11



Figure 2.2: A surface with height h(x, y, t ) is struck by an ion. The ion moves along the −ê direction and
strikes the surface. The location of the impact is described by a vector ~r ′ as measured from the origin
O. The point of maximal energy deposition occurs at the location ~r0 =~r ′− aê. The ellipses represent
contours of equal energy deposition. The vector ~r points to the location at which the power per unit
volume is to be calculated. The vector ~d points from ~r0 to ~r and can be broken up into components
parallel to the beam direction and perpendicular to it, d∥ and d⊥, respectively.
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change the sputter yield [72]. The Sigmund model also takes the power distribution to be inde-

pendent of the surface shape; in both the case of high energy ions and for beams with a high

angle of incidence, this is a poor approximation [73].

Despite these limitations, the Sigmund model is widely used within the field [16, 18, 70].

Amorphous materials exposed to moderate energy ion bombardment at intermediate angles of

incident are common in experimental studies [1]. Additional information about the Sigmund

model can be found in Ref. [20].

2.3.2 Bradley-Harper Theory

The Sigmund model provided insight into sputtering, but it cannot fully explain the nanopat-

tern formation observed in experiments. In 1988, Bradley and Harper developed a theory, the

so-called Bradley-Harper (BH) theory, which provided an explanation for the formation of rip-

ple patterns on sputtered surfaces. This theory focuses on two physical features, the curvature

dependence of the sputter yield and surface diffusion [16].

Figure 2.3 illustrates the curvature dependence of the sputter yield. The amount of material

sputtered at a trough, O, or a peak, O′, depends on the amount of energy deposited at that

point. In both cases we consider three ion impacts: one directly below the point of interest and

two off-center impacts with the same sideways displacement. For both O and O′, the points

of maximal energy deposition for the on-center impacts have the same distance to the surface

point directly above the impact. However, this is not true for the off-center impacts. In both

cases the ion strikes the surface and penetrates it having a point of maximal energy deposition

a distance a beneath the surface. This point of maximal energy deposition is labelled A for

the surface with positive curvature and A′ for the surface with negative curvature. From the

image, we can see that the distance |O A| < |O′A′|. Eq. (2.1) states that the energy deposited at

a point depends on the distance of that point to the point of maximal energy deposition. As

a consequence, more energy is deposited at the trough than the peak, and so more sputtering
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occurs at the trough than at the peak. This indicates that the sputter yield depends on the

surface curvature and that the surface is unstable.

Surface diffusion is also included in the BH theory. If only the curvature dependence of the

sputter yield were included in the theory, extremely small wavelengths would have very large

growth rates. To eliminate this unphysical behavior, Bradley and Harper included the effects of

surface self-diffusion. The thermally activated mobility of particles on the target surface causes

the surface to smooth over time. This physical feature prevents the short-wavelength ripples

from having unbounded growth rates.

Using these physical features and assuming that the surface height is a slowly varying func-

tion of x and y leads to the EoM

ht =−v0 − v ′
0hx +κ1hxx +κ2hy y −B∇2∇2h (2.2)

for a nominally flat initial surface where the direction of the incident ions has polar angle θ ≥ 0

and zero azimuthal angle. The subscripts on h denote partial differentials, i.e., ht = ∂h
∂t

, and

∇2 ≡ ∂2
x +∂2

y . The first term, −v0, is the erosion rate of a completely flat surface. −v ′
0hx is the

erosion rate that results from a sloped surface. κ1hxx and κ2hy y are terms which account for the

curvature dependence of the sputter yield. The final term −B∇2∇2h describes the smoothing

effect of surface diffusion. The parameters v0, v ′
0, κ1, and κ2 are all constants which depend

on the target material and the ion species, energy and angle of incidence [16–22]. B does not

depend on the nature of the ion beam if the surface diffusion is thermally activated. Although

not originally considered, it is now known that ion-induced mass redistribution [81, 83, 84] and

ion implantation [85, 86] also contribute to the second-order terms and ion-induced viscous

flow near the surface contributes to the fourth-order term [87].

Equation (2.2) can produce nanopatterns. If both κ1 and κ2 are positive, there is no surface

instability, and the surface smooths. This flattening occurs in the case of normal incidence and

for angles of incidence below a threshold value. However, this flattening cannot occur in the BH

theory. If κ1 < 0 and κ1 < κ2, ripples with wave vector~k parallel to the x axis emerge; these are
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Figure 2.3: Graphical representation of the ellipsoidal contours of equal energy deposition for normal
incidence ion bombardment of concave and convex surfaces. Reproduced from Ref. [1].
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called parallel-mode ripples. If κ2 < κ1 and κ2 < 0, on the other hand, the selected wave vector

is along the y direction and so-called perpendicular-mode ripples form [16, 74].

In addition to pattern formation, the BH theory can explain ripple rotation. When the beam

orientation passes through a particular angle, the ripple wave vector rotates by 90◦. This occurs

whenκ2 < κ1 andκ2 < 0. This experimentally observed phenomenon agrees with the prediction

of the BH theory. The BH theory marked a breakthrough in continuum models and is widely

used in the field even to this day.

2.3.3 Kuramoto-Sivashinsky Equation

The BH theory is successful in the prediction of parallel and perpendicular mode ripples;

however, this theory is also imperfect. The variation in the sputter yield causes troughs to be-

come deeper and peaks to become higher, and the ripple amplitude to grow exponentially in

time. To account for the saturation in the amplitude of the ripples that is observed experi-

mentally, the leading order nonlinear terms must be added to the linear BH equation of mo-

tion [17]. After transforming to an appropriately chosen moving frame of reference, this gives

the anisotropic Kuramoto-Sivashinsky (KS) equation

ut = κ1uxx +κ2uy y −B∇2∇2u +λ1u2
x +λ2u2

y , (2.3)

where u(x, y, t ) is the height of the surface above the point (x, y) in the x − y plane at time t .

The constants κ1, κ2, λ1 and λ2 depend on the angle of incidence of the ion beam θ and were

originally computed using the Sigmund theory of sputtering [16, 18, 70]. B is a constant which

corresponds to the surface diffusion.

The wavelength of these ripples are determined by the linear terms in Eq. (2.3). The ampli-

tude of these ripples grows exponentially at early times then saturates. Eventually the surface

morphology exhibits spatial-temporal chaos. Another pattern that can form is "bowl" like for-

mations. These occur when both κ1 < 0 and κ2 < 0 and κ1 ≈ κ2. The depth of the bowls grows
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with time at first, then ceases to continue to grow. Given enough time, the surface will exhibit

spatial-temporal chaos.

2.4 Alternative Theories

2.4.1 Mass Redistribution

While the Sigmund model and BH theory with the lowest order nonlinear corrections have

proven to be extremely useful, they do not fully describe the patterns produced by ion sputter-

ing [17]. In BH theory, the curvature dependence of the sputter yield produces ripple patterns,

but what if the arriving ions do not have enough energy to cause sputtering to occur? A reason-

able thought would be that if no material is sputtered, no patterns will form. However, ripple

structures are still observed in experiments that are in the low-energy regime [88, 89]. The BH

theory also predicts the formation of ripples for all nonzero angles of incidence. However, in

experimental studies, ripple formation is only observed for θ values exceeding a critical angle.

As such, other competing models have been developed.

Mass redistribution, such as the Carter-Vishnaykov (CV) effect, is one such model. The CV

model considers momentum transfer between the incoming ions and the atoms near the sur-

face of the target, which causes the affected atoms to move. Depending on the angle of in-

cidence between the incoming ions and the surface, parallel mode ripples can form, or the

surface can smooth. A full derivation of this model can be found in Ref. [81].

The linearized equation of motion is

ht =ΩµJ [cos(2θ)hxx +cos2(θ)hy y ]−B∇2∇2h, (2.4)

where Ω is the atomic volume, µ is a constant of proportionality, and J is the magnitude of the

flux of incident ions onto the surface. The final term −B∇2∇2h describes the smoothing effect

of surface diffusion, just as it did in the BH theory. The CV effect produces the terms of second

order in the spatial derivatives.
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A key feature of this model is that for θ < 45◦, the EoM causes the surface to flatten. This

phenomenon is seen in experiments, although the critical angle is not exactly 45◦ [26, 27, 32].

Another notable feature of this model is that the mass is conserved. No sputtering occurs, which

means that no material leaves the surface, unlike in the BH theory. There is also evidence that

for some energy regimes and some beam angles, the CV effect is more critical to the dynamics

than curvature dependent sputtering [27, 28].

In truth, both curvature dependent sputtering and mass redistribution need to be consid-

ered. In experiments, as θ approaches 90◦, the ripple orientation changes and perpendicular

mode ripples are observed. This phenomenon can never occur with mass redistribution alone.

Thus, there must be regimes for which the predominant physical mechanism driving the dy-

namics is sputtering and not mass redistribution.

2.5 Uses of Patterns Produced by Ion Bombardment

The spontaneous emergence of patterns due to IBS is not only of academic interest but also

has significant potential applications. Most applications use the nanopatterns as templates

to facilitate the subsequent fabrication of other nanostructures. For example, rippled struc-

tures have been used as templates to grow nanostructured thin Ni [80], Co [95], and multilayer

films [96]. This has allowed researchers to probe how the magnetic properties of a thin film are

affected by the ripple wavelength [97]. Liedke et al. showed that above a wavelength threshold,

a corrugated Permalloy film behaves like a flat film, but below it, they found an induced mag-

netic anisotropy [98]. Another use of rippled templates is the fabrication of nanowires. Rippled

Si surfaces can also be used to grow Ag or Au nanowires [99]. The patterned surfaces can be

used as templates to grow metal nanoparticles [100, 101].

Preferential sputtering can be used to generate arrays of nanoscale protrusions with the

preferentially sputtered material collected in the valleys of the structures [100,101]. IBS provides

a fast and cheap method to produce large-scale nanostructures with adjustable periodicity. The

periodicity can be changed simply by changing the beam angle.
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The last application we will discuss is the use of rippled Si surfaces to analyze the absorption

of biomolecules. In 2012, Sommerfeld et al. carried out a study of the absorption of human

plasma fibrinogen [102]. The study showed that the absorption takes place in mostly globular

conformations on both amorphous, flat Si surfaces and rippled Si surfaces with sufficiently long

wavelengths. If, however, a short wavelength rippled surface was used, the absorbed fibrils were

aligned along or across the ripples.

There are many more applications and potential applications. However, my goal is not to

give a detailed list of related studies, but to motivate the theoretical studies that we have done.

To be able to use and control spontaneous nanopattern formation, it is necessary to understand

the underlying physical mechanisms contributing to it.
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Chapter 3

Methods for Numerical Integration

Continuum models of IBS are used to describe behavior observed in experimental studies.

Most often, the EoMs have no analytical solution and need to be numerically integrated. In

this chapter, an overview of numerical methods of integration is presented. Additionally, an in-

depth look at the exponential time-differencing integration method is provided, and potential

problems with implementing exponential time-differencing for IBS are considered.

3.1 Overview of Numerical Integration

While the ultimate goal is to numerically integrate PDEs, the methods included in this sec-

tion are more easily understood in reference to an ordinary differential equation (ODE). The

expansion of these methods to PDEs is discussed after the introduction and explanation of the

methods.

Consider an ODE of the form

ut = f (t ,u), (3.1)

where u = u(t ) is a real number value of some function at a time t . The subscript t on u indicates

a partial derivative with respect to time. Unfortunately, many differential equations are not

analytically solvable. As such, numerical methods of integration must be used to approximate

the solution. The simplest integration method is Euler’s method. This technique utilizes the

knowledge that the derivative ut describes the slope of u relative to t at a particular value of t .

As such, for a small time step h, the next value of u at a time t +h can be approximated using

the equation

un+1 = un +h f (tn ,un), (3.2)

where n represents an integer number of steps, each separated by a small time interval h. un

is the value of u at time tn = n ×h. This method offers an easy to understand and reasonably
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accurate integration method. However, it is an approximation. Starting from a value un at tn ,

the next "step" can be found by "advancing" the value along first derivative f (tn ,un) multiplied

by a small step of h. This linear approximation of un+1 will deviate from the actual value, es-

pecially for surfaces with large curvature and for larger values of h. The local truncation error

associated with Euler’s Method is of order h2 [103].

Figure 3.1 shows the application of Euler’s Method to the ODE ut = sin t on the domain

t ∈ [0,2π] with the initial condition u(t = 0) = −1. This ODE can be solved exactly and yields

the equation u =−cos(t )+C , where C is a constant determined by the initial condition. In this

case, C = 0. The exact solution for u is displayed in the figure with a dashed black line. When the

time step h is large, Euler’s method does not perform well. The numerical integration for a time

step of h = 1.0 is shown in red. This curve follows the general shape of the original function but

deviates significantly from it. When the time step is reduced, for example to h = 0.25 (shown

in blue), the numerical integration approximates the solution of the differential equation much

better. The approximation is further improved by further reducing the time step to h = 0.05 (in

green).

Euler’s method works reasonably well. Nevertheless, to accurately describe rapidly chang-

ing solutions, very small time steps are required. This increases the number of calculations that

must be conducted and the method can be computationally prohibitive. The desire to over-

come this limitation has prompted the development of numerous extensions of Euler’s method.

A common type of expansion is higher-order Runge-Kutta (RK) methods. RK methods are

used to approximate solutions of ODEs. Euler’s method is actually the simplest RK method. A

common second order RK method (RK2) is the so-called improved Euler method [104]. This

method uses the slope at the known point (tn ,un) and the slope at the point acquired using

Euler’s method. The average of these slopes is used to estimate un+1. The first slope is calculated

by

k1 = f (tn ,un). (3.3)

k1 is then used to solve for the second slope at a point (tn +h,un +hk1). This is found by
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Figure 3.1: Euler’s method approximation of ut = sin t vs t (black) with a time step h of 1.0 (red), 0.25
(blue), and 0.05 (green). The initial condition is u(0) =−1. The domain size was 2π.
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k2 = f (tn +h,un +hk1). (3.4)

The next value un+1 is then calculated by

un+1 = un + h

2
(k1 +k2). (3.5)

The local truncation error of the improved Euler method is of order h3.

Figure 3.2 shows the estimation of a function using the improved Euler method. Consider

the equation du
d t

= f (t ,u) = 4t 3 +3t 2 +2t . The blue square represents the starting point and a

known value of u(t ), which is (0,0). The improved Euler method is used to estimate the exact

solution, which is shown as a dashed black line, at t = 5. First, f (0,0) is solved to get k1. The blue

line has slope k1 and is followed a distance g = 5 to get to the location (5,0). Then k2 is solved

at this point. The green line starts from the original position and has slope k2. We see that the

Euler approximation underestimates the true value and the estimate using k2 overestimates it.

The magenta line has slope k1+k2
2 . When the mean slope of the two points is used it produces

a final estimate that is closer to the actual value of u(t ) than the estimate produced by Euler’s

method.

Using even more calculations of the slope can further improve results. The fourth-order

Runge-Kutta (RK4) method is a typical example of this [105]. RK4 uses four distinct points to

calculate slopes and estimate un+1. The four slopes used are:

k1 = f (tn ,un), (3.6)

k2 = f (tn + h

2
,un + h

2
k1), (3.7)

k3 = f (tn + h

2
,un + h

2
k2), (3.8)

and

k4 = f (tn +h,un +hk3). (3.9)
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Figure 3.2: Improved Euler method approximation of ut = 4t 3+3t 2+2t (black) with a time step h of 5.0.
The initial condition is u(0) = 0. The blue line has slope k1, the green line has slope k2, and the magenta
line has slope (k1 +k2)/2.
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k1 is the slope at the original point (tn ,un), exactly as was found with Euler’s method. This slope

is then used to conduct a "half step" to the point (tn + h
2 ,un + h

2 k1). At this location k2 is found.

Then starting from the original point (tn ,un), another half step is taken along a line with slope

k2 to arrive at (tn + h
2 ,un + h

2 k2). The slope at this new location, k3, is then found using Eq. (3.8).

The fourth point is determined by taking a full step from the initial position (tn ,un) along a line

with slope k3, thus arriving at (tn +h,un +hk3). A fourth slope k4 is then found at this point.

These four slopes are combined as a weighted average and the new location un+1 is calculated

using

un+1 = un + h

6
(k1 +2k2 +2k3 +k4). (3.10)

The new slope (k1 + 2k2 + 2k3 + k4)/6 more accurately reflects the mean value of ut over the

interval of tn → tn +h. This yields a more accurate estimate of the value of un+1 than both the

Euler and improved Euler methods. The local truncation error of the RK4 method is of order

h5 [106]. If a higher degree of accuracy is required, more points can be added, but at the cost of

computational efficiency. More information about Euler’s method, RK methods, and numerical

methods in general can be found in [105, 107].

Figure 3.3 shows the application of two RK4 steps to the ODE ut = 4t 3 + 3t 2 + 2t with the

initial condition u(t = 0) = 0 and a time step h = 5. The exact solution is shown in black and is

given by u = t 4 + t 3 + t 2. The initial location is the point (0,0) and is shown by the first magenta

triangle. At this point the slope k1 is found. The slope is indicated by the blue line segment.

A half step is taken along a line with slope k1 to reach the yellow dot located at (2.5,0). The

slope at this point, k2, is shown by the yellow line segment. This slope is used to take a half step

from (0,0) to the third location (2.5,215.63) shown by the green point. k3 (shown by the green

line segment) is then found. The fourth point (shown in purple) is found by stepping from the

original point along a line with slope k3. This step arrives at the point (5,431.25). The final slope

k4 is then calculated. These four slopes are then inserted into Eq. (3.10) to determine the next

value of u. This step is illustrated by the magenta triangle at t = 5. The same procedure is then
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Figure 3.3: RK4 approximation of ut = 4t 3 +3t 2 +2t vs. t with a step of h = 5. The initial condition is
u(0) = 0. The slope values k are shown by colored lines. The colored points indicate the location at which
the k values are calculated.

conducted with the starting point at (5,775.0) to calculate new slope values and step to t = 10

(shown by the magenta triangle at the right of the image).

Consider again the ODE ut = sin t with the initial condition, u(0) = −1. A comparison of

Euler’s method (blue), fourth-order Runge-Kutta (magenta), and the exact solution u = cos t

(black) is shown in Fig. 3.4. The time step h is 0.25 for both integration methods. RK4 more

closely approximates the curve u than Euler’s method. RK methods allow for a higher level of

precision and allow the curve u to be accurately modeled with fewer time steps than Euler’s

method.

RK methods can approximate the solution of ODEs. However, many equations are not

ODEs. For example, Eq. (2.3), which is of direct interest for ion bombardment, is a PDE. Con-

sider the equation

ut = f (t , x, y,u,ux ,uy ), (3.11)
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Figure 3.4: Numerical integration of ut = sin t vs t with an inital condition of u(0) = −1. The exact
solution, u =−cos(t ), is shown in black, Euler’s method is shown in blue, and the RK4 approximation is
shown in magenta. The time step is h = 0.25. The domain size was 2π.
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where u = u(t , x, y) is a real value of some function at a particular time t and corresponding to

a point on the x − y plane. The time evolution of u depends not only on the time and value of

u, but also the spatial location and derivatives. In this case, the previously discussed integra-

tion schemes cannot be directly applied. Instead the PDE must be transformed into a system

of ODEs. The first step in this transformation is discretizing space. The x − y plane is converted

into a discrete set of points. Typically, this is done by setting distinct points separated by ∆x in

the x direction and ∆y in the y direction [108]; however, adaptive meshes are also commonly

used [109]. This converts u from a continuous function over the x−y plane to a matrix in which

each element corresponds to a particular point on the x − y grid. Next, the spatial derivatives

must be considered. These derivative terms can be approximated with a central difference fi-

nite difference scheme [110] which will be discussed in more detail in Chap. 4. At this point, an

ODE can be written for each element of u corresponding to a particular location on the x − y

grid. This allows the function u(t , x, y) to be described by a system of ODEs. Each ODE can be

numerically integrated to approximate the time evolution of the function. Additional informa-

tion about applying RK methods to PDEs can be found in Ref. [111].

3.2 Exponential Time Differencing

Both Euler’s method and RK4 methods provide easily implemented means to approximate

the solution to an ODE. However, they are not perfect. For example, if the solution has signif-

icant curvature, the linear approximation deviates from the exact solution quite rapidly. This

divergence causes the numerical error to compound, which can lead to an even larger devia-

tion.

When certain numerical methods like the Euler or RK4 methods are numerically unstable

unless the step size h is extremely small, the differential equation is called stiff. A precise defi-

nition of "stiffness" is quite elusive, but the principle is that an equation tends to be stiff if it has

at least one term that can lead to rapid variation in the solution [112].
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Many of the PDEs used to model IBS are stiff. Therefore, using Euler’s method or even the

RK4 method is quite costly, requiring significant memory allotment within a computer and time

to complete the required calculations. Instead, a different integration method was applied in

most of our simulations. The method is the exponential time-differencing (ETD) scheme that

was developed by Cox and Matthew [114] in 2002. This method works by breaking up the dif-

ferential equation into a linear and nonlinear component. Once again, we start by considering

an ODE, but the method can be applied to a PDE as well. An example of this can be found in

section 4.4 of Cox and Matthew’s work [114].

Consider an ODE with the form

ut = Lu +N (u, t ), (3.12)

where u is the dependent variable, L is a constant, and N (u, t ) represents the nonlinear terms.

Writing the equation in this form allows for the exact integration of the linear component, fol-

lowed by an approximate integration of the nonlinear terms.

First, Eq. (3.12) is multiplied by an integration factor e−Lt . At each step the time is advanced

from tn to tn+1 = tn +h. This provides the exact formula

u(tn+1) = eLhu(tn)+eLh

∫h

0
e−LτN (u(tn +τ), tn +τ)dτ. (3.13)

For simplicity, the numerical approximation to u(tn) is denoted as un , the approximation of

u(tn+1) as un+1 and N (un , tn) as Nn . Equation (3.13) is exact, but the integral of the nonlinear

component must be approximated. As such, ETD methods primarily focus on approximating

the integral of the nonlinear component. Exactly solving the linear portion of Eq. (3.13) directly

greatly reduces the number of computational calculations that need to be executed. As such,

exponential time differencing can be considerably more efficient than the Euler or RK4 method.

Assume N (u, t ) is constant on the interval from tn to tn+1, the integral simplifies and Eq. (3.13)

reduces to
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un+1 = eLhun +Nn

(
eLh −1

h

)
. (3.14)

This formula is the so-called ETD1 scheme. The local truncation error is h2Ṅ
2 [114]. This error

is of the same order as Euler’s method, but since only the nonlinear components contribute to

the error, the step size h can be larger than what is required by the Euler method. In fact, it is

worth noting that for sufficiently small L values, Eq. (3.10) approaches Euler’s Method [114].

ETD methods can be made more accurate through higher-order approximations. Instead of

treating Nn as constant over the interval, consider a higher-order approximation

N ≈ Nn + (Nn −Nn−1)
(τ

h

)
, (3.15)

where N is an approximation of N (u, t ) on the interval tn ≤ t ≤ tn+1. Using this approximation

yields the ETD2 integration scheme. In this case, Eq. (3.10) becomes

un+1 = uneLh +Nn

(
(1+Lh)eLh −1−2Lh

L2h

)
+Nn−1

(−eLh +1+Lh

L2h

)
(3.16)

The ETD2 scheme has local truncation error of 5h3N̈
12 [114]. Likewise, the method can be gener-

alized to any higher-order approximation. However, these higher-order approximations require

additional points to evaluate N (u, t ) at. For example, Eq. (3.12) requires both Nn and Nn−1. Re-

quiring additional points for evaluation makes these methods challenging to work with since

often only the initial condition is known. This problem can be mitigated by incorporating RK

time-stepping. RK methods also have smaller truncation error and larger stability regions than

multistep methods [107].

The first exponential time-differencing with Runge-Kutta (ETDRK) stepping method that I

want to address is the second-order form. This utilizes two points at which the nonlinear terms

are evaluated. The first is at (un , tn) and other is found at time tn +h and has the form

an = uneLh +Nn

(
eLh −1

h

)
. (3.17)
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The nonlinear component on the interval tn ≤ t ≤ tn+1 is approximated by a combination of

these two points. The equation to do this combination is

N ≈ Nn +
(τ

h

)
(N (an , tn +h)−Nn). (3.18)

This approximation is used to advance un → un+1. The equation to do this is

un+1 = an + (N (an , tn +h)−Nn)

(
eLh −1−Lh

L2h

)
. (3.19)

This method is called ETD2RK and has a local truncation error five times smaller than that of

ETD2 [114].

The accuracy can be further improved by using more steps. The fourth-order ETD4RK

scheme is given by:

an = uneLh/2 +Nn

(
eLh/2 −1

L

)
, (3.20)

bn = uneLh/2 +N (an , tn + h

2
)

(
eLh/2 −1

L

)
, (3.21)

cn = aneLh/2 + (2N (bn , tn + h

2
)−Nn)

(
eLh/2 −1

L

)
, (3.22)

and

un+1 = uneLh + {Nn[−4−Lh +eLh(4−3Lh +L2h2)]

+2(N (an , tn + h

2
)+N (bn , tn + h

2
))[2+Lh +eLh(−2+Lh)]

+N (cn , tn +h)[−4−3Lh −L2h2 +eLh(4−Lh)]}/(L3h2).

(3.23)

This scheme is significantly more accurate than the previously mentioned ETD schemes. The

local truncation error of ETD4RK is of order h5 [114]. ETD4RK is the most frequently used inte-

gration method in the work presented in this dissertation.

The application of ETD methods to PDEs is described in Ref. [114] but is more clearly ex-

plained in Ref. [116]. Often L is not a single constant scalar, but is instead a linear operator

acting on u. In Eq. (2.3), for instance, the linear component consists of spatial derivatives,
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L = κ1∂
2
x +κ2∂

2
y − B∇2∇2. To apply ETD methods, the spatial part of the PDE is discretized

as previously discussed. This allows L to be written as a matrix [115]. The result is a system of

ODEs that describe the value u at distinct locations on an x − y grid. Then, just like with RK

methods, the value of u at each point on the x − y grid can be numerically integrated to update

the entire surface.

3.3 Problems with Exponential Time-Differencing

ETD methods are used in every integration included in this dissertation. As such, it is im-

portant to address the limitations and potential pitfalls of these methods.

The most obvious limitation is that the differential equation of interest has to be separated

into linear and nonlinear components. Not every equation can be. A possible solution to this

is adding a "pseudo-linear" term to the EoM to act as L, then the "pseudo-linear" term is sub-

tracted from the EoM in N . However, this eliminates the benefit of an exactly solvable linear

portion. Preliminary tests have shown that this technique requires a comparable time step h to

the traditional RK4 method. Simply put, ETD is not the optimal method for equations that do

not have a linear component.

Another consideration can be directly observed in the traditionally accepted model of IBS,

Eq. (2.3). The linear terms depend on the second-order and fourth-order spatial derivatives of

u. For simplicity, consider the 1D special case in which all parameters have a magnitude of 1. L

can be written as

L =−∂2
x −∂4

x (3.24)

and the nonlinear operator is

N (u, t ) = u2
x . (3.25)

L is a differential operator. To simplify the calculation, the Fourier transform of the surface

ũ(kx ,ky ) is used. The transformed version of Eq. (3.12) is
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ũt = L̃ũ + Ñ (ũ, t ). (3.26)

This transformation then allows the derivatives to be determined by simple multiplication [107].

The nth spatial derivative of u with respect to x can be determined from the equation

ũ(n)(kx ,ky ) = (i kx)nũ(kx ,ky ), (3.27)

where ũ(kx ,ky ) is the Fourier Transform counterpart of u(x, y). Likewise, if the derivative was

with respect to y , ky would be used instead. In the case of the 1D KS equation, L takes the form

L̃ =−(i kx)2 − (i kx)4. (3.28)

Likewise, Ñ (ũ, t ) is the Fourier Transform of the real space nonlinear portion of the 1D KS equa-

tion. We apply our ETD scheme to approximate the solution of ũ. Once the integration has been

conducted, ũ is converted back to real space for analysis. In IBS, the linear operator is often pro-

portional to spatial derivatives. This allows L to be written as a diagonal matrix in Fourier space

and to be handled computationally as an array of scalars.

The final consideration that emerges is in the eLh term that is present in every ETD scheme.

When eigenvalues of the matrix L are very small, the ETD methods suffer from a numerical

instability. Kassam and Trefethen produced a solution to this instability through the use of

contour integration [116].

Consider the expression

g (z) = ez −1

z
, (3.29)

where z is much smaller than 1 and is an eigenvalue of L. While a Taylor expansion of g (z) will

yield a finite result, a computer will not always report one due to floating-point precision. If z is

below a minimum threshold, the computer will return 0 as the value of g (z) instead of the actual

value. This introduces substantial inaccuracies and can cause numerical overflow/underflow.

There are clear solutions to the extreme cases of very large or very small eigenvalues. When all
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the eigenvalues of L are large, no numerical instability will occur, and ETD, as stated by Cox and

Matthew, can be used. If all of the eigenvalues are small, a Taylor series of ez can be produced

and truncated at the appropriate order to get the desired precision. However, real systems rarely

fall into either of these categories. Most L matrices for IBS have some large eigenvalues and

some very small eigenvalues. In IBS models, the eigenvalues correspond to growth rates of

different Fourier modes, i.e., some wavelengths will grow faster than others.

The solution to this problem is achieved via contour integration. Kassam and Trefethen

used the expression

f (L) = 1

2πi

∫

Γ

f (t )(t I −L)−1d t , (3.30)

where Γ is a contour within the complex plane that encloses the eigenvalues of L and I is

the identify matrix. It is important to note that L is a matrix, so if L is an operator, we have

transformed to an appropriate basis to represent the operator as a matrix. In the case of ETD,

f (L) = eLh . This allows the values of the matrices eLh to be calculated and applied to the

schemes produced by Cox and Matthew. Additional information on contour integration in gen-

eral can be found in [107].
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Chapter 4

Python Tool for Numerical Integration

4.1 Introduction

In the previous chapter, the mathematical methods used for numerical integration were

presented. However, the computational implementation of these methods was not. When I

first arrived at CSU and joined the Bradley Theory Group, more experienced members, Dr. M.

Harrison and Dr. D. Pearson, shared the codes that they used for numerical integration and

directed me to papers about the methods in general. The code as it existed was for personal

use and therefore lacked documentation; the only person who needed to understand it was the

person using it, so why spend time documenting it? Also, parts of the code were developed by

different people at different times. Some of the programs were in Matlab, others in Python 2,

and still others in Python 3. There was also variation in one code to the next in terms of libraries

used and implementation.

None of this was unreasonable or unwarranted. Research is complicated, as is software de-

velopment. Researchers will develop in whatever language they are most familiar with for the

problem at hand. The goal of the project also drifts as new discoveries are made. Even pro-

gramming languages themselves evolve along with analysis libraries. Furthermore, the empha-

sis is on the research, not documenting a program. These factors, along with many others, all

contribute to a software engineering concept called "technical debt". This is quite simply the

"cost" that is associated with inefficiencies in code. Much like financial debt, this compounds

over time and creates difficulties with implementing the code, such as the interpretability for

new researchers in the group or increased computation time.

To aid in my understanding of the methods and to help new members of the research group,

I developed a generalized ETD framework in Python 3. This software tool allows the user to de-

fine an EoM by giving the linear and nonlinear components, L and N (u, t ). The user also defines
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a domain size, spatial grid spacing to discretize the x − y plane, final time to stop the simula-

tion, time step, and initial condition (IC). The tool then takes this information and calculates

the time integration of the surface. The tool can also produce images and binary files for direct

analysis and contains a collection of functions to assist in the analysis process. This tool goes

beyond being an example of numerical integration: it is a full framework because it allows the

user to define the linear and nonlinear functions and then uses those to generate a simulation.

As mentioned, the tool itself is a Python 3 module. Python 3.8 is the current version at the

time of writing this document. Python was selected because it is easily interpretable by users,

has numerous libraries to assist in analysis, has a large community to help with support and

development of new code, and has good speed and productivity. All of the code for the frame-

work is saved in a file named BradleyTheoryGroup.py. It can be included as any other Python

module would be and applied to analysis code. In addition to the base module, multiple exam-

ples and README documents are included in addition to internal help files for every function

in the module.

While this work is not directly advancing the field of ion bombardment, it does provide a

direct benefit to the Bradley Theory research group by increasing the speed with which simu-

lations can be produced, virtually eliminating the startup time of new members, and providing

a well documented base to expand upon for future analysis and development. Note that Dan

Pearson helped optimize the code and expand the tool to include the numerical integration of

the EoMs for ion bombardment of a binary material.

The necessary steps to execute a simulation using this framework are discussed in this chap-

ter. Some of the behind-the-scenes work conducted by the module to facilitate the numerical

integration are then addressed. Lastly, some of the functions built into the software tool to fa-

cilitate in the analysis of the simulations are mentioned.
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4.2 User Inputs

To facilitate the production of simulations, an interactive Python notebook using the Jupyter

platform has been created. The framework is loaded like any other Python library: ’import

BradleyTheoryGroup’ is simply added to the top of the Python program. An example notebook

can be found in Appendix A. However, it is worth mentioning the steps that the user needs to

take to use the program.

First, the user needs to define L. This is done in Fourier space to facilitate the computational

representation of the spatial derivative operators. The linear component for the aKS equation

is

L = κ1(i kx)2 +κ2(i ky )2 −B((i kx)4 + (i ky )4 +2(i kx)2(i ky )2), (4.1)

where kx is the wave number in the x direction and ky is the wave number in the y direction.

The parameters κ1, κ2, and B are the same coefficients that appear in Eq. (2.3). Fortunately, the

L operator is typically diagonal in the Fourier basis for IBS, and so the extension of ETD to a

system of ODEs is the same as outlined in Ref. [114].

In the next step, the user defines the nonlinear function N . This is done in real space to

reduce the calculations needed in Fourier space. Spatial derivatives within this function can

be calculated however the user desires, but the framework has built in finite differencing. The

nonlinear component, written in real space, for the aKS equation is

N =λ1u2
x +λ2u2

y , (4.2)

which is directly from Eq. (2.3).

Both L and N are defined as Python functions to feed to the framework and then converted

into a usable form to execute ETD. If the user is not familiar with Python coding, both L and

Nr eal can be written as strings which the framework will automatically convert into a Python

function and apply throughout. However, this requires more computation than writing the

function in Python.
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The user specifies all of the linear and nonlinear parameters. For the aKS equation, the

linear parameters are κ1, κ2, and B . The nonlinear parameters are λ1 and λ2. The linear and

nonlinear parameters are then stored in separate lists.

The user then specifies the number of grid points along the x and y directions and the range

for each direction. If the user wishes to study a PDE in one space dimension rather than two,

the number of grid points along the y direction is set to 1 and the framework will automati-

cally handle the rest. The framework then generates an evenly spaced grid of points with the

designated number of points in the mesh over the user defined ranges. Next, the user defines

the starting value of t , the final value of t to stop the simulation at, and the small time step h.

The final step before sending the input to the module is specifying an IC. This is typically low

amplitude spatial white noise for a nominally flat surface, but could be a sinusoid or anything

that the user specifies.

The user calls the "timeIntegrator" function with the user defined functions and conditions

as arguments to be passed into the framework in the final step. Additional, optional arguments

of the function can tell it to create and save files to a specific directory to make data manage-

ment easier, to generate and save images of the surface and, if desired, the Fourier transform

of the surface for the user to view, to generate numpy data files for further analysis and specify

the rate at which this is done. The function also allows the user to chose between ETD schemes.

ETD2RK and ETD4RK are the recommended integration schemes. Other schemes are in the

process of being incorporated, but have yet to be documented and case tested. ETD2RK takes

less time to advance the surface through a time step, but requires a smaller time step h. When

the surface consists of many grid points, it can be more computationally efficient to do easier

calculations more times than to use the more complicated ETD4RK.

This process allows the user to define a PDE and start a simulation. Once the simulation has

begun, the module prints a progress bar to allow the user to monitor its progress. An example

notebook which uses this framework to numerically integrate Eq. (2.3) is included in Appendix

38



A. This example shows the explicit Python commands needed to produce a simulation from a

white noise initial condition.

4.3 Behind the Scenes

After the user has defined the EoM and domain, the module handles all of the complexities

of implementing ETD methods for that EoM. The most significant considerations are convert-

ing to and from Fourier space repeatedly, calculating the contour integral to get the elements of

the matrix eLh , approximating the spatial derivatives, and reducing compounding error in the

imaginary components that arise from an approximate Fourier transform. In this section, I will

present how the framework implements each of these.

The ETD method is conducted in Fourier space, but the nonlinear contribution is calcu-

lated in real space. The surface u has to be converted to and from Fourier space repeatedly.

This is done using a fast Fourier Transform (FFT). Unfortunately, this can be computationally

taxing when done so many times. Furthermore, there are numerous methods for calculating

the FFT which are optimized for different cases. Originally scipy’s fftpack was used, but D. Pear-

son recommended and helped to implement the speedy FFT library. This library has a Pythonic

wrapper called pyFFTW, which allowed it to be directly implemented. The speedy FFT library

takes the initial surface and tests different methods of computing the FFT to find the fastest for

the surface. Then this method is used for every FFT and inverse FFT conducted. The module

will also choose a 1D or 2D FFT scheme based on the input provided by the user.

The contour integral previously mentioned in Sec. 3.2 must be calculated. Unfortunately,

this has to be done numerically. The model does this by approximating the circular contour

as a hexadecagon by default. The number of sides of the polygon can be changed by the user,

but sixteen is used by default because it can be calculated quickly and produces results with

minimal error.

The spatial derivatives of u are approximated in real space by a central difference finite dif-

ferencing scheme accurate to fourth order in the grid spacing. For example, the partial deriva-
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tive of u with respect to x was approximated by

∂u

∂x
(x, y) ≈ u(x −2∆x, y)−8u(x −∆x, y)+8u(x +∆x, y)−u(x +2∆x, y)

12∆x
, (4.3)

where ∆x is the spatial separation of grid points in the x direction [110, 113]. This produces

errors of order O (∆x4). The module also will compute spatial derivatives up to fourth order. The

user can specify whether the derivative is in the x direction or the y direction and the module

handles implementing the finite difference along either axis.

The surface u is converted from real space to Fourier space and back many times by approx-

imations of the Fourier transform and inverse Fourier transform. This introduces error. The

individual error of a transformation is very small, but can compound through many iterations.

This presents itself as a growing imaginary component; when the surface u is transformed to

Fourier space and then transformed back to real space, it now has a small imaginary compo-

nent. Each time the error causes this to grow and eventually it produces numerical overflow

and the simulation crashes.

The solution to this problem is simply retaining only the real portion of u after each ETD

step of h. The surface u in real space is transformed to Fourier space and the ETD step for a

time interval h is calculated. The updated surface in Fourier space is then transformed back to

real space. The imaginary component is then dropped. If the simulation time is not over, the

process is repeated, advancing the time by h. Otherwise, the simulation ends.

4.4 Analysis Suite

In addition to the ETD integrator, the module includes various functions to aid in the anal-

ysis of the simulations. Each function has a full help file and documentation to help the user.

For example, if the user wants to generate mp4 movie files to watch the simulation evolve in

time, the user can call the function "MakeMovie" and it will automatically generate it. Likewise,

if images of the FFT of the surface is desired, the user can turn on a "DoFFTPlots" flag in the
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integration function. There are built in functions to calculate surface roughness, peak-to-peak

and trough-to-trough distances to get the wavelength distributions, make 1D cuts along the x

or y direction for 2D surfaces, and to plot the derivatives.

The surface information is also stored as numpy arrays and can be loaded into a Python

environment. Once the data is loaded, any Python library can be loaded and used to analyze

the surface. This allows the user to use the various analysis tools that others have written and

greatly expands the analysis tools available.

4.5 Examples of Simulations produced with this Tool

This module provides a fast and well documented tool to conduct simulations of PDEs, par-

ticularly those that occur in IBS. This is the tool that was used to produce every simulation in

the following work and will hopefully prove useful for future studies by other group members.

Figure 4.1 presents three example simulations of Eq. (2.3). All three simulations had B = 1

and λ1 = λ2 = −1. The top left image shows the bowl patterns that emerge for the isotropic KS

equation with κ1 = κ2 = 1. The top right image shows parallel mode ripples with κ1 = −1 and

κ2 = 1. The bottom image shows perpendicular mode ripples. The parameters are κ1 = 1 and

κ2 =−1.

Figure 4.2 shows a simulation of the 1D KS equation. The parameters are κ1 = −1, B = 1,

and λ1 = 1. κ2 and λ2 correspond to spatial derivatives along the y direction and therefore are

irrelevant in this special case. The module will automatically produce u vs x plots if the user

input is 1D and contour plots otherwise.

2D simulations of the aKS equation with parameters κ1 = −1, κ2 = 1, B = 1, and λ1 = λ2 =

−1 with a range of [0,400] for both x and y with a spatial separation of 0.5 and a time step of

h = 0.25. The simulation started from t = 0 and ended at t = 400. Using ETD4RK, it took 116.70

seconds for the simulation to finish while producing both images of the surface and numpy files

after every interval of ∆t = 5. The same simulation was run for the 1D case, but now with a grid

of 1×200 instead of 200×200. This simulation took only 9.02 seconds. The machine used to
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Figure 4.1: Contour plots of u at t = 50 for κ1 = κ2 = −1 (top left), κ1 = −1 and κ2 = 1 (top right), and
κ1 = 1 and κ2 =−1 (bottom). B = 1 and λ1 =λ2 =−1 for all three. The domain size was 200x200.
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Figure 4.2: Plot of u vs x at t = 50 for κ1 =−1, B = 1, and λ1 = 1. The domain size was 200.

benchmark the performance was the Bradley Theory Group machine which has 78GB of RAM

and a ASUS X299-A motherboard.

43



Chapter 5

The Effect of Dispersion on the Nanoscale Patterns

Produced by Ion Sputtering

5.1 Introduction

In the original BH theory, the Sigmund model of ion sputtering was reduced to a partial

differential equation for a nearly flat surface with slowly varying surface height [16]. The de-

pendence of the sputter yield on the surface curvature (i.e., on second derivatives of the surface

height u was included in the theory, but its dependence on third and higher order spatial deriva-

tives of u was omitted. Makeev, Cuerno and Barabási extended the BH analysis to include terms

proportional to third order spatial derivatives of u as well as other, higher order terms which we

shall omit [18]. The resulting equation of motion is

ut =C11uxx +C22uy y −B∇2∇2u +λ1u2
x +λ2u2

y +C111uxxx +C122ux y y . (5.1)

For a surface with slowly varying height, uxxx and ux y y are in general larger than ∇2∇2u, and so

it is actually inconsistent to omit the third-order terms.

The simplest and most obvious effect of including terms proportional to uxxx and ux y y in

the equation of motion (EOM) is that it makes the ripple propagation dispersive [18,183]. There

is direct experimental evidence that establishes that the effect of dispersion can be substan-

tial [12]. The dispersive terms in Eq. (5.1) can result from ion-induced plastic flow [117, 118] or

viscous relaxation of ion-induced stresses [31, 119] as well as from sputtering [18, 20].

In this chapter, we will explore the effects of dispersion on the patterns produced by oblique-

incidence ion sputtering. We find that dispersion can lead to the formation of raised and de-

pressed triangular regions that are traversed by parallel-mode ripples. These regions — which

we will often refer to as “triangles" for the sake of brevity — strongly resemble structures that are
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commonly observed in experiments. In a different range of the model’s parameters, highly or-

dered ripples emerge. This suggests that dispersion could be employed to produce much more

orderly ripples than those that are usually found in experiments. Finally, protrusions and de-

pressions that are elongated in the longitudinal direction can emerge at sufficiently long times.

These topographies resemble the so-called perpendicular-mode ripples that are frequently ob-

served for high angles of ion incidence.

This chapter is organized as follows. We study the behavior of the surface for the special

case in which its height does not depend on the transverse coordinate y in Sec. 5.2. The general

case in which u depends on x, y and t is considered in Sec. 5.3. We put our results in context in

Sec. 5.4 and discuss them further in Sec. 5.5. Our conclusions are presented in Sec. 5.6.

5.2 One Dimensional Results

Consider a 1D disturbance (i.e., one with uy = 0 everywhere) and suppose that C11 < 0 so

that there is an instability. We introduce the dimensionless quantities x̃ = sgn(C111)(|C11|/B)1/2x,

t̃ = (C 2
11/B)t and ũ = (λ1/|C11|)u, where sgn(C111) denotes the sign of C111. After dropping the

tildes, we obtain the rescaled equation of motion

ut =−uxx −uxxxx +u2
x +αuxxx , (5.2)

where α ≡ (B |C11|)−1/2|C111| is a nonnegative, dimensionless measure of the strength of the

dispersion. In the new, rescaled coordinate system, the projection of the ion beam onto the

x − y plane points in the −x direction if C111 > 0, while if C111 < 0, it points in the +x direction.

For α = 0, Eq. (5.2) reduces to the one-dimensional KS equation. In this limit, solutions

to Eq. (5.2) with low-amplitude spatial white noise initial conditions exhibit spatio-temporal

chaos.

We differentiate Eq. (5.2) with respect to x and set x̄ = −x, t̄ = αt and v = (2/α)ux . After

dropping the bars, we have
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vt +α−1(vxx + vxxxx)+ v vx + vxxx = 0. (5.3)

Equation (5.3) is known as the Kawahara equation [120] and has previously been studied as a

model of step-bunching dynamics on vicinal surfaces [121, 122]. It reduces to the Korteweg-

Vries (KdV) equation

vt + v vx + vxxx = 0, (5.4)

a paradigmatic equation in the study of solitons, in the strongly dispersive limit α→∞. When α

is large and finite and the initial condition is low-amplitude spatial white noise, the solution to

Eq. (5.3) tends to a highly ordered steady state that consists of a chain of equally-spaced solitons

of the same amplitude [120].

We numerically integrated Eq. (5.2) using the ETD4RK method originally presented by Cox

and Matthews [114] with periodic boundary conditions. The linear terms of the equation were

computed exactly in Fourier space; on the other hand, the nonlinear terms were approximated

in real space using finite differencing. A central difference scheme accurate to fourth order in

the grid spacing along the x direction, ∆x, was used for the derivatives. In particular, the par-

tial derivative of u with respect to x was approximated by Eq. (4.3). The integration method is

described in Chap. 3 and the computational tool used was the framework presented in Chap. 4.

Figure 5.1 shows the results of simulations for a selection of α values at time t = 300. In each

case, the initial condition was low amplitude spatial white noise. (The amplitude of the white

noise was chosen to be 0.01 for all simulations discussed in this chapter.) For α= 0, Eq. (5.2) is

the 1D KS equation and the solution exhibits spatio-temporal chaos. The dispersive term seems

not to fundamentally alter the behavior for α= 0.1. However, for α= 0.5, the ripples are much

closer to being periodic. For α = 1, sections of the surface have well-ordered ripples superim-

posed on an overall upward slope. These sections are followed by precipitous downward drops.

The order increases still further for larger values of α until, for α = 25, the ripples are almost

perfectly ordered but are modulated by a low amplitude, long wavelength height variation. For

still larger values of α, the modulation is of smaller amplitude, and the highly ordered steady
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state can be thought of as a chain of equally-spaced solitons of the same amplitude, as noted

above [120].

To quantify the increase in order with increasing α, we generated a new set of simulations.

Simulations were carried out for a range of values of α between 0.1 and 40 on a domain of width

10000, and for each value of α, ten independent simulations were generated with low amplitude

spatial white noise initial conditions. We then took the absolute value of the Fourier transform

of each of the surfaces corresponding to a single α value at time t = 800 and averaged. We next

fit a Gaussian to the first peak of the averaged curve and calculated the full width at half max

(FWHM) of the Gaussian. As usual, the smaller the FWHM, the more orderly the surface is.

Figure 5.2 (a) indeed shows that as α increases, the FWHM of the fitted Gaussian decreases.

The location of the Gaussian’s peak yields the wavelength of the ripples at time t = 800, a

time when a steady state has very nearly been reached. As shown in Fig. 5.2 (b), the ripple

wavelength Λ depends on α at t = 800. In contrast, the wavelength at early times takes on the

linearly-selected value 2
p

2π, which is independent of α. This means that the ripple wavelength

must in general depend on time. This time dependence is illustrated in Fig. 5.3 for α = 2, 10,

25, and 50. Importantly, the wavelength at long times exceeds the linearly selected value for all

values of α we examined, which means that the dispersive term produces ripple coarsening.

This coarsening is interrupted, i.e., it does not continue indefinitely. Our simulations suggest

that the long-time value of Λ tends to the linearly-selected value 2
p

2π in the α→∞ limit.

An interesting feature that is not apparent in Fig. 5.1 is the asymmetry of the ripple pattern

for nonzero α. Figure 5.4 shows a portion of the surface for α= 1 at time t = 300. The right and

left sides of the ripple crest shown in the figure are clearly different. This is to be expected since

Eq. (5.2) is not invariant under the transformation x →−x for α> 0.

It is natural to ask whether the effects of dispersion could be observed in an experiment.

For a typical material, C11 =C11(θ) changes sign from positive to negative as θ is increased from

zero through a critical angle θc . Ripples form for θ just above θc and the dimensionless measure

of the strength of the dispersion α= (B |C11|)−1/2|C111| is large in this regime. When C11 is small
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Figure 5.1: u versus x at time t = 300 for (a) α = 0, (b) α = 0.1, (c) α = 0.5, (d) α = 1, (e) α = 5 and (f)
α= 25. The domain width was 750.
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Figure 5.2: (a) The full width at half max (FWHM) and (b) wavelength Λ versus α at time t = 800. The
dashed black lines are guides to the eye, the triangles are the actual points calculated, and the dotted line
in (b) displays the linearly selected wavelength 2

p
2π. The domain width was 10000.

Figure 5.3: Wavelength versus time for α = 2, 5, 10, and 50. The dotted black line shows the linearly-
selected wavelength. The domain width was 10000.

49



Figure 5.4: u versus x at time t = 300 for α= 1.

and negative, however, the characteristic time B/C 2
11 that it takes for the ripple amplitude to

become appreciable is large. This means that an unattainably high fluence might be needed for

ripples to form and for the effects of dispersion to become noticeable. Fortunately, α need not

be large for the effects of dispersion to be substantial. If α is of order 1, our simulations show

that the behavior of the surface is strongly affected by dispersion when times are reached that

are several hundred times the characteristic time B/C 2
11 [see Fig. 5.1 (d)]. Times this long are

commonly reached in experiments.

5.3 Pattern Formation in Two Dimensions

As we have seen, the dispersive term has a significant effect on the surface produced by

Eq. (5.1) for the special case in which u is independent of the transverse coordinate y . However,

there are variations in height in both the longitudinal and transverse directions in experiments,

and so we must consider the behavior predicted by the full equation of motion (5.1) when u

depends on x, y , and t . This will henceforth be called the two-dimensional (2D) case.

We begin by defining x̃, t̃ and ũ as in Sec. 5.2 and by setting ỹ = (|C11|/B)1/2 y . We once again

assume that C11 is negative so that an instability is present in the longitudinal direction. After

dropping the tildes, Eq. (5.1) becomes

ut =−uxx + r1uy y −∇2∇2u +u2
x + r2u2

y +αuxxx +βux y y , (5.5)
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where r1 ≡C22/|C11|, r2 ≡λ2/λ1 and β≡ (B |C11|)−1/2C122 are dimensionless parameters and we

remind the reader that α≡ (B |C11|)−1/2C111.

5.3.1 Highly Ordered Ripples

A sensible starting point for the study of the 2D problem is a case that is roughly analogous to

the 1D case: we assume that r1 is positive so that there is no linear instability in the transverse

direction. In fact, we will go further and consider the case r1 = 10 in this subsection so that

variations in the y direction are rather strongly suppressed.

Just as was done for the 1D special case, a set of simulations were conducted starting from

a low-amplitude spatial white noise initial condition. The numerical integrations were once

again performed using the ETD4RK method. Several different values of α were considered. The

values of the remaining parameters were r2 = 1, β= 0 and, as already mentioned, r1 = 10.

Figure 5.5 shows that increasing α promotes the formation of highly ordered ripples, just as

in the 1D case. In the absence of dispersion, there is no clear order in the x direction, but as the

coefficient of the dispersive term uxxx is increased, order in the x direction starts to emerge and

then becomes very strong for large dispersion, e.g., for α= 50.

Figure 5.6 shows that a one-dimensional cross section of the surface with α= 50 is qualita-

tively similar to the result of the 1D simulation with α= 25 that is displayed in Fig. 5.1 (f). Both

simulations produce highly ordered ripples with a minor long-wavelength modulation in the

x-direction.

Although the surface is highly ordered in the x direction in Fig. 5.5 (d), it is noticeably de-

pressed for y in the vicinity of 200. To see how this kind of feature emerges and what its ultimate

fate is, we simulated the time evolution of the surface for the same parameters as in Fig. 5.5 (d),

i.e., r1 = 10, r2 = 1, α = 50 and β = 0, but ran the simulation for a longer period of time. The

results are shown in Fig. 5.7. At early times, the time evolution is well described by the lin-

earized equation of motion and parallel-mode ripples form. As the surface continues to evolve,

the nonlinear terms start to have a significant effect. By t = 80, multiple band-shaped regions
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Figure 5.5: u vs x and y at time t = 200 for r1 = 10, r2 = 1, β= 0 and (a) α= 0, (b) α= 1, (c) α= 5 and (d)
α= 50. The domain size was 500×500.
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Figure 5.6: Cross section of the simulation shown in Fig. 5.5 (d) at y = 400.

have formed in which the ripples are highly ordered. These bands are roughly aligned with the

x-direction. Each pair of adjacent bands is separated by a unique type of defect that we will call

a “seam." A seam is depressed relative to its surroundings and the ripples on either side of it

may or may not be in phase. In fact, as we trace along a seam, the relative phase of the flanking

ripples may change. Comparable but much shorter defects can be found in images of surfaces

bombarded with an obliquely incident ion beam [30, 57, 123, 124] — see the middle and right

panels of Fig. 3 of Ref. [57], for example.

Figure 5.8 is a close-up of the time evolution of two seams. As time passes, the two seams

near each other and then merge. After this has occurred, the ripples to either side of the one re-

maining seam are quite close to being in phase, as in Fig. 5.8 (c). The depression then becomes

shallower and at long times the seam disappears for all intents and purposes, very much like

the behavior of the seam shown in Fig. 5.7 (d)-(f). The ripples are highly ordered at that point.

Close examination of Fig. 5.5 shows that the wavelength is shorter for α= 50 than for α= 5.

To investigate this point, we calculated the peak-to-peak and trough-to-trough separations for

a regularly-spaced sequence of 1D cuts through the surface at time t = 800. Each of these cuts
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Figure 5.7: u vs x and y for r1 = 10, r2 = 1, α= 50 and β= 0 for times (a) t = 50, (b) t = 70, (c) t = 80, (d)
t = 130, (e) t = 310, and (f) t = 1000. The domain size was 300×300.

54



Figure 5.8: u vs x and y for r1 = 10, r2 = 1, α = 50 and β = 0 for times (a) t = 114, (b) t = 132, and (c)
t = 146. The simulation domain size was 500×500, but the displayed interval is 50 ≤ y ≤ 300 to highlight
the seams.
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Figure 5.9: Normalized histograms of the peak-to-peak and trough-to-trough separations along the x

direction for (a) α = 2 and (b) α = 15. The black lines display the mean of the distributions. The mean
value is 15.1 for α= 2 and 9.7 for α= 15.

had a different, fixed value of y . Normalized histograms of the separations for α= 2 and α= 15

are displayed in Fig. 5.9. We observe that just as in the 1D case, the mean wavelength is shorter

for the larger value of α. For both values of α, the mean wavelength at long times exceeds the

linearly-selected wavelength 2
p

2π∼= 8.886, and so coarsening occurs in the 2D case, as it does

in 1D. The distribution of separations is narrower for α = 15 than for α = 2, which is in accord

with our observation that the ripples become more ordered as α is increased.

The ordered ripples generated by strong dispersion is a fascinating phenomenon. However,

thus far, we have restricted our attention to the caseβ= 0. It is unlikely thatβwill be exactly zero

in an experiment. We therefore carried out simulations in which we again set r1 = 10, r2 = 1 and

α = 50 but chose β to be ±10 (see Fig. 5.10). In both cases, there are regions of highly ordered

ripples that are separated by seams, as for β = 0. For β = 10, though, the ordered regions are

smaller and the seams are more abundant than for β= 0 or −10.

5.3.2 Triangular Structures

To this point, we have considered systems that either have no variation or that are strongly

stabilizing in the transverse direction. (r1 is relatively large and positive in the latter case.) In
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Figure 5.10: u vs x and y at t = 200 for (a) β= 10 and (b) β=−10. The remaining parameters were r1 = 10,
r2 = 1 and α= 50 and the domain size was 300×300.

both of these cases, the presence of the dispersive term αuxxx greatly alters the behavior of

the surface when α is sufficiently large: the behavior changes from spatio-temporal chaos in

the absence of dispersion to highly ordered ripples in the highly dispersive case. However, if

the angle of incidence is not too high, r1 is typically of order 1 and positive. To analyze this

situation, we generated a new set of simulations with the parameters r1 = 1, r2 = 0, β = 0, and

with a range of α values. The choice r1 = 1 yields stabilization in the transverse direction, but

not to the same degree as previously considered.

The simulations presented in Fig. 5.11 once again show that the behavior changes funda-

mentally when α is sufficiently large in magnitude. The most interesting feature that is ob-

served in these simulations are the triangular structures that emerge for intermediate values

of α: see Fig. 5.11 (c) - (e). Comparable features have been observed in numerous experi-

ments [1–8, 10, 11, 33]. Fig. 5.12 displays a side-by-side comparison of an experimental image

of triangular features [1] and the triangular features seen in our simulations. The left image is

of a Si surface bombarded with a 700 eV Ar+ beam oriented at 65◦. The simulated surface was

produced with parameters r1 = 1, r2 = 0, α=−3, and β= 0 on a 500×500 domain.

In both experimental results and in our simulations, triangular structures with parallel-

mode ripples superimposed on them appear. These structures come in two varieties: those
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that protrude out of the surface and those that are depressed below the surrounding region.

The raised triangular structures are invariably oriented in one direction while the depressed tri-

angles are oriented in the opposite direction. Furthermore, the two varieties do not form with

a one-to-one ratio: there are a larger number of raised triangles than depressed ones in our

simulations and in experiments.

For the range of α values in which we do observe triangular structures, they are transient.

Figure 5.13 shows the surface before the emergence of triangles [panel (a)], while triangles are

present [panels (b) and (c)], and after they have disappeared [panel (d)]. Figure 5.13 panels (e)

- (h) show the corresponding power spectral densities (PSDs). The PSD is defined to be the

squared modulus of the Fourier transform of the difference between the surface height and

its spatial average. Before the triangular structures emerge, we see parallel-mode ripples and

the corresponding PSD has two peaks centered on nonzero wave vectors on the kx axis. When

triangles are present, these peaks are broader and lower. The PSDs have a distinctive “butterfly"

appearance in this regime. The surface at long times appears to exhibit spatio-temporal chaos

and there are no discernible peaks in the Fourier spectrum aside from the one centered at k = 0.

There are raised and depressed regions on the surface that are elongated along the x-direction

at these times.

To further explore the changing nature of the surface morphology, we computed the 1D

PSDs for a regularly-spaced sequence of 1D cuts through the surface. Each of these cuts had a

different, fixed value of y . We then averaged these PSDs together to give the average 1D PSD for

the x direction. We computed the average 1D PSD for the y direction in a completely analogous

fashion, except that in this case the 1D cuts had fixed values of x. The results obtained for the

same simulation as is shown in Fig. 5.13 are displayed in Fig. 5.14 for times t = 70 and t = 500.

These times were selected because triangles were present at the earlier time but not at the later.

The average 1D PSDs for the x direction have a strong peak at t = 70 but not at t = 500. Thus,

ripples were present only at the earlier of the two times. The average 1D PSDs for the y direction

show that there was no periodicity in the y direction for either time.
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Figure 5.11: u vs x and y at t = 60 for (a) α = 0, (b) α = 1, (c) α = 3, (d) α = 5, (e) α = 10, and (e) α = 50.
The remaining parameter values were r1 = 1, r2 = 0 and β= 0, and the domain size was 500×500.
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Figure 5.12: Si surface bombarded with a 700 eV Ar+ beam oriented at 65◦ at a fluence of 5×1017 ions/cm2

(left). This image was originally originally appeared in Ref. [1]. A simulated surface which was produced
with parameters r1 = 1, r2 = 0, α=−3, and β= 0 on a 500×500 domain at t = 60 (right).

Figure 5.15 shows the time dependence of the surface width, i.e., the root-mean-square de-

viation of the surface height from its mean value, for the same values of α as in Fig. 5.11. In the

linear regime, the surface width grows exponentially with a growth rate that is independent of

α. The surface width rapidly saturates as the nonlinear terms become important. The steady-

state surface width is an increasing function of α. There is no discernible regime of power-law

growth of the surface width at intermediate times.

To this point in this subsection, we have varied α and kept r2 and β fixed at zero. It is unlikely

that that these parameters are exactly equal to zero in experiments, and so we must see if the tri-

angular structures persist in the presence of the terms r2u2
y and βux y y . We reduced the domain

size and ran simulations with r1 = 1 and r2 = 0 once again, but now with two nonzero values of

β and fixed α = 3. The simulations — which are shown in Fig. 5.16 (a) and (b) — demonstrate

that the additional dispersive term βux y y alters the detailed structure of the triangles, but they

are still present. An additional simulation with α = 3, β = 0, r1 = 1 and r2 = 0.2 shows that the

triangles can also form when r2 is nonzero [see Fig. 5.16 (c)].
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Figure 5.13: u vs x and y (top) and the corresponding PSDs (bottom) for r1 = 1, r2 = 0, α= 5 and β= 0 for
times t = 32 [(a) and (e)], t = 60 [(b) and (f)], t = 70 [(c) and (g)], and t = 108 [(d) and (h)]. A logarithmic
color scale was used for the PSDs so that the satellite peaks could be seen despite the high central peak.
The domain size was 500×500.
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Figure 5.14: Semilog plots of the averaged PSDs for 1D cuts along the x and y directions are shown for
t = 70 (a) and t = 500 (b). The parameter values were the same as in Fig. 5.13 and the domain size was
500×500.

Figure 5.15: Surface width vs time for α = 0, 1, 3, 5, 10, and 50. The remaining parameters were r1 = 1,
r2 = 0, and β= 0. The domain size was 500×500.
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Figure 5.16: u vs x and y at t = 60 for (a) β= 3 and r2 = 0, (b) β=−3 and r2 = 0, and (c) β= 0 and r2 = 0.2.
The remaining parameter values were r1 = 1 and α= 3. The domain size was 300×300.

The triangular structures are not invariant under the transformation x →−x. This symmetry

is broken only if α or β or both are nonzero, i.e., dispersive effects are present. Thus, the experi-

mental observation of the formation of triangular structures provides compelling evidence that

dispersive effects are significant for many choices of ion beam and target material.

5.3.3 Perpendicular-Mode Ripples

The presence of the term αuxxx in our equation of motion (5.5) makes the ripple propa-

gation dispersive, i.e., ripples with different kx values propagate with different velocities. This

term therefore tends to elongate protrusions and depressions along the x-direction. This ten-

dency is very much in evidence in Fig. 5.17, which shows the surface height at time t = 200 for

r1 = 1, r2 = 0 and β = 0 and for a selection of α values. As α is increased, the protrusions and

depressions become increasingly elongated until, for α = 50, they span the entire domain. In

addition, for α= 50, highly ordered, low amplitude parallel-mode ripples are superimposed on

the protrusions and depressions. These superimposed ripples are less orderly for smaller values

of α.

Protrusions and depressions that are elongated along the x-direction are commonly ob-

served in experiments in which the angle of incidence is relatively high [1]. Traditionally, these

have been called perpendicular-mode ripples. Perpendicular-mode ripples occur if C22 is neg-

ative and smaller than C11, according to the linear BH theory [16]. In this case, there is an

instability in the y-direction and it is stronger than the instability if the x-direction, and r1 ≡
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Figure 5.17: u vs x and y at t = 200 for (a) α= 0, (b) α= 1, (c) α= 10, and (d) α= 50. In each case, r1 = 1,
r2 = 0 and β= 0. The domain size was 500×500.
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C22/|C11| < −1. The situation is more complex when the equation of motion is taken to be the

anisotropic KS equation (2.3): if r1 < −1 and λ2/λ1 is positive and sufficiently small, parallel-

mode ripples appear at first but are later supplanted by perpendicular-mode ripples [80].

In the simulations that yielded Fig. 5.17, r1 = 1 and so C22 was positive. This means that

elongated protrusions and depressions that resemble the experimental topographies can occur

even if there is no instability in the y-direction. These topographies are instead the result of

dispersion and the lowest-order nonlinearities.

In recent years, atomistic simulations combined with the crater function formalism have

been used to estimate the values of the coefficients in the continuum equation of motion [19,

21, 28, 86]. These studies have shown that if the ion energy is on the order of 1 keV or smaller,

the contribution mass redistribution makes to the curvature coefficients C11 and C22 is usually

about an order of magnitude larger than sputtering’s contribution. Mass redistribution makes a

positive contribution to C22 [28, 84]. The experimental observation of so-called perpendicular-

mode ripples at relatively high angles of incidence has therefore been a puzzle. Our work shows

that this apparent quandary may be no quandary at all: adding dispersion and the lowest-order

nonlinear terms to the EOM can yield topographies very much like those seen in experiments

even if the positive contribution of mass redistribution to C22 is larger than negative contribu-

tion of curvature-dependent sputtering.

If the angular dependence of the sputter yield is expanded to third order in the surface slope,

the cubic nonlinearity u3
x appears in the EOM [22]. Recent work has shown that this term can

lead to the formation of pyramidal structures that are elongated along the projected beam direc-

tion [181]. These too might be considered to be perpendicular-mode ripples. As a consequence,

the situation is complex: in a given experiment, so-called perpendicular-mode ripples might re-

sult from dispersion, the angular dependence of the sputter yield, from curvature-dependent

sputtering, or from a combination of all three.
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5.3.4 Nano-needles

Another interesting feature observed in experiments is the production of "nano-needles".

In many examples of perpendicular-mode ripples observed in experimental studies, needle-

like structures are present [1, 2, 15, 33, 50, 58]. These structures are not invariant under the

transformation x → −x but Eq. (2.3) is. This led us to ask if dispersion could explain these

experimentally observed features.

Figure 5.18 shows an AFM image from Ref. [15] (left) and a simulated surface produced by

Eq. (5.1) (right). This AFM image is of a Si surface exposed to bombardment with 1 keV Ar+ ions

at a 75◦ angle of incidence. The fluence for this image is 1.6× 1019 ions/cm2. The simulated

surface was produced with the parameters C11 = 1, C22 =−1, B = 1, λ1 = 1, λ2 = 1/5, C111 = 50,

and C122 = 0. The domain size was 500×500 and the selected image was at t = 200. Both the

experimental surface and the simulated surface show needle-like protrusions.

Figure 5.18: AFM scan of a Si surface exposed to Ar+ ions bombardment at 75◦ (left). This image orig-
inally appeared in Ref. [15] as Fig. 1. A contour plot of a simulated surface with parameters C11 = 1,
C22 =−1, B = 1, λ1 = 1, λ2 = 1/5, C111 = 50, and C122 = 0 for Eq. (5.1) at t = 200 (right). The domain size
was 500×500.
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This shows that the lowest order dispersive terms can produce not only triangular protru-

sions, but also perpendicular-mode ripples with broken x →−x symmetry. These bear a strik-

ing resemblance to experimentally observed structures that cannot be reproduced by Eq. (2.3).

5.4 Related Work

The equation of motion (5.1) studied in this chapter is a special case of the equation derived

by Makeev, Cuerno and Barabási (MCB) [18] in which terms proportional to uxuxx and uxuy y

are omitted and the effective surface diffusivity is taken to be isotropic. MCB only studied the

low-amplitude, linearized behavior predicted by their equation.

A still more general equation of motion was derived by Muñoz-García, Cuerno and Castro

(MCC) starting from a model in which it is assumed that there is an amorphized, mobile surface

layer [183]. Unlike MCB, MCC carried out numerical integrations of their equation of motion

in which the nonlinear terms were retained. MCC noted that when terms proportional to uxxx

and uxuxx appear in the EOM, the ripples become asymmetric and their propagation becomes

dispersive. They did not observe the formation of triangular structures or highly ordered ripples

in 2D, however.

The special case of our rescaled equation of motion (5.5) in which r1 = r2 = 0 and β=α has

already been studied in an entirely different physical context. In this case, much as we did in

1D, we differentiate Eq. (5.5) with respect to x and set x̄ = −x, ȳ = y , t̄ = αt and v = (2/α)ux .

After dropping the bars, we obtain

vt +α−1(vxx +∇2∇2v)+ v vx +∇2vx = 0. (5.6)

Equation (5.6) has been studied previously since it models the flow of a thin liquid film down a

vertical plane [126]. It reduces to the Kawahara equation (5.3) if u is independent of the trans-

verse coordinate y .
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In the highly dispersive α → ∞ limit, Eq. (5.6) becomes the 2D version of the Zakharov-

Kuznetsov (ZK) equation [127] for ion-acoustic waves propagating along the magnetic field in a

strongly magnetized, two-component plasma,

vt + v vx +∇2vx = 0. (5.7)

The ZK equation (5.7) is a generalization of the KdV equation (5.4) to 2D. The soliton solutions

to the KdV equation are also solutions of the ZK equation. However, these so-called 1D solitons

are unstable against perturbations of sufficiently long transverse wavelength [128–132]. When

disturbed, a 1D soliton breaks up into a chain of localized, bell-shaped solitons [133].

Simulations of Eq. (5.6) for relatively large α and with white noise initial conditions produce

V-shaped structures composed of equally spaced, identical bell-shaped solitons that are super-

imposed on a background of low amplitude ripples [126]. This conclusion is also supported by

analytical work [134]. We initially thought that the V-shaped structures could be the differen-

tiated form of the triangular structures we observe in our simulations of Eq. (5.5). This turns

out not to be the case, however: the V-shaped structures occur at much later times than the

triangles, and, when integrated, they do not resemble the triangular structures. In addition, the

V-shaped structures are found for significantly larger values of α than those for which triangu-

lar structures occur. Finally, the V-shaped arrangements of bell-shaped solitons seem not to be

transient, unlike the triangular structures we find.

5.5 Discussion

In this chapter, we focused on the effect that the linear dispersive term uxxx has on the

patterns produced by oblique-incidence ion bombardment of a solid surface. We found that it

can lead to the formation of triangular regions that are traversed by parallel-mode ripples, and

these strongly resemble nanostructures observed in many experiments. We included the lowest

order nonlinear terms (which are proportional to u2
x and u2

y ) in our equation of motion (5.5). As
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time passes and the amplitude of the pattern grows, higher order nonlinear terms could begin

to modify the behavior of the surface. Quite a number of such terms have been considered and

they would likely all influence the surface dynamics at sufficiently long times [18, 22, 181, 183].

However, adding additional terms to the equation of motion would further complicate it, would

introduce more dimensionless parameters into a model that already has four, and is accordingly

beyond the scope of the present work.

Perhaps because we included only the lowest order nonlinear terms in our EOM, it does not

reproduce all aspects of the experiments. At early times, the triangular structures produced in

experiments have cross-sectional profiles that are similar to the ones we find in our simulations

(see Fig. 5.19). However, at later times, the cross section of a triangular structure begins to take

on a sawtooth form in some experiments. Such a sawtooth is asymmetric: one of its sides has

a significantly larger slope than the other. Our model does not yield this behavior. In addition,

the triangular structures produced by our EOM (5.5) are transient. This transience has not been

observed experimentally. This may be because the experimental fluences are not high enough

for the triangles to be replaced by perpendicular-mode ripples. However, it is also possible that

adding additional nonlinear terms to the EOM would increase the longevity of the triangles and

so yield improved agreement with experiment. The experimentally observed triangular struc-

tures can also become larger with passing time, and our model fails to reproduce this behavior.

Our equation of motion (5.5) produces coarsening, i.e., the ripple wavelength increases

with time. This increase can be substantial — we find that the wavelength nearly doubles

for α = 1 in 1D, for example. The ripple wavelength also increases as time passes in exper-

iments that produce triangular structures. Coarsening can also be caused by the so-called

conserved Kuramoto-Sivashinsky nonlinearity
∑2

i=1

∑2
j=1λ

(2)
i , j
∂2

xi
(∂x j

u)2; here the λ(2)
i , j

s are con-

stants [66, 183]. This term is of higher order in both u and the spatial derivatives than the linear

dispersive terms uxxx and ux y y , though, and so it is expected to play an important role later

in the time evolution than the linear dispersive terms. The cubic nonlinearity u3
x also causes

coarsening [22, 181] and is of higher order than the linear dispersive terms. In experiments, it
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Figure 5.19: (a) u vs x and y for r1 = 1, r2 = 0, α= 3, and β= 0 at t = 76. The domain size was 500×500.
(b) The cross section of the surface taken along the black line shown in (a). The cross section is through
one of the triangular structures.

is likely that linear dispersion, the conserved Kuramoto-Sivashinsky nonlinearity and the cu-

bic nonlinearity all contribute to ripple coarsening, and that their relative importance changes

with time. In all three cases, the ripple wavelength saturates at sufficiently long times, and so

the coarsening is interrupted.

The linear dispersive term uxxx is not invariant under the reflection x →−x. Including this

term in the EOM has the effect of making the ripples asymmetric, as we saw in Sec. 5.2. There

are also nonlinear terms that are not reflectionally symmetric — for example, u3
x and uxuxx . If

present in the EOM, these terms will also contribute to the asymmetry of the ripples [22, 183].

In addition, these terms alter the propagation velocity of the ripples as the ripple amplitude

grows, i.e., they produce nonlinear dispersion [22, 183].

5.6 Conclusions

We showed that dispersion can have a crucial effect on the patterns produced by oblique-

incidence ion sputtering, even though its effect has almost universally been ignored in the past.

Our work yielded four key conclusions:
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1. Dispersion can lead to the formation of triangular regions that are traversed by parallel-mode

ripples. These structures come in two varieties: those that are raised above the surrounding sur-

face and those that are depressed below it. The raised triangular structures are always oriented

in one direction while the depressed triangles are oriented in the opposite direction. We also

found that there are a larger number of raised triangles than depressed ones. Triangular struc-

tures with precisely these features can be found in many micrographs of ion-sputtered surfaces.

2. If dispersion and transverse smoothing are sufficiently strong, highly ordered ripples can

form. Strong effective dispersion can be realized by choosing the angle of ion incidence so that

it is just above the critical angle for the formation of parallel-mode ripples. Strong transverse

smoothing, however, might be difficult to achieve in practice. Nonetheless, the possibility of

exploiting dispersion to produce highly ordered ripples seems a topic worthy of experimental

investigation.

3. Dispersion can lead to the formation of protrusions and depressions that are elongated along

the projected beam direction even if there is no transverse instability. This may explain why to-

pographies of this kind can form when ion-induced mass redistribution dominates curvature-

dependent sputtering.

4. The ripple wavelength increases with time and then saturates as a result of dispersion. Prior

research has shown that this behavior — which is known as interrupted coarsening — can also

occur due to the presence of nonlinear terms in the equation of motion [22, 66, 181, 183].
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Chapter 6

Overview of Machine Learning

6.1 Introduction

Before the next project can be discussed, it will be necessary to give a general overview of

machine learning (ML) and deep learning (DL). ML is a subset of artificial intelligence (AI) that

focuses on the study and application of algorithms and statistical models that enable a com-

puter to learn to recognize patterns within a dataset and to report the associated meaning to

the user. ML methods allow a computer to "learn" without explicit rules or human interven-

tion [135]. ML has proven to be extremely useful when given sufficient data to "train" the model.

These models are used in the financial and tech sectors as well as academic research [136–138].

Depending on the nature of the data and the objective of the model, ML algorithms can be

categorized into supervised, unsupervised, and reinforcement models. Supervised learning is

the ideal case in which the data is well understood and contains known "labels" or "targets"

that the model is designed to predict [135]. These models are trained by giving the model data

and then asking it to predict a label. The model is then tuned to maximize the performance.

This tuning process will be discussed in section 6.2. One common application of supervised

learning is image classification.

The second category of ML models is unsupervised models. Unsupervised ML algorithms

are useful for data that do not have known labels. Typical applications of this type of ML al-

gorithm include anomaly detection and clustering of user preferences [135]. Clustering can be

useful for content-based recommendation systems; an algorithm can cluster user preferences

in order to recommend items to other users in the same cluster.

The last category is reinforcement models. Models in this category are especially useful

when dealing with data that changes as a result of the model’s output, such as driving a car or

playing a video game. These models take input data, such as an image on a screen, and come up
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with a beneficial action. This action then causes the environment to change, thereby altering

the data. The new state of the environment is once again given to the model. AlphaGo is the pre-

mier example of a successful reinforcement model. In 2015, DeepMind Technologies developed

AlphaGo, the first computer program to beat a professional Go player [139]. AlphaGo’s succes-

sor AlphaZero is currently considered the top "player" in Go and possibly chess [140]. In 2019,

Deepmind published a paper on the newly developed AlphaStar. This reinforcement model

achieved the Grandmaster level in StarCraft II, a real-time strategy game developed by Blizzard

Entertainment. AlphaStar is ranked above 99.8% of officially ranked human players [141].

ML algorithms are being applied in a wide variety of fields and seeing astonishing success.

Examples include the speech recognition in Amazon’s Alexa or a Google Home device [142,143],

driving assistance in Tesla cars [144], and the recommendation system utilized by Netflix [145].

The advent of robust models which can outperform humans, and which can be adapted for

many tasks, is rapidly reshaping the world. The impact of AI development and the potential out-

come is a point of great discussion ranging from Utopian idealism to the cataclysmic collapse

of human civilization [146, 147]. The direction of the field of AI, as well as the ethics thereof,

are deep and interesting topics; however, it is beyond the scope of the work presented in this

dissertation.

6.2 Training and Evaluating a Supervised Learning Model

Supervised training was used for the work presented in Chapter 7. Supervised learning is

particularly useful because it directly compares the output values from the ML algorithm to the

"true" values associated with the data and alters the algorithm to align these two sets of values.

This comparison can be made to identify distinct classes, such as species of dogs, or continu-

ous values, such as the weight of a dog. These two types of problems are called classification

and regression, respectively. Supervised learning algorithms include linear regression, logistic

regression, decision trees, and support vector machines [135].

73



Supervised learning models use three main components: features, labels, and weights. Fea-

tures, commonly denoted by the variable x, are measurable properties or characteristics of

items in the dataset. The features given to the model usually do not include all of the features

in a dataset. A human usually needs to reduce the number of features used in a model; this

process is called dimensionality reduction [135]. This prevents the model from training on fea-

tures that are not useful. The model uses the provided features to predict what the "true" values

are. These "true" values are called labels and are denoted by the variable y . By directly com-

paring the predicted value for a given set of features to the "true" value, the weights, w , can be

adjusted to better match the predicted and true values. This process of adjusting the weights is

called training. The weights are the tunable parameters within a ML model. The user can also

vary how the training is done by changing external hyperparameters. Common hyperparame-

ters include the learning rate which adjusts how much the weights can change in a single step,

the optimization method used to adjust the weights, and the size of the training set.

In order to apply a supervised learning model to a given problem, a few steps must be taken.

First, the goal has to be clearly defined: what exactly is the objective of the model and which

criteria will be used to gauge how it is performing? Next, data must be gathered for training and

validation. This data has to be labeled so that the model can compare the predicted values to

the true values.

Once the dataset has been gathered, the useful features within the dataset must be identi-

fied. Often datasets come with redundant or irrelevant information. Feeding all of these fea-

tures into the model and allocating computation resources for them is wasteful. If the number

of features is too large, the model is harder to train and faces the so-called "curse of dimension-

ality" [135]. If not enough features are included, the model will not have enough information to

produce accurate predictions.

Next, an evaluation method must be selected. The evaluation is done either through a met-

ric, such as accuracy or precision, for classification problems, or through a loss function, such

as mean-squared error (MSE), for regression. In both cases, the objective is to maximize perfor-
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mance by aligning the model’s output as closely to the true values as possible. For classification,

the objective could be maximizing the number of correctly predicted classes. Which metric or

loss function is chosen depends on the problem at hand. For example, if the data has two classes

and one is significantly more common than the other, accuracy is not a useful metric because

the model will always guess the majority case and perform "well" according to this metric. A

complete discussion of metrics and loss functions can be found in Ref. [148].

At this point, the dataset is segmented into at least two subsets, but three is generally pre-

ferred: training, validation, and test sets. The training set is the data that is given to the model

and used for tuning the weights and "teaching" the model how to predict the correct result. For

each round of training, the model predicts the target for the training data, and then compares

these results to the true values. The weights in the model are typically adjusted through some

form of gradient descent (GD) as will be discussed in the next section. The adjusted weights

help fit the model to the data and allow accurate predictions.

After the model weights have been adjusted, the performance of the model must be tested.

The validation set is used for this. The model is given the data in the validation set and asked

to predict what the labels are. The predicted values are again compared to the true values, but

the weights are not updated. This provides an unbiased check of the model’s performance. This

allows the user to make sure that the model is learning correctly and adjust hyperparameters

like the learning rate. If more training is needed after validation, the training set is again given

to the model, and the weights adjusted again. The new results are then validated. Each time

the model processes the entire training dataset is called an epoch. After each epoch, the model

is validated. If the model’s performance is considered adequate, training is stopped, and the

model is considered fully trained and is considered to be ready for use.

Often an optional third set of data is used as a final verification. The test set is a reserved

segment of the dataset that the model is only shown once it is fully trained. This means that the

test set is a truly unbiased source for evaluation of the final model. It is not used for training or
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hyperparameter tuning. The model’s performance on the test set is used for making the final

decision as to if the model is ready for use.

6.2.1 Gradient Descent

Gradient descent (GD) is the primary method used to adjust model’s weights [135,148,149].

Just like the gradient can be used to find maxima and minima of a function, it can be be used

to determine the parameters in an algorithm that results in the maxima or minima of the eval-

uation metric. In the case of regression, the objective is to minimize the loss function. This

maximizes performance and provides the best possible model. The equation for GD is

wn+1 = wn −γ∇w f (wn), (6.1)

where wn is a vector of the weights at the nth step. γ is the learning rate; a simple analog is the

the step size h used in Euler’s method. If γ is too large, the adjusted weights will overshoot the

minimum value. If γ is too small, the model will take a very long time to converge. ∇w is the

gradient with respect to w . f (w) is the loss function evaluated for the weights w .

With Eq. (6.1), the weights can be adjusted, and the model’s performance maximized. How-

ever, this can take a very long time, especially for complex models. Variations of GD for faster

optimization have been developed. Some popular ones are Momentum, RMSProp, AdaGrad,

and Adam optimization. A more complete discussion can be found in Refs. [135, 149].

6.2.2 Adam Optimization

In Chapter 7 we will use the Adam optimization method to train our ML model. "Adam",

which stands for adaptive moment estimation, was introduced in 2014 by D. Kingma and J.

Ba [151]. Two key ideas that were introduced in other optimization methods, AdaGrad and

RMSProp, are combined in the Adam optimization method. Adam is an adaptive learning rate

method like AdaGrad [152]. This means that each individual parameter has a different learning

rate. Adam also dynamically adjusts the learning rates like RMSProp [153]. The learning rate
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of a particular parameter is adapted based on running averages of the first two moments of the

gradient.

The motivation for using Adam is most clearly stated in the abstract of Ref. [151]: "The

method is straightforward to implement, is computationally efficient, has little memory re-

quirements, is invariant to diagonal rescaling of the gradients, and is well suited for prob-

lems that are large in terms of data and/or parameters. The method is also appropriate for

non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-

parameters have intuitive interpretations and typically require little tuning" [151]. Simply put,

Adam is a computationally efficient method to optimize the parameters of a ML model.

Using Adam to update the weights requires some initialization. First, the number of data

points to be analyzed before updating the weights needs to be selected. This can be the entire

training set, where the weights are updated after an epoch, or a smaller subset called a batch.

This is necessary to build up a distribution of the gradients from which the first and second

moments can be calculated. Then the initial weight vector w0 is initialized, usually with ran-

dom values. Two vectors, m0 and v0, are then initialized to track the mean and variance of the

gradient, which are the first and second moments, respectively. All of the elements in both m0

and v0 are initialized as 0’s.

The process of updating the weights from a step n to n + 1 is done according to the same

process for every step. The model is given data for training purposes, either a batch or the

whole training set, and the loss function f (wn) is calculated for each data point. The gradient

of the loss function with respect to the weights is then calculated by

gn+1 =∇w f (wn). (6.2)

where gn+1 is defined as the gradient used to update the weights at a step n +1.

The algorithm then updates an exponential moving average of the gradient. This is calcu-

lated by

mn+1 =β1mn + (1−β1)gn+1, (6.3)
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where β1 is a hyper-parameter which sets the exponential decay rate of the moving average.

By using the mean to update the weights, it can gain "momentum" by amplifying the effect of

gradients which are aligned in the same direction. This helps move the weights in the desired

direction to minimize the loss function.

The variance is updated through a similar process. The equation for this is

vn+1 =β2vn + (1−β2)g 2
n+1, (6.4)

where β2 is another hyper-parameter which controls the exponential decay of the moving aver-

age of the second moment. Using the variance to update the weights helps push the trajectory

of optimization towards smooth paths. This reduces oscillations and random walks that can

occur during the optimization process.

These moving averages are estimates of the first and second moments of the gradient. How-

ever, these values are biased towards 0, especially at small n values. This occurs because both

m0 and v0 are initialized as vectors of 0’s. To counteract this bias, a correction needs to be done

to both mn+1 and vn+1. The bias-corrected moment estimates are calculated by

m̂n+1 =
mn+1

1−βn+1
1

(6.5)

and

v̂n+1 =
vn+1

1−βn+1
2

. (6.6)

The weights wn are then updated using the bias-corrected first and second moment esti-

mates. This is done according to the equation

wn+1 = wn −α
m̂n+1√
v̂n+1 +ǫ

, (6.7)

where α is the "step" size and ǫ is a very small nonzero value included to prevent division by

zero. This process is repeated until the model is trained.
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By using the mean and variance, Adam is able to minimize the loss function without getting

trapped in local minima. This process has shown favorable results when compared to Stochas-

tic Gradient Descent, AdaGrad, and RMSProp; both in terms of minimizing the loss function

and reducing the training time. Adam handles sparse gradients efficiently and has shown the

ability to work very well on large datasets and high-dimensional parameter spaces. Adam is

commonly used for natural language processing and computer vision problems. It is included

in most deep learning frameworks and tends to perform well with default parameter values.

These default parameter values were determined in Ref. [151] and given as: β1 = 0.9, β2 = 0.999,

α= 0.001, and ǫ= 10−8.

6.2.3 Overfitting and Underfitting

Adam provides an effective method to optimize the weights of a model given features of

the training data, but that is not the primary objective. The objective is to train a model that

can reliably predict the labels starting from arbitrary data, not just from the training set. This

raises the question of how to determine that the model training is sufficient. This is actually a

question about overfitting and underfitting.

An underfit model is one that does not understand how to associate the input features with

the target. This is identifiable by poor performance on the test, validation, and even the training

sets. The most common sources of underfitting are lack of training or lack of information. If the

weights in a model have not yet been tuned, it makes sense that the model does not yet know

how to identify the target. This can be remedied by more training. However, that does not

always work. The more insidious case is when the data itself is insufficient. If the features given

to the model do not contain enough information to identify the target, it will never be able to

do so.

On the other hand, a model can also be "overfit". This is a common concern with ML algo-

rithms. A model is considered "overfit" when it starts to identify and utilize patterns that exist

within the training set but do not generalize to the validation or test sets. Overfitting leads to
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excellent performance on the training data, but poor performance on the validation and/or test

sets. This can occur when the minima of the loss function on the training set do not agree with

the minima from the other sets.

Figure 6.1 is a graphical demonstration of this phenomena. A dataset was generated using

the function y = cos(x), where x is the feature and y is the target. The objective is to create a

model which can take a x value and predict the associated y value. Fifty x values were randomly

selected in the range [0,1]. Then the corresponding y values were calculated for each point.

Noise was added to the dataset by adding a random value between −0.1 and 0.1 to each y value.

This dataset was then segmented into a training and a validation set using an 80/20 split.

Next, a polynomial model was generated to describe the data. The degree of the polynomial

varied from 1 to 45. Each polynomial equation had the parameters tuned to minimize the MSE

between the training data and the predicted value from the model. The linear fit clearly does

not represent either the training or validation data and is underfit. A higher degree polynomial

is needed to describe the data accurately. The 4th-degree polynomial, however, quite accu-

rately models both datasets and closely aligns with the true function used to generate the data.

However, if we continue adding more degrees of freedom and more tuneable parameters, the

model starts to overfit. The 35th-degree polynomial very closely matches the training data but

does not match the validation set or the true function. The additional parameters in the 35th

degree polynomial lead to a smaller MSE on the training data than what was observed for the

4th-degree polynomial. Fig. 6.2 shows how the MSE changes as the degree of the polynomial

function increases. Initially, the model is underfit and has large MSE values for both the training

and validation set. As more parameters are added and tuned, the performance on both sets in-

creases. However, at a certain point, the MSE values begin to diverge. Adding more complexity

and more parameters allows the MSE of the training set to be continually reduced but increases

the MSE on the validation set. There is overfitting in this regime.

Overfitting is very common in ML applications. Regulation techniques, such as L1 and L2

regularization, can help to reduce overfitting [135]. Regularization terms are added to the loss
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Figure 6.1: Plots of various models (red) compared to the training data (blue), test data (orange), and the
true function used to generate the points (black). The comparisons are made with a linear model (left),
a fourth-degree polynomial (middle), and with a thirty fifth-degree polynomial (right).

Figure 6.2: Plot of the MSE for both the training set and test set as a function of the degree of the polyno-
mial model.
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function and create a penalty for additional complexity. In the above example, each higher

degree of x for the polynomial would be penalized more harshly than the previous. Effectively,

this forces the model to strike a balance between performance and simplicity. This helps to

produce a model which is more capable of generalizing to new data beyond what was used for

training. This leads to improved performance on the validation set. More information about

regularization can be found in Ref. [135].

6.3 Perceptrons

Now that the tuning of parameters to train a model has been discussed, it is necessary to

discuss neural networks. An artificial neural network (ANN) is a type of machine learning algo-

rithm loosely based on the neural networks in biological brains. These networks are currently at

the forefront of ML techniques and their uses range from computer vision problems to natural

language processing, reinforcement learning, and recommendation systems.

The simplest ANN that can be constructed is called a perceptron. A perceptron is a neural

network with only one layer [154]. To further simplify the discussion, the layer will consist of a

single neuron. Figure 6.3 is a diagram of the architecture for a perceptron with four inputs. The

xi ’s are the input features and the wi ’s are the corresponding weights. These are then combined

in a weighted sum
n∑

i=1
wi xi , where n = 4 in this case. The weighted sum is then passed to an ac-

tivation function σ, which calculates the output and returns that to the user. The combination

of the weighted sum and activation function is a neuron.

Figure 6.3: A graphical representation of a perceptron with four inputs.
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Perceptrons are typically used as binary classifiers to segment data into two categories.

Standard activation functions for a perceptron include a sigmoid, hyperbolic tangent, linear

unit, rectified linear unit, exponential linear unit, and a step function. Either the "neuron" acti-

vates and outputs a 1, or it does not and the output is 0. This is inspired by a biological neuron,

where it either fires or does not. In the years since the development of the perceptron, the neu-

rons in ANNs have been modified in numerous ways that deviate substantially from biological

neurons.

A perceptron is trained with some version of gradient descent, such as Adam. The weights

are randomly assigned at the start; then, data is given to the perceptron for training. During

training, the wi values are tuned to minimize the loss function. The training is repeated until

the perceptron is able to perform the desired task.

6.4 Deep Learning

Deep learning is a specialized subset of machine learning. DL focuses on the training of

ANNs [135, 149]. An ANN is created by connecting many neurons together. ANNs are currently

at the forefront of AI research and have been shown to be very useful in industrial applications.

The "deep" in deep learning refers to the depth of the ANN, or rather the number of layers. By

adding more neurons to the network, the number of tunable parameters or weights is increased.

This can be done by adding more neurons to existing layers, thereby making it "wider", or by

adding new layers of neurons, making it "deeper". Research has shown that adding additional

layers of neurons generally leads to better performance than adding more neurons to existing

layers.

Figure 6.4 shows a visual representation of a relatively small ANN. This network has five

input neurons that connect to a layer of ten neurons; that layer connects to a layer of seven

neurons, which in turn connects to the output layer of five neurons. The first layer is called the

input layer. It takes the raw input and prepares it for analysis by the rest of the network. The

final layer is called the output layer. The activation function chosen for this final layer depends
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on the desired output: for example, if the final output of each neuron is to be a continuous

value, a linear activation function (y = x) could be used. All of the layers between the input and

output layers are called "hidden" layers. These do the bulk of the calculations and conduct the

abstraction mentioned earlier.

The network shown in Fig. 6.4 is a relatively small network, but still has many parameters

that must be tuned. It has 27 neurons and 155 edges connecting them. That means GD or some

variant of it must be used to optimize 155 different parameters. The number of parameters

increases as the number of layers and neurons increases. For example, an ANN that takes a

224× 224 pixel grayscale image as input would have 50,176 individual elements for the input

layer, and many networks used to analyze images are dozens if not hundreds of layers deep.

This makes constructing and training these ANNs very difficult.

Figure 6.4: A graphical representation of a four-layer ANN. The input layer consists of 5 neurons, the first
hidden layer has ten neurons, the second hidden layer has seven neurons, and the output layer has five
neurons.
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Each level of the network "abstracts" the input to identify features relevant to the network’s

specified goal. In the case of image processing, a grayscale image would be converted into a ma-

trix where each element corresponds to the intensity of a pixel at that location. The layers in the

network would abstract and "pass forward" information about the edges, bright spots, shapes,

etc. More layers allow for more abstraction and an increased ability to associate patterns with

the data to the desired output. However, more layers mean more tunable parameters. Thus the

network is more prone to overfitting.

Deep learning models are particularly useful because they can use multiple layers to extract

higher-level features from the raw data. Often a dataset will contain more information than is

needed to solve the problem. When classical ML algorithms like linear regression are used, a

user needs to identify the features that matter for the final prediction. This feature engineering

is very time consuming and requires further analysis to determine what features to use. There-

fore, feeding an ANN the raw data is generally preferred. Deep learning models also outperform

classical models for large enough training sets.

It is also important to note that DL models are not always better than more traditional al-

gorithms. Significantly larger datasets are required to train DL models. These models are much

more complicated to build and to train. However, numerous frameworks and software tools

have been developed to facilitate DL, such as Google’s TensorFlow and Facebook’s PyTorch.

Studies from academia, finance, and the tech industry are rapidly driving DL forward. This

discussion is a very brief introduction, but Ian Goodfellow’s Deep Learning [149] goes into great

detail about ANNs and their implementation and is highly recommended for readers interested

in understanding and utilizing DL methods.

6.4.1 Convolutional Neural Networks

Many variations of deep learning networks have been designed for different tasks. Convo-

lutional neural networks (CNNs) are a particular subset of ANNs which make use of a linear

operation called a convolution [149]. CNNs are highly effective for evenly spaced time-series
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data and computer vision problems. We used a CNN to analyze images produced from simula-

tions in Chapter 7.

Convolutions are incredibly efficient and useful operations for signal processing. In fact, S.

W. Smith described it as "the single most important technique in Digital Signal Processing" in

Ref. [155]. At the most basic level a convolution is a mathematical operation that creates a new

function which describes the "overlap" of two input functions. The benefits and applications of

convolutions are most easily described with examples. Ian Goodfellow discussed using a laser

to measure the location of a spaceship [149]. I will discuss a conceptually similar example that

is more relevant to the current state of the world. Namely, the hospitalization rate of COVID-19

patients.

Consider a hospital currently treating and monitoring patients infected with the COVID-19

virus. It needs supplies for the patients and the doctors, and therefore needs to accurately un-

derstand the hospitalization rate at a particular point in time, t . The hospital can keep a contin-

uous record I (t ), which describes the number of hospitalized patients at a given time. However,

the data will be noisy. There will be daily fluctuations, a lag in the record being updated if things

get busy, and even variation based day of the week [156]. As such, the particular value of I (t )

will not be the best way to measure the hospitalization rate. Instead, measurements over a time

interval can be used, such as a seven day average. For our example, we want to give more sig-

nificance to new measurements; the virus can spread very quickly and we want to be sensitive

to that. We define a weighting function K (τ), where τ is the "age" of the measurement and the

value of K decreases as τ increases. The convolution of these two functions is then defined as

S(t ) = (K ∗ I )(t ) =
∫t

0
I (τ)K (t −τ)dτ, (6.8)

where S(t ) is the output of the convolution, in our case a weighted average at time t , and the

convolution operation is denoted by ∗. The function S(t ) be more useful to describe the hospi-

talization as a function of time because it reduces the noise. Generally, I is called the input and

K is called the kernel.
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In most real world scenarios, and even in our COVID example, the input will not be a con-

tinuous function. Usually, data is discretized and reported at set intervals, such as a daily report

of infections. A discrete convolution can be done by approximating the integral in Eq. (6.8) as a

summation. This takes the form

S(t ) = (I ∗K )(t ) =
t∑

τn=0
I (τn)K (t −τn), (6.9)

where both I and K are defined at particular t values and τn is set to be discrete recorded values

between 0 and t .

Convolutions are not restricted to a single axis. In ML and signal processing, the input data

is usually stored in multidimensional arrays. These multidimensional arrays are referred to as

tensors. In the COVID-19 example, the input I is a vector which counts the number of hos-

pitalized patients at set time intervals. A grayscale image is a two-dimensional array with di-

mensions M ×N , called a matrix, in which each element of I is the pixel value of the grayscale

image at a location (i , j ). Because the input is a two-dimensional array, it is necessary to pick a

two-dimensional kernel as well. The equation for a discrete convolution of a two-dimensional

image with a two-dimensional kernel is

S(i , j ) = (I ∗K )(i , j ) =
M∑

m=0

N∑

n=0
I (m,n)K (i −m, j −n). (6.10)

By adding more dimensions, higher order tensors can be constructed and used. For example,

an RGB image would be stored as a rank 3 tensor. Each channel of the image is converted into a

matrix where the elements of these matrices correspond to the pixel value of that channel and

that location. These matrices are then stacked and used for calculations.

A wide variety of operations can be implemented by changing the kernel. Convolutions are

often used in image processing to blur images, reduce noise, and detect edges [157]. Different

kernels are used for different purposes. In most ML applications, the kernel is a tensor in which

the elements are tunable parameters. During training, these parameters are modified to assist
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in "feature extraction". This could be identifying edges of objects in an image, determining

color saturation, calculating weighted averages, or something else entirely depending on the

problem and the dataset. Adding convolutions with tunable kernels to a deep neural network

allows the network to learn to extract features which are useful in minimizing the loss function.

While CNNs are so-called because of convolutions, most ML libraries do not actually calcu-

late convolutions and instead implement a different function. In a convolution, the kernel is

flipped. This is seen in the K (t −τ) term in Eq. (6.8). While this is a very minor computation,

flipping the kernel repeatedly adds a computational cost to training a deep learning model.

Instead, the implemented function is

Ŝ(i , j ) = (K ∗ I )(i , j ) =
∑
m

∑
n

I (i +m, j +n)K (m,n). (6.11)

This is called the cross-correlation function. It is the same as a convolution, except the kernel

does not need to be flipped. The cross-correlation is what is calculated by the computer, but

is called and discussed as convolution by convention within deep learning. Fig. 6.5 provides a

visual representation of a 2D convolution of a 2x2 kernel applied on a 3x4 matrix of input data.

Additional information on CNNs can be found in Ian Goodfellow’s book [149].

6.5 Challenges in Effective Machine Learning Implementation

While ML algorithms have proven extremely useful, they are not trivial to implement. In this

section, the key challenge to effective ML implementation is discussed.

Since ML algorithms learn to identify patterns within the data, the data itself is the first re-

quirement for an effective ML solution. The most common problem that prevents an ML solu-

tion from working is lack of data. There must be enough data collected for the training process

and that data needs to contain enough information to solve the problem. Without enough data,

the training will not optimize the parameters, and the model will not perform well. Likewise, if

the data does not have features that relate to the desired output, the model will never identify
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Figure 6.5: A visual representation of a 2D convolution of 3x4 matrix with a 2x2 kernel. This image
originally appeared in Ref. [149].
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a pattern that connects them. Additionally, the model needs good quality data. If the data has

many outliers or is very noisy, optimizing the model becomes substantially more difficult and

the final performance of the model will be compromised.

Another concern is that the data may not be representative. The data used for training

should provide a representative sample of whatever situation is being analyzed. If the train-

ing set is biased, the model will be as well. The model can only learn patterns that exist within

the training data. Effective ML implementation requires careful consideration of what data and

assumptions are given to a model for training purposes.

During the training of the model, it is necessary to consider underfitting and overfitting.

Since this was discussed previously, further discussion will be omitted.

Lastly, the interpretability of ML algorithms is a concern. Unfortunately, many ML algo-

rithms are not easily understood. ANNs, in particular, are complex combinations of linear al-

gebra, tensor operations, statistics, and topology. The computational implementation of an

ANN and the calculations mentioned is also far from trivial. This raises concerns about how

to explain what the network is doing and convince people that it is reasonable. Understanding

the predictions of neural networks is an area of active research and the subject of numerous

studies [158].
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Chapter 7

Parameter Estimation via Deep Learning Methods

7.1 Introduction

Multiple studies in which the parameters in Eq. (2.3) are estimated have been conducted us-

ing a variety of techniques. Grazing-incidence small angle X-ray scattering (GISAXS) has been

employed to estimate the coefficients κ1 and κ2 for semiconductor surfaces bombarded with

noble gas ions [27, 159, 160]. More recently, GISAXS with a coherent X-ray beam rather than an

incoherent one has been used to estimate the coefficients of the leading-order linear and non-

linear terms [161]. Estimates of the parameters have also been obtained for normal-incidence

bombardment of silicon with iron co-deposition starting from measurements of physical at-

tributes of the pattern like the characteristic lateral length scale and the pattern’s amplitude at

long times [42, 65].

The coefficients can also be determined by atomistic simulations combined with the so-

called crater function formalism (CFF) [19, 21]. Norris et al. input the results of molecular dy-

namics simulations into the CFF to estimate the coefficients κ1 and κ2 for irradiation of a silicon

target with 100 and 250 eV Ar ions [28]. More recently, Hofsäss and Bobes carried out Monte

Carlo simulations using SDTrimSP and input the results into the CFF [162]. This yielded esti-

mates for all of the parameters in Eq. (2.3) for a variety of target materials and ion species.

We propose that deep learning could be used effectively to recognize the parameters as-

sociated with the patterns produced by ion sputtering and to predict what the parameters are

for a particular ion-target combination given a single AFM scan of the surface. The first steps

in this direction have recently been made by Reiser [165]. However, his work was restricted to

normal incidence ion bombardment, and the surface of an elemental material simply remains

flat when it is bombarded with a normally incident noble gas ion beam. Reiser’s method also
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requires two images of the surface that are taken at times separated by a short time interval.

This is impractical if the surface scans must be made ex-situ, as is invariably the case.

In this study, we develop an ANN that is able to estimate the five parameters in the EoM (2.3)

from a single atomic force microscope (AFM) scan of a solid surface that has been bombarded

with an obliquely incident ion beam. We trained the network for a range of parameters using

images generated by numerical integration of the aKS equation (2.3). The parameter ranges

selected are appropriate for sputtering of a silicon surface with a 1 keV argon ion beam, and the

ANN was trained for fluences of 5×1017 ions/cm2 and 1×1017 ions/cm2. For the first fluence,

our ANN was able to estimate all five parameters in the EoM with root-mean-square errors less

than 3% of the parameter ranges used for training. For the second fluence, it estimated the

parameters with root-mean-square errors values under 2% of the parameter training ranges.

This demonstrates that our network can reliably predict the parameters and can be trained for

various ion fluences.

A key benefit of the tool we have developed is that it could be used to provide a validation

check on parameter estimates determined by other means, e.g., grazing-incidence small angle

x-ray scattering (GISAXS) or atomistic simulations combined with the CFF. Just like estimates

based on GISAXS, our tool takes experimental results and analyzes them to estimate the param-

eters in the EoM. A notable difference is that our method utilizes a single AFM image, and AFMs

are widely available. GISAXS, on the other hand, requires the experiment to be conducted at a

facility with a synchrotron x-ray beamline.

This chapter is organized as follows. A brief discussion of the ML algorithm used is included

in Sec. 7.2. In Sec. 7.3, we discuss the particular architecture used for our analysis as well as the

production of the dataset used for training and evaluation. A simple test of estimating a single

parameter in the EoM is conducted in Sec. 7.4. In Sec. 7.5, we generalize the ANN to estimate

all five parameters and present the estimates. Next, we consider related work and the previous

studies of the KS equation using machine learning techniques in Sec. 7.6. Potential extensions
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and considerations of the utility of the network are addressed in Sec. 7.7. Our conclusions and

final thoughts are given in Sec. 7.8.

7.2 Machine learning and convolutional neural networks

We leverage the ability of ML algorithms to recognize and interpret patterns to analyze the

pattern formation observed on ion-sputtered solid surfaces. Supervised ML algorithms learn

to associate patterns in data with known "targets". The network developed in our study uses

supervised learning and the targets are the values of κ1, κ2, B , λ1, and λ2. Since our targets κ1,

κ2, B , λ1, and λ2 are continuous variables, regression methods were applied to our problem.

Numerous machine learning algorithms that can analyze data and extract meaning exist [135,

148, 149]. In our work, the algorithm we employed was an artificial neural network. We chose

to utilize a particular kind of ANN — a CNN — because of their high levels of performance on

computer vision problems. CNNs are adept at identifying spatial relationships and have had

significant success in practical applications [149, 150] as discussed in Chap. 6

A key benefit of CNNs is that they can accept high dimensional data like an image as in-

put, whereas many ML algorithms require the user to reduce the number of dimensions and

determine useful features manually. CNNs take the raw images as input and determine which

features of the image are useful in estimating the parameters during the training process. Other

algorithms, such as a support vector machine, can do well in image processing but typically re-

quire the user to do some preprocessing to determine which features of the image are of interest

and then translate that information into a form that the algorithm can use.

7.3 The convolutional neural network and dataset generation

Rather than building and training a network from scratch, we chose to use a Dense Con-

volutional Network (DenseNet) with 121 layers [167]. This architecture is well understood and

has been shown to perform remarkably well for computer vision problems, making it an ex-

cellent candidate for the analysis of AFM images. An additional benefit of using this structure
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for the network is that one can obtain one that is pre-trained. The DenseNet architecture was

trained on the ImageNet dataset, which consists of more than 14 million images and 20,000

classes [168]. This means that the network had already learned to extract information from

images, a benefit that we repurposed for our problem using transfer learning. Transfer learn-

ing takes a network that has already been trained for a similar task and repurposes it for a new

problem [169]. This drastically reduces the training time needed and allows a smaller dataset

to be used for the training process. We adapted the network by replacing the output layer with

a new layer designed for our problem. The layers of the base model were frozen and the output

layer and associated connections were trained to understand what to report for the new prob-

lem. Once the model had a good “understanding" of what the output should be, the base layers

were unfrozen and the entire model was fine-tuned to optimize the results.

We used PyTorch for our analysis. PyTorch is a software tool that facilitates in the construc-

tion, training, and implementation of deep neural networks. This tool is openly available, is

commonly used in deep learning research, and has a dedicated team for the support and ad-

vancement of the tool itself [170]. We also made use of the fastai library, which provides addi-

tional functionality and assists in the training process.

Our dataset was produced via numerical simulations. Equation (2.3) was numerically inte-

grated using the fourth-order Runge-Kutta exponential time-differencing method described by

Cox and Matthews [114]. Periodic boundary conditions were applied. The linear terms were

calculated exactly in Fourier space and the nonlinear terms were approximated in real space

by a central difference finite differencing scheme accurate to fourth order in the grid spacing.

For example, the partial derivative of u with respect to x was approximated by Eq. (4.3). Each

simulation was started from a low-amplitude white noise initial condition and the parameters

κ1, κ2, λ1, λ2 and B were randomly selected from parameter ranges that will be specified later.

The Python framework discussed in Chap. 4 was used to produce the simulations.

When the images were given to the network for training purposes, the input image is nor-

malized so that the pixel values for each channel had the same mean and standard deviation as
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the corresponding channel of the images in the ImageNet dataset. There was also a 5% proba-

bility that a given image was rotated azimuthally before it was input into the CNN. If an image

was selected to be rotated, the rotation angle was randomly chosen from the range [−5◦,5◦].

This rotation was done because normally the AFM image would be produced ex situ and the

sample could be slightly misaligned when it is positioned in the AFM sample holder. In addi-

tion, there could be a small error in the reported direction of the ion beam.

The produced images were segmented into a training set, a validation set, and a test set. The

training set was segmented into batches of 64 images. A single batch was given to the model,

and the weights between neurons were updated to increase performance. Another batch was

then given to the model and the weights were updated again. This process was repeated until

the model had seen all of the images in the training set. The model was then asked to predict

the parameter values for all the images in the validation set. By checking the performance on

the validation set, we could monitor how much the model had learned and determine how use-

ful the network was for our problem. A complete pass through every image in the training set

is called an epoch. After each epoch, the model was validated by comparing the predicted and

true values for the validation set. This process of segmenting the training set into batches, show-

ing images to the model, updating weights, and validating was reiterated for 60 epochs to train

the model and evaluate its performance during the training process. The model’s performance

was gauged by determining the MSE between the predicted values and the actual values of the

parameters. The network weights were adjusted during training in accordance with the Adam

optimization algorithm [151]. Rather than using a fixed learning rate to update the network,

we utilized a "1 cycle policy" [171]. This method uses a variable learning rate to help prevent

overfitting.

Once training was completed, the final performance of the model was evaluated. The test

set had been withheld from the model until this point, which made it suitable for the final test.

The model predicted the targets for every image within the test set. These predictions were

then compared to the true values and the root-mean-squared error (RMSE) was calculated. The
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RMSE was selected for the final evaluation because of its familiarity to physicists, whereas the

MSE was used during training because it stores the same information but is simpler computa-

tionally.

7.4 Estimation of a single parameter

We began by setting all of the parameters in Eq. (2.3) to fixed values and only allowing λ1

to vary. We then trained our ANN to predict the value of λ1. The coefficients in Eq. (2.3) were

chosen to be κ1 = κ2 = −1, B = 1, and λ2 = 1, while λ1 could vary between 0.1 and 5.1. The

anisotropy present for λ1 6= 1 gives a tendency for the pattern to be elongated along either the

x or y direction. Three examples of simulated surfaces are shown in Fig. 7.1. As λ1 increases,

so does the elongation of protrusions and depressions along the x direction. Large values of λ1

cause significant elongation in the x direction whereas smaller values do not.

Each of the images used for training, validation and testing was taken from a simulation in

which λ1 was randomly selected from the range 0.1 ≤ λ1 ≤ 5.1. All of the images were taken at

time t = 10; this time was chosen to match previous work [172]. The network was trained on

4,000 images and the validation set consisted of 1,000 images. After training was completed, the

final network was evaluated on a test data set consisting of 500 images.

Training the output layer resulted in a RMSE of 0.193, which is less than 4% of the range

of λ1 values. After unfreezing the hidden layers and fine-tuning the network, the RMSE on the

validation set was 0.101, i.e. 2.12% of the range. Lastly, the CNN was given the test set and

asked to predict the value of λ1 for each image. Figure 7.2 shows that the values predicted by

the network agree well with the true values. The final RMSE on the test set was 0.107, which

is 2.14% of the range. These results demonstrate that using a single image, the CNN can very

effectively estimate the parameter λ1 in Eq. (2.3) for fixed values of κ1, κ2, λ2 and B .
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Figure 7.1: u vs x and y at t = 10 for λ1 = 0.10 (left), λ1 = 2.55 (middle), and λ1 = 4.79 (right). The domain
size is 224×224.
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Figure 7.2: Predicted values of λ1 vs the actual values. The red points show the actual points and the
solid black line shows what perfect agreement would be. The RMSE was 0.107.

7.5 Prediction of all of the parameters

As we have seen, the model does quite well at estimating a single parameter. However, in

an experiment, all of the parameters in Eq. (2.3) have unknown values. As such, it is necessary

to train the model to estimate not just one parameter, but five. To achieve this, a training set of

32,000 images, a validation set of 8,000 images, and a test set of 5,000 images were generated.

For each simulation, the values of κ1 and κ2 were randomly selected from the range [−0.12

nm2/s, 0.22 nm2/s], B from the interval [0.010 nm4/s, 3.96 nm4/s], and λ1 and λ2 were each

randomly selected from the interval [−1.47 nm/s, 0.72 nm/s]. These ranges were chosen to be

approximately twice as wide as the parameter ranges determined in Ref. [162] for a 1 keV Ar

beam incident on Si with an angle of incidence θ between 55◦ and 80◦. (This is the range in

which there is a linear instability [162].) For each simulation, we required κ1 < 0 and/or κ2 < 0.

This ensured that a surface instability always existed.
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The images were taken at a time t that corresponds to a fluence of 5×1017 ions/cm2. Most

sputtering experiments are run until a fluence in excess of this value is reached. The domain

size of the simulations was 500 nm × 500 nm and each surface image was saved as a 224×224

pixel image. The CNN used was the same as in Sec. 7.4 with the exception of the output layer;

there were five neurons in the output layer instead of a single one, which allowed the network

to return values for the five parameters κ1, κ2, λ1, λ2 and B .

Figure 7.3 shows three of the images used for training. Depending on the values of the pa-

rameters, the surface could be similar to the surfaces shown in Fig. 7.1, or could display parallel

or perpendicular-mode ripples. When only a single parameter is varied, the effect on the simu-

lated surface is fairly easy to recognize, but with five free parameters, each one’s impact on the

surface dynamics and the observed patterns is significantly harder to identify.

Figures 7.4, 7.5, and 7.6 show the predicted parameter values vs. the actual values for the

5000 images in the test set after preliminary training and fine-tuning. Since 5000 data points

on a single plot would be difficult to interpret, we opted to visualize the data via binning. Fig-

ure 7.4 shows the predicted vs actual values for κ1 and κ2. The results for B are shown in Fig. 7.5.

The results of the nonlinear terms are shown in Fig. 7.6. The parameter space was divided into

hexagonal bins that were colored according to the number of points within each bin. For each

of the five parameters, we observe that the data aligns well with the cyan 1-to-1 agreement

line [173]. The best agreement between the values predicted by the CNN and the actual values

is seen in the coefficients of the second order linear terms: κ1 has a RMSE of 0.00037 nm2/s

while κ2 has a RMSE of 0.00035 nm2/s; these errors are 0.090% and 0.097% of the range used

for training, respectively. The fourth order linear term’s coefficient B has a RMSE of 0.11 nm4/s,

which is 3.0% of the range. The coefficients of the nonlinear terms λ1 and λ2 have RMSEs of

0.045 nm/s and 0.039 nm/s, respectively. These RMSE values are 2.1% and 1.8% of the param-

eter ranges. We conclude that the performance of the CNN was excellent: it learned to predict

the five parameters in the EoM (2.3) to within 3% of the ranges used for training.
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Figure 7.3: u vs x and y at a fluence of 5× 1017 ions/cm2 for κ1 = −0.098 nm2/s, κ2 = −0.094 nm2/s,
B = 1.169 nm4/s, λ1 = −1.075 nm/s, and λ2 = −0.629 nm/s (top left); κ1 = −0.107 nm2/s, κ2 = 0.128
nm2/s, B = 2.893 nm4/s, λ1 = −0.152 nm/s, and λ2 = 0.175 nm/s (top right); and κ1 = 0.078 nm2/s,
κ2 =−0.010 nm2/s, B = 2.860 nm4/s, λ1 = 0.187 nm/s, and λ2 =−0.035 nm/s (bottom). The domain size
is 500 nm ×500 nm.
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Figure 7.4: Predicted values vs. the true values of the parameters κ1 (a) and κ2 (b) for a fluence of 5×1017

ions/cm2. The color of the hexagonal sections indicates the number of data points within that bin. The
solid cyan line represents perfect agreement between the predicted and actual values. The respective
RMSEs are 0.00037 nm2/s (a) and 0.00035 nm2/s (b).
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Figure 7.5: Predicted values vs. the true values of B for a fluence of 5×1017 ions/cm2. The color of the
hexagonal sections indicates the number of data points within that bin. The solid cyan line represents
perfect agreement between the predicted and actual values. The RMSE is 0.11 nm4/s.

The next logical question is whether the accuracy of the CNN’s predictions could be further

improved. This could potentially be achieved by more training on the dataset, by adding addi-

tional images to the dataset, or by increasing the number of layers within the network. Let us

first consider whether more training would improve the model’s performance. The sum of the

fractional RMSEs of the five parameters is plotted versus the number of epochs in Fig. 7.7. The

blue line shows the aggregate fractional RMSE and the dashed black line shows the point when

the model was "unfrozen" and fine-tuned. The figure shows that at the start of training, the ag-

gregate RMSE decreases quite dramatically, but later it levels off. We stopped the training at 60

epochs because we had entered a regime of diminishing returns. More training did not greatly

improve the aggregate RMSE, and eventually it caused the aggregate RMSE for the validation

set to increase (not shown).

Next we consider increasing the size of the dataset used for training the CNN. More data

would certainly help to reduce the RMSE on the validation set: as with any analysis, more data

is always desirable. However, the network was able to estimate the parameters to within 3%

102



Figure 7.6: Predicted values vs. the true values of the parameters λ1 (a), λ2 (b) for a fluence of 5×1017

ions/cm2. The color of the hexagonal sections indicates the number of data points within that bin. The
solid cyan line represents perfect agreement between the predicted and actual values. The respective
RMSEs are 0.045 nm/s (a) and 0.039 nm/s (b).
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Figure 7.7: Aggregate fractional RMSE vs. epochs for the validation data. The dashed black line indicates
when the model was unfrozen. The red dot indicates the minimum.

of the parameter ranges used for training. We consider this to be excellent performance, but if

greater degree of accuracy were required, the dataset could be augmented by carrying out more

simulations.

Lastly, we consider whether adding more layers of neurons to the network (i.e., increasing

its “depth") would be beneficial. Recall the discussion of underfitting and overfitting. (A com-

prehensive general discussion of this topic can be found in Ref. [135].) In general, an ANN does

not fully understand the patterns in the training data in the early stages of training and is "un-

derfit." Continued training allows the network to learn more about the patterns and the RMSE

on both the training and validation sets is reduced. However, eventually the model starts to

recognize peculiarities of the training set that are not present in the validation or test sets. Once

the model starts to make these connections, it is considered to be “overfit". Overfitting is par-

ticularly problematic when it causes a decrease of the RMSE on the training set, but increases

the RMSE on the validation set.
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Additional layers do give the network an increased ability to identify patterns and features

within the data. This ability is what has made deep learning so successful for a wide variety of

problems. However, deeper networks are not always better. At a certain point, adding more lay-

ers makes the model more likely to overfit and perform worse on test data [174]. When we com-

pared results from DenseNet 121 (which has 121 layers of neurons) to results from DenseNet

201 (which has 201), we found that there was more overfitting in the case of the larger network.

We therefore opted to use DenseNet 121.

7.6 Related Work

Considering the significant progress achieved with ML and deep learning in particular, it

is unsurprising that these algorithms were eventually applied to the study of partial differen-

tial equations (PDEs). Numerous studies have been conducted in which these techniques were

used both to carry out numerical integration of PDEs as well to infer the values of the parame-

ters in a PDE used to model some aspect of the real world.

Multiple studies of the Kuramoto-Sivashinsky (KS) equation in particular have been con-

ducted using machine learning algorithms and methods [165,172,175–179]. Most of these stud-

ies focused on the 1D KS equation, whereas, in our study, we considered the more general case

in which the field u depends on both the transverse and longitudinal coordinates x and y . Raissi

and Karniadakis used Gaussian processes to estimate the parameters in the one-dimensional

KS equation, but required two snapshots of the field u separated by a small time interval ∆t

and the performance of their model decreases as ∆t becomes larger [178]. In another study,

Adams et al. implemented a support vector machine to analyze the two-dimensional aKS equa-

tion [172]. However, their study only considered variation of the single parameter λ1. In addi-

tion, rather than looking at a range of values, the parameter was chosen to belong to one of five

classes. That reduced the problem from a regression to a classification problem.

The study most closely related to ours was conducted by Reiser [165]. In his study, Reiser

extended the work of Raissi and Karniadakis to the isotropic two-dimensional KS equation and
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specifically discussed applying his work to ion sputtering. His results demonstrated that ML

techniques can predict parameters to a significant degree of accuracy. This was the first paper

to use ML techniques to estimate the parameters in the EoM for an ion-bombarded surface and

it provided a proof of concept. However, there would be serious difficulties in the application

of Reiser’s model to real experimental results. Firstly, Reiser’s work was limited to normal inci-

dence; this simplifies the problem because it makes the EoM isotropic and reduces the number

of parameters. However, the linear terms in the EoM are stabilizing at normal incidence. This

means that the surface simply flattens as it is irradiated and no nanostructures emerge. The

parameter estimates obtained from real experimental surface images would be very inaccurate

as a consequence. In any event, the case of normal incidence bombardment of an elemental

target with a noble gas ion beam is of little interest. Reiser’s method also requires two consec-

utive snapshots of the surface separated by a short time interval ∆t ; this would be particularly

problematic for the implementation of his method. If a sample were removed from the vacuum

chamber to take the first AFM scan, it would be exposed to atmosphere, allowing deposition

and/or oxidation to occur. That would change the material present on the surface and its to-

pography and, therefore, the dynamics when the sample was returned to the chamber and ir-

radiation was resumed. Additionally, there would be no guarantee that the second AFM scan

would be taken at exactly the same location on the sample as the first. This would introduce an

additional source of error.

7.7 Discussion

In this paper, we demonstrated that a CNN can be trained to predict the parameter values

in the EoM (2.3) from a single AFM scan of an ion-sputtered surface. Our network therefore

provides a concrete tool to analyze the nanostructures produced by ion sputtering.

The parameter ranges we chose for training our CNN are for 1 keV Ar+ bombardment of

silicon. Silicon is the most frequently studied target material, argon is the most widely used

ion species, and 1 keV is a typical ion energy used in studies of ion-induced pattern formation.
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However, using a different ion species or target material or changing the ion energy to another

energy in the range of say 500 eV - 1500 eV would not radically change the dynamics of the

bombarded surface — ripple patterns would still be observed and the wavelengths would still

be of the same order of magnitude. As a consequence, the parameters in the EoM (2.3) would

not change radically either. Thus, although the parameter ranges used for the training of our

CNN were selected for a particular choice of target material, ion species and ion energy, it could

be used to estimate the parameter values for many choices of target material, ion species and

ion energy.

We trained our network for an ion fluence of 5×1017 ions/cm2. Most experiments are con-

tinued until at least this fluence is reached, and it is ordinarily large enough for discernible

patterns to emerge. If the parameters are to be inferred for a particular choice of ion beam and

target material, an experiment with that ion beam and target material and our selected fluence

could be carried out, an AFM scan could be done, and the image could be input into our CNN.

If it were for some reason necessary that the parameters be estimated using a preexisting AFM

scan with a different ion fluence, our CNN could be retrained for that fluence. To show that this

can be done, we retrained our CNN for one fifth of the original fluence, i.e., 1×1017 ions/cm2.

We again generated a training set of 32,000 images, a validation set of 8,000 images, and a test

set of 5,000 images. The results are shown in Fig. 7.8, Fig. 7.9, and Fig. 7.10. Once again, we

observed that the predicted parameters cluster about with the 1-to-1 agreement line. The re-

spective RMSEs of the parameters κ1, κ2, B , λ1, and λ2 were 0.00026 nm2/s, 0.00025 nm2/s,

0.058 nm4/s, 0.010 nm/s, and 0.011 nm/s respectively. To put these values into perspective, the

RMSEs for κ1 and κ2 estimations were less than 0.08% of the range used for training, the RMSE

of the B predictions was under 1.5%, and the RMSE’s of λ1 and λ2 estimates were both under

0.5%. This demonstrates that the network could be retrained for other fluences and to reliably

estimate the parameters. In fact, the network performed better for the lower fluence, but since

we wanted to train our CNN for typical experimental conditions, we initially selected a fluence

of 5×1017 ions/cm2.
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Figure 7.8: Predicted values vs. the true values of the parameters κ1 (a) and κ2 (b) for a fluence of 5×1017

ions/cm2. The color of the hexagonal sections indicates the number of data points within that bin. The
solid cyan line represents perfect agreement between the predicted and actual values. The respective
RMSEs are 0.00037 nm2/s (a) and 0.00035 nm2/s (b).
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Figure 7.9: Predicted values vs. the true values of B for a fluence of 5×1017 ions/cm2. The color of the
hexagonal sections indicates the number of data points within that bin. The solid cyan line represents
perfect agreement between the predicted and actual values. The RMSE is 0.11 nm4/s.

For high ion fluences, additional terms that are not included in the aKS equation (2.3) may

begin to play a non-negligible role in the dynamics [22, 66, 180–183]. The CKS nonlinearity

∂2
xu2

x , for example, is likely responsible for the ripple coarsening that is often observed in exper-

iments [66,182,183]. As a consequence, if only the parameters in Eq. (2.3) are to be estimated, it

would be preferable to use an AFM scan in the low fluence regime in which it is safe to neglect

the effect of the additional terms. If, on the other hand, the coefficients of the additional terms

are to be estimated, an AFM scan in the high fluence regime would be needed. Simulations

would then have to be carried out with the additional terms in the EoM. These would be used

to train a CNN that had a number of neurons in the output layer equal to the number of param-

eters in the modified EoM. This CNN could then be used to estimate all of the parameters in the

modified EoM using the AFM scan taken in the high fluence regime.
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Figure 7.10: Predicted values vs. the true values of the parametersλ1 (a) andλ2 (b) for a fluence of 5×1017

ions/cm2. The color of the hexagonal sections indicates the number of data points within that bin. The
solid cyan line represents perfect agreement between the predicted and actual values. The respective
RMSEs are 0.045 nm/s (a) and 0.039 nm/s (b).
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7.8 Conclusions

The nanostructures produced by bombardment of the surface of an elemental material with

an obliquely incident noble gas ion beam are usually modelled by the anisotropic Kuramoto-

Sivashinsky equation. This equation has five parameters, each of which depend on the target

material and the ion species, energy, and angle of incidence. In this paper, we developed a con-

volutional neural network that uses a single image of the surface to estimate all five parameters

in the equation of motion with root-mean-square errors that are under 3% of the parameter

ranges used for training. The network was trained and tested using thousands of images pro-

duced by numerically integrating the equation of motion, but it was developed to enable exper-

imentalists to quickly ascertain the parameters for a given ion-sputtering experiment from a

single AFM scan of the solid surface. In future work, our tool will be used to provide a check on

parameter estimates determined by other means, e.g., GISAXS or atomistic simulations com-

bined with the crater function formalism.
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Chapter 8

Conclusion

The work discussed in this dissertation has expanded the generally accepted theory of IBS

to include dispersion, produced a tool to estimate parameters in the EoM from a single AFM

image, and provided a tool to facilitate the simulation and analysis of surfaces exposed to broad

beam ion bombardment.

The developed Python module optimizes ETDRK methods for the rapid production of sim-

ulations from a user-defined PDE and IC. This tool provides a well documented and tested code

base for collaborators and future graduate students to use. The module also contains numerous

functions to facilitate the analysis process and hopefully accelerate future studies.

Our simulations show that dispersion can have a crucial effect on the patterns produced by

oblique-incidence ion sputtering. It can lead to the formation of raised and depressed triangu-

lar regions traversed by parallel-mode ripples, and these bear a strong resemblance to nanos-

tructures that are commonly observed in experiments. In addition, if dispersion and transverse

smoothing are sufficiently strong, highly ordered ripples form. Dispersion can cause the forma-

tion of protrusions and depressions that are elongated along the projected beam direction even

when there is no transverse instability. This may explain why topographies of this kind form for

high angles of ion incidence in cases in which ion-induced mass redistribution is believed to

dominate curvature-dependent sputtering. Dispersion can also provide an explanation for the

production of perpendicular mode ripples even when there is no transverse instability.

The final study applied ML methods to estimate the parameters in the EoM from a single

image. A CNN was trained to identify patterns associated with the underlying parameters in

the EoM and report these parameters to the user. This provides a tool that will allow experi-

mentalists to get parameter estimates for a particular experimental study by analyzing a single

AFM image. Our neural network can be expanded and repurposed to deal with additional terms

in the EoM, other fluences, and other materials and ion species.

112



Bibliography

[1] J. Muñoz-García, L. Vázquez, M. Castro, R. Gago, A. Redondo-Cubero, A. Moreno-Barrado

and R. Cuerno, Mater. Sci. Eng. R-Rep. 86, 1 (2014).

[2] G. Carter, M. J. Nobles, F. Paton, J. S. Williams, J. L. Whitton, Rad. Eff. 33, 65-73 (1977).

[3] A. Keller, S. Facsko, and W. Möller, New J. of Phys. 10, 063004 (2008).

[4] A. Keller, S. Rossbach, S. Facsko, and W. Möller. Nanotechnology 19, 135303 (2008).

[5] A. Metya, D. Ghose, S. A. Mollick, and A. Majumdar, J. Appl. Phys. 111, 074306 (2012).

[6] D. Chowdhury and D. Ghose, AIP Conf. Proc. 1536, 353 (2013).

[7] M. Teichmann, J. Lorbeer, B. Ziberi, F. Frost, and B. Rauschenbach, New J. of Phys. 15,

103029 (2013).

[8] M. Teichmann, J. Lorbeer, F. Frost, and B. Rauschenbach, Nanoscale Res. Lett. 9, 439 (2014).

[9] D. Chowdhury and D. Ghose, Adv. Sci. Lett. 22, 105-110 (2016).

[10] R. Gago, M. Jaafar and F. J. Palomares, J. Phys.: Condens. Matter. 30, 264003 (2018).

[11] A. Lopez-Cazalilla, D. Chowdhury, A. Ilinov, S. Mondal, P. Barman, S. R. Bhattacharyya, D.

Ghose, F. Djurabekova, K. Nordlund, and S. Norris, J. Appl. Phys. 123, 235304 (2018).

[12] D. Kramczynski, B. Reuscher and H. Gnaser, Phys. Rev. B 89, 205422 (2014).

[13] T. Basu, J. R. Mohanty, and T. Som, Appl. Surf. Sci. 258, 9944 (2012).

[14] P. Mishra and D. Ghose, J. Appl. Phys. 105, 014304 (2009).

[15] J. C. Perkinson, J. M. Swenson, A. Demasi, C. Wagenbach, K. F. Ludwig, S. A. Norris, and M.

J. Aziz, J. Phys.: Condens. Matter. 30, 294004 (2018).

[16] R. M. Bradley and J. M. E. Harper, J. Vac. Sci. Technol. A 6, 2390 (1988).

113



[17] R. Cuerno and A.-L. Barabási, Phys. Rev. Lett. 74, 4746 (1995).

[18] M. A. Makeev, R. Cuerno and, A.-L. Barabási, Nucl. Inst. Meth. Phys. Res. B 197, 185 (2002).

[19] S. A. Norris, M. P. Brenner, and M. J. Aziz, J. Phys. Condens. Matter 21, 224017 (2009).

[20] R. M. Bradley, Phys. Rev. B 84, 075413 (2011).

[21] M. P. Harrison and R. M. Bradley, Phys. Rev. B 89, 245401 (2014).

[22] D. A. Pearson and R. M. Bradley, J. Phys.: Cond. Matt. 27, 015010 (2015).

[23] A. Gérón, Hands-on Machine Learning with Scikit-Learn and TensorFlow Concepts, Tools,

and Techniques to Build Intelligent Systems (O’Reilly, Sebastopol, CA, 2019).

[24] R. L. Cunningham, P. Haymnn, C. Lecomte, W. J. Moore, and J.J. Trillat, J. Appl. Phys. 31,

839 (1960).

[25] M. Navez, D. Chaperot, and C. Sella, Comptes Rendus Hebdomadaires Des Seances De L

Academie Des Sciences 254, 240 (1962).

[26] C. S. Madi, B. Davidovitch, H. B. George, S. A. Norris, M. P. Brenner, and M. J. Aziz, Phys.

Rev. Lett. 101, 246102 (2008).

[27] C. S. Madi, Benny Davidovitch, H. Bola George, Scott A. Norris, Michael P. Brenner, and

Michael J. Aziz, Phys. Rev. Lett. 107, 7 (2011).

[28] S. A. Norris, J. Samela, L. Bukonte, M. Backman, F. Djurabekova, K. Nordlund, C. S. Madi,

M. P. Brenner, and M. J. Aziz, Nature Commun. 2, 276 (2011)

[29] K. Zhang, H. Hofsäss, F. Rotter, M. Uhrmacher, C. Ronning, and J. Krauser, Surf. and Coat-

ings Tech. 203, 2395 (2009).

[30] A. Keller and S. Facsko, Materials 3, 4811 (2010).

[31] M. Castro, R. Gago, L. Vázquez, J. Muñoz García, and R. Cuerno, Phys. Rev. B 86, 12 (2012).

114



[32] C. S. Madi, H. Bola George, and Michael J. Aziz, J. Phys. Condens. Matter 21, 224010 (2009).

[33] D. Chowdhury and D. Ghose, Adv. Sci. Lett. 22, 105 (2016).

[34] G. Ozaydin, A. S. Özcan, Y. Wang, K. F. Ludwig, H. Zhou, R. L. Headrick, and D. P. Siddons,

Appl. Phys. Lett. 87, 163104 (2005).

[35] K. Zhang, M. Brötzmann, and H. Hofsäss, New J. of Phys. 13, 013033 (2011).

[36] S. Macko, F. Frost, M. Engler, D. Hirsch, T. Höche, J. Grenzer, and T. Michely, New J. of Phys.

13, 073017 (2011).

[37] J. A. Sánchez-arciá, L. Vázquez, R. Gago, A. Redondo-Cubero, J. M. Albella, and Z. Czigány,

Nanotechnology 19, 355306 (2008).

[38] A. Redondo-Cubero, R. Gago, F. J. Palomares, A. Mücklich, M. Vinnichenko, and L. Vázquez,

Phys. Rev. B 86, 8 (2012).

[39] B.Ziberi, F. Frost, M. Tartz, H. Neumann, and B. Rauschenbach, Thin Solid Films 459, 106

(2004).

[40] C. S. Madi and M. J. Aziz, Appl. Surf. Sci. 258, 4112 (2012).

[41] J. Zhou, S. Facsko, M. Lu, and W. Möller, J. Appl. Phys. 109, 104315 (2011).

[42] J. Muñoz-García, R. Gago, L. Vázquez, J. A. Sánchez-García, and R. Cuerno, Phys. Rev. Lett.

104, 026101 (2010).

[43] F. Ludwig, C. R. Eddy, O. Malis, and R. L. Headrick, Appl. Phys. Lett. 81, 2770 (2002).

[44] D. Carbone, A. Biermanns, B. Ziberi, F. Frost, O. Plantevin, U. Pietsch, and T. H. Metzger, J.

Phys. Condens. Matter 21, 224007 (2009).

[45] C. S. Madi, E. Anzenberg, K. F. Ludwig Jr, and Michael J. Aziz, Phys. Rev. Lett. 106, 066101

(2011).

115



[46] E. Anzenberg, Charbel S. Madi, Michael J. Aziz, and Karl F. Ludwig Jr, Phys. Rev. B 84, 12

(2011).

[47] T. Basu and T. Som, Appl. Surf. Sci. 310, 8 (2014).

[48] A. Keller, S. Rossbach, S. Facsko, and W. Möller, Nanotechnology 19, 135303 (2008).

[49] A. Keller, R. Cuerno, S. Facsko, and Wolfhard Möller, Phys. Rev. B 79, 3 (2009).

[50] T. Basu, J. R. Mohanty, and T. Som, Appl. Surf. Sci. 258, 9944 (2012).

[51] T. Basu, D. P. Datta, and T. Som, Nanoscale Res. Lett. 8, 289 (2013).

[52] M. Teichmann, Jan Lorbeer, Frank Frost, and Bernd Rauschenbach, Nanoscale Res. Lett. 9,

439 (2014).

[53] W. Hauffe, Physica Status Solidi. A 35, K93 (1976).

[54] F. Flamm, F. Frost, and D. Hirsch, Appl. Surf. Sci. 179, 96 (2001).

[55] P. Karmakar and D. Ghose, Surf. Sci. 554, L101 (2004).

[56] D. P. Datta and T. K. Chini, Phys. Rev. B 69, 6 (2004).

[57] D. P. Adams, T. M. Mayer, M. J. Vasile, and K. Archuleta, Appl. Surf. Sci. 252, 2432 (2006).

[58] P. Mishra and D. Ghose, J. Appl. Phys. 105, 014304 (2009).

[59] Q. Wei, Jie Lian, Lynn A. Boatner, L. M. Wang, and Rodney C. Ewing, Phys. Rev. B 80, 085413

(2009).

[60] Tapas Kumar Chini, Debi Prasad Datta, and Satya Ranjan Bhattacharyya, J. Phys. Condens.

Matt. 21, 224004 (2009).

[61] J. Völlner, B. Ziberi, F. Frost, and B. Rauschenbach, J. Appl. Phys. 109, 043501 (2011).

[62] A. Metya, D. Ghose, S. A. Mollick, and A. Majumdar, J. Appl. Phys. 111, 074306 (2012).

116



[63] Martin Engler, Sven Macko, Frank Frost, and Thomas Michely, Phys. Rev. B 89, 245412

(2014).

[64] D. A. Pearson, Matthew P. Harrison, and R. M. Bradley, Phys. Rev. E 96, 032804 (2017).

[65] J. Muñoz-García, R. Gago, R. Cuerno, J. A. Sánchez-García, A. Redondo-Cubero, M. Castro,

and L. Vázquez, J. Phys. Condens. Matter 24, 375302 (2012).

[66] J. Muñoz-García, M. Castro, and R. Cuerno, Phys. Rev. Lett. 96, 086101 (2006).

[67] J. Muñoz-García, R. Cuerno, and M. Castro, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 74,

050103 (2006).

[68] S. K. Theiss, M. J. Caturla, M. D. Johnson, J. Zhu, T. Lenosky, B. Sadigh, and T. Diaz De La

Rubia, Thin Solid Films 365, 219 (2000).

[69] A. Mutzke, R. Schneider, W. Eckstein, and R. Dohmen, Sdtrimsp: Version 5.00. IPP, Re-

port,(12/8), 2011.

[70] P. Sigmund, J. Mater. Sci. 8, 1545 (1973).

[71] R. M. Bradley and H. Hofsäss, J. Appl. Phys. 116, 234304 (2014)

[72] Y. Rosandi and H. M. Urbassek, Phys. Rev. B 85, 155430 (2012).

[73] G. Hobler, R. M. Bradley, and H. M. Urbassek, Phys. Rev. B 93, 205443 (2016).

[74] S. Habenicht, W. Bolse, K. P. Lieb, K. Riemann, and U. Geyer, Phys. Rev. B 60, R2200 (1999).

[75] M. A. Makeev and A. Barabási, Appl. Phys. Lett. 71, 2800 (1997).

[76] J. Muñoz-García, R. Cuerno, and M. Castro, Phys. Rev. B 78, 205408 (2008).

[77] B. Kahng, H. Jeong, and A.-L. . Barabási, Appl. Phys. Lett. 78, 805 (2001).

[78] M. Castro, R. Cuerno, L. Vázquez, and R. Gago, Phys. Rev. Lett. 94, 016102 (2005).

117



[79] G. Ozaydin, A. S. Özcan, Y. Wang, K. F. Ludwig, H. Zhou, and R. L. Headrick, Nuclear Instru-

ments and Methods in Physics Research Section B: Beam Interactions with Materials and

Atoms 264, 47 (2007).

[80] A. Keller, M. Nicoli, S. Facsko, and R. Cuerno, Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

84, 015202 (2011).

[81] G. Carter, V. Vishnyakov, and M. J. Nobes, Nuclear Instruments and Methods in Physics

Research Section B: Beam Interactions with Materials and Atoms, 115, 440 (1996).

[82] V. B. Shenoy, W. L. Chan, and E. Chason, Phys. Rev. Lett. 98, 256101 (2007).

[83] M. Moseler, P. Gumbsch, C. Casiraghi, A. C. Ferrari, and J. Robertson, Science 309, 1545

(2005).

[84] B. Davidovitch, M. J. Aziz, and M. P. Brenner, Phys. Rev. B 76, 205420 (2007).

[85] R. M. Bradley and H. Hofsäss, J. Appl. Phys. 120, 074302 (2016).

[86] H. Hofsäss, K. Zhang, and O. Bobes, J. Appl. Phys. 120, 135308 (2016).

[87] C. C. Umbach, R. L. Headrick, and K.-C. Chang, Phys. Rev. Lett. 87, 246104 (2001).

[88] N. Kalyanasundaram, M. Ghazisaeidi, J. B. Freund, and H. T. Johnson, Appl. Phys. Lett. 92,

131909 (2008).

[89] H. Hofsäss, O. Bobes, and K. Zhang, Appl. of Accel. in Res. and Ind.: Twenty-

Second Int. Conf., 1525 (2013).

[90] P. D. Shipman and R. M. Bradley, Phys. Rev. B 84, 085420 (2011).

[91] R. M. Bradley and P. D. Shipman, Phys. Rev. Lett. 105, 145501 (2010).

[92] R. M. Bradley and P. D. Shipman, Appl. Surf. Sci. 258, 4161 (2012).

118



[93] S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, Science

285, 1551 (1999).

[94] F. Frost, A. Schindler, and F. Bigl, Phys. Rev. Lett. 85, 4116 (2000).

[95] D. Kumar, A. Gupta, Appl. Phys. Lett. 98 123111 (2011).

[96] M. Körner, K. Lenz, M. O. Liedke, T. Strache, A. Mücklich, A. Keller, S. Facsko, and J. Fass-

bender, Phys. Rev. B 80, 214401 (2009).

[97] J. Fassbender, T. Strache, M. O. Liedke, D. Markó, S. Wontz, K. Lenz, A. Keller, S. Facsko, I.

Mönch, and J. McCord, N. J. of Phys. 11, (2009).

[98] M. Liedke, M. Körner, K. Lenz, M. Fritzsche, M. Ranjan, A. Keller, E. FIX, S. Zvyagin, S.

Facsko, K. Potzger, et al. Phys. Rev. B 87, 024424 (2013).

[99] M. Ranjan, S. Facsko, Nanotechnology 23, 485307 (2012).

[100] T.W. Oates, A. Keller, S. Facsko, A. FIX, Plasmonics 2, 47 (2007).

[101] M. Ranjan, S. Facsko, M. Fritzsche, S. Mukherjee, Microelectron. Eng. 102, 44 (2013).

[102] J. Sommerfeld, J. Richter, R. Niepelt, S. Kosan, T.F. Keller, K.D. Jandt, C. Ronning, Biointer-

phases 7, 1 (2012).

[103] A calculation of the local truncation error of the Euler method can be found at

http://www.math.unl.edu/ gledder1/Math447/EulerError.

[104] Another common RK2 scheme is the midpoint method.

[105] D. F. Griffiths and D. J. Higham, Numerical Methods for Ordinary Differential Equations

(Springer, London, England, 2010).

[106] A calculation of the local truncation error of the RK4 method can be found at

https://math.okstate.edu/people/binegar/4233/4233-l18.pdf.

119



[107] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration (Dover, Mineola, 2007).

[108] A discussion of numerically integrating PDEs can be found at

http://www.math.umd.edu/ dlevy/classes/amsc661/hyperbolic-fd.pdf.

[109] D. Terzopoulos and M. Vasilescu, Proceedings. 1991 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition.

[110] A. Constantinides, "Finite Difference Methods” in Applied Numerical Methods with Per-

sonal Computers, (McGraw-Hill, New York, 1988), pg. 299.

[111] P. V. D. Houwen, Applied Numerical Mathematics 20, 261 (1996).

[112] D. J. Higham and L. N. Trefethen, BIT 33, 285 (1993).

[113] Higher order finite difference schemes can be determined via the tool found at

http://web.media.mit.edu/ crtaylor/calculator.html.

[114] S. M. Cox and P.C. Matthews, J. Comput. Phys. 176, 430 (2002).

[115] A disscusion of converting linear operators to matrices can be found at

http://www.physics.miami.edu/ nearing/mathmethods/operators.pdf.

[116] A.K. Kassam and L. N. Trefethen, SIAM J. Sci. Comp. 26, 1214 (2005).

[117] S. A. Norris, Phys. Rev. B 85, 155325 (2012).

[118] S. A. Norris, Phys. Rev. B 86, 235405 (2012).

[119] A. Moreno-Barrado, M. Castro, R. Gago, L. Vázquez, J. Muñoz-García, A. Redondo-Cubero,

B. Galiana, C. Ballesteros, and R. Cuerno, Phys. Rev. B 91, 155303 (2015).

[120] T. Kawahara, Phys. Rev. Lett. 51, 381 (1983).

[121] M. Sato and M. Uwaha, Europhys. Lett. 32, 639 (1995).

120



[122] C. Misbah and O. Pierre-Louis, Phys. Rev. E 53, R4318 (1996).

[123] D. P. Adams, M. J. Vasile, T. M. Mayer, and V. C. Hodges, J. Vac. Sci. Technol. B 21, 2334

(2003).

[124] J. Grenzer, A. Biermanns, A. Mücklich, S. A. Grigorian, and U. Pietsch, Phys. Status Solidi

A 206, 1731 (2009).

[125] M. P. Harrison, D. A. Pearson, and R. M. Bradley, Phys. Rev. E 96, 032804 (2017).

[126] K. Indireshkumar and A. L. Frenkel, Phys. Rev. E 55, 1174 (1997).

[127] V. E. Zakharov and E. A. Kuznetsov, Zh. Eksp. Teor. Fiz. 66, 594 (1974) [Sov. Phys. JETP 39,

285 (1974)].

[128] E.W. Laedke and K.H. Spatschek, J. Plasma Phys. 28, 469 (1982).

[129] E. Infeld, J. Plasma Phys. 33, 171 (1985).

[130] E. Infeld and P. Frycz, J. Plasma Phys. 37, 97 (1987).

[131] E. Infeld and P. Frycz, J. Plasma Phys. 41, 441 (1989).

[132] M.A. Allen, G. Rowlands, J. Plasma Phys. 50, 431 (1993).

[133] P. Frycz and E. Infeld, Phys. Rev. Lett. 63, 384 (1989).

[134] S. Saprykin, E. A. Demekhin and S. Kalliadasis, Phys. Rev. Lett. 63, 224101 (2005).

[135] A. Gérón, Hands-on Machine Learning with Scikit-Learn and TensorFlow Concepts, Tools,

and Techniques to Build Intelligent Systems (O’Reilly, Sebastopol, CA, 2019).

[136] A. I. Maqueda, A. Loquercio, G. Gallego, N. Garcia, and D. Scaramuzza, 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 5419 (2018).

[137] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, Comp. Vis. – ECCV 2016 Lec. Notes Comp. Sci. 499, 499

(2016).

121



[138] T. Young, D. Hazarika, S. Poria, and E. Cambria, IEEE Comp. Int. Mag. 13, 55 (2018).

[139] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D. Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-

brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,

Nature 529, 484 (2016).

[140] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D.

Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, Science 362, 1140 (2018).

[141] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,

R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L.

Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard,

D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring,

D. Yogatama, D. Wünsch, K. Mckinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D.

Hassabis, C. Apps, and D. Silver, Nature 575, 350 (2019).

[142] M. Cotescu, T. Drugman, G. Huybrechts, J. Lorenzo-Trueba, and A. Moinet, IEEE Signal

Processing Letters 27, 186 (2020).

[143] B. Li, T. N. Sainath, A. Narayanan, J. Caroselli, M. Bacchiani, A. Misra, I. Shafran, H. Sak,

G. Pundak, K. Chin, K. C. Sim, R. J. Weiss, K. W. Wilson, E. Variani, C. Kim, O. Siohan, M.

Weintraub, E. Mcdermott, R. Rose, and M. Shannon, Interspeech 2017 (2017).

[144] V. Talpaert, I. Sobh, B. Kiran, P. Mannion, S. Yogamani, A. El-Sallab, and P. Perez, Proceed-

ings of the 14th International Joint Conference on Computer Vision, Imaging and Com-

puter Graphics Theory and Applications (2019).

[145] H. Steck, M. Dimakopoulou, N. Riabov, and T. Jebara, Proceedings of the 13th Interna-

tional Conference on Web Search and Data Mining (2020).

[146] A. Jobin, M. Ienca, and E. Vayena, Nature Machine Intelligence 1, 389 (2019).

122



[147] K. Siau and W. Wang, Journal of Database Management 31, 74 (2020).

[148] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning:

with Applications in R (Springer, New York, 2017).

[149] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (The MIT Press, Cambridge, MA,

2017).

[150] A. Dhillon and G. Verma, Prog. Art. Int. 9, 85 (2020).

[151] D. P. Kingma, J. Ba, ICLR Proc. of the 3rd Int. Conf. on Learn. Rep. 112 (2014).

[152] J. Duchi, E. Hazan, Y. Singer, Jour. Mach. Learn Res. 12, 2121 - 2159 (2011).

[153] Interestingly, RMSProp was not introduced in a paper. Instead G. Hinton,

N. Srivastava, and K. Swersky presented the optimization method in a Cours-

era lecture. The lecture notes can be found at https://www.cs.toronto.edu/ tij-

men/csc321/slides/lecture_slides_lec6.pdf.

[154] F. Rosenblatt, Psychological Review 65, 386 (1958).

[155] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing (California

Technical Pub., San Diego, CA, 1997).

[156] W. T. Cecil, Am. J. Manag. Care 26, 7 (2020).

[157] Examples of convolutions of grayscale images and the associated kernels can be found at

https://aishack.in/tutorials/image-convolution-examples/.

[158] F. Fan, J. Xiong, G. Wang, ArXiv.2001.02522 (2020).

[159] E. Anzenberg, J. C. Perkinson, C. S. Madi, M. J. Aziz, and K. F. Ludwig, Phys. Rev. B 86,

245412 (2012).

[160] S. A. Norris, J. C. Perkinson, M. Mokhtarzadeh, E. Anzenberg, M. J. Aziz, and K. F. Ludwig,

Sci. Rep. 7, 2016 (2017).

123



[161] M. Mokhtarzadeh, J. G. Ulbrandt, P. Myint, S. Narayanan, R. L. Headrick, and K. F. Ludwig,

Phys. Rev. B 99, 165429 (2019).

[162] H. Hofsäss and O. Bobes, Appl. Phys. Rev. 6, 021307 (2019).

[163] L. Deng, APSIPA Trans. Sig. Inf. Proc. 3, 1 (2014).

[164] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, Comp. Int. Neu-

rosci. 2018, 1 (2018).

[165] D. Reiser, Phys. Rev. E 100, 033312 (2019).

[166] Tutorials on implementing these algorithms can be found at https://scikit-

learn.org/stable/tutorial/index.html, https://pytorch.org/tutorials/, and

https://www.tensorflow.org/tutorials.

[167] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, 2017 IEEE

Conf. Comp. Vis. Patt. Recog. (CVPR) 4700, (2017).

[168] The ImageNet dataset can be found at http://www.image-net.org/.

[169] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Sum-

mers, IEEE Trans. Med. Im. 35, 1285 (2016).

[170] We used the PyTorch framework which is documented at https://pytorch.org/. The

fast.ai library was also used to facilitate calculations. This library can be found at

https://www.fast.ai/.

[171] L. N. Smith, ArXiv.1803.09820.

[172] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova, E.

Hanson, F. Motta, and L. Ziegelmeier, Jour. Mach. Learn Res. 18, 1 - 35 (2017).

[173] One feature that is worth mentioning is the "hot spots" present for the negative values of

κ1 and κ2. These appear because the majority of our data lies in these regions.

124



[174] Y. Bengio in Lecture Notes in Computer Science, vol 7700, 2012. edited by M. Grègoire, G.

Orr, and M. Klaus-Robert, p. 437.

[175] M. Wang, H.-X. Li, X. Chen, and Y. Chen, IEEE Trans. Sys., Man, and Cybernetics: Sys. 46,

1664 (2016).

[176] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, Chaos: An Interdisciplinary J. Non-

lin. Sci. 27, 121102 (2017).

[177] J. Pathak, A. Wikner, R. Fussell, S. Chandra, B. R. Hunt, M. Girvan, and E. Ott, Chaos:

Interdisc. J. Nonlin. Sci. 28, 041101 (2018).

[178] M. Raissi and G. E. Karniadakis, J. Comp. Phys. 357, 125 (2018).

[179] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Phys. Rev. Lett. 120, 024102 (2018).

[180] K. M. Loew and R. M. Bradley, Phys. Rev. E 100, 012801 (2019).

[181] M. P. Harrison, D. A. Pearson, and R. M. Bradley, Phys. Rev. E 96, 032804 (2017).

[182] M. Castro, R. Cuerno, L. Vazquez, and R. Gago, Phys. Rev. Lett. 94, 016102 (2005).

[183] J. Muñoz-García, R. Cuerno and M. Castro, Phys. Rev. B 78, 205408 (2008).

125



Appendix A

Framework Example

Below is an example of the Python framework being applied to numerically integrate

Eq. (2.3). This example is directly imported from Jupyter notebooks and is the file that a

new user can modify to use the framework. The notebook begins below the horizontal line

below this paragraph. Comments guiding user are in plain text while the code is displayed

using the Python language listing package. Author: Kevin M. Loew

Contact: kevin.m.loew@gmail.com

Last Modified: April 19, 2019

Description: This notebook displays an example of the 2D simulation of a surface which

evolves according to the KS equation. The notebook is designed to act as a template for

the production of surface simulations. The steps are as follows:

1. Define Linear Part

2. Define Nonlinear Function

3. Set parameters for the equation of motion

4. Set domain size and spatial resolution

5. Set time range and step size

6. Generate Initial Condition

7. Execute integration

Equation of Motion:

ut = κ1uxx +κ2uy y −B∇2∇2u +λ1u2
x +λ2u2

y
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Write as:

ut = Lu +N (u, t )

Import Libraries

import numpy as np

import matplotlib . pyplot as p l t

import BradleyTheoryGroup as btg

1. Define Linear Part:

We do this in Fourier Space so we can handle the derivative as an operator.

NOTE: For users that are not comfortable writing Python functions, the linear part can be

written as a string. An example is included, but commented out with the # character.

#Lhat = ’ u_xx+u_yy−DDu ’

def Lhat ( kx , ky , Kappa1 , Kappa2 , B ) :

Kx , Ky=np . meshgrid ( kx , ky )

return Kappa1*(1 j *Kx)**2+Kappa2*(1 j *Ky ) * * 2

−B* ( ( 1 j *Kx)**4+(1 j *Ky ) * * 4 + 2 * ( ( 1 j *Kx ) * * 2 ) * ( ( 1 j *Ky ) * * 2 ) )

2. Nonlinear Function

For the nonlinear part we generate a function in real space (the conversion to and from

Fourier-Space is handled by the btg module).

NOTE: Once again the nonlinear function can be written as a string. This is currently com-

mented out with #.

#Nhat= ’u_x^2+u_y ^2 ’

def Nhat (u , kx , ky , dx , dy , Lambda1, Lambda2 ) :
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out=Lambda1* btg . d i f f (u , dx , axi s = ’ x ’ , deg =1)**2

+Lambda2* btg . d i f f (u , dy , axis = ’ y ’ , deg =1)**2

return out

3. Define Parameters of the EoM.

Kappa1=−1

Kappa2=1

B=1

Lambda1=1

Lambda2=1

LinParams=[Kappa1 , Kappa2 , B]

NonLinParams=[Lambda1, Lambda2]

4. Define the domain size and spatial resolution.

Nx=number of points in the x direction, Ny=number of points in the y direction,

xRange=(xmi n, xm ax), yRang e = (ymi n, ym ax).

1D NOTE: Set Ny=1 to do 1D simulations.

Nx=400

Ny=400

xRange =(0 ,200)

yRange=(0 ,200)

5. Define the start and stop time and the time step tRange=(tmi n, tm ax)andh = t i mestep.
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1D NOTE: You can define u0 as either a 1 dimensional numpy array or as a 2 dimensional array

of shape (1,Nx) and the btg module will handle it.

u0=0.001*np . random . random ( ( Ny, Nx) )

7. Execute Loop

The BradleyTheoryGroup timeIntegrator is a default loop that the user defined EoM, parame-

ters, domain, and time range. It will use exponential time differencing to time evolve the initial

surface according to the equation of motion.

Additional arguments are:

imRate: How often should an image/file be produced. defaults to 1

saveLocation: directory for the program to produce and save files into. defaults to ’temp’

Method: defines which ETD method to use. defaults to ETD4RK

doPlots: determines if plots should be produced. defaults to True

doFiles: determines if the surface should be saved as a .npy file. defaults to True

doFFTPlots: determines if the simulation should also produce FFT plots. defaults to False

1D NOTE: When doing 1D simulations it will produce plots instead of contours automatically.

btg . timeIntegrator ( u0 , * tRange , h , * xRange , * yRange , Nx, Ny,

LinParams , NonLinParams , Lhat , Nhat ,

imRate=1 , saveLocation= ’ Test ’ ,Method= ’ETD4RK ’ ,

doPlots=False , doFiles=True )

Integration Method: ETD4RK

Contour Integration

Complete
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Generating Initial Plots...

Initializing Integration...

[∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗]99.99%

Simulation Complete

btg . MakeMovie( saveLocation= ’ Test ’ , fps =15)

Making movie...

Movie made: Test/u/u_movie.mp4
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