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ABSTRACT 

 

EVALUATING THE SPATIAL VARIABILITY OF SNOWPACK PROPERTIES ACROSS A 

NORTHERN COLORADO BASIN 

 Knowledge of seasonal mountain snowpack distribution and estimates of its snow water 

equivalent (SWE) can provide insight for water resources forecasting and earth system process 

understanding, thus, it is important to improve our ability to describe the spatial variability of 

SWE at the basin scale.  The objectives of this thesis are to: (1) develop a reliable method of 

estimating SWE from snow depth for the Cache la Poudre basin, and (2) characterize the spatial 

variability of SWE at the basin scale within the Cache la Poudre basin.  A combination of field 

and Natural Resource Conservation Service (NRCS) operational-based snow measurements were 

used in this study.  Historic (1936 – 2010) snow course data were obtained for the study area to 

evaluate snow density.  A multiple linear regression model (based on the historical snow course 

data) for estimating snow density across the study area was developed to estimate SWE directly 

from snow depth measurements.  To investigate the spatial variability and observable patterns of 

SWE at the basin scale, snow surveys were completed on or about April 1, 2011 and 2012 and 

combined with NRCS operational measurements.  Bivariate relations and multiple linear 

regression models were developed to understand the relation of SWE with physiographic 

variables derived using a geographic information system (GIS).  SWE was interpolated across 

the Cache la Poudre basin on a pixel by pixel basis using the model equations and masked to 

observed SCA (from an 8-day MODIS product).       
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The independent variables of snow depth, day of year, elevation, and UTM Easting were 

used in the model to estimate snow density.  Calculation of SWE directly from snow depth 

measurement using the snow density model has strong statistical performance and model 

verification suggests the model is transferable to independent data within the bounds of the 

original dataset.  This pathway of estimating SWE directly from snow depth measurement is 

useful when evaluating snowpack properties at the basin scale, where many time consuming 

measurements of SWE are often not feasible.  Bivariate relations of SWE and snow depth 

measurements (from WY 2011 and WY 2012) with physiographic variables show that elevation 

and location (UTM Easting and UTM Northing) are most strongly correlated with SWE and 

snow depth.  Multiple linear regression models developed for WY 2011 and WY 2012 include 

elevation and location as independent variables and also include others (e.g., eastness, slope, 

solar radiation, curvature, canopy density) depending on the model dataset.  The final 

interpolated SWE surfaces, masked to observed SCA, generally show similar patterns across 

space despite differences in the 2011 and 2012 snow years and differing estimation of SWE 

magnitude between the combined dataset of field-based and operational-based measurements 

(modelO+F) and the dataset of operational-based measurements only (modelO).  Within each of 

the model surfaces, interpolated volume of SWE was greatest within Elevation Zone 5 (3,043 – 

3,405 m).  The percentage of the total interpolated SWE volume for each model was distributed 

similarly among elevation zones.   
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CHAPTER 1: INTRODUCTION 

1.1 Introduction  

Snow is integral to the earth system, playing a key role in the hydrologic cycle as well as 

energy exchanges between the land surface and atmosphere.  A majority of earth’s moving 

freshwater originates in snow dominated mountainous areas [Viviroli et al., 2003], with 60-75% 

of annual streamflow in the western United States originating from snowmelt [Doesken and 

Judson, 1996].  A comprehensive understanding of the distribution of the seasonal mountain 

snowpack and estimation of its snow water equivalent (SWE) is essential for the accurate 

forecasting of streamflow and water availability, as well as for the availability of input data for 

regional climate and hydrologic models.  Additionally, the recent shift towards earlier snowmelt 

in regions of the western U.S. [Stewart, 2009; Clow, 2010] necessitates a more accurate 

accounting for future water resources planning, especially due to the lack of understanding of 

spatial and temporal variability of snow properties.  Mountainous landscapes have complex 

topography and strong and highly variable climatic gradients yielding spatial and temporal 

(seasonal and interannual) variability in snowpack properties. Determining the meteorology and 

related feedbacks that drive hydrologic processes in these areas is challenging in such complex 

terrain and requires spatial scaling [Bales et al., 2006]. Often the resolution of available SWE 

measurements is much larger than the scale needed to characterize the correlation length of its 

spatial variability [Blöschl, 1999].     

Across the western United States, the Natural Resource Conservation Service (NRCS) 

SNOwpack TELemetry (SNOTEL) and snow course network provide operational snowpack 

measurements of snow depth and SWE and thus calculated average density at a daily and 

monthly time step, respectively.  NRCS operational stations were established to measure the 
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snowpack for water supply forecasts, yet, they have been shown to represent SWE only as point 

locations rather than surrounding areas [Molotch and Bales, 2005].  Nonetheless, SNOTEL and 

snow course sites are the most widely available and utilized ground based measurements of 

SWE.  

Research on the spatial distribution of snow has emphasized the statistical relation 

between snow properties and terrain characteristics, the latter as a surrogate for the driving 

meteorology.  These studies have used SNOTEL data to interpolate SWE over large basins [e.g., 

Fassnacht et al., 2003], as well as snowpack field measurements over small catchments [e.g., 

Elder et al., 1991].  However, few studies have described snow’s spatial and temporal variability 

at the basin scale using both operational and field measurements.  Operational measurements can 

provide regional knowledge on the spatial distribution of snow [e.g., Fassnacht et al., 2003; 

Bales et al., 2008], yet cannot accurately characterize the spatial variability of the snowpack at 

the basin scale [Bales et al., 2006].  It has been recommended that future research should focus 

on more accurate estimations of SWE at the basin and regional scale to effectively assess and 

manage mountain water resources [Viviroli et al., 2011].  At the basin scale, an approach to 

reducing the sampling effort needed for more measurements is to use snow depth as a surrogate 

for SWE by developing a model for snow density, since manual snow density measurements 

require more time and effort than snow depth measurements.  Recent studies have attempted to 

characterize the spatiotemporal characteristics of snow density [e.g., Mizukami and Perica, 2008; 

Fassnacht et al., 2010], or to develop reliable methods for modeling snow density and thus 

estimating SWE from snow depth measurements [e.g., Jonas et al., 2009, Sturm et al., 2010]. 
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1.2 Scientific Objectives 

To address the limitations of estimating the distribution of SWE over large areas from 

satellite-derived and operational snow data, this research has focused on the 2011 and 2012 

water year (WY) using the previously mentioned operational snowpack measurements, 

additional supporting field measurements, and remotely sensed snow covered area (SCA) to 

evaluate the spatial variability of snowpack properties at the basin scale.  The objectives of this 

thesis are to address the following research questions: 

1) Can a reliable method of estimating SWE be developed from snow depth for the Cache la 

Poudre basin? 

2) Can the spatial variability of SWE within the Cache la Poudre basin be characterized at 

the basin scale? 

 

1.3 Study Area 

The Cache la Poudre basin is a located within northern Colorado and a small portion of 

southeastern Wyoming (Figure 1.1).  The basin has an area of 4867 km2 and ranges in elevation 

from 1406 to 4125 m.  The upper portion of the basin that contributes to the canyon mouth is 

gaged by a Colorado Division of Water Resources (CDWR) gaging station (Cache la Poudre 

River at Canyon Mouth) with an area of 2729 km2 (Figure 1.1).  Since this portion of the basin is 

responsible for the majority of input to the river system, it will be the focus of this study.  

Subalpine and montane coniferous forests dominate the basin, with the alpine community located 

at the highest elevations and the mountain shrub and grassland communities located at the lowest 

elevations.  From the parameter-elevation regressions on independent slopes model (PRISM) 

[Daly et al., 1994], the average annual (1971–2000) precipitation within the basin ranges from 
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330 mm at the lowest elevations to 1350 mm at the highest elevations, and the average annual 

(1971-2000) temperature ranges from 9°C to -5°C [Richer, 2009].  Snow is the dominant form of 

precipitation within the basin, as the hydrograph peak is driven by snowmelt generally occurring 

in late May to June.  Study area maps of elevation and land cover are provided in Appendix A.   

 

1.4 Snowpack Monitoring 

1.4.1 NRCS Snow Monitoring Network 

The NRCS operational snow monitoring network consists of SNOTEL stations and snow 

courses.  These monitoring sites are located within 12 western U.S. states as well as Alaska and 

generally positioned in high elevation meadows up to but not above the tree line to minimize 

blowing snow and sublimation losses [Cayan, 1996; Gillespie, 2011].  The snow course network 

began in the 1900s and provides manual measurements of snow depth and SWE and thus 

average snow density averaged across 10 (in some cases 15) measurements using a Federal 

Sampler.  Most snow courses are monitored on or about the first day of the month from January 

through June.  The SNOTEL network was established in 1978 and utilizes meteor burst 

communication technology to provide automated daily (and now hourly) measurements of SWE, 

snow depth, precipitation and air temperature, with other measurements such as soil moisture at 

some sites [Gillespie, 2011]. 

Within the Cache la Poudre basin there are nine snow courses and five SNOTEL stations.  

Within a 15 km buffer surrounding the study area, there are additionally eight snow courses and 

five SNOTEL stations.  The operational stations that are located within the study basin as well as 

within the 15 km buffer around the basin were analyzed for this study (Figure 1.1).  This 

includes SNOTEL stations and snow courses within the Cache la Poudre basin and in the North 
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Platte, Big Thompson, Upper Laramie and Colorado River basins, yielding a total of 10 

SNOTEL stations (Table 1.1) and 17 snow courses (Table 1.2). 

Deadman Hill and Joe Wright are the two long-term SNOTEL stations located within the 

Cache la Poudre basin that have a mean (1980–2012) peak SWE of 538 mm and 690 mm, 

respectively (Figure 1.2).  The lowest snow year was 2002 at Deadman Hill (Figure 1.3a) and 

2012 at Joe Wright (Figure 1.3b), while the maximum snow year was 2011 at both SNOTEL 

stations.  Despite the similar elevation of the two stations, Joe Wright has historically shown a 

greater accumulation of SWE than Deadman Hill. 

 

1.4.2 Field Snow Surveys 

  Field snowpack measurements, including snow density (ρs) and/or snow depth (ds), were 

collected within the study area during monthly snow surveys in WY 2011 and WY 2012.  

Latitude, longitude, and elevation were identified at each sampling location using a Garmin 

GPSMAP 76 GPS receiver capable of positioning accuracy within 3 meters.  At each sampling 

location, 11 measurement points of snow depth were taken using a snow depth probe to the near 

cm of depth at a one-meter interval in one of the four cardinal directions and averaged to account 

for the small scale spatial variability located at a point location [e.g. López-Moreno et al., 2011].  

Snow density is a conservative variable that varies less spatially than depth [Logan, 1973; 

Fassnacht et al., 2010], thus, snow density was measured at a lower spatial density across the 

study area than snow depth (snow density was not measured at each sampling location).  Three 

methods of measuring snow density were used at each site.  A cylindrical metal can with a 

diameter of 15.3 cm was used to measure snow density if the snowpack was less than 50 cm.  A 

cylindrical snow sampling tube with a diameter of 6.6 cm was used to measure snow density for 
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snowpacks greater than 50 cm and less than 150 cm.  Additionally, a Federal Sampler (diameter 

of 3.77 cm) was used to measure the snow density for snowpacks greater than 150 cm, but it was 

also used for some snowpack depths shallower than 150 cm.  For all (sampling) methods, the 

mass and volume of the snowpack sample were measured to calculate snow density by the 

following relation (Equation 1.1):    

 
s

s
s V

m
=ρ         (1.1), 

where ρs is snow density, ms is the mass of snow, and Vs is the volume of snow. 

A transect (along Colorado State Highway 14) of 29 field sampling locations ranging in 

elevation from 1607 m to 3174 m was sampled on or about the first of each month during the 

WY 2011 and 2012 snow seasons (Figure 1.4).  Sampling locations were monitored monthly to 

assess temporal variability of snowpack properties and to provide a temporal dataset that could 

be used for verification of physically based snow evolution models.  Additional sampling 

locations were monitored on and about April 1, 2011 and 2012 to assess the spatial variability of 

the snowpack across the study area (Figure 1.4).  A total of 42 field sampling locations (14 

locations with no snow) were monitored on and about April 1, 2011 and 121 field sampling 

locations (14 locations with no snow) on and about April 1, 2012 (Table 1.3).  Snowpack data 

collected during WY 2011 and 2012 are presented in Appendix B. 

Forest canopy data were collected at each sampling location during the April 1, 2012 

snow survey.  Categories of canopy cover, community type, and tree mortality were noted for the 

tree canopy covering each set of measurement points (Table 1.4).  Canopy measurements are 

presented in Appendix B. 
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Table 1.1: SNOTEL stations within the study area. 

Station Name Station 
ID Basin Latitude 

[N] 
Longitude 

[W] 
Elevation 

[m] 
Period of 
Record 

Black Mountain 05J28S Cache la Poudre 40°53’ -105°40’ 2719 2010 – Present 
Deadman Hill 05J06S Cache la Poudre 40°48’ -105°46’ 3115 1978 – Present 
Hourglass Lake 05J11S Cache la Poudre 40°35’ -105°38’ 2859 2008 – Present 
Joe Wright 05J37S Cache la Poudre 40°31’ -105°53’ 3085 1978 – Present 
Lake Irene 05J10S Colorado 40°25’ -105°49’ 3261 1978 – Present 
Long Draw 
Reservoir 

05J27S Cache la Poudre 40°30’ -105°45’ 3042 2008 – Present 

Never Summer 06J27S North Platte 40°24’ -105°57’ 3133 2002 – Present 
Phantom Valley 05J04S Colorado 40°24’ -105°51’ 2752 1979 – Present 
Rawah 06J20S North Platte 40°42’ -106°00’ 2749 2002 – Present 
Willow Park 05J40S Big Thompson 40°26’ -105°44’ 3261 1979 – Present 

 
     

Table 1.2: Snow course stations within the study area. 

Station Name Station 
ID Basin Latitude 

[N] 
Longitude 

[W] 
Elevation 

[m] Period of Record 

Bennett Creek 05J33 Cache la Poudre 40°39' -105°37' 2804 1966 – Present 
Big South 05J03 Cache la Poudre 40°36' -105°49' 2621 1936 – Present 
Cameron Pass 05J01 Cache la Poudre 40°31' -105°53' 3135 1936 – Present 
Chambers Lake 05J02 Cache la Poudre 40°36' -105°50' 2743 1936 – Present 
Deadman Hill 05J06 Cache la Poudre 40°47' -105°46' 3115 1937 – Present 
Deer Ridge 05J17 Big Thompson 40º 24' -105º 37' 2743 1949 - Present 
Hidden Valley 05J13 Big Thompson 40º 24' -105º 39' 2890 1941 - Present 
Hourglass Lake 05J11 Cache la Poudre 40°35' -105°38' 2853 1938 – Present 
Lake Irene 05J10 Colorado 40º 25' -105º 49' 3261 1938 – Present 
Long Draw 
Reservoir 

05J27 Cache la Poudre 40°30' -105º 45' 3042 1971 – Present 

Mc Intyre 05J15 Upper Laramie 40º 46' -105º 55' 2774 1949 - Present 
Milner Pass 05J24 North Platte 40º 24' -105º 49' 2606 1952 – Present 
Phantom Valley 05J04 Colorado 40º 24' -105º 51' 2752 1936 – 2008 [D] 
Pine Creek 05J31 Cache la Poudre 40º 46' -105º 30' 2408 1961 – 2001 [D] 
Red Feather 05J20 Cache la Poudre 40º 48' -105º 39' 2743 1949 - Present 
Two Mile 05J26 Big Thompson 40º 22' -105º 40' 3200 1952 – 1992 [D] 
Willow Park 05J40 Big Thompson 40º 25' -105º 43' 3261 1978 – 2008 [D] 

  [D] Station has been discontinued – historical data utilized for study 
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Table 1.3: Field-based snow sampling summary table 

Survey Type sd  
samples sd [m] sdσ [m] 

SWE 
samples 

SWE
[mm] 

SWEσ
[mm] 

Monthly Surveys 29 N/A N/A 9 N/A N/A 
April Survey, 2011 28 1.13 0.660 11 360 235 
April Survey, 2012 104 0.702 0.309 12 282 56.1 

 

Table 1.4: Forest canopy categorical measurements taken at each sampling location 
Canopy Cover Community Type Tree Mortality 

Closed 
Partially Closed 
Open 

Lodgepole Pine 
Spruce/Fir 
Alpine 

Alive with Green Needles 
Dead with Needles 
Dead and Gray (no needles) 
No Canopy 
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Figure 1.1: Study site map of the Cache la Poudre basin including locations of NRCS 
operational snowpack measurements within the study area 
<http://www.wcc.nrcs.usda.gov/snow/>.  
    
 



10 
 
 

 
Figure 1.2: Annual peak SWE and mean annual peak SWE (1980-2011) for Deadman 
Hill and Joe Wright SNOTEL stations. 
 

  

Figure 1.3: Maximum and minimum snow years (1980-2012) and median value for each 
year at the Deadman Hill [1.3a] and Joe Wright [1.3b] SNOTEL stations. 
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Figure 1.4: Study area field sampling location map including monthly (temporal) and April 1 
(spatial) snow suvey sampling locations.  
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CHAPTER 2: SNOW DENSITY MODEL 

2.1 Introduction 

Snow water equivalent (SWE) is the most important measure of mountain water 

resources. The ability to accurately characterize the distribution of SWE across the cryosphere is 

crucial for modeling and understanding earth system processes and feedbacks [Bales et al., 2006] 

at varying scales [Blöschl, 1999].  Additionally, due to a changing climate, the importance of 

describing the spatial variability of SWE to effectively describe and manage mountain water 

resources will continue to increase [Barnett et al., 2005].  

Currently, SWE measurements can be made directly by either remote sensing or ground-

based approaches.  Satellite remote sensing estimations of SWE in complex mountainous terrain 

have proved to be difficult due to the current scale of observation. Global space borne 

estimations of SWE from the Special Sensor Microwave/Image (SSM/I) and more recently 

Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) are available 

at a spatial resolution of 25 km, which can provide accurate SWE estimations over homogenous 

terrain, but cannot accurately describe the variability of SWE in more complex terrain [e.g., 

Chang et al., 2005; Kelly, 2009]. Although passive microwave estimations of SWE remain 

unreliable in mountainous terrain, active microwave sensors have shown potential to provide 

finer resolution SWE estimations for future satellite missions [Cline et al., 2009].   

Manual ground-based snowpack measurements have been provided by the snow course 

network since the mid-1930s.  Additionally, since the late 1970s, automated ground-based 

measurements of SWE from the SNOTEL network are provided across the western United 

States.  These NRCS operational data provide regional knowledge of snow distribution [e.g., 

Fassnacht et al., 2003; Bales et al., 2008], but are limited in resolving the spatial variability of 
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the SWE across large areas [Bales et al., 2006] due to their low spatial density (approximately 

1500 snow courses and 750 SNOTEL sites across the western United States and Alaska 

[Gillespie, 2011]).  Field-campaigns of ground-based measurements [e.g., Elder et al., 2009] 

aimed at measuring SWE are also limited over larger areas due to the time intensive nature of 

measuring SWE in the field. 

Manual ground-based snow depth measurements are a considerably easier to make than 

SWE measurements, requiring less time and effort. At the basin scale, it has been suggested that 

an approach to reducing the sampling effort needed for more measurements during intensive 

field campaigns is to use snow depth as a surrogate for SWE by developing a model for snow 

density [Viviroli et al., 2011]. Recent studies have successfully developed reliable methods for 

modeling snow density and thus estimating SWE from snow depth measurements at country and 

continent wide scales [e.g., Jonas et al., 2009, Sturm et al., 2010].  However, at a much finer 

scale, such as 1 km2, the variability of density has been less explainable [Lopéz-Moreno et al., in 

review]. This study has developed a snow density model at the basin scale, specifically for the 

Cache la Poudre basin; this is a different domain and scale than used in previous studies.  

 

2.2 Background 

SWE, in millimeters, is the product of snow depth (ds) measured in meters and snow 

density (ρs) in kilograms per cubic meter: 

 

ssdSWE ρ=       (2.1). 
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Therefore, SWE can be computed from measured snow depth by estimating snow density.  Snow 

depth is strongly correlated with SWE (Figure 2.2a), which suggest that this correlation could be 

used to predict SWE from observed snow depth.  Sturm et al. [2010] suggested that despite a 

strong correlation between snow depth and SWE, it is not appropriate to estimate SWE directly 

from snow depth, as SWE is a complex nonlinear function of snow depth.  The range of 

variability of snow density has been shown to be more conservative than snow depth and SWE 

[e.g., Logan, 1973; Fassnacht et al., 2010].  Historic (1936 – 2010) snow density coefficients of 

variation (CV) from April 1 at snow course measurements within the study area are considerably 

lower than those of snow depth and SWE (Figure 2.1).  The mean CV of snow density is 0.15 

while the mean CV for SWE and snow depth is 0.36 and 0.32, respectively.  Due to this 

conservative range of variability, estimating snow density from snow depth measurements 

should provide a reasonable pathway for estimating SWE from a snow depth measurement.   

 

2.3 Methods 

2.3.1 Data 

Historical NRCS snow course data from 17 snow courses (1936 – 2010, n=3637) within 

the study area were evaluated (Table 1.2).  Snow courses within the study area range in elevation 

from 2408 m to 3261 m and are generally measured on or about the first of the month from 

January through June each year.  Snow density values greater than 600 kg/m3 and less than 50 

kg/m3 were omitted from the analysis.  Additionally, due to the limited precision and possibly 

the lack of accuracy for snow density measurements in shallow snowpacks, data for snow depth 

less than 0.13 m (5 inches) and/or SWE less than 50 mm (2 inches) were also omitted.  This 
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selection of data resulted in 3,262 data records of snow depth, snow density, and SWE, with 

10.3% of the original data removed. 

 

2.3.2 Snow Density Relations 

The pairwise relations between snow depth, snow density, and SWE from the historic 

snow course records are presented in Figure 2.2.  A strong correlation exists between snow depth 

and SWE, which is best fit as a power function (Figure 2.2a).  There is considerable scatter about 

the linear fit for snow density versus snow depth (Figure 2.2b), which suggests that additional 

variables should be included to describe the variability of snow density. Snowpack relations here 

are similar to those found in previous studies [e.g., Jonas et al., 2009; Sturm et al., 2010]. 

The intra-annual variability of snow density is largely dictated by time of year, while 

inter-annual variability is minimal [Mizukami and Perica, 2008]. Snow density tends to increase 

gradually throughout the snow season due to crystal metamorphism, settling, and compaction.  

Therefore, snow density tends to increase with the day of year [Mizukami and Perica, 2008] as 

well as with increasing snow depth [Pomeroy and Gray, 1995] (Figure 2.3).  Elevation and 

location within the study area were not shown to affect snow density in an obvious way (Figure 

2.3).  Other variables impact snow densification, such as aspect and canopy cover, as they are 

surrogates for solar radiation. However, snow courses are often located in flat open areas, 

limiting the ability of the dataset to represent the variability explained by these variables.  For 

this reason, the following variables were used to develop a multiple linear regression model to 

estimate snow density: snow depth (ds), Julian day (DOY), elevation (z), UTM easting (UTMe), 

and UTM northing (UTMn). 
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2.3.3 Snow Density Trend Analysis 

Snow density and SWE were both tested for the presence of significant monotonic long 

term trends by the Mann-Kendall test and calculated Sen’s slope estimate using the MAKESENS 

1.0 freeware developed by the Finnish Meteorological Institute [Salmi et al., 2002].  The Mann-

Kendall test is a non-parametric test in which the data are not required to exhibit a particular 

distribution and missing values are allowed [Gilbert, 1987].  In order to test the non-stationarity 

of the historic snow course data, long term trends were assessed for the entire length of record 

(1936 – 2010), as well as from 1976 – 2010, which corresponds to the time period of a strong 

warming trend identified by the Intergovernmental Panel on Climate Change (IPCC) [IPCC, 

2007]. 

 

2.3.4 Snow Density Model 

Multiple linear regression [Kutner et al., 2005], a method used to model the relation 

between a dependent variable and two or more independent variables, was used to predict snow 

density based snow depth, Julian day, elevation, UTM Easting, and UTM Northing.  Multiple 

linear regression is expressed by 

 

ipipiiii XXXXY εββββ ++⋅⋅⋅+++= −− 1,1221100    (2.2), 

 

where β are model parameters, X are known independent variables, and ε is the error term.  The 

statistical software R [Ihaka and Gentleman, 1996] was used for all statistical analyses.   

The final independent variables included in the multiple linear regression model were 

selected based on two automated procedures, stepwise regression and all-subsets regression.  A 



17 
 
 

stepwise regression procedure was used to determine which combination of variables would 

provide the lowest resulting Akaike information criterion (AIC) statistic [Akaike, 1974], which is 

a measure of the relative goodness of fit of the statistical model that introduces a penalty for 

increasing the number of model parameters.  Additionally, an all-subsets regression procedure 

[Berk, 1978] was performed, which assesses a criterion statistic for every possible combination 

of independent variables.  Mallows’ Cp [Mallows, 1973], which assesses the fit of a regression 

model and increases a penalty term as the number of predictor variables increases, was used as a 

criterion for the all-subsets regression.  Potential models were identified based on favorable 

results from the automated variable selection procedures.  The variance inflation factor (VIF) 

was used to quantify the severity of multicollinearity between independent variables.  A VIF 

score greater than 4 may suggest multicollinearity between variables [Kutner et al., 2005]. 

The multiple regression model provides an estimate of snow density for each snow depth 

measurement and their product yields an estimate of SWE.  To assess the accuracy of the models 

identified, and select the final model, several methods of model evaluation were performed.  

Calibration was performed by comparing modeled snow density as well as calculated SWE with 

observed values from the original dataset; explained variance as well as the AIC statistic was 

computed.  Verification with two sets of independent data was completed to test model 

transferability to predict independent data.  The two independent datasets included field-based 

measurements from the 2011 and 2012 snow seasons (n = 84), as well as historic first of the 

month SNOTEL measurements (n = 121) at sites that are not co-located with a snow course.  

Additionally, a 10-fold cross verification procedure, which runs 10 iterations of removing a 

random selection of the dataset and fitting the regression to the remainder of the data, was used 

to compare modeled values to the observed values removed for each iteration.  Performance of 
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the final snow density model was determined from the residuals of both observed snow density 

as well as calculated SWE through the calculation of the Nash-Sutcliffe Coefficient of Efficiency 

(NSCE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) performance 

statistics: 
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where n is the number of observations, O is the observed value, O is the mean of observed 

values, and M is the modeled value.    

 

2.4 Results 

Historic (1936 – 2010) trends of April 1st SWE and snow density were evaluated for three 

representative snow courses within the study area.  Generally, the entire length of record did not 

show a strong trend.  However, the record from 1976 – 2010 was a period of decreasing SWE 

and density (Figure 2.4).  Specifically, the Deadman Hill and Cameron Pass snow courses 

showed a significant decrease in SWE and snow density (p <0.05, p < 0.1, respectively) from 
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1976 – 2010, while Hourglass Lake did not show a significant change (Table 2.1).  The decrease 

in SWE was greater than the decrease in density.       

 The mean snow density from the snow course dataset is 287 kg/m3 with a standard 

deviation of 64.8 kg/m3, and the data appear to be normally distributed (Figure 2.5a).  SWE and 

snow depth have a greater standard deviation (178 mm, 0.46 m, respectively) compared to their 

mean (275 mm, 0.92 m, respectively) than that of snow density (Figure 2.5b-c).  Pairwise scatter 

plots of all variables used within the regression model are shown in Figure 2.6.  Snow density is 

most highly correlated with Julian day, and also shows a strong positive correlation with snow 

depth and negative correlation with UTM Easting (Table 2.2). 

Seven models were evaluated based on favorable results from the automated variable 

selection procedures.  Table 2.3 shows the independent variables used within each test model and 

summarizes the model calibration statistics. The performance statistics of model number 1, with 

independent variables of Julian day, snow depth, elevation, and UTM Easting, were shown to be 

the best, and was thus selected as the final regression for modeling snow density.  The final 

equation shows the following form: 

 

ess UTMxzxdDOY 32 1072.11053.32.1705.1841 −− −+++=ρ  (2.6), 

 

where ρs is snow density, DOY is Julian day, ds is snow depth, z is elevation, and UTMe is UTM 

Easting.  The variance inflation factor (VIF) is below 4 for each variable within the final model, 

suggesting that multicollinearity between independent variables is not observed.  The residuals 

of the regression model are normally distributed and do not violate the underlying assumptions 

of the regression (normality, linearity, homoscedasticity) [Kutner et al., 2005]. 
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 The calibrated model underestimated more dense snowpacks and overestimated less 

dense snowpacks (Figure 2.7ai), while calculated SWE showed generally unbiased residuals that 

tended to slightly increase with increasing observed SWE (Figure 2.7bi).  Performance statistics 

calculated from the residuals of calibration with the original dataset showed that predicted snow 

density explained 51% of the total variance in the data with a RMSE of 45.31 kg/m3, yet, 

calculated SWE was able to explain 94% of the variance in the data and had a RMSE of 4.4 cm 

(Table 2.4).   

Various methods of model verification were performed to test the utility of the regression 

model, including cross verification, that all showed similar trends (Figure 2.7) and comparable 

error estimates (Table 2.4) to model calibration.  As expected, a minor increase in error 

estimation was observed for model verification with independent data, yet the minimal increase 

in error shows that the regression model should be transferable to independent data within the 

bounds of the original dataset. 

 

2.5 Discussion 

The snow density model developed for the study area performed relatively well in 

modeling SWE from independent snow depth measurements (Table 2.4).  RMSE estimates of 

predicted SWE ranged from 4.4 cm (calibration data) to 6.6 cm (independent field verification 

data).  Only 0.26% (n=11) of the verification data showed a residual value outside of one 

standard deviation of SWE from the original dataset (17.8 cm).  Additionally, 80% of all residual 

values (n = 2768) fell within the range ±5 cm.  The variance of the model residuals were on 

average within 12.8% of the observed value.  Within site variability of SWE has been 

conservatively estimated to be 15 – 25% [Jonas et al., 2009], which suggests that the error 
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observed from the model is within the natural range of SWE variability at a site [Fassnacht et al., 

2008].  The small range of error suggests that predicting SWE from snow depth measurements 

though a snow density model works due to the conservative nature of snow density; 52% of 

snow density data values ranged from 250 kg/m3 to 350 kg/m3. 

The main weakness of the model is the limitation of the input data.  The model is 

constricted to its spatial domain, range of physiographic inputs, as well as temporal coverage.  

The model may not be applicable to areas outside of the study area, for elevations that are lower 

than 2408 m or higher than 3261 m, or for snow depths shallower than 0.20 m or deeper than 

2.52 m.  The snow course data were collected on or about the 1st of the month from January 

through June, and thus the model may be less suitable for mid-month days, and may not be 

useful before January 1st or after June 1st.  Finally, the trend analysis of historic snow course data 

suggests that a significant decrease in snow density has been occurring at some of the operational 

snow course stations.  This non-stationarity of the data illustrating a change in climate should be 

considered, as historic measurements may not be accurately representing current and future 

snowpack trends. 

Similar snow density models have been developed from historic data for different 

domains.  Jonas et al. [2009] developed a set of regression equations driven by snow depth, day 

of year, elevation, and region for the Swiss Alps to model snow density while Sturm et al. [2010] 

employed a statistical method based on Bayesian analysis, using snow depth, day of year, and 

climate class to estimate snow density for the United States, Canada, and Switzerland.  The 

principle behind these previous studies as well as our research shows that snow density is a 

conservative variable that varies spatially much less than snow depth and SWE.  The previous 

studies used spatial domains that are orders of magnitude larger than what has been presented 
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here, yet the current data are at a finer resolution.  While there are differences in modeled scale, 

favorable results have been observed in each approach, suggesting this method is applicable for 

basin-wide, regional, and global scales.   

The strength and utility of the model developed here is its ability to estimate SWE from 

the most easily measured variable snow depth.  This can improve snowpack estimates across 

varying domains of interest.  This method is especially useful for field-based snow surveys at the 

basin scale, in which many snowpack measurements are required, and the assumption of a 

constant snow density [Lopéz-Moreno et al., in review] across the study area is not valid. The 

snow density model is simple to develop and to employ and an effective tool for obtaining 

estimations of SWE from snow depth measurements across basin scale domains.  

 

2.6 Conclusions 

This study has developed a method for modeling snow density across a basin scale study 

area from historical snow course measurements. Snow density was modeled to develop a reliable 

method for estimating SWE from snow depth.  Historical NRCS snow course data from 17 snow 

courses within the study area were used as the basis for the analysis.  Input data of snow depth, 

day of year, elevation, and UTM Easting were used within a multiple linear regression model to 

predict snow density (Equation 2.6).  The model explained 51% of the total variance of snow 

density with a RMSE of 45.31 kg/m3, and 94% of the variance of calculated SWE with a RMSE 

of 4.4 cm.  Performance statistics from verification procedures illustrates that the model is 

transferable to independent data within the bounds of the original dataset.  The majority of 

residual values (80%) from estimated SWE fell within the range of ±5 cm, and the variance of 

model residuals were on average within 12.8% of the observed value, which is similar to the 
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range of variability of SWE expected at a site.  The method described here for modeling snow 

density provides a reasonable pathway for estimating SWE from snow depth measurements, and 

should be considered when evaluating snowpack properties at the basin scale.     
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Table 2.1: Sen’s slope estimate for historic April 1st SWE and April 1st snow density at snow 
courses within the study area. [Significance as follows: + = p < 0.1, * = p < 0.05, ** = p < 0.01]. 

Snow Course Variable Record n Sen's slope 
estimate [ /100yr ] Significance 

Cameron Pass 
SWE [mm] 

1936 - 2010 75 0  
1976 - 2010 35 -453 + 

ρs [kgm-3] 
1936 - 2010 75 -14.7  
1976 - 2010 35 -149 + 

Deadman Hill 
SWE [mm] 

1937 - 2010 70 -78.7 + 
1976 - 2010 33 -400 * 

ρs [kgm-3] 
1937 - 2010 70 -42.3 * 
1976 - 2010 33 -155 * 

Hourglass 
Lake 

SWE [mm] 
1938 - 2010 71 -51.6  
1976 - 2010 35 -182  

ρs [kgm-3] 
1938 - 2010 71 -15.4  
1976 - 2010 35 -18   

 
Table 2.2: Correlation pairs (Pearson’s r) between snow density, snow depth, Julian day, 
elevation, UTM Northing, and UTM Easting. 

 ρs ds DOY z UTMn UTMe 
ρs --- 0.39 0.62 0.24 -0.03 -0.35 
ds  --- 0.17 0.64 -0.18 -0.40 

DOY   --- 0.03 0.03 -0.08 
z    --- -0.17 -0.13 

UTMn     --- 0.03 
UTMe      --- 
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Table 2.3: Snow density regression model calibration statistics.  Variable notes: Julian day 
(DOY), snow depth (ds), elevation (z), UTM Easting (UTMe), UTM Northing (UTMn). 

Model 
Number Independent Variables VIF AIC Adjusted 

R2 

1 DOY, ds, z, UTMe 1.04, 2.12, 1.78, 1.22 34132 0.51 
2 DOY,ds,UTMn,UTMe 1.03, 1.26, 1.04, 1.19 34184 0.51 
3 DOY,z,UTMn,UTMe 1.01, 1.05, 1.03, 1.02 34179 0.51 
4 DOY,z,UTMe 1.01, 1.02, 1.02 34177 0.51 
5 DOY,ds,UTMe 1.03, 1.22, 1.19 34182 0.51 
6 DOY,ds,z 1.04, 1.78, 1.72 34425 0.47 
7 DOY,ds 1.03, 1.03 34440 0.46 

 
 

Table 2.4: Snow density regression final model performance statistics for snow density and 
SWE prediction. 

Verification Dataset n 
Snow Density Prediction SWE Prediction 

NSCE MAE 
(kg/m3) 

RMSE 
(kg/m3) NSCE MAE 

(mm) 
RMSE 
(mm) 

Snow course Calibration 3262 0.51 35.0 45.31 0.94 31.21 43.88 
10-Fold Cross Verification 3262 --- --- 45.38 --- --- --- 
Independent Field Data 84 0.58 34.0 43.52 0.92 35.87 66.38 
Independent SNOTEL Data 121 0.51 45.31 63.41 0.88 43.41 57.58 
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Figure 2.1: Coefficients of variation of snow density, SWE, and snow depth for the beginning of April from historic operational snow 
course measurements [1936-2010, n=955] within the Cache la Poudre basin study area, Colorado. 
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Figure 2.2: Pairwise relations of SWE, snow depth, and snow density from historic snow course 
measurements [1936-2010, n=955] within the Cache la Poudre basin study area.  
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Figure 2.3: Box-and-whisker plots of five physiographic variables in relation to snow density 
from historic snow course measurements within the Cache la Poudre basin study area, Colorado. 
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Figure 2.4: Historic trends of April 1st SWE (2.4a) and April 1st snow density (2.4b) at the 
Cameron Pass snow course, Colorado.  
 

 

 

slope [1937-2010] = -0.01 

slope [1937-1976] = 6.27 slope [1976-2010] = -4.05 

0

200

400

600

800

1000

1200
A

pr
il 

1s
t S

W
E 

[m
m

] 
a 

slope [1937-2010] = -0.12 

slope [1937-1976] = 1.25 slope [1976-2010] = -1.25 

0

100

200

300

400

500

600

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

A
pr

il 
1s

t S
no

w
 D

en
si

ty
 [k

g/
m

3 ]
 

Year 

b 



30 
 
 

 

 

 

Figure 2.5: Distribution of snow density, SWE, and snow depth from historic operational snow 
course measurements [1936-2010, n=3262] within the study area. 
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Figure 2.6: Snow course database pairwise scatterplots of snow density (ρs), snow depth (ds), 
Julian day (DOY), elevation (z), UTM Northing (UTMn), and UTM Easting (UTMe). 
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Figure 2.7: Modeled versus observed snow density and SWE calibration and verification data plotted for the snow density multiple 
regression model. 
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CHAPTER 3: BASIN SCALE SWE VARIABILITY 

3.1 Introduction  

Knowledge of the spatial distribution of SWE in mountainous areas of the western United 

States is crucial for accurate forecasting of water availability and flood potential (through 

snowmelt runoff), as well as successful management of water resources.  Snow influences and 

intersects hydrologic, atmospheric, and biologic systems, thus the ability to describe the 

distribution of snow across space is also important for understanding processes that govern these 

systems (e.g., energy, water, and biogeochemical cycling) [e.g., Deems et al., 2008, among 

others].   

The spatial variability of the snowpack in mountainous regions is particularly challenging 

to characterize due to complex topography that induce strong and highly variable meteorological 

gradients.  Additionally, efforts to assess the variability of the snowpack are constrained by the 

scale of the available measurements (measurement scale), which is often different than the 

natural range of variability of the snowpack at a given scale (process scale) [Blöschl, 1999].  

Representing the process scale of SWE distribution with field-based snowpack measurements is 

considerably challenging due to the spatial heterogeneity of the snowpack, time intensive nature 

of field measurements, as well as inaccessibility due to extensive distances of backcountry travel 

and avalanche danger.   

Despite these challenges, recent studies (e.g., Elder et al., 1998; Balk and Elder, 2000; 

Windstral et al., 2002; Fassnacht et al., 2003; Molotch and Bales, 2005) analyzing the spatial 

distribution of the snowpack have shown considerable success through emphasizing the 

statistical relationship between snow properties and terrain characteristics; however, the majority 

of studies using field-based measurements have analyzed study watersheds that are less than 100 
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km2 in area.  There is a need for assessment and evaluation of 1.) how terrain variables may be 

used to describe the spatial distribution of the snowpack at the basin scale, which is the scale of 

most interest in terms of water resources management, and 2.) remote sensing observations of the 

snowpack at this scale.  We define the “basin scale” as the size of the 8-digit United States 

Geological Survey (USGS) hydrologic unit code (huc) basin, which commonly ranges from 

500km2 to 5,000km2.  The majority of studies analyzing this scale of interest have only utilized 

operational snow measurements as input data [e.g., Fassnacht et al., 2003; Harshburger et al., 

2010], which Bales et al. [2006] suggest may not be available at fine enough of resolution to 

describe the variability at the basin scale.  Thus, this study uses a combination of operational 

SNOTEL and snow course measurements, as suggested by Dressler et al. [2006], as well as 

supporting field-based snowpack measurements to analyze the spatial variability and observable 

patterns of SWE at the basin scale.  Analysis of these snowpack measurements at this scale of 

interest may provide insight of which processes are most important for driving the variability of 

the snowpack at the basin scale.        

 

3.2 Methods 

3.2.1 Snowpack Measurements 

3.2.1.1 Operational Measurements 

Operational snowpack measurements of SWE, snow depth, and calculated snow density 

collected by NRCS personnel at snow courses within the study area as well as automated 

SNOTEL stations within the study area were used in this study.  Tables 1.1 and 1.2 provide a 

description of the operational measurements located in and near the study area.  
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3.2.1.2 Field-based Measurements 

Field-based snow surveys within the study area were completed on or about April 1st 

2011 and 2012 (see Chapter 1 for a detailed explanation of sampling protocol).  Each of the 

field-based surveys included multiple transects, with each transect consisting of a number of 

snowpack sampling locations at a spacing of approximately 500 meters (Figure 1.4).  The 

location of snow survey transects were selected based on accessibility as well as representation 

of snow producing regions within the study area.  Richer (2009) showed that elevations above 

3000 m have the highest probability of snow cover within this study area and that the snow cover 

depletion within elevation zone from 2680 m to 3042 m may be very important in terms of 

hydrograph dynamics.  Therefore, transects of sampling locations for this study were focused 

around the elevation range of 2500 – 3500 m.  The high elevation areas located around the 

Colorado State University Pingree Park Campus, Cameron Pass, and Deadman Hill were the 

regions of focus within the Cache la Poudre basin (Figure 1.4).  A total of 42 field sampling 

locations (14 locations with no snow) were monitored about April 1, 2011 and 121 field 

sampling locations (14 locations with no snow) on and about April 1, 2012.  SWE was estimated 

at all sampling locations where SWE was not directly measured by using our snow density 

model (see Chapter 2).   

The 2011 field-based snow survey was completed over the span of three days (3/31/11 – 

4/2/11), while the 2012 survey was completed over four days (3/29/12 – 4/1/12).  No new 

snowfall was observed at any SNOTEL station within the study area during the 2011 or 2012 

survey time period, thus changes to the snowpack during these periods were due to melt, 

compaction, and/or metamorphism.  Changes to snow density over these short periods of time 

were likely minimal, therefore snow density was not adjusted.  However, changes in snow depth 
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were accounted for using daily SNOTEL snow depth measurements to normalize the field-based 

snow depth measurements to a single date for each survey.  The average change in snow depth 

among SNOTEL stations was added to our field-based snow depth measurements outside of the 

normalized date to adjust for the change in snow depth over that period (Table 3.1).  Snow depth 

measurements from the 2011 survey were normalized to April 2, while 2012 measurements were 

normalized to March 31.     

 

3.2.2 Forest Canopy Measurements 

Forest canopy data were collected at each field-based sampling location during the April 

1, 2012 snow survey.  Categories of canopy cover, community type, and tree mortality were 

noted for the tree canopy covering each set of measurement points (Table 1.4).  It should be 

noted that these categorical measurements taken by the field-worker at each location were 

considered subjective as a standard numerical measurement for each category was not used.  The 

forest canopy measurements were used to assess how the forest canopy variables may be 

impacting the distribution of snow depth.   

 

3.2.3 Physiographic and Biological Predictor Variables 

Physiographic and biological variables that were thought to potentially drive the spatial 

distribution of snow at the scale of interest were derived from a 30 m resolution digital elevation 

model (DEM) of the study area.  The DEM was downloaded from the USGS National Elevation 

Dataset (NED) [<seamless.usgs.gov>].  A value for each of the derived physiographic and 

biological variables (spatial data grids) was extracted for each sampling location based on its 

corresponding 30 m DEM pixel.  A description of the derivation and importance of each of the 
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spatial data grids is provided below.  For simplicity, physiographic and biological variables will 

be referred to as physiographic variables heron in.             

 

3.2.3.1 Location 

Location within the study area is represented by Universal Transverse Mercator (UTM) 

Zone 13 N Northing and Easting coordinates for each field-based and operational sampling 

location.  A 30 m resolution spatial data grid of UTM Northing and Easting was created for the 

study area in ArcGIS by assigning the centroid UTM value for each pixel.  Spatially continuous 

coordinates of latitude and longitude can be correlated with the distribution of snow in various 

ways that depend on site location and scale.  Previous studies have used distance to a mountain 

barrier and distance to ocean or source of moisture [e.g., Fassnacht et al., 2003; López-Moreno 

and Nogués-Bravo, 2006], which can also be represented by longitude for the study site due to its 

geographic orientation.  Furthermore, given the scale of the study, latitude and longitude 

represent different regions within the study area that are thought to display different patterns of 

snow accumulation and ablation due to the variability of meteorology and storm tracks. 

 

3.2.3.2 Elevation 

Elevation was extracted for each sampling location directly from the 30 m DEM.  Snow 

accumulation has long been shown to be a function of elevation [e.g., Washichak and 

McAndrew, 1967; Dingman, 1981] due to orographic precipitation patterns and the effect of air 

temperature [Doesken and Judson, 1996]. 
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3.2.3.3 Slope 

Slope was derived from the 30 m DEM using the Spatial Analyst tools within ArcGIS to 

provide an output spatial data grid with a value of slope (in degrees) for each pixel.  The degree 

of slope impacts the stability of the snowpack (influencing snow accumulation and 

redistribution) and input of solar radiation (influencing melt) [Anderton et al., 2004].  Previous 

studies have successfully used slope angle as an explanatory variable within statistical models 

describing the distribution of snow [e.g., Erxleben et al., 2002; Winstral et al., 2002].  

      

3.2.3.4 Northness and Eastness 

Aspect (in degrees) was also derived from the 30 m DEM using the Spatial Analyst tools 

within ArcGIS.  Aspect can be problematic as an independent variable due to its continuous 

range of 0 to 360 degrees, thus normalizing this variable is necessary.  Degrees of northness and 

eastness were calculated to normalize the aspect variable [Fassnacht et al., 2001; Fassnacht et al., 

2012].  Degree of northness is the product of the cosine of aspect and the sine of slope [Molotch 

et al. 2005], while degree of eastness is the product of the sine of aspect and the sine of slope.  

Exposure of slope aspect controls solar radiation input, which influences snowpack stability, 

densification, and ablation [McClung and Schaerer, 2006].   

      

3.2.3.5 Solar Radiation 

Solar radiation was derived using the Area Solar Radiation tool in ArcGIS, which 

calculates incoming solar radiation across a DEM surface for a specified time interval.  Given the 

latitude of the study area, the cumulative clear sky solar radiation (in WH/m2) from November 

15 through March 30 was calculated for each pixel.  Cumulative incoming solar radiation is 
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calculated based on solar zenith angle and terrain shading, and does not consider the influence of 

forest canopy.  Previous studies have successfully used solar radiation spatial data grids derived 

by similar methods within statistical models describing the distribution of snow [e.g., Elder et 

al., 1998; Anderton et al., 2004; Erickson et al., 2005].      

 

3.2.3.6 Curvature 

Profile curvature was derived from the 30 m DEM using the Spatial Analyst tools within 

ArcGIS to provide an output spatial data grid with a value of curvature for each pixel.  Curvature 

is defined as the second derivative of the surface (slope of the slope) [Kimerling et al., 2011].  

This variable represents the local relief of terrain (i.e. concavity or convexity) in the direction of 

maximum slope, which, in terms of snow accumulation, primarily accounts for wind drifting 

from high exposure areas with steep slopes to low lying gullies [Blöschl et al., 1991a].   

Maximum upwind slope [Winstral et al., 2002] is a terrain-based variable that has been 

shown to account for redistribution of snow by wind, which is especially important in alpine 

areas.  However, this variable requires the knowledge of predominant wind direction to account 

for upwind terrain features, which is not measured across a basin scale, requiring a modeling 

approach [Liston and Sturm 1998], thus was not used for this study.      

   

3.2.3.7 Canopy Density 

Canopy density was obtained from the National Land Cover Database (NLCD 2001) 

[<http://www.mrlc.gov>].  Canopy density is derived from Landsat Enhanced Thematic 

Mapper+ (ETM+) circa 2001 satellite data and DEM derivatives [Homer et al., 2007].  The 

canopy density spatial data grid provides an estimated percentage of canopy cover for each pixel 
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at a 30 m resolution.  Canopy density can influence how snow is distributed across space as it is 

directly related to the amount of snow that is intercepted in the tree canopy.  Snow sublimation 

from snow intercepted within the forest canopy is a major component of the overall water 

balance [Pomeroy and Gray, 1995]. 

 

3.2.4 Bivariate Analysis 

Pairwise scatterplots of physiographic variables at each measurement location were 

created to assess the relation of these variables with each other.  A correlation matrix was created 

for the Pearson correlation coefficient amongst all pairs of physiographic variables.  The 

bivariate relations of all field-based and operational snow depth and SWE measurements with 

associated physiographic variables were then analyzed.  Regression analyses of snow depth and 

SWE with the physiographic variables was performed and the strength of these regressions was 

evaluated.  The strength of each regression was determined by selection of linear or non-linear 

(exponential, logarithmic, power) equation that provided the strongest coefficient of 

determination (R2).  Coefficient of determination values that showed explanation of less than 10 

percent of the variance in the data were not reported on the scatterplot.  Plots showing the mean 

SWE among ranges (evenly divided among the dataset) of each physiographic variable were also 

analyzed. 

Bivariate relations (analysis of two variables, X, Y) were assessed among subsections of 

the entire dataset for 2011 and 2012.  Regression relations among operational SWE 

measurements (field-based measurements removed) were analyzed for comparison of observed 

trends of the combination of field and operational-based data.  Also, the 2011 and 2012 datasets 

were split into groups of stations located in close proximity to the Cameron Pass, Deadman Hill, 
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and Hourglass Lake operational sites to see how relations with physiographic variables may 

change regionally across the study area.   

Summary statistics of the bivariate relations among the forest canopy cover variables and 

snow depth measurements were also analyzed.  Box and whisker plots were used to summarize 

and compare the mean and variance of snow depth measurements among each forest canopy 

category. 

 

3.2.5 Multiple Linear Regression 

Multiple linear regression (Equation 2.2) was used to model April 2, 2011 and March 31, 

2012 SWE based on its relation with independent physiographic variables identified above (see 

Chapter 2 for a detailed description of multiple linear regression).  Multiple linear regression 

models were developed using both field and operational-based snowpack measurements and also 

operational measurements only.  At the scale of interest, operational data are commonly the only 

snowpack data available, thus it is useful to compare the results from operational data only those 

results obtained from using operational data and additional field-based measurements.  It is 

thought that with the inclusion of additional field-based measurements, a more representative 

dataset of the study area can be provided.  The following notation will be used in this study: 

modelO+F will refer to the multiple regression model using both field and operational-based snow 

measurements and modelO will refer to the multiple regression model using operational-based 

snow measurements only.  A total of four regression models will be developed: modelO+F11 (field 

and operational data from WY 2011), modelO11 (operational data from WY 2011), modelO+F12 

(field and operational data from WY 2012), and modelO12 (operational data from WY 2012).  

The statistical software R [Ihaka and Gentleman, 1996] was used for all statistical analyses. 
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The independent variables to be included in the multiple linear regression models were 

selected based on two automated procedures, stepwise regression and all-subsets regression.  A 

stepwise regression procedure was completed to determine which combination of variables 

would provide the lowest resulting AIC statistic (see Chapter 2) [Akaike, 1974].  Additionally, 

an all-subsets regression procedure was performed, assessing the Mallows’ Cp criterion (see 

Chapter 2) [Mallows, 1973].  Models were selected based on favorable results from the 

automated variable selection procedures.  The variance inflation factor (VIF) was used to 

quantify the severity of multicollinearity between independent variables (see Chapter 2).  Each of 

the final regression models were selected based on analysis of lowest multicollinearity, minimum 

AIC criterion, as well as MAE (Equation 2.4) and RMSE (Equation 2.5) performance statistics 

calculated during model calibration.   

To assess the accuracy of the final multiple linear regression models, a 10-fold cross 

verification, which runs 10 iterations of removing a random selection of the dataset and fitting 

the regression to the remainder of the data, was used to compare modeled values to the observed 

values removed for each iteration.  Verification with independent field-based measurements was 

also completed to test the transferability of modelO11 and modelO12 to predict independent data.  

Performance of model verification was determined from the residuals of modeled SWE by 

calculation of the RMSE (Equation 2.5) performance statistic. 

  

3.2.6 Basin Scale SWE Interpolation 

The linear multiple regression relationships identified from each model were used to 

interpolate SWE across the study area by calculating the regression equation on a pixel by pixel 

basis across the study area to create raster surfaces of the distribution of SWE.  Snow covered 
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area (SCA), derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra 

8-day 500 m snow cover product, was used to define the extent of snow cover across the study 

area and mask the interpolation surface to the extent of the snow cover.   

Finally, summary statistics of the interpolated SWE surfaces were calculated for the 

entire study area as well as for each of the elevation zones identified by Richer [2009] (Figure 

3.18).  Additionally, interpolated SWE Volume was calculated for the study area and each 

elevation zone by the following: 

 

∑= 610
*αSWESWEV          (3.1), 

 

where SWEV is interpolated SWE Volume in 106 m3, SWE is in m, and 30 m pixel size (α) is 

900 m2. 

 

3.3 Results and Discussion 

3.3.1 Snowpack Measurements 

A total of 51 and 127 snowpack measurements (both field and operational-based) were 

analyzed from the April 2, 2011 (WY 2011) and March 31, 2012 (WY 2012) snow surveys, 

respectively (Figure 3.1).  WY 2011 and 2012 snowpack measurement datasets show that mean 

SWE and snow depth from 2011 were greater than 2012, yet the mean snow density and standard 

deviation of snow density was shown to be consistent among both years (Table 3.2).  The WY 

2011 was the maximum snow year on record within the study area, while WY 2012 was one of 

the minimum years on record (Figure 1.2); thus WY 2011 snowpack measurements were shown 

to have a higher mean SWE and snow depth, but also had a greater range of variability (Table 
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3.2a) than that of WY 2012 (Table 3.2b).  From the average SWE among SNOTEL stations 

within the study area, the April 1st snow survey occurred before peak SWE in 2011, however, 

occurred after peak SWE in 2012 (Figure 3.2).  Analysis of the April 1st snowpack from these 

two water years allows for the comparison between the two extreme snow years (maximum and 

minimum) as well as between two different stages of the niveograph (during accumulation and 

melt). 

 

3.3.2 Physiographic Variable Distributions 

Physiographic variables derived within GIS at each of the snowpack measurement 

locations have similar averages when compared to the basin-wide variable average for both 2011 

(Table 3.3a) and 2012 (Table 3.3b).   Histograms of relative frequency (Figure 3.3) show that the 

distribution of physiographic variables sampled in 2011 and 2012 is similar to the basin-wide 

distribution of these variables, suggesting that the snowpack measurement locations sampled 

during WY 2011 and WY 2012 are representative of the variability of physiography among the 

entire study area.  The range of values of physiographic variables observed at operational 

stations tended to be smaller than the field-based station ranges (Figure 3.3), which also 

suggests, the combination of field and operational-based measurements are more representative 

of the physiography of the basin than the operational-based measurements alone.  A formal 

Kolmogorov-Smirnov test (K-S test) for equality of distributions between a random sample (n = 

244) of the continuous physiographic variables within the 50% Snow Cover Index (SCI) [Richer 

et al., in review] of the basin versus the variables associated with the WY 2011 and WY 2012 

measurement locations was completed (Table 3.4).  The K-S test shows that during both years 

the difference between the two samples for curvature, eastness, and canopy density is not 
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significant enough (95% significant level) to say they have a different distribution.  However, a 

significant difference between the distributions of elevation, slope, northness, and solar radiation 

was observed for both years.  The difference in elevation is obvious since field data are located 

more at higher elevations than the entire domain (Figure 3.3a), and the operational data tend to 

be located in a small elevation zone [Fassnacht et al., 2012].  Northness is highly correlated to 

solar radiation, and both are related to slope so the significance difference for each of these 

variables may be based on their correlation.  For safety purposes manual measurements tend to 

occur in flatter regions, so steeper slopes can be underrepresented.     

 

3.3.3 Bivariate Analysis 

3.3.3.1 Physiographic Variables 

Pairwise scatterplots of all physiographic variables and snowpack measurements for each 

measurement location are shown in Figure 3.4a (WY 2011) and Figure 3.4b (WY 2012).  

Snowpack variables were shown to have a strong correlation with each other, with SWE and 

snow depth showing the strongest relation (consistent with the findings of Chapter 2), while also 

showing to be highly correlated with elevation (Table 3.5).  Additionally, northness and solar 

radiation were strongly correlated with each other (Table 3.5). 

Each of the physiographic variables in the bivariate scatterplots from WY 2011 and WY 

2012 are similarly related to both SWE (Figure 3.5i) and snow depth (Figure 3.5ii) due to the 

strong correlation between SWE and snow depth.  Given this similarity, the results of SWE, the 

main hydrologic variable of interest, will subsequently only be reported.  The strength of each 

bivariate regression relation from WY 2011 and WY 2012 was evaluated, and elevation (R2 = 

0.56, R2 = 0.45, respectively), UTM Northing (R2 = 0.30, R2 = 0.01, respectively), and UTM 
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Easting (R2 = 0.48, R2 = 0.15, respectively) were the only relations that explained greater than 

ten percent of the variance in SWE.  Linear regression showed the strongest R2 for each of these 

relations.  These bivariate relations suggest elevation and UTM coordinates should be included 

as independent variables for the multiple linear regression modeling of SWE.    

SWE increased with increasing elevation (Figure 3.5ai), with the steepness of this slope 

being greater in WY 2011 than 2012; mean SWE increased among ranges of elevation that 

evenly divided each dataset (Figure 3.6a).  The strength of the regression relation between SWE 

and elevation for WY 2011 and WY 2012 suggests that elevation is the most important 

physiographic variable for driving the distribution of SWE across the study domain, which is 

consistent with previous findings from studies evaluating SWE at the basin scale [e.g., Fassnacht 

et al., 2003; Jost et al., 2007; Harshburger et al., 2010].  As UTM Northing increases, SWE 

decreases in WY 2011 (Figure 3.5bi, Figure 3.6b), suggesting northern regions of the study area 

receive less snow than southern regions [as suggested by James Meiman, pers. comm., 2010], yet 

this trend was not apparent in the low snow year of 2012.  The apparent greater accumulation of 

snow in southern regions of the study area could be related to an upwind elevation gradient, with 

high peaks of Rocky Mountain National Park located in the southern portion of the study area, or 

due to the possibility of a dominant storm track that preferentially precipitates in southern 

regions before moving northward.  SWE also decreased with increasing UTM Easting (Figure 

3.5ci, Figure 3.6c), which corresponds with both the effect of orographic precipitation within the 

study area (the continental divide is located on the western border of the study area), and also 

lower elevation regions receiving less snow than higher elevation regions.  The other 

physiographic variables that are known to influence snow accumulation (e.g., forest canopy, 

aspect, and slope) did not exhibit a strong linear trend based on their bivariate relations with 
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SWE; however, they may still be important in explaining variability of the datasets once the 

trends of elevation and UTM coordinates have been removed.  

Bivariate relations among operational SWE measurements (field-based measurements 

removed) show similar trends observed when including field-based data, with a stronger relation 

between SWE and elevation, and weaker relations between SWE and UTM coordinates (Figure 

3.7).  Also, the WY 2011 and WY 2012 datasets show that elevation and UTM coordinates 

generally show stronger trends explaining the variance of SWE when the datasets are split into 

regional groupings (Figure 3.8).  These trends are much more apparent in the WY 2011 dataset 

(Figure 3.8i), as this maximum snow year showed much greater variation in snow amounts than 

WY 2012 (Figure 3.8ii).   

 

3.3.3.2 Forest Canopy Cover Variables 

Summary statistics of the bivariate relations among the forest canopy cover variables and 

snow depth measurements from WY 2012 are provided in Table 3.6.  Box and whisker plots 

(showing the median, interquartile range, and entire range) of the forest canopy cover categories 

show that open forest category showed a greater median snow depth, and a greater range of 

variability, than the partially closed and closed categories (Figure 3.9).  Partially closed canopy 

had a greater median snow depth than the closed canopy.  The alpine community type had a 

greater median snow depth and also a greater range of variability than the lodgepole pine and 

spruce-fir forest communities (Figure 3.10).  The tree mortality categories show that all 

categories have a similar range of variability, yet the dead-gray mortality stage had a greater 

minimum, median, and maximum snow depth than the alive-green and dead-red stages (Figure 

3.11). 
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These results suggest that snow depth tends to be deeper in open areas or disturbed areas 

in which needles are no longer present on trees compared to closed canopy with needle bearing 

trees.  This difference is likely due to an increase of snow sublimation in closed canopy with 

needle bearing trees that is promoted by canopy interception of snow [Pomeroy and Gray, 1995], 

which is consistent with recent research on the impact of forest disturbance on snow distribution 

[e.g., Pugh and Small, 2011; Boon, 2012].  Given that the forests in northern Colorado are 

changing drastically due to disturbances from the mountain pine beetle (MPB; Dendroctonus 

ponderosae) and spruce bark beetle (SBB; Dendroctonus rufipennis), as well as other forest 

disturbances, such as wildfires, it should be considered that the canopy density (NLCD, 2001) 

spatial data grids used within this study may no longer provide current and accurate values of 

canopy density.  Use of a more accurate and up to date forest cover dataset could allow for 

greater insight into how the changing forest may be influencing the distribution of snow.       

      

3.3.4 Multiple Linear Regression 

Multiple linear regression was used to model SWE for April 2, 2011 and March 31, 2012 

with the field-based and operational snowpack dataset (modelO+F) and the operational snowpack 

dataset only (modelO).  A total of six combinations of independent variables were tested for each 

model based on favorable results from the automated variable selection procedures.  Table 3.7 

and Table 3.8 show the final independent variables used within each model and summarize 

model calibration statistics for modelO+F and modelO, respectively.  The following notation was 

used for independent variables within the regression models: UTM Easting (UTMe in m), UTM 

Northing (UTMn in m), eastness (E), slope (S in degrees), elevation (z in m), cumulative solar 
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radiation (SolRad in WHm-2), curvature (C in hm-1), and canopy density (cd in %)  Equations for 

modelO+F11, modelO+F12, modelO11, and modelO12 are provided below, respectively: 

 

zSEUTMxUTMxxSWE neFO 743.048.41811047.31034.11098.1 324
11 +−+−−= −−

+      (3.2), 

 

zSolRadxUTMxUTMxxSWE neFO 414.010701.01071.11088.11079.7 2333
12 +−+−−= −−−

+  (3.3), 

 

CzUTMxxSWE eO 100843.01011.91095.1 33
11 −+−= −                    (3.4), 

 

zSEcdUTMxxSWE nO 492.088.2189638.01020.21012.1 34
12 +−+++−= −

          (3.5), 

 

where, SWE is in mm.  ModelO+F11 explains 86% of the total variance (R2
adj = 0.84) with an 

RMSE of 10.3 cm and all coefficients are statistically significant at the 95% significance level, 

whereas 50% of the total variance (R2
adj = 0.48) with a RMSE of 7.8 cm was observed for 

modelO+F12, with all coefficients being statistically significant at the 95% significance level, 

except for solar radiation, which is significant at the 90% level. The WY 2011 operational model 

(modelO11) explains 89% of the total variance (R2
adj = 0.87) with an RMSE of 8.7 cm and all 

coefficients are statistically significant at the 99% significance level.  Lastly, ModelO12 explains 

82% of the total variance (R2
adj = 0.76; p < 0.001) with a RMSE of 5.6 cm.  All coefficients of 

modelO12 are statistically significant at the 95% significance level, with the exception of solar 

radiation, which is significant at the 90% significance level and canopy density which is not 

statistically significant at the 90% level.  The variance inflation factor (VIF) is below 4 for each 
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variable within all four of the multiple regression models, suggesting that multicollinearity 

between independent variables is not observed.  Also, the residuals of each regression model do 

not violate the underlying assumptions of the regression (normality, linearity, homoscedasticity) 

[Kutner et al., 2005].   

A comparison of the error estimation between WY 2011 and WY 2012 models shows 

that the modelO+F11 has a greater typical magnitude of error (RMSE) than modelO+F12, yet 

describes more of the variance in the data (R2) (Table 3.7).  Similarly, modelO11 has a greater 

RMSE and lower R2 value than modelO12, but the difference between these two models is less 

(Table 3.8).  The difference among these performance statistics can partially be explained by the 

nature of each snow year (WY2011 was the maximum snow year and WY2012 was amongst the 

lowest) and sampling scheme.  WY 2011 showed much more variation in snow amounts WY 

2012, which could explain the difference in the RMSE.  Additionally, the greater number of 

measurement locations (n = 127) in WY 2012 compared to WY 2011 (n = 51) could further 

explain the difference in R2 between modelO+F11 and modelO+F12.  Given this difference in field-

based sampling locations, a reduced modelO+F  for WY 2012 was developed including only WY 

2012 field-based measurement locations that were co-located with WY 2011 measurement 

locations (n = 42).  The reduced model included UTM Easting, UTM Northing, elevation, 

eastness, and northness as independent variables and explained 66% of the total variance with an 

RMSE of 6.6 cm (Figure 3.12b).  These results show an improvement from the full model 

(modelO+F12), suggesting that fewer data points may be increasing the model’s ability to describe 

the variance of the data.  Also, the reduced model showed a lower R2 value than modelO+F11 

which suggests that the model performs better for the 2011 snow year due to the greater range of 

observed variability in the data.    
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Despite WY 2011 being a maximum snow year and WY 2012 being a minimum snow 

year, the variables driving each SWE regression were similar; including elevation, location 

within the basin (UTM Easting and/or UTM Northing), and a variable related to slope, aspect, 

and/or curvature.  The inclusion of elevation, latitude, and longitude within each regression as 

well as the bivariate relations of these variables with SWE suggests that these variables may be 

consistent drivers of the spatial variability of SWE at the basin scale.  However, given that 

various studies [e.g., Erickson et al., 2005; Fassnacht et al., 2012] have shown the spatial 

variability of snow accumulation to be described by different physiographic variables from year 

to year, additional years of data collection at the basin scale are needed for evaluation.   

Comparison of the error estimation between modelO+F and modelO for WY 2011 and WY 

2012 shows that modelO has superior performance statistics for both years.  ModelO11 and 

modelO12 showed a similar strong performance to previous research using operational data at a 

comparable scale (e.g., Harshburger et al., 2010).  This strong performance of the operational-

based regression model, however, may not be representing the study area, as SNOTEL 

measurements have been shown to represent point location rather than surrounding areas 

[Molotch and Bales, 2005] often having more snow [Daly et al., 2000], and tend to be located in 

areas with similar physiographic features (flat and open canopy areas located near tree line).       

Ten-fold cross verification for modelO+F11 and model O+F12 both of the field-based 

multiple regression models had similar trends in estimation and comparable error estimates to 

model calibration (Table 3.9).  A minor increase in error estimation was observed for cross 

verification procedures, suggesting each model holds consistent error performance when applied 

to independent data.  Cross verification also had similar trends in estimation and comparable 

error estimates to model calibration with a slight increase in error estimation for modelO11 and 
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modelO12 (Table 3.10).  However, when model verification was completed with independent 

field-based measurements, the RMSE was considerably worse for modelO11, while slightly worse 

for modelO12 (Table 3.10).  This suggests that the strong performance statistics of modelO11 and 

modelO12 do not hold true when applied to independent data.  The modelO verification with 

independent field data shows considerable worse error estimates for WY 2011 when compared to 

the modelO+F11 cross verification results, however, WY 2012 still shows a slight improvement 

over the modelO+F12 cross verification results. 

 

3.3.5 Basin Scale SWE Interpolation 

The multiple regression modelO+F11 and modelO+F12 (corresponding with April 2, 2011 

and March 31, 2012, respectively) were used to interpolate SWE across the entire study domain 

on a pixel by pixel basis (Figure 3.14a and Figure 3.14b, respectively).  The distribution of snow 

cover derived from the regression surfaces compared to the MODIS derived SCA (Figure 3.14) 

shows large errors of the presence/absence of snow.  ModelO+F11 displays large omission errors 

(estimation of no snow where snow was observed) of snow cover, while modelO+F12 shows errors 

of commission (prediction of snow where snow was not observed).  The MODIS derived SCA 

was used to mask the regression surfaces of SWE to only locations where SCA was observed 

(Figure 3.15). However, the omission errors from April 2, 2011 for the model persist.  Although 

the two estimated surfaces differ greatly in magnitude and variability, they show similar patterns 

across space, due to the physiographic variables used in each regression; these are largely driven 

by topography.         

    ModelO11 and modelO12 were also used to interpolate SWE across the study domain for 

comparison with modelO+F11 and modelO+F12 (Figure 3.16).  ModelO for both years show similar 
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errors of omission and commission when comparing the distribution of snow cover calculated by 

the regression surfaces to the MODIS derived SCA (Figure 3.16a and Figure 3.16b, 

respectively).  The modelO regression surfaces were masked to observed MODIS derived SCA 

(Figure 3.17) and showed similar patterns across space to the modelO+F surfaces. 

MODIS SCA shows that snow was present across 53% (1,444 km2) of the Cache la 

Poudre basin study area on April 2, 2011, while covering only 31% (852 km2) of the study area 

on March 31, 2012 (Table 3.11).  Mean interpolated SWE across the study area for modelO+F and 

modelO was greater than the mean SWE among measurement locations (Table 3.2) during WY 

2011 and WY 2012.  The mean April 2, 2011 modelO+F and modelO interpolated SWE across the 

entire study area was 448 mm and 463 mm, respectively, while the interpolated volume of SWE 

across the study area was 445 million cubic meters and 531 million cubic meters, respectively 

(Table 3.11a).  The mean March 31, 2012 modelO+F and modelO interpolated SWE was 255 mm 

and 253 mm, and the interpolated volume of SWE was 215 million cubic meters and 211 million 

cubic meters, respectively (Table 3.11b).  The large difference in WY 2011 interpolated SWE 

between the two models suggests that the operational-based models may tend to over predict the 

distribution of SWE in above average or maximum snow years.     

The elevation zones that were identified by Richer [2009] (Table 3.11; Figure 3.18) were 

used to analyze how the interpolated SWE surfaces compared across elevation zones within the 

study area.  The mean SWE for all four of the SWE surfaces increased with each increasing 

elevation zone (Figure 3.19).  Interpolated SWE volume was also greatest in Elevation Zone 5 

(3,043 – 3,405 m) despite only encompassing 14% of the study area, suggesting this elevation 

zone is the most hydrologically significant zone in terms of a persistent snowpack within the 

study area (Figure 3.20).  Interestingly, despite the differences of interpolated SWE volume 



54 
 
 

observed among the four regression models between years (due to the nature of the maximum 

and minimum snow years) as well between modelO+F11 and modelO11, the percentage of the total 

interpolated SWE volume for each model was distributed similarly among elevation zones 

(Figure 3.21).  The percentage of interpolated SWE volume from Elevation Zone 5 was 52% for 

all models except for the WY 2011 operational-based model in which the percentage was 47%, 

which again suggests a hydrologic significance of this elevation zone.   

Richer [2009] found that Elevation Zone 4, likely representing a snow transition zone, 

exhibited the strongest correlation between snow cover depletion and hydrograph rise within the 

Cache la Poudre study area.  The results discussed here suggest similar findings, as the depletion 

of snow cover within the transitional Elevation Zone 4, which accounts for on average 28% of 

the interpolated SWE volume, likely coincides with an isothermal snowpack following the onset 

of snowmelt within the persistent Elevation Zone 5, from which the hydrograph peak is likely 

derived. 

 

3.3.6 Limitations 

The range of uncertainty of the multiple regression functions (95% confidence limits) that 

stems from the range of variables observed at measurement locations is one of the main 

limitations of this study.  These limitations exist due to the need for additional sampling across 

the basin in regions that are inaccessible to travel.  Extrapolation of the regression equations 

outside of the range of independent variables can yield the greatest uncertainty, e.g., 

interpolating SWE for elevations of 3387 – 4125 m during WY 2011 and elevations of 3448 – 

4125 m during WY 2012.  Another limitation of the study is the omission errors in snow cover 

from the WY 2011 regression surfaces that were discussed previously.  However, these errors are 
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likely minimal considering they are mainly located Elevation Zone 3, which has little persistent 

snow cover throughout the snow season, yielding minimal SWE volume.  Finally, the most 

prominent limitation of this study is attempting to generalize the observed patterns of snow 

accumulation that are dictated by complex atmospheric forcing conditions as well as interactions 

with vegetation and topography.  Jost et al. [2007] suggested that relations derived from studies 

similar to this are better suited to be tested within physically based models that involve the 

processes mentioned above to see if the spatial variability and patterns of SWE observed within 

this study can be reproduced.  Thus, future work should include using a spatially distributed 

snowpack evolution modeling system, such as SnowModel [Liston and Elder, 2006a], to analyze 

the spatial patterns of snow accumulation at the basin scale. 

 

3.4 Conclusion 

This study has used a combination of operational SNOTEL and snow course 

measurements, supporting field-based snowpack measurements, and a snow density model to 

analyze the spatial variability and observable patterns of SWE within the Cache la Poudre basin.  

Inspection of the bivariate relations of SWE and snow depth with physiographic variables 

(thought to influence the distribution of the snowpack across space) shows that elevation and 

location (UTM Easting and UTM Northing) are most strongly correlated with SWE and snow 

depth and exhibit linear relations.  Multiple linear regression models were developed for WY 

2011 and WY 2012 using both a combined dataset of field-based and operational-based 

measurements (modelO+F) and a dataset of operational-based measurements only (modelO).  

Model calibration shows that WY 2011models showed better performance than WY 2012 and 

the modelO outperformed the modelO+F for both years.  However, model verification shows a 
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greater error increase for modelO.  Both modelO+F and modelO from April 2, 2011 and March 31, 

2012 were used to interpolate SWE across the study domain by calculating SWE on a pixel by 

pixel basis.  The interpolated regression surfaces show errors of omission (WY 2011) and 

commission (WY 2012) when compared to the MODIS derived SCA.  The final interpolated 

SWE surfaces, masked to observed SCA, generally show similar patterns across space despite 

different magnitudes between years as well as between input datasets.  Within each of the model 

surfaces, interpolated SWE volume was also shown to be greatest within Elevation Zone 5 

(3,043 – 3,405 m) despite only encompassing 14% of the study area. Also, despite the 

differences of interpolated SWE volume observed among the four regression models, the 

percentage of the total interpolated SWE volume for each model was shown to be distributed 

similarly among elevation zones.  This study is limited by the approach of attempting to 

generalize the observed patterns of snow accumulation that are dictated by complex atmospheric 

forcing conditions as well as interactions with vegetation and topography.  Therefore, future 

work should include using a spatially distributed snowpack evolution modeling system, such as 

SnowModel [Liston and Elder, 2006a], to analyze the spatial patterns of snow accumulation at 

the basin scale and compare the patterns observed with the field-based methods of this study. 
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Table 3.1: Adjustment of field-based snow depth measurements based on mean daily SNOTEL 
values used to normalize all field-based snow depth measurements to a single date.  Adjustments 
were based on the mean change of SNOTEL snow depth to the normalized date.  $Difference of 
snow depth on the observed day (N) from the previous day (N – 1). *2011 [3.1a] snow depth 
values normalized to 04/02/11.  **2012 [3.1b] snow depth values normalized to 03/31/12. 

[a.] 2011 
    

Date 
Field 

Measurements (#) 

Mean 
SNOTEL 

ds (cm) 

Mean ds (cm) 
difference of N 

and N - 1$ 
Adjustment 
of ds (cm)* 

03/31/11 11 172.7 --- -6.86 
04/01/11 0 170.2 2.54 -4.32 
04/02/11 17 165.9 4.32 0.0 

 
[b.] 2012 

    

Date 
Field 

Measurements (#) 

Mean 
SNOTEL 

ds (cm) 

Mean ds (cm) 
difference of N 

and N - 1$ 
Adjustment 
of ds (cm)** 

03/29/12 28 77.5 --- -6.14 
03/30/12 12 74.9 2.54 -3.60 
03/31/12 59 71.9 3.60 0.0 
04/01/12 8 67.3 4.44 4.44 
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Table 3.2: Summary statistics [μ = mean, σ = standard deviation] for snowpack properties from 
2011 WY [3.2a] and 2012 WY [3.2b] April 1st snow surveys.  Statistics calculated separately for 
manual and operational measurements as well as manual measurements in which SWE was 
predicted from the snow density model. 

[a.] 2011 Data [4/2/11] n 
SWE [mm] Snow Density 

[kgm-3] 
Snow Depth 

[m] 
μ σ μ σ μ σ 

Manual Measurements 28 356 259 307 37.0 1.10 0.68 
Manual SWE Measurements 11 357 242 309 46.7 1.09 0.60 

Manual Snow Depth | Predicted 
SWE 17 356 276 305 30.7 1.10 0.74 

SNOTEL Measurements 10 577 220 342 38.2 1.66 0.55 
Snow course Measurements 13 410 239 304 24.5 1.31 0.66 

Entire Dataset 51 413 256 313 36.9 1.26 0.68 
 

[b.] 2012 Data [3/31/12] n 
SWE [mm] Snow Density 

[kgm-3] 
Snow Depth 

[m] 
μ σ μ σ μ σ 

Manual Measurements 104 228 106 313 23.9 0.72 0.30 
Manual SWE Measurements 12 264 69 318 44.7 0.85 0.26 

Manual Snow Depth | Predicted 
SWE 92 224 109 312 20.0 0.70 0.31 

SNOTEL Measurements 10 241 113 324 69.9 0.72 0.33 
Snow course Measurements 13 152 105 285 50.4 0.52 0.32 

Entire Dataset 127 221 108 311 33.8 0.70 0.31 
 



59 
 
 

Table 3.3: Average value of physiographic variables located at snowpack measurements from 2011 WY [3.3a] and 2012 WY [3.3b] 
and across the entire study area.  All physiographic variables derived at 30 m resolution.   

[a.] 2011 Data [4/2/11] n Elevation 
[m] Curvature Slope 

[°] 

Solar 
Radiation 
[WHm-2] 

Eastness Northness 
Canopy 
Density 

[%] 
Manual Measurements 28 2867 -0.130 9.18 14,566 0.040 -0.006 43.1 

SNOTEL Measurements 10 3002 -0.062 7.28 14,672 -0.012 -0.009 55.8 
Snow course Measurements 13 2925 0.104 13.2 14,010 0.077 0.010 52.2 

All Measurements 51 2908 -0.057 9.82 14,445 0.039 -0.003 47.9 
Study Area [30m 

Resolution] 3,700,092 2559 -0.095 12.5 13,629 0.012 0.005 39.8 

 

[b.] 2012 Data [3/31/12] n Elevation 
[m] Curvature Slope 

[°] 

Solar 
Radiation 
[WHm-2] 

Eastness Northness 
Canopy 
Density 

[%] 
Manual Measurements 104 2997 -0.022 9.71 14,507 0.027 0.001 60.9 

SNOTEL Measurements 10 3002 -0.062 7.28 14,672 -0.012 -0.009 55.8 
Snow course Measurements 13 2925 0.104 13.2 14,010 0.077 0.010 52.2 

All Measurements 127 2990 -0.012 9.87 14,469 0.029 0.001 59.6 
Basin Variables [30 m 

Resolution] 3,700,092 2559 -0.095 12.5 13,629 0.012 0.005 39.8 
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Table 3.4: Kolmogorov-Smirnov test (k-s test) results for equality of distributions between a 
random sample [n = 366] of continuous basin variables versus variables associated with 
WY2011 and WY2012 measurement locations. K-s test statistic (D) is provided for each test 
with the associated p-value in brackets [Significance as follows: * = p < 0.05, ** = p < 0.01].   

  2011 2012 
  D [p-value] 

Elevation 0.29 [**] 0.33 [**] 
Curvature 0.09 0.07 

Slope 0.27 [**] 0.22 [**] 
Solar Radiation 0.23 [*] 0.20 [**] 

Eastness 0.15 0.09 
Northness 0.28 [**] 0.25 [**] 

Canopy Density 0.14 0.12 
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Table 3.5: Correlation matrix [Pearson correlation coefficient] among snowpack properties and physiographic variables at sampling 
locations from 2011 WY [3.5a] and 2012 WY [3.5b] snow surveys.   

[a.] 2011 Data SWE Snow 
Depth 

Snow 
Density Easting Northing Canopy 

Density Northness Eastness Solar 
Radiation Slope DEM 

Elevation Curvature 

SWE --- 0.99 0.82 -0.69 -0.55 0.12 -0.01 -0.13 0.16 -0.04 0.75 0.14 
Snow Depth  --- 0.76 -0.66 -0.56 0.14 0.00 -0.11 0.19 -0.02 0.77 0.15 

Snow Density   --- -0.72 -0.37 0.09 0.08 -0.27 0.06 -0.09 0.46 0.14 
Easting    --- 0.27 0.01 0.10 0.32 -0.06 0.12 -0.30 -0.12 

Northing     --- 0.04 -0.01 0.00 0.06 -0.28 -0.43 -0.07 
Canopy Density      --- -0.01 -0.09 0.09 0.07 0.22 0.19 

Northness       --- -0.20 -0.78 -0.32 -0.06 -0.02 
Eastness        --- 0.16 0.25 -0.12 -0.31 

Solar Radiation         --- 0.03 0.31 0.11 
Slope          --- 0.12 -0.02 

DEM Elevation           --- 0.30 
Curvature            --- 

 

[b.] 2012 Data SWE Snow 
Depth 

Snow 
Density Easting Northing Canopy 

Density Northness Eastness Solar 
Radiation Slope DEM 

Elevation Curvature 

SWE --- 0.98 0.52 -0.38 -0.12 -0.07 0.06 0.10 0.06 0.09 0.67 0.12 
Snow Depth  --- 0.40 -0.33 -0.10 -0.07 0.08 0.13 0.04 0.11 0.67 0.12 

Snow Density   --- -0.50 -0.02 0.00 -0.13 -0.08 0.18 0.01 0.40 0.02 
Easting    --- 0.25 0.10 0.03 0.06 -0.03 -0.12 -0.41 -0.12 

Northing     --- 0.12 -0.13 0.02 0.18 -0.29 -0.34 -0.09 
Canopy Density      --- 0.02 -0.02 0.03 -0.05 -0.04 -0.13 

Northness       --- 0.17 -0.80 -0.03 -0.04 0.25 
Eastness        --- -0.03 0.10 0.05 -0.03 

Solar Radiation         --- -0.15 0.20 -0.15 
Slope          --- 0.22 0.21 

DEM Elevation           --- 0.18 
Curvature            --- 
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Table 3.6: Summary statistics of field-based snow depth measurements gathered during the WY 
2012 April 2nd snow survey, based on the information collected for each category of forest 
canopy cover. 

 
Canopy Cover Community Type Tree Mortality 

  Closed Open Partially 
Closed Alpine Lodgepole 

Pine 
Spruce 

Fir 
Alive 
Green 

Dead 
Gray 

Dead 
Red 

n 8.0 32.0 67.0 6.0 37.0 62.0 48.0 20.0 15.0 

Min 29.6 0.0 16.5 0.0 9.5 0.0 16.5 29.9 23.7 
Quartile 

1 6.1 47.1 36.4 22.4 35.0 54.1 32.0 26.5 18.0 

Median 12.2 41.4 10.5 94.7 16.2 20.3 12.2 19.5 23.6 
Quartile 

3 15.4 26.6 12.6 27.9 7.5 17.5 12.9 18.7 8.4 

Max 35.3 47.2 49.4 17.3 57.2 60.5 41.4 44.1 22.1 
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Table 3.7: April 2, 2011 [3.7a] and March 31, 2012 [3.7b] snow water equivalent modelO+F calibration statistics. Variables used in 
final model selection highlighted in gray. 

a.] 
2011 Independent Variables VIF AIC Adjusted 

R2 
MAE 
(mm) 

RMSE 
(mm) 

1 Easting, Northing, Eastness, Slope, DEM Elevation 1.28, 1.37, 1.18, 1.19, 1.30 624.93 0.84 75.75 102.85 
2 Easting, Northing, Solar Radiation, Eastness, Slope, DEM Elevation 1.29, 1.46, 1.23, 1.25, 1.19, 1.52 626.35 0.84 74.89 103.41 
3 Easting, Northing, Northness, Eastness, DEM Elevation 1.29, 1.28, 1.08, 1.21, 1.30 626.86 0.83 79.02 104.81 
4 Easting, Northing, Canopy Density, Eastness, Slope, DEM Elevation 1.29, 1.41, 1.10, 1.20, 1.20, 1.39 626.36 0.84 75.03 103.42 
5 Easting, Northing, Eastness, DEM Elevation 1.26, 1.28, 1.13, 1.29 628.37 0.83 82.98 107.28 
6 Easting, DEM Elevation 1.10, 1.10 635.36 0.79 95.18 116.97 

 
 

b.] 
2012 Independent Variables VIF AIC Adjusted 

R2 
MAE 
(mm) 

RMSE 
(mm) 

1 Easting, Northing, Solar Radiation, DEM Elevation 1.22, 1.24, 1.12, 1.40 1473.0 0.48 59.43 77.72 
2 Easting, Northing, Solar Radiation, Eastness, DEM Elevation 1.23, 1.25, 1.13, 1.01, 1.41 1474.0 0.48 59.06 77.72 
3 Northing, Solar Radiation, DEM Elevation 1.22, 1.12, 1.23 1475.3 0.47 60.44 78.73 
4 Easting, Northing, Eastness, DEM Elevation 1.23, 1.15, 1.01, 1.30 1475.0 0.47 59.24 78.33 
5 Easting, Northing, DEM Elevation 1.22, 1.15, 1.30 1474.2 0.47 59.50 78.38 
6 Easting, DEM Elevation 1.20, 1.20 1476.8 0.46 59.57 79.49 

 
 
Table 3.8: April 2, 2011 and March 31, 2012 snow water equivalent modelO calibration statistics. 

 Independent Variables VIF AIC Adjusted 
R2 

MAE 
(mm) 

RMSE 
(mm) 

2011 Easting, DEM Elevation, Curvature 1.06, 1.15, 1.08 276.5 0.87 67.39 87.41 
2012 Northing, Canopy Density, Eastness, Slope, DEM Elevation 1.39, 1.11, 1.19, 1.25, 1.40 257.6 0.76 38.74 56.17 
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Table 3.9: 10-Fold cross verification performance statistics for April 2, 2011 and March 31, 
2012 snow water equivalent modelO+F. 

10-Fold Cross 
Verification 

Sample 
Size RMSE (mm) 

April 2, 2011 51 103.4 
March 31, 2012 127 81.04 

 
 
Table 3.10: Verification performance statistics for April 2, 2011 and March 31, 2012 operational 
snow water equivalent modelO. 

Date 
10-Fold Cross Verification Independent Field 

Measurement Verification 
Sample 

Size RMSE (mm) Sample Size RMSE (mm) 

April 2, 2011 23 90.5 28 153.5 
March 31, 2012 23 63.4 104 77.5 
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Table 3.11: April 2, 2011 [3.11a] and March 31, 2012 [3.11b] modelO+F and modelO interpolation statistics.  

[a.] 2011 Elevation 
Range (m) 

Area 
(km2) 

SCA 
(km2) 

Mean Interpolated 
SWE (mm) 

Interpolated SWE σ 
(mm) 

Interpolated SWE 
Volume (106 m3) 

ModelO+F11 ModelO11 ModelO+F11 ModelO11 ModelO+F11 ModelO11 

Study Area 1591 – 4125 2729 1444 448 463 264 278 445.2 530.6 
Elevation Zone 1 1591 – 1953 196 0 0 0 0 0 0 0 
Elevation Zone 2 1954 – 2316 671 6 0 79.4 0 69.2 0 0.018 
Elevation Zone 3 2317 – 2679 896 474 54.7 104 57.6 78.7 3.13 19.2 
Elevation Zone 4 2680 – 3042 471 469 266 335 154 144 117.5 156.1 
Elevation Zone 5 3043 – 3405 384 384 599 655 140 123 230.1 251.4 
Elevation Zone 6 3406 – 3768 104 104 834 915 125 130 87.1 95.5 
Elevation Zone 7 3769 – 4125 7 7 1000 1153 119 179 7.28 8.40 

 

[b.] 2012 Elevation 
Range (m) 

Area 
(km2) 

SCA 
(km2) 

Mean Interpolated 
SWE (mm) 

Interpolated SWE σ 
(mm) 

Interpolated SWE 
Volume (106 m3) 

ModelO+F12 ModelO12 ModelO+F12 ModelO12 ModelO+F12 ModelO12 

Study Area 1591 – 4125 2729 852 255 253 97.7 102 214.7 210.6 

Elevation Zone 1 1591 – 1953 196 0 0 0 0 0 0 0 

Elevation Zone 2 1954 – 2316 671 0 0 0 0 0 0 0 

Elevation Zone 3 2317 – 2679 896 73 79.4 80.4 41.7 45.5 4.78 4.38 

Elevation Zone 4 2680 – 3042 471 316 191 185 46.8 63.6 60.5 58.0 

Elevation Zone 5 3043 – 3405 384 372 298 302 42.9 57.3 111.0 112.2 

Elevation Zone 6 3406 – 3768 104 87 415 390 44.5 59.6 36.3 34.1 

Elevation Zone 7 3769 – 4125 7 4 539 489 36.6 77.8 2.04 1.86 
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Figure 3.1: Map of Snow Covered Area (SCA) within the study area (shown as blue) for April 2, 2011 [3.1a] and March 31, 2012 
[3.1b] with SNOTEL stations shown in orange, snow courses shown in red, and field measurements shown in green.  SCA from 
Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra 8-day 500 m snow-cover products <http://reverb.echo.nasa.gov>. 
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Figure 3.2: Plot of the mean SWE among SNOTEL stations during the 2011 and 2012 snow 
seasons, exhibiting that the 2011 survey was undertaken before peak SWE and the 2012 survey 
was completed subsequent to peak SWE.
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Figure 3.3: Histograms of physiographic variables across the study area comparied to variables found at snow measurement locations. 
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Figure 3.4a: Pairwise scatterplots among snowpack properties and physiographic variables from the 2011WY [4/2/11] snow survey. 
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Figure 3.4b: Pairwise scatterplots among snowpack properties and physiographic variables from the 2012WY [3/31/12] snow survey
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Figure 3.5a: Bivariate scatterplots showing the relation of physiographic and biological 
variables with SWE [3.5i] and snow depth [3.5ii] field and operational-based measurements. 
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Figure 3.5b: Bivariate scatterplots showing the relation of physiographic and biological 
variables with SWE [3.5i] and snow depth [3.5ii] field and operational-based measurements. 
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Figure 3.5c: Bivariate scatterplots showing the relation of physiographic and biological variables 
with SWE [3.5i] and snow depth [3.5ii] field and operational-based measurements. 
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Figure 3.6a: Mean SWE among ranges of physiographic variables for WY 2011 [3.6i] and WY 
2012 [3.6ii].  Ranges of physiographic variables were evenly divided among each dataset to 
produce a large enough sample size of each range. 
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Figure 3.6b: Mean SWE among ranges of physiographic variables for WY 2011 [3.6i] and WY 
2012 [3.6ii].  Ranges of physiographic variables were evenly divided among each dataset to 
produce a large enough sample size of each range. 
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Figure 3.6c: Mean SWE among ranges of physiographic variables for WY 2011 [3.6i] and WY 
2012 [3.6ii].  Ranges of physiographic variables were evenly divided among each dataset to 
produce a large enough sample size of each range. 
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Figure 3.7: Bivariate scatterplots showing the relation of station based variables with operational 
(SNOTEL and snow course) SWE measurements. 
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Figure 3.8: Bivariate scatterplots showing the relation of station based variables with regional 
groupings of field-based and operational SWE measurements from WY 2011[3.8i] and WY 2012 
[3.8ii]. 
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Figure 3.9: Box and whisker plots of WY 2012 field-based snow depth measurements for each 
of the forest canopy cover categories.  A box width indicates the interquartile range, and whisker 
width represents the entire range. 
 

 

 

 
Figure 3.10: Box and whisker plots of WY 2012 field-based snow depth measurements for each 
of the forest community type categories.  A box width indicates the interquartile range, and 
whisker width represents the entire range. 
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Figure 3.11: Box and whisker plots of WY 2012 field-based snow depth measurements for each 
of the tree mortality condition categories.  A box width indicates the interquartile range, and 
whisker width represents the entire range. 
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Figure 3.12: Scatterplots showing observed versus modeled SWE from the WY 2011 [3.12a] and WY 2012[3.12b] modelO+F multiple 
regressions.  Results from a reduced WY 2012 modelO+F  including only field-based measurement locations also sampled during WY 
2011 are shown in green [Figure 3.12b]. 
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Figure 3.13: Scatterplots showing observed versus modeled SWE from the WY 2011 [3.13a] and WY 2012[3.13b] modelO multiple 
regressions. 
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Figure 3.14: Map of modelO+F SWE surface overlain by MODIS derived SCA (shown with hatching) within the study area for April 2, 
2011 [3.14a] and March 31, 2012 [3.14b] with both field and operational-based measurements shown in black. 
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Figure 3.15: Map of modelO+F SWE surface clipped by MODIS derived SCA within the study area for April 2, 2011 [3.15a] and 
March 31, 2012 [3.15b] with both field-based and operational measurements shown in black. 
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\ 
Figure 3.16: Map of modelO SWE surface overlain by MODIS derived SCA (shown with hatching) within the study area for April 2, 
2011 [3.16a] and March 31, 2012 [3.16b] with operational-based measurements shown in black. 
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Figure 3.17: Map of modelO SWE surface clipped by MODIS derived SCA within the study area for April 2, 2011 [3.17a] and March 
31, 2012 [3.17b] with operational-based measurements shown in black. 
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Figure 3.18: Map of the seven elevation zones within the study area identified by Richer [2009]. 
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Figure 3.19: Average SWE across the study area and within each elevation zone from modelO+F 
and modelO interpolations for WY 2011 and WY 2012. 
 
 

 
Figure 3.20: Interpolated SWE volume across the study area and within each elevation zone 
from modelO+F and modelO interpolations for WY 2011 and WY 2012. 
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Figure 3.21: Percentage of interpolated SWE volume across the study area within each elevation 
zone from modelO+F and modelO interpolations for WY 2011 and WY 2012. 
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CHAPTER 4: CONCLUSIONS 

This study has used a combination of field and operational-based snow measurements to 

evaluate snowpack properties across the basin scale.  This research was motivated by the need 

for additional ground-based snowpack observations at a scale that coincides with that of remote 

sensing observations [Edward Kim, NASA, pers. comm., 2012] and is especially pertinent to 

water resources forecasting.  Additional snowpack measurements at the basin scale can provide 

valuable verification data for remote sensing and modeling applications and help to improve 

characterizations of the distribution and patterns of snow water equivalent (SWE); yet field-

based measurements are rarely collected at this scale.  Studies collecting and analyzing field-

based snowpack measurements at the basin scale are therefore an important step in the 

advancement of our understating of the spatial distribution of snow in mountain environments.  

The objectives of this thesis were addressed by the following research questions: (1) Can a 

reliable method of estimating SWE be developed from snow depth for the Cache la Poudre 

basin?  (2) Can the spatial variability of SWE within the Cache la Poudre basin be characterized 

at the basin scale? 

A method for modeling snow density across the Cache la Poudre basin from historical 

snow course measurements was developed for estimating SWE from snow depth (Chapter 2).  

The independent variables of snow depth, day of year, elevation, and UTM Easting were used in 

a multiple linear regression model to estimate snow density.  Statistics showed strong 

performance of SWE calculated from snow depth observations using the snow density model, 

and model verification suggests the model is transferable to independent data within the bounds 

of the original dataset.  The methods here provide a pathway for estimating SWE from snow 
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depth measurements, which is especially useful when evaluating snowpack properties at the 

basin scale, where time consuming field-based measurements of SWE are often not feasible.    

The spatial variability and observable patterns of SWE within the Cache la Poudre basin 

were analyzed in Chapter 3 using field and operational-based snowpack measurements.  

Bivariate relations of SWE and snow depth with physiographic variables show that elevation, 

latitude, and longitude are most strongly correlated with SWE and snow depth at this scale.  

Multiple linear regression models were developed for WY 2011 and WY 2012 using both a 

combined dataset of field-based and operational-based measurements (modelO+F) and a dataset of 

operational-based measurements only (modelO).  Model calibration shows that modelO 

outperformed the modelO+F for both years, yet, model verification shows a greater error increase 

for modelO.  SWE was interpolated across the study domain by using each model to calculate 

SWE on a pixel by pixel basis.  The final interpolated SWE surfaces, masked to observed SCA 

(from an 8-day MODIS product), generally show similar patterns across space despite differing 

magnitudes between years as well as between input datasets.  Within each of the model surfaces, 

interpolated volume of SWE was greatest within Elevation Zone 5 (3,043 – 3,405 m).  Also, 

despite the differences of interpolated SWE volume observed among the four regression models, 

the percentage of the total interpolated SWE volume for each model was distributed similarly 

among elevation zones.   

This research provides a further understanding of snowpack distribution and 

measurement strategies at the basin scale while also providing a field-based snow dataset that 

can be used within future evaluations of the snowpack at this scale.  The snow density model 

successfully estimates SWE from snow depth measurements by modeling snow density.  Using 

historical operational measurements for development of a regional based snow density model has 
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implications for future field-based basin scale sampling campaigns, suggesting a sampling 

scheme dominated by snow depth measurements may be successful for evaluating basin-scale 

SWE variability.  The temporal and spatial dataset of field-based snowpack measurements 

developed in this study is at a scale similar to remote sensing observations as well as modeling 

applications; these data can be used in those contexts for verification.  Additionally, approaches 

of empirical modeling (e.g., multiple linear regression) for characterizing the distribution of 

SWE at the basin scale can be compared to remote sensing and modeling output.  For instance, 

the observable patterns of SWE variability within this study, showing to be largely driven by 

elevation as well as latitude and longitude, could be compared to the patterns of variability 

observed within a physically based snow evolution model.  The comparisons of the statistical 

relation of the snowpack with terrain based variables and physically based snow evolution 

modeling can provide insight for basin scale SWE distribution estimations.  Therefore, future 

work will be focused using the spatially distributed snowpack evolution modeling system, 

SnowModel [Liston and Elder, 2006a] to analyze the spatial patterns of snow accumulation at 

the basin scale and compare the patterns observed with the field-based methods of this study.   

Finally, the continuity of field-based snowpack measurements, as provided within this 

study, is essential given the assumption of non-stationarity from hydroclimatic change [Milly et 

al., 2008] and indications of more extreme conditions [IPCC, 2007].  This examination of two 

very different snow years may represent the bounds of extremes and possible the limitations due 

to non-stationarity.  Continued field measurements of the snowpack will aid advancement of 

remote sensing and modeling applications, but more importantly continue to provide “ground-

truth” observations for evaluating the complexities and uncertainties of the changing earth 

system.          
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APPENDIX A: SUPPLEMENTAL MAPS 
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Figure A.1: DEM elevation map of the Cache la Poudre basin including locations of NRCS operational stations 
<http://seamless.usgs.gov/>. 
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Figure A.2: Land cover map of the Cache la Poudre basin from the USGS Gap Analysis Program including locations of NRCS 
operational stations <http://gapanalysis.usgs.gov/>. 
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2010-11-23

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C 1 482311 4501681 1,607 0 --- --- --- --- --- --- --- --- --- --- 0.0 --- --- --- --- --- --- no snow
C 2 481072 4501543 1,612 2 --- --- --- --- --- --- --- --- --- --- 2.0 --- --- --- --- --- ---
C 3 479970 4504434 1,633 2 --- --- --- --- --- --- --- --- --- --- 2.0 --- --- --- --- --- ---
C 4 473796 4504326 1,753 2 --- --- --- --- --- --- --- --- --- --- 2.0 --- --- --- --- --- ---
C 5 470577 4504240 1,799 2 --- --- --- --- --- --- --- --- --- --- 2.0 --- --- --- --- --- ---
C 6 467105 4503568 1,852 2 --- --- --- --- --- --- --- --- --- --- 2.0 --- --- --- --- --- ---
C 7 463458 4504270 1,956 2 --- --- --- --- --- --- --- --- --- --- 2.0 --- --- --- --- --- ---
C 8 459281 4503392 2,074 2 --- --- --- --- --- --- --- --- --- --- 2.0 --- --- --- --- --- ---
C 9 455537 4505136 2,140 5 --- --- --- --- --- --- --- --- --- --- 5.0 --- --- --- --- --- ---
C 10 446565 4505924 2,260 5 --- --- --- --- --- --- --- --- --- --- 5.0 --- --- --- --- --- ---
C 11 442532 4505134 2,334 18 16 15 13 17 20 --- --- --- --- --- 16.5 --- --- --- --- --- ---
C 12 438675 4506767 2,365 11 9 6 11 11 8 --- --- --- --- --- 9.3 --- --- --- --- --- ---
C 13 435754 4505167 2,376 17 17 6 16 19 16 --- --- --- --- --- 15.2 --- --- --- --- --- ---
C 14 431720 4502177 2,463 9 8 15 14 13 14 --- --- --- --- --- 12.2 --- --- --- --- --- ---
C 15 431772 4498491 2,576 25 23 24 24 25 25 --- --- --- --- --- 24.3 --- --- --- --- --- ---
C 16 *** *** 2,649 32 33 29 30 37 39 --- --- --- --- --- 33.3 --- --- --- --- --- ---
C 17 *** *** 2,758 31 28 30 27 29 33 --- --- --- --- --- 29.7 --- --- --- --- --- ---
C 18 427826 4492577 2,878 65 47 45 80 90 86 84 --- --- --- --- 71.0 --- --- --- --- --- ---
C 19 425958 4489932 3,062 84 91 95 99 100 98 --- --- --- --- --- 94.5 --- --- --- --- --- ---
C 20 425330 4488003 3,062 80 104 118 106 96 104 --- --- --- --- --- 101.3 --- --- --- --- --- ---
C 21 *** *** 3,095 98 97 99 101 101 108 --- --- --- --- --- 100.7 --- --- --- --- --- ---
C 22 *** *** 3,141 93 100 106 107 102 103 --- --- --- --- --- 101.8 --- --- --- --- --- ---
C 23 422791 4484168 2,967 55 47 47 45 37 29 --- --- --- --- --- 43.3 --- --- --- --- --- ---
C 24 420409 4484110 2,869 68 66 69 66 66 66 --- --- --- --- --- 66.8 --- --- --- --- --- ---
C 25 420410 4484037 2,862 65 65 64 62 57 54 --- --- --- --- --- 61.2 --- --- --- --- --- ---
C 26 414448 4485031 2,763 41 39 35 37 40 36 --- --- --- --- --- 38.0 --- --- --- --- --- ---
C 27 424989 4484701 3,089 107 112 111 123 102 98 100 83 82 90 88 99.6 --- --- --- --- --- ---
C 28 426688 4490611 3,008 82 82 98 83 87 92 83 84 87 76 63 83.4 --- --- --- --- --- ---
C 29 427550 4492446 2,901 55 48 56 60 54 51 52 36 45 48 57 51.1 --- --- --- --- --- ---

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C = CO Highway 14 O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2010-12-04

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C 1 482311 4501681 1,607 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 2 481072 4501543 1,612 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 3 479933 4504436 1,633 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 4 473679 4504205 1,753 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 5 470577 4504240 1,799 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 6 467105 4503568 1,852 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 7 463455 4504259 1,956 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 8 459281 4503392 2,074 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 9 455533 4505135 2,140 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 10 446544 4505927 2,260 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 11 442526 4505139 2,334 9 6 6 1 10 8 2 10 2 2 1 5.2 --- --- --- --- --- ---
C 12 438683 4506674 2,365 5 4 1 1 1 1 1 1 1 6 20 3.8 --- --- --- --- --- ---
C 13 435785 4505201 2,376 17 18 17 18 9 6 12 14 14 15 8 13.5 --- --- --- --- --- ---
C 14 431720 4502155 2,463 10 10 18 10 20 11 22 25 21 21 8 16.0 --- --- --- --- --- ---
C 15 431772 4498491 2,576 24 24 25 28 32 29 27 29 24 25 25 26.5 --- --- --- --- --- ---
C 16 *** *** 2,649 30 26 26 25 38 31 31 36 39 41 43 33.2 --- --- --- --- --- ---
C 17 *** *** 2,758 28 27 33 30 24 28 29 34 31 38 38 30.9 --- --- --- --- --- ---
C 18 427820 4485632 2,878 70 71 66 63 61 59 58 56 56 55 58 61.2 --- --- --- --- --- ---
C 19 425970 4490004 3,062 66 60 58 55 69 78 48 37 46 50 58 56.8 --- --- --- --- --- ---
C 20 425330 4488003 3,062 78 85 94 83 94 71 94 60 100 90 97 86.0 --- --- --- --- --- ---
C 21 *** *** 3,095 96 95 98 95 97 104 103 106 110 118 121 103.9 --- --- --- --- --- ---
C 22 *** *** 3,141 74 81 74 86 104 120 115 126 145 150 93 106.2 --- --- --- --- --- ---
C 23 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
C 24 420419 4484080 2,869 51 51 55 50 54 53 55 53 55 54 55 53.3 --- --- --- --- --- ---
C 25 420407 4484057 2,862 65 69 70 65 73 64 57 46 44 37 26 56.0 --- --- --- --- --- ---
C 26 414437 4485025 2,763 39 39 40 36 38 38 39 43 40 44 43 39.9 --- --- --- --- --- ---
C 27 424986 4484674 3,089 65 80 73 82 83 78 88 85 82 72 63 77.4 --- --- --- --- --- ---
C 28 426686 4490632 3,008 80 71 80 86 78 81 78 75 74 83 84 79.1 --- --- --- --- --- ---
C 29 427599 4492483 2,901 60 68 52 55 54 50 45 56 58 61 56 55.9 --- --- --- --- --- ---

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C = CO Highway 14 O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2011-01-12

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C 1 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 2 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 3 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 4 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 5 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 6 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 7 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 8 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 9 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 10 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 11 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 12 438675 4506775 2,365 8 10 8 7 13 12 11 24 19 17 14 13.0 14.0 174.1 24.4 --- --- --- can
C 13 435753 4505112 2,386 39 38 33 28 30 34 39 39 37 39 36 35.6 --- --- --- --- --- ---
C 14 431726 4502165 2,469 37 29 19 21 20 18 24 19 15 18 25 22.3 32.0 223.7 71.6 --- --- --- can
C 15 431779 4498492 2,583 44 44 42 42 49 52 55 53 55 51 43 48.2 --- --- --- --- --- ---
C 16 *** *** 2,652 54 49 50 44 60 47 50 59 61 61 66 54.6 --- --- --- --- --- ---
C 17 *** *** 2,756 51 55 58 57 56 59 59 65 70 73 74 61.5 58.0 214.9 124.7 --- --- --- tube
C 18 427826 4492576 2,880 90 94 104 103 110 99 107 99 109 108 102 102.3 --- --- --- --- --- ---
C 19 425965 4489941 3,062 143 137 146 149 140 147 145 141 135 136 113 139.3 147.0 214.0 314.5 --- --- --- tube
C 20 425333 4488004 3,064 86 110 142 156 150 141 139 139 147 133 147 135.5 --- --- --- --- --- ---
C 21 *** *** --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 22 *** *** 3,150 167 168 172 173 179 183 185 184 186 189 187 179.4 --- --- --- --- --- ---
C 23 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 24 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 25 420405 4484043 2,865 84 90 82 83 80 73 81 69 56 56 43 72.5 84.0 284.1 238.7 --- --- --- tube
C 26 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 27 424984 4484695 3,102 104 105 118 115 104 100 126 122 118 116 113 112.8 --- --- --- --- --- ---
C 28 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 29 427548 4492446 2,899 98 101 96 96 95 88 89 91 95 96 97 94.7 101.0 232.4 234.7 --- --- --- tube

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C = CO Highway 14 O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2011-02-03

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C 1 482315 4501690 1,607 3 3 3 4 4 3 3 4 3 3 2 3.2 --- --- --- --- --- ---
C 2 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 3 479982 4504429 1,626 4 6 7 5 5 6 6 4 5 6 4 5.3 --- --- --- --- --- ---
C 4 473763 4504330 1,749 4 3 4 4 3 4 4 5 4 4 3 3.8 1.50 74.3 1.12 --- --- --- can
C 5 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 6 467097 4503582 1,851 5 6 4 6 5 4 5 3 4 6 5 4.8 --- --- --- --- --- ---
C 7 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 8 459285 4503396 2,074 5 4 5 5 4 3 4 8 5 5 6 4.9 2.75 99.9 2.75 --- --- --- can
C 9 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 10 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 11 442526 4505137 2,328 22 23 25 10 30 25 24 16 35 24 10 22.2 20.0 185.2 37.0 --- --- --- can
C 12 438678 4506771 2,364 18 10 8 11 10 10 9 9 9 8 9 10.1 16.0 224.0 35.8 --- --- --- can
C 13 435758 4503112 2,382 36 41 45 39 29 33 35 32 40 41 41 37.5 --- --- --- --- --- ---
C 14 431725 4502166 2,472 30 32 25 29 34 37 36 40 31 35 24 32.1 27.0 195.6 52.8 --- --- --- can
C 15 431777 4498486 2,574 74 71 74 69 65 70 66 62 68 73 68 69.1 --- --- --- --- --- ---
C 16 *** *** 2,646 77 68 69 63 64 68 73 74 84 82 84 73.3 --- --- --- --- --- ---
C 17 *** *** 2,755 72 75 75 77 86 87 91 92 92 92 90 84.5 72.3 238.7 172.6 --- --- --- tube
C 18 427830 4492579 2,889 141 128 127 131 142 143 131 140 142 127 146 136.2 --- --- --- --- --- ---
C 19 425962 4489940 3,064 167 174 182 181 180 184 185 178 179 172 167 177.2 168.0 258.8 434.8 --- --- --- tube
C 20 425332 4488000 3,063 116 142 175 170 154 146 153 144 134 147 147 148.0 --- --- --- --- --- ---
C 21 *** *** --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 22 *** *** 3,144 183 189 183 186 186 194 184 187 188 189 190 187.2 --- --- --- --- --- ---
C 23 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 24 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 25 420407 4484049 2,858 97 106 110 106 103 89 100 94 81 75 68 93.5 114.8 229.3 263.1 --- --- --- tube
C 26 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 27 424989 4484695 3,102 134 139 142 130 144 156 143 143 159 156 159 145.9 --- --- --- --- --- ---
C 28 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 29 427552 4492445 2,907 111 118 122 117 127 136 130 128 132 130 128 125.4 117.7 243.1 286.1 --- --- --- tube

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C = CO Highway 14 O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2011-03-03

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C 1 482311 4501681 1,607 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 2 481072 4501543 1,612 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 3 479970 4504434 1,633 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 4 473796 4504326 1,753 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 5 470577 4504240 1,799 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 6 467105 4503568 1,852 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 7 463458 4504270 1,956 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 8 459281 4503392 2,074 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 9 455537 4505136 2,140 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 10 446565 4505924 2,260 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 11 442532 4505134 2,334 37 30 33 38 37 0 31 28 39 32 3 28.0 32.0 172.1 55.1 --- --- --- can
C 12 438675 4506767 2,365 6 8 8 15 8 6 6 7 8 12 14 8.9 8.8 269.5 23.6 --- --- --- can
C 13 435754 4505167 2,376 29 31 37 31 34 42 41 44 48 46 42 38.6 --- --- --- --- --- ---
C 14 431720 4502177 2,463 13 19 10 15 14 11 14 14 5 9 11 12.3 14.5 324.5 47.0 --- --- --- can
C 15 431772 4498491 2,576 74 73 71 68 69 63 71 75 83 78 63 71.6 --- --- --- --- --- ---
C 16 *** *** 2,649 80 78 74 75 77 79 86 81 90 91 95 82.4 --- --- --- --- --- ---
C 17 *** *** 2,758 100 102 104 102 102 100 95 95 100 99 91 99.1 92.0 311.7 286.7 --- --- --- tube
C 18 427826 4492577 2,878 135 133 132 158 156 168 161 177 188 175 169 159.3 --- --- --- --- --- ---
C 19 425958 4489932 3,062 191 185 181 180 184 190 200 198 185 178 188 187.3 --- --- --- --- --- ---
C 20 425330 4488003 3,062 118 121 128 164 179 171 166 178 156 182 161 156.7 --- --- --- --- --- ---
C 21 *** *** 3,095 189 193 186 185 188 181 199 207 212 213 221 197.6 --- --- --- --- --- ---
C 22 *** *** 3,141 194 192 187 190 185 187 178 180 181 185 184 185.7 --- --- --- --- --- ---
C 23 422791 4484168 2,967 80 80 73 67 68 77 74 70 77 118 110 81.3 --- --- --- --- --- ---
C 24 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 25 420410 4484037 2,862 147 147 142 143 135 143 146 157 164 163 160 149.7 146.5 318.0 465.9 --- --- --- tube
C 26 414448 4485031 2,763 92 91 92 96 95 94 101 96 94 93 96 94.5 --- --- --- --- --- ---
C 27 424989 4484701 3,089 159 171 166 167 181 186 177 172 159 159 164 169.2 --- --- --- --- --- ---
C 28 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 29 427550 4492446 2,901 171 166 160 158 163 157 155 155 155 147 149 157.8 --- --- --- --- --- ---

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C = CO Highway 14 O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2011-03-31

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

D 1 444915 4517071 2,732 18 21 25 24 34 33 28 27 23 19 18 24.5 --- --- --- --- --- ---
D 2 444211 4517282 2,797 67 60 71 67 65 73 77 78 82 71 87 72.5 70.0 322.8 226.0 --- --- --- can
D 3 443624 4517606 2,830 25 35 40 40 43 39 31 23 32 39 41 35.3 --- --- --- --- --- ---
D 4 443222 4517664 2,890 73 58 82 86 79 77 82 63 57 49 60 69.6 81.3 312.5 254.0 --- --- --- fed
D 5 442482 4517931 2,882 44 31 22 21 21 22 26 46 59 66 58 37.8 38.0 247.7 94.1 --- --- --- can
D 6 441450 4517978 2,844 94 87 80 78 78 77 70 65 53 53 51 71.5 --- --- --- --- --- ---
D 7 440045 4518276 2,798 125 110 96 100 116 122 123 143 130 151 168 125.8 108.0 352.9 381.0 --- --- --- fed
D 8 439110 4518052 2,852 108 99 96 97 94 97 99 108 108 109 113 102.5 --- --- --- --- --- ---
D 9 438201 4518135 2,884 66 56 54 74 79 84 85 90 82 84 75 75.4 --- --- --- --- --- ---
D 10 438168 4518108 2,876 77 88 86 81 69 64 57 59 59 70 76 71.5 --- --- --- --- --- ---
D 11 437878 4517864 2,895 87 90 94 103 86 82 80 66 54 66 92 81.8 81.0 233.8 189.4 --- --- --- can

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
D = Deadman Hill [Deadman Road] O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2011-04-02

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C 1 482311 4501681 1,607 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 2 481072 4501543 1,612 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 3 479970 4504434 1,633 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 4 473796 4504326 1,753 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 5 470577 4504240 1,799 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 6 467105 4503568 1,852 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 7 463458 4504270 1,956 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 8 459281 4503392 2,074 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 9 455537 4505136 2,140 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 10 446565 4505924 2,260 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 11 442532 4505134 2,334 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 12 438675 4506767 2,365 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 13 435754 4505167 2,376 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 14 431720 4502177 2,463 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 15 431773 4498491 2,586 60 76 73 75 76 54 53 64 73 78 36 65.3 --- --- --- --- --- ---
C 16 *** *** 2,637 68 71 65 63 63 60 62 72 77 81 84 69.6 --- --- --- --- --- ---
C 17 *** *** 2,758 104 101 94 99 91 85 84 84 82 87 85 90.5 108.5 290.6 315.3 --- --- --- tube
C 18 427834 4492583 2,895 216 212 215 214 217 214 219 226 224 233 233 220.3 --- --- --- --- --- ---
C 19 425970 4489938 3,068 227 224 225 224 216 219 219 216 218 218 209 219.5 222.9 381.7 850.9 --- --- --- fed
C 20 425329 448802 3,069 190 191 214 207 210 230 225 220 211 210 237 213.2 --- --- --- --- --- ---
C 21 *** *** --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 22 *** *** 3,164 241 232 237 235 235 234 239 237 239 247 250 238.7 --- --- --- --- --- ---
C 23 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 24 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 25 420407 4484030 2,865 172 171 175 186 186 177 185 180 185 165 171 177.5 174.0 357.4 622.3 --- --- --- fed
C 26 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 27 424987 4484697 3,102 185 224 220 228 222 218 224 232 230 224 234 221.9 --- --- --- --- --- ---
C 28 426737 4490674 2,999 167 171 179 182 189 180 196 195 201 216 230 191.5 --- --- --- --- --- ---
C 29 427550 4492459 2,904 205 204 195 190 186 180 178 182 178 177 190 187.7 177.3 335.0 593.2 --- --- --- fed

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C = CO Highway 14 O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2011-04-02

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

P 1 449626 4490930 2,768 47 48 53 58 64 69 74 82 90 97 105 71.5 --- --- --- --- --- ---
P 2 448683 4490060 2,870 90 76 60 66 48 92 78 79 82 67 54 72.0 45.0 284.9 128.2 --- --- --- can
P 3 448261 4489834 2,891 82 110 106 135 111 101 82 73 64 59 53 88.7 --- --- --- --- --- ---
P 4 447927 4489702 2,910 98 107 115 116 114 111 92 104 97 91 87 102.9 111.0 277.0 307.4 --- --- --- can
P 5 447979 4489588 2,945 105 111 109 105 99 77 64 109 91 105 81 96.0 --- --- --- --- --- ---
P 6 449215 4490887 2,842 38 52 60 67 83 75 68 60 59 56 27 58.6 --- --- --- --- --- ---

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
P = CSU Pingree Park O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2011-04-30

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C 1 482311 4501681 1,607 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 2 481072 4501543 1,612 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 3 479970 4504434 1,633 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 4 473796 4504326 1,753 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 5 470577 4504240 1,799 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 6 467105 4503568 1,852 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 7 463458 4504270 1,956 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 8 459281 4503392 2,074 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 9 455537 4505136 2,140 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 10 446565 4505924 2,260 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 11 442525 4505145 2,343 5 9 11 2 6 4 0 2 0 5 4 4.4 --- --- --- --- --- ---
C 12 438676 4506771 2,358 10 9 9 10 10 9 0 10 8 8 9 8.4 7.0 129.8 9.08 --- --- --- can
C 13 435797 4505182 2,384 9 12 11 11 10 11 12 14 15 13 12 11.8 --- --- --- --- --- ---
C 14 431737 4502157 2,456 10 10 9 13 11 11 11 12 10 14 10 11.0 --- --- --- --- --- ---
C 15 431773 4498491 2,576 80 81 82 75 66 58 70 89 103 109 100 83.0 --- --- --- --- --- ---
C 16 *** *** 2,638 95 90 83 85 85 83 86 93 99 104 103 91.5 --- --- --- --- --- ---
C 17 *** *** 2,753 133 126 141 141 135 130 125 122 127 121 112 128.5 134.6 301.9 406.4 --- --- --- fed
C 18 427822 4492570 2,882 245 248 217 225 245 220 200 214 224 221 257 228.7 --- --- --- --- --- ---
C 19 425963 4489939 3,061 340 326 329 320 315 323 329 312 300 322 333 322.6 --- --- --- --- --- ---
C 20 425324 4488007 3,067 294 281 268 257 261 280 284 279 287 294 299 280.4 --- --- --- --- --- ---
C 21 *** *** --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 22 *** *** 3,159 330 330 326 324 320 321 323 320 320 325 322 323.7 --- --- --- --- --- ---
C 23 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 24 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 25 420401 4484047 2,868 210 205 210 210 208 204 207 204 206 202 200 206.0 215.9 311.8 673.1 --- --- --- fed
C 26 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 27 424980 4484697 3,094 331 340 328 329 320 322 338 325 325 326 320 327.6 --- --- --- --- --- ---
C 28 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 29 427550 4492459 2,903 230 222 204 211 216 216 227 218 220 224 226 219.5 210.2 313.9 660.4 --- --- --- fed

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C = CO Highway 14 O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2011-05-31

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C 1 482311 4501681 1,607 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 2 481072 4501543 1,612 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 3 479970 4504434 1,633 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 4 473796 4504326 1,753 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 5 470577 4504240 1,799 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 6 467105 4503568 1,852 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 7 463458 4504270 1,956 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 8 459281 4503392 2,074 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 9 455537 4505136 2,140 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 10 446565 4505924 2,260 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 11 442525 4505145 2,343 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 12 438676 4506771 2,358 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 13 435797 4505182 2,384 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 14 431737 4502157 2,456 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 15 431773 4498491 2,576 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 16 430745 4496817 2,638 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 17 429143 4495496 2,753 0 0 0 0 0 15 20 18 14 12 20 9.0 --- --- --- --- --- ---
C 18 427822 4492570 2,882 131 143 146 161 155 149 159 150 155 159 152 150.9 --- --- --- --- --- ---
C 19 425963 4489939 3,061 245 243 234 245 249 235 230 231 231 234 233 237.3 199.4 468.3 933.5 --- --- --- fed
C 20 425324 4488007 3,067 235 235 210 200 200 205 200 207 210 213 226 212.8 --- --- --- --- --- ---
C 21 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 22 424251 4485866 3,159 242 235 233 233 225 230 228 228 232 234 232 232.0 --- --- --- --- --- ---
C 23 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 24 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 25 420401 4484047 2,868 140 138 140 130 135 132 133 133 134 130 131 134.2 143.5 413.1 592.7 --- --- --- fed
C 26 414448 4485031 2,763 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 27 424980 4484697 3,094 257 245 245 245 244 248 246 237 242 234 235 243.5 --- --- --- --- --- ---
C 28 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 29 427550 4492459 2,903 170 162 151 155 140 142 138 153 140 149 155 150.5 162.6 406.3 660.4 --- --- --- fed

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C = CO Highway 14 O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-01-02

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C 1 482311 4501681 1,607 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 2 481072 4501543 1,612 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 3 479970 4504434 1,633 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 4 473796 4504326 1,753 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 5 470577 4504240 1,799 0 2 3 5 0 0 0 2 2 1 2 1.5 --- --- --- --- --- ---
C 6 467105 4503568 1,852 0 8 16 16 9 2 14 10 9 8 9 9.2 --- --- --- --- --- ---
C 7 463458 4504270 1,956 0 6 14 15 18 17 20 23 15 10 0 12.5 --- --- --- --- --- ---
C 8 459281 4503392 2,074 13 0 0 2 0 2 3 11 10 12 10 5.7 --- --- --- --- --- ---
C 9 455537 4505136 2,140 0 0 0 0 0 18 27 30 41 51 8 15.9 --- --- --- --- --- ---
C 10 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 11 442532 4505134 2,334 19 20 20 24 2 4 30 5 20 5 3 13.8 --- --- --- --- --- ---
C 12 438675 4506767 2,365 1 2 10 18 15 10 2 6 6 7 8 7.7 11.5 183.5 21.1 --- --- --- can
C 13 435754 4505167 2,376 18 21 24 28 26 26 22 16 19 15 14 20.8 --- --- --- --- --- ---
C 14 431720 4502177 2,463 13 15 1 16 16 11 5 8 7 14 15 11.0 15.0 200.5 30.1 --- --- --- can
C 15 431772 4498491 2,576 40 38 40 42 43 42 35 48 45 40 40 41.2 --- --- --- --- --- ---
C 16 *** *** 2,649 41 44 35 40 45 41 45 50 50 49 51 44.6 --- --- --- --- --- ---
C 17 *** *** 2,758 47 47 44 44 44 40 38 39 27 29 27 38.7 45.0 226.4 101.9 --- --- --- tube
C 18 427826 4492577 2,878 42 45 50 43 58 66 71 70 67 65 60 57.9 --- --- --- --- --- ---
C 19 425958 4489932 3,062 77 70 75 74 79 75 74 72 74 79 75 74.9 76.0 175.2 133.1 --- --- --- tube
C 20 425330 4488003 3,062 69 60 65 75 77 74 55 68 64 62 85 68.5 --- --- --- --- --- ---
C 21 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 22 *** *** 3,141 74 75 77 76 74 74 71 77 79 77 77 75.5 --- --- --- --- --- ---
C 23 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 24 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 25 420410 4484037 2,862 26 25 27 30 35 40 39 38 35 44 42 34.6 39.0 94.1 39.0 --- --- --- tube
C 26 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 27 424989 4484701 3,089 60 62 65 63 65 65 62 68 70 49 40 60.8 --- --- --- --- --- ---
C 28 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 29 427550 4492446 2,901 56 56 56 55 60 49 55 50 50 50 54 53.7 56.0 176.4 98.8 --- --- --- tube

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C = CO Highway 14 O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

Transect
Mean SWE Measurement

CC CT TM NotesSite 
Number

GPS Location
Mean ds (cm)

ds Measurements (cm) - 1m interval
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-03-02

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C 1 482311 4501681 1,607 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 2 481072 4501543 1,612 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 3 479970 4504434 1,633 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 4 473796 4504326 1,753 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 5 470577 4504240 1,799 17 18 14 14 18 15 20 20 18 17 20 17.4 --- --- --- --- --- ---
C 6 467105 4503568 1,852 6 10 6 5 5 14 15 10 11 10 6 8.9 --- --- --- --- --- ---
C 7 463458 4504270 1,956 10 5 2 9 10 12 14 14 15 15 14 10.9 --- --- --- --- --- ---
C 8 459281 4503392 2,074 13 11 12 12 14 15 14 10 11 12 12 12.4 --- --- --- --- --- ---
C 9 455537 4505136 2,140 15 16 16 14 14 16 20 20 20 20 15 16.9 --- --- --- --- --- ---
C 10 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 11 442532 4505134 2,334 24 30 36 38 30 30 24 16 25 16 10 25.4 --- --- --- --- --- ---
C 12 438675 4506767 2,365 8 5 6 8 9 10 19 14 15 16 16 11.5 16.0 199.7 32.0 --- --- --- can
C 13 435754 4505167 2,376 20 16 21 25 24 20 14 14 5 6 5 15.5 --- --- --- --- --- ---
C 14 431720 4502177 2,463 29 27 10 25 27 25 30 17 21 16 14 21.9 25.0 229.4 57.4 --- --- --- can
C 15 431772 4498491 2,576 65 62 62 51 59 74 59 61 58 88 89 66.2 --- --- --- --- --- ---
C 16 *** *** 2,649 30 36 40 40 55 78 79 81 83 89 81 62.9 --- --- --- --- --- ---
C 17 *** *** 2,758 68 69 70 60 60 54 64 55 36 41 34 55.5 76.2 233.3 177.8 --- --- --- fed
C 18 427826 4492577 2,878 118 95 105 109 91 94 98 91 99 102 100 100.2 --- --- --- --- --- ---
C 19 425958 4489932 3,062 154 155 155 158 154 154 150 148 146 155 150 152.6 153.7 297.5 457.2 --- --- --- fed
C 20 425330 4488003 3,062 112 112 123 110 115 130 117 140 138 155 170 129.3 --- --- --- --- --- ---
C 21 *** *** --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 22 *** *** 3,141 139 144 145 145 147 151 152 152 159 158 161 150.3 --- --- --- --- --- ---
C 23 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 24 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 25 420410 4484037 2,862 70 76 76 76 75 76 76 80 69 69 57 72.7 --- --- --- --- --- ---
C 26 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 27 424989 4484701 3,089 139 133 133 133 139 140 146 132 141 139 140 137.7 --- --- --- --- --- ---
C 28 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 29 427550 4492446 2,901 129 125 126 122 121 125 106 110 105 104 100 115.7 121.9 291.7 355.6 --- --- --- fed

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C = CO Highway 14 O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-03-29

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C 1 431774 4498466 2,586 11 29 36 49 21 5 22 40 62 66 69 37.3 --- --- --- P SF AG
C 2 *** *** 2,653 0 0 0 0 0 18 20 34 40 29 2 13.0 --- --- --- O AS O
C 3 430097 4496003 2,736 63 62 64 76 63 73 60 70 76 67 76 68.2 --- --- --- P LP DR
C 4 429243 4495152 2,752 60 55 50 50 46 50 60 66 55 48 49 53.5 --- --- --- P LP AG
C 5 *** *** 2,760 20 33 39 35 34 25 7 2 0 0 0 17.7 --- --- --- O LP O
C 6 428674 4494271 2,810 43 38 39 22 25 19 2 9 24 34 25 25.5 --- --- --- P LP DR
C 7 428277 4493290 2,859 40 41 45 55 65 50 52 49 50 63 58 51.6 --- --- --- P LP DG
C 8 427823 4492583 2,881 62 58 51 44 60 65 55 64 62 48 50 56.3 --- --- --- O LP O
C 9 427560 4492479 2,903 46 45 50 62 64 60 60 55 53 60 54 55.4 55.9 329.5 184.2 P LP DG fed
C 10 426874 4491511 2,962 49 42 46 54 64 66 53 54 79 89 84 61.8 --- --- --- C SF AG
C 11 426457 4490633 3,020 104 80 85 89 56 58 74 58 85 62 73 74.9 --- --- --- P SF AG
C 12 425970 4489937 3,066 99 101 89 86 88 91 96 87 85 85 90 90.6 95.3 360.0 342.9 P LP DR fed
C 13 425530 4488907 3,068 86 72 82 78 74 75 70 62 69 80 75 74.8 --- --- --- P SF AG
C 14 425329 4488013 3,062 49 68 75 84 90 95 102 111 112 120 110 92.4 --- --- --- O SF O
C 15 *** *** 3,146 112 114 114 112 116 112 112 115 115 118 128 115.3 --- --- --- O SF O
C 16 424995 4484714 3,097 103 95 90 88 94 95 103 103 93 82 73 92.6 --- --- --- P SF AG
C 17 420409 4484034 2,864 0 0 0 0 0 10 3 23 20 25 24 9.5 --- --- --- O LP O

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C = CO Highway 14 O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-03-29

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C3 1 428875 4495563 2,786 42 49 54 57 63 60 50 60 46 41 45 51.5 --- --- --- C SF AG
C3 2 428342 4495235 2,815 31 32 5 15 45 29 25 24 40 40 40 29.6 --- --- --- C SF AG
C3 3 428020 4495702 2,853 52 60 60 74 63 60 65 49 47 44 32 55.1 --- --- --- P LP AG
C3 4 427312 4496600 2,808 66 63 34 70 61 62 51 56 58 62 54 57.9 --- --- --- P SF AG
C3 5 427573 4497838 2,725 53 50 58 52 52 57 55 48 69 56 43 53.9 --- --- --- P SF AG
C3 6 427654 4498331 2,719 40 49 62 51 55 55 50 38 35 35 49 47.2 --- --- --- O W AG

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C3 = Chambers Lake Road O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-03-29

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

P2 1 451273 4490939 2,702 16 20 25 30 35 50 60 75 70 46 20 40.6 --- --- --- P LP DR
P2 2 450080 4492179 2,756 45 50 47 58 60 55 46 50 44 50 69 52.2 --- --- --- P LP DR
P2 3 449299 4492155 2,762 14 8 0 0 5 27 30 32 30 24 12 16.5 --- --- --- P LP AG
P2 4 448093 4492359 2,850 46 43 41 45 49 44 50 55 49 52 53 47.9 --- --- --- O LP AG
P2 5 447713 4492192 2,857 47 50 63 64 51 48 30 30 24 32 43 43.8 --- --- --- P LP DR

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
P2 = Pingree Park - Hourglass Reservoir Road O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-03-30

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

D 1 439698 4518111 2,844 87 84 74 76 60 62 60 45 70 40 42 63.6 --- --- --- P SF AG
D 2 439152 4518043 2,872 51 52 61 34 66 73 63 50 56 50 45 54.6 --- --- --- P SF AG
D 3 438619 4517973 2,874 65 57 50 47 45 41 53 50 41 40 47 48.7 --- --- --- P SF AG
D 4 438094 4518115 2,893 65 66 64 69 56 71 58 50 64 50 55 60.7 --- --- --- P LP AG
D 5 437684 4517768 2,909 45 46 41 40 51 41 45 46 45 55 44 45.4 --- --- --- O SF O
D 6 437196 4517360 2,960 72 70 72 75 68 58 45 50 64 66 69 64.5 --- --- --- P LP AG
D 7 436660 4517048 2,994 94 110 85 60 52 62 58 60 60 41 58 67.3 --- --- --- P LP AG
D 8 436155 4516808 3,001 58 47 65 71 72 60 68 72 72 75 84 67.6 --- --- --- C LP DR
D 9 435826 4517155 3,082 74 82 80 82 73 59 49 30 28 35 25 56.1 --- --- --- P LP AG
D 10 435365 4517465 3,115 79 82 87 105 93 68 69 55 60 75 65 76.2 --- --- --- O SF O
D 11 *** *** 3,136 87 96 90 90 94 95 90 94 94 94 100 93.1 --- --- --- O LP O
D 12 435016 4518066 3,187 80 75 78 88 94 105 95 82 78 72 72 83.5 --- --- --- P LP AG

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
D = Deadman Hill [Deadman Road] O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-03-31

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C5 1 427577 4492768 2,882 90 96 89 87 85 65 63 16 15 25 61 62.9 --- --- --- P SF AG
C5 2 427647 4493509 2,889 51 48 28 35 38 36 10 6 4 11 50 28.8 --- --- --- P LP DR
C5 3 427048 4493908 2,924 70 64 49 66 74 80 80 55 40 28 16 56.5 --- --- --- P SF DG
C5 4 426867 4494589 2,954 69 59 48 27 36 57 80 94 99 93 82 67.6 --- --- --- P SF AG
C5 5 426221 4494782 2,972 62 51 35 18 0 0 0 0 73 78 12 29.9 --- --- --- P SF DG
C5 6 425650 4494817 3,034 63 21 25 97 110 111 100 121 121 125 130 93.1 --- --- --- P SF DG
C5 7 425055 4495091 3,096 71 91 80 69 47 68 83 70 71 80 84 74.0 --- --- --- P SF DG
C5 8 424444 4495463 3,147 112 107 95 103 94 98 102 95 94 97 94 99.2 --- --- --- P SF DG
C5 9 424222 4495605 3,185 71 93 95 54 43 81 101 95 103 88 89 83.0 --- --- --- P SF DG

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C5 = Blue Lake O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-03-31

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C6 1 427612 4492107 2,929 71 78 78 66 71 74 67 66 58 47 42 65.3 --- --- --- P LP DR
C6 2 428149 4491890 2,964 119 105 108 92 81 77 72 69 71 69 61 84.0 --- --- --- P LP AG
C6 3 428651 4491839 2,974 111 110 99 88 98 101 96 100 93 85 78 96.3 --- --- --- O SF AG
C6 4 429051 4491483 2,966 62 72 64 67 73 71 79 67 60 55 54 65.8 --- --- --- P SF AG
C6 5 429368 4490926 2,978 26 69 97 101 159 148 156 86 99 169 155 115.0 --- --- --- O SF AG
C6 6 429845 4490463 3,010 84 61 60 66 78 77 91 89 90 76 81 77.5 --- --- --- O LP AG
C6 7 430243 4490155 3,036 74 41 42 29 43 46 37 31 51 56 64 46.7 --- --- --- O SF AG
C6 8 430784 4490081 3,058 50 62 83 95 94 92 73 92 104 122 130 90.6 --- --- --- P SF AG

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C6 = Longdraw Road O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement

119



Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-03-31

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C7 1 427851 4492554 2,884 70 60 62 44 46 22 38 52 75 102 114 62.3 --- --- --- P LP AG
C7 2 427735 4492165 2,921 46 126 144 136 115 83 73 70 62 44 73 88.4 --- --- --- P SF DG
C7 3 427994 4491826 2,949 8 40 60 79 73 75 73 70 66 66 57 60.6 --- --- --- P SF AG
C7 4 428178 4491409 2,974 71 63 44 15 0 30 36 26 54 60 48 40.6 --- --- --- P SF DG
C7 5 428556 4491342 3,000 85 80 55 57 54 60 45 59 38 48 35 56.0 --- --- --- P SF DG
C7 6 428873 4491412 2,982 70 78 76 70 62 76 61 62 80 51 54 67.3 --- --- --- P SF AG
C7 7 428988 4491247 2,986 86 80 81 95 80 55 77 78 95 105 96 84.4 --- --- --- P SF DG
C7 8 429362 4490911 2,985 154 180 165 158 183 185 142 103 37 102 78 135.2 --- --- --- O SF DG
C7 9 429788 4490467 3,024 68 75 81 80 73 66 70 68 81 92 101 77.7 --- --- --- P SF DG

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C7 = Meadows Trail O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-03-31

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C8 1 425297 4487866 3,069 105 110 111 115 100 85 79 57 30 15 15 74.7 --- --- --- P SF AG
C8 2 425660 4488129 3,114 20 30 35 30 35 60 50 39 35 20 15 33.5 --- --- --- C SF AG
C8 3 426029 4488096 3,196 160 160 140 144 150 140 142 130 111 131 118 138.7 --- --- --- O SF DG
C8 4 426519 4488256 3,196 90 76 60 60 48 30 20 11 5 1 0 36.5 --- --- --- C SF AG

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C8 = Zimmerman Lake O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-03-31

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C9 1 425270 4488413 3,081 92 97 95 100 103 105 110 114 107 109 115 104.3 92.3 344.7 318.3 O SF O tube
C9 2 425097 4488552 3,109 110 102 112 107 105 108 108 110 118 121 120 111.0 --- --- --- O SF O
C9 3 424886 4488554 3,158 72 77 75 78 74 80 75 77 80 80 81 77.2 86.7 306.5 265.6 P SF AG tube
C9 4 424737 4488424 3,194 79 89 84 79 83 91 86 76 88 91 75 83.7 --- --- --- P SF DR
C9 5 424534 4488335 3,227 91 81 78 78 75 82 83 85 77 71 67 78.9 86.3 304.7 263.1 P SF DR tube
C9 6 424319 4488300 3,251 85 88 92 88 91 91 100 110 108 102 99 95.8 --- --- --- P SF DR
C9 7 424120 4488223 3,273 113 102 94 83 96 106 121 117 115 112 108 106.1 114.7 324.7 372.3 O SF O tube
C9 8 423903 4488190 3,306 152 150 150 141 145 152 157 167 180 150 132 152.4 --- --- --- O SF O
C9 9 423687 4488364 3,323 62 97 90 61 66 67 69 85 110 100 42 77.2 84.0 285.8 240.0 O SF O tube
C9 10 423485 4488408 3,340 130 145 145 152 153 162 167 175 180 183 193 162.3 --- --- --- O AL O
C9 11 423377 4488420 3,347 90 93 92 89 83 90 85 90 87 92 94 89.5 91.0 380.6 346.4 O AL O tube
C9 12 423234 4488384 3,362 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- O AL O no snow

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C9 = Montgomery Pass O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-03-31

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C10 1 424432 4485842 3,147 70 89 62 92 75 70 74 72 68 60 50 71.1 --- --- --- P LP DG
C10 2 424727 4485450 3,144 80 110 135 128 105 105 103 110 110 98 75 105.4 --- --- --- P LP DG
C10 3 425047 4485119 3,145 105 129 131 140 144 164 152 129 121 96 68 125.4 --- --- --- P LP DG
C10 4 425185 4484600 3,148 60 83 63 50 35 30 45 60 85 92 83 62.4 --- --- --- P LP DG
C10 5 425461 4484339 3,166 43 63 62 80 73 84 78 78 71 68 54 68.5 --- --- --- P LP DR
C10 6 426009 4484060 3,158 0 0 0 0 1 51 52 30 32 36 59 23.7 --- --- --- P SF DR
C10 7 426407 4483744 3,156 166 83 142 143 131 98 116 98 94 101 102 115.8 --- --- --- O SF O
C10 8 426609 4483295 3,179 87 68 76 85 101 123 114 108 115 98 110 98.6 --- --- --- C SF AG
C10 9 426860 4482852 3,170 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- O SF O no snow

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C10 = Michagan Ditch O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-03-31

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C11 1 423604 4483895 2,983 35 14 15 35 50 44 55 50 60 45 61 42.2 --- --- --- P SF AG
C11 2 423951 4483565 3,033 57 45 53 41 36 45 48 43 50 31 37 44.2 --- --- --- C SF AG
C11 3 423761 4483068 3,114 109 90 63 65 50 34 10 50 44 75 70 60.0 104.8 303.0 317.5 P SF AG fed
C11 4 423476 4482584 3,125 63 61 64 115 105 88 84 79 89 107 106 87.4 --- --- --- O SF O
C11 5 423002 4482320 3,234 74 70 69 69 75 93 95 100 96 99 98 85.3 --- --- --- O SF O
C11 6 422473 4482192 3,409 234 215 210 195 179 160 115 90 73 60 60 144.6 121.3 204.2 247.7 O AL O fed
C11 7 422454 4482087 3,442 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- O AL O no snow
C11 8 422472 4482041 3,458 135 138 129 130 130 148 140 160 167 159 161 145.2 --- --- --- O AL O

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C11 = Lake Agnes O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-04-01

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

P4 1 450191 4489919 2,870 11 20 21 24 26 30 29 30 29 30 28 25.3 --- --- --- P LP AG
P4 2 449792 4489442 2,908 30 39 39 52 55 32 48 47 43 41 64 44.5 --- --- --- P LP AG
P4 3 449395 4489047 2,964 45 40 46 38 50 79 50 38 30 24 31 42.8 --- --- --- P LP DR

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
P4 = Pingree Park - Stormy Peaks O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-04-01

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

P5 1 448232 4489766 2,907 60 55 49 59 50 49 47 41 30 57 45 49.3 --- --- --- P SF AG
P5 2 447648 4489545 2,940 59 63 54 35 10 68 61 60 43 75 85 55.7 --- --- --- P SF AG
P5 3 447235 4489241 2,997 55 73 78 83 95 75 80 59 62 72 73 73.2 --- --- --- P SF AG
P5 4 446713 4489211 3,009 56 77 67 58 60 56 57 46 68 74 78 63.4 70.5 342.3 241.3 P LP AG fed
P5 5 446268 4488962 3,026 74 80 74 73 70 72 55 52 40 60 50 63.6 74.3 333.3 247.7 P LP DG fed

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
P5 = Pingree Park - Emmaline Lake O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Cache la Poudre Basin Study Area, CO
Field-based snowpack data
Date: 2012-04-28

Easting Northing Elevation (m) 1 2 3 4 5 6 7 8 9 10 11 ds (cm) ρs (kgm-3) SWE (mm)

C 1 482311 4501681 1,607 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 2 481072 4501543 1,612 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 3 479970 4504434 1,633 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 4 473796 4504326 1,753 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 5 470577 4504240 1,799 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 6 467105 4503568 1,852 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 7 463458 4504270 1,956 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 8 459281 4503392 2,074 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 9 455537 4505136 2,140 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 10 446565 4505924 2,260 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 11 442532 4505134 2,334 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 12 438675 4506767 2,365 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 13 435754 4505167 2,376 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 14 431720 4502177 2,463 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 15 431772 4498491 2,576 1 1 1 1 1 1 2 2 2 1 1 1.3 --- --- --- --- --- ---
C 16 *** *** 2,649 5 6 7 6 5 6 5 4 5 4 3 5.1 --- --- --- --- --- ---
C 17 *** *** 2,758 1 1 1 1 1 1 1 3 2 3 3 1.6 --- --- --- --- --- ---
C 18 427826 4492577 2,878 8 5 5 8 4 3 6 5 7 5 6 5.6 --- --- --- --- --- ---
C 19 425958 4489932 3,062 33 45 35 30 42 50 41 39 38 33 35 38.3 32.5 344.5 112.0 --- --- --- can
C 20 425330 4488003 3,062 49 58 55 56 52 55 47 60 62 71 75 58.2 --- --- --- --- --- ---
C 21 *** *** --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 22 *** *** 3,141 67 76 69 77 73 79 84 75 77 80 72 75.4 54.5 313.1 170.7 --- --- --- can
C 23 422791 4484168 2,967 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 24 420409 4484110 2,869 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 25 420410 4484037 2,862 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 26 414448 4485031 2,763 0 0 0 0 0 0 0 0 0 0 0 0.0 --- --- --- --- --- --- no snow
C 27 424989 4484701 3,089 89 91 90 99 93 90 89 78 80 73 74 86.0 --- --- --- --- --- ---
C 28 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- not sampled
C 29 427550 4492446 2,901 5 5 4 3 3 3 2 4 4 3 5 3.7 --- --- --- --- --- ---

Notes:
--- = no measurement CC = Canopy Cover
*** = NRCS coordinates not reported C = closed

Transect P = partially closed
C = CO Highway 14 O = open

Snow variables CT = Community Type
ds = snow depth LP = Lodgepole Pine
ρs = snow density SF = Spruce/Fir
SWE = snow water equivalent AS = Aspen Stand

SWE measurement AL = Alpine
can = cylindrical can [diameter = 15.3 cm] W = Wetland
tube = snow sampling tube [diameter = 6.6 cm] TM = Tree Mortality
fed = Federal sampler [diameter = 3.77 cm] O - open/no canopy

AG - alive with green needles
DR - dead with red needles
DG - dead and gray (no needles)

CC CT TM NotesTransect Site 
Number

GPS Location ds Measurements (cm) - 1m interval
Mean ds (cm)

Mean SWE Measurement
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Table C.1: Spatial and temporal data obtained and derived for the Cache la Poudre basin study 
area GIS dataset. 
Data Source 
NRCS operational station locations Natural Resource Conservation Service (NRCS) 

<http://www.wcc.nrcs.usda.gov/snow/> 

Field-based measurement locations GPS locations using Garmin GPSMAP 76 GPS 
receiver capable of positioning accuracy within 3 m 

Streams and Water bodies United States Geological Survey (USGS) National 
Hydrography Dataset <http://nhd.usgs.gov/> 

Land Cover USGS National Gap Analysis Program (GAP) 
<http://gapanalysis.usgs.gov/>  

Digital Elevation Model (DEM) USGS National Elevation Dataset (NED) 
<http://seamless.usgs.gov/> 

Basin boundaries Derived from DEM using the Spatial Analyst tools 
within ArcGIS 10 

Hillshade Derived from DEM using the Spatial Analyst tools 
within ArcGIS 10 

Slope Derived from DEM using the Spatial Analyst tools 
within ArcGIS 10 

Northness Derived from DEM using ArcGIS 10 as the product 
of the cosine of aspect and the sine of slope 

Eastness Derived from DEM using ArcGIS 10 as the product 
of the sine of aspect and the sine of slope 

Solar Radiation Derived from DEM using the Area Solar Radiation 
tool in ArcGIS 10 (Nov 15 through Mar 30) 

Curvature Profile curvature derived from DEM using the 
Spatial Analyst tools within ArcGIS 10 

Canopy Density National Land Cover Database 
<http://www.mrlc.gov>  

UTM Northing Grid (Centroid) Derived from centroid UTM Northing value of 
DEM pixel using ArcGIS 10 

UTM Easting Grid (Centroid) Derived from centroid UTM Easting value of DEM 
pixel using ArcGIS 10 

MODIS/Terra 8-day Maximum Snow 
Extent (snow covered area) late March 
through early April (2011 - 2012) 

NASA’s Earth Observing System Data and 
Information System (EOSDIS) 
<http://reverb.echo.nasa.gov> 
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