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ABSTRACT

A POSTERIORI ERROR ESTIMATES FOR THE POISSON PROBLEM ON CLOSED,

TWO-DIMENSIONAL SURFACES

The solution of partial differential equations on non-Euclidean Domains is an area of much re-

search in recent years. The Poisson Problem is a partial differential equation that is useful on curved

surfaces. On a curved surface, the Poisson Problem features the Laplace-Beltrami Operator, which

is a generalization of the Laplacian and specific to the surface where the problem is being solved. A

Finite Element Method for solving the Poisson Problem on a closed surface has been described and

shown to converge with order h2. Here, we review this finite element method and the background

material necessary for defining it. We then construct an adjoint-based a posteriori error estimate for

the problem, discuss some computational issues that arise in solving the problem and show some

numerical examples. The major sources of numerical error when solving the Poisson problem are

geometric error, discretization error, quadrature error and measurement error. Geometric error oc-

curs when distances, areas and angles are distorted by using a flat domain to parametrize a curved

one. Discretization error is a result of using a finite-dimensional space of functions to approximate

an infinite-dimensional space. Quadrature error arises when we use numerical quadrature to eval-

uate integrals necessary for the finite element method. Measurement error arises from error and

uncertainty in our knowledge of the surface itself. We are able to estimate the amount of each of

these types of error and show when each type of error will be significant.
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1. INTRODUCTION

Suppose we have an object with a shape close to the warped torus in Figure 1.

Suppose that it is partially immersed in water with temperature T1, while the surrounding air is

at temperature T2. Suppose further that we wish to know the difference between the temperature of

the surface underwater and the average temperature of the surface above water at equilibrium. To

do this, we will need to solve the Poisson equation,

−∆Γu = f(x),

on the surface. u(x) is the tempertaure at x. Here, Γ is the surface, ∆Γ is the Laplace-Beltrami

operator for the surface and f(x) describes the forcing as a result of the different temperatures. This

problem can be solved using a finite element method as in [12]. This finite element method is valid

for an arbitrary closed surface with an arbitrary forcing term as long as both are sufficiently regular.

Using that method, there will be numerical error from the following sources.

• Geometric error when areas, distances and angles are distorted by using a piecewise flat do-

main to approximate a curved one.

• Discretization error due to looking for an approximate solution in a finite-dimensional space

of functions.

• Quadrature error due to using numerical quadrature to evaluate the integrals necessary for the

finite element method.

• Measurement error of the surface itself – the measurements of the object are subject to error.

Our method for representing the surface and computing the solution to the Poisson Problem

comes from [12]. The a priori error estimate in this paper is extended to second order quasi-linear

systems in [19]. In [10], the a priori convergence result is extended to higher-order finite elments.
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Fig. 1.1: A warped torus

In [20], the work in [12] and [10] is extended to higher dimensions and to general differential

forms. In [21], the a priori convergence results are further extended to nonlinear problems. In [11],

an a posteriori error estimate for the problem using this method is introduced. A posteriori error

estimates are also considered in [19]. The estimate in [11] does not use duality. The adjoint is

defined but not used to estimate error in [19]. In this dissertation, we extend the methods in [16] and

[17] to the problem and develop an a posteriori error estimate that does use the adjoint. Other work

that has been done on partial differential equations on surfaces includes [14], where time-dependent

problems involving the Laplace-Beltrami operator are solved on evolving surfaces. It is possible to

extend the work in this dissertation to all of this analysis. Nonlinear diffusion problems on surfaces

may be relevant to applications in biology such as pattern formation as in [3].

The Poisson Problem can also be solved on surfaces using other approaches. In [1], the Poisson

Problem on a sphere is solved using a global parameterization. In [2], spherical finite elements are

used to solve the problem on a sphere. In [26], curved elements are used to approximate surfaces. It

is also possible to look at the problem without explicitly representing the surface. We instead have

a level set of a function defined in a three dimensional set in R3. This is the approach taken in [4],

[5], [6] and [22].

In this paper, we review the background material necessary to understand the finite element

method and then develop adjoint-based a posteriori error estimates for each of these types of error.
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Estimating each of these error sources is useful when refining the mesh in order to gain a more

accurate solution. The error estimates are specific to the problem being solved and the quantity of

interest being computed from the solution, so they are useful for measuring how much of what type

of error comes from every part of the surface. This is useful for efficient refinement of the mesh, if

necessary. We discuss some computational issues that arise when computing the solution and error

estimates and how they can be addressed. Among the issues we discuss are the well-posedness of

the problem and specifying the forcing term f in a manner that is computationally feasible.

In Chapter 2, we consider some elementary concepts from differential geometry. These concepts

are important to understanding the finite element method for the problem.

In Chapter 3, we consider the Laplacian and its various meanings. The Laplacian of a function

is related to the difference between the value of the function at the point and the average value of

neighboring points. We then construct the Laplace-Beltrami Operator, which has the same proper-

ties for a function defined on a surface.

In Chapter 4, we review numerical methods for solving the Poisson Problem on a Euclidean

Domain. We consider various methods for dealing with the error in the finite element method for

this problem, including an adjoint-based a posteriori error estimate.

In Chapter 5, we review the finite element method for the Poisson Problem on a Closed Surface

and introduce an adjoint-based a posteriori error estimate for the problem. We interpret and show

how to compute each term in the estimate. An a posteriori error estimate is an estimate that is

computed after the approximate solution has been computed. Since it applies only to the solution

that has been computed, rather than to a broad class of problems as in the case with an a priori error

bound, it is generally much sharper and more useful. We also show that the error estimate goes to

zero with order h2.

In Chapter 6, we show the details of implementing the finite element solution and error estimate.

In Chapter 7, we show numerical examples of the finite element method and error estimate.

In Chapter 8, we discuss dealing with measurement error and uncertainty about the surface and

show some numerical examples.
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2. BASIC NOTIONS FROM DIFFERENTIAL GEOMETRY

2.1 Basic Definitions

Definition 1 (Manifold). A subset Γ of Rn is said to be a k-dimensional manifold if, at every point

x ∈ M , there is an open set W ⊂ Rn containing x such that M ∩W is homeomorphic to Rk.

(Here, k is less than n.)

A two-dimensional manifold in R3 is usually called a surface. This paper deals with surfaces.

In addition, most of the surfaces considered here are closed surfaces.

Definition 2. If Γ is a k−dimensional manifold, x is said to be a boundary point of Γ if there is an

open set W of Rn containing x that is homeomorphic to Rk+ where x is mapped to the origin.

A manifold is said to be closed if it contains no boundary points.

A closed surface is simply a closed two-dimensional manifold in R3. A homeomorphism from

a subset of Rk to a subset of Γ given by Γ ∩W as above is called a surface patch. A collection

of surface patches where every x ∈ Γ is in the image of at least one surface patch is called an

atlas. This produces a way to describe the whole manifold. In this paper, we perform calculus on

surfaces. For this to be possible, a surface needs to have a certain amount of regularity, which can

be characterized using surface patches and atlases.

Definition 3. For k ∈ N, an atlas is said to be Ck if, for any two surface patches with homeomor-

phisms f and g, with images =f and =g respectively, where =f ∩ =g is not empty, g−1(f(x)) is

Ck wherever it is defined.

Definition 4. A surface is Ck if it has an atlas that is Ck.

Definition 5. A surface is said to be orientable if it has an atlas where, for any two surface patches

with homeomorphisms f and g where =f ∩=g is not empty, det(J(g−1(f(x)))) > 0 wherever it is

defined. J is the Jacobian of the transformation g−1(f(x)).
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Definition 6. A surface is said to be regular if it is C∞ and it has an atlas where every surface

patch has a Jacobian that is rank 2.

We carry out computations under the assumption of regular, orientable surface patches. Most

examples are also closed and bounded.

2.2 Representing a Surface

The three main methods for representing a surface are as a parameterization, as a graph and as a

level set of a function.

Parameterization

When we use a parameterization to represent a surface, we mean that we are using a convenient

atlas. We have a set (or a union of sets) in R2 and a function (or functions) taking the set(s) to Γ.

Example 1. The Unit Sphere can be parametrized using spherical coordinates:

x = cosu cos v

y = cosu sin v

z = sinu.

Here, u ∈ [0, 2π] and v ∈
[
−π

2 ,
π
2

]
.

We assume, unless stated otherwise, that we have an atlas consisting of a single surface patch

with a homeomorphism where each component function is C∞.

Once we have a parameterization, we are free to define functions on the surface by defining

them on the domain of the parameterization. The problem then arises of the accurate representation

of distances. We are, in effect, mapping a curved surface to a flat surface with the parameterization.

A well-known example of this problem arises in Geography: any map of the entire world distorts

distances. [23] One consequence is that if we have a function defined on a domain Θ where there

is a map θ : Γ → Θ, naively taking derivatives of the function does not give accurate results

– the derivatives will depend on the parameterization and will not be consistent under alternative

parameterizations.

Definition 7 (Metric Matrices). If we have a domain Θ with a parameterization σ : Θ → Γ, we

denote the Jacobian of f by J . The generalized inverse of J is denoted by L. We can define the

matrix G = J>J and its inverse G−1 = L>L.
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Remark 1. We can see, using the singular value decomposition, that J>L = L>J = I2 and

JL> = LJ> = I − nn>, where n is the unit normal vector to Γ.

The matrix G is known as the First Fundamental Form of the surface. It is of great importance

for performing calculus on the surface because it tells us how to measure lengths. A curve on the

surface can be represented by a function

γ : [0, T ]→ Θ

Then f(γ(t)) is on the surface. Its length is given by∫ T

0
γ′(t)>Gγ′(t)dt

Note that if we let ξ(t) = f(γ(t)), then ξ′(t) = Jγ′(t), so this is really just the standard formula

for arc length.

If we have a different parameterization for Γ, it is equivalent to having a second set Θ1 with a

one-to-one function β : Θ1 → Θ and then the function taking Θ1 to Γ is just f(β(u, v)). If the

Jacobian of β is given by T , then the Jacobian of f(β(u, v)) is given by JT. The first fundamental

form of the new parameterization is given by T>GT . The reparameterization gives the same unit

normal vector, since the columns of JT span the same space as the columns of J .

Definition 8. The second fundamental form of the surface, B, is given by(
fxx · n fxy · n
fxy · n fyy · n

)
Under a change of parameters as before, the new second fundamental form is T>BT .

Representation as a Graph

When we think of a surface as a graph, it means that the graph is given as x
y

u(x, y)


for some function u(x, y). We can see that this is just a special case of a parameterization. We have

G = I +∇u>∇u

G−1 = I − 1

1 + ‖∇u‖2
∇u>∇u

B =
1√

1 + ‖∇u‖2
Hu

where Hu denotes the Hessian matrix of u.
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Level Sets

A surface can also be represented as the level set of a function of three variables h(x, y, z). The

unit sphere, for example, is given by x2 + y2 + z2 = 1. Locally, we can use the implicit function to

think of this as a special case of a graph, with x
y

z(x, y)

 .

For a surface patch where this is valid, the formulas from above apply with

∇u =

(
−hx
hz

−hy
hz

)
.

2.3 Curvature

Definition 9 (Curvature). Let x(t) be a C2 curve where ‖ẋ(t)‖ > 0 for all t. If s is the arc length,

then we define the curvature to be

κ(t) = ‖ẍ(s)‖ .

The following formula is useful for curves in R3:

Theorem 1. If x(t) is a curve in R3, the curvature is given by

κ =
‖ẍ(t)× ẋ(t)‖
‖ẋ(t)‖3

.

Two important special cases of this formula are when x is a plane curve:

κ =
|x′y′′ − y′x′′|

((x′2) + (y′2))3/2
,

and when y is given as a function of x:

κ =
|y′′|

(1 + y′2)3/2
.

For a plane curve, the curvature has an important geometric interpretation. Let x(t) be a unit-

speed plane curve, so that the tangent vector ẋ(t) is a unit vector. We can define the signed normal

unit vector nS by rotating the tangent vector counterclockwise by π
2 . Since the curve is unit-speed,

ẍ(t) is perpendicular to the tangent vector, and hence we have

ẍ = κSnS ,
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and

κ = ‖ẍ‖ = ‖κsnS‖ = |κS | .

We call κS the signed curvature.

Now if ∆t is small, the distance between x(t+ ∆t) and the tangent line at t is given by

|(x(t+ ∆t)− x(t))nS | .

Expanding x(t+ ∆t), we get

x(t+ ∆t) = x(t) + ẋ(t)∆t+ ẍ(t)
(∆t)2

2
+ . . . .

Since nS is orthogonal to the tangent vector and ẍ = κSnS , we get

|(x(t+ ∆t)− x(t))nS | ≈
κ

2
∆t2.

So the curvature measures how much a curve moves away from the tangent line when t is incre-

mented by a small amount.

We can also define the curvature of a surface. To do so, we need the First and Second Funda-

mental Forms of the surface. Here, we show alternate notation for them.

Definition 10 (The First Fundamental Form, Alternate Notation). The First Fundamental Form of

a surface given by σ(u, v) is gven by

Edu2 + 2Fdudv +Gdv2

where

E = ‖σu‖2 , F = σu · σv, G = ‖σv‖2 .

Definition 11 (The Second Fundamental Form, Alternate Notation). If σ(u, v) defines a surface

with normal unit vector n, then the second fundamental form of the surface is given by

Ldu+ 2Mdudv +Ndv2

where

L = σuu · n,M = σuv · n, N = σvv · n.
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We can now measure the curvature of a surface by considering the curvatures of unit-speed

curves on the surface. We consider such a curve with unit-speed defined by

x(t) = σ(u(t), v(t)).

First note an important similarity between the second fundamental form of the surface and the

curvature of a plane curve. The distance between x(t+ ∆t) and the tangent plane at t is given by

(x(t+ ∆t)− x(t)) · n.

Expanding x(t+ ∆t), we get

x(t+ ∆t) ≈ x(t) + ẋ(t)∆t+ ẍ(t)
∆t2

2
.

Now

ẍ(t) = σuu ‖u̇‖+ 2σuvu̇ · v̇ + σvv ‖v̇‖2 .

Since ẋ(t) is orthogonal to the normal vector, the distance between x(t) and the tangent plane is

approximately
1

2

(
σuu · n ‖u̇‖2 + 2σuv · nu̇ · v̇ + σvv · n ‖v̇‖2

)
.

So the second fundamental form approximates the displacement from the tangent plane for a

unit-speed curve on the surface defined by σ and is analgous in this way to the curvature of a plane

curve. Because of this, we define the normal curvature of a surface curve by

κN =
(
u̇ v̇

)(L M
M N

)(
u̇
v̇

)
,

where L,M,N are given by the second fundamental form of the surface. It might appear that the

extreme values of the normal curvature should be given by the eigenvalues of the second fundamen-

tal form. This is not the case, however, since we are only allowing unit-speed curves, and the speed

is given by

‖γ‖2 = γ̇>Gγ̇,

where G is the matrix given by the first fundamental form. To find the critical points of the normal

curvature, we need to calculate the roots of

det(B − κG) = 0.
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We call the roots of this polynomial the principal curvatures of the surface at the point x. There

are n roots (assuming this is an n-dimensional surface), when counted with multiplicities. It is not

immediately clear that all the principal curvatures are real. This can be proven, however.

Theorem 2. The principal curvatures are all real.

Proof. We let the vectors t1, . . . , tn be an orthonormal basis of the tangent space. We have, for

every i,

ti =
n∑
k=1

cikσuk ,

where the vectors σµk are the partial derivatives of the parameterization σ, for some invertible matrix

C. We now have
δij =

= ti · tj

=
n∑
k=1

n∑
l=1

cikcjlσµkσµl

= c>i Gcj .

This shows that

C>GC = I.

Note that C> 6= C−1. We now have

C>(B − κG)C = A− κI

for a matrix A that is symmetric since B is. The principle curvatures are the eigenvalues of this

matrix and are therefore all real.

We note that the matrix A in this proof is not unique since the choice of the orthonormal basis

was arbitrary. However, since there is an orthonormal similarity transform between any two or-

thonormal bases, the matrix A is unique up to a similarity transform, and the set of eigenvalues (and

hence principal curvatures) is therefore also unique.

A very important matrix whose eigenvalues also give the principal curvatures is the Weingarten

matrix, given by

W = G−1B.

It is clear from the definition that the eigenvalues ofW are the principal curvatures. We can see from

this fact that the principal curvatures do not change if the surface is reparametrized, since the new
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fundamental forms are given by M>GM and M>BM for some invertible matrix M , and the new

Weingarten matrix is therefore simlar to the old one. The Weingarten matrix has another important

interpretation. Consider the standard unit normal vector n. Since it is a unit vector, n · nuk = 0 for

all k. This means that the vectors nuk are all in the tangent space and there is therefore a matrix A

such that

nuj =
n∑
k=1

ajkσuk

for every j.

Since, for every i, n · σui = 0, we have for every j,

nuj · σui + n · σuiuj = 0

nuj · σui = −bij
n∑
k=1

ajkσuk · σui = −bij

n∑
k=1

ajkgki = −bij

,

and we have

A> = −W.

With the principal curvatures defined, we can define two other very important notions of curvature.

Definition 12 (Gaussian Curvature). The Gaussian Curvature K of a surface is the product of the

principal curvatures.

Definition 13 (Mean Curvature). The Mean Curvature H of a surface is the sum of the principal

curvatures.

Remark 2. A common alternate definition for the mean curvature is the sum of the principal cur-

vatures divided by the dimension of the surface.

2.4 Special Parameterizations

In this section, we consider two special categories of parameterizations: conformal parameteriza-

tions and isometric parameterizations.
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Conformal Parameterizations

A conformal parameterization is a parameterization that preserves angles mapped from R2 to Γ.

Every regular two-dimensional surface has an atlas consisting of conformal surface patches. The

first fundamental form for a conformal parameterization takes the form

G =

(
E 0
0 E

)
.

Its second fundamental form takes the form

B =

(
L 0
0 N

)
.

The Weingarten matrix is then

W =

L

E
0

0
N

E

 ,

and then the Gaussian and Mean Curvatures are

K =
LN

E2

and

H =
L+N

E
.

Based on the properties of the first fundamental form for this parameterization, we have

σu · σv = 0

and

σu · σu = σv · σv.

If we differentiate both of these equations with respect to both parameters, we get the conditions

σuu · σv + σu · σuv = 0

σu · σvv + σuv · σv = 0

σu · σuu = σuv · σv = 0

σu · σuv = σv · σvv = 0.

From these conditions we see that

(σuu + σvv) · σu = (σuu + σvv) · σv = 0.
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The Laplacian of the parameterization is therefore spanned by the unit normal vector:

∆σ = ‖∆σ‖n,

and therefore, the norm of the Laplacian is proportional to the mean curvature,

H =
L+N

E
=
σuu · n + σvv · n

E
=
‖∆σ‖
E

.

Isometric Parameterizations

An isometric parameterization is a parameterization that maps curves in R2 to curves on M of the

same length. Its first fundamental form is simply the identity matrix,

G =

(
1 0
0 1

)
.

As we will see later, an isometric paramterization leads to a second fundamental form of rank

at most one. The Gaussian curvature is therefore zero. Only surfaces with this property can be

parametrized isometrically. More generally, any isometric mapping between two surfaces maintains

the Gaussian curvature.
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3. THE LAPLACIAN IN EUCLIDEAN SPACE

The Laplacian of a function in Rn is defined as

∆u =
n∑
j=1

∂2u

∂x2
k

and arises in many situations. We have already seen its relationship to the mean curvature of a sur-

face that is conformally parametrized. In this chapter, we discuss several geometric interpretations

of the Laplacian and then develop the Laplace-Beltrami operator, a generalization of the Laplacian

for surfaces.

3.1 The Energy Functional and the Calculus of Variations

If Ω is an open subset of Rn and u ∈ C2(Ω), we can define its energy functional to be

E(u) =
1

2

∫
Ω

n∑
j=1

(
∂u

∂xj

)2

dV.

This is an example of a functional, or a real-valued function with a set of functions as its domain.

It arises in many physical applications. The Calculus of Variations is the branch of mathematics

concerned with finding functions that minimize functionals. We look for minimizers by first finding

the variation of the functional. The variation of a functional is analagous to the derivative of a

function. It is a linear functional that approximates the functional for small perturbations. To get the

variation of the energy functional, we let ε(x) be a small perturbation of the function u(x) where

ε(x) is zero at the boundary of U . Then

E(u+ ε) =
1

2

∫
Ω

n∑
j=1

(
∂u

∂xj
+

∂ε

∂xj

)2

dV

=
1

2

∫
Ω

n∑
j=1

(
∂u

∂xj

)2

dV +

∫
Ω

n∑
j=1

∂u

∂xj

∂ε

∂xj
dV +O(ε2).

We neglect the higher-order term, assuming that ε is a small perturbation. We have, therefore,
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E(u+ ε) ≈ E(u) +

∫
Ω

n∑
j=1

∂u

∂xj

∂ε

∂xj
dV.

Now, using the fact that ε is zero at the boundary of Ω, integration by parts on the second term

yields ∫
Ω

n∑
j=1

∂u

∂xj

∂ε

∂xj
dV =

∫
∂Ω
ε
∂u

∂n
dσ −

∫
Ω
ε

n∑
j=1

∂2u

∂x2
j

dV

= −
∫

Ω
ε∆udV.

This last term is a linear functional of the perturbation ε(x), and so is the variation of the energy

functional. The Laplacian of u,−∆u =
∑n

j=1
∂2u
∂x2j

is related to the variation of the energy functional

and indicates how far u is from being a minimizer of the energy functional.

3.2 The Divergence Theorem

Theorem 3 (The Divergence Theorem).∫
∂Ω

∂u

∂ν
dσ = −

∫
Ω

∆udV.

If u is the concentration of a quantity such as heat or a chemical on the domain Ω, then the

integral on the left hand side gives the flux of u through the boundary of Ω. We can see, using the

mean value theorem for integrals, that

∆u = lim
r→0

1

πr2
flux(u)

through a circle of radius r containing the point x.

Another important theorem regarding the Laplacian of a function is the following:

Theorem 4. If we take the closed path integral of a function u around the circle of radius r around

a point, we get

lim
r→0

1

πr2

(
u(x)− 1

2πr

∮
udσ

)
= −∆u.

So the Laplacian of a function indicates the difference between the value of u at x and the values

of u at nearby points.
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3.3 Random Walks

The Laplacian also emerges from a random walk. As an example, consider a biological population

u(t). A very general way to model the population might be

u(t) =

∫ t

t0

k(s, u(s))ds

where the kernel function k depends both on the population in the past and external conditions that

change with time. In field studies, it is common to estimate the population at intervals and measure

the proportional change:

u(t+ ∆t)

u(t)
=

∫ t+∆t

t
k(s, u(s))ds = ct.

We now let U(t) be the natural logarithm of u(t), and we consider the probability density function

P (x, t) for U(t). The probability that U is in some interval of length ∆x at a future time t+ ∆t is

given by ∫ x+∆x

x
P (ξ, t+ ∆t)dξ =

∫ x+∆x

x

∫
P (ξ, t+ ∆t|y, t)P (y, t)dydξ.

Here,

P (ξ, t+ ∆t|y, t)

is the conditional probability density function for ξ at t+∆t given y at t. A very simple assumption

for P (x, t+ ∆t|y, t) might be

P (x, t+ ∆t|y, t) = .25δ(y − (x−∆x)) + .5δ(y − x) + .25δ(y − (x+ ∆x)),

where δ is the Dirac delta function. This kernel means that if U is x at time t, then at time t+ ∆t it

will be x + ∆x with probability .25, x −∆x with probability .25, or x with probability .5. More

generally, it means that we expect small changes in the amount of time ∆t but that increases are as

likely as decreases. The exact kernel is less important than how it integrates. In this case, we let

P tk =

∫ x+k∆x

x+(k−1)∆x
P (y, t)dy.

We get

P t+∆t
k = .25P tk−1 + .5P tk + .25P tk+1

16



Then,

P t+∆t
k = P tk + ∆t

∂

∂t
P tk +O(∆t2).

and

.25P tk−1 + .5P tk + .25P tk+1 = P tk + (∆x2)∆xP
t
k+) +O(∆x4),

where ∆x is the Laplacian in the x variable.

If we neglect higher order terms, this yields

∂

∂t
P tk =

∆x2

∆t
∆xP

t
k.

Now, if P is a C2 function, we can take the limit as ∆x and ∆t go to zero along a path where the

fraction on the right side of the equation above is constant and get

∂

∂t
P tk = ∆xP

t
k

So the population distribution evolves according to the diffusion equation. We have used a biological

example here, but random walks are ubiquitous in science and engineering. We could have random

walks with multiple spatial dimensions as well with a similar derivation. If some regions of the

domain tend to attract or repel particles, we might get a Poisson problem in the limit.

3.4 The Laplace-Beltrami Operator

The Laplace-Beltrami operator has analogous properties to the Laplacian. We develop the Laplace-

Beltrami operator in n dimensions, even though all computational examples in the paper are in two

dimensions. We avoid the use of tensors in this derivation and instead focus on using the language

of linear algebra.

The Derivative of a Matrix

We need to consider matrices whose elements are functions of several variables. This brings up the

issue of how to represent the derivatives of these matrices. In the case of one independent variable,

we can take the derivative of a matrix M(t) by taking the derivative of each component of M and

arranging these in a matrix where component k, j is the derivative of component k, j of M(t). This

is easy to visualize and write down.
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Much more complicated is the case where M depends on several variables – we denote the

number of variables by p. The total derivative of an m× n matrix depending on p variables, which

we denote by DM , (where M is the matrix), must be an element of L(Rp,L(Rn,Rm)). L(A,B) is

the set of linear transformations taking linear space A to linear space B. We visualize this as a sort

of vector of matrices, where each matrix is formed by taking the partial derivative of the original

matrix with respect to one variable. We index the elements by (DM)ijk, where the ijk element is

the ij element in the k matrix, or
∂mij

∂θk
.

This operator takes elements of Rp to L(Rn,Rm) by multiplying each element of the vector in

Rp by the corresponding matrix as though it is a scalar and adding the resulting matrices together to

get a single n×m matrix. We denote this operation by

[w,DM ] .

This operation gives an n×m matrix where the i, j element is given by
p∑

k=1

wk(DM)ijk.

We think of this operation as multiplying the vector from above. Matrices and vectors with the

correct dimensions can also be multiplied from the left or the right. We do this by multiplying the

vector or matrix independently by each matrix in DM and keeping the new matrices in the vector.

For example, if we multiply DM by the m ×m matrix A, we get a new three-dimensional matrix

N whose i, j, k component is given by
m∑
l=1

(DM)ilkAlj .

We denote this type of multiplication like normal matrix multiplication, DMA in this example.

We can commute this type of multiplication with the multiplication from above:

A [w,DM ]B = [w,ADM ]B = A [w,DMB] = [w,ADMB] .

We can readily differentiate the the inverse of a matrix:

D(M−1) = −M−1 (DM)M−1.

This can easily be seen from differentiating the identity

MM−1 = I

and solving for D(M−1).
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The n-Dimensional Cross Product

Suppose we fix n vectors in Rn+1. If we add any other element of Rn+1 to this collection, we can

use them to form an (n+ 1)× (n+ 1) matrix. The absolute value of the determinant of this matrix

gives the volume spanned by the n + 1 vectors. The determinant by itself could be thought of as

the signed volume. The signed volume is a linear functional of the last vector we have added to

the collection. By the Reisz representation theorem, there is a vector A ∈ Rn+1 such that A · v

is the signed volume from adding v to the collection for all v ∈ Rn+1. Using the properties of

determinants, we can easily see that A is zero unless our original n vectors are linearly independent

and that A is orthogonal to each of the original n vectors. Finally, if A is nonzero, we see that the

signed volume that results from adding A
‖A‖ to the collection is

A · A
‖A‖

= ‖A‖ .

Here, we have taken the volume spanned by a set of n vectors and a unit vector orthogonal to the

first n vectors. This is also the area spanned by the first n vectors. We denote

A = v1 × . . .× vn.

Then ‖A‖ is the area spanned by v1, . . . , vn. The n-dimensional cross product is a multilinear

function.

A Closer Look at The First Fundamental Form

We now look at an arbitrary smooth, closed n−dimensional surface in Rn+1. We assume that it is

parametrized with a single smooth function X : Θ → Ω, where Θ ∈ Rn and Ω is the surface. X

is a bijection from Θ onto Ω, and thus the variables in Θ give a coordinate system for Ω. At each

point in Θ, we can take the Jacobian of X , J . If Ω is a non-degenerate surface, which we assume it

is, then J is of rank n, and its columns are linearly independent. The columns of J give a basis for

the tangent space of the surface at X(θ). We denote them by {x1, . . . , xn} . Their cross product,

which we denote by N, is orthogonal to the surface at X(θ).

Now consider the singular value decomposition of J ,

J = UΣV >.
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The diagonal elements of Σ are nonzero since J is of rank n. It should be noted from here that

the columns of J are all linear combinations of the first n columns of U . The (n + 1) column of

U is therefore a unit normal vector to the surface at X(θ), and we denote it by n. We can form the

matrix

L = UΣ+V >

by inverting the nonzero elements of Σ. It is then easy to see that

L>J = J>L = In.

The columns of L are also linear combinations of the first n columns of U , and thus form the dual

basis to the tangent space to the columns of J . We denote the columns of L by
{
x1, . . . , xn

}
.

If we perform the multiplication LJ>, we get In+1 − nn>.

We can now form the matrix

G = J>J.

The elements of G are the coefficients of the first fundamental form. The elements of G are denoted

by Gjk.

As we have seen, G is important in measuring lengths and areas. For example, the square root

of the determinant of G gives the area spanned by {x1, . . . , xn},

√
|G| = ‖N‖ .

We can see this by taking the determinant of the the matrixJ>
N>

(J N
)

=

J>J 0

0> ‖A‖2

 .

Using the properties of the cross product and of determinants, we see that the determinant of this

matrix is ‖N‖4. It is also det(J>J) ‖N‖2 . Therefore,
√

detG = ‖N‖ .

Similarly, we can find

G−1 = L>L.

This matrix is also important in measuring lengths. We denote its elements by Gjk.
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The Christoffel symbols and the Second Fundamental Form

We now consider the second derivatives of the parameterization X . We denote by xjk the vector

that results when we take the partial derivatives of the elements of X with respect to θj and then θk.

Since the vectors {x1, . . . , xn} form a basis for the tangent space of Γ, we can find constants such

that

xjk =
n∑
l=1

Γljkxl + bjkn.

We can also find constants such that

xjk =
n∑
l=1

Γjklxl + bjkn.

The matrix B formed from the coefficients bjk is the second fundamental form. It gives infor-

mation about the shape of the surface. We are not concerned with the second fundamental form

here, but the other coefficients, called the Christoffel symbols, are of great importance.

The coefficients Γijk can be calculated by

Γijk = xij · xk.

They are called the Christoffel symbols of the first kind.

The coefficients Γkij can be calculated by

Γkij = xij · xk.

They are called the Christoffel symbols of the second kind.

Differentiating a function on the surface

We now consider a function f defined on the surface Γ. We also consider a curve on the surface,

parametrized by θ(t). Here, θ(t) is a smooth function from a closed interval on the real line to

Θ. Then X(θ(t)) is a curve that is actually on the surface Γ in Rn+1. We denote the function

γ(t) = X(θ(t)).

Then F (t) = f(X(θ(t))) = f(γ(t)) is a real-valued function of one variable, and can be

readily differentated. We also define the function g : Θ → R by g(θ) = f(X(θ)). Then, we also

have F (t) = g(θ(t)). If we could define a gradient for the function f , we would have

F ′(t) = ∇fγ̇(t) = ∇gθ̇(t).
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It is clear that γ̇(t) = Jθ̇(t), so the equation is satisfied if

∇fJ = ∇g.

We now require that ∇f be orthogonal to n. This is reasonable since f is defined only on Γ. Then,

we can multiply both sides of the equation by L> to get

∇f = ∇gL>.

This definition of ∇f lets the chain rule be used consistently and this does not change if we

reparametrize the surface. The next step is to find rules for second derivatives of f . This leads to

the Laplace-Beltrami operator. Heuristically, if we take total derivatives of the equation

∇fγ̇ = ∇gθ̇,

we get

γ̇>Hfγ̇ +∇fγ̈ = θ̇>Hgθ̇ +∇gθ̈

where H denotes the Hessian, or second derivative matrix. Here, we note that

γ̈ =
[
θ̇,DJ

]
θ̇ + Jθ̈.

We can now cancel the terms∇fJθ̈ = ∇gθ̈, since they tell nothing about the second derivatives

of f , to get

γ̇>Hfγ̇ +∇f
[
θ̇,DJ

]
θ̇ = θ̇>Hgθ̇.

All of these terms except Hf are already well-defined, so we define Hf such that the equation

holds. First, however, we consider the second term on the left hand side. We can write it as

∇f
[
θ̇,DJ

]
θ̇ = ∇gL>

[
θ̇,DJ

]
θ̇ = ∇g

[
θ̇, L>DJ

]
θ̇.

The multiplication L>DJ gives Γ2, a matrix of Christoffel symbols of the second kind. The i, j, k

element of is xi · xjk = Γijk. This gives

∇g
[
θ̇,Γ2

]
θ̇.

We rewrite this quantity as

θ̇ [∇g,Γ∗2] θ̇
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where the ∗ indicates that we have interchanged the first and third indices. (The more familiar

transpose, by contrast, interchanges the first and second indices.)

If we bring this quantity to the other side and use the fact that γ̇ = Jθ̇, we see that

θ̇>J>HfJθ̇ = θ̇>Hgθ̇ − θ̇> [∇g,Γ∗2] θ̇.

This equation must be satisfied for all choices of θ(t), so we drop the θ̇ :

J>HfJ = Hg − [∇g,Γ∗2] .

We note here that [∇g,Γ∗2] =
[
∇g, (G−1Γ1)∗

]
=
[
∇gG−1,Γ∗1

]
,

so we have

J>HfJ = Hg −
[
∇gG−1,Γ∗1

]
.

We now add and subtract the quantity
[
∇gG−1,Γ>1

]
on the right hand side:

J>HfJ = Hg −
[
∇gG−1,Γ∗1 + Γ>1

]
+
[
∇gG−1,Γ>1

]
.

The i, j, k element of Γ∗1 + Γ>1 is given by(
Γ∗1 + Γ>1

)
i,j,k

= Γjik + Γikj = xji · xk + xj · xki =
∂Gjk
∂θi

,

so we have

J>HfJ = Hg −
[
∇gG−1, (DG)∗

]
+
[
∇gG−1,Γ>1

]
.

We can now make the adjustment

J>HfJ = Hg −
[
∇g, (G−1DG)∗

]
+
[
∇gG−1,Γ>1

]
.

Now, multiply both sides byG−1 from the right. Note that JG−1 = JL>L = (In+1−nn>)L =

L since the columns of L are orthogonal to n, so

J>HfL = HgG−1
[
∇g, (G−1DG)∗

]
+
[
∇gG−1,Γ>1

]
.

When a matrix is multiplied from the right, we can take it inside the ∗. Also, multiplying G−1

from the right of Γ>1 gives Γ>2 . So we now have

J>HfL = HgG−1 +
[
∇g,−(G−1DGG−1)∗

]
+
[
∇gG−1,Γ>2

]
.
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We now note that the three-dimensional matrix in the second term is the total derivative of G−1,

or DG−1. This means that the first two terms combine to give the total derivative of∇gG−1,

J>HfL = D(∇gG−1) +
[
∇gG−1,Γ>2

]
.

Therefore, we define

Hf = L
(
D(∇gG−1) +

[
∇gG−1,Γ>2

])
J>

and the required conditions are satisfied. We return now to

J>HfL = D(∇gG−1) +
[
∇gG−1,Γ>2

]
.

We consider the eigenvalues of the matrix. It is clear from the way we have defined Hf that it

has a zero eigenvalue corresponding to n. If we augment n onto the ends of L and J , forming L1

and J1, then

L>1 HfJ1

is similar to Hf , and is in fact the matrix from the right hand side of the equation in the first n

rows and columns and zero everywhere else. This shows that the matrix on the right hand side has

the same eigenvalues except the zero eigenvalue corresponding to n, and therefore the same sum of

eigenvalues, which is its trace. The Laplace-Beltrami operator is the sum of the eigenvalues:

n∑
i=1

 ∂

∂θi

 n∑
j=1

∂g

∂θj
Gji

+
n∑
j=1

n∑
k=1

∂g

∂θj
GjkΓiik

 .

We can simplify this expression by considering

∂

∂θi
|G| .

We have already shown

|G| = N · N.

If we take the derivative with respect to θi, we get

2N · ∂
∂θi

N.
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Remember that N is the n-dimensional cross product of the vectors x1, . . . , xn, so we use the mul-

tilinearity of the cross product to get

∂

∂θi
N =

(
∂x1

∂θi
× . . .× xn

)
+ . . .+

(
x1 × . . .×

∂xn
∂θi

)
.

We can expand these derivatives in terms of the Christoffel symbols of the second kind and the

second fundamental form:
∂xk
∂θi

=

n∑
j=1

Γjkixj +Bkin.

Now, for example, we have(
∂x1

∂θi
× . . .× xn

)
=

n∑
j=1

Γj1i (xj × . . .× xn) + b1i (n× . . .× xn) = Γ1
1iN + b1i (n× . . .× xn)

since the cross product gives zero when the vectors are not linearly independent. The cross product

involving n is orthogonal to N, so it will also vanish when we take the dot product with 2N. The

same thing happens for every other term in the original expansion of 2N · ∂
∂θi

N, so we are left with

∂

∂θk
|G| = 2 |G|

n∑
i=1

Γiik

∂

∂θk
log
√
|G| =

n∑
i=1

Γiik.

This simplifies the Laplace-Beltrami operator to

n∑
i=1

∂

∂θi

 n∑
j=1

Gji
∂g

∂θj

+

n∑
i=1

n∑
j=1

∂g

∂θj
Gij

∂

∂θi
log(

√
|G|)

=
n∑
i=1

 ∂

∂θi

 n∑
j=1

Gji
∂g

∂θj

+
1√
|G|

n∑
j=1

∂g

∂θj
Gij

∂
√
|G|

∂θi


which is equal to

1√
|G|

 n∑
i=1

√
|G|

 ∂

∂θi

 n∑
j=1

Gji
∂g

∂θj

+
∂ |G|
∂θi

n∑
j=1

∂g

∂θj
Gij


=

1√
|G|

n∑
i=1

∂

∂θi

 n∑
j=1

√
|G|Gij ∂g

∂θi

 . (3.1)

This is the classic formula for the Lapace-Beltrami operator.
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Inner Products of Gradients and the Divergence Theorem

We saw in the previous derivation that if u is a differentiable function defined on a surface Γ and

parameterized with θ : Θ → Γ, then ∇Γu = ∇uL> is a gradient in Rn+1 that is does not depend

on the parameterization. If v is another differentiable function on Γ, we have, since L>L = G−1,∫
Γ
∇Γu · ∇Γvdσ =

∫
Θ
∇uG−1∇v>

√
|G|dθ.

We can see from this that the Laplace-Beltrami operator behaves like the Laplacian with respect to

the divergence theorem and integration by parts when we integrate −∆uv over Γ:

∫
Γ
−∆Γuvdσ = −

∫
Θ

1√
|G|

n∑
i=1

∂

∂θi

 n∑
j=1

√
|G|Gij ∂u

∂θi

 v
√
|G|dθ

=

∫
Θ
∇uG−1∇v>

√
|G|dθ

= −
∫

Θ

1√
|G|

n∑
i=1

∂

∂θi

 n∑
j=1

√
|G|Gij ∂v

∂θi

u
√
|G|dθ

=

∫
Γ
−∆Γvudσ.

3.5 Special Cases

We now look at the Laplace-Beltrami operator in a few special cases.

Conformal Parameterization

As we have seen, the first fundamental form of a conformally parametrized surface in two dimen-

sions is (
E 0
0 E

)
.

In this case, the Lapace-Beltrami operator is

∆Γu =
1

E

(
∂2u

∂u2
+
∂2u

∂v2

)
.

The Laplace-Beltrami operator here is therefore proportional to the Laplacian.
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Isometric Parameterization

We have seen that, under an isometric parameterization, the first fundamental form is simply the

identity matrix. The Laplace-Beltrami operator is simply the Laplacian:

∆Γu =
∂2u

∂u2
+
∂2u

∂v2
.

We mentioned in the previous chapter that the Gaussian Curvature is zero under an isometric param-

eterization. This is a result of Gauss’ Theorema Egregium, which says that the Gaussian Curvature

is given by

K =

(
∂

∂x
Γyyx −

∂

∂y
Γyxx + ΓxxyΓxyx + ΓyxyΓxyy − ΓxyyΓxxx − ΓyyyΓxxy

)
/
√
|G|

Since the first fundamental form is the identity matrix, it can easily be shown that all of the Christof-

fel Symbols are zero. The Gaussian curvature, therefore, is always zero.

A Surface Defined as a Level Set

When a surface is defined as a level set of some function f(x, y, z), we can get a parameterization

locally as described in the previous chapter. We have seen in this chapter, however, that on any

surface, we have

JL> = In+1,n+1 − n>n

and that our process of differentiating a function essentially entails defining it as a function of n+ 1

variables (3 in the case of a surface) and projecting out the unit normal vector from the resulting

gradient. If our function f that defines the surface is a distance function, then∇f is the unit normal

vector. Thus, when we take the Laplace-Beltrami operator for a function u, we can extend u to

a neighborhood of the surface. (Any extension works: the simplest method is to make it constant

along the unit normal vector as in [12].) Then, we take the gradient and project out the unit normal

vector. Differentiate the gradient and again project out the unit normal vector from each column.

This gives the correct Hessian matrix and the trace of this matrix is the Laplace-Beltrami Operator.

3.6 Discussion

The Laplace-Beltrami operator is the correct generalization of the Laplacian to surfaces. It is the

trace of the Hessian matrix when the Hessian Matrix is taken correctly to get distances and angles
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correct. It is also the variation of the energy functional for the surface and satisfies the divergence

theorem and Poisson Integral Formula for the surface.
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4. NUMERICAL METHODS FOR THE POISSON PROBLEM ON A EUCLIDEAN
DOMAIN

So far, we have reviewed some concepts from differential geometry necessary for extending the

notion of the Laplacian to a closed surface. Our goal is to solve the Poisson Problem involving

the Laplace-Beltrami operator on closed surfaces numerically. In order to prepare the background

necessary for this, we consider how the Poisson Problem in Euclidean space is solved numerically.

4.1 Finite Element Methods

To solve the Poisson problem in Euclidean space, we use the finite element method. This arises

from considering the variational form of the differential equation.

Problem 1 (Poisson Problem with Zero Dirichlet Boundary Conditions, Classical Form). Find u ∈

C2(Ω̄) such that {
−∆u = f(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω,

where Ω is an open, bounded subset of Rn and f(x) ∈ C0(Ω), either ∂Ω is smooth or Ω is convex

and ∂Ω is piecewise polygonal, and Ck(Ω) denotes the set of all functions defined on Ω for which

all derivatives up to order k exist and are continuous.

The variational form is motivated by integration by parts. If u is a classical solution to the

problem, we choose v ∈ C1
0 (Ω) (C1

0 (Ω) is the set of functions in C1(Ω) with compact support.)

Then, ∫
Ω
−∆uvdx =

∫
∂Ω

=
∂u

∂ν
vdσ +

∫
Ω
∇ · u∇vdx

=

∫
Ω
∇u · ∇vdx

The boundary term disappears because of the assumption we have made on v. Therefore, u satisfies∫
Ω
∇u · ∇vdx =

∫
Ω
fvdx,∀v ∈ C1

0 (Ω).
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This is the main form of the variational formulation of the problem. We need a few more

definitions before we can rigorously formulate the problem. We first define the space in which our

analysis takes place.

Definition 14 (L2(Ω)). For an open, bounded, connected set Ω ⊂ Rn where either ∂Ω is smooth

or Ω is convex and ∂Ω is piecewise polygonal, L2(Ω) is the set of measurable functions f defined

on Ω such that the L2 norm,

‖f‖L2(Ω) =

√∫
Ω
f(x)2dx,

is finite. We take this integral in the Lebesgue sense.

The space L2(Ω) has some important properties for our purposes.

Lemma 1 (Important properties of L2(Ω).). L2(Ω has the following important properties:

1. L2(Ω) is a linear space – if f, g are in L2(Ω) and a, b ∈ R, then af(x) + bg(x) ∈ L2(Ω) and

0 ∈ L2(Ω).

2. L2(Ω) has an inner product (f, g)L2(Ω) =
∫

Ω f(x)g(x)dx.

3. L2(Ω) is complete with respect to its norm – if {fn}∞n=1 is a Cauchy sequence in the L2 norm

of functions in L2(Ω), then it converges to a function f ∈ L2(Ω).

These properties mean that L2(Ω) is a Hilbert Space. One other important property of L2(Ω) is

the following.

Lemma 2. C∞0 (Ω) is dense in L2(Ω) – for every f ∈ L2(Ω) and ε, there exists a v ∈ C∞0 (Ω) such

that

‖f − v‖L2(Ω) < ε.

We now consider the notion of a weak derivative. A function g(x) is said to be a weak derivative

of f(x) on Ω if it satisfies ∫
Ω
f(x)v′(x)dx = −

∫
Ω
g(x)v(x)dx

for all v(x) ∈ C∞0 (Ω). We use Ω ⊂ R for the definition but we can readily expand the definition to

any dimension using partial derivatives. It is clear that a classical derivative is also a weak derivative

using integration by parts. We can define the set of functions f ∈ L2(Ω) that have weak derivatives

up to order k that are themselves in L2(Ω).
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Definition 15 (Hk(Ω)). For any natural number k,

Hk(Ω) ⊂ L2(Ω)

is the set of all functions in L2(Ω) for which all weak derivatives up to order k exist and are in

L2(Ω). This means that the Hk(Ω) norm,

‖f‖Hk(Ω) =

∫
Ω

∑
|α|≤k

(Dαf)2 dx

 1
2

,

is defined and finite. Here, α is a multi-index – α ∈ Nn, Dαf =
∂

∂x1

α1

. . .
∂

∂xn

αn

f and |α| =∑n
j=1 αj .

We look for solutions to the variational problem in the Sobolev Spaces. In order to deal with

boundary conditions, we define the trace of a function in H1(Ω) as follows.

Theorem 5 (Trace Theorem). There exists a continuous, bounded, linear transformation T : H1(Ω)→

L2(∂Ω) such that

Tf = f |∂Ω

if f ∈ C1(Ω). We call Tf the trace of f on ∂Ω.

Using the trace, we can define the important space of functions H1
0 (Ω).

Definition 16 (H1
0 (Ω)). H1

0 (Ω) is the subspace of H1(Ω) with a trace of zero on ∂Ω.

We now have all the terminology we need to define the variational form of the Poisson problem.

Problem 2 (Poisson Problem with zero Dirichlet Boundary Condtions, Variational Form). Find

u ∈ H1
0 (Ω) such that {∫

Ω∇u · ∇vdx =
∫

Ω fvdx ∀v ∈ H1
0 (Ω).

Remark 3. A solution u ∈ H1
0 (Ω) is called a weak solution. A solution u ∈ H2(Ω) is called a

strong solution. We only need to require f ∈ L2(Ω), rather than C0(Ω), to have a unique weak

solution. If the ∂Ω is smooth or if Ω is convex, then the weak solution is also a strong solution.

H1
0 (Ω) is an infinite-dimensional vector space. The finite element method is a special case of

the Galerkin method, which essentially projects the problem onto a finite-dimensional subspace of

H1
0 .
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Problem 3 (Finite-Dimensional Weak Problem). Find U ∈ V such that

a (U, v) = (f, v)L2(Ω)

where

a (U, v) =

∫
Ω
∇U · ∇vdx.

for all v ∈ V , where V is some finite-dimensional subspace of H1
0 (Ω).

Now, if {vj}Nj=1 is a basis for V , then we have U =
∑n

j=1 Ujvj . We also have, for every k,

a (U, vk) =

n∑
j=1

Uja (vj , vk) = (f, vk)L2(Ω) .

We can now retrieve the coefficients Uj of U by solving the linear system

AU = B,

where A is the n × n stiffness matrix with Ajk = a (vj , vk) and B is the n × 1 vector where

bj = (vj , f)L2(Ω).

A Finite Element Method is a special kind of Galerkin method where we use basis functions that

are equal to zero except on a finite subset of the domain and consist of piecewise polynomial func-

tions. Finite Element Methods have sparse, structured matrices and coefficients that are generally

easy to recover.

Example 2. Choose for V the span of tent functions. We triangulate the domain – choose points to

be vertices and have edges connecting them. There is a basis function for each vertex. It is equal

to 1 at that vertex and decreases linearly to zero at each neighboring vertex and is zero everywhere

else. Since these functions have compact support, it leads to a sparse elasticity matrix. This is

called the CG1 method. (CG stands for Continuous Galerkin.)

4.2 Overview of Error

When we use a finite element method for a differential equation, we are approximating the solution

rather than calculating it directly. Any time we do this, it is important to know whether we have a

good approximation and to have an idea of how far our approximation may be from the true solution.

There are two major approaches to the study of error: a priori error analysis and a posteriori error
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analysis. A priori error analysis takes place before any approximations are actually computed and

covers a large class of problems. It provides information on the rate of convergence as the mesh is

refined. A posterori error analysis, however, takes place after an approximation has been computed

and is specific to the problem in which the approximation was computed. A priori error analysis

gives us general error bounds that tell that a general method is sound and yields a more accurate

solution if more work is done. A posteriori error analysis gives an estimate of how far a particular

calculation is from the true value.

Example 3 (A priori error bound). For the Poisson problem{
−∆u = f(x), x ∈ [0, 1]× [0, 1]

u(x) = 0, x ∈ ∂ [0, 1]× [0, 1] .

If U is a finite element solution to the problem and f ∈ L2, then there exists a C such that

‖u− U‖L2(Ω) ≤ C ‖f‖L2(Ω) h
2

where h is the diameter of the triangulation. This means that as we refine the triangulation, we get

a better approximation with the convergence occurring at a quadratic rate.

4.3 Adjoint-Based A Posterori Error Estimate

When we are solving a differential equation like the Poisson problem, we are often not interested

in the entire solution, but only in some aspect of the solution. We call this aspect of the solution

the quantity of interest and when we are interested in one, a posterori error analysis should focus

on error in this quantity. This is the approach taken in [16] and [17]. This allows us to have more

efficient estimates and avoid unnecessary effort on carefully resolving parts of the solution that may

not be important to the application for which the problem is being solved.

A key definition for this analysis is the definition of the dual space.

Definition 17 (Dual Space). If V is a linear space, its Dual Space V ∗ is the set of all continuous

linear functionals (maps to R) defined on V .

The dual space is itself a vector space and every linear space has a dual space.

When the quantity of interest is a linear functional of the solution, the adjoint gives a convenient

method for doing a posteriori error analysis. In general, we assume we are solving

Au = f
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for some linear operator A, where u and f are elements of linear spaces V1 and V2 respectively

with A : V1 → V2. In the case of the Variational Poisson Problem with zero Dirichlet Boundary

Conditions, A = −∆, V1 = H1
0 (Ω) and V2 = L2(Ω). We also assume that we want to know a

certain quantity of interest denoted by q such that

q = (u, ψ) ,

where ψ is an element of the dual space V ∗1 of V1. The notation (u, ψ) means that we are evaluating

the linear functional ψ at u. In the case of the Poisson Problem with zero Dirichlet Boundary

Conditions, we assume ψ ∈ L2(Ω) and (, ) is the L2(Ω) inner product.

Using the notion of a dual space, we define the adjoint operator.

Definition 18 (Adjoint Operator). If A is a linear transformation from the vector space V1 to the

vector space V2, take ψ ∈ V ∗2 . Then,

L(u) = (Au,ψ) , u ∈ V1

is a linear functional on V1, which we denote by A∗ψ. We call A∗ the adjoint operator to A. It is a

linear transformation from V ∗2 to V ∗1 .

Taking the adjoint of a linear operator is commutative with taking the inverse.

Lemma 3. (
A−1

)∗
= (A∗)−1

Proof. If A : V1 → V2 is invertible, consider u ∈ V1, φ ∈ V ∗1 . Then(
u,
(
A−1

)∗
A∗φ

)
=
(
A−1u,A∗φ

)
=
(
AA−1u, φ

)
= (u, φ) .

The claim holds since the choice of u and φ was arbitrary.

Returning to our analysis, we can solve an adjoint problem

A∗φ = ψ
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where A∗ is the adjoint to the linear operator A. Then, by definition,

q = (ψ, u) =
(
ψ,A−1f

)
=
(
(A−1)∗ψ, f

)
= (φ, f) .

A useful fact about the adjoint solution is that it does not depend on the data f . If f is perturbed by

a term ε, we can see that φ indicates the sensitivity to the perturbation.

q(f + ε)− q(f) = (φ, f + ε)− (φ, f) = (φ, ε) .

In the Poisson problem, the linear operator A is the Laplacian, which is a self-adjoint operator

so A∗ = A. We can see this using integration by parts. If u, v ∈ H2(Ω) ∩H1
0 (Ω), then

(−∆u, v)L2(Ω) = a (u, v) = (u,∆v)L2(Ω) .

Now let U be a finite element solution, i.e. we have

a (U, v) = (f, v)L2(Ω)

for any function v in the span of the tent functions we have described. In particular, if πhφh is a

projection of φ into the space, such as the nodal interpolant, we have

(∇U,∇πhφh) = (f, πhφh) .

This is known as Galerkin orthogonality.

The true value of the quantity of interest is given by

q = (ψ, u)L2(Ω) .

We are approximating the quantity of interest by using U instead of u. We get

q̂ = (ψ,U)L2(Ω) .

The error in our approximation of the quantity of interest is given by

(ψ, u− U)L2(Ω) .

Using the properties of u, U , ψ and φ we can expand this to get

(ψ, u− U)L2(Ω) = (φ, f)L2(Ω) − a (φ,U) = ((φ− πhφ) , f)L2(Ω) − a ((φ− πhφ) , U) .
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This gives a computable estimate for the error in the quantity of interest, provided we compute or

approximate the adjoint solution φ. In practice, we use a different mesh or a different basis, such as

CG2, to calculate the adjoint solution φ in order to evaluate φ− πhφ in the Galerkin Orthogonality.

Once we have φ, every term in the estimate above is computable.

Accurate a posteriori error estimates are useful for adaptive mesh refinement. We can calculate

the above formula separately over each triangle in the mesh. On each triangle Sk, we get

eSk
=

∫
Sk

(φ− πhφ)fdx−
∫
Sk

∇ (φ− πhφ) · ∇Udx.

The sum of all of the integrals gives the total error. When we look at the integrals for the individual

triangles, however, we can see what parts of the mesh contribute most to the error and therefore

need to be resolved more carefully. In adaptive mesh refinement, we use this information to refine

the mesh until the error is within an acceptable range.
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5. SOLVING THE POISSON PROBLEM ON A SURFACE

So far we have discussed some important notions from differential geometry, culminating in the

extension of the Laplacian from Euclidean space to the Laplace-Beltrami Operator on a surface.

We have also discussed the numerical solution of the Possion problem on a Euclidean space and a

practical a posteriori method for estimating error in the solution. In this chapter, we show how to

extend the finite element method to the Poisson problem on a two dimensional surface and extend

the error estimate to this problem. To define the finite element problem, we follow the analysis in

[12] and [11].

5.1 Statement of Problem

Problem 4 (Diffusion on a Surface). On the closed, bounded, smooth surface Γ, find u(x, t) with

continuous derivative with respect to time and continuous second derivatives for the spatial vari-

ables such that {
ut −∆Γu = f(x, t) x ∈ Γ, t ∈ [0, T ]

u(x, 0) = g(x).

The Laplace-Beltrami operator on the surface is analagous to the Laplacian in Euclidean space.

If f does not depend on t then we have a steady-state problem.

Problem 5 (Steady-State of Diffusion Problem). If the problem above reaches a steady state, it

satisfies

−∆Γu = f(x).

Once a finite element method and error estimate have been established for the steady-state prob-

lem, it can be readily extended to the diffusion problem following the same approach as [16]. We

therefore focus on the steady-state problem here. Unfortunately, the Steady-State Diffusion Problem

as stated above is ill-posed on a closed surface.

Lemma 4. The Steady-State Diffusion Problem has no solution unless∫
Γ
fdσ = 0.
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Proof. If u is a weak solution of the problem, we can take v = 1 as a test function in H2(Γ) to get∫
Γ
fdσ = (f, v)L2(Γ) = (∇Γu,∇Γv)L2(Γ) = 0.

This is to be expected because of the physical meaning of the problem. We have diffusion of

heat or of a chemical under an outside forcing term. The requirement that
∫

Γ fdσ = 0 means that

heat, for example, is being introduced to the surface at the same rate it is being taken away from the

surface. If this is not the case, then it would be impossible for heat on the surface to reach a steady

state. Besides the uniqueness issue, we also have

Lemma 5. A solution to the Steady-State Diffusion Problem is not unique.

This is evident from the fact that the Laplacian of any constant function is zero.

To create a problem that has a unique solution, we choose the function f(x) carefully and take

the solution u(x) that satisfies
∫

Γ u(x)dσ = 0. However, a much simpler expediency is to instead

consider an alternate problem.

Problem 6 (Alternate Steady-State Problem). Find u such that

−∆Γu+ u = f(x).

The modified problem has a unique solution for any f ∈ L2(Γ). This follows from a standard

variational proof. The alternate problem is thus free of the complications of the original problem

and does not introduce any new computational or theoretical issues. This problem is also important

on its own. As in the Euclidean case, we proceed first by formulating the weak problems.

Problem 7 (Steady-State Problem, Variational Formulation). Find u ∈ H2(Γ) satisfying

{
aΓ (u, v) = (f, v)L2(Γ) , ∀v ∈ H2(Γ)

Note that in the case of a closed surface, we have no boundary. This means there is no boundary

term in the integration by parts,∫
Γ
−∆Γuvdσ =

∫
Γ
∇Γu · ∇Γvdσ.
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We also look for solutions in H2(Ω) immediately rather than solutions in H1
0 (Ω). This is because

the proof of improved regularity in the Euclidean case relies on the regularity of the boundary only

for points near the boundary. In the case of a closed surface, there is no boundary and all points are

interior points.

We define the bilinear forms on Γ

aΓ (f, g) =

∫
Γ
∇Γf · ∇Γgdσ

and

(f, g)2
L (Γ) =

∫
Γ
fgdσ.

The gradients used above are the gradients in the three-dimensional sense as described in chapter

three.

The alternate problem is defined the same way.

Problem 8 (Alternate Steady-State Problem, Weak Formulation). Find u ∈ H2(Γ) such that{
aΓ (u, v) + (u, v)L2(Γ) = (f, v)L2(Γ) , ∀v ∈ H2(Γ).

As before, we have L2(Γ) as the set of all square-integrable functions defined on Γ. We can

define weak derivatives on Γ in an analogous fashion to their definition in Euclidean space, g(x) is

the weak partial derivative with respect to xk of f(x) on Γ if

(g, v)L2(Γ) = −
(
f,

∂v

∂xk

)
L2(Γ)

for every v ∈ C∞0 (Γ). H2(Γ) is the set of L2 functions on Γ with weak first- and second-order

derivatives that are in L2(Γ). The partial derivatives of functions v and the inner product must be

computed as in chapter 3.

We want to be able to deal with cases where the surface is very complicated and derivatives are

expensive to compute. In order to do this efficiently, we need a simpler surface. We therefore build

a finite element method using an approximate surface.

Definition 19 (Approximate Surface). If Γ is a smooth, closed, two-dimensional surface, its approx-

imating surface Γh is a piecewise linear surface defined by nodes on Γ. We call Γh a triangulation

of Γ.
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Fig. 5.1: Crude mesh for a sphere

Example 4. For the unit sphere, the triangulation pictured in figure 5.1 with nodes at (1, 0, 0),

(−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) (0, 0,−1) is a very simple approximating surface.

Once we have an approximate surface, we need a map between the true surface and the approx-

imate surface.

Definition 20 (Lift and Projection). If we have Γ and a sufficiently fine Γh (as explained in [12]),

then we define the projection

P : Γ→ Γh

for every x ∈ Γ as follows. If W is a sufficiently small neighborhood in R3 of x, then there is a

unique y ∈ Γh ∩ U lying on the line defined by x and n, the unit normal vector to Γ at x.

The lift

l : Γh → Γ

is the inverse of the projection.

Remark 4. In [11], it is shown that in order to ensure the uniqueness of the lift and projection, the

distance d between x and P (x) must satisfy

d ≤
(

min
i=1,2

‖κi‖L∞(Γ)

)−1

,

where κ1, κ2 are the principle curvatures of Γ.

Once we have this map, we can use functions defined on Γ to define functions on Γh and use

functions defined on Γh to define functions on Γ.
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Definition 21 (Lifted and Projected Functions). If u is a function defined on Γh, we define its

projection û(x) on Γ by

û(x) = u(P (x)).

If u is a function defined on Γ, we define its lift ul(x) on Γh by

ul(x) = u(l(x)).

When we move between the surfaces, we need to take into account the difference in area between

them.

Definition 22 (Surface Measure). The surface measure µh is a function defined on Γh by

µh =

√
det(G(l(x)))

det(Gh(x))

where Gh is the First Fundamental Form of Γh at x.

Using the surface measure, we can see that ul converges to u in something resembling an L2

sense:
‖u‖2L2(Γ) −

∥∥∥ul∥∥∥2

L2(Γ)
=

∫
Γ
u2dσ −

∫
(ul)2dσh

=

∫
Γh

((
ul
)2
µh −

(
ul
)2
)
dσh

≤
∥∥∥ul∥∥∥2

L2(Γh)

∫
Γh

(µh − 1) dσh.

The surface measure µh converges to 1 with order h2 because of the approximate surface that we

have chosen. The integral of µh over Γ is the ratio of surface areas between the surface Γ and its

piecewise affine interpolant. The convergence is a property of piecewise linear interpolants as in

[12].

Our plan is to use a finite element method using basis functions defined on Γh. We can then

define U on Γh as well. By lifting U to Γ from Γh, we achieve an approximate solution in H2(Γ).

To do this, we first need to choose a function on Γh to serve as the right hand side.

Definition 23 (fh). The function fh is defined on Γh and serves as the right-hand side for the

differential equation on Γh. One possible choice is

fh(x) = f l(x).

This satisfies the critical requirement that fh converge to f with order h2 as Γh converges to Γ.
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We next need a space of functions defined on Γh. For a CG1 method, we use piecewise affine

functions dependent on the nodes of the triangulation Γh, i.e. for each node xj of Γh, we let vj(x)

be the piecewise affine function such that vj(xj) = 1 and vj(xk) = 0 for all other nodes xk. From

this, we have the finite element problem.

Problem 9 (Finite Element Method). Find U =
∑N

j=1 Ujvj on Γh such that

aΓh
(U, vj) = (vj , fh)L2(Γh)

for every j in the case of the Poisson problem and

aΓh
(U, vj)Γh

+ (U, vj)L2(Γh) = (vj , fh)L2(Γh)

for every j in the case of the alternate problem.

In [12], the method is analyzed in depth. It is shown to converge with order 2,∥∥∥u− U l∥∥∥
L2(Γ)

+ h
∣∣∣u− U l∣∣∣

H1(Γ)
≤ Ch2,

where ∣∣∣u− U l∣∣∣
H1(Γ)

=
√
aΓ (u− U l).

The proof depends first on the triangulation Γh. It converges to Γ with order h2 in the L∞ norm.

As it converges, the surface measure µh converges to one and the lift and projection operators con-

verge to isometric parmaterizations. We need to choose fh so that
∥∥∥f − f̂h∥∥∥

L2(Γ)
≤ Ch2 ‖f‖L2(Γ) .

Using the Adjoint

As we did in the Euclidean case, we want to use the adjoint to analyze the error in the solution. The

Laplace-Beltrami operator, like the Laplacian, is self adjoint since for any f, g ∈ H2(Ω),

(f,−∆Γg)L2(Γ) = −
∫

Γ
f∆Γgdσ =

∫
Γ
∇Γf · ∇Γgdσ = −

∫
Γ

∆Γh
fgdσ = (−∆Γf, g)L2(Γ) .

The Laplace-Beltrami operator on the approximating surface Γh is also self adjoint using the

same argument. The non-Euclidean case of the Poisson Problem is more difficult to compute the

error estimate for, however. Before, we had a single transformation that took the input f to the

solution U .

f
−∆−1

−→ U
q−→ R.
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Now, however, we have another transformation:

f
l−→ fh

−∆−1
h−→ U

q−→ R.

Both transformations are subject to error and both require an adjoint solution.

Suppose we have our solution u(x) defined on Γ. We again assume that we are interested in a

particular quantity of interest q and that it is a linear functional of the solution. We write

q =

∫
Γ
u(x)ψ(x)dσ

where ψ(x) is the Reisz representor for the quantity of interest q.

Definition 24 (ψh(x)). If we have ψ(x), then ψh(x) is defined on Γh and analogous to fh(x). It

serves as the right-hand side for a Poisson problem formulated on Γh and should converge to ψ in

the same sense that fh converges to f .

We can think of ψh(x) as a representor on Γh of ψ(x). Using ψ(x) and the lift operation l, we

have a linear functional L on L2(Ω) defined by

L(g) =

∫
Γ
glψ(x)dσ.

Using the standard Reisz argument, there must be a function ψh(x) ∈ L2(Γh) such that

L(g) = (ψh(x), g(x))Γh
.

We use ψh(x) for the first adjoint problem that we consider. This problem is analogous to the

adjoint problem for the Euclidean case.

Problem 10 (First Adjoint Problem). The first adjoint problem is on Γh,

−∆Γh
φh + φh = ψh.

The second adjoint problem is, as discussed, needed because of the transformation from H2(Γ)

to H2(Γh) that we make to compute U .

Problem 11 (Second Adjoint Problem). The second problem is on Γ,

−∆Γφ+ φ = ψ.
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With the two adjoint solutions defined, we can begin to build an error estimate.

Definition 25 (Error in Quantity of Interest). The error in the quantity of interest is given by

e = (ψ, u)L2(Γ) − (ψh, U)L2(Γh)

where we use the standard L2 inner products:

(ψ, u)L2(Γ) =

∫
Γ
ψudσ

and

(ψh, U)L2(Γh) =

∫
Γh

ψhUdσh.

An important difference between this estimate and the estimate for the Euclidean case should

be stressed. Before, u and U were both in H2(Ω). Here, they are not in the same space or defined

on the same domain. The lift and projection operators are crucial to understanding how the exact

and approximate solutions relate to each other.

Using integration by parts and the definitions of the forward and adjoint solutions, we can get

immediately
(ψ, u)L2(Γ) = (−∆Γφ+ φ, u)L2(Γ)

= (∇Γφ,∇Γu)L2(Γ) + (φ, u)L2(Γ)

= (f, φ)L2(Γ) .

The second term in the error formula gives, by definition and integration by parts,

(ψh, U)L2(Γh) = (−∆Γh
φh + φh, U)L2(Γh)

= (∇Γh
φh,∇Γh

U)L2(Γh) + (φh, U)L2(Γh) .

Now, after some careful addition and subtraction, we can rewrite the error as

e =
(
f, φ− φlh

)
L2(Γ)

+
(
f̂µh − fh, φh

)
L2(Γh)

+(fh, φh)L2(Γh)−(∇Γh
φh,∇Γh

U)L2(Γh)−(φh, U)L2(Γh) .

Remember that U satisfies Galerkin Orthogonality – i.e. for any function v =
∑

j=1 cjvj(x)

where the functions vj(x) are the basis functions described above,

aΓh
(U, v) + (U, v)L2(Γh) − (f, v)L2(Γh) = 0.

For this reason, we consider the nodal interpolant of φh.
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Definition 26 (Interpolant). If c(x) is any function defined on Γh, then its interpolant

πhc(x)

is the piecewise affine function that takes the same values as c(x) at the nodes of Γh.

We use Galerkin Orthogonality to write

Lemma 6.

(∇Γh
U,∇Γh

πhφh)L2(Γh) + (πhφh, U)L2(Γh) = (fh, φh)L2(Γh) .

The Galerkin Orthogonality represents the cancellation of errors that gives the accuracy in a

Galerkin approximation. It is useful in the a posteriori error estimate for better “localizing” element

contributions to the error. From this we get our formula for the a posterori error estimate.

Theorem 6 (A Posteriori Error). We can estimate the a posteriori error in the computation of the

quantity of interest ψ from the finite element solution U by

e =
(
f, φ− φlh

)
Γ

+
(
f̂µh − fh, φh

)
L2(Γh)

. . .

+ (fh, φh − πhφh)L2(Γh) − (∇Γh
(φh − πhφh) ,∇Γh

U)L2(Γh) − (φh − πhφh, U)L2(Γh) .

The first term is the difference between the second adjoint solution and the lift of the first one,

integrated against the data f on Γ. The second term is the difference between fh and the projec-

tion of f multiplied by the surface measure µh integrated against the first adjoint solution on Γh.

Together, these terms give the geometric error – error resulting from the distortion of lengths, areas

and angles when we approximate the surface Γ with Γh as well as error in the evaluation of f and ψ

that arises because of this approximation. The remaining terms give the discretization error – error

that results from solving the problem

−∆Γh
U + U = fh

with a finite-dimensional function space. It uses the Galerkin Orthogonality property of U and is

analogous to the error estimate that we had in the Euclidean case. We look at the terms in more

depth.

Definition 27 (Geometric Error). Geometric error is error in the solution that arises due to approx-

imating the surface. In the estimate above, the terms corresponding to geometric error are

eg =
(
f, φ− φlh

)
Γ

+
(
f̂µh − fh, φh

)
L2(Γh)

.
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The first of these terms is the difference between the adjoint solutions. Remember that the

quantity of interest is given by

(u, ψ)Γ = (∇Γu,∇Γφ)L2(Γ) + (u, φ)L2(Γ) = (f, φ)L2(Γ) .

This means that we can think of this term as measuring the difference in computing the quantity of

interest with φ and with φh. This indicates how well Γ has been approximated and how close the

data ψh for φh is to being the representor of ψ on Γh.

The second term is the difference between the data f and its projection f̂ on Γh. The functions

f and fh are different from ψ and ψh because in practice, f is something that is observed and

measured while ψ and ψh are defined and not necessarily observed from an outside source. This

second term, therefore, tells us how our measurements of f are being influenced by approximating

the surface. The difference is integrated against the first adjoint solution φh, so the term only says

how much the variation of f affects the quantity of interest.

We can also note from this estimate that an interesting choice for fh is

fh = f lµh

This appears to eliminate the second term in the estimate. Evaluating f l and computing µh on a

complicated surface, however, may be difficult to do accurately.

Definition 28 (Discretization Error). Discretization error is error that arises from discretizing the

Laplace-Beltrami operator. The terms corresponding to discretization error are

ed = (fh, φh − πhφh)L2(Γh) − (∇Γh
(φh − πhφh) ,∇Γh

U)L2(Γh) − (φh − πhφh, U)L2(Γh) .

Quadrature Error

All of the integrals for the finite element method are evaluated using numerical quadrature. Our

implementations use Gaussian Quadrature, but other methods may also be used. Regardless of what

numerical quadrature is used, the effect is to give solutions U , φ and φ1 that satisfy approximate

inner products, rather than the true H1 inner products. We denote the approximate inner products

by

(g1, g2)Γh,q
=

L∑
k=1

n∑
j=1

wjg1(xj)g2(xj)A(Sk),
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where we are summing over all simplices of Γh, A(Sk) is the area of the simplex Sk, the points xj

are the quadrature points and the numbers wj are the quadrature weights. In our solutions, we use

third-order Gaussian quadrature on each simplex, so

(g1, g2)Γh,q
=

L∑
k=1

3∑
j=1

(
1

3

)
g1(ej,m)g2(ej,m)A(Sk),

where ej,m indicates the midpoint of edge j. This means that rather than U satisfying

(U, φ)L2(Γh) + (∇hUh,∇hφh)L2(Γh) = (fh, φh)L2(Γh) ,

it satisfies

(Uh, φh)Γh,q
+ (∇Γh

Uh,∇Γh
φh)Γh,q

= (fh, φh)Γh,q
.

This means that we do not have true Galerkin Orthogonality. In order to use Galerkin Orthogonality

in the error estimate, we must add and subtract carefully. We begin our previous estimate before we

introduced Galerkin Orthogonality:

e =
(
f, φ− φlh

)
L2(Γ)

+
(
f̂µh − fh, φh

)
L2(Γh)

+(fh, φh)L2(Γh)−(∇Γh
φh,∇Γh

U)L2(Γh)−(φh, U)L2(Γh) .

We would like to subtract πhφh from the appropriate terms as before, but we do not have

Galerkin orthogonality so we must subtract and add:

e =
(
f, φ− φlh

)
L2(Γ)

+
(
f̂µh − fh, φh

)
L2(Γh)

+ (fh, φh − πhφh)L2(Γh) − (∇Γh
(φh − πhφh, U))L2(Γh)

. . .− (φh − πhφh, u)L2(Γh) + (fh, πhφh)L2(Γh) − (∇Γh
πhφh, U)L2(Γh) − (πhφh, U)L2(Γh) .

We can now add in the approximate inner products using quadrature to get the following error

estimate.

Theorem 7 (Error Estimate with Quadrature). The error in the quantity of interest when U is com-

puted using numerical quadrature is

e =
(
f, φ− φlh

)
Γ

+
(
f̂µh − fh, φh

)
L2(Γh)

+ . . .

(fh, φh − πhφh)L2(Γh) − (∇Γh
(φh − πhφh) ,∇Γh

U)L2(Γh) − (φh − πhφh, U)L2(Γh)

. . .+ (∇hπhφh, Uh)Γh,q
− (∇hπhφh, Uh)L2(Γh) + (πhφh, Uh)Γh,q

− (πhφh, Uh)L2(Γh)

. . .+ (f, πhφh)L2(Γh) − (f, πhφh)Γh,q
.
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With the third-order quadrature that we are using, we have second-order convergence provided

the integrands are sufficiently smooth. For a general integrand I(x), third-order quadrature on the

simplex Sk gives
1

3

3∑
j=1

I(ej,m)A(§k) =

∫
Sk

lhI(x)

where lhI(x) is the affine function on Sk with the same values at the midpoints of the edges as I(x).

This is bounded by

max
Sk

∆I(x)A(Sk).

Thus, the integral over all of Γh converges with order h2. In the estimate above, the three integrals

we approximate with Gaussian quadrature are

(πhφh, fh)L2(Γh) ,

(πhφh, Uh)L2(Γh) ,

and

(∇Γh
πhφh,∇Γh

Uh)L2(Γh) ,

where Uh is smooth on each simplex. The regularity of φh depends on that of ψh. Therefore, we

have second order convergence provided that fh and ψh are sufficiently smooth.

Theorem 8 (Error Representation Formula). The error in the quantity of interest e satisfies

e =
(
f, φ− φlh

)
L2(Γ)

+
(
f̂µh − fh, φh

)
L2(Γh)

+(R(U), φh − πhφh)L2(Γh)+
∑
k

∫
∂Sk

(
∂U

∂ν
, φh − πhφh

)
+eq.

Here, each set Sk is a simplex and the sum is over all simplices andR(U) represents the residual,

R(U) = fh + ∆Γh
U − U.

The Laplace-Beltrami operator here is the weak Laplace-Beltrami operator. From the formula

above, we get

Theorem 9 (Convergence). For any quantity of interest ψ, the error formula converges to 0 with

order h2, provided fh and ψh are suitably chosen.
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Proof. The first term converges due to the a priori convergence of the method. Remember that

φ is actually a finite element solution on a very fine approximation of Γ. We have chosen ψh in

order to give second-order convergence. The second term converges to zero quadratically if fh is

chosen appropriately. For example, fh = f l and fh = f lµh are both choices that give second-

order convergence. The third and fourth terms represent discretization error and include the term

φh − πhφh, which converges to 0 with order h2. The quadrature error also converges to zero for

sufficiently precise quadrature rules as shown above.

5.2 Summary

In this chapter, we have shown how to use the finite element method to solve a Poisson problem on

a C2 surface and where error occurs in the process. We have developed an adjoint-based A Pos-

terori Error Estimate for the error that estimates discretization error, geometric error and quadrature

error. We have shown how to approximate the terms in the estimates in order to make the estimates

computable. In the next chapter, we look at some examples of the method.
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6. IMPLEMENTING THE METHOD AND ESTIMATE

In this chapter, we revisit the method and error estimate from the previous chapter and show how

all of the terms can actually be computed. We also consider some practical issues in computing the

solution and how they might be addressed.

6.1 Generating Surfaces

The first practical question is how much we know of our surface and how we obtain this information.

The three general ways we might know the surface are as a parameterization, as a level set of a

function or as a list of measurements for the positions of the nodes. In any case, we need to generate

an approximating surface Γh. The error estimate we have derived also requires an adjoint solution

φ computed on the true surface. Since the finite element method we are considering does not allow

us to solve on the true surface, we approximate φ by using the same finite element method to find

Φ, an approximate adjoint solution on a finer triangulation of the surface than Γh. This means we

need two approximating surfaces for Γ. With these rough and fine approximations of the surface,

we can approximate µh by using the first fundamental form of the fine surface in place of the first

fundamental form of the true surface. The surface measure µh will be piecewise constant in this

case. We can show that the error introduced in this way is asymptotically finer than the error of the

coarsest surface, hence asymptotically does not affect the accuracy of the estimate.

Parametrization

A parameterization is, in many ways, the ideal case for computational purposes. This means that

we know essentially everything there is to know about the surface. We can compute the first fun-

damental form G as described earlier or any other information about the surface that we may need.

Generating triangulations for Γ is a matter of generating triangulations for the Euclidean parameter

space and using the parameterization to place the nodes in three-dimensional space.
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Fig. 6.1: A model of a complex biological molecule.

Unfortunately, this is the least realistic case for actual computations. Most surfaces that might

be encountered in real life will be too complicated to parametrize effectively. Consider, for example,

the surface shown in Figure 6.1. Most of the time, we will not have a parameterization for such a

surface.

Level Set

A surface may be defined as the level set of a function of three variables. This is a less ideal case,

since geometric information about the surface such as the first fundamental form is more difficult

to compute accurately. Generating a mesh is still quite feasible, though. One way to do it is to start

with a mesh of a simpler surface of the same topological type, (sphere, torus, etc...), and then to

move the nodes from the reference surface to the desired surface using a diffeomorphism. The mesh

can then be refined as desired using the following algorithm.

Algorithm 1: Refining the Mesh for a Level Set

while Not Satisfied do
Find the midpoint of each edge in the triangulation;
Move each midpoint onto the surface using the equation that describes the surface;
On each simplex, connect the midpoints to form four new simplices;
Map the rough mesh to the new fine one simplex-by-simplex using affine
transformations;
If the fine mesh is not sufficiently fine, it becomes the rough mesh and we use it to find a
new rough mesh;

end
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This algorithm globally refines the surface. If we only want local refinement, we can still follow

the general strategy of choosing a point on an edge that we want to break up and using the defining

function and its gradient to move the point to the surface and make it a node of the new triangulation.

Measurements

The most realistic and also most computationally difficult scenario is one where all we know of the

surface is a list of measurements. It is not obvious how to compute geometric information about the

surface in this case or how to refine the mesh if desired. Furthermore, there is no way to determine

mathematically whether we have enough measurements to adequately describe the surface. As a

one-dimensional example, suppose we are studying a curve and that we have measured the points

in the figure on the left in Figure 6.2. We will compute the same solution whether the true curve is

the one pictured in the middle or the one on the right.

Obviously, we need to know that we have enough measurements before we try to compute anything.

The error estimate we have will not tell us whether we have enough measurements or not. Finally,

all measurements are subject to uncertainty, which will introduce another source of error to the

computation. We deal with this error in the last chapter.

When what we know about the surface is a list of measurements, we can still generate a mesh

of the surface by making the measurement points nodes and connecting them. It may be that we can

then get more measurements in order to refine the mesh. We could then do something similar to the

previous algorithm by trying to get measurements near the midpoints of the edges in our triangula-

tion. If more measurements are not available, we might use only a subset of our measurements to

52



Fig. 6.2: The problem of measurements.

form Γh and use all measurements to get the fine mesh. Alternatively, we could attempt to interpo-

late the the measurements with a parameterization or the level set of a function and then proceed as

in the previous sections.

6.2 Forcing Terms

If we have uncertainty and incomplete knowledge about the surface Γ, we will also have uncertainty

and incomplete knowledge about the functions f(x) and ψ(x) that are defined on Γ. These functions

could be defined in a number of ways including via parameterization, as a property of the surface,

in terms of coordinates on three-dimensional space, or as a list of measurements.

Parameterization

Again, a parameterization is an ideal case. If we have an accurate parameterization of the surface,

then f(x) and ψ(x) can be defined as functions of the parameters. We can readily measure them at

any point. Also just like before, this is the least realistic case. If a parameterization is available, it is

most likely subject to some error for a realistic or interesting surface.

Property of the Surface

The forcing terms could be properties of the surface, such as the Gaussian Curvature or the distance

on the surface from one point to another. The latter case would apply if, for example, we have a

point source located on the surface with heat diffusing along the surface. In this case, we can use

Γh or the fine approximation to approximate f and ψ. If we need the distance between two points
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for example, we can use the algorithms 2 and 3.

Algorithm 2: Calculating the distance to each node from a point

At the source node, define dist = 0;
while dist is not defined for at least one node do

List all nodes where dist is not defined but that are connected to at least one node where
dist is defined;
for Each node N0 on the list do

For each connected node N where dist is defined, calculate dist(N) + dist(N,N0);
Define dist(N0) as the minimum number calculated above;

end
end

This algorithm approximates the distance of every node in the triangulation from the location of

the source. It is a reasonably good approximation for well-behaved surfaces but has the drawback of

being expensive to compute. At each quadrature point, we can then approximate the distance with

algorithm 3 on the next page.

Algorithm 3: Calculating the distance from each quadrature point to a point

H for Each Quadrature Point q. do
q is on Simplex S with nodes N1, N2, N3;
for Each Node do

Calculate dist(Nj) + dist(Nj , q);
Define dist(q) to be the minimum number calculated above;

end
end

We should perform these computations using the same surface, (either Γh or the finer approx-

imation) and then lift the values to the other surface rather than computing them independently.

Otherwise we may not get quadratic convergence since if f is a function of (x, y, z) for example,
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evaluating f independently on Γh and the fine surface would give

f̂µh − fh = f(x+ h1, y + h2, z + h3)µh − f(x, y, z)

= f(x, y, z)(µh − 1) + h · ∇fµh +O(h2).

Forcing Term as a Property of the Surrounding Space

The functions f and ψ may be functions of three variables defined on the space in which the surface

is located. This might be the case, for example, if a surface is being heated from a source that is not

located on the surface or if part of the surface is exposed to different conditions than the rest of the

surface – for example if it is partially immersed in a fluid.

This is actually an easier case computationally than the previous one. At each quadrature point,

we just need to evaluate the function of three variables. As before, we should do all of the compu-

tations on the same surface and lift them to the other surface rather than doing them independently

on each surface.

A List of Measurements

It may be that we only know f and ψ from a list of measurements. If this is the case, we need a

quadrature rule that uses the measurements we have. If we have the measurements at the nodes,

for example, then we can use the values at the nodes for quadrature rather than the values at the

midpoints. If we are able to make more measurements of f and ψ, we can use other quadrature

methods as well.

6.3 Solutions

Once we have measurements of the surface and forcing terms, we need to evaluate the solutions.

We consider the steps here.

Choosing fh and ψh.

We need to choose fh and φh to solve the finite element problems. For fh, two possible choices are

fh = f l

and

fh = f lµh
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In both cases, we use the fine approximation to stand in for the true surface Γ. Both of these choices

give second-order convergence. The second choice eliminates a term in the error estimate. This

may not be desirable, since we are approximating f l and µh. There is therefore error in both of

these factors and thus the kind of error that the corresponding term in the estimate is supposed to

measure. Choosing f l will not eliminate this term and will give a better idea of how much error is

actually being made. Which choice is the best depends on the problem and the purpose for which it

is being solved. This list of choices is not meant to be exhaustive. It is important, however, that the

choice of fh converge to f quadratically. The choice of ψh has similar issues, but may be easier to

compute since it is defined by what is desired from the computation rather than from external data.

Computing the Adjoint Solutions

As previously stated, we use finite element methods to compute both adjoint solutions, which means

that they themselves are approximations, which we now denote Φ and Φh. We compute Φ with a

CG1 method on the fine approximation of the surface. It converges with order h2 to φ. The first

adjoint solution Φh is defined and computed on Γh. We need it to not lie in the same space of

piecewise affine functions as U , otherwise the discretization terms in the error estimate will go to

zero by Galerkin Orthogonality. We also need it to be smooth on each of the simplexes for our

quadrature. We therefore use a CG2 method to solve for Φh. We place piecewise quadratic basis

functions at all of the nodes in Γh and all of the midpoints. In the Euclidean case, a CG2 solution

has a higher convergence rate provided the right hand side has enough regularity. This is not the

case, however, for a non-Euclidean problem. Since Γh still only converges to Γ at a rate of h2, the

convergence remains quadratic. We use the CG2 method to ensure that φh is in a different space of

functions than U . We will want φh to be different than its piecewise linear interoplant later.

Assembling the Matrix-Vector Problems

We adapt code written by Donald Estep and Michael Holst. When we compute a solution, we need

to compute the matrix and the vector. We compute the entries simplex by simplex. On each simplex,

there are six combinations of two basis functions for CG1 and and fifteen combinations for CG2.

We use Gaussian Quadrature to compute each integral of the form∫
Sk

∇hvj · ∇hvk + vjvkdσh,
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as well as each integral of the form ∫
Sk

fφjdσh.

For the dual problems, we use a seven-point Gaussian Quadrature rule. For the forward problem

U , we use three-point quadrature as described above. The three-point quadrature rule is the least

fine rule that gives second-order convergence. The seven-point rule for the dual problems ensures

that all integrals are computed with a high degree of accuracy so that we only need to estimate the

quadrature error for the forward solution. We get the contribution for each entry from each simplex

in this manner and add it to the corresponding entry of the matrix and vector. Remember, we form

three matrices for three problems this way:

• The forward problem on the rough mesh, using CG1.

• The adjoint problem on the rough mesh, using CG2.

• The adjoint problem on the fine mesh, using CG1.

6.4 Terms in the Error Estimate

Our general plan for computing each integral will be the following:

Algorithm 4: General Plan for Computing a Term in the Error Estimate

for Each Simplex in Rough Mesh do
Get the values of fh, Uh, φh at all vertices;
Use interpolation and Gaussian Quadrature to evaluate the integral;
The integral is stored in an array with one entry for each simplex;

end

Geometric Error and Forcing Terms

The terms in the error estimate corresponding to geometric error are

eg =
(
f, φ− φlh

)
L2(Γ)

+
(
f̂µh − fh, φh

)
L2(Γh)

.
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Remember that we now have

eg ≈
(
f,Φ− Φl

h

)
Γf

+
(
f̂µh − fh,Φh

)
Γh

.

The first term in the estimate,

∫
Γh

f l
(

Φl − Φh

)
µhdσh,

is computed as follows:

Algorithm 5: Computing the First Error Term.

Computation actually performed on the fine mesh.;
for Each Simplex do

Use the list of which new simplices come from which old ones to get the appropriate
values of Φh at the nodes;
µh does not need to be used since we are computing on the fine mesh.;
Use interpolation and Gaussian quadrature to evaluate the integral.;
Produces two arrays. One has an entry for each simplex on the fine mesh. The other has
an entry for each simplex on the coarse mesh.;

end

If we do not use fh = f lµh, we also need to compute this term:∫
Γh

Φh

(
f lµh − fh

)
dσh.

Algorithm 6: Calculating the Second Error Term

for Each Simplex in Rough Mesh do
If we are using fh = f l, just need this at each Quadrature Point along with φh and µh;
Divide each simplex into fourths since µh is a piecewise constant.;
Use Gaussian Quadrature again to evaluate each integral as before, keeping the integral
calculated for each simplex separate. ;

end

One feature of the error estimate we have given is that the geometric error estimate can be com-

puted without computing the solution U . We can use this fact to efficiently refine the triangulation

until geometric error is satisfactory. The following algorithm can be used:
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Algorithm 7: Obtaining a Mesh With Acceptable Geometric Error

while Not Satisfied do
For the current triangulation, get ψ, ψh, f and fh;
Solve both adjoint problems to get Φ and Φh;

Compute eg ≈
(
f,Φ− Φl

h

)
L2(Γ)

+
(
f̂µh − fh,Φh

)
L2(Γh)

;

Refine mesh if desired;
Continue until eg is satisfactory;

end

Discretization Error

The term in the estimate corresponding to the discretization error is approximated by

ed ≈
∫

Γh

fh (Φh − πhΦh) dσh −
∫

Γh

∇hUh · ∇h (Φh − πhΦh) dσh − . . .∫
Γh

Uh (Φh − πhΦh) dσh

To calculate this, we again go simplex by simplex.

Algorithm 8: Calculating the Discretization Error Term

for Each Simplex in Rough Mesh do
Get the values of fh, Uh,Φh at all vertices;
Use interpolation and Gaussian Quadrature to evaluate integral;
The integral is stored in an array with one entry for each simplex;

end

Estimating Qudarature Error

The final error terms are

eq ≈ (∇hπhΦh, Uh)L2(Γh) − (∇hπhΦh, Uh)h,q + . . .

+ (πhΦh, Uh)L2(Γh) − (πhΦh, Uh)h,q + (f, πhΦh)L2(Γh) − (f, πhΦh)h,q

We again proceed simplex by simplex. We estimate the true integrals using a seven-point Gaus-

sian Quadrature method. This allows us to accurately estimate the error without computing the true

integral. The estimate using this approach converges to zero with order h2.

Putting Everything Together and Convergence

After these computations, we now have four arrays with an entry for each simplex. When they are

added and summed, we get the error estimate for the quantity of interest. Without summing, we

59



have the contribution of each simplex to the error in the quantity of interest. We have an idea of

how much of each type of error we get from each simplex and we may use this for adaptivity to

refine the mesh if needed or use higher-order quadrature wherever it is needed. Our estimate of the

quantity of interest still converges to the true quantity of interest.

Theorem 10. The computed quantity of interest

(ψh, U)L2(Γh)

converges to the true value

(ψ, u)L2(Γ)

with order h2.

Proof.

(ψ, u)L2(Γ) − (ψh, U)L2(Γh) = (ψ, u)L2(Γ) − (f,Φ)L2(Γ) + (f,Φ)L2(Γ) − (ψh, U)L2(Γh)

The first difference converges with order h2 due to the convergence of the method. The second term

converges because of the following.

Theorem 11. The estimate using Φ and Φh converges to zero with order h2.

Proof. The estimate is given by

e ≈
(
f,Φ− Φl

h

)
L2(Γ)

+
(
f̂µh − fh,Φh

)
L2(Γh)

. . .

+ (fh,Φh − πhΦh)L2(Γh) − aΓh
((Φh − πhΦh) , U)− (Φh − πhΦh, U)L2(Γh)

. . .+ aΓh,q
(πhΦh, Uh)− aΓh

(πhΦh, Uh) + (πhΦh, Uh)h,q − (πhφh, Uh)L2(Γh)

. . .+ (f, πhΦh)L2(Γh) − (f, πhΦh)h,q .

The first term converges by the convergence of the method. If φ is the true solution, then

(
f,Φ− Φl

h

)
L2(Γ)

= (f,Φ− φ)L2(Γ) +
(
φ− Φl

h

)
L2(Γ)

≤ C ‖f‖L2(Γ) h
2.

As stated before, it is important to choose fh so that

fµh − fh
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converges to zero. Using fh = f l or fh = f lµh will accomplish this. We can use integration by

parts on the terms involving Φh − πhΦh to get these terms equal to

(R(U),Φh − πhΦh)L2(Γh) +
∑
k

∫
∂Sk

∂U

∂ν
· (φh − πhφh) .

This converges to zero quadratically since Φh− πhΦh converges to zero quadratically. The quadra-

ture error estimates also converge to zero. Remember that we are using higher-order quadrature to

estimate the true integrals in this estimate. For each term, let Q be the true value of the integral, Qh

be the high-order estimate and Ql be the lower estimate. We have

|Qh −Ql| ≤ |Qh −Q|+ |Ql −Q| ≤ Ch2

The last step follows as before, provided f is sufficiently smooth by the quadrature that we are

using.

6.5 Adaptivity

As previously stated, evaluating the error estimate gives us four arrays, each having one entry for

each simplex. If we sum all of them, we get our error estimate. We can also see how much of each

type of error comes from each simplex. The error that we estimate is the error in the computation

of the quantity of interest rather than the total error in the entire solution. One useful feature of

this estimate is that the contribution is zero from any region of the surface where either f or ψ are

zero is zero. If a region is not relevant to the right hand side of the equation or to the quantity of

interest, then the geometric error from approximating that portion of the surface does not contribute

to error in the quantity of interest and it is not important to approximate precisely there. This helps

us refine with maximum efficiency. We can see where we need to refine to improve error in the

quantity of interest and what regions do not contribute to the quantity of interest. This will also be

a sharper estimate than one achieved by approximating the norm of the Laplace-Beltrami operator

of the surface as in [11]. This is because such a bound needs to be true for all possible quantities

of interest while our estimate is only valid for one quantity. If a small number of quantities of

interest are needed, then this adjoint-based estimate is preferable to other estimates that do not use

the adjoint.
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7. NUMERICAL EXAMPLES

In this chapter, we look at some interesting examples of the finite element method and the numerical

error. We look at the convergence of the method in general and then look at a case where quadra-

ture error dominates, a case where geometric error dominates and a case where discretization error

dominates.

7.1 Overview

For our first examples, we use the domain pictured in Figure 7.1.

The domain is derived from a torus parametrized by

(X) =

2 cos θ + cos θ cosφ
2 sin θ + sin θ cosφ

sinφ

 .

We move the torus upward by adding 1.1 to the z-coordinate of every point on the mesh. We then

add cos(2θ) to the z-coordinate of every point in order to obtain the warped shape.

We assume that the surface is partially immersed in a liquid solution. The temperature of the

liquid is higher than that of the surrounding air. To find the equilibrium temperature distribution on

the surface, we solve the problem

−∆Γu+ u = f

where

f(x, y, z) = χz≤0

is equal to 1 when z ≤ 0 and 0 otherwise. It is defined in the space in which Γ is located. Our

quantity of interest is the difference between the average temperature below the surface of the liquid

and the average temperature above the surface.

ψ(x, y, z) =
1

A1
χz≤0 −

1

A2
χz>0,
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Fig. 7.1: Warped torus domain.

where A1 is the submerged area and A2 is the area above the surface.

We solve this problem and, using the algorithms of the previous chapter, estimate the error for a

variety of mesh sizes with the following results.

h Geometric Error, Geometric Error, Total Geometric
First Term Second Term Error

2.9180 1.38× 10−2 .1452 .1590
1.6955 −2× 10−3 4.71× 10−2 4.5× 10−2

0.9146 1.3× 10−3 1.02× 10−2 1.15× 10−2

0.4976 2.0× 10−4 2.2× 10−3 2.4× 10−3

0.2612 1.0× 10−4 5× 10−4 6× 10−4

h Discretization Quadrature Total Error
Error Error Error

2.9180 .1298 −7.4× 10−3 .2814
1.6955 6.04× 10−2 2.63× 10−2 .1318
0.9146 2.31× 10−2 −8.2× 10−3 2.63× 10−2

0.4976 7.8× 10−3 2× 10−4 1.04× 10−2

0.2612 2.4× 10−3 −1.4× 10−3 1.5× 10−3

We can see from the results that all forms of error except quadrature error seem to be converging

to zero. We will look at the problem with quadrature error more closely in the next section. It should

also be noted that all of the error estimates are signed. When they are added, errors partially cancel.

In the following figures, we show plots of the solutions for each mesh.

In the Figure 7.3, we show the log-log plots for all of the error terms against h. We can see that
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Fig. 7.2: Plots of the Forward Solutions for h = 2.918, 1.6955, .9146, .4976 and .2612.

64



they are converging at an approximately quadratic rate except for the quadrature error. This will be

explored further in the following section.

7.2 An Example with Signficant Quadrature Error

In the previous example, we had quadratic convergence in every error term except for the quadratic

error. This is due to the discontinuous nature of the forcing functions f and ψ. In order to see this,

we look at a graph of the quadrature error by simplex in Figure 7.4 for the case of h = .2612.

All of the quadrature error is located at the surface of the liquid at z = 0. At this resolution, we

solve the problem on the same mesh using four-point Gaussian Quadrature rather than three-point

Gaussian Quadrature. This reduces the quadrature error to −2.4847× 10−4.

In general, quadrature error is large relative to the other error terms when the forcing terms have

high variation or discontinuity. When this is the case, using more precise quadrature is an efficient

way to improve the accuracy of the result.

7.3 An Example with No Discretization Error

Returning to the warped torus domain, we now consider the same forcing function f(x) but use

ψ(x) = 1. This means the quantity of interest is the integral of U over the domain:

q =

∫
Γ
udσ.

When we use this quantity of interest, we have no discretization error. This occurs because the

solution for the problem

−∆Γu+ u = 1

is u = 1 for any surface. The solution is in the space of trial functions for our finite element method.

In particular, since φh = 1 is the adjoint solution, φh = πhφh. The error formula from the previous

two chapters reduces to

e =
(
φh, f̂µh − fh

)
L2(Γh)

=

∫
Γh

f̂µh − fhdσh.

On the mesh with h = .2612, the estimate for the geometric error is 8.7× 10−3.
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Fig. 7.3: Log-log plots of the error against h for h = 2.918, 1.6955, .9146, .4976 and .2612. We can see
quadratic convergence for all terms except quadrature error.
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Fig. 7.4: Graph of Quadrature Error by simplex for h = .2612.
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Fig. 7.5: Surface with flat regions.

7.4 An Example with Low Geometric Error and Higher Discretization Error

In this example, we solve the modified steady-state problem on the surface in Figure 7.5.

This surface is obtained from a torus by covering the top and bottom with a flat circle, eliminat-

ing the “hole.” We use

f =
1

1 + r2

and

ψ = 100 ∗ e−100(x2+y2).

With this quantity of interest, we are focusing on the region of the surface that is flat and largely

ignoring the rounded region of the surface that is less well approximated. When we solve the

equation for a variety of mesh sizes, we get the following results.
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Fig. 7.6: Log-log plot for all types of error.

h Geometric Error, Geometric Error, Total Geometric
First Term Second Term Error

2.2961 −8.6× 10−2 5.44× 10−2 −3.17× 10−2

1.2502 −.3525 0.1526 −.1999
0.6460 −9.08× 10−2 2.75× 10−2 −6.3× 10−2

0.3259 −3.34× 10−2 1.95× 10−2 −1.39× 10−2

h Discretization Quadrature Total
Error Error Error

2.2961 0.1155 6.76× 10−2 0.1513
1.2502 0.8605 7.4× 10−2 0.7346
0.6460 .2652 4.2× 10−3 0.2062
0.3259 9.11× 10−2 3× 10−4 7.74× 10−2

The mesh with h = 2.2961 is very crude and yields an artificially low error estimate. After that,

however, we see convergence of all forms of error and that discretization error is the largest form of

error. In Figure 7.6, we show the log-log plot of all types of error against h.

On the same surface, if we use

ψ = x2 + y2

we get a very different result. This quantity of interest places much more emphasis on the sides of
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Fig. 7.7: Log-log plot for all forms of error.

the surface where there is geometric error. Here are the results with this quantity of interest.

h Geometric Error, Geometric Error, Total Geometric
First Term Second Term Error

2.2961 −11.9832 8.0943 −3.9339
1.2502 −3.1952 2.1088 −1.0864
0.6460 −0.8065 0.5290 −.2775
0.3259 −0.2014 0.1545 −4.69× 10−2

h Discretization Quadrature Total Error
Error Error Error

2.2961 −1.3573 1.46× 10−2 −5.2766
1.2502 −0.3869 3.7× 10−3 −1.4696
0.6460 −0.1019 3× 10−4 −0.3791
0.3259 −2.58× 10−2 1.67× 10−5 −7.27× 10−2

In Figure 7.7, we show the log-log plot of all forms of error against h.
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This again highlights the importance of the quantity of interest in determining how much error

is made and how much error comes from what source.

7.5 Summary

We have looked at different situations where different aspects of the error are important. In general,

geometric error is low when the surface is close to being flat. This is because we are approximating

the surface with a piecewise flat surface. Since geometric error arises from the distortion of angles,

distances and areas, a surface that is almost flat has low geometric error.

Discretization error is low when the forward solution or adjoint solution is close to being in the

space of test functions. We have seen an example where the adjoint solution for our quantity of

interest is in the space of test functions. This eliminates discretization error. Conversely, a solution

that is highly non-affine would lead to high discretization error.

Quadrature error is high when f or ψ has large derivatives or is discontinuous. This is because

the function in these cases varies a lot over a small region, making quadrature less accurate. When

quadrature error is high, the accuracy of the solution of the estimate on the quantity of interest can

be improved cheaply by using higher-order quadrature.

All forms of error are low in regions of the domain that do not contribute to the quantity of

interest.

Error is a result of all of these factors, and understanding how much error comes from what

source plays an important role in solving differential equations.
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8. ESTIMATING MEASUREMENT ERROR

In most realistic situations, our knowledge of the surface on which we are doing computations come

from measurements. Any time we are working with measurements, measurement error plays a role

in the computations. Measurement error arises due to errors when actually measuring the surface.

This is different from geometric error. Geometric error arises when we use a simpler surface to

approximate a known surface. Measurement error is error due to incomplete knowledge of the

surface to be approximated. Measurement error is a more stochastic quantity than the other sources

of error we have considered since it inherently deals with incomplete knowledge of the surface

where the computation is being made. Much work needs to be done on dealing with measurement

error. Here, we examine measurement error with Monte Carlo sampling by repeatedly solving the

problem with perturbed nodes.

So far, our error estimate has been derived from the following definition of error.

e = (u, ψ)L2(Γ) − (U,ψh)L2(Γh) .

This definition assumes that our formulation of the surface Γ is fully accurate and not subject to

measurement error. In order to include measurement error, we expand our definition of error to

e =
(
ũ, ψ̃

)
L2(Γ̃)

− (U,ψh)L2(Γh) =
(
ũ, ψ̃

)
L2(Γ̃)

− (u, ψ)L2(Γ) + (u, ψ)L2(Γ) − (U,ψh)L2(Γh) .

Here, we have introduced the term
(
ũ, ψ̃

)
L2(Γ̃)

. We denote by Γ̃ the true surface. This is distinct

from Γ, our best approximation of the surface based on the measurements we have. Similarly, ψ̃

is the Riesz Representor for the true quantity of interest defined on the surface Γ̃ and ũ is the true

solution defined on the true surface. The second difference in the above expression,

(u, ψ)L2(Γ) − (U,ψh)L2(Γh) ,

corresponds to the error estimate we have already considered in this paper. The first difference,(
ũ, ψ̃

)
L2(Γ̃)

− (u, ψ)L2(Γ) ,
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corresponds to measurement error. To estimate this, we solve the problem

−∆Γ̃u+ u = f̃

on the surface Γ̃, where Γ̃ for the computation is a randomly generated surface using our best

approximation of Γ as the mean. We think of the true surface and the true forcing function f̃ as

random to represent our uncertainty and incomplete knowledge about them.

There are a number of problems that might be considered on a randomly perturbed manifold.

Here, we proceed by randomly perturbing each of the vertices in our triangulation. This is a rea-

sonable simulation of a situation where our approximate surface is based on measurements that are

subject to error. We proceed by Monte Carlo sampling. For each iteration, we draw perturbations

for each node from a specified probability distribution. This gives us Γ̃n, a realization of the random

surface Γ̃. We generate f̃n and ψ̃n using Γ̃n. We then solve the forward problem and compute the

error estimates on Γ̃n and use this to compute q̃n.

When q̃n is computed, it is still subject to geometric, discretization and quadrature error. We can

use the error estimates that we compute to improve the results. Since the error estimate is signed, we

can add it back to q̃n to obtain a more accurate value for q̃n. Alternatively, we could reject samples

where the absolute value of the estimate is too high. Here, we use the former method.

As we repeat the process many times, we generate many samples of the random variable q̃.

Monte Carlo sampling is often concerned with the convergence of the distribution as the number of

samples goes to infinity. We are more concerned, however, with the behavior the variance of the

empirical distribution when the uncertainty is decreased. We compute the variance of the empirical

distribution and use that as a statistic to estimate the measurement error. The method is summarized

below.

8.1 Implementation on a Sphere

In this section, we implement the method we have described using a mesh for a sphere. This does

not mean that the true surface is a sphere. It means that we are approximating it with a sphere. We

use six levels of refinement of the mesh. At each level of refinement, we introduce to each vertex

a random perturbation to each coordinate. We draw the random perturbation from a uniform dis-

tribution on the interval (−max(P ),max(P )). For each mesh, we use five different values for e.
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Algorithm 9: Using Monte Carlo sampling to estimate measurement error
H For a surface, get Γ and Γh, the fine and rough meshes corresponding to our best
measurements of the surface;
for n = 1 : N do

Generate Γ̃n and Γ̃h,n;
for Each node in Γ do

Draw perturbations in the x, y and z directions from a specified distribution;
Add perturbations to coordinates of node;

end
Get f̃n, f̃h,n, ψ̃n and ψ̃h,n for Γ̃n and Γ̃h,n;
Use data to compute q̃n and error estimate;
Update q̃n by adding error estimate;

end
Estimate distrbution of q̃ with list {q̃n}Nn=1;
Using estimated distribution, show empirical CDF and calculate variance;
The variance computed is the estimate for measurement error;

We use two different functions for f in each case, f = z2 and f = sin(10x) cos(5y) sin(10z). In

every case, we see that the variance of the distribution q̃ goes to zero quadratically as e goes to zero.

We also show the cumulative distribution function for each case. On each cumulative distribution

function, we also include the minimum and maximum values calculated for q from the case of our

largest e for that level of refinement in order to show the convergence of cumulative distribution

function more clearly. We also show the log-log plots of the variance against the maximum pertur-

bation. We have one log-log plot for each combination of a mesh size and a forcing term f . Each

data point then is the variance when 100 samples are drawn using the same maximum perturbation.
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Fig. 8.1: Results on a very rough mesh. In the top row, we have a diagram of the mesh and an example of a
perturbed mesh. On the second and third rows, we have the Cumulative Density Function for q with
f = z2 on the left and f = sin(10x) cos(5y) sin(10z) on the right.
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Fig. 8.2: More results for the rough mesh with f = z2 on the left column and f = sin(10x) cos(5y) sin(10z)
on the right column. We can see the Cumulative Density Function becoming sharper and sharper as
the maximum perturbation decreases.

76



Fig. 8.3: Results after one refinement. In the top row, we have a diagram of the mesh and an example of a
perturbed mesh. On the second and third rows, we have the Cumulative Density Function for q with
f = z2 on the left and f = sin(10x) cos(5y) sin(10z) on the right.
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Fig. 8.4: More results for the mesh after one refinement with f = z2 on the left column and f =
sin(10x) cos(5y) sin(10z) on the right column. We can see the Cumulative Density Function be-
coming sharper and sharper as the maximum perturbation decreases.
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Fig. 8.5: Results on the mesh after two refinements. In the top row, we have a diagram of the mesh and
an example of a perturbed mesh. On the second and third rows, we have the Cumulative Density
Function for q with f = z2 on the left and f = sin(10x) cos(5y) sin(10z) on the right.
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Fig. 8.6: More results for the mesh after two refinements with f = z2 on the left column and f =
sin(10x) cos(5y) sin(10z) on the right column. We can see the Cumulative Density Function be-
coming sharper and sharper as the maximum perturbation decreases.
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Fig. 8.7: Results on the mesh after three refinements. In the top row, we have a diagram of the mesh and
an example of a perturbed mesh. On the second and third rows, we have the Cumulative Density
Function for q with f = z2 on the left and f = sin(10x) cos(5y) sin(10z) on the right.
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Fig. 8.8: More results for the mesh after three refinements with f = z2 on the left column and f =
sin(10x) cos(5y) sin(10z) on the right column. We can see the Cumulative Density Function be-
coming sharper and sharper as the maximum perturbation decreases.
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Fig. 8.9: Results on the mesh after four refinements. In the top row, we have a diagram of the mesh and
an example of a perturbed mesh. On the second and third rows, we have the Cumulative Density
Function for q with f = z2 on the left and f = sin(10x) cos(5y) sin(10z) on the right.
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Fig. 8.10: More results for the mesh after four refinements with f = z2 on the left column and f =
sin(10x) cos(5y) sin(10z) on the right column. We can see the Cumulative Density Function be-
coming sharper and sharper as the maximum perturbation decreases.
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Fig. 8.11: Log-log plots of the variance against the maximum perturbation for the first three meshes. The
results for f = z2 are on the left and the results for f = sin(10x) cos(5y) sin(10z) are on the
right. Each graph is for the same mesh. At each data point, we have used a different maximum
perturbation and show the variance with 100 samples taken using that maximum perturbation.
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Fig. 8.12: Log-log plots of the variance against the maximum perturbation for the second two meshes. The
results for f = z2 are on the left and the results for f = sin(10x) cos(5y) sin(10z) are on the right.

8.2 Implementation on a Complex Biological Molecule

In this section, we implement the same method on a model of a very complicated biological molecule.

The surface is shown in Figure 8.13.
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Fig. 8.13: Complex Biological Molecule
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Fig. 8.14: Results of Monte Carlo on the Biological Molecule with f = sin(10x) cos(5y) sin(10z).

We use ψ = 1 and f = sin(10x) cos(5y) sin(10z). We solve the problem and approximate the

quantity of interest for three different levels of perturbation. Once again, we see that the variance

of the empirical distribution goes to zero quadratically with the maximum perturbation. Again, we

have quadratic convergence with the maximum perturbation.
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8.3 Discussion

Besides all of the deterministic components of error we have discussed in the previous chapters,

measurement error always plays an important role when solving a Poisson problem on a surface.

It is important to have accurate measurements of the surface in order to have an accurate solution.

We can use the Monte Carlo approach we have just considered to represent our uncertainty about

the surface. The error in the quantity of interest seems to go to zero quadratically with the level of

uncertainty regarding the surface.
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9. CONCLUSIONS

We have reviewed the background material necessary for the finite element method for the Pois-

son Problem on a closed, bounded two-dimensional surface. Our main result is the adjoint-based

a posteriori estimate. This estimate measures the amount of error arsing from geometric error, dis-

cretization error, quadrature error and measurement error. We have shown how to implement the

method and error estimate and shown examples where each type of error is significant.

The finite element method for the problem works by approximating the surface with a simpler

piecewise flat surface. This avoids the problem of needing to estimate the First Fundamental Form of

the Surface directly. As the approximation gets finer, the map between the approximate surface and

the true one becomes closer to an isometry and the Laplacian for the approximate surface converges

to the Laplace-Beltrami Operator for the true surface.

Estimating error and how much arises from what source is important for adaptive mesh refine-

ment. It is also useful to know when each type of error is significant. As we have seen, geometric

error is low for a surface that is close to being flat and high for a surface with high curvature.

Discretization error depends on how close the forcing terms f and ψ are to the space of functions

where we seek a solution. Quadrature error can be significant when f or ψ have large derivatves

or discontinuities. Measurement error is always a factor and seems to depend quadratically on the

uncertainty in the measurements of the surface. The use of the adjoint allows us to focus on the

quantity of interest that we are computing from the solution and avoid unnecessary effort that may

be necessary if we look at the accuracy of the entire solution.

Accurate estimates of the error will be important when extending this method to time-dependent

diffusion problems on surfaces or to problems where the surface itself is evolving.
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