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ABSTRACT 

The global distribution of ice mass in cirrus clouds is very poorly known, but impor­

tant for validating climate models that predict cirrus ice content. In this work theoretical 

modeling is carried out to investigate the feasibility of and possible techniques for high 

frequency microwave sensing of cirrus clouds from satellite. The discrete dipole approxi­

mation is used to compute the scattering properties for horizontally oriented ice crystals 

at frequencies of 85, 157, 220, and 340 GHz. Five particle shapes (solid columns, hol­

low columns, plates, planar rosettes, and spheres) and 18 gamma size distributions are 

considered. Upwelling brightness temperatures are computed with a polarized radiative 

transfer model. The brightness temperature depression (.6.Tb), relative to clear sky, is 

proportional to the ice water path (IWP), but the relationship depends strongly on the 

characteristic particle size and also on the crystal shape (typical range is a factor of two) . 

Multiple frequencies and polarizations are shown to be useful for determining particle size 

and shape. Moderate IWP is detectable, e.g. 30 g/m2 produces .6.Tb = 3°K at 340 GHz 

for a typical distribution. 

A multichannel passive microwave precipitation retrieval algorithm is also developed 

in this work. Bayes theorem is used to combine statistical information from numerical 

cloud models with forward radiative transfer modeling. A multivariate log-normal prior 

probability distribution contains the covariance information about hydrometeor distribu­

tions that resolves the nonuniqueness inherent in the inversion process. Hydrometeor 

profiles are retrieved by maximizing the posterior probability density for each vector of 

observations. Theoretical tests with brightness temperatures simulated from cloud model 

data show that a five layer structure with variable rain, graupel, and cloud water is as effec­

tive as more complex structures. The hydrometeor profile retrieval method is tested with 

four channel (10 to 85 GHz) aircraft-based microwave radiometer data from convection 

over ocean and land in Florida. Multiparameter radar data is used to verify the retrieved 

profiles. The results show that the method generally works, but that more research needs 

to be done to improve the use of cloud model information. 
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Chapter 1 

INTRODUCTION 

The advance of microwave radiometer teclmology for satellite instrumentation has led 

to increased opportunities for microwave remote sensing of clouds and precipitation. The 

increase in radiometer frequencies to the submillimeter range allows the sensing of lower 

concentrations and smaller sizes of cloud hydrometeors so that remote sensing of cirrus 

clouds is now possible. High precision radiometers operating with multiple frequencies 

and polarizations such as the Special Sensor Microwave/Imager (SSM/I) instrument have 

increased interest in the development of multichannel precipitation retrieval algorithms. 

This dissertation examines, through modeling and algorithm development, two axeas of 

passive microwave remote sensing important to understanding the climate system. The 

first axea uses theoretical modeling to explore the feasibility of and possible methods 

for high frequency microwave (> 100 GHz) sensing of cirrus clouds from high altitude 

aircraft and satellite. The second area involves the development and testing of a mul­

tichannel microwave precipitation measuring algorithm that uses output from numerical 

cloud modeling to help constrain the retrieval of hydrometeor profiles. 

1.1 The Importance of Cirrus and Precipitation Measurement 

Because of their laxge axeal coverage cirrus clouds exert a strong radiative influence 

on the global climate. A ground based cloud climatology (Warren et al., 1986; Warren 

et al., 1988) has a globally averaged cirrus cloud fraction of 23% over land and 13% over 

ocean. A climatology by Woodbury and McCormick. (1983) from SAGE (Stratospheric 

Aerosol and Gas Experiment) reports high cloud (above 70 percent of tropopause height 

or 8 lan, whichever is greater) fractions from 25% in the sub tropics to 50% in the tropics 

and midlatitudes. While the satellite based solax occultation method of SAGE gives it a 

coaxser spatial resolution and also includes deep convection, it does not have the low cloud 

fraction bias for high thin clouds that a ground based climatology has. 

The high altitudes of cirrus clouds, combined with their relatively low optical depth, 

endows them with radiative properties rather distinct from other types of clouds. The 

cold temperatures of cirrus clouds means they emit much less infrared radiation to space 

than cleax sky, thus trapping energy and waxming the lower troposphere in a "greenhouse" 

effect. Of course, cirrus clouds also reflect solar radiation back to space giving a cooling 



2 

effect. Numerical studies have shown that whether cirrus warms or cools the surface 

depends on the optical thickness of the cloud, with thinner cirrus having a warming 

effect (Stephens and Webster, 1981; Platt, 1981; Liou, 1986). There is also radiative 

heating inside cirrus clouds, especially in the tropics where there is a large cloud to surface 

temperature contrast (Stackhouse and Stephens, 1991). 

Because of the prevalence and large radiative effect of cirrus clouds it is important to 

model these clouds in climate models such as general circulation models in order to predict 

climate change. To do so successfully requires several types of global measurements of cir­

rus clouds. The spatial and temporal distribution of cirrus is needed for validating GCM 

output of high cloudiness. This type of global distribution is currently being provided 

by the International Satellite Cloud Climatology Project (ISCCP) (Rossow and Schiffer, 

1991). ISCCP uses several geostationary and polar orbiting satellites that measure clouds 

with visible and thermal infrared channels. From these two channels the clouds are de­

tected and categorized using cloud top height and optical depth, which are derived using 

radiative models and a number of assumptions. GCMs are beginning to improve their 

modeling of clouds by using parameterizations that have cloud ice mass as a prognostic 

variable (Fowler et al., 1993). Measurements of the ice water content (IWC) of cirrus 

clouds, which ISCCP cannot provide accurately, is needed for validation of these new 

cloud modeling parameterizations. 

The radiative properties of cirrus clouds are key for GCM prediction. The devel­

opment of cirrus radiative parameterizations for GCMs requires observations of optical 

and microphysical properties of the clouds. The optical properties of ice clouds, in turn, 

depend on ice crystal shapes and size distributions. Because of the high altitude of cir­

rus clouds it has been difficult to perform in situ measurements of these microphysical 

quantities, hence they are rather poorly known on a global scale. In addition, the non­

spherical shapes of the ice particles has greatly complicated the interpretation of in situ 

and remotely sensed observations. It is thus highly desirable to develop remote sensing 

techniques that will aid the measurement of cirrus characteristics such as integrated ice 

mass, characteristic particle size and shape, simultaneously with optical properties such 

as solar reflectance and infrared emissivity. 

In the tropics, most cirrus clouds are produced by high level detrainment from deep 

convection. Another hydrological result of tropical convection is large amounts of rainfall. 

The latent heat release associated with precipitation in the Intertropical Convergence 

Zone is the primary energy source driving the ascending branch of the Hadley cell (Riehl 

and Malkus, 1958). On a regional scale latent heating is important in the forcing of 

tropical circulations (Webster, 1972; Gill, 1982). The tropical circulation is also sensitive 

to the vertical distribution of latent heating (Hartmann et al., 1984; DeMaria, 1985). 

The difference between precipitation and evaporation from the surface determines the net 
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latent heat flux, which, in most places on the globe, is the majority of the non-radiative 

energy transfer between the Earth and the atmosphere. 

Precipitation also represents fresh water input into the ocean. This salinity sink has a 

large impact on the thermodynamics of the mixed layer and affects the ocean circulation. 

Through its effect on temperature the salinity modulates the ocean to atmosphere en­

ergy fluxes. Of the processes making up the hydrological cycle (evaporation, water vapor 

transport, and precipitation), precipitation is the least understood. Most of the precipi­

tation on Earth results from complex convective-scale and mesoscale circulations that are 

difficult to model. 

The detailed global distribution of precipitation, both the amount and variability, 

is inadequately known. The high temporal and spatial variability of precipitation makes 

it very difficult to measure over most of earth's surface, especially the oceans. An ac­

curate global climatology of precipitation is important for validating general circulation 

models (GCMs). Most precipitation processes are below the grid resolution of GCMs and 

simple parameterization are used. Better global precipitation measurements will hasten 

the improvement of these parameterizations and aid in the verification of the circulations 

predicted by GCMs. Short term climate modeling, for example of the El Nino-Southern 

Oscillation (ENSO), will also be helped by improved precipitation climatologies. ENSO 

causes dramatic longitudinal shifts in precipitation over the Pacific Basin with intense 

human impacts. To address the need for improved precipitation measurements the Global 

Precipitation Climatology Project is using satellite infrared and microwave observations 

to produce a long term climatology of monthly precipitation in 2.50 areas. 

1.2 Advantages of Satellite Microwave Remote Sensing 

The most important advantage of using satellites to observe cirrus clouds and precip­

itation is the global coverage. For measuring these and other components of the climate 

system it is crucial to sample the entire globe in a timely fashion, which only satellite-borne 

instruments can do. There is still a temporal sampling issue with satellites because in sun 

synchronous orbit a given area will be sampled typically only twice a day, depending on 

the swath width. Geosynchronous orbit can achieve high temporal sampling, but so far it 

has been too technically demanding and expensive to put adequate resolution microwave 

instruments in that orbit (Vonder Haar et al., 1986). Remote sensing instruments and 

methods developed for satellites are typically first tested on high flying aircraft such as 

NASA's ER-2. NASA's Millimeter-wave Imaging Radiometer (MIR) with channels at 89, 

150, 183±1,3,7, 220, and 325±1,3,9 GHz (Gasiewski, 1992) and the Advanced Microwave 

Precipitation Radiometer (AMPR) with channels at 10.7, 19.35,37.1,85.5 GHz (Spencer 

et al., 1993) are examples of instruments currently being flown on the ER-2. This mode 

of operation is especially useful for intensive field campaigns where a number of remotely 

sensed and in situ observations can be made of particular atmospheric phenomena. 
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Microwave remote sensing offers a number of potential advantages for measuring cir­

rus ice water path (IWP) as compared to visible and infrared techniques. Visible methods 

require a number of gross assumptions about ice particle shape, size distribution and 

cloud spatial homogeneity to convert from radiance to optical depth to ice water path. 

Thermal infrared techniques in addition require accurate knowledge of cloud tempera­

ture. Microwave radiation, to the contrary, interacts with ice particles primarily through 

scattering so emission and cloud temperature are relatively unimportant. Furthermore, 

microwave radiative transfer will usually be the linear regime so the signal is directly pro­

portional to IWP and cloud inhomogeneity effects are less important. While the effects 

of particle shape and size distribution are also important for microwave remote sensing of 

cirrus, they are more amenable to calculation because the particle sizes are comparable 

to and smaller than the wavelength. Microwave methods are complementary to visible 

and IR methods in that microwave radiation is sensitive to larger ice crystals and thicker 

cirrus whereas visible/IR radiation is more sensitive to smaller particles and lower IWP. 

The most direct way to measure precipitation is with a rain gauge. Due to the 

large spatial variability of rainfall, however, there are substantial errors in rainfall even in 

regions with rather dense networks of gauges (Thiele, 1987). In sparsely inhabited land 

regions and over the oceans rain gauges are nearly non-existent. Well calibrated radars can 

improve rainfall measurements, but the errors are still significant because of uncertainties 

such as the drop size distribution. Furthermore, the rainfall measurements are limited to 

areas with expensive radar networks. Of the various options for satellite remote sensing of 

precipitation, microwave techniques are the most promising. Rainfall retrieval algorithms 

based on geosynchronous infrared data have been in used for a number of years (Arkin, 

1979; Adler and Negri, 1988) but have low accuracy and are only useful for large area/long 

time averages. IR methods are usually based on the area of very cold cirrus anvils which 

is rather indirectly related to the precipitation process. 

Microwave remote sensing is much more directly related to the precipitation pro­

cess. For the range of frequencies used in precipitation retrieval, microwave radiation 

penetrates through the clouds and interacts directly with the precipitation-sized ice and 

water hydrometeors. Furthermore, multiple microwave frequencies probe different levels 

of hydrometeor structure. For example, 85 GHz is affected primarily by scattering from 

precipitation sized ice particles high in the cloud, while 10 GHz is sensitive to integrated 

rain and the surface below. In addition to retrieving rainfall, multichannel microwave 

observations can give information about the vertical distribution of hydrometeors. Of 

course, spaceborne precipitation radars offer rather better measurements of hydrometeor 

distribution, but have not yet been flown and only now are being considered. 

The Tropical Rain Measuring Mission (TRMM) (Simpson et al., 1988), to be launched 

in 1997, has a goal of determining monthly mean rainfall over 5° x 5° boxes for latitudes 

equatorward of 35°. A major component instrument is the TRMM Microwave Imager 
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(TMI) that contains dual polarized channels (except horizontal at 21 GHz) for 10.7, 19.4, 

21.3, 37.0, and 85.5 GHz. A 14 GHz precipitation radar (covering only part of the swath) 

and visible and infrared channels are included as well. The low orbit (around 350 km) will 

give the TMI relatively high resolution (~ 5 km at 85 GHz). A number of precipitation 

retrieval algoritlnns that use single and multiple TMI channels, some in combination with 

radar data, are currently under development for TRMM. 

1.3 Scientific Objectives 

The overall goal of this work is to increase the understanding of the interaction of 

microwave radiation with clouds and precipitation and use this knowledge to aid in the 

improvement of microwave remote sensing techniques for cirrus clouds and precipitation. 

The specific objectives are: 

1. Develop a capability for modeling single scattering and radiative transfer for non­

spherical particles. 

2. Determine how ice particle shape and size affect scattering properties over a range 

of microwave frequencies. 

3. Determine the range of ice water path detectable at particular microwave frequencies 

for realistic distributions of cirrus ice particles. 

4. Examine the effects of particle shape and size distributions on microwave remote 

sensing of cirrus and develop methods that overcome the uncertainties associated 

with these effects. 

5. Develop a multichannel microwave precipitation algoritlnn that retrieves hydrom­

eteor profiles using information from numerical cloud models in a mathematically 

sound way. 

6. Test the precipitation retrieval algoritlnn to learn how the assumed hydrometeor 

structure and combination of frequencies affects the accuracy of the retrieval. 

7. Perform a preliminary validation of the algoritlnn with aircraft microwave radiometer 

data. 

A particle scattering model using the Discrete Dipole Approximation and a polarized 

radiative transfer model are developed for this work and described in Chapter 2. Chapter 3 

explains how the scattering properties for 18 gamma size distributions and five particle 

shapes are computed for 85, 157, 220, and 340 GHz. Radiative transfer calculations are 

carried out and the resulting brightness temperatures at several angles and polarizations 
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are analyzed to determine how the brightness temperature depression is related to IWP. 

How multiple frequencies and polarizations can be used to help determine particle size 

and shape are examined. 

Chapter 4 describes the new microwave precipitation retrieval algorithm that uses 

Bayes theorem to combine prior information about hydrometeor profiles from cloud mod­

els with a forward radiative transfer model to retrieve optimal profiles. Chapter 5 describes 

a number of theoretical tests that are carried out using brightness temperatures modeled 

from a 2D simulation of a tropical squall line. These tests include examinations of the 

effect of different assumed hydrometeor profile structures, the effect of using different in­

formation from the cloud model, the result of various assumptions about the hydrometeor 

size distributions, and the effect of using several combinations of microwave frequencies 

in the retrieval. A limited validation study using AMPR data from the Convective and 

Precipitation/Electrification experiment (CaPE) is described. Hydrometeor profiles from 

a sea breeze simulation using the RAMS numerical cloud model is used for prior informa­

tion. The retrieved profiles are then compared with data obtained with the NCAR CP-2 

multiparameter radar. 



Chapter 2 

INTERACTION OF RADIATION WITH IRREGULAR PARTICLES 

The interaction of radiation with particles in the atmosphere is conveniently divided 

into two parts. The first part considers how an electromagnetic wave scatters from and 

is absorbed by particles. The second part considers how radiation is transferred through 

the atmosphere includIDg the effects of multiple scattering. This chapter explains how the 

scattering and radiative transfer calculations are performed in order to compute upwelling 

brightness temperatures from distributions of ice particles in cirrus clouds. 

2.1 The Discrete Dipole Approximation 

The first step in computing the transfer of microwave radiation through cirrus parti­

cles is to model the electromagnetic scattering properties of ice crystals. Scattering from 

ice particles in the atmosphere is most often modeled by assuming that the particles can 

be approximated by spheres so that Lorenz-Mie theory may be used. For most, if not 

all, types of cirrus particles this is a poor approximation, both because the basic scatter­

ing properties are incorrectly computed and because there is then no difference between 

horizontally and vertically polarized radiation. In much of the microwave portion of the 

spectrum the wavelengths are large compared to the particle sizes so the Rayleigh ap­

proximation for nonspherical particles may be used (e.g. van de Hulst, 1981). At the 

microwave wavelengths considered here (down to 0.088 em) the Rayleigh condition is not 

valid for larger ice crystals, so more complicated scattering methods must be considered. 

The extended boundary condition method (EBCM) (Barber and Yeh, 1975), also known 

as the T -matrix method, has been used in the engineering and radar meteorology fields 

for computing the scattering properties from oblate and prolate spheroids. While theoret­

ically applicable to any shape that can be expanded in a spherical harmonic type series, 

in practice there are limitations that prevent its use for particles that are very thin (axial 

ratios < 0.1) or have sharp edges. The EBCM has been applied in an atmospheric context 

to particles defined by a surface of revolution that is a Chebyshev polynomial (Mugnai 

and Wiscombe, 1986). 

In this work the electromagnetic scattering computations are accomplished with the 

discrete dipole approximation (DDA), first described by Purcell and Pennypacker (1973). 

DDA is very general in that it applies to any particle shape, although computer limitations 
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restrict the size of the particle relative to the wavelength. The basic concept behind the 

DDA is to divide the particle into a number of subunits whose size is small compared to 

the incident wavelength of radiation. These small subunits behave as dipoles in terms of 

their response to an applied electro-magnetic field. Each dipole responds to a sum of the 

incident plane wave and the fields from all the other dipoles, and in turn generates a field 

which affects the other dipoles. The DDA is also called the coupled dipole method because 

of this mutual interaction among the subunits. The DDA solves for the polarization of 

the dipoles for a given incident plane wave, and computes the resulting far field scattering 

amplitudes from which the desired scattering properties may be derived. 

Over the past 20 years the DDA method has been applied to a variety of fields and 

improved in a number of ways. Yung (1978) improved upon Purcell and Pennypacker's 

simple iterative solution scheme with a conjugate gradient type method derived with 

a variational principle. Yung's method requires the particle to be symmetric around 

the incident beam direction and under interchange of dipoles. Singham et al. (1986) 

developed an analytical method for computing the particle orientation averaged scattering 

results directly, i.e. without solving for many incident directions. Singham and Bohren 

(1987) used an order of dipole scattering approach to solve the coupled dipole system. 

Draine (1988) used the conjugate gradient method to solve the DDA system for any type of 

particle and the applied the method to light scattering from interstellar grains. Goedecke 

and O'Brien (1988) used a different, but equivalent, formalism to derive the DDA method, 

and then applied it to microwave scattering by snow crystals (O'Brien and Goedecke, 

1988). Flatau (1990) exploited the block Toeplitz structure of the dipole interactions to 

develop a fast solution method for rectangular particles. Evans and Vivekanandan (1990) 

used the DDA to investigate the multiparameter radar and passive microwave radiometer 

signatures of various shapes of ice crystals. Dungey and Bohren (1993) modeled the 

backscattering of several ice particle shapes with the DDA for application to radar remote 

sensing. 

2.1.1 DDA theory 

The following mathematical discussion of the DDA method uses a Greens function 

approach and follows closely a paper by Goedecke and O'Brien (1988). Starting from 

Maxwell's equations it can be shown that the solution for the electric field E(r) every­

where in space resulting from the scattering of an incident field Ein(r) from a dielectric 

particle may be expressed as an integral over the particle volume of the Greens function 

G multiplied by the dielectric polarization p(r). The solution is 

E(r) [1 + 47rx(r)/3] = Ein(r) + J d3r'G(r - r') . p(r') . (2.1) 

The polarization at points inside the particle is related to the field by p(r) = xE(r) where 

X is the susceptibility (X = (1/ 47r) [m2 - 1]) and m is the complex index of refraction. The 
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Greens function is the field due to a single harmonically oscillating dipole, and depends 

only on the position relative to the dipole (R): 

(2.2) 

where the subscripts i and j refer to the Cartesian components of the fields and the 

direction vector il, and k = 27r / A is the wavenumber for the free-space wavelength A. 

Dividing the particle into dipoles is equivalent to discretizing the field and Greens 

function over the volume of the particle. In the current model the particle is divided into 

cubes of size d. Discretizing equation 2.1 and rearranging gives 

E~~ = [X;;l + 47r/3(1- r)] Pexi - d3 L L Gij{rex - r(3)p{3j (2.3) 
{3-j.ex j 

where a and f3 are indices of the dipoles. The small but nonzero volume of a dipole 

contributes to the integral in equation 2.1, giving rise to a "self interaction" term r. The 

self-term is modeled by Goedecke and O'Brien as 

(2.4) 

The small imaginary part of r is necessary to satisfy the optical theorem. Equation 2.3 

is a coupled linear system which may be solved for the dipole polarizations Pex for a given 

incident field Ein. The incident plane wave field with direction k' is evaluated at the a'th 

dipole according to 

(2.5) 

Eo is either vertically or horizontally polarized and has unit amplitude (IEol = 1). 

The coordinate system for the electric field polarization is in terms of the plane 

defined by the propagation direction k and the vertical z axis. The vertical unit vector V­
is in the meridional plane perpendicular to the propagation direction and has a positive 

z component. The horizontal unit vector iI is perpendicular to the plane such that 

V- X iI = k. 
The scattered electric field far away from the particle is an outgoing spherical wave 

with components given by the scattering amplitude matrix multiplied by the incident field 

vector. In terms of V and H components this is expressed by, 

[ 
Evs ] _ exp( -ikr) (Fvv FVh) [ Evi ] 
Ehs - ikr Fhv Fhh Ehi' (2.6) 

which can be taken as the definition ofthe scattering amplitudes F. The scattering ampli­

tudes represent a linear transformation of the incident electric field vector with propagation 

direction k' into the scattered electric field with direction k. The scattering amplitudes 

are easily found from the dipole polarizations using eq. 2.2 with R -+ 00, giving 

(2.7) 
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This form explicitly shows that the scattering amplitude vector is perpendicular to the 

propagation direction as required. The Cartesian components Fi are projected onto the 

polarization directions V and if for each of the two incident polarizations to generate 

the four scattering amplitudes (Fvv, Fvh, Fhv, Fhh). The set of scattering amplitudes for 

all incident and outgoing directions contain the complete information about the far-field 

aspects of the scattering process. 

2.1.2 Using DDA for radiative transfer 

The radiative transfer calculations require that the radiation field and scattering prop­

erties be expressed in terms of power or intensity rather than amplitude. This is a result of 

using incoherent averaging over particle ensembles which is valid when the particles mak­

ing up the medium are sufficiently far apart and are randomly positioned. The standard 

Stokes parameters (I, Q, U, V) are used to completely characterize the polarization state 

of the radiation. The scattering process is then expressed with 4 x 4 Stokes parameter 

scattering and extinction matrices. While the DDA model computes the scattering prop­

erties for all four Stokes parameters, there is a simplification that is used for the modeling 

in this work. In a thermally emitting atmosphere with a plane- parallel geometry and 

no preferred azimuthal orientation of particles the radiation field is azimuthally symmet­

ric and the U and V Stokes parameters are zero. In terms of the electric field the two 

remaining Stokes parameters are I = IEvl2 + IEhl2 and Q = IEvl2 - IEhI2. 

For an azimuthally symmetric system the relevant scattering properties can be ex­

pressed with 2 X 2 matrices. The scattering matrix is computed from the scattering 

ampli tudes according to 

IFvvl2 -lFvhl2 + IFhvl2 -IFhh12 ) 
IFvvl2 

- IFvhl2 - IFhvl2 + IFhhl2 , 
(2.8) 

where nl is the number concentration of particles and El indicates the incoherent sum 

over an ensemble of particles. There is a scattering matrix for each combination of incident 

and outgoing directions. Similarly, the extinction matrix is defined in terms of the forward 

scattering amplitudes according to the fundamental extinction formula, as 

(2.9) 

There is an extinction matrix for each incident direction. Both the scattering and extinc­

tion matrices have units of inverse length. The full 4 X 4 Stokes parameter representation 

for the scattering and extinction matrices was given in Evans and Vivekanandan (1990), 

but with scattering amplitudes f defined so that F = ikf. 
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A simpler, though entirely equivalent, basis for the polarization state of the radiation 

field is Iv = IEvl2 and IH = IEhI2. In this basis the scattering and extinction matrices 

are 

(2.10) 

and 

) . (2.11) 

There are two ways to compute absorption by the particle. One is to subtract the 

integral of the scattering matrix over outgoing directions from the extinction matrix: 

UI = KII(1~/) - J MII(f/, k) dk , 

uQ KIQ(kl) - J MIQ(kl , k) dk . (2.12) 

The second method is to integrate the power dissipated in the particle for each incident 

polarization: 

Au/h 

UI Au + Ah , 

uQ = Au - Ah . 

(2.13) 

The absorption/emission coefficient computed by these two methods is compared. This 

provides a check that enough outgoing angles have been selected for the scattering matrix. 

For interfacing with the radiative transfer computations the scattering matrix, extinc­

tion matrix, and emission vector are computed for a set of incident zenith angles given by 

Gaussian or Lobatto quadrature formulae. If the particle shape is symmetric around the 

horizontal plane, then only one hemisphere of incident zenith angles is computed, and the 

other half is filled in by symmetry. Since the particles are assumed to have no preferred 

azimuthal orientation, averaging may be done over a number of incident azimuth angles 

in the appropriate range (typically 0, 7r) for shapes that are not already azimuthally sym­

metric. The outgoing azimuth angles are evenly spaced in (0, 27r). For the convenience of 

the radiative transfer computation the scattering matrix is expressed as a Fourier series 

in the difference in azimuth angle between the incident and outgoing directions. For an 

azimuthally symmetric situation such as the one here, only the lowest Fourier mode is 

needed, which is simply the average over the outgoing azimuth angles. 

The set of dipole positions ra and susceptibilities Xa defines the particle for the DDA 

computations. The model used here uses a uniform rectangular grid of dipoles. The 

geometrical center of the particle is set at the origin, and the grid location is adjusted in 

each dimension so that an integral number of dipoles fits across the particle. The shapes 

of particles is specified with simple geometrical formulae (e.g. for spheres, cylinders, 
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hexagonal plates, rectangular solids, etc.). The portion of the volume of each cube that 

lies within the geometrical definition of a particle is computed by laying down a subgrid 

of typically 1000 points per coarse grid cell. This volume fraction determines whether 

the cube becomes a dipole making up the particle, and also may be used to adjust the 

susceptibility of the dipole. The susceptibility of the partially filled dipoles is adjusted 

using Lorentz-Lorenz mixing rule, by 

Xejj = Vj X 
47rXej j + 3 47rX + 3 

(2.14) 

where Xej j is the reduced susceptibility and Vj is the volume fraction. Typically it is 

dipoles on the edge of a particle that are partially filled, and reducing the susceptibility of 

these dipoles in effect attempts to better approximate the particle shape. Using the mixing 

rule on the edge dipoles dramatically improves the accuracy of the scattering properties 

for smaller particles. 

The size of the dipoles d is governed by the requirement that the electric field be 

relatively constant in the dipole cell. This means that the phase variation across a dipole 

must be small or Imlkd ~ 1. Goedecke and O'Brien suggest Imlkd < 1/3 for high accuracy, 

but as shown below Imlkd < 1 can give adequate accuracy. Another reason to use dipoles 

as small as possible is to better approximate smooth particle shapes with discrete arrays of 

dipoles. For this purpose it is the number of dipoles across a particle that matters rather 

then their size relative to the wavelength. How well an array of dipoles approximates a 

particle depends, of course, on the particular shape involved. 

2.1.3 DDA solution methods 

Two methods are used to solve the coupled linear system (eq. 2.3) for the dipole 

polarizations Po. The first method treats eq. 2.3 as a 3N X 3N complex matrix equation 

Ap = Ein and solves for the p vector using matrix inversion. The diagonal part of the 

matrix A contains the dipole susceptibilities and the self terms, while the off-diagonal part 

has the dipole-dipole interaction terms. The inversion solution method first computes the 

LU decomposition of A and then rapidly solves for p for each incident direction Ein. The 

computer storage requirements for the inversion method go as N 2 while the CPU time goes 

as N3, where N is the number of dipoles which is proportional to the particle volume. 

Computer memory rather quickly becomes the limiting factor, for example 600 dipoles 

requires nearly 26 megabytes of storage. 

The second solution method takes into account that equation 2.3 contains a convo­

lution sum that can be carried out efficiently with a fast Fourier transform (FFT). The 

equation is solved by using the conjugate gradient method to iterate the p vector until 

the residuals of the equation are suitably small (see appendix A for a full description of 

the method). This FFT method was also used for solving the DDA problem by Goodman 
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et al. (1991). Each convolution involves an FFT of the dipole polarizations, multiplica­

tion by the precomputed transform of the Greens function, followed by an inverse FFT. In 

order to avoid aliasing the FFT's for the convolutions must be done on a uniform 3-D grid 

of twice the particle extent in each dimension. The main advantage of the FFT method 

is that the DDA may be solved rapidly for large numbers of dipoles. The number of con­

jugate gradient iterations is virtually independent of the number of dipoles, ranging from 

a few tens to a few hundreds of iterations depending on the problem. Since FFT's take of 

order N log2 N operations the running time for the FFT DDA method basically goes as 

N, the number of dipoles. There is, however, a rather large factor in front ofthe order N, 

because of the number of iterations required and because the FFT's must be done on an 

array at least eight times larger than the number of dipoles in the particle. Nevertheless 

the FFT method makes DDA with hundreds of thousands of dipoles feasible whereas be­

fore at most a few thousand dipoles were practical. One disadvantage of the FFT method 

is that each incident direction must go through the lengthy conjugate gradient iteration 

procedure. For radiative transfer computations, where the DDA system must be solved 

for many incident directions, the inversion solution method is superior for less than about 

1000 dipoles, assuming the required computer storage is available. 

2.1.4 Tests of the DDA model 

To validate the DDA model and illustrate the accuracy typically achieved, a com­

parison was carried out for spherical and oblate spheroidal ice particles. For spheres the 

reference method was Mie theory; for oblate spheroids, with a 0.25 axial ratio, the ref­

erence method was the EBCM (Barber and Yeh, 1975). The scattering comparison was 

made at 340 GHz (m = 1.781- 0.0033i) which is the highest frequency considered for this 

work. The computations were run for a range of particle sizes from 0.06 mm to 2.00 mm 

(to 1.00 mm for spheres). The dipole sizes used in these calculations were the same as 

those used below for column shaped cirrus particles. The DDA computations used just 

one incident azimuth angle, and the other parameters were similar to those used for the 

cirrus particle calculations below. The dipole sizes and total number of dipoles for the 

various test shapes are shown in Table 2.1. 

The comparisons were made for the part of the Stokes scattering and extinction 

matrices relevant for the radiative transfer considered here, Le. for I and Q. For scattering 

the RMS difference over the incident and outgoing quadrature zenith angles was computed 

for the azimuthally averaged scattering matrix, while for extinction the RMS difference 

was computed over the incident zenith angles. A fractional RMS difference was made by 

dividing the absolute RMS difference by the maximum matrix value encountered over all 

the angles. 

Figure 2.1 shows the fractional RMS difference in extinction and scattering as a 

function of particle size for spheres and oblate spheroids. The graph shows that the 
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Table 2.1: Dipole sizes and number used in the DDA/Mie/EBCM test. 

.011 

.022 

.032 

.0375 

.0725 

967 
1064 
2536 

11531 

303 
344 
760 

3287 
3592 

discrete dipole approximation can calculate the scattering properties of different shapes 

with adequate accuracy. The maximum fractional difference in extinction and scattering 

(not shown) is typically around 3% for the sphere cases and ranges from 3% to 12% for the 

oblate spheroid cases. The accuracy of the DDA improves as the particle size increases. 

The reason for this is that the larger number of dipoles used for the bigger particle sizes 

better approximate the true shape of the test particles. This also explains why the DDA 

is poorer for oblate spheroids than the spheres. The oblate spheroids have less dipoles, 

and the smaller sizes are especially poorly represented with only about 2.5 dipoles across 

the thickness of the spheroid. 

These tests, at the shortest wavelength considered, indicate that the DDA error due 

to the approximation of the particle shape is probably larger that the error due to the 

nonzero size of the dipoles for the scattering computations done below. There are some 

reasons to believe that the accuracy implied by these test results is somewhat conservative. 

The dipole sizes used for the test are optimized for approximating columns and not for the 

test shapes considered here. Also the cirrus particle shapes modeled below are relatively 

more angular than the spheres and spheroids considered in these tests, and hence will be 

more faithfully modeled by assemblages of dipoles. 
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Figure 2.1: Fractional RMS difference between DDA and Mie/EBCM results for spheres 
and 0.25 axial ratio oblate sJ>heroids. RMS difference is computed for extinction and 
scattering matrices at all angles for ice particles at 340 GHz. 
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2.2 Polarized Radiative Transfer 

Upwelling microwave brightness temperatures from cirrus clouds are computed with 

a radiative transfer model developed to calculate the outgoing monochromatic polarized 

radiation from oriented nonspherical particles. This radiative transfer model requires two 

types of information about the atmosphere: 1. the microwave scattering properties of ice 

particles distributions computed by the discrete dipole approximation, and 2. the profile 

of temperature and gaseous absorption at the specified microwave frequency. 

2.2.1 Microwave atmospheric absorption 

In the microwave portion of the spectrum the primary gaseous absorbers in the at­

mosphere are molecular oxygen and water vapor. The absorption by oxygen is due to its 

magnetic dipole moment and occurs in a band between 50 and 60 GHz, an isolated line 

at 118.75 GHz, and weaker lines above 350 GHz. Water vapor has rotational lines due 

to its electric dipole moment at 22.235, 183.31, 325.15, and 380.20 GHz and several of 

increasing strength above 400 GHz. In addition, water vapor has a continuum absorption 

presumably from the far wings of many high frequency lines. 

The absorption of microwaves by liquid cloud droplets can be combined with that 

from oxygen and water vapor. Cloud droplets, with diameters smaller than 50 microns, 

are very small compared to microwave wavelengths, and so are in the Rayleigh regime. For 

highly absorbing material, such as liquid water at these frequencies, Rayleigh scattering 

is negligible compared with absorption. The amount of absorption is p:roportional to the 

droplet volume and hence the microwave attenuation is proportional to the liquid water 

content (W in g/m3 ) of the cloud: 

K = (~) 1m [ m
2 

- 1] W , 
Pl.A m 2 + 2 

(2.15) 

where Pl. is the density of water and A is the wavelength. 

The absorption from oxygen, water vapor, and liquid cloud droplet is computed by 

the MPM92 (Millimeter-wave Propagation Model 1992) developed by Liebe (Liebe and 

Hufford, 1993). This model was adapted for this project into a routine that computes the 

attenuation at a specified frequency for a given temperature, total pressure, water vapor 

pressure, and liquid water content. The MPM92 models 44 oxygen lines and 30 water 

vapor lines with the Van Vleck-Weisskopf line shape with Rosenkranz modifications for 

line overlap. A two frequency Debye formula is used to fit the index of refraction of water. 

The water vapor continuum is fit empirically with terms proportional to the water vapor 

pressure and its square. Compared with an earlier version (Liebe, 1985) MPM92 has as 

much as 30% decrease in absorption in the microwave window regions. 
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2.2.2 Adding-doubling polarized radiative transfer model 

The radiative transfer model used here is a modification of the model described in 

Evans (1990) and Evans and Stephens (1991), originally developed for randomly oriented 

nonspherical particles. This model was modified to apply to oriented particles. In this 

context the term "oriented particles" means that the scattering properties depend on the 

incident zenith angle, but not the incident azimuth angle, i.e. particles are still randomly 

oriented azimuthally. Counterintuitively, this actually simplifies things considerably since 

one does not have to translate the input scattering information and polarization reference 

frame from the scattering plane to the meridional plane used in the radiative transfer 

model. The DDA model computes and outputs the scattering matrix in terms of the 

meridional plane (defined by the z-axis and the direction of travel). Another difference 

between the two radiative transfer models is that the one for oriented particles does 

not support a solar direct beam source of radiation, which, anyway, is not needed for 

the microwave transfer problem considered here. The direct beam was removed because 

oriented particles polarize the direct radiation thereby complicating the source of diffuse 

radiation. 

The radiative transfer model is monochromatic, meaning only one frequency is com­

puted at a time. This is appropriate because the particle scattering and atmospheric ab­

sorption properties are fairly constant across typical radiometer bandpasses for the window 

channels considered here. The model also assumes a plane-parallel, or horizontally homo­

geneous, geometry. In contrast to the usual situation, this is a good approximation for 

computing microwave transfer in cirrus clouds. The small optical depth of cirrus clouds at 

microwave frequencies means that the inhomogeneities present in the clouds are averaged 

out over the footprint of the sensor. If thermal emission is the only source of radiation in 

a plane-parallel geometry then the the radiation field is azimuthally symmetric and of the 

four Stokes parameters that describe the polarization state of the radiation only I and Q 

are non-zero. Use of the vertical/horizontal polarization basis is more common in the field 

of microwave radiometry. The two polarization bases are simply related by 

Iv = I +Q IH = 1- Q. (2.16) 

The I Stokes parameter is the total intensity of radiation, and Q is proportional to the 

difference between the vertical and horizontal polarizations. 

The Planck function relates the emission from a blackbody to its temperature, 

C1 

B(T) = A5 [exp (c2/AT) - 1] , (2.17) 

where B(T) has units of W m-2 steel J.Lm-1 , T is the temperature in Kelvin, A is the 

wavelength in cm, Cl = 2hc2 = 1.1911 X 10-12 W m-2 em5 , and C2 = ~c = 1.43388 K cm. 
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ill the microwave radiative transfer field the Rayleigh-Jeans approximation is often used. 

This approximation relates the Planck function linearly to the temperature, 

(2.18) 

and allows the radiative transfer to be done directly in terms of the brightness temperature. 

ill this work the Rayleigh-Jeans approximation is not used, because of the high frequencies 

involved, and the radiative transfer is carried out in terms of radiance (W m-2 ster-1 

pm-I). 

Mter the radiative transfer computation the I and Q radiances are converted to 

vertical and horizontal polarizations and expressed in terms of brightness temperatures. 

There are two ways to convert from a radiance (h) to a brightness temperature. One is 

to invert the Planck function, 

C2A-I 

TEBB = [ , 
log 1 + cI/A5h] 

(2.19) 

giving the equivalent blackbody temperature. The other way is to use the Rayleigh-Jeans 

approximation, 
C2 4 

TRJ = -A h . (2.20) 
CI 

These two different ways of computing the brightness temperature may be related by 

expressing the equivalent blackbody brightness temperature in terms of the Rayleigh­

Jeans brightness temperature as 

(2.21) 

This means that to first order the difference between equivalent blackbody and Rayleigh­

Jeans brightness temperature is a constant that depends on -X. For the frequencies con­

sidered here this constant offset varies from 2.05 K at 85.5 GHz to 8.21 K at 340 GHz. 

The discrepancy between TEBB and TRJ in the microwave is insignificant when dealing 

with brightness temperature differences. For example at 340 GHz and TRJ = 250 K, 

the fractional difference between f1TEBB and f1TRJ is 0.00036. For this work the more 

accurate equivalent blackbody brightness temperatures will be used exclusively. 

The monochromatic plane-parallel polarized radiative transfer equation with azimuthal 

symmetry is 

J.LdI~,J.L) = K(z, J.L)I(z, Jet) - 271" 11 M(z,J.L,J.L') I(z,J.L')dJ.L'- u(z,J.L)B[T(z)] (2.22) 
z -1 

where, 
I is the vector of I and Q Stokes parameters, 
M is the 2 X 2 scattering matrix, 
K is the 2 X 2 extinction matrix, 
0' is the emission vector, 
B(T) is the Planck function of temperature, 
z is the height coordinate, and 
J.L is the cosine of the zenith angle (J.L > 0 downward). 
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The scattering matrix M, extinction matrix K, and the emission vector U for particles 

are computed by the DDA code. These three quantities should be related by 

(2.23) 

and this normalization condition is checked. For a gaseous absorption coefficient kg, the 

extinction matrix is diagonal (K I I(J,L) = K QQ (J,L) = kg), the emission vector is unpolarized 

(UI(J,L) = kg, uQ = 0), and the scattering matrix is zero. For layers containing both par­

ticles and gaseous absorption the corresponding extinction matrices and emission vectors 

are added together. 

The angular aspects of the radiance field are represented by discrete angles chosen 

according to Gaussian or Lobatto quadrature schemes. The polarized radiative transfer 

equation then becomes 

±J,Ljdl(Zd;J.ti) = K(±J,Lj)I(z,±J,Lj) - u(z,±J,L)B(T) 

-271" ~f,=l Wjl [M(±J,Lj, +J,Ljl) I(z, +J,Ljl) + M(±J,Lj, -J,Ljl) I(z, -J,Ljl)] 

(2.24) 

j= 1, ... ,N, 

where there are N quadrature angles per hemisphere (0 < J,Lj < 1), and the w/s are the 

quadrature weights. The scattering matrix, extinction matrix, and emission vector are 

computed by DDA for a particular set of quadrature angles that the radiative transfer 

program then uses. At each z level the radiance field for one hemisphere of angles can be 

represented by vector I = (Il, ... ,IN) = (IllQll ... ,IN,QN). In this notation 1+ is the 

downwelling radiance, and 1- is the upwelling radiance. 

The doubling and adding method is used to integrate the radiative transfer equation. 

This method requires the atmosphere to be broken down into a number oflayers each with 

vertically uniform scattering and absorption properties. The temperature of the layer is 

given by the temperatures of its top and bottom, and a linear gradient in Planck function is 

assumed. The doubling/adding method was developed by van de Hulst (1963) and Grant 

and Hunt (1969). The starting point for discussion of the doubling/adding method is the 

interaction principle, which relates the radiation outgoing from a layer to the radiation 

incident upon the layer and radiation generated internally. In terms of matrix notation 

this is expressed as 

It T+ It + R+ Ib + s+ 

I t- = T- Ib + R-It + s- , (2.25) 

where T is the transmission matrix, R is the reflection matrix, and S is the source vector. 

Ib is the radiation incident on the bottom of the layer, and It is the radiation incident 

on the top of the layer. The goal of the doubling and adding method is to compute T, R, 

and S for the whole atmosphere, and hence find the upwelling radiance. 
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The interaction principle may be used to find the properties (T, R, S) of the com­

bination of two adjacent layers in terms of the individual layer properties. This adding 

formula is derived by eliminating the intervening level radiances from the interaction prin­

ciple equations for the two layers, to get 

R- R- + T-r- R-T+ T 1 1 2 1 , 

T,- = T-r-T,- r- - [1 - R-R+]-1 
T 12' - 21 

S- S- + T-r- (S- + R-S+) T 11 221· (2.26) 

The formulae for the downwelling properties are equivalent. 

The properties of each homogeneous input layer are computed with the doubling 

algorithm. The doubling method is just the adding method applied multiple times to 

layers with the same properties. Starting with an infinitesimally thin layer, each step 

doubles the thickness of the layer until the desired thickness is reached. For n doubling 

steps the infinitesimal layer thickness is 8z = 2-n 6.z, where 6. z is the final layer thickness. 

The infinitesimal layer properties are related to the scattering matrix M, extinction matrix 

K, and emission vector a by 

IR±I···,·, 
~J~ J 

8z 
27r-Wj,IM(±pj, ~Pj' ) Iii' 

Pj 
8z = -la(±pj)liB(Tt) , 
Pj 

(2.27) 

where the j's are the quadrature angle index and the i's are the Stokes parameter index 

(i = 1, 2 for I and Q). This defines the initialization of the doubling method, and these 

particular formulae are called the infinitesimal generator initialization. 

Since it is desirable to have the thermal source (Le. temperature) vary with depth 

within a homogeneous layer, the simple doubling formula for sources cannot be used. 

Instead an extension due to Wiscombe (1976) for sources that vary linearly with height 

is used. The complete doubling formulae used here for relating the 2k+18z thick layer to 

the 2k 8 z thick layer are 

Rt+1 = Rt + Ttr+ RtT;; 

T+ - T+r+T+ 
k+1 - k k 

r+ = [1- RtR;;r1 

R;;+1 = R;; + T;;r-R;;Tt 

Tk+1 = Tkr-Tk 

r- = [1- R;;Rt]-1 , 

stH = (st + 2kaCt) + Ttr+ [st + Rt(S;; + 2kaC;;)] 

S;;+1 S;; + T;;r- [(S;; + 2k aC;;) + R;; stJ 
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= ct + T:r+ [ct + Rtc;;] 
c- + T-r- [c- + R-C+] k k k k k 

(
B(Tb) _ 1) 2-n 

B(Tt) , 
(2.28) 

where Tt is the temperature of the top of the layer, and n is the temperature at the 

bottom. The C vector is initialized the same as the S vector. If a layer has no scattering 

then doubling is bypassed by directly computing the T, R, S properties of the layer. 

The doubling algorithm computes the reflection and transmission matrices and the 

source vectors for the homogeneous layers, which are then successively combined, from 

the top down, with the adding method. The surface boundary is treating as a layer with 

,a transmission of unity, the appropriate reflection, and no source term. The radiation 

,emitted from the surface is then the incident radiation on the lower boundary. The model 

:incorporates two types of surfaces: Lambertian and Fresnel. The Lambertian surface 

,emits and reflects isotropic and unpolarized radiation. The Lambertian reflection matrix 

,and emitted radiance vector are 

(2.29) 

where E is the surface emissivity. The Fresnel surface is use to model flat water surfaces 

;at microwave frequencies. The incident radiation is reflected specularly such that the 

:lncident zenith angle equals the reflected zenith angle. The horizontal polarization is 

:reflected differently than the vertical polarization. The Fresnel reflection formulae for a 

vacuum/ dielectric interface are 

(2.30) 

where f..L is the cosine of the incident zenith angle and m is the complex index of refraction 

of the dielectric surface. The reflection matrix is then 

(2.31) 

where the reflection coefficients are at the angles f..L = f..Ljl The thermal radiation emitted 

by a semi-infinite absorbing Fresnel surface is polarized and angle dependent 

(2.32) 

This polarized radiative transfer model for oriented particles was tested by comparison 

with the model for randomly oriented particles. The comparison was made for a three 
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layer atmosphere containing a layer of spherical ice particles and a layer of spherical water 

drops. The Legendre series representation of the phase function computed by Mie theory 

was converted to the form required by this model (scattering matrices, extinction matrices, 

and emission vectors) using the procedure developed for the randomly oriented particle 

model (Evans and Stephens, 1991). The resulting upwelling brightness temperatures were 

identical between the two models. The radiative transfer model was not specifically tested 

for oriented particles. 



Chapter 3 

THEORY OF PASSIVE MICROWAVE REMOTE SENSING OF CIRRUS 

3.1 Overview of Satellite Remote Sensing of Cirrus 

Most methods previously proposed for remote sensing of cirrus have been aimed at 

determining the location, optical depth, or particle effective radius. Perhaps the most 

important of these methods is the one used for ISCCP (Rossowet al., 1985). This uses 

the standard visible and thermal infrared channels on operational geostationary and polar 

orbiting satellites to detect cloud and retrieve optical depth and cloud top pressure. The 

visible reflectance is converted to optical depth using a radiative transfer model that 

assumes a homogeneous cloud made up of water spheres with a fixed size distribution. 

The visible optical depth is divided by 3 to produce an infrared optical depth that is 

used to derive an emissivity for retrieving cloud top temperature. Recently, Minnis et 

al. (1993a, 1993b) have developed a radiative parameterization for hexagonal ice particles 

and showed that the resulting retrieved cirrus heights are much closer to lidar measured 

heights than when using the water droplet assumption. 

Barton (1983) used solar reflection data from two channels in the 2.7 J.Lm absorption 

band to detect high clouds and measure their height, producing a cirrus cloud clima­

tology. The advantage of this method is that the strong absorption prevents radiation 

reflected by the surface or lower clouds to interfere with the detection of clouds above 

6 km. Woodbury and McCormick (1986) derived a cirrus climatology from the limb 

scanning solar occultation technique employed in the Stratospheric Aerosol and Gas Ex­

periment (SAGE). These two methods are effective for determining if cirrus is present, 

but cannot determine the mass or optical properties of the cirrus. 

Recently near infrared reflection has also been used to estimate effective particle size 

in cirrus by relying on the single scattering albedo dependence on particle size. Wielicki 

et al. (1990) used Landsat observation at 0.83, 1.65, and 2.21 J.Lffi to retrieve effective 

particle size as well as visible optical depth. The near IR reflectance, for example at 

1.6 J.Lm, can also be used to distinguish water from ice clouds (Pilewskie and Twomey, 

1987). 

A number of techniques have been developed that use the brightness temperature 

difference between 11 and 12 J.Lffi to detect thin cirrus or retrieve cirrus emissivity and 

cloud temperature (Inoue, 1985; Wu,1987; Prabhakara et al., 1988; Parol et al., 1991). 
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Plots of the brightness temperature difference (BTD) vs. the brightness temperature at 

11 11m shows an arch pattern due to small cloud particles. The height of the arch is related 

to the effective particle size (smaller particles causing a larger BTD). A related method 

developed by Smith et al. (1993) matches high resolution IR interferometer spectra with 

output from a high spectral resolution radiative transfer model to retrieve effective particle 

size and ice water content. A lidar is used to determine cloud top and base height and 

spherical particles and homogeneous clouds are assumed. Ou et al. (1993) developed 

a method using AVHRR 3.7 and 10.9 J..Lffi channels to retrieve optical depth, effective 

particle size, and cloud temperature. They used scattering from hexagonal ice crystals to 

compute emissivity, but relied on a parameterization by Heymsfield and Platt (1984) to 

get the size distribution from the cloud temperature. 

Lidar remote sensing has been used extensively for cirrus research over the past two 

decades. Lidar is excellent for determining cloud base and top and internal structure of 

cirrus (e.g., Sassen et al., 1990). Airborne lidar systems (e.g., Spinhirne and Hart, 1990) 

allow much greater coverage for intensive field campaigns than do ground base systems. 

The depolarization of the lidar return from nonspherical ice crystals allows determination 

of the water phase (Sassen, 1974; Platt et al., 1978). The determination of optical 

depth~, ice mass, particle size, or shape is rather limited due to the difficulties of large and 

nonspherical particles which cause unknown backscattering to extinction ratios and large 

optical depths which cause multiple scattering back into the lidar return. Techniques that 

combine lidar with IR radiometers (Platt, 1979) offer a way to measure the backscattering 

to extinction ratio. 

Another active remote sensing technique that has been recently applied to cirrus 

clouds is that of high frequency radar. Kropfii et al. (1993) have developed a method 

to infer ice water content, particle size, and shape from 8 mm Doppler radar by using 

average measured fallspeedjrefJ.ectivity relationships. A technique that combines radar 

and thermal infrared radiometry data to retrieve ice water content and characteristic 

particle size has been described by Matrosov et al. (1992). Even lidar and radar have 

been combined to infer cirrus cloud effective radius (Intrieri et al., 1993). 

The survey above touches on just some of the many schemes to remotely sense cirrus 

clouds in order to give an idea of the basic techniques that do not involve microwave 

radiometry. Few of the above studies attempted to retrieve ice water path (IWP), and 

those that did had to make gross assumptions of particle sphericity and cloud homogeneity. 

Most of the methods to measure effective particle size also assumed spherical particles. 

The active sensing methods are not currently viable for space-based platforms, but will 

be so :In the future as instrumentation evolves. 

Because of the lack of high frequency microwave radiometers, there has been little 

work directed specifically at passive microwave remote sensing of cirrus. Wu (1987) used 

the Advanced Microwave Moisture Sounder (AMMS) with channels at 92,183±2,5,9 GHz 
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combined with the infrared radiometry data to infer the IWC and geometrical thickness of 

clouds. The algorithm was based on a forward microwave radiative transfer model, though 

the details are not given. The situation was mainly deep convection, with correspondingly 

high IWC, so the clouds were probably not cirrus. Gasiewski (1992) performed a theo­

retical study of the use of microwave frequencies from 90 to 410 GHz. Through radiative 

transfer simulations he examined the sensitivity of the brightness temperatures to water 

vapor, precipitation, and water clouds as well as ice clouds. He discussed the concept of 

additional degrees of freedom using multiple frequencies in connection with typical parti­

cle sizes. Only one-parameter size distributions (Marshall-Palmer and Sekhon-Srivastava), 

however, were considered so the characteristic particle size was directly related to the IWC. 

Water and ice spheres were used for modeling scattering so the effect of particle shape 

was not dealt with. Overall the paper was a general sensitivity study, and was not geared 

toward the remote sensing of cirrus properties. 

The work on microwave remote sensing of cirrus described in this dissertation was 

presented in a somewhat different form in a conference proceedings (Evans and Stephens, 

1992). That work used power law particle size distributions with three different slopes, 

rather than the more realistic and diverse gamma distributions used here. In addition, 

the current work includes an extra shape (equivalent volume spheres) to simulate spatial 

(non-planar) rosette particles. 

3.2 Microwave Modeling of Cirrus 

The goal of passive microwave remote sensing of cirrus clouds should be to detect 

cirrus and measure the ice water path (IWP) and the effective size of the ice particles. 

The potential observables to measure these quantities are the upwelling brightness tem­

peratures (radiances) at different frequencies, polarizations, and angles. Because there is 

such a small amount of water vapor at the levels of cold (T < -40°C) cirrus and above, 

the microwave window channel absorption is small both in and above cirrus clouds. This 

means that cirrus can be thought of as simply modulating the upwelling microwave radi­

ation incident upon it from below. Since cirrus ice particles for the most part have a high 

single scattering albedo at microwave frequencies they mainly scatter rather than absorb 

radiation. Thus the primary effect of cirrus is to reduce the radiation reaching a satellite 

sensor, thus creating a brightness temperature depression as compared to the clear sky 

value. Cirrus clouds are expected to be optically thin at microwave frequencies, so every­

thing else fixed, the brightness temperature depression would be directly proportional to 

the integrated ice mass (IWP). The major problem in microwave remote sensing of cirrus 

is that other factors that influence the size of the temperature depression are not fixed. 

As shown below the most important factors are the size distribution of ice particles and 

their shapes. 
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The work described in this chapter investigates these factors by computing the scat­

tering properties of five shapes for 13 discrete sizes at four frequencies using the DDA 

method. The scattering properties for the discrete sizes are combined for 18 gamma size 

distributions. The polarized radiative transfer model is used to compute the upwelling 

brightness temperatures from a number of atmospheric configurations. These simulated 

brightness temperatures are examined to find ways of sensing IWP, characteristic size, 

and pa.rticle shape. 

3.2.1 DDA modeling 

The scattering and radiative transfer computations are made at four frequencies (85.5, 

157, 220, and 340 GHz). The choice of these frequencies was guided by the channels on 

current and future instruments. The 85.5 GHz channel is on SSM/I, and 157 GHz was 

a planned channel for AMSU /B. NASA is developing the Millimeter-Wave Imaging Ra­

diometer (MIR) which has channels near all four of these frequencies (89, 150, 183±1,3,7, 

220, and 325±1,3,9 GHz). Because the microwave scattering properties change slowly 

with :5~equency, only a small number of frequencies are required to determine the spectral 

characteristics. 

At the cold temperatures characteristic of most cirrus clouds (about < -30°C) vapor 

depositional growth of ice crystals occurs along the c axis resulting in hexagonal columnar 

shapes (Pruppacher and Klett, 1980). This includes solid and hollow columns and also 

colum:rrs grown around frozen water drops, i.e. bullets and rosettes. Growth along the a 

axis occurs above - 22°C, resulting in hexagonal plate shapes. For this work five ice crystal 

shape~; are chosen: solid columns, hollow columns, hexagonal plates, planar rosettes, and 

spheres. Bullets are not modeled separately, as their shape and aspect ratios are similar 

to cohmms. The long axis of the particles are assumed to be randomly oriented in the 

horizontal plane as a result of aerodynamic forces. Ono (1969) observed that columns and 

plates fall in this orientation, and lidar studies (e.g., Platt et al., 1978) indicate that plates 

fall oriented horizontally to within a few degrees. Since columns are expected to rotate 

about their long axis, solid columns are modeled by cylinders while hollow columns are 

modeled by cylinders with cones removed from each end. This simplification is justified at 

the wavelengths used here, which do not resolve the corners precisely. In nature, rosette 

shaped crystals have bullets attached to a central drop at seemingly random angles, but 

for this modeling the rosette shape has been simplified to four coplanar cylinders meeting 

at right angles. Equivalent volume spheres are used to model spatial rosettes with columns 

meeting at arbitrary angles. The volume of the spheres goes as V = ~D3(D/10JLm)-1/2, to 

simula.te the decreasing density oflarger spatial rosettes (D is diameter). These specific 

shape~ are modeled, instead of something generic like different aspect ratio oblate and 

prolate spheroids, because ice crystals do grow in particular habits and do not have a 

continuum of shapes. 
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Figure 3.1: The particle volume vs. size for the five particle shapes. Also plotted for 
eomparison are D2.5 and D3 sloped lines. 

In order to simulate a size distribution of ice crystals the scattering is computed from 

13 discrete maximum particle diameters from 30 pm to 2000 pm (intervals of about 1.4). 

The aspect ratio of the crystals is taken from empirical formulae developed by Heyms­

field (1972) (also in Pruppacher and Klett (1980), namely h = .260D·927 for columns, h = 

O.0141D·474 for plates, and h = .1526D·7856 D < 300f..LID, and h = .0630D·532 D > 300pm, 

for bullets in rosettes, where h is the thiclrness (em) and D is the maximum particle di­

mension (em). The maximum particle diameter D is used to characterize the particle size, 

rather than the equivalent volume sphere diameter D eq , because the maximum particle 

extent is usually what is reported in cirrus microphysical measurements. Figure 3.1 shows 

the volume vs. particle size for the five shapes. The ordering of volume with shape varies 

with the particle size because of the different aspect ratio functions. 

The scattering properties for the spheres are computed with Mie theory (Bohren and 

Huffman, 1983), while those for the other four shapes are computed with the DDA method. 

The major and minor dimension, dipole size, number of dipoles, and DDA solution method 

a.re listed in Table 3.1. The dipole size relative to the wavelength (Imlkd) go as high as 0.92 

for the 2.0 mID column at 340 GHz. A test comparing this case to one with half the dipole 

size (11880 dipoles) gives an rms fractional difference of 0.0015 for the scattering matrix 
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Table 3.1: Particle sizes and DDA dipole layouts 

IpO es 
Hollow 

Columns 
1416 t 
1356 fft 
1356 fft 
356 inv 
356 inv 
356 inv 
176 inv 
176 inv 
168 inv 
152 inv 
152 inv 
152 inv 
152 inv 

645 lnv 720 
442 inv 624 inv 
326 inv 387 inv 
228 inv 315 inv 
159 inv 279 inv 
115 inv 336 inv 

78 inv 243 inv 
60 inv 243 inv 
48 inv 288 inv 
26 inv 240 inv 
25 inv 192 inv 
16 inv 192 inv 
12 inv 192 inv 

and 0.013 for the extinction matrix over 16 zenith angles. The index of refraction for ice 

at -60°C (Warren, 1984) at the four frequencies (85.5, 157, 220, and 340 GHz) is given 

in Table 3.2. The Lorentz-Lorenz mixing rule is used for edge dipoles, and other dipoles 

are assumed to be solid ice. The scattering properties are computed for eight Lobatto 

quadra.ture zenith angles per hemisphere (incident and outgoing). The scattering matrix 

is averaged over 16 outgoing azimuth angles, and the horizontal orientation averaging is 

done with 8 incident azimuths over a 180° range. The matrix inverse solution method is 

used when allowed by available memory, as it is substantially faster because of the many 

incident directions used. The conjugate gradient iterations for the FFT solution method 

are done until a solution accuracy of 10-4 is reached (the average number of iterations 

ranges from 14 to 101 per DDA run). 
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Table 3.2: Index of refraction of ice for the four frequencies . 

. 3.2.2 Discrete size distributions 

The scattering properties (extinction, scattering, and emission) are averaged over the 

13 discrete ice particles sizes distributed in a gamma size distribution, defined here by 

b = a+ 3.67, 
Dm 

(3.1) 

where N is the number concentration per size interval and the distribution is defined by 

Dm and a. Dm is the diameter of the median of the third moment of the distribution, 

which is not the median of the volume because the particle volumes increase more slowly 

than the third power. The parameter a is related to the width of the distribution by 

1 (D2) 
1 + a = (D)2 ' 

(3.2) 

where ( ... ) implies averaging over the size distribution, so a larger a means a narrower dis­

tribution. The gamma distribution has been used by Matrosov et al. (1992) and Matrosov 

,et al. (1993) for radar remote sensing of cirrus. Kosarev and Mazin (1989) analyzed many 

cirrus size distributions and found that gamma distributions were an adequate represen­

tation with the width parameter a usually ranging from 0 to 2. Heymsfield and Platt 

(1984) fit two-slope piecewise power laws to observed cirrus size distributions. This takes 

into account the lowering of the slope (log-log) at smaller particle sizes, but the number 

concentration diverges at the lower boundary, so a minimum particle size is needed. The 

;gamma distribution concentration goes to zero for small sizes if a > O. The gamma dis­

tribution is chosen because this two parameter distribution can simply represent a variety 

of size distributions. 

Because there are only 13 particle sizes care must be taken when converting the size 

distribution integral to a weighted sum. In the procedure used here each discrete size Di 

represents a range of sizes from D~ to Dr. The integral is approximated by 

where k represents all the scattering quantities being summed together. The (D / Di)P 

factor takes into account that the scattering properties are not constant but generally 
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Table 3.3: Nadir effective size for five shapes and six distributions. 

24.6 
35.4 
56.3 
86.5 

144.4 

16.4 
23.5 
37.5 
57.7 
96.4 

14.1 
17.1 
22.0 
27.6 
35.9 

16.1 
21.9 
32.6 
46.8 
69.2 

19.0 
23.1 
29.8 
37.7 
49.8 

increase over the size interval. The power p should be the average power law increase of 

the scattering properties. For this work p = 3 (for solid columns at 340 GHz there is only 

about 1 % difference in the resulting scattering properties between p = 3 and p = 4). For 

gamma. distributions the weights for the sum are 

Ni = aDiPb-(a+P+1) [r(a + p + 1, bDi) - r(a + p + 1, bDD] , (3.4) 

where r is the incomplete gamma function r(a,a:) = J;ta-1e-tdt. Since the Di have 

logarithmic spacing the size ranges are set to the geometric mean of the particle sizes: 

D~ = y'Di-1Di and Di = y'DiDi+l. At the endpoints, we choose Di = 10JLID. and 

D~ = 2000JLm. 

U sing the above procedure 18 ganuna size distributions for each of the five shapes are 

computed. Six Dm's (70,100,150,250,400,700JLm) that cover the observed ranges of sizes 

(Heymsfieldet al. 1990) are used. For each Dm there are three a's (0,1,2). Figure 3.2 shows 

the 18 discrete size distributions for solid columns. For spherical particles the effective 

radius is often used when relating the microphysical and radiative aspects of clouds. The 

effective radius, ref f, is the ratio of the third moment of the size distribution to the second 

moment. An equivalent quantity for nonspherical particles is (V)j(A), which is the ratio 

of the particle volume averaged over the size distribution to the average projected particle 

area. This quantity depends on the particle shape and orientation as well as the size 

distribution (for spheres (V)j(A) = 4reffj3). For solid columns with a = 1 and a nadir 

view (V) j (A) = 0.17 D~92 for units in cm. Table 3.3 lists effective size for a nadir view 

for the five shapes and gamma size distributions with a = 1 

There are two areas one could question the accuracy of the discrete distribution in 

approximating a continuous gamma distribution: whether the smallest size is small enough 

and whether 13 sizes is enough. If the volume of the particles goes as n 2.5 then the size 

distribution with the most small particles (Dm = 70JLm, a = 0) has 13% of its mass below 

the smallest discrete size (30JLm), though only 0.6% below 10JLID.. Since the smallest 

particles are nearly purely absorbing, the extinction goes as the volume, and the discrete 

size summing procedure should adequately take into account the mass below the smallest 

discrete size. Most of the size distributions have negligible mass below 30JLm, anyway. 
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Figure 3.2: The 18 gamma size distribution for solid columns. 
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One way to test the accuracy of the discrete size distribution is to compare the 13 size 

distribution with one having many more sizes. This can be done for spherical particles 

becam:e the scattering properties of spheres can be computed rapidly. An approximately 

continuous size distribution is made using the same gamma distribution procedure above, 

but ming 399 sizes (interval of 5 microns) from 10 to 2000 microns. Comparisons are 

made ,at 85.5 and 340 GHz for all 18 gamma size distributions. The fractional difference 

in exbnction is always less than 2.4% and the difference in single scattering albedo is 

always less than 0.01. 

3.3 DDA Scattering Results 

The results of the DDA and Mie scattering computations are presented two ways. 

The first way is is to plot single scattering quantities that are chosen for their relevance to 

the radiative transfer process. The second way is to present the results of fits to functions 

that can be used in a simple first order radiative transfer model to compute upwelling 

brightness temperatures. 

3.3.1 Plots of scattering results 

The microwave single scattering results computed by the DDA and by Mie theory 

are plotted both for discrete sizes and for size distributions. The results are shown for 

two angles, nadir and about 49°, which is near the SSM/! observation angle and is typical 

for the maximum angle of scanning instruments. For horizontally oriented particles a 

non-nadir angle must be used to observe polarization signatures. The size distribution 

scattering results are presented as a function of the Dm parameter which characterizes the 

particle size of the distribution. 

The extinction provides an indication of how much the cirrus particles will depress 

the bri.ghtness temperature. Figures 3.3 and 3.4 show the nadir extinction as a function of 

particle size for the five shapes at 85 and 340 GHz, respectively. The normalization is such 

that are 10 particles per m3 if the extinction has units of lan-l. The extinction increases 

dramatically with size and is, of course, larger at the higher frequency. Three regimes can 

be identified for the rate of increase with particle size. For small particles « 300j.lm at 

85 GHz, or < 100j.lm at 340 GHz), absorption dominates, and the extinction goes as the 

volume, which is less than the third power of size because of the changing aspect ratio. 

For larger particles, scattering dominates, and the extinction goes as the square of the 

volume as long as the sizes are in the Rayleigh regime « 500j.lm at 340 GHz). Beyond 

the Ra.yleigh regime the extinction curve goes up more slowly again. The difference in 

extinction between the shapes is primarily due to the different volumes (see fig. 3.1). 

The next series of four plots shows extinction as a function of size distribution Dm , 

for distributions with an ice water content of 0.01 g/m3 . Figure 3.5 shows the effect of 
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Figure 3.3: Extinction vs. particle size at 85 GHz. 
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FigUl'e 3.5: Extinction vs. size distribution for columns and spheres at 340 GHz. 

the gamma size distribution width parameter a for columns and spheres at 340 GHz. The 

width of the distribution is relatively less important than the mean size in determining 

the scattering properties. The widest distribution generally has the highest extinction due 

to its greater number of larger particles. There is a similar behavior in other scattering 

propelties (not shown), so that the wider distribution behaves as ifit had a slightly larger 

mean particle size. Because the effect of the distribution width is small, and to simplify 

the plots, only the a = 1 distributions are shown from now on. 

F:iguxe 3.6 shows the extinction for size distributions of all five shapes at 220 GHz. 

Even though the all the distributions have the same IWC there is a range up to a factor of 

three i.n the extinction between the various shapes. Rosettes generally have the smallest 

extinction and, for the larger size distributions, solid columns have the largest extinction. 

The extinction for distributions of solid columns at all foUl' frequencies is shown in Fig. 3.7. 

The extinction increases dramatically with frequency. In addition, how the extinction 

increases with the distribution Dm varies with frequency. Figuxe 3.8 illustrates how the 

extinction is different at the two observation angles considered here (0° and 49°). In 

general, the nadir angle has higher extinction because this angle presents the greatest 

area to the oncoming microwave radiation. This effect is especially large for the plates, 

which are very thin. 

The next series of plots shows the ratio of extinction for vertical polarization to that for 

horizontal polarization at 49°. This is one way to characterize how much the ice particles 
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Figure 3.6: Extinction vs. size distribution for five shapes at 220 GHz. 

10-1 r-----------~--------~--------~----~--~--~__. 

.....-... 

- 85GHz 
...... 157GHz 

M --_. 220 GHz 
~ .... 340GHz 

b.O 10-2 1--------------' 
,......{ 

o 
o 
I-< 

~ 
'7 10-3 

] 
'-'" 

§ 
-------------..... 

+'" 
g 10-4 ..... 

~ 

--
/' 

// -_ .... 
,/' 

.. ' 

/ 
// 

// 
// 

// .... / , .... 

..' 

// 
..,."" ..,."" 

..,."" ..,."" 
..,."" ..,...,."" 

Solid Columns 
Nadir view 

10-5~--~~--------------~----------------~--~~ 
70 100 150 250 400 700 

Size Distribution Dm (J.lID) 
Figure 3.7: Extinction vs. size distribution for solid columns at four frequencies. 



,---... 
M 

S 

36 

10-1.----------.-~---~--~-~-~--. 

Solid Columns (Oob 
Solid Columns (49 ) 
Plates (Oob 
Plates (49 ) ............ 2 

b.C1O-~----------' 
.....-i 
o 
a 
~ 

~ 
...... 

I 

S 
~ 
"'--" 
~ 
0 ....... 

.+J 
C) 

~ 
• r-t 

~ 

10-3 

~- "- .. : .. .. 

10-4 

340 GHzj V pol 
10~7~O~~~lO~O------1-5-0--------2-50--~----4~OO--~----~700 

Size Distribution Dm (Ilm) 

Fig;ure 3.8: Extinction vs. size distribution for columns and plates at 0° and 49°. 

will polarize microwave radiation upwelling through cirrus clouds. Since the horizontal 

polari2;ation extinction is larger than the vertical polarization extinction for horizontally 

oriented particles, the polarization ratio is less than one. Spheres are not shown because 

their polarization ratio is always one. Figures 3.9 and 3.10 plot the extinction polarization 

of four shapes as a function of particle size for 85 and 340 GHz, respectively. Plates 

are the most polarizing, having a ratio of around 0.5 owing to their thinness, followed 

by rosettes and then columns. Solid columns are slightly more polarizing than hollow 

columns. There is a tendency for the polarization ratio to decrease with particle size as 

the aspect ratio decreases (see 85 GHz plot). At 340 GHz there are large oscillations 

in the polarization ratio with particle size. This is a manifestation of the non-Rayleigh 

scattering regime, for which the polarization ratio seems especially sensitive. This non­

Rayleigh behavior starts at particle sizes of 300 to 500J,Lm at 340 GHz, and is apparent 

at 1000J,Lm at 157 GHz. One way of explaining the oscillations in the polarization ratio is 

that the two polarizations see different effective particle sizes due to the nonsphericity of 

the particles. This means that where the extinction size dependence begins to oscillate, 

beyond the Rayleigh regime, the two polarizations will be out of phase, so the polarization 

ratio will oscillate. Figure 3.11 shows that averaging over a size distribution reduces, but 

does not eliminate, the oscillations in the polarization ratio. Thus, the polarization ratio 

depends on both the particle shape, and to a lesser extent, the size distribution. 
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The single scattering albedo is crucial for understanding the radiative transfer process 

of microwave radiation in cirrus. Low albedo means that radiation interacts with the cirrus 

particles by absorption and emission, whereas high albedo means that radiation interacts 

primarily through scattering. The single scattering albedo as a function of particle size is 

shown in fig. 3.12 for solid columns at the four frequencies. For all frequencies the smallest 

particles (30JLm) have an albedo near zero, while the largest particles (> 1000JLm) have an 

albedo near one. The transition from absorbing to scattering behavior varies considerably 

with frequency: an albedo of 0.5 occurs at 330JLm at 85 GHz but down to 110JLm at 

340 GHz. A similar type of transition occurs with the size parameter Dm for distributions 

(Fig.3.13). At 85 GHz only the two largest size distributions (with Dm 2:: 400) have 

a single scattering albedo above 0.75, while for 340 GHz four size distributions (with 

Dm 2:: 150) have albedos above 0.75. Figure 3.14 shows the single scattering albedo for 

size distributions for the five particle shapes at 220 GHz. While the variation in albedo 

with particle shape is not as large as with frequency, there is significant variation, with 

larger volume shapes (columns) scattering more than smaller volume shapes (rosettes). 

There is very little change in albedo with polarization or angle. 

The last single scattering quantity to look at is a measure of the degree of forward 

scattering. This is important for radiative transfer because more forward scattering to the 

radiometer will decrease the brightness temperature depression. The usual measure of the 
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amOUI.Lt of forward scattering is the asymmetry parameter, which is the cosine weighted 

average of the phase function. That cannot be computed from the azimuthally averaged 

scattering matrix calculated here, except for nadir incidence. mstead we use a scattering 

ratio, defined for each upwelling outgoing angle as the ratio of integral of the scattering 

matrix over upwelling incident angles divided by the total scattering (incident over all 

incident angles). It is the fraction of scattered radiation that would come from upwelling 

incident angles if the sample was isotropically illuminated by unpolarized radiation. Fig­

ure 3.15 shows the scattering ratio as a function of particle size for the five shapes at 

340 GHz. Small particles are in the Rayleigh regime, scattering forward as much as back, 

so the scattering ratio is 0.5. For spheres and columns the largest particle sizes have some 

80% of the radiation scattered into the zenith coming from the upwelling incident angles. 

The thinner shapes have lower scattering ratios at all sizes. For nadir view the scattering 

ratio £Dr plates stays at 0.5, because they are modeled as one dipole thick. A similar be­

havior is seen in the scattering ratio for distributions (Fig. 3.16), with the ratio increasing 

with distribution Drn for the thicker particle shapes. Figure 3.17 shows the scattering ratio 

as a function of size distribution for hollow colur.nns at the four frequencies. The scattering 

ratio is significantly larger than 0.5 only for the higher frequencies and for distributions 

with larger particles. The scattering ratio is lower for off-nadir angles (not shown). It is 

also larger for vertical than horizontal polarization for off nadir angles, even for plates. 
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3.3.2 Fits of scattering results 

The scattering results are also presented by tabulating coefficients of fits as a fimction 

of particle size. This provides a way for others to use the DDA results for research 

in microwave remote sensing algorithms without having to go to the complication and 

expense of generating them. Because the single scattering properties are fit to fimctions 

of size from 30J.Lm to 2000J.Lm, great flexibility will be allowed in the future choice of size 

distributions. The fits of scattering properties are presented for the four non-spherical 

particle shapes at 85.5, 157,220, and 340 GHz for upwelling angles of 0° and 49°. While it 

is somewhat restrictive to fit the results only for these two angles, it is considerably more 

accurate to tabulate for particular angles then to also fit to fimctions of zenith angle. The 

form of the scattering properties presented here is specifically for the use in a simple first 

order radiative transfer model. 

The scattering properties that are needed for remote sensing at a particular observa­

tion angle J.L are the polarized extinction Kp(J.L) , emission O'p(J.L), and scattering Mpp'(J.L,p/) 

where p and p' refer to polarization (V or H), and J.L' is an incident direction (in this 

notation these quantities have units of inverse distance). It is assumed that the upwelling 

radiation incident on a cirrus layer is unpolarized. This is partly done to reduce the 

number of scattering fimction quantities tabulated, but is also justified in terms of ac­

tual atmospheres. Land surfaces are expected to be virtually unpolarized, and a moist 

atmosphere is optically thick enough at the higher frequencies to totally depolarize the 

upwelling microwave radiation. Since the upwelling radiation from a clear sky incident 

on a cirrus layer is usually a smooth fimction of zenith angle, its angular structure is 

approximated by a quadratic, hence 

(3.5) 

Then we only need to consider the first three moments of the scattering fimction over the 

upward incident angles: 

MJl) = 10
1 

(Mpv(J.L,J.L') + MpH(IL,P,')) J.L'ldJ.L' (3.6) 

This reduces the problem to fitting five quantities over particle size (K, 0', M(O) , M(l), M(2)) 

for each observation angle/polarization and particle shape. 

The optically thin nature of cirrus clouds at microwave frequencies allows the use of a 

particularly simple formula for the solution to the radiative transfer problem. If the order 

of scattering solution to the polarized radiative transfer equation is expanded to first order 

in the layer thickness the change in upwelling unpolarized radiance as it interacts with the 

cirrus layer is 

(3.7) 
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where p is the polarization (V or H), and B(T) is the Planck function at the average cloud 

temperature T. 

The assumptions of this first order radiative transfer model are 

1. The cloud is optically thin enough that the order of scattering solution may be 

expanded to first order in optical depth. 

2. The incident upwelling radiation can be approximated by a quadratic function. 

3. The cloud is above significant gaseous absorption, so that the incident radiation is the 

same as the clear sky top of the atmosphere radiance, there is no incident radiation 

from above the cloud, and extinction and emission properties are due entirely to the 

cirrus particles. 

4. There is no reflection from the surface or scattering outside the cloud so the incident 

radiation is independent of the cloud. 

The least squares fits of the scattering properties as functions of particle size are made 

to the quantities plotted in the previous section: log of extinction, single scattering albedo, 

and three scattering ratios. This was found to be more accurate than fitting directly to 

the scattering quantities used in eq. (3.7). The resulting formulae for the fits as function 

of maximum particle size D are 

In(K) 

(j 

w=l--
K 

M(a) 

K - (j 

M(l) 

M(a) 
M(2) 

M(a) 

i=O 

1 
1 + (D/wa)-Wl - W2 

0.5 + exp [MJO) + MiO) lnD + MJa) (lnD)2] 

M(l) +M(I)D a I 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The constant coefficients in the first and second moment scattering ratios (MJI) and MJ2)) 

are not fit, because the small size limit can be used. For nadir angle and horizontal polar­

ization at any angle the M(l) /M(a) ratio is 0.563, while M(2) /M(O) ratio is DADO. These 

ratios (9/16 and 2/5) can be computed theoretically from the Rayleigh phase function, 

M(JL') ex 1 + JL/2
• The two scattering ratios for vertical polarization depend on angle and 

the Rayleigh limit shape, and so are listed in Table 304. 

The fit coefficients are tabulated for nadir (no polarization) and for JL = 0.65239 (490 

V and H polarizations) for the four shapes and four frequencies. The coefficients are for 

extinction K in km- l for 10 particles per m3 (same as plots in section 3.3.1) and for 
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Table 3.4: Small size limit of scattering ratios 

Angle Shape MS1) MS2) 

/Pol 
0 0 

0 All .563 .400 
H All .563 .400 
49V Column .475 .305 
49V Hollow .473 .302 
49V Plate .496 .328 
49V Rosette .485 .316 

the particle size D in mm. The coefficients for extinction and the resulting rms error in 

the logarithm over the 13 particles sizes are listed in Table 3.5. The fit to extinction is, 

of course, smoother than that computed by DDA, but given the error in the individual 

DDA calculations, may be of equivalent or better accuracy. Table 3.6 contains the fit 

coefficients for the single scattering albedo and the three scattering ratios. By using the 

coefficients in these two tables with the formulae in eqs. 3.8-3.12 the scattering properties 

at the available angles for any particle size may be calculated. The scattering quantities, 

after integration over appropriate size distributions, may be used in eq. 3.7 to compute 

easily the brightness temperature depression from various cirrus crystals at the tabulated 

microwave frequencies. The accuracy of the scattering fits and the first order radiative 

transfer model are tested in section 3.4.2. 
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Table 3.5: Fit coefficients for extinction 

Freq. Angle Shape ExtmctlOn Coetltclents 
(GH~) fPol Error Ko KI K2 Ka K4 Ks 

85 0 Column 0.029 -9.5846 5.8211 0.2'£52 -0.4562 -0.1586 -0.0151 
85 0 Hollow 0.026 -10.4004 5.7334 0.3732 -0.4478 -0.1758 -0.0186 
85 0 Plate 0.008 -10.7182 4.7919 0.1523 -0.4418 -0.1700 -0.0187 
85 0 Rosette 0.072 -11.6516 3.9966 -0.1152 -0.2157 -0.0212 0.0035 
85 49H Column 0.029 -9.6280 5.7582 0.2596 -0.4426 -0.1511 -0.0141 
85 49H Hollow 0.026 -10.4254 5.6903 0.3503 -0.4500 -0.1745 -0.0184 
85 49H Plate 0.009 -10.7955 4.6520 0.0751 -0.4496 -0.1655 -0.0178 
85 49H Rosette 0.072 -11.7066 3.8930 -0.1837 -0.2336 -0.0223 0.0036 
85 49V Column 0.030 -9.9649 5.6017 0.1463 -0.4872 -0.1575 -0.0142 
85 49V Hollow 0.024 -10.7165 5.5820 0.2905 -0.4740 -0.1790 -0.0185 
85 49V Plate 0.007 -11.5026 4.5670 -0.0017 -0.5118 -0.1854 -0.0202 
85 49V Rosette 0.064 -12.0966 3.7607 -0.2670 -0.2177 0.0017 0.0080 

157 0 Column 0.025 -7.1243 5.3688 -1.1105 -1.0'(23 -0.2594 -0.0203 
157 0 Hollow 0.028 -7.9582 5.5609 -0.7301 -0.9240 -0.2362 -0.0190 
157 0 Plate 0.017 -8.4649 4.4849 -0.7229 -0.6683 -0.1473 -0.0098 
157 0 Rosette 0.077 -9.3733 3.8942 -0.7408 -0.2790 0.0546 0.0187 
157 49H Column 0.020 -7.2179 5.4420 -0.6889 -0.6993 -0.1357 -0.0062 
157 49H Hollow 0.025 -8.0258 5.5532 -0.5458 -0.7396 -0.1722 -0.0115 
157 49H Plate 0.029 -8.6615 4.4567 -0.2408 -0.1943 0.0147 0.0088 
157 49H Rosette 0.085 -9.5277 3.7842 -0.5606 -0.0582 0.1344 0.0281 
157 49V Column 0.028 -7.6967 5.2974 -0.3756 -0.3378 -0.0042 0.0096 
157 49V Hollow 0.025 -8.4085 5.4180 -0.3800 -0.5262 -0.0926 -0.0018 
157 49V Plate 0.026 -9.4727 4.0665 -0.6838 -0.4612 -0.0581 0.0013 
157 49V Rosette 0.080 -10.0323 3.4588 -0.7520 -0.0608 0.1603 0.0331 
220 0 t..;olumn u.083 -6.2016 4.4136 -1.039 r

{ -0.1403 0.l'{4\:! 0.0364 
220 0 Hollow 0.046 -6.8759 4.8350 -1.0165 -0.4820 0.0144 0.0157 
220 0 Plate 0.034 -7.4351 3.8101 -1.0122 -0.3548 0.0322 0.0145 
220 0 Rosette 0.078 -8.1965 3.4764 -1.0841 -0.1499 0.1575 0.0335 
220 49H Column 0.027 -6.1145 4.7184 -1.1170 -0.4864 0.0113 0.0142 
220 49H Hollow 0.031 -6.8929 4.9730 -0.8374 -0.4184 0.0187 0.0150 
220 49H Plate 0.028 -7.5005 4.2293 -0.3876 -0.0708 0.0795 0.0165 
220 49H Rosette 0.076 -8.3447 3.5913 -0.6193 0.1943 0.2575 0.0438 
220 49V Column 0.033 -6.5432 4.8466 -0.7449 -0.2974 0.0465 0.0162 
220 49V Hollow 0.026 -7.2658 4.9917 -0.5624 -0.2243 0.0715 0.0201 
220 49V Plate 0.036 -8.5668 3.4933 -0.6732 0.0288 0.1614 0.0288 
220 49V Rosette 0.081 -9.0070 3.1330 -0.6530 0.4069 0.3638 0.0584 
340 0 Column 0.090 -5.3261 3.3519 -0.'(091 0'-1085 0.4'l53 0.06'{9 
340 0 Hollow 0.071 -5.8476 3.7585 -0.9631 0.2599 0.3201 0.0514 
340 0 Plate 0.053 -6.4898 2.8519 -0.7235 0.4645 0.3391 0.0487 
340 0 Rosette 0.094 -7.0441 2.6804 -0.8509 0.6552 0.4812 0.0717 
340 49H Column 0.031 -5.1398 3.5197 -1.1359 0.1975 0.2924 0.0466 
340 49H Hollow 0.043 -5.7338 3.9660 -1.1468 -0.0759 0.1828 0.0341 
340 49H Plate 0.032 -6.1160 3.6841 -0.9238 -0.3070 -0.0041 0.0041 
340 49H Rosette 0.050 -6.8820 3.2137 -0.9528 0.1306 0.2373 0.0392 
340 49V Column 0.018 -5.3859 3.9246 -1.0654 -0.0894 0.1427 0.0261 
340 49V Hollow 0.038 -5.9848 4.1881 -1.0964 -0.2565 0.0849 0.0204 
340 49V Plate 0.032 -7.6040 2.8999 -0.3737 0.5438 0.3165 0.0423 
340 49V Rosette 0.038 -7.7266 2.9199 -0.4675 0.6787 0.4291 0.0616 
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Table 3.6: Fit coefficients for single scattering albedo and scattering ratios 

l''req. Angle ::;hape CoettiClents 
(GHz) fPol Wo Wl W2 M~O) M(O) MiO) MjI) M(2) 

85 0 Colwnn 0.3290 3.1206 0.0010 -4.33C(5 1.8093 -0,0"(30 0.0154 0.0166 
85 0 Hollow 0.3797 3.1777 0.0010 -4.2077 1.8359 -0.0602 0.0121 0.0127 
85 0 Plate 0.3923 2.8139 0.0029 -100 0.0000 0.0000 0.0234 0.0257 
85 0 Rosette 0.4116 2.8489 0.0093 -6.0093 1.2076 -0.2182 0.0167 0.0183 
85 49H Colwnn 0.3296 3.1056 0.0015 -4.7667 1.7842 -0.1084 0.0090 0.0095 
85 49H Hollow 0.3803 3.1665 0.0013 -4.6385 1.8290 -0.0926 0.0081 0.0083 
85 49H Plate 0.3939 2.7667 0.0052 -100 0.0000 0.0000 0.0140 0.0152 
85 49H Rosette 0.4127 2.8057 0.0114 -33.268 31.890 11.366 0.0115 0.0124 
85 49V Colwnn 0.3297 3.0921 0.0021 -3.4951 1.8776 -0.1043 0.0232 0.0227 
85 49V Hollow 0.3807 3.1549 0.0017 -3.7947 1.8987 -0.0835 0.0185 0.0188 
85 49V Plate 0.3935 2.7693 0.0053 -4.1973 1.7878 0.3905 0.0525 0.0549 
85 49V Rosette 0.4097 2.7876 0.0126 -3.7783 1.8853 0.0147 0.0209 0.0200 

157 0 ~o!wnn 0.2023 2.9868 0.0027 -3.2535 2.2748 0.3149 0.0484 0.0552 
157 0 Hollow 0.2339 3.0142 0.0025 -3.0738 2.1102 0.2857 0.0376 0.0415 
157 0 Plate 0.2250 2.6560 0.0054 -100 0.0000 0.0000 0.0824 0.0954 
157 0 Rosette 0.2428 2.7585 0.0073 -4.8255 1.2362 -0.0186 0.0505 0.0581 
157 49H Colwnn 0.2028 2.9678 0.0033 -3.6658 1.9196 0.2184 0.0029 0.0019 
157 49H Hollow 0.2343 2.9999 0.0029 -3.5028 1.9740 0.1917 0.0105 0.0106 
157 49H Plate 0.2258 2.6021 0.0083 -100 0.0000 0.0000 -0.0002 -0.0010 
157 49H Rosette 0.2433 2.7140 0.0098 -5.2800 1.0247 -0.1497 0.0093 0.0104 
157 49V Colwnn 0.2027 2.9494 0.0043 -2.3426 1.6206 -0.3916 0.0290 0.0262 
157 49V Hollow 0.2344 2.9852 0.0036 -2.6243 1.8034 -0.1367 0.0299 0.0288 
157 49V Plate 0.2246 2.6020 0.0100 -2.8977 1.7969 -0.3306 0.0725 0.0742 
157 49V Rosette 0.2407 2.6887 0.0129 -2.5532 1.6654 -0.4291 0.0362 0.0340 
220 0 Colwnn 0.1531 2.9416 0.0038 -2.2802 2.6103 -0.8889 0.0829 0.0970 
220 0 Hollow 0.1769 2.9569 0.0037 -2.1774 2.2600 -0.5102 0.0730 0.0832 
220 0 Plate 0.1635 2.5939 0.0069 -100 0.0000 0.0000 0.1388 0.1699 
220 0 Rosette 0.1794 2.7000 0.0073 -4.1269 1.2862 0.0066 0.0812 0.0975 
220 49H Colwnn 0.1535 2.9199 0.0044 -2.9142 2.0554 0.1267 0.0031 0.0015 
220 49H Hollow 0.1773 2.9409 0.0041 -2.7082 2.0354 -0.0860 0.0072 0.0059 
220 49H Plate 0.1645 2.5393 0.0092 -100 0.0000 0.0000 -0.0213 -0.0264 
220 49H Rosette 0.1802 2.6557 0.0091 -4.6635 0.9596 -0.1577 -0.0008 -0.0020 
220 49V Colwnn 0.1535 2.8991 0.0055 -1.7852 1.2741 -0.6830 0.0376 0.0342 
220 49V Hollow 0.1774 2.9262 0.0049 -1.9326 1.6027 -0.7670 0.0369 0.0346 
220 49V Plate 0.1630 2.5395 0.0123 -2.2822 1.5045 -0.6042 0.0760 0.0744 
220 49V Rosette 0.1780 2.6321 0.0130 -1.9668 1.2509 -0.8404 0.0366 0.0320 
340 0 Colwnn 0.1078 :&.8'(60 0.0058 -1.2290 1.484'( -1.3n3 0.1406 0.1707 
340 0 Hollow 0.1247 2.8819 0.0055 -1.2102 1.2847 -1.4779 0.1342 0.1615 
340 0 Plate 0.1094 2.5369 0.0093 -100 0.0000 0.0000 0.1948 0.2492 
340 0 Rosette 0.1226 2.6283 0.0075 -3.1509 1.1632 -0.2190 0.0895 0.1148 
340 49H Colwnn 0.1081 2.8524 0.0069 -1.8631 1.9070 -1.0067 0.0067 0.0000 
340 49H Hollow 0.1249 2.8641 0.0063 -1.6979 1.5986 -1.4333 0.0041 -0.0022 
340 49H Plate 0.1104 2.4788 0.0107 -100 0.0000 0.0000 -0.0519 -0.0620 
340 49H Rosette 0.1234 2.5819 0.0090 -3.9251 1.0819 -0.0267 -0.0142 -0.0189 
340 49V Colwnn 0.1081 2.8293 0.0081 -1.3835 0.8047 -0.4362 0.0562 0.0494 
340 49V Hollow 0.1250 2.8488 0.0070 -1.3908 0.8007 -0.8232 0.0577 0.0525 
340 49V Plate 0.1090 2.4830 0.0154 -1.7342 1.0314 -0.5159 0.0739 0.0655 
340 49V Rosette 0.1218 2.5613 0.0136 -1.5634 0.6545 -0.6238 0.0310 0.0219 
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Table 3.7: Water surface index of refraction and emissivity. 

1, 

2.51- 0.90i 
2.41- 0.68i 
2.42 - 0.82i 

Emissivity 
0° 49°Y 49°H 

0.765 
0.797 
0.783 

0.894 
0.917 
0.907 

0.613 
0.651 
0.633 

3.4 Radiative Transfer Modeling 

3.4.1 Modeling setup 

1, 

2.95 - 1.58i 
2.68 - 1.27i 
2.42 - 0.82i 

Emissivity 
0° 49°Y 49°H 

0.652 
0.707 
0.783 

0.802 
0.849 
0.907 

0.498 
0.552 
0.633 

Upwelling polarized microwave radiation is computed for cirrus clouds containing 

various particle shapes and size distributions. To simulate a range of conditions the cirrus 

clouds are placed in tropical and midlatitude winter standard model atmospheres. The 

tropical atmosphere has 80% relative humidity, and the midlatitude atmosphere has 60% 

humidity. The microwave absorption is computed using the MPM92 model of Liebe (see 

section 2.2.1). Figure 3.18 shows the profiles of temperature with height for the two model 

atmospheres. In addition the transmission to space as a function of height is plotted for 

the four frequencies considered. In the tropical atmosphere only 85 GHz has significant 

contribution from the surface, while even in the very dry midlatitude winter atmosphere 

340 GHz is substantially opaque. The transmission goes to one quickly with height in the 

lower atmosphere, following the moisture profile. At 340 GHz the transmission to space 

is greater than 0.99 at 10 km in the tropical atmosphere and at 8 km in the midlatitude 

winter atmosphere (roughly around -40°). So at typical heights of cirrus clouds there is 

little absorption in and above the clouds at these microwave frequencies. 

The polarized plane-parallel multi-stream model described in section 2.2.2 is used to 

simulate the upwelling radiance from cloudy and clear atmospheres. The atmosphere is 

divided up into 20 1.0 km thick layers which are homogeneous in scattering and absorption 

properties. The cirrus cloud layer is 3 km thick and placed at an appropriate height in the 

atmosphere: from 9 to 12 km in the midlatitude atmosphere (226 - 219°K) and from 14 to 

17 km in the tropical atmosphere (210 - 195°K). The particle concentration of the clouds 

and hence the ice water content is adjusted for each case so that the nadir brightness tem­

perature depression is 2.00K for the tropical profile over land. This is done so the change 

in radiance is small enough to keep the radiative transfer in the linear regime, yet large 

enough so the change in brightness temperature can be accurately computed (brightness 

temperatures are output to 0.01 OK). At an angle of 49° the brightness temperature de­

pression ranges from O.77°K to 4.33°K over the four frequencies, five shapes, and 18 size 

distributions for the tropical/land profile. 
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Figure 3.18: Temperature and transmission profiles for the two model atmospheres. 
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Table 3.8: True size of cosmic background radiation 

0.01000 
0.00429 
0.00185 
0.00081 
0.00015 

The radiative transfer simulations are done for both land and water surfaces because 

of their marked contrast in microwave radiometric properties. The land is modeled as a 

Lambertian surface with a constant emissivity of 0.95. The water is modeled as a fiat 

dielectric Fresnel reflecting surface with the index of refraction of water varying with 

frequency and temperature (see table 3.7). The skin temperature of the surface is the 

same as the bottom of the atmosphere (3000K for tropical and 272°K for midlatitude 

winter). The cosmic background radiation from above is ignored because at the high 

microwave frequencies considered here it is insignificant. Table 3.8 shows the ratio of the 

Planck function at 2.7°K to that at 2700K. This shows that at these frequencies the 2.7 K 

blackbody curve is departing from the Rayleigh-Jeans limit in such a way as to make it 

much smaller than indicated by the brightness temperature. 

The radiative transfer calculation is carried out with radiances having units ofW m-2 ster-1 J.L-1 

and the Rayleigh-Jeans approximation is not used. The I and Q Stokes radiances com-

puted by the multi-stream model are converted to V and H polarizations and these are 

then translated to equivalent blackbody brightness temperatures. The doubling-adding 

technique is carried out with 8 Lobatto quadrature angles per hemisphere, though results 

are presented only for the nadir angle (J.L = 1) and around 49° (J.L = 0.65239). 

The radiative transfer procedure described above is carried out for four frequencies 

(85.5,157,220, and 340 GHz), five particle shapes (solid columns, hollow columns, hexag­

onal plates, planar rosettes, and equivalent volume spheres), and 18 gamma size distribu­

tions (Dm = 70,100,150,250,400,700 J.Lm and a = 0,1,2). The 90 different cirrus cloud 

cases are done fOl" the tropical and midlatitude standard atmospheres over land and water 

surfaces. 

3.4.2 Testing the first order radiative transfer model 

The accuracy of the scattering fits and the first order radiative transfer model (eq. 3.7) 

for remote sensing are tested by comparing the brightness temperature depressions com­

puted using the fits and the first order (FORT) model with the complete DDA scattering 

information and the polarized multi-stream radiative transfer model. The 18 discrete 

gamma size distributions are simulated by evaluating the fit equations above and sum­

ming over the 13 particle sizes with the appropriate concentrations. There are two sources 
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of error in the fitting/FORT approximation: 1) the error inherent in the first order radia­

tive transfer model, and 2) the error in the fits to the scattering properties. By using the 

first order radiative transfer model on the actual scattering properties (i.e. with no particle 

size fitting) the first source of error alone is evaluated, and thus we can find the radiative 

error from the fitting procedure. The first order model is run for the same atmospheric 

situations as the multi-stream model was in the previous section. The upwelling clear sky 

radiances for standard tropical and midlatitude winter atmospheres are computed with 

the multi-stream radiative transfer model and fit to a quadratic to input to the FORT 

model. The average cloud temperatures (201 K for tropics and 220 K for midlatitude) are 

also input to the FORT model. As before, the cirrus layers are 3 km thick and the ice 

water contents have been adjusted to give a brightness temperature depression at nadir 

of 2.0 K. 

The errors in the first order radiative transfer and scattering fits are expressed in 

terms of the fractional difference in brightness temperature depression as compared to 

the polarized multi-stream results. The brightness temperature depressions are compared 

for the tlu'ee angles/polarizations (0°, 49° V, and 49° H), the 18 size distributions, the 

four particle shapes, and the four frequencies. Table 3.9 lists the rms and maximum 

fractional difference for the four frequencies for different combinations of atmospheres 

and smfaces. At 85 GHz for the tropical atmosphere and frequencies below 340 GHz for 

the midlatitude winter atmosphere there are significant to very large errors in the first 

order model. These errors in the brightness temperature depression are caused by the 

assumption of no reflection below the cloud. Small amounts of surface reflection (even 

the 5% for the land case) can cause large errors in the brightness temperature depression 

computed by the first order model. This occurs because there is considerable cancellation 

between the negative extinction term and the positive emission or scattering terms, i.e. 

the emission or scattering from the cloud is large compared to the brightness temperature 

depression, so small amounts of reflected radiance cause large fractional errors. There is 

more cancellation when emission dominates for small particle sizes at the lower frequencies 

and so the errors from ignoring reflection are larger in those cases. Reflection could be 

included in the first order radiative transfer model but this requires accurate knowledge of 

the surface reflection and atmospheric transmission. The effect of surface reflection does 

not matter when the atmosphere is opaque as it is in the tropics above 150 GHz. 

The error in brightness temperature depression due to both the scattering fits and the 

first order model, but without the surface reflection problem, can be seen by considering 

the tropical atmosphere at the three higher frequencies, for which the typical error is 2% 

and maximum error is 8%. The error due solely to the scattering fits is shown in table 

3.10, which lists the rms and maximum fractional differences in !:l..TB from the first order 

model with and without the fitting. As expected there is little difference between the 

various atmospheres and surfaces. The typical error goes from about 1% at 85 GHz to 2% 
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Table 3.9: Fractional difference in fj,TB between FORT and multi-angle results 

85 UHz 157 UHz 220 Utlz 340 Utlz 
Atmos Surface Fit RMS MAX RMS MAX RMS MAX RMS MAX 
trop land no 0.041 0.056 0.016 0.025 0.015 0.024 0.017 0.028 
trop land yes 0.040 0.075 0.020 0.069 0.024 0.070 0.027 0.080 
trop water no 1.227 3.545 0.018 0.031 0.015 0.024 0.017 0.028 
trop water yes 1.218 3.545 0.022 0.066 0.024 0.070 0.027 0.080 
midw land no 0.236 0.456 0.098 0.202 0.053 0.110 0.030 0.045 
midw land yes 0.233 0.456 0.097 0.202 0.056 0.103 0.038 0.084 

Table 3.10: Fractional difference in FORT fj,TB due to size fitting 

85 GHz 157 GHz 220 GHz 340 UHz 
Atmos Surface RMS MAX RMS MAX RMS MAX RMS MAX 
trop land 0.010 0.035 0.014 0.052 0.020 0.069 0.020 0.069 
trop water 0.012 0.042 0.014 0.052 0.020 0.069 0.020 0.069 
midw land 0.011 0.039 0.015 0.058 0.021 0.070 0.021 0.066 

at 340 GHz with the maximum error of 7%. At 85 and 157 GHz the differences are mainly 

due to the rosette particle shape. The results show that the first order radiative transfer 

model is accurate in most of the situations relevant to the microwave remote sensing of 

cirrus. The fitting procedure for the scattering properties does not add much additional 

error to the brightness temperature depressions, partly because a size distribution tends 

to wash out the errors at particular particle sizes. 

3.4.3 Tests of remote sensing concepts 

One advantage of remotely sensing cirrus clouds with microwave radiometry is that 

the radiative transfer will usually be in the linear regime. The means that the signal 

(brightness temperature depression) is proportional to the integrated ice mass. Linearity 

also means that the signal is affected by the integrated or average properties of the cirrus 

cloud, so that the one does not need to know the vertical or horizontal distribution of 

cirrus properties. Thus the complicating effects of cloud heterogeneity are not felt. 

When considering the linear radiative transfer regime a natural quantity to use is 

the ratio of the brightness temperature depression to the ice water path (fj,Tb/ IW P), 

which here is called the sensitivity. To demonstrate the range of linearity the sensitivity 

is plotted as a function of IWP for a particular simulated cirrus cloud in Fig. 3.19. Two 

angles (nadir and 49°) are shown, and the IWP includes the secant angle effect. The 

sensitivity is constant over a wide range of IWP before it begins to fall as the radiative 

transfer saturates. The useful range of linearity is about a factor of ten in integrated ice 

mass from the detect ability limit (say fj,Tb ~ 3°K) to where the sensitivity drops by about 

10%. Obviously, the signal still contains useful information beyond the linear regime, but 

is somewhat more difficult to interpret. 
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Figure 3.19: Sensitivity vs. ice water path showing the range of radiative transfer linearity. 

Another advantage of passive microwave sensing of cirrus is that since it is a scattering 

based technique knowledge of the temperature, and hence height, of the cloud is not 

required. To test this assertion the sensitivities from a tropical atmosphere over land 

were compared between cirrus clouds at two difference heights. The standard level of 

14 to 17 Ian has an average temperature of 201°K, while the other level of 11 to 14 Ian 

has an average temperature of 2200K. The fractional difference in sensitivity between 

the two cloud temperature cases is averaged over the three angles/polarizations (0, 49V, 

49H) for the six size distributions with ex = 1 and the four frequencies and plotted in 

Fig. 3.20. The error bars show the range in the fractional difference in sensitivity over 

the five shapes. At the higher frequencies only the size distributions dominated by small 

particles have significant differences in sensitivity. The smaller particle distributions and 

the lower frequencies have significant emission and so a larger dependence of the sensitivity 

on temperature. In an actual retrieval the cloud temperature could be estimated more 

accurately than the 19°K difference used here, and so the errors would be correspondingly 

less. 

Because at microwave frequencies cirrus clouds are above the radiatively active part 

of the atmosphere and primarily scatter radiation, the modulation of upwelling radiation 

by cirrus is relatively independent of the atmospheric profile. To test this idea of a de­

coupling between the cirrus layer and the underlying atmosphere, a comparison is made 
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Figure 3.20: Fractional difference in sensitivity between clouds with average temperatures 
of 201°K and 2200 K in a tropical atmosphere. The error bars show the range over the five 
particle shapes. 
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Figure 3.21: Fractional difference in normalized sensitivity between clouds with same 
average temperature of 2200K but different patterns of incident radiati<;>n from tropical 
and midlatitude winter atmospheres. The error bars show the range over the five particle 
shapes. 

between sensitivities from the tropical and midlatitude winter atmospheres over a land 

surface. The average temperature of the cirrus layers in both cases is 220oK, so the only 

difference is the temperature and absorption of the underlying atmosphere. This time 

the sensitivities normalized by the upwelling brightness temperature (~Tb/(IWP Tb)) are 

compared (see Fig. 3.21). The normalized sensitivities for the two atmospheres are within 

10% for 340 GHz and all but the two smallest size distributions at 220 GHz. The bright­

ness temperature depressions from the smaller size distributions and lower frequencies, 

because of the high amount of emission, are not simply proportional to the upwelling 

brightness temperature and so have considerable differences in sensitivity. In fact, for the 

midlatitude winter atmosphere over a water surface the sensitivities of some of the smaller 

size distributions at 85 and 157 GHz are actually negative (the cirrus cloud causes a rise 

in brightness temperature) because the cloud is warmer than the brightness temperature 

of the radiation emitted from the surface. Again, in actual practice the structure of the 

underlying atmosphere would be much better known than in this comparison. 
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Figure 3.22: Nadir view sensitivity as a function of size distribution for solid columns. 

3.4.4 Radiative transfer results 

The sensitivity (ATb/ IW P) of a cirrus cloud depends most strongly on the frequency 

and the gamma size distribution parameter D-m (the median size of the third moment). 

Figure 3.22 shows the sensitivity for solid colunms for the 18 size distributions and four 

frequencies. The size distributions with large particles (D-m 2: 400jlm) have much higher 

sensitivity (roughly a factor of thirty) compared to the ones with small particles (D-m ~ 

100Jlffi). The effect of the gamma size distribution parameter a (related to the width of 

the distribution) is much less pronounced as indicated by the range of the three vertical 

dots at each D-m. For the tropical atmosphere above a land surface the sensitivity varies 

on average 7% and at most 20% over a = 0,1,2 for all angles, particle shapes, and size 

distributions. This implies that the gamma distribution parameter D-m characterizes the 

"average" size of the distribution rather well. The range in sensitivity over the various 

particles shapes is fairly large. As an example, Fig. 3.23 shows the sensitivity at 340 GHz 

for the 18 size distributions and five particle shapes. For the tropical atmosphere the range 

in sensitivity over the five shapes is a factor of 1.9 on average and a maximum of 4 over 

all angles and size distributions. For 340 GHz and nadir view angle (as in the figure) the 

maximum range is, however, only a factor of 2.0. 

One problem with passive microwave remote sensing of cirrus is that, depending on 

the maximum frequency of observation, much of the cirrus cloudiness may be too thin to 
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Figure 3.23: Nadir view sensitivity as a function of size distribution for 340 GHz. 

detect. If the geometric limit for extinction in the visible is used then the optical depth 

can be related to the integrated ice water path by 

(A)IWP 
T=2(V)~' (3.13) 

where (A) is the projected particle area averaged over the size distribution, (V) is the 

average volume, and Pi is the density of ice. For solid columns with the aspect ratios 

used here and a gamma distribution with a = 1 the visible optical depth is approximately 

related to the Dm parameter by 

T ~ 10 IW P (3.14) 
Dm ' 

where the IWP is in g/m2 and Dm is in f.Lm. Cirrus as thin as T = 0.03 is detectable 

visually from the ground (Sassen and Cho, 1992). For a given IWP, larger particle sizes 

cause a reduction in the visible signal but a dramatic increase in the microwave signal. A 

minimum detectable cirrus IWP can be defined by the IWP required to give a brightness 

temperature depression of 3°K. Figure 3.24 shows the minimum detectable IWP for nadir 

viewing angle with a tropical atmosphere over a land surface for the gamma size distri­

butions with a = 1. The five shapes and six distributions are shown for each frequency. 

For example, at 340 GHz solid columns with Dm = 250 f.Lm an IWP of 30 g/m2 gives a 

.6.Tb = 3°K, so a 3 Ian thick cirrus layer with an IWe of 0.01 g/m3 would be detectable. 
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At the maximum frequency considered here (340 GHz) the thicker cirrus clouds, especially 

with larger particles, would be detectable but much visible cirrus would not. 

Given the wide range in sensitivities for different particle shapes and size distributions 

it is important to have some method to infer these cirrus properties so that the integrated 

ice mass can be uniquely retrieved. For passive microwave radiometry the potential ob­

servables are brightness temperatures at different frequencies, for V and H polarizations, 

and perhaps at different angles. One way to use the additional information from multiple 

channels is to take ratios of brightness temperature depressions, which is equivalent to 

ratios of sensitivities if the observations are in the linear radiative transfer regime so that 

the IWP drops out. In the following discussion the sensitivities for the tropical atmosphere 

over a land surface are used. 

Ratios of brightness temperature depressions at different frequencies provide infor­

mation about the characteristic particle sizes in cirrus. Figure 3.25 has plots of sensitivity 

as a fimction of frequency ratio for three frequencies. The six different size distribution 

parameters Dm are plotted with different symbols, so the progression of characteristic 

size along the curves can be seen clearly. Unfortunately, for the frequencies with useful 

sensitivities (220 and 340 GHz) the relationship between sensitivity and frequency ratio is 

multivalued. If one does not have some additional information about the particle sizes in 

the cirrus then one cannot make even an approximate determination of the characteristic 

particle sizes. If it is known that the particle sizes are in the upper part of the range con­

sidered here than one may be able to use just the upper part of sensitivity vs. frequency 

ratio curve. 

One might think that it would help to use two or more frequency ratios instead of one, 

but there is a limit to how much information can be extracted from multiple frequencies. 

Because the scattering properties of ice vary smoothly in the microwave (no absorption 

bands), frequencies must be well separated to give distinct information. On the other 

hand, frequencies that are very widely separated (more than a factor of two) will have 

such divergent sensitivities that the cirrus will not be detectable with the lower frequency 

(this is certainly true if the higher frequency is still in the linear regime, dTb < 300 K). 

For this reason it is probable that only one frequency ratio will be useful. 

We might expect that if even higher frequencies were used then most of the size 

distributions would end up on the upper part of the curve, thus lessening the multivalued 

problem. To test this idea, scattering and radiative transfer calculations were carried out 

at 460 GHz only for the spherical particles (which could be done easily). The same particle 

densities, size distributions, and radiative transfer procedures described above were used. 

Figure 3.26 shows sensitivity vs. frequency ratios for 220, 340, and 460 GHz for all the size 

distributions of spheres. The curve for the 460 to 340 GHz ratio has the distributions with 

Dm ;::: 150 p,m on the upper part of the curve, so perhaps most cirrus distributions would 

not have a multivalued frequency ratio/size distribution relation. Another advantage 
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of higher frequencies is that the sensitivities, besides increasing and lowering the IWP 

detectability limit, increase more slowly with particle size. This means that less accuracy 

is needed in knowing the characteristic size of the particles in order to have acceptable 

accuracy in the retrieved ice mass. 

Besides the limitations of instrumentation there is a limit to how far up in frequency 

one can go and still have the same microwave behavior. The imaginary part of the index 

of refraction of ice, which governs absorption, goes up rapidly in the THz (1012 Hz) 

region, so that cirrus clouds would leave the scattering regime and enter the absorption 

regime as in the infrared. For the spherical particles at -60°C with a gamma distribution 

Dm = 400 J.LIIl, the single scattering albedo goes down to 0.90 at 1260 GHz. Another 

problem is that the water vapor absorption increases with frequency so that there will be 

significant emission from the atmosphere in and above the cirrus clouds. Finally, there is 

the technical problem that CPU time and memory for the DDA solution go as the third 

power of the frequency. 

The ratio of brightness temperature depressions for the two polarizations (H over 

V) contains information about cirrus particle shapes. Figure 3.27 has plots of sensitivity 

as a function of polarization ratio for 220 and 340 GHz, with the shapes plotted as dif­

ferent symbols. The major contributing factor for the sensitivity is the size distribution 

parameter Dm , rather than the shape, so the six size distributions for each shape tend 

to be aligned along the sensitivity axis. The polarization ratio separates the particles 

shapes according to the aspect ratio, from the spheres with a ratio of 1.0 to the plates 

with a ratio from 1.7 to as much as 4. There is a tendency for the polarization ratio to 

increase with characteristic particle size, mainly because of the decreasing aspect ratio. 

For columns the polarization ratio decreases for distributions with the largest particles, 

because of the scattering process. With information about the characteristic size of the 

distributions it looks possible to use the polarization ratio to determine a distribution 

of particle shapes. Actual bullet-rosettes complicate the picture greatly. Because of the 

presumably random attachment of bullets, they are likely to be closer to the spheres than 

the planar rosettes in their polarization ratios. Assuming rosettes fall through the air with 

their largest "'side" horizontal, they should still have a polarization ratio greater than one. 

Better microphysical information combined with more DDA modeling could address this 

issue with a distribution of rosette shapes. Distributions containing more than one particle 

shape will have intermediate polarization ratios. In the linear radiative transfer regime 

the brightness temperature depressions of such a mixture will be a linear combination of 

the single shape LlTb'S. 

The ratio of brightness temperature depressions at two angles (0° to 49°) has infor­

mation much like that from the polarization ratio. Figure 3.28 shows the angular LlTb 

ratio vs. the polarization ratio for 220 and 340 GHz. The plot is basically a straight line 

(except for the large particle distributions at 340 GHz), indicating that the information 
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from the angular pattern of the brightness temperature depression is almost equivalent to 

the polarization information. It is generally much easier to measure the two polarizations 

at a fixed angle than to measure the same cloud volume at two angles, so there is probably 

little point in trying to use the angular pattern of radiation for microwave remote sensing 

of cirrus. 

Part of the effect of shape on sensitivity is due to the aspect ratio, but part is also 

due to the particle volume. The planar rosettes, for example, have less volume than 

the columns for the same maximum particle extent D. Even though the concentration 

is normalized to get the same ice water content, this means that the rosettes have a 

smaller "effective" size. To examine this particle volume effect Fig. 3.29 plots the 340 GHz 

sensitivity at nadir viewing angle against a characteristic size based on the maximum 

diameter and one based on a equivalent volume sphere diameter. This characteristic 

size is (D6)1/6, which for the equivalent volume diameter is proportional to the Rayleigh 

scattering cross section. The characteristic sizes based on volume are quite a bit smaller 

than those based on the maximum particle diameter. Using the volume characteristic 

size spreads out the shapes but does not really tighten up the relationship. The columns 

and rosettes fall on a smooth curve, but the plates and spheres are above and below. At 

nadir the plates have relatively more scattering for their volume while the spheres have 

relatively less. Figure 3.30 shows that, for vertical polarization at 49°, there is a much 

tighter relationship between sensitivity and characteristic size if one bases the size on the 

particle volume. To quantify this, the sensitivity for the four middle size distributions is 

fit (linearly in the logs) against the characteristic size. For nadir angle and H-pol at 49° 

the rms error is about 0.24 for both types of characteristic sizes, while for V-pol at 49° 

the rms error decreases from .30 to .13 from using the volume characteristic size. So there 

appear to be certain angles and polarizations that minimize the confounding effects of 

particle shape if the particle volume is taken into account when assigning a "characteristic 

size" to the size distribution. 

Particle shape is really only important as it affects the sensitivity and hence the 

retrieval of IWP. If ~Tb polarization and frequency ratios can uniquely determine the 

sensitivity then the effect of shape can be dealt with through the polarization information 

without specifically finding the shape. To look at the feasibility of this, Fig. 3.31 depicts 

340 GHz V-pol sensitivity as a function of frequency and polarization ratios. The sensi­

tivity is mainly a function of frequency ratio and secondarily of polarization ratio. For 

the larger particle distributions there is still ambiguity in the sensitivity because of shape 

that the polarization ratio cannot resolve. 

3.4.5 Ideas for cirrus retrieval methods 

The details of a cirrus microwave remote sensing algorithm will, of course, depend on 

the particular instrument (frequencies, polarizations, etc.) and experimental setup. Since 
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high frequency microwave observations of cirrus are not available for this dissertation, a 

specific algorithm is not proposed. Instead general concepts will be discussed that should 

aid in applying the numerical results above to develop a future retrieval algorithm. 

Since the basic signal relating to the mass of cirrus is the brightness temperature 

depression, as with many cloud detection and measurement methods, knowledge of the 

clear sky brightness temperature is required. Perhaps the simplest method of obtaining 

the clear sky brightness temperature is to use nearby pixels having very thin cirrus or 

no cirrus at aJl. This requires the assumption that the atmosphere beneath the cirrus 

layer is homogeneous. In atmospheres having at least a modest amount of water vapor, 

the higher microwave frequencies (say> 200 GHz) are effectively opaque to the surface. 

Thus possible sub cirrus inhomogeneities would be caused by water vapor irregularities 

and lower, water clouds. In an absolute sense the amount of water vapor is likely to be 

fairly stable over a typical field of view (10-100 km), but since high precision (of order 

~Tb ~ 10 K) is desired, this is a significant concern. The lower microwave frequencies that 

are insensitive to cirrus could be used to correct for water vapor, and potentially even 

lower cloud, irregularities. Water vapor profiling channels such as ones at 183 GHz may 

help in correcting for humidity irregularities, though these channels would also be modified 

by scattering in cirrus clouds. In general, a cirrus remote sensing algorithm should make 

sure that the changes in brightness temperature are consistent across the wide range of 

frequencies available before making an interpretation. 

Once the brightness temperature depressions (~n) have been computed, the proce­

dure for determining the ice water path (IWP) is to find the correct sensitivity (~Tb/IWP) 

and divide. This assumes that radiative transfer is in the linear regime. This will usually 

be the case, because depending on the frequency, larger brightness temperature depres­

sions are likely to be caused by precipitating systems such as deep convection or mesoscale 

stratiform areas rather than cirrus clouds. Of course, if the cirrus is thick enough to be 

beyond the linear regime, then a radiative transfer model can be used. To determine 

the correct sensitivity to use, one must know, firstly the characteristic particle size, and 

secondly the particle shape. In many situations there will be a mixture of particle shapes, 

and some idea of the shape mixing fractions is needed. The characteristic particle size 

can be estimated from .6.Tb ratios at different frequencies (see Fig. 3.25). If there is un­

certainty about which branch of the curve to use, or if the .6.Tb at the highest frequency is 

too small for a frequency ratio to be measurable, then a characteristic size would have to 

be assumed. This could come from successfully found sizes in adjacent pixels, crude sizes 

based on parameterizations using cloud temperature, or effective radius retrievals using 

infrared channels (see below). If polarization information (H and V channels) is available 

then that can be used to help determine particle shape using the ratio of .6.Tb at the two 

polarizations (see Fig. 3.27). There is some ambiguity in the relationship between particle 

shape and polarization ratio, so extra information would be useful. If no polarization 
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information is available then it may be best to assume a crystal habit based on environ­

mental conditions (columns in coldest clouds, bullet-rosettes in more convective regimes, 

plates in warmer clouds, etc.). 

A more numerical method would use a radiative transfer model, perhaps the first 

order model described above, that operates on tabulated scattering properties. A particle 

size distribution with one characteristic size parameter, e.g. the gamma distribution with 

a = 1, would be assumed. If polarization information was available then a single parameter 

could be used that determined the mixing between two expected shapes (say column and 

plate). If polarization was not available then the particle shape would be assumed. The 

radiative transfer model would then be iterated to find brightness temperatures that match 

the observations by adjusting the ice water path and particle size parameter, and maybe 

shape and underlying water vapor parameters. 

A rough estimate of the likely uncertainties in ice water path retrievals can be made. 

Since all the basic quantities are in terms of brightness temperature depression, it should be 

pointed out that having a LlTb that is detectable is not the same as accurately measurable. 

For example, if LlTb = 6°K and the uncertainty is 2°K then the error is over 30% error to 

start with. The errors due to the DDA scattering calculations and finite size distributions 

are negligible compared with other sources. A potentially significant, but difficult to 

quantify error is that from deviations in the aspect ratio from the empirical fits used. 

Of the error sources specifically considered in the previous section the one due to size 

distribution width (a) is the smallest being less than 10% if the a = 1 distribution is 

used. If no shape information is available, then the error in sensitivity due to shape varies 

with frequency and angle, but is near a factor of 1.5 for nadir view at 340 GHz. The 

biggest source of uncertainty in sensitivity comes from the "average" particle size. Over 

the range in size distributions considered here (70 ::; Dm ::; 700 JLm), the sensitivity varies 

by a factor of around 70 at 340 GHz, so clearly some particle size information is crucial. 

In the middle range of size distributions for solid columns with a nadir view at 340 GHz 

the sensitivity goes as a 2.54 power of Dm, so knowing Dm to as well as 20% translates to 

about a factor 1.6 error in sensitivity. As an illustrative example, say LlTb(340) = 18°K and 

LlTb(220) = 5±1°K; then the frequency ratio has a range 3.0::; LlTb(340)/ LlTb(220) ::; 4.5; 

using Fig. 3.25 and assuming no information about particle shape, the sensitivity ranges 

from 0.06 to 0.3 OK g-l m2. Although this is an oversimplified example, it indicates some 

of the difficulties involved. 

It would be best to use collocated visible and infrared channels in conjunction with the 

microwave frequencies to measure cirrus properties. The visible and thermal IR channels 

could first of all be used to detect the presence of cirrus. Since the microwave channels 

are only able to detect moderate to large optical depths, the cirrus emissivities will be 

fairly large and a good estimate of cloud top temperature could be made. The cloud 

temperature can be used to aid in the selection of ice crystal habit and perhaps particle size. 
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Several near infrared channels can be combined to estimate effective radius, although these 

techniques have problems with determining the scattering from nonspherical particles. 

Combining data from a spaceborne millimeter wave radar with those from microwave 

radiometers would be very useful because of the independent information provided about 

particle size and shape. 

A new instrument under development that will be used for remote sensing of cirrus 

is NASA's Millimeter-Wave Imaging Radiometer (MIR) (Gasiewski, 1992). The MIR is 

a cross-track scanning (±500
) instrument that can be mounted on the ER-2 and flown 

at an altitude of around 20 km. It has total power channels at 89, 150, 183±1,3,7, 220, 

and 325±1,3,9 GHz, so no polarization information is available. The 183 and 325 GHz 

frequencies ar'e primarily for water vapor profiling but can also be used for cirrus observa­

tions, especially using the wing channels. The channels have identical 3.50 beamwidths, 

which greatly simplifies the use of multiple frequency algorithms. Since this instrument 

currently lacks polarization capability, particle shape will have to be based on indirect 

inference. The large selection of frequencies will aid in computing an by removing lower 

atmosphere irregularities and in using frequency ratios for particle size determination. The 

scanning geometry will require the tabulation and interpolation of scattering properties 

at a number of zenith angles. The advantages of polarization and even higher frequencies 

will have to wait for upgrades to the current instrument configuration or altogether new 

instruments. The ideas expressed in this section will undoubtedly need to be revised when 

we gain experience with high frequency microwave data from the MIR and try to measure 

cirrus cloud properties. 



Chapter 4 

BAYESIAN PRECIPITATION RETRIEVAL ALGORITHM 

4.1 Overview of Passive Microwave Remote Sensing of Precipitation 

It is usual to divide the interaction of microwave radiation with precipitation into the 

emission regime and the scattering regime depending on frequency. For frequencies below 

about 25 GHz precipitation sized ice particles do not attenuate the radiation strongly 

and the primary interaction is absorption and emission by water drops. Above around 

60 GHz both ice and water precipitation size particles attenuate strongly and the domi­

nant eiIect for remote sensing is the scattering of radiation by ice particles. In between 

these two regimes both physical processes are important and must be considered. The 

basis for passive microwave remote sensing of rain in the emission regime is that the 

brightness temperature increases with the amount of rain when viewed against a water 

surface, which has low emissivity and so is radiometrically cold. Since the emission from 

raindrops is relatively unpolarized there is also a decrease in polarization with rain rate 

over the highly polarized water surface. The amount of brightness temperature increase 

depends on the rain rate and rain layer thickness and eventually saturates as the rain 

layer becomes opaque, which happens at lower rain rates with higher frequencies. Emis­

sion techniques generally cannot be used over land because there is neither significant 

brightness temperature nor polarization contrast between the rain and the high emissivity 

surface. The basis for remote sensing of rain in the scattering regime is more indirect. 

The strong scattering of upwelling microwave radiation by ice particles causes a decrease 

in the brightness temperature that is related to the amount of frozen hydrometeors. The 

am01.IDt of scattering depends on the size and particle density of ice particles and also 

on the amount of collocated liquid cloud water. Scattering techniques can be used over 

land or water because the rain underlying the frozen hydrometeors generally obscures the 

surface. Along with the effects mentioned above, the rain or ice particle size distributions, 

particle shapes, cloud droplet mass, water vapor, temperature, surface emissivity, and 

vertical and horizontal inhomogeneities all affect the upwelling microwave radiation from 

a precipitating atmosphere. 

The methods of passive microwave remote sensing of precipitation can be divided 

crudely into statistical and physical approaches. The work of Spencer et al. (1983) is 

an example of a purely statistical method. They used multiple regression to relate the 
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brightness temperatures of seven channels (10 to 37 GHZ) from the Scanning Multichannel 

Microwave Radiometer (SMMR) to weather radar derived rain rates. Petty and Katsaros 

(1990) related 37 GHz polarization difference to radar observations and found that there 

was considerably better correlation with rain coverage than rain intensity. Prabhakara 

et al. (1992) empirically related the 37 GHz brightness temperature warming above a 

minimum value to the rain rate in a field of view with a nonlinear relationship that was 

tuned with GATE radar data. Statistical techniques can also be combined with phys­

ical radiative transfer modeling. Wilheit and Chang (1991) developed a probability 

distribution matching algorithm to estimate area averaged rainfall for 5° boxes over the 

ocean from brightness temperature histograms using a Tb-rainrate relation obtained from 

radiative transfer modeling. Another combined physical/statistical method is to simu­

late microwave brightness temperatures from hydrometeor profiles produced by numerical 

cloud models and use multiple regression to find a multichannel rain rate-Tb relation (e.g., 

Adler et al., 1989). 

The precipitation retrieval methods that are based on radiative transfer modeling can 

be divided into those that assume a simple precipitation structure and those that retrieve 

hydrometeor profiles. The prototypical simple physical algorithm is the 19 GHz emission 

method ofWilheit et al. (1977). This method, which has been used in several forms over 

the years, assumes a uniform rain layer below the freezing level with no ice particles and 

a prescribed liquid water cloud. The height of the freezing level can be obtained from 

climatology or from a 22 GHz channel. These assumptions allow a simple relationship 

between the 19 GHz brightness temperature and the rain rate to be derived from a radiative 

transfer model. Weinman and Guetter (1977) considered a single rain layer at 37 GHz and 

used a combination of the two polarizations to remove the double-valued dependence of the 

brightness temperature on the rain rate over water. Spencer et al. (1989) used a similar 

quantity at 85 GHz, called the polarization corrected temperature, as a precipitation 

indicator. Huang and Liou (1983) simulated upwelling radiation at 19, 37, and 85 GHz 

with a multi-stream radiative transfer model from a precipitating atmosphere with variable 

thickness rain and ice layers, but did not specifically define a retrieval algorithm. Olson 

(1989) used a finite cloud radiative transfer model with a two layer precipitation structure 

and a complex inverse algorithm to retrieve rain rate and the rain area filling fraction in a 

tropical cyclone from multi-channel SMMR data. Weng (1992) developed a probability 

matching method to retrieve monthly mean precipitation. The method used a polarized 

radiative transfer model with a two layer precipitation structure to relate surface rain 

rate to polarized corrected brightness temperatures at 19 and 85 GHz. Recently, Liu and 

Curry (1992) developed a method that relates a linear combination of 19 and 85 GHz 

brightness temperatttres to rain rate. Radiative transfer modeling was done for three 

simple hydrometeor structures, and a power law was fit to the rain rate vs. brightness 

temperature change relation. A common characteristic of most of these simple physical 
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models is the use of one quantity, perhaps a combination of several channels, that is related 

to surface rain rate by assuming some type of hypothetical hydrometeor profile. Typically 

there are a few homogeneous layers and the mass contents of the hydrometeors are slaved 

to the surface rain rate. 

Along with work on retrieval algorithms there have been other studies that have led 

to a deeper understanding of how microwave radiation interacts with realistic profiles 

of hydrometeors. Fulton and Heymsfield (1991) qualitatively compared hydrometeor 

information inferred from multi-parameter radar data of intense convection with brightness 

temperatures at 18, 37, 92, and 183 GHz. Their results suggest that even the lowest 

frequency (18 GHz) is significantly obscured by the large ice mass in the deep convection. 

Yeh et al. (1990) and Vivekanandan et al. (1990) used radiative transfer models to 

simulate microwave brightness temperatures of radar derived hydrometeor profiles, and 

compared the results with brightness temperatures observed from aircraft. Yeh et al. 

(1990) conclude that the different types of size distributions of ice particles and significant 

supercooled liquid water are needed to explain the microwave radiometer observations. 

The issue of the nonuniqueness of multichannel brightness temperatures in determining 

hydrometeor structure was investigated by (Evans, 1990), who showed that many channels 

are required to determine the parameters uniquely in even a very simple precipitation 

structure. The use of microwave radiative transfer simulations of hydrometeor profiles 

derived from cloud models has led to a number of useful insights. A warm cloud model 

that predicts droplet spectra was used for simulations of seven frequencies from 19 to 

230 GHz by Mugnai and Smith (1988) and Smith and Mugnai (1988). They found that 

the vertical distribution of cloud water has important effects on the upwelling radiation 

which would confound simple precipitation retrieval schemes. Adler et al. (1991) used 

a three-dimensional simulation of a tropical oceanic squall line to investigate brightness 

temperature-rain rate relations at frequencies from 10 to 85 GHz. They showed a large 

scatter in the relations for 19 GHz and above due to variations in ice content and cloud 

liquid water, which vary systematically with the nature (convective or stratiform) of the 

precipitation. Mugnai et al. (1990), and more recently Smith et al. (1992) and Mugnai 

et al. (1993), used a bulk microphysics cloud model and radiative transfer model to 

simulate frequencies from 6 to 128 GHz. Their use of weighting functions allowed a detailed 

examination of the effects of the vertical distribution of various types of hydrometeors on 

the upwelling microwave radiation. They found that 19 GHz is a better estimator of 

integrated ice content than rain content and that most frequencies respond primarily to 

fluctuations in graupel mass. 

These modeling studies have shown that passive microwave measurements of pre­

cipitating clouds are sensitive to the vertical distribution of various hydrometeor species 

and not to the surface rain rate. Since the microwave radiation is sensing the profile 

of hydrometeors and a number of frequencies are potentially available it would appear 
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to be profitable to retrieve hydrometeor profiles rather than only the surface rain rate. 

Profile retrieving algorithms are designed to use all the available channels rather than 

just the one or two that the simple models use. The vertical distribution of hydrom­

eteors is important in its own right because it can be related to the vertical profile of 

latent heat release which governs the coupling to dynamical forcing (Tao et al., 1990). 

Profiling algorithms will work over land as well as water, although with reduced accu­

racy. Of course, simple physical models have their uses when speed or simplicity are 

the driving concern, but profiling algorithms make the best use of all the available data. 

The first profile retrieving method was that of Kummerow (Kummerow et al., 1989; 

Kummerowet al., 1991). This method used an iterative scheme that matched the ob­

served brightness temperatures with those simulated from a relatively small number of 

somewhat adhoc specified profiles. This method is the furthest advanced of the profiling 

algorithms and has been successfully used in a variety of situations. Obviously one cannot 

expect to retrieve highly accurate detailed profiles from a handful of microwave channels. 

In fact, since there are typically multiple distinct profiles that can satisfy a small set of 

observations, other information about the vertical distribution of hydrometeors is needed 

to constrain the retrieval. Mugnai et ale (1993) have developed a profile retrieval method 

that uses a database of cloud model derived profiles and their corresponding simulated 

brightness temperatures. Profiles with brightness temperatures close to the observed ones 

are selected and combined using a weighted average with the weights adjusted so as to 

match the observations. A closely related algorithm that uses the same cloud-radiation 

database (Marzano et al., 1993) has been tested with the same land dataset as in the vali­

dation experiment in section 5.2. The hydrometeor profile retrieving algorithm developed 

here also uses cloud model information, though in a significantly different way. 

4.2 The Bayesian Framework 

The precipitation retrieval method described here uses Bayes theorem to combine for­

ward radiative transfer modeling with statistical information from numerical cloud model 

output. For use here Bayes theorem may be stated as 

(4.1) 

where 0 represents the atmospheric state vector (Le. hydrometeor profile) and x represents 

the vector of observations (e.g. microwave Tb). fe(O) is the prior probability distribu­

tion of atmospheric parameters, fXIE>(xle) is the conditional probability distribution of an 

observation given an atmospheric state, and fE>lx(Olx) is the posterior probability distri­

bution function of an atmospheric state given the observation. The normalization of the 

posterior distribution has been left out, hence the proportionality rather than equality. 
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The conditional distribution, which is the probability of an observation given an atmo­

spheric state, is closely related to the forward problem, Le. computing observables from a 

given atmosphere using radiative transfer. The prior distribution is the vehicle for extra 

information about the atmospheric state that will reduce the ill-conditioned nature of the 

inversion. Since a single vector (Le. atmospheric profile) is usually desired for a retrieval 

the maximum or the expected value of the posterior probability distribution can be used. 

There are several advantages to using Bayes theorem in a retrieval method: 

1. Bayes theorem provides an elegant mathematical framework for adding prior infor­

mation about precipitating systems to improve the accuracy of retrieval. 

2. Different types of observational data (e.g. microwave, radar, infrared) can be incor­

porated easily because only the relatively well understood forward problem needs to 

be reformulated for each type of data. 

3. Estimates of the uncertainties of the parameters, as well as the values, can poten­

tially be computed, because the complete posterior probability density function is 

available. 

4. If the probability distributions are formed correctly then using Bayes theorem is 

optimal in the sense that the most likely atmospheric state can be found. 

4.2.1 Bayesian probability distributions 

While Bayes theorem provides an overall framework there is still much to specify 

in the forms of the prior and conditional probability density functions (pdf's). To some 

extent the functional form of the pdf's must be chosen arbitrarily because of their ill­

defined nature. In the Bayesian framework probability distributions do not represent the 

frequency of occurrence, but rather our degree of belief or understanding of a system. For 

example, if a weather forecaster analyzes numerical prediction output and states that the 

probability of rain at a particular location tomorrow is 30%, the forecaster is expressing a 

degree of belief about tomorrow given his or her knowledge and the current information 

available. One would hope that aggregated over enough similar circumstances it would 

rain about 30% of the time. However, the forecaster is predicting in a particular situation 

that will not repeat exactly, and is not talking about some experiment that can be repeated 

identically time after time. 

Obviously, there is a tradeoff between simplicity and realism in the functional forms of 

the Bayesian pdf's, with the goal to capture the necessary behavior with as few parameters 

as possible. The conditional probability distribution is simply constructed by assuming 

that the observation vector (x) is normally distributed around the simulated observation 

vector calculated from the forward model, g( 8) (discussed in section 4.3): 

!xls(xle) = N (x - g(8), a) . (4.2) 
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Table 4.1: Kolmogorov-Smirnov tests of lognormality on distributions of hydrometeors. 

- statIstIc 

0.0 4 
0.087 

0.0 
0.0 

The observation uncertainties (urn for each element m of the observation vector) can be 

thought of a combination of the actual observation errors and the errors in the forward 

model. Independence is probably a good assumption for the observation errors but may 

not be so good for the forward modeling errors. The maximization of the posterior proba­

bility, by also tending to maximize the conditional probability, assures that the simulated 

observations are close to the actual observations. It does not, however, fit the retrieval to 

the noise in the observations or to the modeling error if the u's are chosen appropriately. 

The u's can be thought of as controlling the tradeoff between fitting more to the data vs. 

being closer to the prior distribution. 

Use of a prior probability distribution of atmospheric parameters is the key improve­

ment of the Bayesian retrieval algorithm over previous precipitation profile retrieval meth­

ods. The prior information about the atmosphere helps the retrieval choose the best pre­

cipitation structure of the many that satisfy the observations. For this work the prior 

probability distribution is assumed to be a multivariate lognormal distribution. The hy­

drometeor species important for microwave observations (rain, graupel, etc.) are known 

to have approximately lognormal distributions, as studies of radar data from GATE have 

shown (Kedem et al., 1990). The lognormal distribution is explicitly positive and be­

comes approximately normal when the mean is large compared to its standard deviation 

(as for temperature). Kolmogorov-Smirnov (K-S) testing was carried out to illustrate how 

well the lognormal distribution fits the hydrometeor parameters derived from the cloud 

model output used in section 5.1. The K-S test determines whether two distributions are 

significantly different. The K-S statistic is the maximum of the difference in cumulative 

probability between the two distributions. The results of the tests are presented in Ta­

ble 4.1. The significance level is zero because the large number of data points makes the 

K-S test very precise. Thus the cloud model derived parameters don't have exactly a 

lognormal distribution, but the underlying distribution is fairly close to lognormal. 

The multivariate aspect of the prior probability distribution is crucial because this is 

how information about the correlations between hydrometeors at various levels is intro­

duced. The form of the prior distribution is 

Je(8) = exp --(u - u) . C . (u - u) , - 1 1 [1 _ T -1 _ ] 

J(27r)n detC I1i=18i 2 
(4.3) 
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where u = In e is the log of the precipitation parameter vector, ii is the first log moment of 

the atmospheric vector, and C is the central second log moment of the atmospheric vector. 

The constants ii and C are measured statistically from the numerical cloud model output 

(see section 4.2.3). The lognormal distribution is the maximum entropy distribution, 

i.e. it assumes the least amount of information, given the constraints of the first and 

second moments of the logarithm. This functional form is the simplest way to introduce 

correlations between variables. However, it cannot represent nonlinear relations between 

variables, bimodalities, etc. One reason to use a simple function like this, rather than a 

higher order function, is that a more general function having more parameters requires 

substantially more data for a reliable fit. 

4.2.2 Precipitation structure 

Since the Ba.yesian precipitation retrieval method uses a radiative transfer model to 

simulate observations, it is necessary to incorporate an underlying model of a precipitating 

atmosphere. The structure of the precipitating atmosphere may be chosen with a high 

degree of flexibility as to the number and heights of the layers and what parameters 

are variable in the layers. There is an important distinction between the total set of 

atmospheric parameters that are used in the forward radia.tive transfer calculation and 

the subset of those parameters that are free to be adjusted in the retrieval process. 

Table 4.2 lists the atmospheric and surface parameters of the forward radiative trans­

fer model. A layer is specified by its thickness, interface temperature, water vapor mass, 

and by the properties of the various hydrometeor species that may exist in the layer. The 

model ignores small pristine "cloud ice" particles because of their lack of effect on the 

lower frequency microwave radiation used here. Four hydrometeor species are available in 

the model: rain, .a mixed-phase melting particle, and two types of ice particles. All parti­

cles are assumed to be spherical and have an exponential size distribution. Modeling the 

particles by spheres is justified because many precipitation size hydrometeors are roughly 

spherical or randomly oriented, and the errors introduced by this assumption are small 

compared to other sources. The two parameters specifying the exponential distribution 

are the mass content and the average particle diameter. The purpose of having two ice 

particle species is to simulate different types of particles, e.g. graupel and snow, by using 

two different bulk densities. For this work the coated particle type is not used, because 

the cloud model data available does not have a melting particle species in it. Due also to 

the limitations of the cloud models, the mass content is the only hydrometeor parameter 

that is variable in the retrieval (though the average particle size may vary with the mass 

content by fixing the intercept of the distribution). The priors calculation from the cloud 

model requires that the thickness of the layers be fixed in order to be able to compute 

statistics. The surface parameters are temperature and parameters for the very simple 

emissivity model.. 
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Table 4.2: Total set of atmospheric and surface parameters which may be chosen to model 
a precipitating atmosphere. 

Atmospheric Parameters for each Laye:r 
Name DescrIptIon 
HEIGHT thickness oflayer (~1 
TEMP temperature of top oflayer (OK) 
WATVAPOR water vapor density (g/m3 ) 

CLOUDLWC cloud liquid water content (g/m3 ) 

RAINCONT rain water content (g/m3 ) 

RAINSIZE average size (diameter) of rain drops (rom) 
COATCONT coated (melting) particle mass content (g/m3 ) 

COATSIZE coated particle average size (mm) 
COATDENS coated particle ice core density (g/ cm3 ) 

COATMELT coated particle melt index 
ICE1CONT :first ice particle mass content (g/m3 ) 

ICE1SIZE :first ice particle average size (nun) 
ICE1DENS :first ice particle density (g/ cm3) 

ICE2CONT second ice particle mass content (g/m3 ) 

ICE2SIZE second ice particle average size (mm) 
ICE2DENS second ice particle density (gj cm3 ) 

Surface Parameters 
Name DeSCrIptIOn 
HEIGHT height (MSL) of surface (km) 
TEMP surface temperature 
EMISO emissivity parameter 
EMISl emissivity frequency slope parameter 
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A precipitation structure is set up for a retrieval by fixing the ntunber of layers 

and choosing the atmospheric and surface parameters that will be allowed to vary (the 

free parameters). This defines the parameters making up the atmospheric state vector. 

Varying all the parameters in a precipitation structure with many layers would lead to 

an impossibly large number of free parameters (150 for ten layers), so a judicious choice 

has to be made. Section 5.1 tests a number of precipitation structures to determine 

the best tradeoff between the convenience of a few parameters versus the more accurate 

representation of many parameters. 

4.2.3 Computing prior probability distributions 

Numerical cloud models are the only feasible source of the detailed information on the 

vertical distribution of hydrometeors that is needed to make a suitable prior distribution. 

Radar data, especially multiparameter data, is also a source of detailed information, but it 

cannot provide cloud liquid water amounts, size distribution information for ice particles, 

or distinguish very well between types of ice particles. Output from two different cloud 

models is used in this work. The theoretical testing described in section 5.1 uses fields 

from the Goddard Cumulus Ensemble Model, circa. 1987 (Tao and Simpson, 1989). 

The retrieval validation with AMPR microwave data and CP-2 radar data discussed in 

sedion 5.2 uses output from the Regional Atmospheric Model System (RAMS) (Nicholls 

et al., 1991). Both ofthese models have one parameter distributions for the precipitation 

species, i.e. only mixing ratio is predicted. The temperature and mass contents (gjm3) for 

water vapor, cloud liquid water, rain, pristine cloud ice, snow or aggregate, and graupel 

are stored in a compressed logarithmic format for all the cloud model points for a number 

of simulation times. The basic state height, pressure, temperature, air density, and water 

vapor density profiles are also stored. 

To compute statistics of the retrieval model parameters from the cloud model variables 

a transformation is necessary. The many vertical levels of the cloud model are mapped into 

the few thicker layers of the precipitation structure. For each column the mass content 

of the water species is averaged vertically for each retrieval model layer. The snow or 

aggregate category is associated with the ICE1 parameter, and the graupel with the ICE2 

parameter, or the two categories may be combined into one. The bulk densities of the two 

ice parameters are fixed at whatever the cloud model parameterization or user specifies. 

The moments that determine the multivariate lognormal prior probability distribution are 

calculated from the cloud model derived parameter vectors by 

1 N 
- "lne- k N L..J ~. 

k=l 

(4.4) 

(~ ~lne- k lne-k) -N L..J ~. J. 
k=l 

(4.5) 
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where (Ji,k is the i'th element of the parameter vector of the k'th cloud model point. All 

hydrometeor mass contents are clipped at 10-4 gjm3 to prevent the zero mass points from 

contaminating the lognormal distribution parameter estimation too much. A vertically 

integrated rain mass cutoff is used to avoid non-raining pixels that do not belong to the 

underlying lognormal distribution. Any range of cloud model times may be selected in 

order to make prior distributions from different phases in the evolution of the system. 

4.2.4 Overview of BPR system 

The Bayesian precipitation retrieval method is logically divided into two parts: first, 

finding the prior probability distribution, and second, performing the retrieval for a set 

of observations. These two parts are implemented as the programs PRIORS and BPR. 

Figure 4.1 shows the data flow in files between the two programs and a top level view 

of the retrieval program BPR. The retrieval system is very flexible with regards to the 

form of the precipitation structure and in terms of the number and characteristics of 

the passive microwave channels. The precipitation structure file, which is used by both 

PRIORS and BPR, specifies the number of layers and the parameters that are variable in 

each layer. The values of the constant parameters and the mean and standard deviation 

of variable parameters may be specified, in which case these values override those derived 

from cloud model output. The format of the precipitation structure file is shown in Fig. 4.2. 

The PRIORS program reads in hydrometeor profiles from the cloud model database file, 

selects the desired times, and converts the atmospheric parameters from the cloud model 

form to that of the precipitation structure. First and second moments of the logarithm 

are calculated for the variable parameters, and means are computed for the constant 

parameters. These data, along with any overriding initialization and standard deviation 

information from the precipitation structure file, is output to the priors file. 

Along with the precipitation structure and the prior probability information the re­

trieval program (BPR) needs to know the number and types of observations. This infor­

mation is supplied by the observation format file (see Fig. 4.3 for an example). The basic 

data flow for a retrieval in BPR is: 

1. The forward radiative transfer model computes the simulated observations from the 

atmospheric parameter vector. 

2. The posterior probability function is calculated from a) the simulated and actual 

observations (the conditional probability) and b) the prior information and the state 

vector (the prior probability). 

3. Using the posterior function the optimization routine chooses a new atmospheric 

parameter vector so as to maximize the posterior probability density function. 

The BPR program can also do the forward problem of simulating observations, with added 

noise, from precipitation profiles derived from the cloud model output. 
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Bayesian Precipitation Retrieval 

Cloud ~vIodel 
Output 

PRIORS 

Priors 

Precipitation 
Structure 

Posterior 
Function 

Observations 

Forward 
Model 

Observation 
Format 

BPR 

Optimization 
Routine 

Atmospheric State 

Figure 4.1: Flowchart of the Bayesian. precipitation retrieval system. The ellipses represent 
dat.a, stored in files, while the boxes represent procedures that operate on the data. 
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Figure 4.2: An example precipitation structure file. There are two precipitating layers 
and five variable parameters. The heights of the layers and the surface temperature are 
specified. The mean and standard deviation of the surface emissivity are also specified. 
The rest of the prior information comes from the cloud model. 

VARIABLES 

SURFACE 

EMISO 

LAYER=1 

RAINCONT CLOUDLWC 

LAYER=2 

ICE2CONT CLOUDLWC 

INITIALIZE 

SURFACE 

HEIGHT=O.O TEMP=300 EMISO=O.90 

LAYER=1 

HEIGHT=4.0 

LAYER=2 

HEIGHT=4.0 

STDERRORS 

SURFACE 

EMISO=O.05 

Figure 4.3: An example observation format file. Three passive microwave channels are 
specified along with their corresponding properties. 

OBS=1 TYPE=MICROWAVE FREQ=19.35 ANGLE=53 POL=V NOISE=2.0 

OBS=2 TYPE=MICROWAVE FREQ=37.1 ANGLE=53 POL=V NOISE=2.0 

OBS=3 TYPE=MICROWAVE FREQ=85.5 ANGLE=53 POL=V NOISE=2.0 
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4.3 The Forward Radiative Transfer Model 

The forward radiative transfer model is the core of the conditional probability dis­

tribution part of the precipitation retrieval method. The forward model consists of two 

parts: 1) gaseous absorption and Mie scattering calculations, and 2) radiative transfer 

calculations to simulate the passive microwave observations. 

4.3.1 Absorption and scattering calculations 

The microwave absorption due to oxygen, water vapor, and cloud water are computed 

using Liebe's MPM92 model (described in section 2.2.1) and stored as coefficients before 

proceeding with the retrieval. For each observation frequency the gaseous absorption 

averaged over each layer in the precipitation structure is computed for 0% and 100% 

relative humidity. The saturated (RH=100%) water vapor content averaged over each 

layer (taking into account the lapse rate of temperature) is also stored. Later the forward 

model interpolates between the two extremes, computing the relative humidity as the ratio 

of the given layer water vapor content to the saturated content. Similarly, the cloud water 

absorption coefficient is computed for each frequency and layer, since it depends on the 

average temperature of the layer. 

The computations to determine the microwave scattering properties of the exponen­

tial distributions of precipitation-sized hydrometeors are done by interpolating from tables 

of pre-computed Mie scattering results. An interpolation approach is necessary in view of 

the many forward model computations that must carried out for each :retrieval. There are 

Mie tables for each observation frequency and particle type. For passive microwave obser­

vations the tabulated quantities are extinction, single scattering albedo, and asymmetry 

factor. All of the tables are two dimensional, and the scattering quantities are bilinearly 

interpolated. For rain the two dimensions are average size and temperature; for ice they 

are average size and particle density; and for coated particles they are average size and 

melt index. The mass content of the distribution does not appear in the tables because, for 

all other parameters fixed, the scattering properties simply scale with the mass content. 

The Mie tables are computed using an adaptive scheme that insures that the inter­

polation from the tables will be within a desired tolerance. The grid for the average size 

parameter is chosen adaptively, while the grid for the other dimension is held fixed. For 

rain there are six grids for temperature (evenly spaced from -20 to 30°C), and for ice there 

are 15 grids for bulk density (stretched from 0.02 to .90 g/cm3 ) and the temperature is fixed 

at -20°C. The grid spacing in the average size dimension is chosen with a binary search so 

that the maximUlm. tolerance criterion is within the desired range (1.0 to 2.0% is used for 

this work). The tolerance criterion is the maximum of the percent difference in extinction 

and absolute difference in albedo and asymmetry between the bilinearly interpolated value 

at the center of each grid cell and the correct Mie calculated value. The average size table 
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ranges from 0.05 mm to 5.00 mm, and the nwnber of grid cells required is typically less 

than 25. The index of refraction of water is computed following Ray (1972) and for ice 

is interpolated from the tables in Warren (1984). For ice particles with a density lower 

than solid ice the index of refraction is reduced according to the ice volume fraction using 

the Lorentz-Lorenz mixing rule. The equivalent volume sphere method of modeling low 

density ice particles can be accomplished simply by using a smaller average diameter with 

solid ice. The Mie calculations are performed by integrating over 100 evenly spaced sphere 

diameters up to a maximum diameter of 10 times the average size, which is far enough to 

assure that there is no significant contribution left out. The extinction, single scattering 

albedo, and asymmetry parameter are computed using well known formula (e.g., Bohren 

and Huffman, 1983). 

If the mass content of a hydrometeor species is a variable in the precipitation structure, 

but the average size parameter is not, then either the average size of the exponential 

distribution is fixed at the value given in the priors file, or it may be related to the mass 

content using the Rutledge and Hobbs (1984) parameterization. This scheme fixes the 

intercept (No) of the exponential distribution (like Marshall-Palmer) and computes the 

average size parameter (D) from the mass content (M) and the particle density (p) using 

__ (~)O.25 
D- . 

7rpNo 
(4.6) 

No is chosen according to the hydrometeor species: 8000 mm-1 m-3 for rain and 4000 mm-1 m-3 

for snow or graupel. 

4.3.2 Eddington radiative transfer 

The radiative transfer model used for simulating passive microwave measurements 

is an Eddington type plane-parallel two-stream model (e.g., Weinman and Davies, 1978). 

The two-stream model, while less accurate than a multi-stream model or a model that takes 

into account the true three dimensional structure, is necessary in view of the computational 

burden of the many forward calculations the retrieval method requires. Kununerow 

(1993) has carried out a comparison between the Eddington approximation and a plane­

parallel multi-stream (discrete ordinate) model, showing that the differences in microwave 

brightness temperatures are always less than 3°K for realistic precipitating cloud profiles. 

The plane-parallel assumption is likely to be a more significant problem, but we leave 

for the future the development of parameterizations for dealing with this complicated 

issue. The Eddington model operates on the basic radiative properties of the layers: 

optical depth, single scattering albedo, asymmetry parameter, and the temperature of 

the interfaces. The model works by calculating the reflection, transmission, and thermal 

source terms for each layer from the input properties. A tri-diagonal matrix solver is then 

used to compute the internal diffuse radiation at each layer from the applied boundary 
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conditions. The diffuse Eddington fluxes incident on each layer are then used to find 

the scattering integral source term in the radiative transfer equation. With the known 

scattering and thermal source terms the radiative transfer equation can be analytically 

integrated. The radiation exiting at the observation angle is summed over the layers, first 

from the top down to the surface, then reflected, and summed from the bottom to the 

top of the atmosphere. The calculations are done in double precision to avoid numerical 

instabilities in the solution method. The Rayleigh-Jeans approximation is assumed so the 

transfer calculations are done in terms of brightness temperatures. See Appendix B for 

the mathematical development of the radiative transfer model. 

When modeling low density (snow or aggregate) ice particles at 85 GHz, large er­

rors were found in the Eddington approximation. The reason for these errors is the large 

degree of forward scattering (or high asymmetry parameter) as computed by Mie the­

ory with the Lorentz-Lorenz mixing rule for the index of refraction. Fig. 4.4 shows the 

asymmetry parameter at 85.5 GHz for a range of ice sphere densities and exponential dis­

tribution mean diameters. The asymmetry parameter is greater than 0.85 for low densities 

(p ~ 0.1 g/cm3 ) for mean diameters greater than 1.00 mm. For near nadir angles the Ed­

dington approximation gives poor results for asymmetry parameter greater than around 

0.6. The Eddington comparison in Kummerow (1993) only considered Marshall-Palmer 

distributions of solid ice, and thus did not have this problem. The standard method for 

dealing with high asymmetry parameters is to use the delta-Eddington method (Joseph 

et al., 1976). This modification represents the highly peaked phase function by a delta 

function of height f and the normal Eddington phase function with a lower asymmetry 

parameter. The result is the same as the Eddington method but with rescaled extinction 

k, single scattering albedo w, and asymmetry parameter g: 

k" = (1 - wf)k w' = 1 - f w g' = g - f f = X2/5 . 
l-wf I-f 

(4.7) 

The scaling factor f is obtained from the second Legendre coefficient of the phase function 

(X2) (g = XI/3). This scaling can be done when making the Mie scattering tables thereby 

allowing the use of the Eddington model in unmodified form (the scaling is equivalent 

before or after the scattering properties for different particle species are combined). To 

illustrate the original problem and the improvement of using delta-Eddington a calculation 

of the difference between the Eddington and the spherical harmonic spatial grid method 

(see section 5.1.2) for an ice layer with an optical depth of 2 is shown in Fig. 4.5. For the 

plain Eddington :approximation the nadir brightness temperature differences are as large 

as 400K for the largest, low density distributions. With the delta-Eddington method the 

differences are in the range of 0 to -3°K. 

The boundary conditions for the radiative transfer model are the 2.7°K blackbody 

cosmic background radiation from above and surface emission and reflection from below. 
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Fi~e 4.4: Asymmetry parameter computed from Mie theory for 85.5 GHz as a function 
of Ice particle density and mean diameter of an exponential distribution. The maximum 
diameter in the distribution is 10 times the mean. 

The surface type is assumed to be known as either land or water. The land surface is 

modeled as a Lambertian reflector with emissivity a linear function of frequency. The 

water surface is modeled as a flat Fresnel reflector whose index of refraction depends on 

frequency and the climatological temperature. The first emissivity parameter in this case 

then acts as a multiplier on the emissivity. The Eddington model needs a diffuse emissivity 

for the flux calculation and an emissivity for the particular observation angle. The only 

source of polarization in this radiative transfer model is from a water surface, in which 

case the surface emissivity depends on the polarization. For simulating observations from 

the AMPR instrument, which mixes the polarizations as it scans, the final brightness 

temperature is a linear combination of V and H polarizations according to the observation 

angle: TAMPR = Tv sin2
(() - 45°) + TH cos2 (() - 45°) . 

4.4 Retrieval of Hydrometeor Profiles 

From the prior probability distribution and the forward model it is simple to compute 

the posterior distribution from eq. 4.1 for any given atmospheric state vector. The diffi­

culty is finding the atmospheric state that represents the best retrieved profile from the 

high-dimensional posterior function. For retrieving a profile from a single multichannel 

pixel, finding the maximum of the posterior probability density function seems desirable 

because that would in some sense be the most likely profile. There can be problems with 

the actual task of finding the maximum (the optimization procedure) because there may 
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Figure 4.5: Difference in nadir brightness temperature between the Eddington approx­
imation and spherical harmonic (L = 11) radiative transfer methods. There is a single 
homogeneous ice layer of optical depth 2 at 85.5 GHz with temperature from 270 to 245°K 
above a blackbody at 270oK. The top panel is for the unscaled Eddington, and the bottom 
panel is for the scaled delta-Eddington. 
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be many local maxima that trap the optimization algorithm. Another approach is to use 

Monte Carlo integration over the posterior distribution to find some sort of average pro­

file. This is the correct method for finding the mean or distribution of precipitation over 

a region. 

4.4.1 Monte Carlo integration method 

One way of picking a representative point out of the posterior distribution is by 

integration to find averages or other types of moments. The only way to perform nu­

merical integrations over such a high dimensional space (up to 30 variable parameters in 

the precipitation structure) is by Monte Carlo integration. This method approximates 

the integral by summing over the ftmction evaluated at random points. The integration 

method is not used in this work because single pixel retrievals are desired and the sim­

ulated observations from retrievals using the Monte Carlo method can be quite far from 

the actual observations. The Monte Carlo integration method is presented to show how 

the Bayesian retrieval should be done for computing area averages. 

The 1'th (1 = 1,2) arithmetic moment of the posterior distribution is 

(4.8) 

where the integral is carried out separately for each component of the atmospheric state 

vector e. The logarithmic moments (In if)l are defined similarly with (In if)l replacing 

(if)l. The integrals are done by sampling the atmospheric parameter space with a large 

number of random points. Because the prior probability distribution does not change over 

a set of retrievals and is a simple ftmction it can be absorbed into the sampling of the 

points, i.e. the random points are chosen according to the mrutivariate lognormal prior 

distribution. This involves making an independent multivariate normal distribution of 

appropriate size, rotating it to produce the correct correlations between parameters, and 

then exponentiating to make a lognormal distribution. The procedure for a n dimensional 

if is as follows: 

1. Make the random vector ;j, where 0 < (Pi < 1. 

2. Transform to a normal distribution: ?j;i = y'2/ Aierfc-1 (2 - 2¢i) , 

where Ai are the eigenvalues of the inverse of the log covariance matrix C. The 

inverse of the complementary error ftmction is done with a cubic spline look up 

table. 

3. Rotate and translate: u = A;j + it , 

where A is the eigenvector matrix of C-l and it is the log mean. 

4. Exponentiate: OJ = exp(uj) 
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The "random" points are chosen from the quasi-random Halton sequence that covers space 

more uniformly (see O'Brien, 1992) and is more accurate than pseudorandom points for 

Monte Carlo integrations. 

With the transformed random points (OJ) the integrals are approximated by 

(4.9) 

where N points are used to sample the integral. The normalization on the conditional 

probability distribution divides out so that the conditional function is 

(4.10) 

where x is the vector of Nobs observations, u is the assumed uncertainties, and gee) is the 

forward radiative transfer model. The number of integration nodes N needed depends on 

how smooth the conditional density function is, which is governed by the urn's. Thus the 

Monte Carlo approximation to the integral is more accurate when there are fewer channels 

or more uncertainty in the forward modeling. Much computer time is saved by processing 

thr~ set of observation pixels in parallel. For each of the random points in the integration 

thr~ forward radiative transfer model is evaluated once for each observation channel, and 

then used in eq. 4.9 for all the observation pixels. Since the computation of the forward 

model takes most of the time, the computer time for retrieval is then independent of the 

number of observation vectors. 

If one is trying to estimate the parameters of an assumed lognormal distribution of 

pr'~cipitation over an area from a set of observations, then the Monte Carlo integration 

should use the log moments, because the log mean and log variance are the maximum 

likelihood estimators for a lognormal distribution. The arithmetic precipitation average 

is then the expectation of the lognormal distribution, or 

(4.11) 

One advantage of using this procedure, rather than simple averaging of pixel-by-pixel 

retrievals, is that the average is not biased by missing the rare large rain events. The 

arithmetic moments can be used for single pixel retrievals. The mean of the posterior dis­

tribution is the Bayesian estimate for a squared error loss function; the Bayesian estimate 

being the value that minimizes the expectation value of the loss function (Larson, 1982). 

The arithmetic variance can then be used to provide an uncertainty estimate. In tests 

done with simulated data (similar to those in sec. 5.1) the domain average precipitation 

was much more accurately retrieved using the log moments as compared to the arithmetic 

moments. The precipitation retrievals in this work use the maximum probability density 

method, rather than the Monte Carlo method, because single pixel retrievals are done. 
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4.4.2 Maximum probability density method 

There is an appeal in finding the maximum of the posterior probability distribution 

because then the retrieval is the "most likely" atmospheric state. There is, however, some 

arbitrariness in "maximizing probability". The probability of any continuous distribution 

at a single point is, of course, zero; only ranges have nonzero probabilities. Furthermore, 

the maximum of a probability density function depends upon what space the density 

function is expressed in. This can be seen by dividing the density function up into discrete 

bins; which bin has the maximum probability then depends on how the bins are spaced. 

For example, consider a one-dimensional lognormal distribution 

1 1 [-(Ine - it)] 
f( e) = J(27l' )0"2 (j exp 20"2 ' (4.12) 

with it the first log moment and 0"2 the central second log moment. The maximum of the 

density function in regular space is at exp( it - 0"2) while in log space the distribution is 

normal and the maximum is at it. So the question is what type of ranges are appropri­

ate? Is a range of 1 mm/hr appropriate for values of rain rate from 0.1 to 100 mm/hr? 

Here we use logarithmically spaced ranges, which seems natural when using lognormal 

distributions. 

Since the posterior probability function varies over large range it is convenient to 

define an objective function J to be minimized, which (to within a constant) is the negative 

of the log of the posterior function. The objection function is then 

( 4.13) 

A large penalty function is added for negative parameter values to keep things positive. 

A somewhat complex algorithm is used to minimize the objective function in an 

attempt to deal with the problem of multiple local minima. The prior distribution is a 

completely smooth and relatively broad function. In the usual case of many more variable 

parameters than observations the forward distribution function has a sharp valley that is 

presumably zero in a large subspace, i.e. there are many precipitation profiles that exactly 

satisfy the observations. The purpose of the prior distribution is to lift this degeneracy so 

there will be one lowest point. There can be (and are) local minima that trap traditional 

optimization techniques. A newer optimization method that can deal with local minima, 

called simulated annealing, was tried and found to be too slow. Since the objective function 

is basically smooth, a modification of traditional optimization algorithms was found to be 

effective. 

The idea behind the algorithm is to start off a standard optimization routine from a 

number of places that are likely to be close to the desired global minimum. This is done by 
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precomputing the forward radiative transfer model for a large set of precipitation profiles. 

For each observation vector those profiles that match the observations to within a certain 

distance are selected. These are sorted by the value of the prior probability function and 

several of the highest prior profiles are used to initialire Powell's method of optimization. 

By selecting those profiles that are close to matching the observations and have a high 

prior probability, the optimization routine is able to get quite close to the global minimum. 

The initial n-dimensional random points, representing the trial profiles, are chosen 

according to the lognormal prior distribution in a manner similar to that used in sec. 4.4.l. 

A higher log mean (u' = u + (72/2) is used because there is no point in simulating many 

low precipitation cases that end up having equivalent brightness temperatures. By using a 

pseudo-random sequence that generates a random vector from an index, only the simulated 

observations need to be stored; the precipitation parameters for those points that match 

the observations are recreated later from the index. Typically, the number of initial points 

and simulated observations made is 106 • For each actual observation those points with 

simulated observations within a specified normalized distance, 

( 
( _)2)1/2 Nob. :I:m - gm(B) 

s= ~ , L.J (72 
m=1 m 

(4.14) 

are selected. A sequential search is currently used to find the matches, although a more 

intelligent look up table method could be developed. If less than the desired number of 

observation matching points is found then the acceptable distance is increased until some 

are found. A maximum of 10000 matching points is found and then sorted to find the 

highest prior probability function. 

Of the atmospheric state vectors that are close to the observation a specified number 

(the number of tries) of the ones with the highest prior probability densities are used 

to initialize Powell's direction set optimization method. This method (see Acton, 1990) 

performs a minimization using only the objective function values, Le. it does not need 

derivative information. Starting with an orthogonal set of n directions it finds the min­

imum along successive directions and constructs a new direction to replace one in the 

set. Iterating this procedure produces a set of directions that are mutually conjugate. 

For a quadratic objective function n(n + 1) line minimizations are required to exactly 

minimize the function. Each line minimization using Brent's method takes around 10 

function calls. Because the set of directions can become linearly dependent, the Powell 

method is restarted a number of times if this significantly lowers the objective function. 

The purpose of doing a number of tries of the minimization is to attempt to make sure 

that the resulting lowest function value is close to the true global minimum. Some of the 

optimizations may get trapped in higher local minima, but hopefully several will get to 

the global minimum. If a specified number of minimizations get the same function value 
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then the tries can be discontinued to save time. A test to see whether the results of the 

number of optimizations are significantly different is described in sec. 5.1. This testing 

indicates that this method overcomes the problem of multiple local minima. All this mul­

tiple optimization does mean that the retrieval algorithm takes an excessive amount of 

computer time. The tests of different precipitation structure, for example, took between 

104 and 105 objective function evaluations. Little attempt has been made to speed up the 

optimization, and it is possible that better optimization methods could be developed in 

the future. 

Besides retrieving the atmospheric profile, the posterior distribution may also be used 

to compute uncertainties in the retrieved parameters. There are a number of methods that 

could be used to obtain the uncertainties, depending on the definition of the error bars. 

Probably the most correct definition of the uncertainty comes from the marginal posterior 

distribution, i.e. the one dimensional function that remains after integrating over all the 

other parameters. The simplest method for computing this type of marginal error bar is 

to use the Monte Carlo integration method to find the second moment for each variable. 

If the maximum probability density function method is used, one may define a parameter 

uncertainty in which the other variables are held fixed at their retrieved values. This is like 

looking at the posterior density function along a line rather than integrating over the other 

dimensions. By sampling the density function on this line an appropriate error bar could be 

derived (e.g., 90% certainty that the parameter is in a particular range given that the other 

parameters are fixed). If there is significant correlation between the parameters making 

up the precipitation structure profile, then this method would give smaller uncertainties 

than the more correct profile. Because of the difficulties in interpreting the uncertainties 

with this method, error bars are not computed for the single pixel retrievals done in this 

work. 



Chapter 5 

TEST][NG OF BAYESIAN PRECIPITATION RETRIEVAL 

5.1 Theoretical Simulation Tests 

The Bayesian precipitation retrieval method is a very flexible and complex system with 

choices to be made on the precipitation structure, the width of the forward probability 

distribution, and how the prior probability distribution is made. To determine the effect 

of these various choices a number of theoretical tests are performed that investigate the 

response to a number of different configurations. Upwelling brightness temperatures are 

simulated from cloud model derived hydrometeor fields using a radiative transfer model 

more accurate than the one built into the retrieval method. The advantage of theoretical 

tests is that one may control the simulation and retrieval processes to look into particular 

issues and that the "true" hydrometeor profiles are known. The following tests are done: 

1. Precipitation structure test 

Use of different number of layers and variable parameters. 

2. Observation width test 

Use of various widths of forward probability distributions. 

3. Microphysical assumption test 

Use of different microphysical assumptions in retrieval. 

4. Priors content test 

Use of various prior information, e.g. from different stages of storm development. 

5. Frequency combination test 

Investigate different combinations of frequencies. 

5.1.1 Cloud modeling 

The cloud model output used for the theoretical tests is from a simulation by Tao 

and Simpson (1989) using the Goddard Cumulus Ensemble (GCE) model. The output is 

from a two dimensional simulation of a tropical squall line. The atmospheric environment 

used to initialize the cloud model was a composite of three squall-type storms observed 

during the GATE experiment over the tropical Atlantic in 1974. The 2D model domain 

is perpendicular to the convective line, which travels through the domain. The model 
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has 34 levels in the vertical (Z) in a stretched coordinate system that has approximately 

200 m spacing at the ground and 1000 m spacing at the highest level, which is near 20 km. 

There are 512 grid cells in the horizontal coordinate (X) with 1000 m spacing, and a 

periodic boundary condition is used. The cloud simulation was run for 15 hours, and the 

temperature, water vapor, and hydrometeor fields were provided for each grid cell at one 

hour intervals. 

The microphysical parameterization scheme of the model is of great importance for 

computing microwave brightness temperatures from cloud model hydrometeor fields. In 

this simulation the GCE model used the microphysical scheme described in Rutledge and 

Hobbs (1984). There are two categories of liquid water (cloud water and rain) and three 

categories of ice phase (cloud ice, snow, and graupel). The cloud water and cloud ice are 

modeled as mono disperse distributions of small particles (less than 20 micron diameter). 

For simulating the microwave observation only the mass content of the cloud droplets 

particles is relevant. The pristine ice crystals are not used for these simulations because of 

their small extinction at the relatively large wavelengths considered here. The precipita­

tion sized hydrometeors are modeled in the parameterization by exponential distributions 

of spheres: 

N(D) =Noexp (-DID) (5.1) 

where N(D) is the number concentration per size interval and D is the particle diameter. 

The cloud model fixes the intercept parameter (No) and allows the average size parameter 

(D) to vary. Thus each microphysical species is specified by a single parameter, the mixing 

ratio q. In this study the mass content of the particles is used in place of the mixing ratio: 

M = pq, where p is the density of air. The relationship between the mass content and the 

average size of the distribution is 

( )

0.25 

Dp = 7rP::VOp , (5.2) 

where the subscript p indicates the particle species, and Pp is the particle bulk density. 

Table 5.1 lists the values of No and p for rain, snow, and graupel. 

Table 5.1: Constant parameters for precipitating particles in the GCE model. 

Particle No 
raJ.n 

4000 
4000 

0.10 
0.40 

The evolution of the simulated squall line is shown in Fig. 5.1. Each plot shows the 

total precipitating hydrometeors (rain, snow, and graupe1) for the full2D model domain. 

The precipitating mass content is displayed at two hour intervals from two to twelve hours 
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simulation time. The convection is initiated by a 12 km warm bubble at the center of 

the model space, which becomes the main convective line propagating leftward. A time 

dependent large-scale vertical ascent is also imposed on the model. Four hours into the 

simulation the system is still mainly convective and has a large core of high precipitating 

mass content. By six hours a large stratiform region has developed and another convective 

line has been established. As the storm evolves further, first the convective region and 

then the stratiform region begin to dissipate. Three regions from two different model times 

are used in the theoretical tests. Area "A" from 201 to 250 km at 120 minutes is chosen as 

an example of the intensification stage with predominantly warm rain processes occurring. 

Area "B" (51 to 200 km) and area "e" (331 to 430 km) are from the mature stage at 

480 minutes. The latter two areas have strong convective cores and extensive stratiform 

regions, although area "B" is more evolved. Figure 5.2 shows the cloud water, rain, snow, 

and graupel fields for the three areas combined together. It is the combination of these 

different microphysical fields that determines the particular signature of the synthetic 

upwelling brightness temperatures. 

5.1.2 Forward radiative transfer modeling 

The microwave radiative transfer simulations are carried out for 10.7, 19.4, 37.0, and 

85.5 GHz at an observation angle of 53°. First the absorption and hydrometeor scattering 

calculations are carried out for each cloud model grid point. The microwave absorption 

from oxygen, water vapor, and cloud water is computed using Liebe's MPM92 model (see 

section 2.2.1). The absorption coefficients are precomputed for each vertical level and 

scaled appropriately. The rain, snow, and graupel particles are modeled as spheres with 

the size distributions computed from the mass contents using eq. 5.2. Mie calculations 

are integrated over 100 sizes of the exponential distribution up to 10 times the average 

diameter jj. A fine-grained two-dimensional look up table in jj and temperature speeds 

up the computation. The extinction, single scattering albedo, and the full phase function 

information in the form of a Legendre series are output. 

Upwelling brightness temperatures are computed from the scattering properties using 

the spherical harmonic spatial grid (SHSG) model (Evans, 1993). This model computes 

two-dimensional radiative transfer, although here it is used in the "independent pixel" 

mode, which means separate plane-parallel calculations on the cloud model columns. Thus 

the issues of multidimensional radiative transfer and beam filling are not addressed in these 

theoretical tests. The SHSG method expresses the angular distribution of radiation as a 

spherical harmonic series. For these forward simulations an L = 7,M = 0 truncation is 

used, meaning there are 8 zenith angle modes and azimuthal symmetry is assumed. The 

spatial aspect of the radiation field is represented with a uniform grid with resolution 

varying from 0.5 to 0.1 km from 10.7 to 85.5 GHz. The Rayleigh-Jeans approximation 

is assumed so the calculations are carried out in terms of brightness temperatures. The 
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model times from the tropical squall line simulation (Tao and Simpson, 1989). The mass 
content is displayed logarithmically from 10-3 to 10 g/m3 • 
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boundary conditions are the 2.7°K cosmic background radiation and either a land surface 

(Lambertian) with an emissivity of 0.9 or a flat water surface (Fresnel) at a temperature 

of 299°K. The SHSG system is solved iteratively to find the spherical harmonic terms 

at each grid point. The upwelling radiance is then computed by integrating the source 

function in a method similar to the Eddington model used for the precipitation retrieval 

method (the two radiative transfer models are basically equivalent for a L = 1,M = 0 

truncation). For a water surface the radiances are integrated separately for vertical and 

horizontal polarization, the surface being the only source of polarization. The microwave 

brightness temperatures at the four frequencies are assembled and 10 K rms gaussian noise 

is added to make the synthetic observations. 

Figure 5.3 shows the computed upwelling brightness temperatures at 10.7,19.4,37.0, 

and 85.5 GHz for land and water surfaces. The correlation between the mass content of 

graupel in Fig. 5.2 and the brightness temperature depressions at 37.0 and 85.5 GHz can 

be seen clearly. In area A (the first 50 pixels) the 85 GHz brightness temperature does 

not fall below 2500 K because of the low concentration of ice. Over water the brightness 

temperature at 10 GHz follows the rain mass closely. The validity of the synthetic bright­

ness temperatures are limited by the plane-parallel and microphysical assumptions, but 

nonetheless they offer a realistic dataset to use for the tests described in the following 

sections. 

5.1.3 Setup for theoretical tests 

The theoretical tests are performed by having a base retrieval situation and changing 

one particular aspect of the retrieval input parameters for each type of test. The basic 

precipitation structure is the structure 5 in the precipitation structure test described below, 

which is the simplest one that gives good retrieval results. It has 5 layers (not equally 

spaced) up to 10 km. The 11 variable parameters represent the rain mass content below 

5 km, graupel content above 4 km, and cloud water content at all levels. The temperature 

and water vapor content are fixed at their climatological values from the cloud model, and 

no snow is allowed. In all of the tests the emissivity and surface temperature are fixed at 

the correct values. All four frequencies (10.7,19.4,37.0, and 85.5 GHz, H-polarization) are 

used and the forward probability distribution width (urn) is set to 3°K for each channel. 

The prior probability distribution parameters are computed from all 15 cloud model times, 

using a integrated rain cutoff of 0.04 kg/m2 (about 1 mm/hr) giving 2410 sample cloud 

model profiles. The optimization process is run with 106 initial points, selecting those 

within a normalized distance of 2.0; a maximum of 15 (and minimum of 8) of those points 

with the highest prior probability density are used to start off the Powell optimization 

routine. 

The basic results of these tests are rms differences in hydrometeor mass contents be­

tween the retrieved profiles and the original cloud model. The comparison is done in terms 
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Figure 5.3: Synthetic brightness temperatures for the theoretical tests. The top panel is 
for a land surface (emissivity of 0.9), while the bottom panel is for horizontal polarization 
from a flat water surface. 
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of the retrieval precipitation structure (Le. truth is the average cloud model mass content 

for a retrieval layer), so the true value of surface rain mass or integrated hydrometeor 

depends on the structure. The rms differences are broken down by area (A,B,C), and are 

computed both in an absolute sense (arithmetic) and fractionally (logarithmic). Because 

of the wide range in rain rates the logarithmic comparison is useful, though obviously one 

does not care about the difference between mass contents of 10-3 g/m3 and 10-4 g/m4. 

The true values are also compared to fixed climatological (prior) values which are the 

mean of the cloud model samples. The hydrometeor quantities used for the comparison 

are surface rain mass content and integrated rain, ice, and cloud content. 

Before discussing the series of tests the issue of optimization with multiple local min­

ima is considered. For this the base situation is used with differing number of optimization 

tries. The successive optimizations often do not get to exactly the same point, but do arrive 

quite close. To quantify this the hydrometeor quantities for each retrieval are compared 

to the one with 32 tries. Table 5.2 shows the absolute rms difference for 1, 2, 4, 8, and 

16 numbers of tries. The large difference in rain retrieval for the 1 try case for water is 

caused by a bad retrieval for the heaviest raining pixel in the C area. The rms differences 

become very small with just a few tries, typically being 0.01 kg/m2 while the domain 

average of the integrated hydrometeors is of the order of 1 kg/m2. There continue to be 

small differences for different number of optimization tries because the prior distribution 

is fairly broad so that small variations in profiles can have the same posterior probability 

density. This test does not prove that the global minimum is being reached consistently, 

but it does give some evidence that multiple local minima are not causing undue problems 

for the retrieval method. 

Table 5.2: Absolute rms differences between different number of optimization tries. 

Number 
of tries 

1 
2 0.0045 0.0036 0.0035 0.0136 0.0352 0.0404 0.0146 0.0075 
4 0.0038 0.0035 0.0030 0.0120 0.0342 0.0292 0.0125 0.0056 
8 0.0032 0.0019 0.0019 0.0070 0.0189 0.0226 0.0102 0.0049 
16 0.0025 0.0016 0.0017 0.0053 0.0110 0.0130 0.0106 0.0029 

5.1.4 Precipitation structure testing 

The purpose of the precipitation structure test is to determine how the accuracy of 

the retrieval depends on the number of layers and complexity of the hydrometeor rep­

resentation. Tables 5.3 and 5.4 give the layer and variable setup for the 10 structures. 

The simplest is a two layer ice-above-rain structure, while the most complex structure has 
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variable rain, snow, graupel, cloud water, water vapor, and temperature. The retrieval of 

lowest layer rain mass content and integrated ice for structure 5 over a water surface is 

shown in Fig. 5.4. The retrieval for rain is quite good because this is for a water surface. 

The ice is measured well because the size distribution and particle density of graupel are 

known, though there are the complicating effects of cloud water and snow. The retrieved 

surface rain (actually a 2 km thick layer) has a horizontal offset in the stratiform region 

(75 to 125 km) probably due to the slanted cells, which does not appear in the integrated 

rain mass. The retrieved integrated rain for the heaviest pixels is low by roughly 30% 

because of saturation at 10 GHz and the prior distribution pulling the value toward the 

average. 

Table 5.3: Layer locations in precipitation structure tests. 

Precip. 
Structure 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Number 
of Layers 

2 
2 
3 
5 
5 
5 
7 
7 

11 
6 

Layer Height Ranges (km) 

0-4, 4-~ 
0-4,4-8 
0-4, 4-5, 5-8 
0-2,2-4,4-5,5-7,7-10 
0-2,2-4,4-5,5-7, 7-10 
0-2,2-4,4-5,5-7, 7-10 
0-2, 2-4, 4-5, 5-6, 6-8, 8-10, 10-12 
0-2, 2-4, 4-5, 5-6, 6-8, 8-10, 10-12 
0-1, 1-2,2-3,3-4,4-5, 5-6,6-7, 7-8, 8-9, 9-10, 10-12 
0-2,2-4,4-5,5-7, 7-9, 9-11 

Table 5.4: Variable parameters in precipitation structure tests. The number oflayers and 
variables is listed for each structure. The range in km that each hydrometeor is variable 
is given (N means none, C means climatological value). 

Precip. 
Structure NZa 

1 2 
2 2 
3 3 
4 5 
5 5 
6 5 
7 7 
8 7 
9 11 
10 6 

2 
4 
7 
6 
11 
14 
14 
18 
22 
27 

Rain 
0-4 
0-4 
0-5 
0-5 
0-5 
0-5 
0-5 
0-5 
0-5 
0-5 

N 
N 
N 
N 

4-10 
N 

4-12 
N 

4-11 

0-8 
0-8 
N 

0-10 
0-10 
0-10 
0-10 
0-10 
0-11 

C 
C 
C 
C 
C 
C 
C 
C 

0-7 

C 
C 
C 
C 
C 
C 
C 
C 

0-11 

The accuracy of the retrieval for different precipitation structures is shown for the 

various hydrometeor species in Figs. 5.5 through 5.9. Fig. 5.5 shows the error in surface 

rain mass for land and water retrievals as compared to the error of assuming climatology 

from the prior. As expected the error in rain retrieval is much worse over land than water, 
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Figure 5.4: Retrieved and true surface rain mass content (top) and integrated ice content 
(bottom) for precipitation structure 5 over a water surface. 
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except for axea A which has small amounts of ice. The error over land is much worse for 

those structures that have no cloud water (1 and 4). The surface rain retrieval is poorer 

for structure 9 because it has a 1 km thick lowest layer which has more vaxiability than the 

4 km layers for structures 1-3 or the 2 km layers for the other structures. The integrated 

rain results axe shown in Figs. 5.6 and 5.7 for axithmetic and logaxithmic compaxisons 

respectively. The error is basically the same for structures 5 and above for both land 

and water. The retrieved rms error is a smaller fraction of the climatology error when 

measured logaxithmically. This measure of retrieval skill is appropriate for the lognormal 

prior distribution. Area A has a higher log rms error because the retrieved integrated rain 

does not go to zero for non-raining pixels. 

Arithmetic RMS Retrieval Error: Surface Rain 

1.4 AreaA x -- Prior Area B x -- Prior Area C x -.- Prior 
• - Water 
A - Land 

1.2 

~81.0 
--......... 
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'--' 

~ 0.8 
~ 
~ 
00 0.6 

~ 
0.4 

0.2 

• - Water • -- Water 
A -- Land A - Land 

o.o~--~~~~~~~~--~~~~~~~--~~~~~--~~~~ 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 
Precipitation Structure 

Figure 5.5: Arithmetic RMS retrieval error of surface rain mass content for the 10 pre­
cipitation structures for each of the three test axeas. The retrieval error over water and 
land is compared with the error of assuming a fixed climatological value from the prior 
information. 

The retrieval ofintegratedice (see Fig. 5.8) is significantly more accurate for structures 

that include cloud water. Again, structures 5 and above axe similax in the error for 

integrated ice. The error is very low for axea A because there is very little ice there. 

The prior error vaxies because the maximum height vaxies with structure and snow is 

included only for some structures. The logaxithmic retrieval error for integrated cloud 

water is shown in Fig. 5.9. The fractional error for cloud water is much laxger than for 

rain or ice, though the retrieval is considerably better than using fixed (from prior) cloud 
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Arithmetic RMS Retrieval Error: Integrated Rain 
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Figure 5.6: Arithmetic RMS retrieval error of integrated rain mass content for the 10 
precipitation structures for each of the three test areas. 
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Figure 5.7: Logarithmic (base 10) RMS retrieval error of integrated rain mass content for 
the 10 precipitation structures for each of the three test areas. 
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water amount. When significant amounts of ice are present (areas B and C) the retrieval 

error over land and water is equivalent. There is little improvement with more complex 

structures. In the presence of precipitation it is very difficult to accurately retrieve cloud 

water with microwave radiometry. 

Arithmetic RMS Retrieval Error: Integrated Ice 
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Figure 5.8: Arithmetic RMS retrieval error of integrated ice mass content for the 10 
precipitation structures for each of the three test areas. 

The domain averaged integrated rain mass is shown for the different precipitation 

structures in Fig. 5.10. Most structures retrieve the average integrated rain accurately 

over a water surface. The average rain is somewhat too high in area A over water because 

the retrieved average cloud water is too low. Over land the retrieved average rain is 

generally closer to the climatology. The structures 5 and above are equivalent in the 

retrieved average rain. Structure 9 is somewhat closer to truth for average integrated rain 

over land, although worse in terms ofrms error. 

Since the Bayesian precipitation retrieval method does not require the modeled ob­

servations to be the same as the actual observations, it is useful to compare the two. 

Table 5.5 shows the rms and maximum difference over the four channels for the 10 precip­

itation structures. Structure 1 with only two variables cannot match the observations very 

well, and structure 4 without cloud water is relatively poor as well. The differences for 

structures 5 and above is constant at 1.2°K for the rms and around 8°K for the maximum. 

It should be noted that the rms difference is less than the 3°K standard deviation in the 

forward probability distribution. 
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Figure 5.9: Arithmetic RMS retrieval error of integrated cloud mass content for the 10 
precipitation structures for each of the three test areas. 

An example of the vertical structure of the retrieval is shown in Fig. 5.11. The true 

and retrieved rain and graupel fields are shown for precipitation structure 9 over water. 

Along with retrieving the horizontal variations accurately the method also does fairly 

well at obtaining the vertical structure of the hydrometeors. Presumably much of the 

information on the vertical profile comes from the cloud model (prior) data, since just 

four channels cannot provide details about vertical variations. Obviously, a retrieval with 

real data would not perform this well. 

The results of the precipitation structure testing show that there is little to be gained 

from using structures more complex than the five layer structure 5 with rain, ice, and cloud 

water. Simpler two or three layer structures do not appear to work as well. Comparison 

of structures 4 and 5 indicate that including cloud water is important. Including snow is 

not really necessary here, perhaps because of its small mass content and density compared 

with graupel. The finer resolution of structure 9 seems to be slightly detrimental to 

the Bayesian retrieval method. The extra variables (water vapor and temperature) of 

structure 10 neither help nor hurt, but it does take much longer to optimize with that 

many variables. These conclusions give some indication of what precipitation structures 

to use for Bayesian precipitation retrieval, but cannot be generalized automatically to all 

other situations. 
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Domain Average Retrieval: Integrated Rain 
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Figure 5.10: Domain average integrated rain for 10 precipitation structures. The average 
for the cloud model truth, the prior mean (climatology), and retrievals over water and 
land are shown. 
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Figure 5.11: Retrieved and true fields of rain and p-aupel for the three test areas combined 
horizontally. The retrieval is done with precipitatIon structure 9 over a water surface. The 
mass content is displayed logarithmica1ly from 10-3 to 10 g/m3 • 
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Table 5.5: RMS and maximum difference between "observed" brightness temperatures and 
those simulated from the retrieved profiles over all four channels for the 10 precipitation 
structures over water and land surfaces. 

Precip. c. 
Structure MAX 

1 
2 1.55 8.26 1.36 6.76 
3 1.48 9.63 1.25 7.44 
4 2.46 16.28 1.96 11.30 
5 1.18 7.84 1.13 7.12 
6 1.19 7.90 1.15 7.13 
7 1.17 7.89 1.14 7.15 
8 1.17 7.92 1.18 9.00 
9 1.16 8.05 1.11 7.12 
10 1.14 8.03 1.14 6.96 

5.1.5 Observation width testing 

One choice to be made with the Bayesian precipitation retrieval method is the width 

of the forward probability distribution. This parameter for each channel governs how 

closely the modeled observations must fit the actual observations. It should be set to a 

value that is typical of the modeling error, which in general will depend on the channel. 

The test here modifies the base situation by setting the forward distribution width, Urn, 

for all channels, to 1, 2, 4, and 8°K (the normalized distance for selecting matching profiles 

is adjusted to keep the same number of matches). Table 5.6 lists the rms, minimum, and 

maximum differences between the synthetic observations and those made by using the 

retrieval radiative transfer model with the true cloud model values in the precipitation 

structure. Thus these rms values are a measure of the modeling errors. The rms differences 

are around 2°K except for the 85 GHz channel which is about 4°K, due to Eddington 

modeling error (see section 5.2.5). 

Table 5.6: RMS, minimum, and maximum differences between synthetic brightness tem­
peratures and those from the forward model of the retrieval method using precipitation 
structure 5. 

Surface 
water rms 
water min -1.71 -4.13 -6.41 -8.85 
water max 9.05 8.13 9.85 16.09 

rms 1.11 1.65 2.25 4.39 
min -3.72 -4.05 -6.27 -9.83 
max 3.01 7.59 10.39 17.33 

Fig. 5.12 shows the rms retrieval error for surface rain for the four different observation 

widths. If the width is substantially less than the true model errors (e.g. U = 10 K for area 

C rain content over land) then the retrieval fits to modeling error, which causes occasional 
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bad retrievals and an increase in the rms error. The (1' = 10 retrievals are noisier pixel to 

pixel than the larger observation widths. On the other hand, if the observation width is too 

large (e.g. .(1' = 8°K here) then the retrievals relax toward climatology which also increases 

the rms error. The rms error for integrated ice (see Fig. 5.13) shows an increase in error 

only for the larger width. Even though the (1' = 10 width is below the rms modeling error 

as listed in Table 5.6, it usually performs better, although it is less stable. The domain 

average integrated rain and ice contents, for example, are closest to the truth for (1' = 10
• 

The model errors in this test are fairly low because a plane-parallel model and the same 

microphysics were used to generate the synthetic observations. 
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Figure 5.12: Arithmetic RMS retrieval error of surface rain content for the 4 forward 
distribution widths for each of the three test areas. 

5.1.6 Microphysical assumption testing 

Up to now the same microphysical assumptions concerning size distributions and ice 

particle density have been used in the retrieval as were made in making the synthetic 

brightness temperature observations. Unless the prior information from cloud modeling 

can provide at least distributions of average size of hydrometeors as well as the mass 

content, some rather bold assumptions must be made. The effect of differing microphysical 

assumptions is tested here by modifying the base situation so that the retrieval uses 

differing assumptions for determining the size distribution parameters and ice particle 

densities that go into the scattering calculation. The base microphysical assumption is the 
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Figure 5.13: Arithmetic RMS retrieval error of integrated ice content for the 4 forward 
distribution widths for each of the three test areas. 
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Rutledge and Hobbs scheme described in section 5.1.1. The second and third microphysical 

schemes are variants of the one used in RAMS. These have a fixed average size (or slope) 

of the exponential size distribution of precipitating hydrometeors. For both scheme 2 and 

3 the average diameter of the raindrops is 0.54 mm. The Rutledge and Hobbs formulation 

(eq. 5.2) has this average size for a mass content of 2.1 g/m3 , so scheme 1 usually has 

smaller raindrops. Scheme 2 has a graupel average size of 1.0 mm and density of 0.9 g/ cm3 

(solid ice), while scheme 3 has a graupel average size of 0.8 mm and density of 0.4 g/ cm3 • 

The parameters for snow are not relevant since snow is not in the base precipitation 

structure. 

The resulting rms retrieval error of integrated rain mass for the three microphysical 

assumptions are shown in Fig. 5.14. Schemes 2 and 3 have significantly higher error than 

the correct scheme 1, especially for area A which does not contain much ice. The rain 

size distribution clearly affects the integrated rain retrieval, even over a water surface. 

Scheme 3 has sightly lower error than scheme 2 for areas B and C over water even though 

the rain assumptions are the same, indicating that the ice physics is playing a part in the 

retrieval. The retrieved domain average integrated rain, which over water is very close 

to the truth for the correct scheme, goes down to around half of the true value for the 

schemes with fixed average size. This occurs because the larger average size of schemes 2 

and 3 cause higher extinction for the same mass content even at 10 GHz. 

The rms retrieval error for integrated ice mass is given in Fig. 5.15. The scheme 

with larger solid ice graupel (2) has a much higher error than the one with lower density 

graupel (3) for areas with significant ice. This happens because there is much more scat­

tering for the higher density ice, and hence a much lower mass content (about a factor of 

4 below the actual value) is required to satisfy the observations. The Rutledge and Hobbs 

parameterization had the lowest retrieval error, of course, because that scheme was used 

to generate the synthetic observations, but this does not imply that it has the correct mi­

crophysical assumptions. This test shows the importance of using the right microphysical 

assumptions, although the correct average size-mass content relationship will not usually 

be known. It would be best to obtain the information about hydrometeor size distribu­

tion from cloud models with two parameter distributions that have been validated with 

independent measurements. 

5.1. 7 Priors content testing 

The prior probability distribution can be made with different times from the cloud 

model simulation, with varying minimum rain cutoffs, or with the covariance information 

turned off. These options form the basis for the priors content testing. Doing a retrieval 

without any information about the correlations between hydrometeors tests whether the 

covariance information is as important as claimed. One would hope that the rain cutoff 

that distinguishes between raining and non-raining pixels would not affect the retrieval 
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Figure 5.14: Arithmetic RMS retrieval error of integrated rain content for the 3 micro­
physical assumptions for each of the three test areas. 

too much even though it does change the mean and variance of the lognormal prior dis­

tribution. Obtaining prior information from different stages of storm development should 

have a more subtle effect; presumably retrievals made with a prior more similar to the 

actual precipitation situation will be better. The base situation (structure 5, etc.) is run 

with the modifications listed in Table 5.7 (case 2 is the base case). The early cloud model 

times (1-3) include the time of for area A, while the middle times (6-9) include the time 

of areas B and C. Note the reduced number of samples for making the prior mean vector 

and covariance matrix, especially for the early cloud time. 

Table 5.7: The setup for the five prior content tests. 

Priors 
Case 

1 
2 
3 
4 
5 

ou 
Times 
1-15 
1-15 
1-3 
6-9 
1-15 

o 
Yes 
Yes 
Yes 
Yes 

Figs. 5.16 and 5.17 show the rms retrieval error of the prior cases for surface rain 

mass content and integrated ice content, respectively. The accuracy of the surface and in­

tegrated rain content degrades significantly without the covariance information, even over 
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Figure 5.15: Arithmetic RMS retrieval error of integrated ice content for the 3 microphys­
ical assumptions for each of the three test areas. 
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a water surface. The integrated ice content is not as sensitive to the lack of covariance in­

formation, probably because the ice is more directly related to the brightness temperature 

observations. The error in integrated cloud water mass is very much larger without the 

covariances, which indicates that much of the cloud water information is coming from its 

relationship to other hydrometeor species that have more effect on the microwave channels. 

The retrievals without covariances are noisier from pixel to pixel. Overall, the covariance 

information is not as crucial for the rain retrieval in this test with five layers as might be 

expected, though its importance would increase with the number of layers. 
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Figure 5.16: Arithmetic RMS retrieval error of surface rain content for the 5 prior cases 
for each of the three test areas. 

The arithmetic rms error in surface rain mass increases dramatically for the over 

land cases for areas B and C for the lower rain cutoff. This is due to much too large 

rain retrievals in heavily raining areas. The lower rain cutoff increases the width of the 

lognormal prior distribution, and, being symmetric in log space, this allows much larger 

rain amounts in situations where the observations are not providing much information. 

The logarithmic rms error in surface rain is actually less for the lower rain cutoff. 

There is some evidence in the rms error plots that the retrieval for area A is improved 

and the retrieval for areas B and C is degraded by using the early priors. The domain 

average integrated rain for area A over water, which has a low bias for the standard priors, 

is correct when using the early prior. The cloud model time of the priors does not have 

much effect on the integrated ice arithmetic retrieval error, although there is a significant 
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effect in the expected way for the logarithmic rms errors. The way the prior probability 

distribution is made has significant effects on those aspects of the hydrometeor profile 

for which the prior distribution is providing information beyond that available from the 

observations. One aspect of the prior distribution that could not be changed here was the 

assumed functional form; better retrievals would be expected if appropriate corrections to 

the lognormal and simple linear covariance form could be made. 
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Figure 5.17: Arithmetic RMS retrieval error of integrated ice content for the 5 prior cases 
for each of the three test areas. 

5.1.8 Frequency combination testing 

The combination of frequencies used for a retrieval is not an input parameter in the 

normal sense because it is limited by the number of channels the instrument provides and 

one would want to use all the available channels. The Bayesian precipitation retrieval 

method can easily use any combination of frequencies available. This allows tests to be 

done to determine how the accuracy of precipitation retrieval falls as less channels are used. 

By examining the results of various combinations one can conclude which frequencies are 

making the most contribution to the retrieval of various hydrometeor species. For this 

test the base situation is used with the 8 combinations of frequencies listed in Table 5.8. 

This is not all possible combinations, but it does examine the effect of 10, 19, and 85 GHz 

in some detail in one, two, and three frequency combinations. 
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Table 5.8: The 8 frequency combinations tested. 

Case 
1 
2 
3 
4 
5 
6 
7 
8 

The results of the frequency combination testing on smface rain mass content are 

shown in Fig. 5.18 for aritlnnetic rillS error and Fig. 5.19 for the domain average. For 

regions without much ice (area A) 19 GHz can substitute for 10 GHz over water, but 

10 GHz is very useful over land for retrieving surface rain. For areas with significant 

amOlmts of ice 10 GHz is needed for accurate retrievals over water because scattering by 

ice effects the 19 GHz channel. Over land 85 GHz is not that useful for rainfall if 10 and 

19 GHz are in the combination. The 85 GHz channel is useful over land for estimating 

very light rain, since without its extra sensitivity the rain mass is over estimated. The 

85 GHz chaIlllel alone greatly underestimates the rainfall, whereas 10 GHz alone over a 

water surface is reasonably accurate. 

The results for integrated ice mass are shown in Fig. 5.20 for aritlnnetic rms error 

and Fig. 5.21 for the domain average. The 85 GHz channel is very useful for determining 

ice content, but if used alone then it underestimates the ice amount and has high errors. 

Without the sensitivity of 85 GHz for land surfaces too much ice is retrieved for those 

pixels with very small ice mass. The combination of 10 and 19 GHz is a good combination 

for integrated ice mass if there is enough ice to register at 19 GHz. Single frequencies do 

not work well for ice mass, although 19 GHz is the best single channel over land. 

The conclusions about the effectiveness of various frequency combinations will gener­

alize somewhat to other methods, but will also depend on the particular algorithm used 

here. The issue of spatial resolution changing with frequency, which is a major disad­

vantage of 10 GHz, has not been dealt with here. The implications of the frequency 

combination testing for microwave remote sensing of precipitation agree with the ideas 

presented in Smith et al. (1992) and Mugnai et al. (1993). 

These theoretical tests show that the precipitation structure needs to have some de­

gree of complexity (e.g. five layers with variable rain, cloud, and ice), but that highly 

detailed vertical structure is not necessary. The retrievals are not highly sensitive to the 

width of the forward probability distribution, but the observation width should not be 

much below the typical size of the forward modeling errors. The microphysical assump­

tions that are used to derive hydrometeor size distributions from the mass content are 
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Figure 5.18: Arithmetic RMS retrieval error of surface rain content for the 8 frequency 
combinations for each of the three areas. 

very important in determining the amounts of rain and ice retrieved. The covariance in­

formation in the prior probability distribution is indeed important, but the retrievals are 

not very sensitive to the stage of storm development in the cloud model. The tests per­

formed here have illustrated how the Bayesian precipitation retrieval algorithm behaves, 

but they have a number of limitations. The limitations of the forward modeling that 

were not addressed include the simple fixed surface properties, especially for land, and 

the plane-parallel radiative transfer assumption. The tests of the prior distributions are 

limited by their use of the same cloud model output to make both the prior distribution 

and to synthesize the brightness temperatures. Real data usually will give worse retrieval 

results because of larger modeling errors and less applicable priors than was the case for 

these tests. 
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Figure 5.19: Domain average surface rain mass content for each of the three areas for 
the 8 frequency combinations. The average for the cloud model truth, the prior mean 
( climatology), and retrievals over water and land are shown. 



121 

Arithmetic RMS Retrieval Error: Integrated Ice 
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Figure 5.20: Arithmetic RMS retrieval error of integrated ice content for the 8 frequency 
combinations. 
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Figure 5.21: Domain average integrated ice mass content for the 8 frequency combinations. 
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5.2 CaPE Experiment Validation Tests 

Any proposed remote sensing inversion technique must be validated by using the 

method on field observations and comparing the results with other accepted measurement 

techniques. Precipitation remote sensing validation is somewhat problematic because there 

are no highly accurate area-averaged measurement techniques. Literal ground truth in 

the form of raingauges offer only point measurements, and the very dense gauge networks 

needed for measurements in a collocated case study are impractical. Radar observations 

give the needed area/volume coverage but with uncertainties in rainfall estimation of 

perhaps a factor of two from uncertainties in drop size and precipitation inhomogeneities 

(Atlas and Ulbrich, 1990; Joss and Waldvogel, 1990). Polarimetric radars provide higher 

accuracy for rainfall estimation than radars that measure reflectivity only. Here the NCAR 

CP-2 multiparameter radar is used for validation. 

A major component of a space-based precipitation retrieval method that is not yet 

implemented in the Bayesian precipitation retrieval system is a way of dealing with beam 

filling and the effects of multidimensional radiative transfer. Beam filling is the name for 

the problems caused by precipitation that is not uniform across the microwave radiometer 

field of view. Because the microwave signal is not linear in the precipitation amount, beam 

filling can cause large errors in rain estimation with coarse resolution satellite microwave 

data (e.g. the SSM/I with 15 to 60 km resolution). Fortunately, the beam filling problem 

can be reduced substantially by using data from high-resolution aircraft-based microwave 

radiometers. This allows for testing of the Bayesian retrieval method while minimizing 

the complicating effects of sub-field-of-view precipitation variability which the method is 

not equipped to handle. Another reason for using high resolution aircraft data is that 

the prior information for the retrieval is obtained from a cloud model with one kilometer 

resolution, and averaging the cloud model output over footprints tens of kilometer wide 

would greatly reduce the data available for estimating the prior distribution. 

The passive microwave data used for this validation is from the Advanced Microwave 

Precipitation Radiometer (AMPR), which is the latest NASA aircraft-based microwave 

instrument appropriate for precipitation sensing. The AMPR has a wider range offrequen­

cies (from 10 to 85 GHz) than previous instruments, such as the Microwave Precipitation 

Radiometer, and so is better for testing multichannel algorithms. The AMPR has very 

high resolution (from 0.6 to 2.8 km) which should resolve much of the spatial variability 

of convective precipitation. 

The first organized field experiment that the AMPR flew in was the Convective and 

Precipitation/Electrification (CaPE) experiment in central Florida during the summer of 

1991 (Williams et al., 1992). The AMPR and CP-2 data used for the validation test 

are from this experiment, during which collocated AMPR and CP-2 data of convective 

precipitation were acquired over the ocean and land. The small amount collocated data 
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available from CaPE makes this validation rather limited in nature. Thus, this test is 

meant to be preliminary, and future validation efforts will be needed for other types of 

precipitating systems in experiments at various locations. 

5.2.1 The AMPR and CP-2 Instruments 

The Advanced Microwave Precipitation Radiometer has been designed and built in 

the last five years under the direction of the NASA Marshall Space Flight Center (Spencer 

et al., 1993), (see also Vivekanandan et al., 1993). The AMPR mounts in the ER-2 aircraft 

which cruises at 20 km, allowing it overfly deep convection. The AMPR has the same 

multifrequency feedhorn as the SSM/I for its 19.35, 37.1, and 85.5 GHz channels and an 

additional specially designed feedhorn for 10.7 GHz. The 3 dB beamwidths are 8.0° for 

10.7 and 19.35 GHz, 4.2° for 37.1 GHz, and 1.8° for 85.5 GHz, giving ground resolutions 

of2.8, 1.5, and 0.6 km. The instrument scans across track through nadir from +45° (right 

side) to -45° (left side), in 50 beam spots every 1.8°. The three lower frequencies are 

thus oversampled in that they are sampled multiple times per beamwidth. A new scan is 

started every 3.0 seconds, which at the 200 m/s cruising speed of the ER-2 corresponds 

to 0.6 km (same as the 85.5 GHz beamwidth at the ground). Because the ER-2 flies 

relatively close to precipitating systems the perspective causes higher altitude features to 

appear broader than lower altitude ones of the same horizontal size. 

Cross-track scanning with a 45° offset flat-plate reflector causes the instrument's 

polarization basis to rotate relative to the scene orientation. While the single polarization 

is always linear it rotates from horizontal at () = +45° (start of scan) to vertical at 

() = -45° (end of scan). The polarization measured by AMPR thus varies with angle, but 

is a linear combination of the vertical and horizontal polarization of the scene, given by 

(5.3) 

The 50 millisecond spot integration time results in a receiver noise figure ranging from 0.15 

to 0.300 K. Mter every fourth scan the reflector rotates to view hot and cold calibration 

targets during one scan period. The hot target is heated to 3200 K, while the cold target 

is cooled with ambient air to around 2300 K. The absolute accuracy is estimated to be no 

better than several degrees, especially for the coldest brightness temperatures that must 

be extrapolated beyond the calibration temperature. 

The CP-2 multiparameter radar is operated by the National Center for Atmospheric 

Research (NCAR). It provides dual frequency operation at S band (3 GHz) and X band 

(10 GHz) with matched 0.9° beamwidths (Bringi and Hendry, 1990). There are 512 

range gates with a typical spacing of 300 m giving a maximum range of 150 km. The 

S band system has a coherent receiver so radial velocity is obtained. Pulse-to-pulse po­

larization switching at S band provides for the measurement of differential reflectivity 
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ZDR = 10log(Z.flH/ZVV) in addition to the standard horizontal reflectivity ZHH. There 

are two antennas at X band, one for horizontal polarization transmission and reception 

and one for vertical reception, so that the linear depolarization ratio LDR and X band re­

flectivity can be measured. The X band specific attenuation can be derived by comparing 

S and X band reflectivity. Other propagation parameters can also be measured. 

5.2.2 The AMPR datasets 

Two AMPR dataset are used for the precipitation algorithm validation, one over land 

and one primarily over ocean. Uncooperative weather, the requirement that the precip­

itating systems be within CP-2 range, and several AMPR equipment failures severely 

limited the number of useful CaPE AMPR/CP-2 datasets available for algorithm valida­

tion. Fig. 5.22 shows a map of the experiment area with the location of the CP-2 radar, 

various upper air stations, and the two AMPR datasets. The datasets were both from 12 

August 1991 and are identified here by their starting UTC times: 2059 for the one over 

land, and 2152 for the ocean one. The centers of the AMPR datasets are 108 and 99 Ian 

from CP-2. There is an additional dataset available 40 Ian northwest of CP-2 (2226Z), 

which is not used here. The ER-2 was flying north with the precipitation cell directly over 

the coast, so the lower frequency channels are contaminated by the combination of land 

and ocean background. These two datasets were provided by Joe Turk of Colorado State 

University in a very useful form combining the AMPR and CP-2 data (Vivekanandan 

et al., 1993). The CP-2 data is remapped into the AMPR scanning coordinate system by 

tracing AMPR beams through a three-dimensional grid of CP-2 data with 0.5 Ian spacing 

and extracting the closest grid point for each 0.5 Ian altitude. The natural coordinate 

system for AMPR is the pixel-scan system. The pixel number from 1 to 50 (right side to 

left side) is the cross-track coordinate, while the scan number (starting at 1 in the dataset) 

is the along-track coordinate (in the direction the aircraft flies). 

Fig. 5.23 has images of the four AMPR channels for the 2059 time. This dataset is 

mainly over land with the lower left corner of the 10, 19, and 37 GHz images showing 

the low brightness temperatures characteristic of water surface emission. The strong 

precipitation core is clearly visible in the 19 GHz image with brightness temperatures 

below 190oK, and at 37 and 85 GHz with Tb'S dropping to around 105°K. The radar 

reflectivity exceeds 55 dBZ in the most intense area. The cold brightness temperature 

region at 85 GHz appears larger because of the perspective effect due to the channel 

sensing the upper portion of the precipitation. Along the center pixel there are two 

precipitation cells that are distinguished most easily at 37 and 85 GHz. The two spots of 

low brightness temperature at 10 and 19 GHz along pixel 40 are small lakes. To the left 

of the precipitation core there is a lower Tb (~ 2200 K) area that shows up only at 10 GHz 

and may be due to low emissivity from soil wetting. The very small (single pixel) low n 
features at 10 and 19 GHz are clearly bad data (perhaps from interference), since they are 
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Figure 5.22: Map of the CaPE experiment area with locations of the two AMPR datasets. 
The arrows in the dataset boxes show the heading of the ER-2. The CP-2 radar position 
and the locations of the upper air stations are also shown. 
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below the resolution of these channels. Scans 1 to 60 of this AMPR dataset were chosen 

for the algorithm validation test in order to avoid the ocean scans at the end. Primarily 

the track along pixels 25 is considered, although tracks for pixels 20 and 30 are also used; 

there is little precipitation for pixels further from nadir. 

The AMPR data for the 2152 dataset is shown in Fig. 5.24. The effect of the ocean 

emissivity changing with polarization and hence AMPR scan angle can be seen at the 

right sides of the 10 and 19 GHz images. The 10 GHz brightness temperatures change 

from about 900 K for H polarization (pixel 1) to about 1500 K at V polarization (pixel 

50). The 85 GHz channel is around 2600 K in the nonprecipitating regions over the oceans 

because of screening due to water vapor and perhaps cloud water. For this dataset most 

of the precipitation is over the ocean. This means that the 10 and 19 GHz channels 

increase with the rainrate, as seen along pixel 25 in the center of the images. There 

is a moderately strong cell between scan 30 and 40 as indicated by the highest oceanic 

brightness temperatures at 10 GHz (~ 2500 K). The 19 GHz channel clearly saturates near 

2500 K in the core region. The ice scattering lowers the 85 GHz brightness temperature 

to 1600 K and the 37 GHz channel to 190°K. The region from scan 40 to 50 is less intense 

with 10 GHz brightness temperatures only up to around 1600 K. The warm 85 GHz channel 

shows that there is only a small amount of ice, while 37 GHz has warmed up to 2600 K 

because it can see through the thin ice to the rain below. Over the ocean the 37 GHz 

channel can be low due to scattering from large amounts of ice or from the low surface 

emissivity in regions of no precipitation. In order to restrict the data for validation to 

precipitation over the ocean, scans 30 to 60 are selected for pixels 20, 25, and 30. Further 

description of these two AMPR datasets and the collocated CP-2 radar data is available 

in Turk et ale (1993). 

5.2.3 RAMS cloud model simulation 

The prior probability information for the validation experiment is obtained from a 

simulation performed with the Colorado State University Regional Atmospheric Modeling 

System (RAMS) (Tripoli and Cotton, 1982; Cotton et al., 1982; Cotton et al., 1986). 

The simulation was a modification of a two-dimensional summertime Florida sea breeze 

simulation performed by Nicholls et ale (1991). The horizontal domain of 400 km has a 

land surface for the center 200 km. The land is modeled with an eight level soil model 

assuming unvegetated fairly dry sandy-clay soil. The horizontal resolution is 1 km, and 

Mesoscale Compensation Regions are used for the boundary conditions. The vertical 

atmospheric grid is a stretched coordinate of 32 levels ranging from 400 m to 1000 m 

spacing. The simulation was started at 0800 local standard time and run for 14 hours. 

The simulation performed was like experiment 3 in Nicholls et ale (1991). The type 

3 wind profile used for experiment 3 was the most similar to the winds obtained from the 

CaPE upper air stations on the morning of 12 August 1991. Fig. 5.25 compares the wind 
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Figure 5.23: Brightness temperatures of the four AMPR channels for the 2059Z 12 August 
1991 dataset. The pixel axis is across-track and the scan axis is along-track. The nadir 
resolution at the ground is 0.6 km per pixel in both directions. 
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profiles from the Dunnellon Airport and Ruskin stations at 0600 local standard time with 

the initial RAMS sounding. The wind fields are similar with weak westerlies below the 

easterlies. The temperature and water vapor are modified from the simulation of Nicholls 

et al. (1991), mainly by reducing the water vapor above 3 kIn to match the CaPE morning 

soundings. Fig. 5.26 compares the temperature and water vapor mixing ratio between the 

upper air soundings and the RAMS initialization. 
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Figure 5.25: Wind velocity components from two CaPE upper air soundings and the 
RAMS initialization. The stations are Dunnellon Airport and Ruskin. The soundings 
were taken at approximately 0600 LST in the morning on 12 August 1991 (the day of the 
validation data). 

The RAMS simulation used five categories of hydrometeors: liquid cloud droplets, 

rain, pristine ice crystals, aggregates, and graupel. The cloud droplets and pristine ice 

crystals have a mono disperse size distribution whose size varies. An exponential size 

distribution is assumed for the large hydrometeors, and only the mixing ratio is predicted. 

Another difference between the simulation described in Nicholls et al. (1991) and the one 

used here, besides the different version of RAMS (2c instead of 1a), are the microphysical 

assumptions. The previous simulation used an older, experimental scheme to predict the 

characteristic size of graupel and snow as well as the mixing ratio. ill this simulation the 

average paJt"ticle diameters were specified at 0.54 rom for rain, 3.30 rom for aggregate, and 
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Figure 5.26: Temperature and water vapor mixing ratio from two CaPE upper air s01llld­
ings and the RAMS initialization. The s01llldings were taken at approximately 0600 LST 
on 12 August 1991. 
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1.2 nun for graupel. The bulk densities of the ice particles are 0.9 g/cm3 for graupel and 

0.03 g/ cm3 for aggregate. These values are the default RAMS microphysics, except for 

the somewhat larger graupel (1.2 nun vs. 1.0 rom). The high density and large diameter 

of the "graupel" category is more like that of hail. 

The sea breeze circulation develops a precipitating cloud about three hours into the 

simulation. The temperature, water vapor mass content, and hydrometeor mass contents 

from the simulation are stored every 15 minutes from 180 to 840 minutes simulated time. 

Fig. 5.27 shows the total precipitating hydrometeors for six cloud model times at two 

hour intervals. At first the west coast sea breeze front is stronger and produces a line of 

precipitation (240 minutes). By 360 minutes the west coast precipitation has died out and 

the east coast front convection is producing rain. The convection moves west and rapidly 

gathers strength, perhaps from the collision of the two sea breeze fronts (480 minutes). 

The storm then grows and develops a stratiform region, while the convective region is 

reduced in intensity (600 minutes). In the early evening the system dissipates, but still 

produces light rain. 

5.2.4 Radar validation methods 

There are two approaches to validating hydrometeor profiles retrieved from passive 

microwave measurements using radar observations. One is to retrieve profiles from the 

radar data and compare, for example, hydrometeor mass contents. The other is to simulate 

radar observables from the retrieved size distributions and compare these. The advantage 

of the latter approach is that the uncertainties of radar inversion are avoided. The disad­

vantage is that comparison is done in terms of radar parameters (e.g. reflectivity) instead 

of the desired end product of hydrometeor mass content or rainfall rate. Both approaches 

are used for this validation experiment. 

The radar simulation computes reflectivity (dBZ) and attenuation (dB/lan) at two 

different frequencies (e.g. S and X band). The same microphysical assumptions as for 

the Bayesian retrieval method are used to derive the hydrometeor size distribution and 

other properties. The same Mie calculation and integration procedure is done but now 

backscattering and extinction are computed for the exponential distributions. The atten­

uation due to cloud liquid water and water vapor is computed with the MPM92 model 

and added to the attenuation from particles. The effective reflectivity factor (in rom6 /m3 ) 

is defined in terms of the backscattering by 

A,4 

Ze = 7r5 \K
w

\20"b , (5.4) 

and the equivalent reflectivity (in dBZ) is then ZE = 10Iog(Ze). Differential reflectivity 

ZDR is not simulated because the calculations assume spherical particles. The simulated 

reflectivity is compared with the average of the horizontal and vertical reflectivity, which 

is fairly close to the equivalent volume sphere reflectivity for oblate raindrops. 
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Figure 5.27: Total precipitating hydrometeor (aggregate, graupel, rain) mass content for 
six model times from the Florida sea breeze simulation after Nicholls et al. (1991). The 
mass content is displayed logarithmically from 10-3 to 10 g/m3 • 
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The process of inverting radar observables to find hydrometeor distributions is not 

unique and is an area of active research. Two radar inversion methods are used here. One 

method recently developed by Turk et al. (1993) retrieves gamma distributions of rain, 

ice, and melting particles mainly from reflectivity with a procedure that assures spatial 

continuity. The other method retrieves both parameters of the exponential distribution, 

only for rain, from reflectivity and differential reflectivity using formulae from Illingworth 

and Caylor (1989). Attenuation at X band is not available for the validation because the 

large radar range (~ 100 km) made the attenuation noisy and unreliable. The reflectivity 

and ZDR are averaged over a substantial volume because of the corresponding 1.6 km 

radar beamwidth. Obviously, S band reflectivity cannot measure cloud water, and the 

Illingworth and Caylor (1989) method can only be used for rain. 

The radar inversion method described in Turk et al. (1993) retrieves the three pa­

rameters (No, A, and m) for a gamma size distribution N(D) = NoDmexp(-AD) of 

equivalent volume spheres. The type of particle (water, ice, or melting) is assigned based 

on ZDR, and a particle density of p = 0.75 g/cm3 is assumed for ice. The melting particle 

composition is determined with a variable water fraction parameter. The procedure starts 

near the surface where an No and m are assumed and A computed to agree with the 

reflectivity. For ZH < 35 dBZ, No = 8000 mm-1 m-3 and m = 0 for the initial point, 

but for higher reflectivity No is decreased and m increased (up to 5). The method then 

moves upward and adjusts the three parameters smoothly keeping agreement with the 

reflectivity. As the reflectivity decreases A increases and m decreases. The profiles are 

processed starting from the core region and moving radially outward, in such a way that 

there is continuity between profiles. The particle mass content is computed from the size 

distribution and compared with the passive microwave derived mass content at 0.5 km 

vertical intervals. 

Retrieving the size distribution for rain is more straightforward than for ice because 

one does not need to make assumptions about composition or shape. Using the fact that 

the oblateness of raindrops is related to their volume, Seliga and Bringi (1976) showed how 

differential reflectivity could be used to infer the mean size of an exponential distribution 

of raindrops. With improved measurements of drop oblateness Illingworth and Caylor 

(1989) computed simple fits to the DO-ZDR relation, which agreed closely with radar 

observations they presented. The median equivalent volume diameter Do is 3.67 times 

the mean diameter D used here. Table 5.9 lists the fit coefficients for DO-ZDR and also 

for ZH-ZDR with a fixed distribution intercept No. Here the fit for a maximum drop 

diameter of 10 mm is used. The fits give ZH correct to 0.2 dBZ. The retrieval procedure 

computes the mean drop diameter and distribution intercept from ZH and ZDR with the 

formulae in Table 5.9, and then calculates the corresponding mass content (5.2). The 

major problem with this inversion method appears to be contamination of the rain signal 

with ice below the freezing level. Large nearly spherical ice particles decrease ZDR while 
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increasing ZH. The method interprets this situation as small average raindrop size with 

large reflectivity, which leads to extremely large computed mass contents. To deal partially 

with this problem the exponential distribution intercept No is limited to a maximum 

value of 8000 mm-1 m-3 , which was chosen to make the rain mass content fairly uniform 

vertically (and also because it is the Marshall-Palmer intercept). In addition the rain mass 

was retrieved only in areas below 4 km and with ZDR ~ 1.0 dB. 

Table 5.9: Fit coefficients for DO-ZDR and ZWZDR relations for raindrops from TIlingworth 
and Caylor (1989) (Table 3). The first fit is used to find the exponential distribution slope 
or mean size D from ZDR. The second is used to find the intercept No by scaling No to 
match ZH. The fits assume a maximum drop diameter of 10 mm. 

ao al a2 a3 a4 ZDR Range 
3.67D = Do =)...; CliZhR (ZDR in dB and Do in mm) 
0.4453 1.311 -0.9074 0.3863 0.1 dB::; ZDR ::;1.0 dB 
0.5998 0.6762 -0.04640 0.003804 1.0 dB< ZDR <4.5 dB 

ZH = U aiZ}JR for No = 8000mm-1m-3 (ZDR in dB and ZH in dBZ) 
2.620 95.14 -162.8 159.0 -59.15 0.1 dB::; ZDR ::;1.0(ffi 
16.58 22.64 -5.020 0.6882 -0.03818 1.0 dB< ZDR <4.5 dB 

5.2.5 Bayesian precipitation retrieval setup 

The procedures described in the previous chapter are used to perform the hydrometeor 

profile retrievals from the cloud model output and the AMPR brightness temperatures. 

A 7 layer precipitation structure with a maximum height of 13 km is chosen to facilitate 

comparisons with radar reflectivity. Table 5.10 lists the variable parameters in the pre­

cipitation structure. Only the hydrometeor mass contents are variable; the mean particle 

size is fixed. There is variable rain, ice, and cloud water. For the land case the surface 

emissivity is variable (Le. retrieved) and a prior distribution with mean of 0.85 and stan­

dard deviation of 0.05 is assumed. For the ocean case the emissivity factor is fixed at 

unity, meaning pure Fresnel reflection is assumed. The ocean surface temperature is set 

to 301°K, while the land surface temperature is 305°K. The temperature and water vapor 

profiles are held fixed at their climatological values (from prior information). 

It would seem to be desirable to have two categories of ice in the precipitation struc­

ture as the cloud model did. One category would be "graupel" or moderate size high 

density ice (say p = 0.9 gjcm3 ), while the other would be "aggregate" with larger size low 

density ice (say p ::; 0.1 gjcm3 ). Using the low density ice requires the delta-Eddington 

approach. Including the aggregate category (for example, with mean diameter 2.50 mm 

and density 0.1 gjcm3 ) causes unstable retrievals because the observations can be matched 

only with difficulty. Forward radiative transfer modeling from the RAMS cloud model hy­

drometeor fields shows that the low brightness temperatures « 1100K for both 37 and 
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Table 5.10: The variable parameters in the precipitation structure used in the CaPE 
validation. 

Layer Heights (km) Variable Parameters 
1 0-2 H.A ,1'\1 1\'\1'1' 

2 2-4 RAINCONT ICE2CONT CLOUDLWC 
3 4-5 RAINCONT ICE2CONT CLOUDLWC 
4 5-7 ICE2CONT CLOUDLWC 
5 7-9 ICE2CONT CLOUDLWC 
6 9-11 ICE2CONT CLOUDLWC 
7 11-13 ICE2CONT 

85 GHz) of the strong convection land case can be met only with aggregates having a high 

particle density. This is because low density particles do not scatter enough, and nearly 

all the ice mass in the fields is in the aggregate category rather than the graupel category. 

Since there is little point in having two ice particles with similar densities, a single ice 

category is used, and the mass of aggregate and graupel are combined for determining 

the prior distribution from the cloud model fields. This can be thought of as using the 

equivalent volume sphere method of approximating low density ice with smaller solid ice. 

The single category approach is simpler and reduces the number of free microphysical pa­

rameters from four (aggregate density and mean diameter of rain, graupel, and aggregate) 

to two (mean diameter of rain and ice). The microphysical consistency of the cloud model 

output may be violated by having a single ice category, but the brightness temperature 

observations are indicating that aspects of the microphysical output from the cloud model 

may not be correct. 

Three sets of microphysical assumptions are made for the retrievals. The first is that 

of the RAMS simulation (rain mean diameter of 0.54 mm, graupel diameter of 1.20 mm), 

the second has larger raindrops and smaller ice (0.70 mm and 1.00 mm mean diameter, 

respectively), and the third uses the Rutledge and Hobbs fixed intercept (No) distributions. 

Since the ice particles are modeled as high density (0.9 g/cm2), the unscaled Eddington 

approximation is used. The prior distribution is made from all 45 model output times of 

the simulation. The cutoff for raining pixels is 0.04 kg/m2 ofrain, which gives 1680 raining 

columns over the whole cloud simulation. The somewhat high rain cutoff is justified by this 

application to convective rainfall. The optimization parameters for the retrieval program 

were as in the theoretical tests except that at least 5 and at most 10 optimizations tries 

were made. 

5.2.6 Precipitation retrieval results and comparisons 

Hydrometeor retrievals are done for tracks along pixels 20, 25, and 30 in the two 

(water and land) AMPR datasets, however, special attention is paid to the nadir pixel 

(25). Figs. 5.28 and 5.29 show the AMPR brightness temperatures along these three 
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tracks for the ocean and land datasets, respectively. The large brightness temperature 

depressions for the 37 and 85 GHz channels for the 2059 dataset show that the convection 

over land is much stronger than the cell in the 2152 dataset over the ocean. 

The comparison of the CP-2 radar reflectivity with the reflectivity simulated from 

the hydrometeor profiles is shown in Fig. 5.30 for the 2152 dataset and nadir track. This 

retrieval used the "standard" setup which has a mean diameter of 0.70 mm for rain and 

1.00 mm for ice and a forward probability distribution width of a = lOOK for all channels. 

The basic structure of the simulated reflectivity is roughly correct in terms of the location 

of the reflectivity maximum and the fall off with height. The reflectivity of the rain in the 

first cell is about right. The second rain cell, which is quite distinct in the CP-2 image, 

is not apparent in the AMPR derived radar image. This is to be expected, since the 

10 GHz brightness temperature stays level between scans 45 and 50. The AMPR derived 

reflectivity is much too high in the non-raining area beyond scan 55. This is partly due the 

prior distribution, made only from raining pixels, which causes there to always be some 

rain. The 10 GHz channel is still decreasing for the last few scans, and has not reached its 

lowest value. This is probably due to slight brightness temperature warming from cloud 

water, which the radar does not see. The precipitation retrieval method is interpreting 

the brightness temperature warming as due to rain instead of cloud water. In addition the 

surface emissivity is probably underestimated, because a flat water surface is assumed, 

so light rain may be retrieved to compensate. Not surprisingly, microwave radiometry 

cannot detect the detailed vertical structure if it does not follow the expectations of the 

prior distribution; for example, the retrieval misses the reflectivity minimum around scan 

45 at a height of 8 km. 

A more quantitative comparison of the observed and simulated reflectivity images is 

shown in Fig. 5.31, which plots the rms reflectivity difference profile. For these plots the 

rms is done for a subset of the data that has reflectivity above about 24 dBZ. In addition 

to the standard retrieval discussed above (plotted as a dotted line), the retrievals for 

other microphysical assumptions are also plotted. The retrieval with the fixed intercept 

is clearly poorer than the others. The fixed intercept result in small mean diameters of 

ice in the top layers, which have low mass contents, giving reflectivities that are much 

too low. The reflectivity is also too low in the rain region for this method. Of the fixed 

mean size retrievals the one with smaller raindrops is slightly better in the rain layer, but 

significantly worse with the larger ice at higher altitudes. In this water surface situation 

the retrieval is relatively good, giving reflectivities in the rain layer to under 4 dB. Given 

the uncertainties in size distributions retrieving rain reflectivity to a factor of 2 (3 dB) 

may be considered a success. The rms difference in reflectivity in the midlevels is higher 

(8-10 dB), mainly because of the overestimate of ice above the second cell. 

The rms reflectivity difference profiles shown in Fig. 5.32 compare the effect of using 

different observation widths (a's). Besides the standard a = lOOK, fitting more closely 
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Figure 5.29: AMPR brightness temperature traces for pixels 20, 25, and 30 in the 2059Z 
(land) dataset. The scan direction is along the aircraft track. 
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Figure 5.30: Images of the reflectivity observed by CP-2 and reflectivity simulated from 
hydrometeor profiles retrieved from AMPR data for pixel 25 (nadir) in the 2152Z (ocean) 
dataset. The difference between the two reflectivity fields is also shown. 
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Figure 5.31: RMS difference between the observed CP-2 reflectivity and the AMPR derived 
reflectivity for the 2152Z dataset. Three different microphysical assumptions made for the 
microwave retrieval are shown. 
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Figure 5.32: RMS difference between the observed CP-2 reflectivity and the AMPR derived 
reflectivity for the 2152Z dataset. Three different forward distribution widths used for the 
microwave retrieval are shown. 

to all the channels (0' = 5°K) and fitting more closely to just 10 and 19 GHz is tried 

(0' = 5,5,10, lOOK). There is not much difference in reflectivity error between the different 

observation widths, though 0' = 5°K is much worse at the higher ice levels. The wider 

forward distribution width ((J' = lOOK) is considered the standard here because overall 

(both datasets) it gave better agreement. 

A comparison of radar derived and AMPR retrieved vertically integrated hydrometeor 

mass content for the ocean dataset is shown in Fig. 5.33. The difference in rain mass 

between the two radar inversions is perhaps indicative of the error in the radar mass 

retrieval. The method of Turk et al. (1993) gives roughly equal integrated rain mass for 

the two rain cells (~2 kg/m2), while using the formula oflllingworth and Caylor (1989) 

gives much different rain mass for the two cells (4 vs. 2 kg/m2). These two inversions 
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both match the reflectivity, but use different raindrop distributions. The ZDR is above 

3 dB in the second cell and the lllingworth and Caylor (1989) method retrieves mean 

raindrop diameters of .60-.65 mm there, as compared to .50-.55 mm in the first cell. The 

smaller raindrops in the first cell lead to a higher mass content in order to give the same 

reflectivity. The mean diameters of the Turk et al. (1993) method are larger and more 

nearly equal for the two cells. 

The integrated mass content traces are shown for AMPR retrievals with the three 

microphysical assumptions discussed above. The Rutledge and Hobbs assumption has 

the smallest mean diameter for raindrops and thus largest mass contents, followed by the 

0.54 mm and then 0.70 mm mean drop diameters. The AMPR retrievals generally fall 

between the two radar estimates of integrated rain mass for the first precipitation cell. 

All of the microwave retrieved rain masses are too low for the second cell, because of 

the perhaps inexplicably low 10 GHz brightness temperatures. The passive microwave 

retrieved integrated ice mass agrees relatively well with the radar derived mass, except 

for the Rutledge and Hobbs microphysics case. This case has much greater integrated 

ice mass in the first cell because of a large amount of ice retrieved near the freezing level 

(that compensates for less above). The two retrievals with fixed mean particle size agree 

closely even though the average ice diameter is different by 20% (1.00 mm and 1.20 mm). 

Because of the assumptions concerning size distribution and particle density made for the 

radar retrieval of ice mass it is not wise to consider the radar to be truth in this case. 

Fig. 5.34 shows the integrated hydrometeor mass for the retrievals with two different 

forward distributions widths (0' = lOOK and 0' = 5°K). The retrieval that fits more closely 

to the data has more rain in the first cell and less in the second cell than the standard 

retrieval. The integrated ice mass trace is clearly less smooth for the 0' = 5°K case. 

Turning now to the nadir track in the 2059Z dataset over land, Fig. 5.35 shows the 

reflectivity image comparison. The reflectivity is overestimated by the AMPR retrieval in 

the light precipitation area before scan 17. In the strong convection the reflectivity in the 

lower ice layers is modeled fairly well, but is too low for the higher ice layers. The AMPR 

derived reflectivity for rain in the two heavy precipitation cells is far too low compared with 

the actual CP-2 observations. For retrievals over land most of the information about the 

rain comes from its correlation with the ice mass above in the prior probability distribution 

since the rain is not sensed directly. Thus the prior distribution used here probably does 

not have the desired correlation. Since the retrieval method operates on vertical columns, 

it also has difficulty with the slanted precipitation cells observed by the radar. The large 

decrease in reflectivity seen around pixel 30 is seen as relative small brightness temperature 

warming at 37 and 85 GHz. Over land the change in 10 GHz brightness temperature from 

rain generally cannot be separated from surface emissivity changes, and here the retrieval 

of emissivity (not shown) closely follows the 10 GHz channel. 
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Figure 5.33: Vertically integrated rain and ice mass content derived from CP-2 radar and 
retrieved from AMPR data pixel 25 in the 2152Z dataset. Three different microphysical 
assumptions made for the microwave retrieval are shown. The Turk radar method is that 
in Turk et al. (1993) and the IC method is from Illingworth and Caylor (1989). 
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Figure 5.34: Vertically integrated rain and ice mass content derived from CP-2 radar 
and retrieved from AMPR data pixel 25 in the 2152Z dataset. Two different forward 
distribution widths used for the microwave retrieval are shown. 
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Figure 5.35: Images of the reflectivity observed by CP-2 and reflectivity simulated from 
hydrometeor profiles retrieved from AMPR data for pixel 25 (nadir) in the 2059Z (land) 
dataset. 
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Figure 5.36: RMS difference between the observed CP-2 reflectivity and the AMPR derived 
reflectivity for the 2059Z dataset. Three different microphysical assumptions made for the 
microwave retrieval are shown. 

Fig. 5.36 shows the rms reflectivity difference for retrievals with different microphys­

ical assumptions. In the rain layer the fixed intercept assumption is somewhat better, 

while the smaller mean diameter (0.54 mm) case has even lower reflectivity than the stan­

dard case and has significantly more error. For the lower ice layers the retrieval with the 

smaller ice particles agrees better. Higher up, where the retrieved reflectivity is too low, 

the larger ice assumption has, of course, closer reflectivity. For this land case the retrieved 

reflectivity is further from the observed than for the ocean case. The standard assumption 

has rms reflectivity errors of around 8 dB in the rain layer and 6 dB in the lower ice levels. 

Fig. 5.37 shows the rms reflectivity difference for three sets of forward probability distri­

bution widths. The different observation widths have equivalent reflectivity error except 

for midlevel ice layers where the larger width is better. 
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Figure 5.37: RMS difference between the observed CP-2 reflectivity and the AMPR derived 
reflectivity for the 2059Z dataset. Three different forward distribution widths used for the 
microwave retrieval are shown. 
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Comparisons of CP2 radar and AMPR microwave derived integrated hydrometeor 

mass contents are shown in Figs. 5.38 and 5.39. All three microphysical assumptions for 

the microwave retrieval grossly underestimate the integrated rain mass. The Dlingworth 

and Caylor (1989) radar inversion method for rain mass was heavily contaminated by ice 

(low ZDR in high ZH) and the maximum No technique of correcting leaves this estimate 

of rain mass fairly uncertain. The fixed mean diameter AMPR retrieval results follow 

the radar derived ice mass reasonably well, though falling short in the most intense cell. 

Fitting the data more closely with (J' = 5°K gives slightly higher rain mass and ice mass 

in some areas, although the difference is not really significant. Even though variable 

cloud liquid water is in the precipitation structure, virtually none is retrieved over land, 

although very small amounts (0.02 kg/m2 ) are retrieved over the ocean. When the forward 

distribution width is set to (J' = 5°K, then there are some pixels that have substantial 

amounts (2:: 1 kg/m2 ) of cloud water, but in an obviously incorrect pattern. 
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Figure 5.38: Vertically integrated rain and ice mass content derived from CP-2 radar and 
retrieved from AMPR data pixel 25 in the 2059Z dataset. Three different microphysical 
assumptions made for the microwave retrieval are shown. 
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Figure 5.39: Vertically integrated rain and ice mass content derived from CP-2 radar 
ana retrieved from AMPR data pixel 25 in the 2059Z dataset. Two different forward 
distribution widths used for the microwave retrieval are shown. 
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The reflectivity image comparison for the other two pixel tracks of the ocean dataset 

(2152Z) are shown in Figs. 5.40 and 5.41. The two tracks are 5 pixels (9 degrees in angle) 

away from the nadir track, which is greater than the largest beamwidth of the AMPR 

channels. The microwave retrieval for these tracks is rather poor. The CP-2 reflectivity 

image shows that there is only light rainfall, in some places not even reaching the ground. 

For pixel 20 from scan 40 to 60 the 19 GHz and 37 GHz channels are indicating light rain 

that the method retrieves as such, even though the radar indicates no rainfall. For pixel 30 

the cells at scans 40 and 44 are seen in the 19 and 37 GHz channels, but again the retrieval 

indicates more rain than the radar sees. One plausible reason for the large discrepancy 

between the observed and retrieved rain layer reflectivities is that these tracks are on 

the edge of the precipitation cell where the hydrometeor fields are changing rapidly. The 

coarser resolution of the lower frequencies compared with the radar would cause the AMPR 

retrieved rain amounts to be higher. The reflectivity in the high level ice is retrieved fairly 

well because of the high resolution 85 GHz channel. The integrated hydrometeor mass 

contents for these two tracks are shown in Figs. 5.42 and 5.43. The rain mass is fairly low, 

but nonetheless overestimated substantially by the AMPR retrieval as compared with the 

radar retrieved mass. The integrated ice mass agrees well outside the first cell. The ice 

mass retrieved from the AMPR data follows the 85 GHz channel quite closely. 

Figs. 5.44 and 5.45 show the reflectivity image comparison for the two off nadir pixel 

tracks of the land dataset (2059Z). The AMPR retrieval, as indicated by the simulated 

reflectivity, behaves similarly for these two tracks as for the nadir track over land. The 

simulated reflectivity is lower in the rain layers than the lower ice layers. While usually 

wrong, this happens to be correct for pixel 20, which has an rms reflectivity difference 

(scans 6 to 60) of under 8 dB up to 9 km. The AMPR derived reflectivity is again too 

high in the light or no rain regions. Where the observed reflectivity is higher above than 

below, the microwave retrieval greatly overestimates the reflectivity in the lower region 

(e.g. scans 25 to 40 for pixel 30). This is to be expected since the upwelling microwave 

radiation is much more sensitive to the integrated amount of ice than to its vertical 

structure. Figs. 5.46 and 5.47 compare the integrated hydrometeor mass for two tracks. 

The integrated rain retrieved from the microwave data is much less than the radar derived 

rain mass for pixel 20, but too high for much of the domain for pixel 30. The retrieved 

integrated ice masses do agree closely, except for a small region in the pixel 20 track in 

which the radar is spuriously high. 

One possibility for improving the agreement between the microwave retrievals and the 

corresponding radar hydrometeor inversion is to average over the size of the beamwidths 

of the low frequency channels. The averaging is done with the integrated hydrometeor 

traces, and not with the input microwave brightness temperatures or radar reflectivities. 

The retrievals are run for pixels 24 through 27 (2 on each size of nadir) and averaged in 

the pixel direction. Then a four point moving average in the scan direction is applied. 
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Figure 5.40: CP-2 observed and AMPR retrieved reflectivity for pixel 20 in the 2152Z 
dataset. 
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Figure 5.41: CP-2 observed and AMPR retrieved reflectivity for pixe130 in the 2152Z 
dataset. 
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Figure 5.42: Vertically integrated rain and ice mass content derived from CP-2 radar and 
retrieved from AMPR data for pixel 20 in the 2152Z dataset. 
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Figure 5.43: Vertically integrated rain and ice mass content derived from CP-2 radar and 
retrieved from AMPR data for pixel 30 in the 2152Z dataset. 
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Figure 5.44: CP-2 observed and AMPR retrieved reflectivity for pixel 20 in the 2059Z 
dataset. 
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Figure 5.45: CP-2 observed and AMPR retrieved re:H.ectivity for pixel. 30 in the 2059Z 
dataset. 
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Figure 5.46: Vertically integrated rain and ice mass content derived from CP-2 radar and 
retrieved from AMPR data for pixel 20 in the 2059Z dataset. 
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Figure 5.47: Vertically integrated rain and ice mass content derived from CP-2 radar and 
retrieved from AMPR data for pixel 30 in the 2059Z dataset. 
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Figs. 5.48 and 5.49 show the results of this averaging process. Besides being smoother 

there is not much difference in the comparison between the AMPR retrieved hydrometeors 

and the radar derived ones. Such an averaging process may be of more help in regions 

where the hydrometeor fields are changing rapidly. 
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Figure 5.48: Vertically integrated rain and ice mass content derived from CP-2 radar and 
retrieved from AMPR data averaged over pixels 24-27 in the 2152Z dataset. A four point 
moving average is also done in the scan direction. 
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Figure 5.49: Vertically integrated rain and ice mass content derived from CP-2 radar and 
retrieved from AMPR data averaged over pixels 24-27 in the 2059Z dataset. A four point 
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5.2.7 Discussion of retrieval results 

The AMPR retrievals made with the Bayesian method agree most closely with the 

radar results for the vertically integrated hydrometeors. For land and water background 

surfaces the microwave retrieved integrated ice mass content is fairly close to the radar 

derived ice mass. The integrated rain mass content retrieved over the ocean is comparable 

to the radar derived rain mass, but the amount of rain retrieved over land is generally much 

lower than the radar values. Experimental retrievals with two ice categories (aggregate and 

graupel) did retrieve substantially greater rain mass over land. It should be remembered 

that there are significant uncertainties of perhaps a factor of two in the radar derived 

hydrometeor mass, which limit accuracy of the validation. Other sources of error in the 

comparisons are the differing resolutions of the AMPR channels and the CP-2 radar and 

possible misnavigation of the AMPR data. The surface rainrate is not explicitly computed 

with a rain fallout model, because it not directly relevant to the validation process. 

The microwave retrieval of hydrometeor profiles as verified by the simulated radar 

reflectivity is much poorer than the integrated quantities. When the actual hydrometeor 

structure follows the profile expected from the prior information the agreement can be 

good, but variations from the expected structure are not captured. This is to be ex­

pected from the physics of microwave radiative transfer through hydrometeors profiles. 

Microwave brightness temperatures are primarily sensitive to the integrated mass of ice or 

rain, depending on frequency, until the optical depth reaches the saturation level. Across 

the microwave spectrum there are too few independent observations to retrieve a detailed 

vertical structure. Thus much of the profile structure information must come from the 

prior distribution. The high sensitivity of the 10 GHz channel to surface properties means 

that over land there is little direct information about the rain mass in the microwave 

measurements. 

For these reasons we don't expect the single pixel retrievals of hydrometeor profiles to 

be particularly accurate. It still makes sense to retrieve profiles, rather than surface rain 

alone, because various parts of the hydrometeor profiles are what the microwave radiation 

directly senses. The instantaneous surface rainfall cannot be measured accurately with 

microwave radiometers. The vertical profile of hydro meteors is important in its own right 

for its connection to the latent heating profile. Work with the Monte Carlo integration 

approach to Bayesian precipitation retrieval show that the single pixel hydrometeor mass 

error bars, obtained from the second moment of the posterior distribution, are quite large. 

Sufficient accuracy in hydrometeor profiles and surface rainfall will come about only by 

averaging many single pixel retrievals to find the climatological mean over a region. Of 

course single pixel retrievals can provide some useful information as to the likely rain 

intensity. But over land there may be little rainfall underneath ice canopies that cause 

large brightness temperature depressions at the scattering channels, just as there may be 
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no rain below a thick cirrus shield causing low infrared brightness temperatures. So there 

are inherent limits to the accuracy of instantaneous microwave precipitation retrievals. 

This does not mean, however, that the retrieval results shown here cannot be improved 

upon significantly. 

One advantage of the Bayesian framework is that one can examine explicitly the as­

sumptions made in order to determine why the method behaved as it did and find ways 

to improve it. There are three parts to the Bayesian precipitation retrieval: the forward 

probability distribution, the prior probability distribution, and choosing the retrieved pro­

file from the posterior distribution. The most important aspect to consider for the forward 

distribution are the errors in the radiative transfer modeling. There are uncertainties in 

modeling the scattering properties of low density ice. The index of refraction mixing rule 

method gives less scattering for larger size parameters than does the equivalent volume 

sphere method, though they are equivalent for small size parameters. The issue of how 

to model low density ice particles, as well as that of the effects of nonspherical shapes of 

precipitating hydrometeors could be investigated with discrete dipole approximation cal­

culations. The assumptions made to derive particle size distributions from hydrometeor 

mass contents are the largest source of uncertainty. The reflectivity comparison results 

showed that the :fixed intercept assumption is poor for determining the size distribution 

of ice. The mass of rain retrieved over the ocean is related to the assumed mean raindrop 

size. Of course, there will always be uncertainty in hydrometeor size distributions, but one 

can do better than the one size fits all approach used here. It would be desirable to have a 

cloud model predict the two parameters of exponential size distributions to provide correct 

information about how size distributions vary vertically. With this prior information both 

the mass content and the mean diameter of the hydrometeor size distributions could be 

variable in the retrieval process. 

Another area of radiative transfer modeling error is from the surface emissivity. Here 

very simple emissivity models are used: a single variable emissivity for land and a fixed 

Fresnel surface for water. The flat ocean assumption probably underestimates the surface 

emissivity leading to light rain retrieved in nonraining areas. The retrievals for land let 

the surface emissivity be variable over a large range, which probably reduced further the 

limited usefulness of the 10 GHz channel. The water emissivity model could be improved 

by using a model that depends on surface wind speed (e.g., Schluessel and Luthardt, 1991), 

though there is considerable uncertainty in these types of models. The wind speed could 

then be retrieved, perhaps with the help of prior information connecting surface wind 

speed and area rain intensity. The land emissivity is much more difficult to model, but a 

model based on a variable wetness parameter along with a known soil or vegetation type 

might be possible. Using prior information to relate the soil moisture to rainfall could be 

done, but the problem of the storm path history is rather difficult. 
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The effects of horizontal variability on radiative transfer is another source of error. 

Two aspects of this are relating the footprint average brightness temperatures to the 

average hydrometeor profile and the effects of horizontal variability on the upwelling radi­

ation. The plane-parallel model used for the retrieval does not deal with three-dimensional 

variability, for example, increased brightness temperature caused by radiation scattering 

through the sides of a thick ice core. The footprint filling problem is not likely to be 

much of a problem for this AMPR retrieval, at least for the nadir track, because of the 

small footprints. In the future, the footprint filling problem could be dealt with by con­

sidering a distribution of precipitation intensities described by one or two parameters. 

These parameters could be related to the type or intensity of precipitation through three 

dimensional cloud modeling, but an efficient way to perform the forward modeling would 

have to be developed. That the retrieval with the larger forward probability distribution 

width ((j = lOOK) agreed better in terms of simulated radar reflectivity implies that there 

are substantial forward modeling errors. In light of all the possible errors in the radia­

tive transfer modeling it does not make sense to fit the modeled brightness temperatures 

exactly to the observations. 

Much of the reason for the errors in the profile retrievals can be explained by examin­

ing the cloud model output and prior distributions derived from it. There are two possible 

sources of error in the prior distributions. The first is the simplicity of the assumed func­

tional form, i.e. the multivariate lognonnal distribution. The second is incorrectness Or 

unrepresentativeness of the hydrometeor profiles produced by the cloud model. This issue 

is investigated by examining scatterplots of the 1680 hydrometeor profiles that went into 

making the prior distribution used in the retrievals. Fig. 5.50 shows the relationship be­

tween the rain mass contents in the two lower layers and also between the lowest layer rain 

mass and the ice mass from 5 to 7 km. Along with the scatterplot shown on the log-log 

plots is the one sigma ellipse derived from the covariance matrix that indicates the shape 

of the prior distribution. The two rain layers are well, but not completely, correlated. The 

correlation between the 0-2 km rain mass and the 5-7 km ice mass is quite low, as indicated 

by the angle and axial ratio of the ellipse. The distribution of ice is clearly not lognormal, 

since it is not symmetric on this plot. The correlation between 2-4 km rain and cloud 

water is very low (Fig. 5.51). The cloud liquid water has a bimodal distribution which 

may be unphysical. The cloud water in RAMS is predicted by determining what water 

mass is left after the conversion processes have run. The result is that the log mean cloud 

water content is 0.002 g/m3 , which leads to very low retrieved cloud water contents. The 

5-7 km ice mass content and that at 9-11 km is moderately correlated, but the lognormal 

distribution is not representing the functional form of the scatter of points at all well. The 

scatterplot indicates that when there is a large amount of ice up high (strong updraft) 

then there is also much ice below, but there also can be a lot of ice in the lower region 

without much above. The underestimate of higher level ice in the land retrieval is caused 
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by this poor match between the form of the prior and the cloud model output. Fig. 5.52 

breaks the ice category down into the aggregate and graupel categories simulated in the 

RAMS run. As one would expect from microphysics the correlation between rain and 

graupel is much higher than between rain and aggregate. However, the log-space mean of 

graupel mass is 70 times smaller than that of aggregate mass; this is why it was necessaxy 

to use the aggregate category. As a result there is a low correlation between rain and ice, 

leading to the laxge underestimate of rainfall for the land retrieval. 

Improvements in the microphysical paxameterizations in cloud models used to gener­

ate the prior probability distribution should lead to improved hydrometeor retrievals with 

the Bayesian method. Bulk microphysical paxameterizations that predict two paxameters 

of the hydrometeor size distribution, and perhaps the ice density as well, axe needed. 

Having a water coated ice paxticle category might be a useful addition as well. The most 

important aspect of improved cloud modeling is that the microphysical paxameterizations 

be tested for their effect on those aspects of hydrometeor distributions that axe important 

for microwave radiation. Statistical validation of the paxameterizations should be done 

using radax and passive microwave observations. 

The algorithm validation with CaPE data performed here has shown some of the lim­

itations of the simple multivariate lognormal form for the prior distribution. The lognor­

mal distribution, while approximately correct, can lead to occasionallaxge overestimates 

of quantities because of its long tail. The symmetry of the distribution in log-space means 

that the very small values in the cloud model output can greatly effect the high end of the 

distribution through their influence on the distribution width. A simple modification of 

the lognormal distribution with another paxameter may resolve these problems. A method 

better than using the log-mean and log-variance to estimate the paxameters of the prior 

distribution could be found. A more flexible way to describe the relationship between 

vaxiables in the prior distribution should be found. Such a functional form obviously will 

require more paxameters, and thus more cloud model data than the simple form used here. 

Close examination of cloud model output and measurements of hydrometeors could lead 

to a better functional form for the prior distribution. 

Once the prior and forwaxd distributions axe determined, there is still the matter 

of how to choose the retrieved profile from the posterior distribution. The maximum of 

the probability density function depends in which space that function is measured. The 

current log-space density function may not be optimal and is fairly axbitraxy. Other ways 

to use the posterior distribution, besides maximizing probability, should be developed, 

especially for estimating axea and time averages of precipitation. 

The Bayesian precipitation retrieval method can be made more efficient. For the 

standaxd retrievals done for the CaPE validation an average of 14000 posterior probability 

evaluations were made for each pixel. Each function evaluation takes four (the number 

of channels) two-stream radiative transfer computations. A minimum of five optimization 
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Figure 5.50: Scatter plot of the hydrometeor mass contents produced by the RAMS simu­
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indicating the lognormal prior distribution fit to the points. The top panel shows the rain 
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The raining pixel cutoff eliminates the points in the lower left corner of the top panel. 
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tries was required for these retrievals, but the five tries nearly always got the same results, 

indicating that a single optimization would be adequate for 2800 function evaluations. The 

number of function evaluations made by the optimization method goes as the square of the 

number of variables. The search for matching observations to initialire the optimization 

could be made much faster by using a method more intelligent than sequential searching. 

It may also be possible to find a faster optimization method and speed up the radiative 

transfer computation. 

This validation with AMPR microwave and CP-2 radar data has shown that the 

Bayesian precipitation retrieval algorithm is an effective way of combining prior infor­

mation about hydxometeor structure from cloud models with forward radiative transfer 

modeling to retrieve hydrometeor profiles from microwave radiometer data. No passive 

microwave profiling algorithm can retrieve single pixel hydrometeor structures with high 

accuracy, but this method often produced approximately correct profiles. The validation 

experiment found why certain retrieval mistakes were made and how the retrieval method 

and input data from cloud models could be improved. The validation effort should be 

considered only preliminary because of the small amount of data and limited range of 

conditions. ill addition to improvements to the existing algorithm, further work compar­

ing hydrometeor profile retrievals with radar observations is needed. 



Chapter 6 

SUMMARY 

This dissertation describes the development of passive microwave remote sensing algo­

rithms for two parts of the hydrological cycle important to the climate system. Modeling 

studies were carried out to determine the feasibility of and possible methods for high fre­

quency microwave remote sensing of the ice water path of cirrus clouds. A microwave 

precipitation remote sensing algorithm that retrieves profiles of hydrometeors was devel­

oped and tested. 

6.1 Summary of Microwave Cirrus Remote Sensing 

While there are data from programs such as ISCCP on the optical properties of cir­

rus clouds, the global distribution of cirrus ice water path (IWP) is very uncertain. Now 

that general circulation models are begiIlIling to predict the mass content of various hy­

drometeor species it is important to be able to remotely sense cirrus IWP. High frequency 

microwave radiometry has the advantage that the brightness temperature depression is 

proportional to the IWP for visible optically thick clouds and does not depend on the cloud 

temperature. The difficulty is that the proportionality constant between the brightness 

temperature depression and the IWP depends on the ice particle size distribution and the 

particle shape. These issues are investigated with theoretical modeling of the scattering 

properties and radiative transfer of a number of shapes and size distributions. 

6.1.1 Model development 

The discrete dipole approximation (DDA) was used to compute the scattering prop­

erties of irregularly shaped particles. This method divides the particle into cubes that are 

small compared with the wavelength and computes the dipole field interaction between all 

pairs of cubes in the particle. For a particular incident field the complex electric field at 

each dipole is found by solving the linear system representing this dipole-dipole interac­

tion. The far field scattering properties are then found by summing over the contributions 

from each dipole. The DDA approach of Goedecke and O'Brien (1988) was implemented 

for this work and added to by computing those quantities necessary for radiative transfer. 

In addition an FFT solution method that allows larger particles to be solved was devel­

oped. Tests comparing the DDA scattering results with Mie theory for spheres and with 
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ECBM for oblate spheroids show the DDA method to be accurate to 1 to 5% for the range 

of parameters used here. 

A polarized monochromatic plane-parallel radiative transfer model was developed to 

compute the upwelling polarized brightness temperatures from the scattering properties 

output by the DDA model. The radiative transfer model represents the polarization state 

of the radiation field with Stokes parameters and the zenith angle dependence with discrete 

quadrature angles. For thermally emitting plane-parallel atmospheres the radiation field is 

azimuthally symmetric and only the I and Q Stokes parameters (equivalent to vertical and 

horizontal polarizations) are nonzero. The interaction of the radiation with the medium 

is described in terms of reflection and transmission matrices and source vectors, and 

the doubling and adding method is used to solve the radiative transfer of the whole 

atmosphere. The surface reflection is modeled either by a Lambertian surface for land or 

a Fresnel surface for flat water. The Rayleigh-Jeans assumption is not used because of 

the high frequencies considered. Absorption by oxygen and water vapor is computed with 

Liebe's MPM92 model. 

6.1.2 Microwave scattering by cirrus 

The scattering properties of realistic distributions cirrus ice crystals are computed 

with the DDA at the atmospheric window frequencies of 85.5, 157, 220, and 340 GHz. 

Five particle shapes are modeled: solid colunms, hollow columns, hexagonal plates, four­

bullet planar rosettes, and equivalent volume spheres (volume going as D-2
.
5

) with the 

aspect ratios varying according to empirical formulae. The long axes of the ice particles are 

randomly oriented in the horizontal plane. The scattering properties are computed at 16 

zenith angles for 13 discrete sizes (maximum particle diameter from 30 microns to 2 mm). 

The discrete sizes are used to make 18 gamma size distributions (N = aDOI. e-(0I.+3.67)D/Dm ) , 

with Dm = 70,100,150,250,400, 700j.Lm (Dm is the median of the third moment) and 

a = 0,1,2. Tests with many sizes of spheres show that the gamma distribution can be 

accurately represented by these 13 sizes. 

Plots of extinction as a function of particle size show that there are three regimes: 

absorption going as the particle volume for the smallest particles, Rayleigh scattering 

going as the square of the volume, and beyond the Rayleigh regime where the scattering 

goes up more slowly with size. The range in extinction for size distributions with the same 

IWC over the five shapes is up to a factor of three with rosettes having the least and solid 

colunms the most extinction. The extinction is usually greater for nadir angles because the 

particles present the largest cross section to the radiation. The ratio of extinction at the 

two polarizations is a measure of the polarizing effect of the non-spherical particles. Plates 

are the thinnest and most polarizing shape, followed by planar rosettes, and then columns. 

Larger sizes generally have more polarizing effect, but beyond the Rayleigh regime the 

polarization ratio oscillates with size. The single scattering albedo has a simple behavior 
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with particle size, being near zero for the smallest size and smoothly increasing to near 

unity for the largest size. The particle size at which the transition happens increases with 

frequency, so that the higher frequencies are more scattering. The single scattering albedo 

is higher for distributions of columns than for rosettes or equivalent volume spheres because 

columns have more volume for a given size. The amount of forward scattering increases 

with particle size and aspect ratio; plates have forward scattering equal to backscattering 

for nadir view. 

To make the results of the DDA calculation easily available, the scattering properties 

are fit to functions of particle size using 14 coefficients for each outgoing angle, polarization, 

shape, and frequency. The fit quantities are designed for use with a simple first order 

radiative transfer model. The upwelling brightness temperatures computed using the 

scattering fits with the first order model agree closely with those from the multi-stream 

model for most relevant situations where reflection from below the cirrus cloud can be 

ignored. 

6.1.3 Microwave radiative transfer in cirrus 

Radiative transfer simulations are done for cirrus clouds composed of the various 

shapes and size distributions in standard tropical and midlatitude winter atmospheres. In 

the tropical atmosphere there is little or no transmission from the surface for the three 

higher frequencies. At typical heights of cirrus clouds and above there is virtually no 

gaseous emission at these frequencies. The radiative transfer simulations are done for 

3 km thick clouds at appropriate heights over land and water surfaces. The brightness 

temperatures at nadir and near 49° are used in the analysis. Since cirrus clouds at mi­

crowave wavelengths will usually be in the linear radiative transfer regime, a natural 

quantity to consider is the ratio of the brightness temperature depression to ice water 

path (t!l.Tb/ IW P), which here is called the sensitivity. 

The range of linearity is about a factor of ten from a detectable limit of a bright­

ness temperature depression of 3°K to around 300 K. A test with cirrus clouds at different 

heights in the tropical atmosphere shows that the sensitivity is independent of temperature 

except for the smallest size distributions and lowest frequencies where there is significant 

emission. A test of placing the same temperature cirrus cloud in the two different atmo­

spheres shows that the sensitivity is independent of the underlying atmosphere for higher 

frequencies and larger size distributions. 

The brightness temperature depression depends most strongly on the "average" size 

of the distribution as indicated by Dm. There is a factor of ten in sensitivity between 

Dm = 100J1ID and Dm = 400j.Lm. The width of the gamma distribution has a much 

smaller effect of at most 20% over the range of Q considered. The range in sensitivity 

from particle shape is typically a factor of 2 for the same size distribution. Of course, the 

sensitivity increases dramatically with frequency. The higher frequencies should be able 
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to detect moderate values of cirrus IWP: at 340 GHz for Dm = 250J,Lm an IWP of 60 gjm2 

generates a nadir brightness temperature depression of 3 to 6°K depending on shape. 

Given the wide range in sensitivities it is important to be able to infer the average 

particle size and shape in order to relate a brightness temperature depression to an IWP. 

Because the sensitivity varies differently with particle size for different frequencies, ratios of 

brightness temperature depressions at two adjacent frequencies contain information about 

the size distribution. The most relevant ratio available in this study (.6.Tb( 340) j .6.Tb( 220) ) 

is multivalued, i.e. a single ratio can mean either small or large particles, so other infor­

mation about the size distribution may be needed. If even higher frequencies are used, 

the frequency ratio becomes less multi valued because more of the size distributions lie on 

a single branch. Higher frequencies are also more sensitive to cirrus mass and less to the 

size distribution. 

The ratio of brightness temperature depressions at the two polarizations has informa­

tion about particle shape. The polarization ratio depends mostly on the particle aspect 

ratio as well as average size. The probable random attachment of bullets in rosettes com­

plicates the problem of determining their shape from the polarization ratio. The ratio of 

brightness temperature depressions at the two angles considered here contains informa­

tion much like the polarization ratio. The range in sensitivity due to particle shape is 

significantly reduced by using vertical polarization at 490 and expressing the size of the 

distribution by a characteristic size based on the square of the particle volume. 

A specific cirrus microwave remote sensing algorithm is not presented here because 

it would depend on the particular experimental setup. Instead, some guidelines are given 

for how to use the above results for a remote sensing method. The brightness temperature 

depression, which is the signal proportional to cirrus IWP, can be found from a brightness 

temperature image by differencing clear or thin cirrus pixels from the thicker cirrus pixels. 

This assumes that the sub cirrus layer is homogeneous, but perhaps the lower frequencies 

could be used to detect and correct for inhomogeneities. Information about average par­

ticle size can come from .6.Tb frequencies ratios or from multichannel infrared retrievals. 

Information about particle shape might be obtained from polarization ratios or assump­

tions using environmental conditions such as temperature. Having the size and shape 

information allows one to use the correct sensitivity to convert the measured brightness 

temperature to cirrus IWP. These idea will be tested and developed in the future using 

data from NASA's Millimeter-Wave Imaging Radiometer. 

While microwave radiometry cannot provide information on the vertical structure 

of cirrus clouds, it should be able to measure integrated properties such as ice mass and 

characteristic particle size. Since cirrus clouds are optically thin at microwave frequencies, 

the radiative transfer is linear, and the brightness temperature depression for spatial 

inhomogeneities or particle mixtures is simply the appropriate average. The effects of 

cirrus particle shape can be modeled accurately at microwave wavelengths (using the 
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discrete dipole approximation), unlike at the shorter wavelengths in the infrared and 

visible. The scattering based microwave method of cirrus retrieval has properties, such 

as cloud temperature independence, that are different from the emission based infrared 

methods. The microwave cirrus retrieval approach is complementary to, and perhaps best 

used in conjunction with, the window infrared emission and near IR reflectance techniques. 

6.2 Summary of Bayesian Precipitation Retrieval 

Passive microwave radiometers on spacecraft instruments are either sensitive primar­

ily to the upper parts of precipitating hydrometeor structures or are influenced strongly 

by the surface in addition to the rain layer. Thus effective use of the multiple channels 

available requires the retrieval of hydrometeor profiles rather than the surface rain rate, 

because the surface rainfall is not uniquely related to the rest of the profile. The vertical 

structure of rain and ice particles is related to the latent heating profile, which is important 

for its dynamical effect. The major difficulty in microwave precipitation retrieval is that 

even multiple frequency measurements do not uniquely define the hydrometeor profile. 

Thus additional information is needed to constrain the retrieval to the most physically 

reasonable profile. ill the method developed here the extra information is provided by 

hydrometeor output from cloud models that have bulk microphysical parameterizations. 

6.2.1 Description of precipitation retrieval method 

The retrieval of profiles is done by combining the information from cloud models with 

forward microwave radiative transfer modeling using Bayes theorem. Bayes theorem com­

putes the posterior probability distribution of the hydrometeor profile given an observation 

by multiplying the prior distribution times the forward conditional distribution. The prior 

probability distribution of the hydrometer profile contains the additional information from 

cloud model output. The forward distribution is the probability of an observation vector 

given a particular hydrometeor distribution, and is computed from the radiative transfer 

model. A profile is retrieved for an observation by finding the hydrometeor structure that 

maximizes the posterior probability density function. 

The hydrometeor profile is represented as a horizontally homogeneous column with 

any number of layers. There are up to four species of hydrometeors: rain, two types of ice 

particles, and a water coated particle (not used for this work). The particles are assumed to 

be spherical and have exponential size distributions. The parameters that describe each 

layer are layer top temperature, water vapor mass content, cloud liquid water content, 

mass content (M) and mean drop diameter (D) for rain, and M, D, and density p for 

the ice particles. ill addition there are surface temperature and emissivity parameters. A 

precipitation structure specifies the number of layers and which parameters within each 

layer are variable for the retrieval. Those parameters that are not chosen to vary (e.g. 
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temperature and water vapor) are fixed at climatological values obtained from the cloud 

model output. Only the mass content of the hydrometeor distributions is allowed to vary 

for this work. 

The prior probability function is a multivariate lognormal distribution. Actual hy­

drometeor mass contents are approximately lognormal. The multivariate aspect of the 

prior distribution is what provides the crucial information on the correlation between var­

ious hydrometeor species at a number of levels. The parameters of the prior distribution 

are found by computing the mean vector and covariance matrix of the precipitation profile 

vector computed for each raining pixel in a range of times from the cloud model output. 

The forward conditional probability distribution is an independent normal distribu­

tion around the simulated observation vector obtained from the radiative transfer model 

for a given hydrometeor structure. The width of the normal distribution is specified for 

each microwave channel, and this governs the tradeoff between fitting the model closer to 

the data or relying more on the prior information. The appropriate forward distribution 

width should be chosen based on the accuracy of the forward model. 

The forward model is designed to compute upwelling brightness temperatures from 

the precipitation structure very rapidly. The scattering properties of the rain and ice 

distributions are found from interpolation in tables prepared from Mie calculations. The 

two-dimensional tables are functions of average particle size and temperature (for rain) or 

density (for ice particles). Since here the average size is not a variable, the average particle 

size may be fixed or be computed from the mass content assuming a fixed distribution 

intercept. The absorption by water vapor and cloud liquid water is computed with the 

MPM92 model. The upwelling brightness temperatures are computed from the layer 

scattering information and surface properties with an Eddington approximation model. 

The surface properties are assumed to be either Lambertian (for land) or Fresnel (for calm 

water). The Fresnel surface is the only source of polarization in the model. 

Two methods are described for finding the retrieved profile from the high dimen­

sional posterior probability distribution. The first performs Monte Carlo integration over 

the hydrometeor p:rofile space to find the first and second (logarithmic) moments. This 

is appropriate for estimating the parameters of the hydrometeor probability distribution 

from a number of observations, but not for the single pixel retrievals done here. The second 

method finds the maximum of the posterior probability density function with an optimiza­

tion technique. Simulated observations (i.e. Tb pixels) are precomputed and stored for 

large number of profiles. For each observation the Powell optimization algorithm is started 

off with those profiles that have simulated observations close to the actual observation and 

have the highest prior probability function. A number of Powell optimization nms can be 

done to help make sure the global maximum is found. 
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6.2.2 Theoretical tests 

Because the Bayesian precipitation retrieval system is very flexible and complex a 

number of theoretical tests were done to discover how it behaves and help decide among 

the many ways to configure the system. Synthetic brightness temperature observations 

are computed from cloud model fields, and input to the precipitation retrieval system. 

The theoretical tests allow one to compare the retrieved hydrometeor fields with the 

known "truth". The tests are done with output from a 2D simulation of a tropical squall 

line during GATE using the Goddard Cumulus Ensemble model (Tao and Simpson, 

1989). The simulation provides fields of cloud liquid water, rain, snow, and graupel. 

Three regions containing a total of 300 pixels from different model times are used. The 

forward radiative transfer is done with a more accurate scattering and radiative transfer 

model. The Rutledge and Hobbs microphysical scheme determines the rain and ice size 

distributions and ice particle densities. An observation angle of 53° and frequencies of 

10.7,19.4,37.0, and 85.5 GHz are simulated. The tests are done by varying one aspect at 

a time of the retrieval system inputs. The basic results of the tests are the rms difference 

between true and retrieved surface rain and integrated rain and ice content. 

One test is to determine the best type of precipitation structure to use for the re­

trievals. Ten precipitation structures ranging in complexity from 2 layers to 11 layers 

and from 2 variables to 27 variables are tried. The results show that simple two or three 

layer structures do not perform as well as a five layer structure, but that structures more 

complicated than this are not necessary. Having cloud water in the structure is important 

for retrieving integrated ice mass or for rain over land. Variable snow, water vapor, or 

temperature does not improve the accuracy of the retrieval. Thus a five layer structure 

with variable cloud water, rain, and graupel (11 variables in all) appears to work well and 

is the structure used in the remaining tests. 

The width of the forward probability distribution is another choice to be made. A test 

examined the accuracy of the retrievals with the observation widths for all channels varied 

from 10 K to 8°K. Retrievals with the 10 K width are noisier (less stable) and sometimes 

have worse rms errors than 2°K widths. This occurs because fitting to model error can 

cause bad retrievals. The rms error also increases as the observation widths become large 

because the retrieval relaxes toward the climatological value of the prior distribution. A 

fairly large range of observation widths give basically the same results. The width of the 

forward distribution should be chosen to be comparable to the size of the forward modeling 

errors, which for real data will be substantially larger than for this test. 

A set of microphysical assumptions must be used to derive the particle size distri­

butions and densities from the variable mass content. A test is done to see the effect of 

using microphysical schemes for the retrieval that are different than that used for the for­

ward simulation. Besides the fixed intercept approach of the Rutledge and Hobbs scheme 
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(NOrain = 8000 mm-1m-3 , NOice = 4000 mm-1m-3 , Pgra'U.p = 0.4 g/cm3 ), two fixed aver­

age size schemes were used: the default in RAMS (Drain = 0.54 mm, Dgra'U.p = 1.00 mID, 

Pgra'U.p = 0.9 g/cm3 ), and a modification (Drain = 0.54 mID, Dgra'U.p = 0.8 mID, Pgra'U.p = 

0.4 g/cm3 ). The larger raindrops of the two fixed size schemes causes much lower rain 

mass to be retrieved. The scheme with the larger solid graupel has very high errors for 

integrated ice because much less ice amount is retrieved. This test shows that large errors 

can be expected from incorrect microphysical assumptions. 

Another test investigates the effects of changes in how the prior distribution is made. 

Ignoring the covariance information is quite detrimental to the rain retrieval, but less so 

for the integrated ice mass. Using a lower raining pixel cutoff for the prior distribution 

results in considerably worse rms error for rain retrieval over land because this increases 

the width of the prior distribution, allowing much larger retrievals of rain. Having the 

prior distribution made from cloud model times close to the times of the simulated data 

did improve the retrievals, but not dramatically. 

The final test looked into the effects of using less than the full complement of four 

frequencies. The 10 GHz channel is needed for retrieving rain accurately over a water 

surface, as 19 GHz gets contaminated by ice scattering. The 85 GHz channel is very 

useful for determining ice content, but has high error if used alone. In general, having 

all four channels greatly improves the retrieval as compared with having just one or two 

channels. 

6.2.3 Validation experiment with CaPE data 

A preliminary validation is done with data from the CaPE experiment in Florida in 

August 1991. Passive microwave observations made with the Advanced Microwave Pre­

cipitation Radiometer mounted on the ER-2 aircraft flying at 20 km altitude are used. 

The AMPR is a cross track scanning instrument with single channels at 10.7, 19.4, 37.1, 

and 85.5 GHz. The resolutions at the ground of 0.6 to 2.8 km greatly lessen the problems 

of sub-footprint variability. The CP-2 multiparameter radar provides the ground truth for 

the hydrometeor profiles. Rather few coincident AMPR and CP-2 datasets were produced 

during CaPE so only two datasets, one over land and one over the ocean, are analyzed for 

this experiment. The land case has stronger convection with AMPR brightness tempera­

tures dropping to 105°K at 37 and 85 GHz and radar reflectivities over 55 dBZ, compared 

with 85 GHz Tb'S down to 1600 K for the ocean dataset. The prior information for the 

retrieval is from a simulation performed with the Regional Atmospheric Modeling System 

(RAMS) of Florida sea breeze initiated convection. The 2D simulation was a modification 

of one performed by Nicholls et al. (1991). 

The two datasets are about 100 km from the CP-2 radar resulting in too much 

attenuation at X band, so only the reflectivity ZH and differential reflectivity ZDR at 

S band are available. The retrieved hydrometeor profiles are compared with radar data 
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either by simulating radar reflectivity from the profiles or by inverting the radar data to 

provide hydrometeor mass content. Two methods of radar inversion are used. Turk 

et al. (1993) finds rain, mixed particle, and ice particle distributions from the reflectivity. 

A method from Illingworth and Caylor (1989) computes only the rain distribution from 

reflectivity and ZDR. 

A seven layer precipitation structure with variable cloud water, rain, and a single 

high density ice category (graupel) is used for the microwave precipitation retrieval. Low 

density ice (aggregate) is not included because it does not produce large enough brightness 

temperature depressions for the distributions of aggregate and graupel obtained from the 

cloud model. There are 14 or 15 variables in the precipitation structure (the surface 

emissivity is retrieved over land). The integrated rain mass retrieved over the ocean agrees 

relatively well with the radar rain mass, though the amount of rain retrieved depends on 

the microphysical assumptions made. There is uncertainty in making the comparison 

between AMPR and CP-2 rain mass because there is more than a factor of two difference 

between the two radar derived integrated rain masses in some areas. There is far too 

little integrated rain mass retrieved in the strong convection area in the land case. This 

is from too low a correlation between total ice mass and rain in the cloud model output, 

because the prior distribution is providing most of the information about rain over land. 

In general there is too much rain retrieved in no or very low rain areas. This is probably 

caused by the prior distribution applying only to raining pixels and problems with the 

surface emissivity models. Excluding the nonraining areas the reflectivity profiles for the 

rain layers have an rms difference of better than 4 dB for the water case and 9 dB for 

the land case. The integrated ice mass retrieved from the microwave data agrees well 

with that from radar. If the vertical distribution of ice is significantly different from that 

expected by the prior information then the profiles of reflectivity do not agree well. The 

retrieved vertical distribution of ice falls off too quickly in the strong land convection 

because the form of the prior distribution is unable to capture the correct relationship 

between lower and higher level ice mass. The rms reflectivity difference for ice is about 

6 dB at lower levels and increases to above 12 dB at higher levels for the land case, and 

has approximately the opposite behavior for the water case. 

A number of areas in which the Bayesian precipitation retrieval could be improved are 

found by investigating the effects of different microphysical assumptions on the validation 

results and looking at the cloud model source of prior information. The forward radiative 

transfer modeling could be improved by implementing realistic surface emissivity models. 

Two parameter size distribution information from cloud models would allow both the 

mass content and mean diameter to be variable thus eliminating the need for dubious 

microphysical assumptions concerning size distributions. The prior distribution could be 

improved by a more general functional form than the lognormal multivariate distribution 
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used here. Most important are improved cloud model microphysical parameterizations 

that have been verified with passive and active microwave observations. 

The Tropical Rain Measuring Mission (TRMM) has a requirement for a passive mi­

crowave hydrometeor profile retrieving algorithm, and a number of such methods are 

under development. The Bayesian precipitation retrieval algorithm, while too inefficient 

in its current form, contains a number of concepts that could aid in the development of 

the best microwave profiling scheme for TRMM. One is using a mathematical framework 

for incorporating statistical microphysical information from cloud models to constrain the 

nonunique inversion problem. The Bayesian framework also provides a way to estimate 

the uncertainty of each retrieved parameter by determining the width of posterior distri­

bution. The issue of how to combine data from the multiple sensors on TRMM is another 

for which the Bayesian method provides a potential solution. While not pursued in this 

work, it is simple to extend the Bayesian method to incorporate data from the TRMM 

precipitation radar, and perhaps visible and infrared sensors, along with data from the 

microwave imager. This would provide a single retrieval of hydrometeor profiles that 

is consistent with all the available data and with prior information about precipitation 

structure. 



Bibliography 

Acton, F. S., 1990: Numerical Methods that Work. Mathematical Association of America. 

Adler, R. F. and A. J. Negri, 1988: A satellite infrared technique to estimate tropical 

convective and stratiform precipitation. J. Appl. Met., 27, 31-50. 

Adler, R. F., A. J. Negri, N. Prasad, and W.-K. Tao, 1989: Cloud model-based simulations 

of satellite microwave data and their applications to an SSM/I rain algorithm. In 

Fourth Conference on Satellite Meteorology and Oceanography, None, editor. 

Adler, R. F., H.-Y. M. Yeh, N. Prasad, W.-K. Tao, and J. Simpson, 1991: Microwave 

simulations of a tropical rainfall system with a three-dimensional cloud model. J. 

Appl. Met., 30, 924-953. 

Arkin, P. A., 1979: The relationship between fractional coverage of high cloud and rainfall 

accumulations during GATE over the B-scale array. Mon. Wea. Rev., 107, 1382-1387. 

Atlas, D. and C. W. Ulbrich, 1990: Early foundations of the measurement of rainfall by 

radar. In Radars in Meteorology, Atlas, D., editor. American Meteorological Society, 

Boston, 86-97. 

Barber, P. and C. Yeh, 1975: Scattering of electromagnetic waves by arbitrary shaped 

dielectric bodies. Appl. Optics, 14, 2864-2872. 

Barton, I. J., 1983: Upper-level cloud climatology from an orbiting satellite. J. Atmos. 

Sci., 40, 435-447. 

Bohren, C. F. and D. R. Huffman, 1983: Absorption and Scattering of Light by Small 

Particles. John Wiley & Sons, 530 pp. 

Bringi, V. N. and A. Hendry, 1990: Technology of polarization diversity radars for meteo­

rology. In Radars in Meteorology, Atlas, D., editor. American Meteorological Society, 

Boston, 153-190. 

Cotton, W. R., M. A. Stephens, T. Nehrkorn, and G. J. Tripoli, 1982: The Colorado 

State University three dimensional cloud/mesoscale model, 1982, II: An ice parame­

terization. J. Rech. Atmos., 16, 295-320. 



182 

Cotton, W. R., G. J. Tripoli, and R. M. Rauber, 1986: Numerical simulation of the 

effects of varying ice crystal nucleation rates and aggregation processes on orographic 

snowfall. J. Clim. Appl. Met., 25, 1658-1680. 

DeMaria, M., 1985: Linear response of a stratified tropical atmosphere to convective 

forcing. J. Atmos. Sci., 42, 1944-1959. 

Draine, B. T., 1988: The discrete dipole approximation and its application to interstellar 

graphite grains. Astrophys. J., 333, 848-872. 

Dungey, C. E. and C. F. Bohren, 1993: Backscattering by nonspherical hydrometeors as 

calculated by the coupled-dipole method: An application in radar meteorology. J. 

Atmos. Ocean. Tech., 10, 526-532. 

Evans, K. F., 1990: Polarized radiative transfer modeling: An application to microwave 

remote sensing of precipitation. Master's thesis, Colorado State University. 

Evans, K. F., 1993: Two-dimensional radiative transfer in cloudy atmospheres: The 

spherical harmonic spatial grid method. J. Atmos. Sci., 50, 3111-3124. 

Evans, K. F. and G. L. Stephens, 1991: A new polarized atmospheric radiative transfer 

model. J. Quant. Spectosc. Radiat. Transfer, 46,412-423. 

Evans, K. F. and G. L. Stephens, 1992: A theoretical basis for passive microwave remote 

sensing of cirrus. In Proceedings of Specialist Meeting on Microwave Radiometry and 

Remote Sensing Applications, Westwater, R., editor. 

Evans, K. F. and J. Vivekanandan, 1990: Multiparameter radar and microwave radiative 

transfer modeling of nonspherical atmospheric ice particles. IEEE Trans. Geosci. 

Remote Sensing, 28, 423-437. 

Flatau, P. J., 1990: Light scattering by rectangular solids in the discrete-dipole approxi­

mation: A new algorithm exploiting the block-Toeplitz structure. J. Opt. Soc. Am., 

7,593-600. 

Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1993: Liquid and ice cloud microphysics 

in the CSU GCM. Part I: Model description and results of a baseline simulation. J. 

Atmos. Sci. To be Submitted. 

Fulton, R. and G. M. Heymsfield, 1991: Microphysical and radiative characteristics of 

convective clouds during COHMEX. J. Appl. Met., 30, 98-116. 

Gasiewski, A. J., 1992: Numerical sensitivity analysis of passive EHF and SMMW channels 

to tropospheric water vaper, clouds, and precipitation. IEEE Trans. Geosci. Remote 

Sensing, 30, 859-870. 



183 

Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press. 

Goedecke, G. H. and S. G. O'Brien, 1988: Scattering by irregular inhomogeneous particles 

via the digitized Green's function algorithm. Appl. Optics, 27, 2431-2437. 

Goodman, J. J., B. T. Draine, and P. Flatau, 1991: Application offast-Fourier-transform 

techniques to the discrete-dipole approximation. Optics Lett., 16, 1198-1200. 

Grant, I. P. and G. E. Hunt, 1969: Discrete space theory of radiative transfer. Pmc. Roy. 

Soc. London, A313, 183-197. 

Hartmann, D. L., H. H. Hendon, and J. Robert A. Houze, 1984: Some implications of the 

mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. 

J. Atmos. Sci., 41, 113-120. 

Heymsfield, A., 1972: Ice crystal terminal velocities. J. Atmos. Sci., 29, 1348. 

Heymsfield, A. J. and C. M. R. Platt, 1984: A parameterization of the particle size 

spectrum of ice clouds in terms of the ambient temperature and the ice water content. 

J. Atmos. Sci., 41, 846-855. 

Illingworth, A. J. and I. J. Caylor, 1989: Polarization radar estimates of raindrop size 

spectra and rainfall rates. J. Atmos. Ocean. Tech., 6,939-949. 

Inoue, T., 1985: On the temperature and effective emissivity determination of of semi­

transparent cirrus clouds by bispectral measurements in the 10 Jl:m. window region. 

J. Meteoml Soc. Japan, 63,88-98. 

Intrieri, J. M., G. L. Stephens, W. L. Eberhard, and T. Uttal, 1993: A method for 

determining cirrus cloud particle sizes using lidar and radar backscatter technique. J. 

Appl. Met., 32, 1074-1082. 

Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976: The delta-Eddington approx­

imation for radiative flux transfer. J. Atmos. Sci., 33, 2452-2459. 

Joss, J. and A. Waldvogel, 1990: Precipitation measurement and hydrology. In Radars in 

Meteorology, Atlas, D., editor. American Meteorological Society, Boston, 577-606. 

Kedem, B., L. Chiu, and G. North, 1990: Estimation of mean rain rates: Application to 

satellite observations. J. Geophys. Res., 95, 1965-1972. 

Kosarev, A. L. and I. P. Mazin, 1989: Empirical model of physical structure of the upper 

level clouds of the middle latitudes. In Radiation Properties of Cirrus Clouds, 29-52. 



184 

Kropfli, R. A., S. Y. Matrosov, T. Uttal, B. W. Orr, A. S. Frisch, K. A. Clark, B. W. 

Bartram, and J. B. Snider, 1993: Studies of cloud microphysics with millimeter wave 

radar. Atmos. Res. Submitted. 

Kummerow, C., I. M. Hakkarinen, H. F. Pierce, and J. A. Weinman, 1991: Determination 

of precipitation profiles for airborne passive microwave radiometric measurements. J. 

Atmos. Ocean. Tech., 8, 148-159. 

Kummerow, C., R. A. Mack, and I. M. Hakkarinen, 1989: A self-consistency approach to 

improve microwave rainfall rate estimation from space. J. Appl. Met., 28, 869-884. 

Kummerow, C. D., 1993: On the accuracy of the Eddington approximation for radiative 

transfer in the microwave frequencies. J. Geophys. Res., 98, 2757-2765. 

Larson, H. J., 1982: Introduction to Probability Theory and Statistical Inference. John 

Wiley & Sons, 637 pp. 

Liebe, H. J., 1985: An updated model for millimeter wave propagation in moist air. Radio 

Sci., 20, 1069-1089. 

Liebe, H. J. and G. A. Hufford, 1993: Models for atmospheric refractivity and radio-wave 

propagation at frequencies below 1 THz. Int. J. Infrared and Millimeter Waves. In 

press. 

Liou, K.-N., 1986: Influence of cirrus clouds on weather and climate processes. Mon. 

Wea. Rev., 114, 1167-1199. 

Liu, G. and J. A. Curry, 1992: Retrieval of precipitation from satellite microwave mea­

surements using both emission and scattering. J. Geophys. Res., 97,9959-9974. 

Marzano, F. S., A. Mugnai, E. A. Smith, X. Xiang, J. Turk, and J. Vivekanandan, 1993: 

Active and passive microwave remote sensing of precipitating storms during CaPE. 

Part II: Intercomparison of precipitation retrievals over land from AMPR radiometer 

and CP-2 radar. Met. and Atmos. Phys. Accepted. 

Matrosov, S. Y., B. W. Orr, R. A. Kropfil, and J. B. Snider, 1993: Retrieval of vertical pro­

files of cirrus cloud microphysical parameters from doppler radar and IR radiometer 

measurements. J. Atmos. Sci. Submitted. 

Matrosov, S. Y., T. Uttal, J. B. Snider, and R. A. Kropfli, 1992: Estimation of ice 

cloud parameters from ground-based infrared radiometer and radar measurements. 

J. Geophys. Res., 97, 11567-11574. 



185 

Meador, W. E. and W. R. Weaver, 1980: Two-stream approximations to radiative trans­

fer in planetary atmospheres: A unified description of existing methods and a new 

improvement. J. Atmos. Sci., 37, 630-643. 

Minnis, P., P. W. Heck, and D. F. Young, 1993b: Inference of cloud cirrus properties using 

satellite-observed visible and infrared radiances. Part II: Verification of theoretical 

cirrus radiative properties. J. Atmos. Sci., 50, 1305-1322. 

Minnis, P., K.-N. Liou, and Y. Takano, 1993a: Inference of cloud cirrus properties using 

satellite-observed visible and infrared radiances. Part I: Parameterization of radiance 

fields. J. Atmos. Sci., 50, 1279-1304. 

Mugnai, A., H. J. Cooper, E. A. Smith, and G. J. Tripoli, 1990: Simulation of microwave 

brightness temperature of an evolving hailstorm at SSM/I frequencies. Bull. Amer. 

Meteor. Soc., 71, 2-13. 

Mugnai, A. and E. A. Smith, 1988: Radiative transfer to space through a precipitating 

cloud at multiple microwave frequencies. Part I: Model description. J. Appl. Met., 

27, 1055-1073. 

Mugnai, A., E. A. Smith, and G. J. Tripoli, 1993: Foundations for statistical-physical pre­

cipitation retrieval from passive microwave satellite measurements. Part II: Emission­

source and generalized weighting-function properties of a time-dependent cloud­

radiation model. J. Appl. Met., 32, 17-39. 

Mugnai, A. and W. J. Wiscombe, 1986: Scattering from nonspherical Chebyshev parti­

cles. I: Cross sections, single-scattering albedo, asymmetry factor, and backscattered 

fraction. Appl. Optics, 25, 1235-1244. 

Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: A two-dimensional numerical 

investigation of the interaction between sea breezes and deep convection over the 

Florida peninsula. Mon. Wea. Rev., 119, 298-332. 

O'Brien, D. M., 1992: Accelerated quasi monte carlo integration of the radiative transfer 

equation. J. Quant. Spectosc. Radiat. Transfer, 48,41-59. 

O'Brien, S. G. and G. H. Goedecke, 1988: Scattering of millimeter waves by snow crystals 

and equivalent homogeneous symmetric particles. Appl. Optics, 27, 2439-2444. 

Olson, W. S., 1989: Physical retrieval of rainfall rates over the ocean by multispectral 

microwave radiometry: Application to tropical cyclones. J. Geophys. Res., 94,2267-

2280. 



186 

Ono, A., 1969: The shape and riming properties of ice crystals in natural clouds. J. 

Atmos. Sci., 26, 138. 

Ou, S. C., K. N. Liou, W. M. Gooch, and Y. Takano, 1993: Remote sensing of cirrus 

cloud parameters using advanced very-high-resolution radiometer 3.7- and 10.9-ILm 

channels. Appl. Optics, 32, 2171-2180. 

Parol, F., J. C. buriez, G. Rogniez, and Y. Fouquart, 1991: Information content of A VHRR 

channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. 

Met., 30, 973-984. 

Petty, G. W. and K. B. Katsaros, 1990: Precipitation observed over the south China sea by 

the Nimbus-7 scanning multichannel microwave radiometer during winter MONEX. 

J. Appl. Met., 29, 273-287. 

Pilewskie, P. and S. Twomey, 1987: Discrimination of ice from water in clouds by optical 

remote sensing. Atmos. Res., 21, 113-122. 

Platt, C. M. R., 1979: Remote sounding of high clouds. I: Calculation of visible and 

infrared optical properties from lidar and radiometer measurements. J. Appl. Met., 

18, 1144-1150. 

Platt, C. M. R., 1981: The effect of cirrus of varying optical depth on the extraterrestrial 

net radiative flux. Quart. J. R. Met. Soc., 1981, 671-678. 

Platt, C. M. R., N. L. Abshire, and G. T. McNice, 1978: Some microphysical properties 

of an ice cloud from lidar observation of horizontally oriented crystals. J. Appl. Met., 

17, 1220-1224. 

Prabhakara, C., G. Dalu, G. L. Liberti, J. J. Nucciarone, and R. Suhasini, 1992: Rainfall 

estimation over oceans from SMMR and SSM/I microwave data. J. Appl. Met., 31, 

532-552. 

Prabhakara, C., R. S. Fraser, G. Dalu, M. L. C. Wu, R. J. Curran, and T. Styles, 1988: 

Thin cirrus clouds: Seasonal distribution over oceans deduced from Nimbus-4 Iris. J. 

Appl. Met., 27,379-399. 

Pruppacher, H. R. and J. D. Klett, 1980: Microphysics of Clouds and Precipitation. 

Reidel, Dordrecht, Holland, 714 pp. 

Purcell, E. M. and C. R. Pennypacker, 1973: Scattering and absorption of light by 

nonspherical dielectric grains. Astrophys. J., 186, 705-714. 

Ray, P. S., 1972: Broadband complex refractive indices of ice and water. Appl. Optics, 

11, 1836-1843. 



187 

Riebl, H. and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. 

Geophysica (Helsinki), 6,503-538. 

Rossow, W. B., F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, 

E. Ruprecht, G. Seze, C. Simmer, and E. Smith, 1985: ISCCP cloud algorithm 

intercomparison. J. Clim. Appl. Met., 24, 877-903. 

Rossow, W. B. and R. A. Schiffer, 1991: ISSCP cloud data products. Bull. Amer. Meteor. 

Soc., 72, 2-20. 

Rutledge, S. A. and P. V. Hobbs, 1984: The mesoscale and microscale structure and 

organization of clouds and precipitation in midlatitude cyclones, XXI: A diagnostic 

modeling study of precipitation development in narrow cold-frontal rainbands. J. 

Atmos. Sci., 41, 2949-2972. 

Sassen, K., 1974: Depolarization oflaser light backscattered by artificial clouds. J. Appl. 

Met., 13, 923-933. 

Sassen, K., C. J. Grund, J. D. Spinhirne, M. M. Hardesty, and J. M. Alvarez, 1990: 

The 27-28 October 1986 FIRE IFO cirrus case study: A five lidar overview of cloud 

structure and evolution. Mon. Wea. Rev., 118, 2288. 

Scbluessel, P. and H. Luthardt, 1991: Surface wind speeds over the north sea from special 

sensor microwave/imager observations. J. Geophys. Res., 96, 4845-4853. 

Seliga, T. A. and V. N. Bringi, 1976: Potential use of radar differential reflectivity mea­

surements at orthogonal polarizations for measuring precipitation. J. Appl. Met., 15, 

69-76. 

Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed tropical rainfall measuring 

mission (TRMM) satellite. Bull. A mer. Meteor. Soc., 1988, 278-295. 

Singham, M. K., S. B. Singham, and G. C. Salzman, 1986: The scattering matrix for 

randomly oriented particles. Journal of Chemical Physics, 85, 3807-3815. 

Singham, S. B. and C. F. Bohren, 1987: Light scattering by an arbitrary particle: A 

physical reformulation of the coupled dipole method. Opt. Let., 12, 10-12. 

Smith, E. A. and A. Mugnai, 1988: Radiative transfer to space through a precipitating 

cloud at multiple microwave frequencies. Part II: Results and analysis. J. Appl. Met., 

27, 1074-1091. 

Smith, E. A., A. Mugnai, H. J. Cooper, G. J. Tripoli, and X. Xiang, 1992: Foundations for 

statistical-physical precipitation retrieval from passive microwave satellite measure­

ments. Part I: Brightness-temperature properties of a time-dependent cloud-radiation 

model. J. Appl. Met., 31, 506-531. 



188 

Smith, W. L., X. L. Ma, S. A. Ackerman, H. E. Revercomb, and R. O. Knuteson, 1993: 

Remote sensing cloud properties from high spectral resolution infrared observations. 

J. Atmos. Sci., 50, 1708-1720. 

Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land 

and ocean with the SSM/I: identification and characteristics of the scattering signal. 

J. Atmos. Ocean. Tech., 6, 254-273. 

Spencer, R. W., R. E. Hood, F. LaFontaine, and E. A. Smith, 1993: High resolution mi­

crowave imaging of the Earth with the advanced microwave precipitation radiometer. 

Part I: System description and sample imagery. J. Atmos. Ocean. Tech. In Press. 

Spencer, R. W., D. W. Martin, B. B. Hinton, and J. A. Weinman, 1983: Satellite mi­

crowave radiances correlated with radar rain rates over land. Nature, 304, 141-143. 

Spinhirne, J. D. and W. D. Hart, 1990: Cirrus structure and radiative parameters from 

airborne lidar and spectral radiometer observations: The 28 October 1986 FIRE 

study. Mon. Wea. Rev., 118, 2329. 

Stackhouse, P. W. and G. L. Stephens, 1991: A theoretical and observational study of the 

radiative properties of cirrus: Results for FIRE 1986. J. Atmos. Sci., 48, 2044-2059. 

Stephens, G. L. and P. J. Webster, 1981: Clouds and climate: Sensitivity of simple 

systems. J. Atmos. Sci., 38, 235-247. 

Tao, W.-K. and J. Simpson, 1989: Modeling study of a tropical squall-type convective 

line. J. Atmos. Sci., 46, 177-202. 

Tao, W. K., J. Simpson, S. Lang, M. McCumber, R. Adler, and R. Penc, 1990: An 

algorithm to estimate the heating budget from vertical hydrometeor profiles. J. Appl. 

Met., 29, 1232-1244. 

Thiele, O. W., 1987: On requirements for a satellite mission to measure tropical rainfall. 

Technical report, NASA, 49 pp. 

Tripoli, G. J. and W. R. Cotton, 1982: The Colorado State University three dimen­

sional cloud/mesoscale model, 1982, I: General theoretical framework and sensitivity 

experiments. 1. Rech. Atmos., 16, 185-220. 

Turk, J., J. Vivekanandan, F. S. Marzano, R. E. Hood, R. W. Spencer, and F. J. La­

Fontaine, 1993: Active and passive microwave remote sensing of precipitating storms 

during cape. Part I: Advanced microwave precipitation radiometer and polarimetric 

radar measurements and models. Met. and Atmos. Phys. Accepted. 



189 

van de Hulst, H. C., 1963: A new look at multiple scattering. Teclmical report, Goddard 

Institute for Space Studies, NASA, New York, NY. 

van de Hulst, H. C., 1981: Light Scattering by Small Particles. Dover, 470 pp. 

Vivekanandan, J., J. Turk, and V. N. Bringi, 1993: Advanced microwave precipitation 

radiometer (AMPR) and multiparameter radar comparisons of precipitation. IEEE 

Trans. Geosci. and Rem. Sensing. Accepted. 

Vivekanandan, J., J. Turk, G. L. Stephens, and V. N. Bringi, 1990: Microwave radiative 

transfer studies using combined multiparameter radar and radiometer measurements 

during COHMEX. J. Appl. Met., 29, 561-585. 

Yonder Haar, T. H., W. E. Shenk, and D. W. Graul, 1986: Passive microwave radiometer 

experiment for GOES-NEXT. In Second Conference on Satellite Meteorology/ Remote 

Sensing and Applications, None, editor. May 12-16, 1986, Williamsburg, Virginia. 

Warren, S. G., 1984: Optical constants of ice from the ultraviolet to the microwave. Appl. 

Optics, 23, 1206-1225. 

Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and J. L. Jenne, 1986: Global 

distribution of total cloud cover and cloud type amounts over land. NCAR Tech. Note 

NCAR/TN-273+STR, National Center for Atmospheric Research, Boulder, CO. 

Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and J. L. Jenne, 1988: Global 

distribution of total cloud cover and cloud type amounts over ocean. NCAR Tech. 

Note NCAR/TN-317+STR, National Center for Atmospheric Research, Boulder, CO. 

Webster, P. J., 1972: Response of the tropical atmosphere to local, steady, forcing. Mon. 

Wea. Rev., 100, 518-541. 

Weinman, J. A. and R. Davies, 1978: Thermal microwave radiances from horizontally 

finite clouds of hydro meteors. J. Geophys. Res., 83,3099-3107. 

Weinman, J. A. and P. J. Guetter, 1977: Determination of rainfall distributions from 

microwave radiation measured by the Nimbus 6 ESMR. J. Appl. Met., 16,437-442. 

Weng, F., 1992: Vector Radiative Transfer Model: Application to Rainfall Retrieval with 

Microwave Radiometric Data. Dissertation, Colorado State University, Fort Collins, 

CO 80523. 

Wielicki, B. A., J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M.-L. C. 

Wu, D. O. Starr, L. Parker, and R. F. Arduini, 1990: The 27-28 October 1986 FffiE 

IFO cirrus case study: Comparison of radiative transfer theory with observations by 

satellite and aircraft. Mon. Wea. Rev., 118, 2356-2376. 



190 

Wilheit, T. T. and A. T. C. Chang, 1991: Retrieval of monthly rainfall indices from 

microwave radiometric measurements using probability distrtibution functions. J. 

Atmas. Ocean. Tech., 8, 118-136. 

Wilheit, T. T., A. T. C. Chang, M. S. V. Rao, E. B. Rodgers, and J. S. Theon, 1977: A 

satellite technique for quantitatively mapping rainfall rates over the oceans. J. Appl. 

Met., 16, 551-560. 

Williams, S. F., K. Caesar, and K. Southwick, 1992: The convective and precipita­

tion/ electrification (CaPE) experiment: Operations S1llIlIIlary and data inventory. 

Technical document, National Center for Atmospheric Research, Boulder, Colorado, 

425. 

Wiscombe, W. J., 1976: Extension of the doubling method to inhomogeneous sources. J. 

Quant. Spectasc. Radiat. Transfer, 16, 637-658. 

Woodbury, G. E. and M. P. McCormick, 1983: Global distributions of cirrus clouds 

determined from SAGE data. Geaphys. Res. Letters, 10, 1180-1183. 

Woodbury, G. E. and M. P. McCormick, 1986: Zonal and geographical distributions of 

cirrus clouds determined from SAGE data. J. Geaphys. Res., 91, 2775-2785. 

Wu, M.-L., 1987: Determination of cloud ice water content and geometrical thickness 

using microwave and infrared radiometric measurements. J. Clim. Appl. Met., 26, 

878-884. 

Yeh, H.-Y. M., N. Prasad, R. A. Mack, and R. F. Adler, 1990: Aircraft microwave 

observations and simulations of deep convection from 18 to 183 GHZ. Part II: Model 

results. J. Atmas. Ocean. Tech., 7, 392-410. 

Yung, Y. L., 1978: Variational principle for scattering of light by dielectric particles. Appl. 

Optics, 17, 3707-3709. 



Appendix A 

THE DDA FFT SOLUTION METHOD 

The Greens function solution for the electric field (2.1) may be written as 

Ein(r) = S-I(r)p(r) - J G((r - r')p(r')d3r' . (A.l) 

This equation is implemented on a uniform discrete grid of N points, which forms the dis­

crete dipoles making up the particle. The scalar dipole self interaction term (S) depends 

only on the susceptibility and the dipole size. The three-by-three Greens function matrix 

(G) is convolved with the vector dipole polarization (p). The FFT solution method per­

forms this convolution using Fast Fourier Transforms and the conjugate gradient method. 

The discretized linear system from (A.l) may be put in matrix form as 

Ap= b A = 1- SG b = SEin , (A.2) 

where p and b are vectors with 3N complex elements and A is a 3N X 3N complex matrix. 

Multiplication by A is done by an FFT convolution by G followed by a multiplication by 

the diagonal operator S. The simple conjugate gradient method used here requires that 

the system be positive definite, so the objective function to be minimized is set to 

f = ~ lAp - bl 2 
, 

2 

and the gradient of the objective function is 

Vf = At(Ap- b) . 

(A.3) 

(AA) 

The adjoint (t) operation of transposing and complex conjugating becomes just con­

jugating for the Greens function operator which is invariant under transpose, giving 

At = 1 - G* S* . Starting with the noninteracting dipole solution PI = b = S Ein, the 

initial gradient vector is gl = -At(Apl - b), and the inital step direction is hI = gl. Then 

the conjugate gradient iterations proceed as follows: 

en = AtAhn 

A - gn·hn 
- c.;;:fi;; 

Pn+1 = Pn + Ahn 

gn+l = gn - Aen 

i = 'in±it gn 

hn+1 = gn + ihn (A.5) 
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The iterations are stopped when the stopping criterion Ign+1l/lbl becomes less than some 

specified limit. 

The memory space required by the FFT solution method is dominated by the size of 

the FFT arrays. To avoid aliasing the convolutions must be done in arrays twice as large 

in each dimension as the number of dipoles in the particle (a factor of eight in memory). 

The vector to be convolved has three complex elements per dipole (24N), where N is the 

number of grid points (dipoles) in the box that circumscribes the particle. The Greens 

function matrix has six unique elements per dipole, but it has symmetry around the origin 

which allows its storage to be cut almost by two to 24N. There are also five complex vector 

arrays and two scalar complex arrays with a size of the number of dipoles. So the memory 

requirements are about 65N complex numbers. 

The CPU time of the algorithm is dominated by the FFT's in the two convolutions 

per conjugate gradient iteration. The Greens function is transformed before the iterations 

start so only two FFT's are required per convolution. The vector to be convolved is put 

in the FFT work array, padded with zeros to the full size, and FFTed. In Fourier space 

the complex vector (3 elements) is multiplied by the Greens function matrix (3x3), and 

then transformed back. The convolution is speeded up by 20% by avoiding transforms of 

the zero padded region. The number of floating point operations per convolution is about 

240Nlog28N. 



Appendix B 

DEVELOPMENT OF THE EDDINGTON RADIATIVE TRANSFER 

MODEL 

Simple radiative transfer models are often used in microwave precipitation retrieval 

where speed is essential (Kununerowet al., 1989). The Bayesian precipitation retrieval 

method uses Eddington's second approximation (Weinman and Davies, 1978). In this 

model the Eddington two-stream model is solved first. From the Eddington fluxes the 

scattering source term is derived. The radiative transfer equation is then integrated over 

optical depth at the desired observation angle. The two polarizations (horizontal and 

vertical) are treated separately with no interaction. 

B.1 Eddington flux model 

The appropriate radiative transfer equation for passive microwave applications is 

plane-parallel, azimuthally symmetric with only thermal sources. 

dI w 1+1 

J.L-
d 

= -I + - P (J.L, J.L')I (J.L') dJ.L' + (1 - w)T , 
r 2 -1 

(B.1) 

where I is the radiation intensity expressed in brightness temperature, P is the phase func­

tion, w is the single-scatter albedo, T is the environment temperature, and the Rayleigh­

Jeans approximation is used. The optical depth r increases downward, and J.L is positive 

downward. 

The Eddington approximation expands the radiance field to first order in the cosine 

of the zenith angle (I = 10 + 11J.L). Using the notation of Meador and Weaver (1980) 

(except for the sign of J.L) the radiance field may be expressed as a function of the fluxes 

1+ (downward) and 1- (upward): 

1 
1(±J.L) = 2 [(2 ± 3J.L)I+ + (2 =+= 3J.L)I-] (B.2) 

The phase function is also expanded to first order 

P(E» = 1 + 3gcos E> = 1 + 3gJ.LJ.L' , (B.3) 

where 9 is the asymmetry parameter. Substituting these forms for the radiance and phase 

function and integrating over J.L from 0 to 1 gives 
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which may be rearranged into a two-by-two matrix equation for the fluxes: 

! ( ~~) = (-;t tr) ( ~~ ) + ( ~~ ) (B.5) 

r [1-w(4-3g)]/4 

t [7-w(4+3g)]/4 

f3 (l-w)T. 

For a uniform layer, where the coefficients r and t are constant, the two-stream radia­

tive transfer equation may be solved analytically to get solutions in terms of exponentials. 

The eigenvalues for the matrix operator are 

>. = ±vt2 - r2 = ±J3(1-w)(l - wg) (B.6) 

and the eigenvectors are 

( -r) ( t + >. ) t+>', -r (B.7) 

where>. is the positive eigenvalue. The homogeneous solution, the solution for no source, 

is then 

-rC+ e>'T + (t + >.)C-e->'T 

(t + >')C+e>'T - rC-e->'T , (B.8) 

where C± are constants that depend on the boundary conditions. The full solution requires 

that the particular solution for the source term be added to the homogeneous solution. If 

the temperature is linear in optical depth (T = To + T'T) then the particular solution is 

T' 1 
3(1 _ wg) + "2 (To + T'T) 

T' 1 
+ ( ) + -(To + T'T) 3 1- wg 2 

(B.9) 

The constants C+ and C- may be derived from the boundary conditions, i.e. the 

fluxes incident on the layer. First, the particular solution is subtracted off, 

1+ -1+ 1+ hI - 1 - pI , 

and then the homogeneous solution is rearranged to give 

C+ 

C- = 

(t + >.)1h2 + re->.Lh1i!i 
(t + >.)2e>..6.T - r2e->'.6.T 

(t + >.)e>'.6.T1i!i + r1h2 
(t + >.)2e>..6.T - r2e->'.6.T 

(B.10) 

(B.ll) 

For multiple layers the boundary conditions of all the layers must be simultaneously sat-

isfied. 
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B.2 Deriving single layer properties 

The constants C+ and C- that determine the radiation inside a layer depend on the 

flux incident on the boundaries of the layer. In a multi-layer atmosphere the constants 

for the layers are coupled together in a penta-diagonal system. The coupled system may 

be transformed to tri-diagonal by expressing the equations in terms of the reflection R, 

transmission T, and internal source S for each layer. The reflection and transmission due 

to a single layer can be derived from the interaction principle 

RI- +TI+ +S+ 2 1 , (B.12) 

in which the plus superscript refers to downward quantities and the subscripts refer to the 

layer boundary. The upper boundary (1) is at T = 0 while the lower boundary (2) is at 

T = .dT. R and T are found by substituting the homogeneous Eddington solution (zero 

internal source) into the above equation and setting Ii = 0, giving 

Ii = TIt· 

The resulting T and R in terms of the intrinsic layer properties are 

T = 

R = 

2A 
(A + t)eALh + (A - t)e-A~T 

-r( eA~T _ e-A~T) 

(B.13) 

(B.14) 

The downwelling and upwelling source terms, S± can be found by considering the 

case of no incident radiation, It = Ii = o. 

It = 0 ~ Ii!J. = -I~ S+ = Ii!; + I;}2 
Ii = 0 ~ 11:2 = -1;2 S- = Iht + 1;1 

Which allows the constants C~ to be solved for, 

C+ = S 

Cs = 

re-A~TI~ + (t + A)I;2 
(t + A)2eA~T - r2e-A~T 

(t + A)eA~TI~ + rI;2 
(t + A)2eA~T - r2e-A~T 

The particular fluxes at the boundaries (n = 1,2) are 

T' 1 
lin = =f 3(1-wg) + 2Tn, 

(B.15) 

(B.16) 

(B.17) 

where Tl and T2 are the top and bottom temperatures. The final expressions for the 

source terms are best left in terms of the C~ and the Ip above, 

S+ -rC+ eA~T + (t + A)C-e-A~T + 1+ S S p2 

S- (t + A)Ct - rCs + I;i (B.1S) 
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B.3 Two stream tri-diagonal structure 

The layer boundary fluxes I± are related to the source terms S± through a tri­

diagonal matrix whose elements include the reflection and transmission terms R and T 

of the layers. The isotropic boundary radiances, Btr, and Bi:ottam (expressed as emitting 

temperatures), enter in to the expression as extra source terms. For each internal layer, 

there are two equations which follow directly from the interaction principle: 

1;;_1 - RnI::_1 - TnI;; 

-TnI:_1 - RnI~ + I: = 

S-n 

S:: . (B.19) 

At the lower boundary, layer N, there is an extra equation involving reflection from the 

ground (Rg): 

IN_1 - RNltv_1 - TNIN = S-N 

-TNltv_1 - RNIN + ltv S+ N 

IN - Rgltv = Bi:ottam/2 . (B.20) 

At the top of the atmosphere there is no reflection so the incident flux is combined with 

the interaction principle for the first layer to get 

10 - R1It - T1T; 

-T1 Id" - R1T; + It 

Sl + R1Btcrp /2 

st + T1Btcrp /2 . (B.21) 

Btcrp is set to the brightness temperature of the downwelling radiance incident on the top 

of the atmosphere (the cosmic background radiation), while Bbottam is set to the diffuse 

surface emissivity times the surface temperature. These equations represent a tri-diagonal 

system of M = 2N + 1 equations, which is solved by calling a tri-diagonal solver that runs 

in order M operations to provide all the layer interface Eddington fluxes I~. 

B.4 Integrating the radiative transfer equation 

The second part of the Eddington model is to use the Eddington fluxes to calculate 

the the source terms and integrate the radiative transfer equation. The integral is done 

analytically for each layer, so that the radiance exitting a layer is computed from the 

transmission of the radiance entering the layer plus a contribution from that layer. The 

source function has thermal emission and scattering components: 

J(r,J.L) = (1- w)T(r) + ~ 11 P(f.L,f.L')Iedd(f.L')df.L' , 
2 -1 

which for the Eddington approximation becomes 

(B.22) 

(B.23) 
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Using the Eddington solution, the sum and difference of the fluxes may be written in terms 

of the layer constants C+ and C- as 

1++1-

1+ -1-

= (t + oX - r)C+eAT + (t + oX - r)C-e-AT + (To + T'r) 

2 T' 
-(t + oX + r)C+eAT + (t + oX + r)C-e-AT 

-
31-wg 

(B.24) 

(B.25) 

The source function's dependence upon r for a single layer can be made more explicit 

by introducing the coefficients Bo, B', D+ and D-, 

(B.26) 

The coefficients are determined to be 

T'wg 
Bo = To - J.L B' = T' 

1-wg 

D± C± [w(t + oX - r) =t= ~Wg(t + oX + r)J.L] (B.27) 

where To is the temperature at the top of the layer, and To + T't:..r is the temperature at 

the bottom of the layer. 

The radiance at the bottom of a layer (r = t:..r) is found by integrating the source 

term (B.26) for positive J.L, 

(B.28) 

In terms of the coefficients, the radiance at the bottom of the layer is 

The radiance at the top of the layer (r = 0) is found by integrating for negative J.L, 

(B.30) 

which in terms of the coefficients is 

The procedure to compute the upwelling radiance starts with computing the reflec­

tion, transmission, and source terms of the tri-diagonal system from the layer optical depth 

t:.. r, single scattering albedo w, asymmetry factor g, and layer interface temperatures using 

(B.14) and (B.18). The tri-diagonal solver computes the Eddington fluxes 1± from the 
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layer reflection, transmission, and source terms along with the boundary conditions. The 

particular solution is subtracted off the Eddington fluxes (B.9) and then the layer constants 

C± are computed from (B.ll). The n± constants are computed from (B.27) and used 

to find the contribution to the radiance integral from each layer, first for the downward 

integration (B.30) and then for the upward integration (B.32). The upwelling radiance 

at the bottom of the atmosphere is the thermal emission plus the reflected downwelling 

radiance (for a specular Fresnel surface) or the reflected downwelling Eddington flux (for a 

Lambertian surface). The radiance at the top and bottom of the atmosphere is computed 

by summing the contributions from each layer taking into account the attenuation from 

the layers. 
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