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ABSTRACT

This paper presents a general approach to the study of quasi-
linear two-phase flow in porous media, It is especially applicable to
reservoirs which can be approximated by one-dimensional models,

The technique presented here uses the familiar ''Buckley-
Leverett calculation procedures''. It provides a systematic means of
making one-dimensional calculations for situations beyond the scope of
the Buckley-Leverett method and which are pertinent to practical
reservoir engineering, e,g., performance of heterogeneous reservoirs
with many production and injection wells, recovery of attic or cellar

oil, etc...
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INTRODUCTION

The Buckley-Levere’c’c1 method and Welge's2 graphical
technique for calculating the evolution and advance of saturation pro-
files in a linear two-phase flow system is well known and widely used.
Although improved and expanded techniques have been developed and
reported by a number of authors, the simple ''Buckley-Leverett, Welge
approach'' remains the most widely used. Unfortunately, the applica-
oility of the Buckley-Leverett, Welge solution is limited,

For example, the Buckley-Leverett method is limited to a
strictly linear system. The displacement process is assumed to take
place in a linear core whose physical characteristics are uniform along
the direction of flow., In particular, absolute permeability, porosity,
cross-sectional area and flow rate are assumed uniform throughout
the entire core,

A very satisfactory and general theory was developed by
Martin3 for the case of quasi-linear flow. A quasi-linear system is a
system in which flow is, on the whole, one-dimensional but in which
absolute permeability, porosity, cross-sectional area, dip angle and
flow rate are not uniform along the axis of flow, Martin derived an
equation free from the assumptions that (1) the properties of the for-
mation are uniform and that (2) injection and production occur only at
an inlet and outlet face. Hence, the equation for saturation derived
by Martin is much more general but not as simple as Buckley and

Leverett's, However, when capillary effects are neglected, the partial



cifferential equation derived by Martin is also a first order one,
Unfortunately, the mathematical apparatus necessary to solve Martin's
equation is more elaborate than that required for an understanding of the
Buckley-Leverett approach and, consequently, it is not as widely used.
The approach summarized in this paper intends to breach the
gap between the two procedures without requiring a mathematical
knowledge beyond that necessary for understanding the Buckley-
Leverett method, and at the same time, retaining some of the gener-
ality achieved in Martin's solution. Specifically, the effects of changing
formation properties and flow rates in a quasi-linear system are ap-
proximated by a series of blocks of uniform but different properties,
Because formation properties and flow characteristics are uniform in
each block, the normal Buckley-Leverett approach can be used if
proper care is exercised in handling the transition from one block to

the next,
SATURATION EQUATION IN A QUASI-LINEAR SYSTEM

The equations of two-phase fluid flow in a porous media are
obtained by applying the law of conservation of mass and Darcy's law
for each phase. By combining the mathematical representation of
these laws, it is possible to eliminate pressure as a variable and
obtain an equation for water saturation:
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Throughout this paper, the capillary pressure difference between the

two phases is ignored so that the same pressure prevails in both phases.
Equation 1 is a first order partial differential equation which

can be solved to give SW and hence So at any t and x. The equa-

tion reduces to the Buckley-Leverett equation with appropriate

simplifications.
GENERALIZED METHOD

The original Buckley-Leverett method of solution is not
applicable to the general differential equation that describes saturation
behavior in a quasi-linear system (Equation 1), For simplicity this

equation is rewritten as:
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P(x) == + R(x, 8, 1) 5 = T(x, S _, 1) (2)

The exact expressions for P(x), R(x, Sw’ t) and T(x, Sw’ t) can be ob-
tained by comparison with Equation 1, The solution of Equation 2 can

be obtained by reducing it to two ordinary differential equations (the

characteristics):
dt  _ dx _ dbw (3)
P(x) R(x, Sw’ t) T(x, Sw’ t)

The method of characteristics involves the solution of two
ordinary differential equations. The Buckley-Leverett method is con-
sistent with this method even though it appears to involve only one
ordinary differential equation. In fact, the second equation is trivial,

namely dSW = 0, Therefore, the Buckley-Leverett type of simplification



follows immediately whenever Equation 2 is a homogeneous equation,
i.e., T (x,s,t) =0, or

kAsinf _
Q

Equation 4 implies that the partial differential equation

C(t) (4)

(Equation 2) for saturation will be homogeneous over any region in
which the quantity kAsin6/Q is uniform. Therefore, if kAsinf/Q is
constant, the Buckley-Leverett type of calculation using fractional flow
curves can be carried out, Usually, this is not the case in reservoir
problems of physical significance and the fractional flow concept loses
most of its usefulness because Fw becomes a function not only of
saturation but also of x and t.

Thus, we see that quasi-linear flow cannot be treated by the
normal Buckley-Leverett method if the properties of the medium are
represented as continouous functions of position. However if the for-
mation can be reasonably well represented by a series of blocks of
uniform characteristics a generalized Buckley-Leverett method using
fractional flow curves can be used. The principal problem is to inves-
tigate what happens at boundaries between blocks.

VARIATION IN RESERVOIR PROPERTIES
OR/AND FLOW CONDITIONS

To handle this problem, we assume the reservoir is either

naturally divided into zones of uniform properties with sharp transition

at boundaries or artificially segmented, for calculation purposes, into



blocks of uniform characteristics (Figure 1). Then, within each block
the velocity at which a saturation travels is obtained from the slope of
the tangent to the fractional flow curve and is uniquely and well defined.
However, at the boundary the situation is unclear. Due to the disconti-
nuity in reservoir properties, a resulting discontinuity in saturation
can be intuitively expected to occur at the boundary. Once created,
the discontinuity could either be stationary or propagated into the
adjacent blocks. Whatever occurs at the boundary must satisfy the
law of conservation of mass and be compatible with the information de-
duced from the fractional flow curves on either side of the boundary.
Two typical cases are presented to show what may happen at a

boundary.

Encroaching Updip Water Drive

Consider the case of an updip advance of a water-oil contact.
This is both a simple and common incidence and we will use this par-
ticular case as an introduction to the general approach,

At some distance updip from the original water-oil contact,
the properties of the reservoir are assumed to change abruptly. The
block in contact with the aquifer is denoted block 1. The next block
updip is block 2 and, therefore, water moves through block 1 toward
block 2. At the boundary the properties of the reservoir change so that
the quantity kAsin6 has a different value on each side of the boundary.

We consider the case of an increase in kAsinf at the crossing

of the boundary in the direction of flow. Because the density difference



SCHEMATIC STEP APPROXIMATION

OolL

ATER

3
h o

100

w|O0

kAsin G %

FIGURE



in a water-oil system is positive it follows that for any given saturation

(S) (5)
as shown in Figure 2. Subscripts or superscripts 1 and 2 always refer
to blocks 1 and 2, Subscript w referring to water will often be omitted.
Because block 1 is in complete contact with the aquifer, the
saturation profile in block 1 behaves as a normal Buckley-Leverett
profile with a velocity that is obtained from the proper values of FW1 :
When the Buckley-Leveret: front for block 1 reaches the boundary be-
tween blocks 1 and 2, water starts moving into block 2. However, the
saturation profile in block 2 will not be a normal Buckley-Leverett pro-
file because only water saturations between ch and Sa , shown in
Figure 2, are available to move into block 2. As the water drive dis-
places more and more oil “rom block 1 to block 2, the saturation of
water on the left side of the boundary will gradually increase from SaL
to Sb’ to Sc and so forth, At the instant that any value of saturation,

Sa or Sb’ reaches the boundary on the left side, we assume that the

saturation in block 2 is not Sa or S, but Sa' and S, ', Therefore,

b b

the saturation profile undergoes a discontinuity at the boundary. The
size of the discontinuity, including zero, will be obtained by considering
a material balance at the boundary.

If there is neither injection nor production at the boundary, the

total flow rates must be the same on both sides:

Q- Q,-Q (6)
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This equation does not mean that the flow rates of oil and water must
be conserved on both sides, It only says that the sum of the flow rates
of water and oil is conserved at the boundary:

2

Fl(8) + Fy(S) = F(8) + Fo(S) (7)

Because FO = 1= Fw, Equation 7 is an identity no matter what S and
S' may be; Equation 7 alone cannot give the value of the saturation
discontinuity.

Because water flowing in block 2 comes from block 1, the flow
rate of water in block 2 cannot exceed that in block 1. Symbolically:

Q2 < Q) or FIS) < FLS) (8)

First assuming the case where Q‘:’ = Qvi , then it follows that
1
FW(S) = F;(S') . Consequently the jump from S to S' is given by the

equation

{ 2,c,
F(S) = F(S) (9)

This solution can be obtained graphically (Figure 2), using the
fractional flow diagrams, by drawing horizontal lines such as aa',
bb' and cc' to obtain values of S',S' ,S' .

a’’b. ¢

Given a saturation profile at an arbitrary initial time to
(profile oabc, Figure 2), the saturation profile at a later time, t, is
easily constructed,

If, on the other hand, only a fraction of the water reaching the

boundary from block 1 proceeds into block 2, the remaining fraction

must accumulate at the boundary and counterflow (see Figure 3). The
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velocity at which the counterflow front, a . propagates is negative,
The expression for the velocity is given by the usual formula

[Fls,) - F‘:/(Sa)] o

V = - =
S, -S_ Ad

(10)

Due to the fact that water accumulates at the boundary, SV is neces-
sarily greater than Sa . For V to be negative, given an incoming

saturation Sa , there must exist a saturation Sv > Sa such that

The typical fractional flow curves of Figure 3 indicate that in
most cases such a saturation does not exist, which means that no
accumulation induced counterflow will take place. In this instance, the
flow rate of both phases is preserved across the boundary

Q, Q) or  F(8)=F.(s) (11)

Equation 11 is the proper boundary condition for the case of an
encroaching water drive, which is therefore resolved.

However, it is possible to find a saturation Sv if the two
following conditions are fulfilled: (1) the shape of the fractional-flow
curve does allow counterflow, i.e., F is either negative or greater
than one over a saturation interval and (2) the incoming saturation Sa

a

falls within this interval. With the incoming saturations at1 s at2 , Ay

of Figure 3, no accumulation induced counterflow is possible. With the
incoming saturations a, and a; arange of possible saturations Sv

can be found. In either instance because the incoming saturation Sa
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already represents a counterflowing situation, the accumulation
induced front will not be counterflowing. It will propagate in the over-

all direction of flow (see Figure 4). The conditions to be satisfied by

i 1
g
Sv ] Sa Fw(”v) - Fw(sa)

which express the fact that accumulation takes place at the boundary,
and

Fl(S ) < 0

w v =
which expresses the fact that the flow rate of water in block 2 comes
from block 1. For an incoming saturation a (Figure 5),the point v
may lie anywhere between m and n .

A further limitation on the range of Sv may come from the
shape of the fractional flow curve in block 2 (Figure 5). If the frac-
tional flow function F; in block 2 is as represented by curve 1
(Figure 5) no additional restriction on the range of SV is imposed

t
because, given Sv in the interval (Sm, Sn)’ it is always possible to
find S' such that Equation 11 is satisfied. In the case of curve 2,
satisfaction of Equation 11 is possible only if the point v lies between
the points p and n . In the cases of curves 3 and 4, the only solution

for point v is point n . In the latter cases, the ''transmission

coefficient' at the boundary is zero.

Central Injection of Water or Gas

The case of injection of water (or gas) in the center of the

“ormation is somewhat different from that of an encroaching water
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drive, In a water drive by encroachment from the aquifer, the flow of
water is in a single direction, the updip direction. When water is
injected in the center of the formation into an updip moving stream of
oil, some of the water may move downdip whereas the remainder moves
updip. For the purpose of illustration, water injection is considered

at an injection rate AQW, which is negative due to our algebraic con-
vention that a negative production rate is an injection rate. With this
sign convention, expression of conservation of mass at the injection
boundary yields:

Q, - 5Q, +Q, (12)

We assume that Q1 is fixed by upstream conditions. For a given
injection rate AQW, Equation 12 determines the downstream flow rate,
Q2 . Part of the water injection rate flows updip: AQ; (positive),

part flows downdip: AQ“i/ (negative). Because no oil is produced at
the boundary of blocks 1 and 2 and because o0il cannot counterflow in a

downdip direction, the flow rate of oil must be the same on either side:

Qt-F)-q,u-F) . (13)

Satisfaction of Equation 13 requires a saturation discontinuity. Given
a value S for the water saturation on the upstream side of the boundary,
block 1, the saturation S'on the downstream side is found by obtaining

a solution of:

Q, -AQ,
g T+ (gt

Q

F, (") = (14)
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The right-hand side being known, the value of FZ(S') is readily
calculated and from the curve of F‘2 , S' is immediately deduced.
The solution for a pair of values is indicated: (a, b). If a downdip

flow rate of water AQ‘; is selected a priori the value of S is deter-

mined by the relation:
AQ) = F (S)Q 1
w1 1° (15)

Then the value of S' is obtained from Equation 14 or by the equivalent
graphical construction. Naturally AQ\; cannot be smaller than mini-
mum of F1Q1 . But it can have any arbitrary value between 0 and
(minimum of Fl) X Q1 . The evolution of the saturation profile is
shown on Figure 6 for a priori selected value of AQ\:} , corresponding
to point a on the F1 curve,

A limited range of possible soluticns has thus been obtained
within which the solution must lie; that is, under these circumstances
Sa is not a unique solution but must be chosen arbitrarily within

limits. However, once Sa is defined, S, can be solved uniquely.

b

CONCLUSIONS

A general procedure to predict the evolution of a saturation
profile with time in a reservoir that can be considered grossly linear
was described. This approach can be considered as a compromise
approach between the ''normal' Buckley-Leverett-Welge method and
the more general method of Martin. The most important conclusion

stemming from this material is that the petroleum engineer can
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solve fairly complicated problems in a relatively straightforward way
by relying on already acquired knowledge of the normal Buckley-
Leverett-Welge methods. The approach is systematic and allows one
to break quite complicated reservoir systems into blocks that can be
handled by ''routine'' methods.

Some degree of uncertainty exists in the solution whenever
counterflow can occur. From a practical point of view, this may not
be significant. From an academi;: point of view, it is not satisfactory.
To eliminate the uncertainty in the solution, other factors (e.g.,

capillarity) must be considered.
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LIST OF SY MBOLS

Symbol Definition

a’) b’ c, d) e)
m, n, o, v Various points on the saturation profiles and the
fractional flow curves

f Fractional flow function when both capillary and
gravity terms are neglected

., f f for fluid, i for water

i’ w
g Acceleration of gravity
k Absolute permeability

= .,k L,k Relative permeability to fluid i, to oil, to water

ri’ ro’ rw

P Pressure

1 9, 9, Production (>o0) or injection (<o) flow rate linear

density distribution, for oil, for water

t Time
t1 5 t2 r trl vie Successive time periods in the evolution of a

saturation profile

to Initial time

X Curvilinear abscissa along the mean streamline

X, Abscissa of front

X, Original location of saturation S

X, Location of saturation S at time t

A Cross-sectional area

F Frectional flow function when only capillary terms

are neglected

F.s F , F F Zor fluid i, for oil, for water
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LIST OF SYMBOLS - Continued

Definition
F in block 1, in block 2
F on the two sides of a front
F at the Buckley-Leverett saturation
Derivative of F with respect to S
Total flow rate >0 in the positive x direction

Flow rate of oil, of water

Flow rates on the two sides of a front
Flow rate in block 1, in block 2
Saturation

Saturation of fluid i, of oil, of water
Saturations on the two sides of a front
Connate water saturation

Residual oil saturation

Saturation behind the Buckley-Leverett front

Saturation at an inflection point of the fractional

flow function

Corresponding saturations on the two sides of a
boundary

Accumulation induced counterflow saturation
Velocity of a front
Dip angle

Mobility



LIST OF SYMBOLS - Continued

Symbol Definition

kro’ Arw Relative mobility of oil, water

Mo My, Viscosity, of oil, of water

Por Py Specific mass for oil, water
Ap P ™ Py for a water-oil system
AQ Production (>0) or injection (<0) flow rate
AQW Water injection flow rate

AQ1Ll, AQ2 Water injection flow rate in block 1, in block 2
¢ Porosity
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