#126?

Prepared by

David E. Neff Ronald L. Petersen

FINAL REPORT (February 1996)

Exxon Company, U.S.A. P.O. Box 1163 Billings, Montana 59103-1163

THE PARTY

FLUID MECHANICS AND WIND ENGINEERING PROGRAM

A Second

Lane Loss

124.23

Color

Iniversity

for

WIND TUNNEL GOOD ENGINEERING STACK HEIGHT STUDY OF THE FCC COB STACK AT THE BILLINGS EXXON REFINERY

Prepared by

David E. Neff **Ronald L. Petersen**

FINAL REPORT (February 1996)

for

Exxon Company, U.S.A. P.O. Box 1163 Billings, Montana 59103-1163

FLUID MECHANICS AND WIND ENGINEERING PROGRAM

EXECUTIVE SUMMARY

The purpose of this report is to describe the fluid modeling (wind-tunnel) studies conducted to verify that a 76.7 m stack height is creditable as "good engineering practice" (GEP) stack height for Exxon's FCC COB stack. Physical modeling of the atmospheric boundary layer and the plume was used to make this determination. A 1:400 scale model of the construction features of the Exxon's Billings refinery and surroundings, including portions of the neighboring Montana Sulphur Chemical Company and BGI/YELP facility and other offsite structures, was placed in CSU's environmental wind tunnel. Atmospheric transport of stack emissions from the FCC COB stack was investigated using the scale model of the refinery and surrounding structures. Ground-level concentrations of sulfur dioxide were determined with and without the nearby upwind structures by sampling concentrations of a tracer gas released from the model stack. Analysis of the results for various plant and meteorological conditions was conducted to demonstrate the creditable stack height.

The results of the wind tunnel testing demonstrated that a 76.7 meter stack is creditable as GEP. Excessive concentrations as defined in SIP Fluid Modeling Agreement were demonstrated at this stack height. This demonstration was made without the consideration of other background sources.

Testing was also conducted that showed a 40% increase in concentrations due to the presence of nearby structures for stack heights up to 100 meters. Future work is required to fully document whether the taller stack is creditable as GEP.

ii

TABLE OF CONTENTS

EXEC	CUTIVE	E SUMMARY ii
LIST	OF TA	APPENDIX B: VIDEO TAPE ENCLOSURE
		auto Parameters for Supers Arena a sense to a supersent a supersent a supersent a supersent a supersent a super
LIST	OF FIG	SURES vi
1	INTR	ODUCTION 1
-		ministry of Test Measurements as Remined by FDA (TOS 1)
2	TECH	INICAL CONSIDERATIONS
	2.1	Similarity Requirement for Setting Model Operating Conditions
	2.2	Determination of GEP Stack Height
	2.3	Emission Rates
	2.4	Nearby Structures and Terrain
	2.5	Test Wind Speed and Wind Direction
	2.6	Surface Roughness Length
	2.7	Background Concentration Determination
-	EWDE	one Data - Ground Level Repeated Runs - 5 miles 72 Wind Co Page 10 (table
3	EXPE	RIMENTAL METHODS
	3.1	Model Construction and Coverage
	3.2	Boundary Layer Wind Tunnel 10
	3.3	Velocity Measurements 10
	3.4	Plume Visualization Techniques 10
	3.5	Concentration Measurements 11
	3.6	Stack Flow Rate and Composition Techniques
	3.7	Atmospheric Dispersion Comparability (ADC) of the Test Facility 12
4	RESU	LTS OF FLUID MODELING TESTS 13
	4.1	Wind Profiles Measurements 13
	42	Stack Plume Visualization 14
	4.3	Concentration Measurements
5	TVAT	ILATION OF CED STACK BEICHT
5	5 1	General 16
	5.1	<u>General</u>
	5.2	40 % Excessive Concentration Test
	5.5	Amorent Standard Companson Test
	5.4	<u>Summary</u>
REFE	RENC	ES 19
TABI	LES	Page 1 (tables)

FIGURES	Page 1 (figures)
APPENDIX A:	MODEL AND FULL SCALE PARAMETERS AND SIMILARITY ANALYSIS App A - 1
APPENDIX B:	VIDEO TAPE ENCLOSURE App B - 1
APPENDIX C:	FACILITIES DOCUMENTATION App C - 1
APPENDIX D:	SIP STACK HEIGHT FLUID MODELING AGREEMENT

iv

LIST OF TABLES

Table 1	Source Parameters for Stacks Being Evaluated	Page 1 (tables)
Table 2	Concentration Measurement Test Plan	Page 2 (tables)
Table 3	Stack Gas Flow Settings and Composition	Page 3 (tables)
Table 4	Summary of Test Measurements as Required by EPA (1981)	Page 4 (tables)
Table 5	Centerline Velocity and Turbulence Profile Data	Page 5 (tables)
Table 6	Lateral Velocity and Turbulence Profiles	Page 6 (tables)
Table 7	Conc. Data - Variation of Wind Direction - 5 m/s Wind	Page 7 (tables)
Table 8	Conc. Data - Variation of Wind Speed - 72° Wind Dir	Page 8 (tables)
Table 9	Conc. Data - Variation of Stack Height - 11 m/s, 72° Wind	Page 9 (tables)
Table 10	Conc. Data - Ground Level Repeated Runs - 5 m/s, 72° Wind	Page 10 (tables)
Table 11	Normalized Conc. Data - GEP Ground Level Documentation	Page 11 (tables)
Table 12	Normalized Conc. Data - GEP X = 0.5km Documentation	Page 12 (tables)
Table 13	Normalized Conc. Data - GEP X = 0.9km Documentation	Page 13 (tables)
Table 14	Normalized Conc. Data - GEP X = 1.0km Documentation	Page 14 (tables)
Table 15	Normalized Conc. Data - GEP $X = 2.0$ km Documentation	Page 15 (tables)
Table 16	Excessive Concentration Demonstration Test Results	Page 16 (tables)

The ECC COB stack is located in the process block known as the Fluid Catalytic Crack (FCC) Unit. The FCC COB stack is 63.4 meters tall with an inside stack diameter of 2.96 meters The existing SIP limit of FCC COB stack emission rate is 143 g/sec [Pechan, 1991]. The effluis emitted at 12.5 m/s at about 497 K. The printery "nearby" structure (10 to 25 meters from

LIST OF FIGURES

Figure 1	Wind Speed Distribution at Billings Airport	Page 1 (figures)
Figure 2	Site Topography and Model Study Area Extent	Page 2 (figures)
Figure 3	Aerial Photograph of Field Site	Page 3 (figures)
Figure 4	Field Site Photograph - FCC COB Stack	Page 4 (figures)
Figure 5	Field Site Photograph - Structures ENE of Stack	Page 5 (figures)
Figure 6	Model Site Photograph - FCC COB Stack	Page 6 (figures)
Figure 7	Model Site Photograph - Looking SE over Entire Site	Page 7 (figures)
Figure 8	Mean Wind Speed Profiles	Page 8 (i	figures)
Figure 9	Wind Turbulence Profiles	Page 9 (figures)
Figure 10	Wind Reynolds Stress Profiles P	age 10 (i	figures)
Figure 11	Lateral Wind Profiles P	age 11 (i	figures)
Figure 12	Ground Level Conc. with Stack Height (11 m/s Wind) P	age 12 (1	figures)
Figure 13	Long. Ground Level Concentration Profiles P	age 13 (1	figures)
Figure 14	Lateral Ground Level Concentration Profiles P	age 14 (1	figures)
Figure 15	Vertical and Lateral Plume Profiles at 0.5 km Downwind P	age 15 (1	figures)
Figure 16	Vertical and Lateral Plume Profiles at 0.9 km Downwind P	age 16 (i	figures)
Figure 17	Vertical and Lateral Plume Profiles at 1.0 km Downwind P	age 17 (i	figures)
Figure 18	Vertical and Lateral Plume Profiles at 2.0 km Downwind P	age 18 (i	figures)
Figure 19	Vertical and Lateral Plume Dispersion Coefficients	age 19 (figures)

1 INTRODUCTION

This report describes wind tunnel testing that was conducted to support Exxon's effort to increase the Fluid Catalytic Cracker CO Boiler (FCC COB) stack height at the Billings Refinery to the Good Engineering Practice (GEP) stack height. Increasing the stack height at the Refinery is part of the Billings/Laurel SO₂ State Implementation Program (SIP) compliance plan.

Background

Exxon Company, USA, operates a petroleum refinery located in Billings, Montana, known as the Exxon Billings Refinery. A dispersion modeling analysis performed by the Montana Department of Environmental Quality (DEQ) demonstrated the presence of building downwash associated with the Fluid Catalytic Cracker CO Boiler (FCC COB) stack and nearby structures at the refinery. To avoid the downwash problem, Exxon and the DEQ determined that the existing 63.4 m stack should be increased to the "good engineering practice" (GEP) stack height of 76.7 m. The GEP stack height calculation was based on the dimensions of the structures associated with FCC COB and the EPA recommended formula.

Accordingly, Exxon management proposed to raise the FCC COB stack to GEP formula height as part of the Billings/Laurel SO2 State Implementation Program (SIP) compliance plan. A technical support package for the refinery's proposal was submitted to the Montana Department of Environmental Quality (DEQ), and they, in turn, requested review by EPA Region VIII. In the Region VIII reply, they cited EPA rules which require "...sources wishing to raise existing below-formula height stacks up to formula height provide evidence that the additional height is necessary to avoid downwash-related concentrations raising health and welfare concerns." One method the EPA stated that could be utilized was through the use of fluid (wind-tunnel) modeling. While Exxon disputes the DEQ's and EPA's interpretation of the stack height regulations, Exxon has proposed and the Department agrees that fluid modeling shall constitute a valid and sufficient demonstration in support of the GEP formula height of 76.7 m for the FCC COB stack. The procedures agreed to (i.e., SIP Stack Height Fluid Modeling Agreement) are included in Appendix D.

Facility Description

The FCC COB stack is located in the process block known as the Fluid Catalytic Cracking (FCC) Unit. The FCC COB stack is 63.4 meters tall with an inside stack diameter of 2.96 meters. The existing SIP limit of FCC COB stack emission rate is 143 g/sec [Pechan, 1991]. The effluent is emitted at 12.5 m/s at about 497 K. The primary "nearby" structure (10 to 25 meters from the

1

stack) which can produce plume downwash effects is composed of four solid components imbedded in the lattice framework. The four imbedded components are the elevator (3.2 m by 5 m by 49.2 m), the regenerator (7.6 m in diameter and 30 m high), the reactor (6.1 m diameter and 53.4 m high), and the fractionator (3.2 m in diameter and 45.3 m high). This structure was used to establish the GEP formula stack height of 76.7 meters pursuant to 40 CFR §51.100(ii)(2)(ii). A secondary "nearby" structure¹ (500 meters from the stack) which can produce plume downwash effects is the co-generation facility boiler building (33.5 m by 38 m by 38 m high). Other miscellaneous structures also surround the stack and are "nearby." The only significant terrain feature near to the refinery is an abrupt river bank that raises 23 meters to a plateau located 750 meters north of the FCC COB stack. The minimum terrain feature height which meets the 40 CFR 51.1(jj) definition of "nearby" is 26 meters thus this river bank cannot be considered as "nearby" for fluid modeling purposes.

Fluid Model Testing Program

A wind-tunnel measurement program was conducted that was consistent with the requirements in the SIP Fluid Modeling Agreement, as summarized below.

- 1. The emission rate for the FCC COB stack was set to the existing SIP limits of 143 gm/s, as established in the E.H. Pechan & Associates, Inc. Report dated February 1991.
- 2. The representative area surrounding the FCC COB unit was simulated in the wind tunnel by appropriate surface roughness elements (i.e., $z_o = 20$ cm).
- 3. Representative meteorological conditions were used consistent with procedures in EPA's Guideline for Use of Fluid Modeling to Determine Good Engineering Practice Stack Height.
- 4. The 40% differential in ground level concentrations due in whole or in part to downwash effects was determined by comparing the respective ground level concentrations produced by (1) running the wind tunnel simulation using scale models of both the FCC COB stack structure and its associated surrounding structures; and (2) running the simulation using scale models of the FCC COB stack alone with nearby structures removed.
- 5.

Contributions to an exceedance of the NAAQS/MAAQS for SO_2 were determined by comparing the concentrations produced by the FCC COB wind tunnel simulations.

Presented in this report are the technical aspects, experimental methods and results for the wind tunnel study designed to meet the above requirements. Section 5 of this report presents the results of the GEP stack height evaluation.

¹for the purpose of a fluid model demonstration "nearby" structures are those that are within ½ mile of the FCC COB stack.

2 TECHNICAL CONSIDERATIONS

2.1 Similarity Requirement for Setting Model Operating Conditions

An accurate simulation of the boundary-layer winds and stack gas flow is an essential prerequisite to any wind-tunnel study of diffusion from an industrial facility. The similarity requirements can be obtained from dimensional arguments derived from the equations governing fluid motion. A detailed discussion on these requirements is given in the EPA fluid modeling guideline (Snyder, 1981).

Based on past experience with GEP stack height and excessive concentration determination studies (Neff *et al.*, 1991; Petersen *et al.*, 1993; Iwanchuk *et al.*, 1992; Petersen, 1990a, 1990b, 1986, 1985; Greenway *et al.*, 1981; Halitsky *et al.*, 1986) and the requirements in the EPA stack height guideline (EPA, 1981; 1985), the criteria that were used for conducting the wind tunnel simulation are summarized below.

Plume Trajectory Simulation Criteria

Match velocity ratio,

$$R = \frac{V_e}{U_h}$$

$$L = \frac{\rho_s}{\rho_a} \qquad (2)$$

• Ensure that the stack Reynolds number exceeds 670 for buoyant plumes and 2000 for neutrally buoyant plumes (Arya and Lape, 1990). If these criteria cannot be met, a trip (i.e., turbulence enhancing device) should be installed in the stack to ensure an accurate plume rise simulation. A trip was used for these simulations.

Airflow and Dispersion Simulation Criteria

- All significant structures and terrain within a 732 m (2400 ft) radius of the stacks (see Figure 2) were modeled at a 1:400 scale reduction. This ensures that all major structures of interest whose critical dimension (lesser of height or width) exceeds 1/20th of the distance from the source are included in the model. Minor structures, such as guy wires, and piping were not considered.
- The mean velocity profile through the entire depth of the boundary layer was represented by a power law $U/U_{\infty} = (z/z_{\infty})^n$ where the power law exponent, *n*, is dependent on the value of surface roughness, z_{0} , through the following equation:

$$n = 0.24 + 0.096 \log_{10} z_o + 0.016 (\log_{10} z_o)^2 \quad . \tag{3}$$

(1)

- Reynolds number independence was ensured: the building Reynolds number $(Re_b = U_b H_b / v_a)$; the product of the wind speed, U_b , at the building height, H_b , times the building height divided by the viscosity of air, v_a) was greater than 11,000 and Reynolds number independence tests were conducted.
- A neutral atmospheric boundary layer was established (Pasquill–Gifford D stability) by setting bulk Richardson number (Ri_b) equal to zero in model and full scale.

Using the above criteria and source characteristics specified in Table 1, the model test conditions were computed for the Exxon FCC COB stack. The tables in Appendix A show model and full-scale parameters for the FCC COB stack and wind speeds of 3, 5, 8, and 11 m/s (at a 7.6 m height at the Billings Airport). These are the wind speeds that were simulated during the course of the study. All wind speeds are less than or equal to the 2 percent wind speed which is discussed more fully in Section 2.5.

To make these computations, the following additional assumptions were made: 1) the approach surface roughness length 0.2 m for all wind directions; 2) the surface roughness length for the airport anemometer is 0.1 m; 3) the boundary layer thickness is 600 m; 4) the anemometer height at the airport is 7.6 m.

2.2 Determination of GEP Stack Height

In the stack height regulation (40 CFR 51.1 (ii)), GEP stack height is defined as the *greater* of:

(1) 65 meters, measured from the ground level elevation at the base of the stack;

(2) (I) for stacks in existence on January 12, 1979, and for which the owner or operator had obtained all applicable permits or approvals required under 40 CFR Parts 51 and 52,

$$H_{g} = 2.5H$$

provided the owner or operator produces evidence that this equation was actually relied on in establishing an emission limitation:

(ii) for all other stacks,

$$H_{a} = H + 1.5L \tag{2}$$

where

- $H_g = good engineering practice stack height, measured from the ground-level elevation at the base of the stack,$
- H = height of nearby structure(s) measured from the ground-level elevation at the base of the stack,
- L = lesser dimension, height or projected width, of nearby structure(s),

provided that the EPA, State or local control agency may require the use of a field study or fluid model to verify GEP stack height for the source; or

(1)

(3) The height demonstrated by a fluid model or a field study approved by the EPA, State or local control agency, which ensures that the emissions from a stack do not result in excessive concentrations of any air pollutant as a result of atmospheric downwash, wakes, or eddy effects created by the source itself, nearby structures or nearby terrain features."

It should be noted that the selective application of Equation (1) has been remanded but a revised regulation has not yet been provided. Equation (1) is essentially the formula specified by Congress in the Clean Air Act. Equation (2) is a more restrictive formula (for tall-thin structures) which simplifies to Equation (1) for structures that are wider than they are tall. EPA (1985) makes it clear that the highest height resulting from the application of the formula to multiple structures is formula height. Formula height is GEP unless a verification is required or unless a higher height is demonstrated under kk(3).

To quantitatively determine the GEP height through wind tunnel modeling, the stack height regulation defines an excessive concentration for sources seeking stack height credit where the State or EPA has required the use of a fluid modeling study to verify the GEP stack height, or for sources seeking stack height credit based on the aerodynamic influence of structures not adequately represented by the formula. The definition is as follows (40 CFR 51.1 (kk) (3)):

"A maximum ground-level concentration due in whole or part to downwash, wakes, or eddy effects that is at least 40 percent in excess of the maximum concentration experienced in the absence of such downwash, wakes, or eddy effects."

The above definition may be appropriate for this study; however, the agreed upon definition of an excessive concentration in the "Stack Height Fluid Modeling Agreement " and which also conforms to 51.1 (kk) (2) are as follows:

" a maximum ground-level concentration due in whole or part to downwash, wakes or eddy effects as provided in paragraph (kk) (1) of this section, except that the emission rate specified by any applicable State implementation Plan (or, in the absence of such a limit, the actual emission rate) shall be used ..."

Further, (kk) (1) states

" a maximum ground level concentration due in whole or part to downwash, wakes, and eddy effects produced by nearby structures or nearby terrain features which individually is at least 40% in excess of the maximum concentration experienced in the absence of such downwash, wakes, or eddy effects and which contributes to a total concentration due to emissions from all sources that is greater than an ambient air quality standard."

In short, the 76.7 m stack height will be justified as GEP if the wind tunnel study shows (1) the presence of ground level concentrations at certain locations which are at least 40% in excess of

maximum concentration experienced in the absence of nearby building effects (i.e., referred to as the 40% test); and at the same locations (2) FCC COB emissions contribute to a total concentration from all sources that is greater than an ambient air quality standard for SO_2 (referred to as the ambient standard test).

2.3 Emission Rates

For creditable stack heights less than or equal to the formula GEP stack height of 76.7 m, the existing SIP emission will be used as established in the E.H. Pechan and Associates report dated February 1991. This emission rate is 143 g/s. If a creditable stack height taller than formula GEP is sought, a more stringent emission limit is required as specified in the Fluid Modeling Agreement. At this time credit for a stack height taller than 76.7 m is not being sought and the 143 g/s emission will be used throughout the study.

2.4 Nearby Structures and Terrain

To evaluate the effect of the nearby structures, tests are first conducted with all significant structures present in the model (referred to as "building in" tests). Next, the same meteorological conditions are simulated with the nearby structures indicated in Figure 3 removed (referred to as "building out" tests). For the structures to be considered nearby for wind tunnel modeling purposes, the stack must be within ½ mile of the structure (see 40 CFR 51.1 (jj) (2)). The ratio of maximum ground level concentration for the "building in" and "building out" tests are compared to the 40 percent criteria previously discussed. The maximum ground level concentrations from the building in tests are compared with an ambient air quality standard after appropriate time scaling is applied.

Figure 3 shows the aerial view of the structures that were included in the model. All of these structures were removed for the nearby building out tests when evaluating these wind vectors. The justification for removing multiple structures is found in EPA guidance (1981) on page 41 where it states to remove the building(s). In addition, 40 CFR 51.1 (ii) (3) states that the GEP stack height is that height that avoids excessive concentrations due to the downwash of nearby structures (plural). Multiple structures have been removed in previous GEP stack height studies conducted by Petersen (1987; 1987) that have been approved by EPA.

The only significant terrain feature near the refinery is an abrupt river bank that rises 23 m above grade to a plateau located about 750m north of the FCC COB stack according to USGS maps (see Figure 2). The minimum terrain feature height which meets the EPA definition of nearby is 26 m; thus, the river bank feature is not nearby for fluid modeling purposes. Terrain downwash effects were not considered in this study. Since terrain effects were not considered, terrain outside the model area shown in Figure 2 was not considered in this evaluation. Terrain

contours, however, were modeled within the area shown in Figure 2.

2.5 Test Wind Speed and Wind Direction

The EPA stack height guideline (EPA, 1981) indicates that the design wind speed be less than the 2 percent wind speed (speed that is exceeded less than 2 percent of the time) unless it can be demonstrated that higher speeds cause exceedances of NAAQS or PSD limits. The 2 percent wind speed was determined by analyzing meteorological data collected at Logan Field, Billings, Montana, the site selected by DEQ for air modeling purposes (see Figure 1). The analysis showed that the 2 percent speed based on meteorological data for the period 1965–1974 is 11 m/s. All concentration tests to justify the GEP stack height were conducted with speeds at or below 11 m/s. Tests were conducted to determine the critical wind speed (i.e., that speed resulting in the highest excessive concentration).

Wind speeds in the tunnel were set at a reference height of 400 m above stack grade. The speed at this reference height is determined by scaling the 7.6 m airport wind speed up to the freestream height, 600 m (Snyder, 1981) above ground level. At this height, is it assumed that wind speeds at the site and at the anemometer location are the same (i.e., local topographic effects are not important). Next, the wind speed at the reference height is calculated using the wind speed at the freestream height and scaling down to the lower height using the following power law equation:

$$U_{r} = U_{\infty} \left(\frac{z_{r}}{z_{\infty}}\right)^{n_{s}} = U_{anem} \left(\frac{z_{\infty}}{z_{anem}}\right)^{n_{a}} \left(\frac{z_{r}}{z_{\infty}}\right)^{n_{s}}$$
(4)

where

U,	=	wind speed at reference height (m/s),
Z,	=	reference height above plant grade (300 m),
Ū.	=	wind speed at freestream height (m/s),
Z_{∞}	= 10	freestream height (600 m),
$U_{\rm anem}$	=	wind speed at 7.6 m height at the airport (m/s),
Zanem	=	height above grade for U_{anem} (7.6 m),
na	=	wind power law exponent at the anemometer (0.16),
ns	=	wind power law exponent at the site (0.18).

Tables in Appendix A provide the calculated results using the above equations. It should be noted that the power law exponents were calculated using Equation (3) in Section 2.1 with z_o equal to 0.1 and 0.2 for the airport and site respectively.

2.6 Surface Roughness Length

As specified in the protocol, a suburban target surface roughness length of 20 cm was specified for the area surrounding the refinery model.

2.7 Background Concentration Determination

The evaluation in Section 5.3 shows that background concentrations are not needed to justify the 76.7 m stack height. If a taller creditable stack height is sought sometime in the future, a background concentration analysis will be required.

resulting in the highest excessive consistantidationignorith beau ed line noizeines eig the Wind speeds in the tunnel were set at a reference height of 400 m above stack grade. The speed at this reference height is determined by scaling-file/file/multiput wind-typeed up to the incefil figies/netitoheight/600 m/Sandar, 1981 rabove groundificebookt allisheights is it assumed that incefil figies/netitoheight/600 m/Sandar, 1981 rabove groundificebookt allisheights is it assumed that incefil figies/netitoheight/600 m/Sandar, 1981 rabove groundificebookt allisheights is it assumed that incefil figies/netitoheight/600 m/Sandar, 1981 rabove groundificebookt allisheights is it assumed that incefil figies/netitoheight/600 m/Sandar, 1981 rabove groundificebookt allisheights is it assumed that incefil figies/netitoheight/600 m/Sandar, 1981 rabove groundificebookt allisheights is it assumed that incefilebooktoheight/600 m/Sandar, 1981 rabove groundificebookt allisheights is it assumed that is at leaffedts have non-imformal? If least ributer and the allie of alm and the other information the allowing pailebooktoheight/file (least) all state ributer and the alm all allie of alm all allies of a start "too gniblind" (bas) "ai gniblind" and rabove allow of alm all infits and almost all bours attart "too gniblind" (bas) "ai gniblind" and rabove allow of alm allowing and the allowing infinition (aff) bestated (start) and and all allowing infinite and allowing and bours file (least) for all bourse allowed (start) and allowing allowing allowed bourse in a minimum (aff) bestated (start) and allowing allowing allowing in allowing in allowing allowed bourse in a minimum (aff) bestated (start) and allowing allowing allowing allowing allowing in allowing allowing

The List is a show the state of the second at reference being (minks and two of a two of the state and (100 m). In the second property and the state of the state of the state of the state of two of the second at two of the state of the state

nearby is 26 m; thus, the river bank feature is not nearby for third modeling purposes. Term downwash effects were not considered in this study. Since termin effects were not considered termin outside the model area shown in Figure 2 was not considered in this evaluation. Term

3 EXPERIMENTAL METHODS

3.1 Model Construction and Coverage

From an on-site inspection of the refinery complex three wind directions were identified as having the potential to create "excessive concentrations." These were the alignments of the FCC COB stack with the Lattice Tower, with the Co-Generation Facility, and with the complex structural group ENE of the stack. Figure 2 displays the extent of the modeled area on the primary wind direction overlaid on a USGS topographic map. An aerial photograph of the field site area is shown in Figure 3². Figure 4 shows the Lattice Tower offset and behind the FCC COB stack at the field site. Figure 5 shows the complex structural group as seen from the Lattice Tower at the field site (looking ~ENE).

Based on atmospheric data over the site area, the size of the concentration measurement grid, and modeling constraints previously discussed, a model scale of 1:400 was selected. Since the Environmental Wind Tunnel at Colorado State University has a 3.66 meter turntable this allows for the reduced scale construction of all significant buildings within a 730 meter radius of the plant stack. The tunnel test section can extend 6.4 meters downwind of the stack location thus providing for scaled concentration measurements out to 2.5 km.

The buildings surrounding the plant stack were fabricated from Styrofoam and placed in their appropriate locations on a 3.66 meter diameter, 0.63 cm thick masonite sheet. All roads and railways were painted on this masonite sheet. Modeled upwind and downwind structural and terrain features were also fabricated if their heights exceeded 1/20th the distance to the plant stack. All significant topography changes within the modeled area were included on the model. The model plant stack was adjustable in height from 63.4m to 100m. It was constructed from brass tubing stock. The stack exteriors were scored to assist in creating turbulent flow separation. An orifice, one-half the inside diameter, was inside the stack to ensure fully turbulent exit flow. Roughness elements of 0.15 cm were spread over all model ground level surfaces to ensure proper Reynolds number performance.

Figure 6 shows the 1:400 model of the FCC COB stack and the Lattice Tower placed at the center of the turntable. Figure 7 shows a view of the model turntable looking past the FCC COB stack and the Lattice Tower towards the Co-Generation Facility.

² Note that the new co-generation facility is not present in either the USGS map or the aerial photograph.

3.2 Boundary Layer Wind Tunnel

All model tests were performed in the Environmental Wind Tunnel (EWT) test facility at Colorado State University (CSU). This tunnel has a 3.66 m by 2.13 m cross section, a 17.4 m length, a wind speed range of 0 to 15 m/s and a flexible test section roof. A complete description of this facility is provided in Appendix C. Appropriate boundary layer development techniques were utilized to accurately represent wind conditions approaching the plant stack from all wind directions. The project model was placed on a 3.66 meter diameter turntable located ~9 meters into the test section. This placement provides sufficient upwind fetch, and a sufficient downwind measurement zone. The zones upwind and downwind of the turntable area were modeled with a generic roughness (chain rows every 15 cm on top of astroturf carpet) design to create the desired model boundary layer.

3.3 <u>Velocity Measurements</u>

The techniques employed in the acquisition of velocity profiles are discussed in detail in Appendix C including basic equations and errors associated with each technique. Single-hot-film (TSI 1220 Sensor), cross-film (TSI 1241) probes and pitot-static probes are used to measure velocity statistics. TSI 1125 Velocity Calibrator System and Pitot-static Probes are used for velocity calibration.

The approach mean velocity and turbulent statistics profiles are obtained from velocity measurement techniques. The approach mean velocity profiles for a suburban roughness condition are regressed to find the best log-log and log-linear fit. The log-log regression will find a power law exponent, p, such that;

$$U/U_r = (z/z_r)^p.$$

The log-linear regression;

$U/u_* = 2.5 \ln\{(z-d)/z_o\}$

will find a best fit roughness length z_0 , friction velocity u_* , and displacement height d.

Velocity measurements obtained in this study are summarized and presented through plots of vertical profiles of mean velocity, longitudinal and vertical turbulence. Each of the vertical profiles of mean velocity are plotted on linear-linear and log-linear paper to display the best fit regressions.

3.4 Plume Visualization Techniques

Techniques employed to obtain a visible plume are discussed in Appendix C. A Smoke Generator System and a Video Camera System are used for plume visualization. Given a field to model wind speed ratio of 2.35 (= [10.1 m/s]/[4.3 m/s]) and a model to field length scale ratio of 400, then the time scale ratio between the model and the field is 1:170. Thus phenomena

observed over the model in the wind tunnel will occur 170 times faster than observed at full scale. If the TV tapes were replayed in slow motion (170 times slower than the recorded speed) the observed plume trajectories and motions would appear realistic.

3.5 Concentration Measurements

Techniques employed to obtain the concentration data are discussed in Appendix C. A gas chromatograph with flame ionization detector is used to measure gas concentrations. A schematic of stack gas release, sampling, and analyzing methodology is included in Appendix C.

Concentration data are reported in terms of field scale normalized concentration, K_p , where $K_p = (\chi U_H/Q)_p$ [m⁻²]. This normalized format is convenient because the concentration results, χ_p [gm/m³], from a test at one particular combination of wind speed, $(U_H)_p$ [m/s], and source mass flow rate, Q_p [gm/sec], can be extrapolated to other $(U_H)_p$ and Q_p values provided that flow physics, such as plume rise, remains the same. $(U_H)_p$ is the field wind speed at the stack height. The conversion from model units to field units is as follows:

 $K_p = K_m * (H_m/H_p)^2 [m^{-2}];$ with $K_m = (\chi U_H/Q)_m [cm^{-2}].$

 χ_m is the source normalized model concentration (ppm),

(U_H)_m [cm/s] is model wind speed at stack height,

Q_m [ccs] is the model stack flow rate,

H_m [cm] is the model stack height, and

H_n [m] is the field stack height.

Full scale concentrations for comparison with ambient standards was computed as follows;

 $\chi_p = K_p Q_p / (U_H)_p .$

3.6 Stack Flow Rate and Composition Techniques

An Omega mass flow controlling system was used to monitor and control all stack gas flow settings. This system has six mass flow channels with full scale responses of 0.1, 1, 5, 10, 50 and 100 SLPM for gases with unity gas factors. Different gases will have different gas factors and this must be taken into account when calculating the proper meter setting. The local atmospheric pressure (~631 mmHg at CSU) must also be accounted for in these calculations.

During a visual plume test the proper plume flow rate and specific gravity is attained by mixing metered quantities of Air (SG = 1) and Helium (SG = 0.14). This gas mixture is then pass through the smoke generator and then out the model stack. During a plume concentration test a hydrocarbon gas must be in the source mixture so that measurements of sample concentration can be made with a flame ionization type gas chromatograph. Depending upon many experimental considerations, a hydrocarbon, either methane (SG = 0.55), ethane (SG = 1.04), or propane (SG = 1.52) will be mixed with Helium (SG = 0.14), Nitrogen (SG = 0.967), or Argon

(SG = 1.38). This mixture is passed directly into the model stack. Table 3, Stack Gas Flow Settings and Composition, lists the settings and type of gas used to achieve the proper model stack effluent discharge velocities and specific gravities.

3.7 Atmospheric Dispersion Comparability (ADC) of the Test Facility

The EPA stack height guideline (EPA, 1981) requires that the wind tunnel testing facility demonstrate atmospheric dispersion comparability by acquiring and documenting a set of velocity and concentration profiles on a standardized stack plume released into a standardized model boundary layer. This guideline outlines in detail the testing requirements for this comparability demonstration. Appendix C is the documentation of this ADC testing program. From this ADC testing program it is concluded that the wind tunnel boundary layer is representative of a 1:400 scaled Pasquill-Gifford open C to D dispersion category. Table 4 summarizes the measurements that are required and that are discussed in Appendix C.

RESULTS OF FLUID MODELING TESTS

The goals of this testing program were to determine and fully document the GEP stack height for the FCC COB stack in complete compliance with the EPA Guideline. The required tests are summarized in Table 4. The Study Protocol (Neff, 1995a) lists the conditions for each type of data test that was to be performed in the original specification. The Atmospheric Dispersion Comparability Test Series is fully documented in Appendix C (Neff, 1995b). It is concluded in Neff, 1995b that the wind tunnel facility reproduces field plume behavior accurately at the selected model scale of 1:400.

Table 2 lists all pertinent field and model parameter values for the stack plume tests. In Table 2, under the heading of "Building Config.", <u>Out</u> refers to the removal of the all significant structures, <u>In</u> refers to the inclusion of all structures.

The concentration test results from the "Wind Direction Determination Test Series" (as defined in Table 2) indicated that the wind direction of 72° from the north produced the largest excessive concentrations.

4.1 Wind Profiles Measurements

To document the wind tunnel flow conditions, wind tunnel centerline wind profiles were measured just upwind of the stack, 250 cm (1 km field), and 500 cm (2 km field) downwind of the stack for a 5 m/s wind from 72°. Table 5 presents model and field equivalent values for these profiles. These profiles were examined to determine the following model boundary layer similarity parameters; the roughness length, the displacement height, the friction velocity, and the power law index.

The left graph in Figure 8 displays the test data as symbols and the design power law curve (index = 0.18) as a line. This graph shows that the two downwind model profiles are representative of the field design power law index value of 0.18. The profile nearest the stack displays the influence of building wakes in the refinery complex. The right graph in Figure 8 displays the mean velocity profile test data and the design log-lin law on log-lin coordinates. This graph shows that the model profile is representative of the field design values of roughness length equal to 0.18 meters, friction velocity equal to 0.49 meters/second, and a displacement height of 0.0 meters.

The left graph in Figure 9 displays the longitudinal turbulent intensity profile test data and the EPA 1981 guideline suggested design curve. The guideline states that a model turbulent intensity greater than this curve maybe too turbulent of a condition. The measured test data is slightly less turbulent than the suggested curve and thus complies with the guidelines

specifications. The right graph in Figure 9 displays the vertical turbulent intensity profile test data. It is seen that the ratio of the vertical to longitudinal turbulent intensity near the ground is ~ 0.5 as suggested in Snyder, 1981. Figure 10 displays the a vertical profile of the Reynolds stress divided by the friction velocity squared. It is observed that the magnitude of this profile near to the ground is close to one, as EPA 1981 guideline suggests it should be.

Lateral velocity profiles ($Y_f = \pm 360, \pm 240, \pm 120, 0$ meters) at four heights ($Z_f = 40, 60, 80, 120$ meters) were taken at two downwind positions ($X_f = 0, 2000$ meters) to document the wind flow over the modeled area. These mean velocity and turbulent intensity data are presented in Table 6. Graphs of the lateral mean velocity and lateral turbulent intensity profiles for both downwind distances and for the heights of 10 cm model (40 meters field), 20 cm model (80 meters field), and 30 cm model (120 meters field) are presented in Figure 11. Here again it is seen that the scaled model produces wake regions of low mean velocity and high turbulent intensity.

4.2 Stack Plume Visualization

Model plant stack plume visualizations were performed. The visual records were documented on the video cassette VHS tape. The camera position for these film sequences was inside the wind tunnel, by the wall, slightly upwind of the plant stack, at a height slightly above model ground level. Each test observes the plume trajectories from the plant stack down to the end of the model turntable, approximately 1000 meters field equivalent distance.

The worst case wind direction decision with regards to "excessive concentrations" was observed to be in the vicinity of 72° where a complex structural group was directly upwind of the plant stack. VHS tape documents the 76.7 meter stack plume behavior for a 5 m/s wind at 72° for both the structures "in" and structures "out" test cases.

4.3 Concentration Measurements

Concentration measurements downwind of the model plant stack were measured for the tests listed in Table 2. Table 7 through Table 10 list the run conditions, the model and field position of the concentration measurements, and the model normalized concentrations (source and background adjusted ppm). These tables present the model data for the wind direction variation test series (series 300 in Table 2), the wind speed variation test series (series 400), the stack height variation test series (series 500), and the GEP stack height documentation test series ground level measurements (1st part of series 700 in Table 2) respectively.

Table 11 through Table 15 list for the GEP stack height documentation test series (series 700 in Table 2) the run conditions, the model and field position of the concentration measurements, the field normalized concentrations in $[m^{-2}]$ for both buildings in and buildings out

conditions, and field normalized concentrations predictions using the Pasquill-Gifford open C&D dispersion parameters. These tables present the averaged ground level values, the vertical and lateral profiles at downwind distances of 0.5 km, 0.9 km (at GLC_{max}), 1.0 km, and 2.0 km respectively. Table 8 through Table 11 also present the maximum ground level concentration observed in each test and the percent increase in this maximum ground level concentration between the runs with no buildings versus ones with buildings present, i.e. "excessive concentration."

The variation of ground level concentration (K in $[m^{-2}]$ with U referenced to 400 meters at the site) with downwind distance for stack heights varying from 80 meters to 100 meters is presented in Figure 12 for both buildings in and buildings out configurations (test series 500 in Table 2).

The variation of averaged ground level concentration (K in [m⁻²] with U referenced to 76.7 meters at the site) with downwind distance for 76.7 meter stack height is presented in Figure 13 for buildings in, buildings out, PG category C, and PG category D configurations (test series 700 in Table 2). Figure 14 presents several averaged ground level crosswind concentration profiles for both buildings in and buildings out configurations. Figure 15 through Figure 18 display the vertical and lateral concentration (K in [m⁻²] with U referenced to 76.7 meters at the site) profiles for buildings in, buildings out, PG C&D configurations (test series 700) at downwind distances of 0.5 km, 0.9 km, 1.0 km, and 2.0 km respectively.

The variation of the vertical and lateral dispersion parameters with downwind distance for buildings in, buildings out, PG C,D&E configurations is presented in Figure 19. These dispersion coefficients were calculated via a fit of the data to the Gaussian dispersion equation.

EVALUATION OF GEP STACK HEIGHT

5.1 General

5

To ensure that the maximum creditable GEP stack height was obtained, a four-phase measurement program was undertaken as summarized in Table 16. The phases are referred to as: 1) worst wind direction tests (series 300 in Table 16); 2) worst wind speed tests (series 400 in Table 16); 3) additional stack height tests (series 500 in Table 16); and 4) GEP stack height documentation tests (series 700 in Table 16). The purpose of the first two series of tests was to find the wind direction and wind speed that produce the largest excessive concentration due to downwash effects. For these tests, the formula GEP stack height was evaluated (i.e., 76.7 m), since this was the maximum stack height for which Exxon is presently seeking credit. Ten wind directions were specified during a visualization (no recording of this visualization was made) that was conducted immediately preceding the quantitative testing. These wind directions were evaluated at a 5 m/s wind speed which is less than the 2 percent wind speed (11 m/s). This speed was selected since the stack exit velocity is low and past experience has shown that lower wind speeds produce the highest concentrations for low exit velocity exhausts. For the wind direction producing the largest excessive concentration, tests were next conducted at 3, 8 and 11 m/s to find the critical wind speed.

The next phase of testing was for taller stack heights. Tests were conducted at incrementally higher stack heights starting at 76.7 m until an excessive concentration (i.e., based on the 40 % criteria) was no longer demonstrated. The stack height immediately below this point is the GEP stack height using the 40% test alone. It should be noted that this testing was conducted at the wind direction and speed previously identified as producing the largest 40% excessive concentration (72 degrees and 11 m/s).

The final phase of testing was the documentation tests. For these tests, the test condition associated with the stack height for which credit is being sought (i.e., 76.7m) was repeated three times with and without the nearby buildings present. The maximum values for each similar case were then averaged together to provide a final maximum concentration with and without the structures present. These final values were then used to document the creditable stack height. Also during this phase, horizontal and vertical concentration profiles were obtained so that the plume dispersion characteristics could be documented. These results are discussed in Section 4.

The concentration data listings for each test in Table 2 are provided in Table 7 through Table 10. The following sections discuss the results in more detail as they pertain to the creditable stack height determination.

5.2 <u>40 % Excessive Concentration Test</u>

One of the criteria needed to determine the creditable GEP stack height is the ratio of maximum concentration with and without the nearby buildings. At the GEP stack height this ratio must equal or slightly exceed 1.4, which is defined as an excessive concentration. To test against this requirement, the maximum ground-level concentrations measured in the wind tunnel with and without nearby structure in place (see Section 2.4 for description of nearby structures) were compared. These concentration ratios³ were calculated for each of the 300 and 400 series simulation listed in Table 2 and the resulting ratios are presented in Table 16. The table indicates that the minimum excessive concentration requirement of 1.4 was achieved for all meteorological conditions evaluated for the 76.7 m stack height except for the 27.5 and 338 degree wind directions. The largest excessive concentration occurred for the 72 degree wind direction with an 11 m/s wind speed.

Next, the 500 series tests were conducted at incrementally tall stack heights. These tests were all conducted at the 72 degree direction and 11 m/s wind speed. Table 16 shows that the 1.4 concentration ratio (40% test) is slightly exceeded for stacks as tall as 100 m. Hence, based on this criteria alone, a 100 m stack could be justified as GEP.

At this time Exxon is only seeking credit for a 76.7 m stack height. Accordingly, the 700 series documentation tests were conducted at this stack height. The wind speed selected for conducting the documentation tests was 5 m/s. This speed did not have the largest concentration ratio but it did have the largest maximum concentration with the buildings present. Hence this case will give the largest concentration when making the comparison with an ambient standard. The bottom of Table 16 shows that the average concentration ratio for this case is 1.79, which is above 1.4. Hence, the 76.7 m stack is creditable based on the 40% test.

5.3 Ambient Standard Comparison Test

The second requirement that must be met before the 76.7 m stack is deemed creditable is that an ambient standard is exceeded at the same location as a 40 % excessive concentration is shown. This demonstration can make use of the contribution due to other background sources.

First consider the maximum concentrations due to the FCC COB stack itself. The hourly maximum concentration of 1033.7 μ g/m³ was converted 3-hr, 24-hr and annual average SO₂ concentrations using scaling factors provided in EPA-454/R-92-019, 1992. That EPA reference states " to obtain the estimated maximum concentrations for 3-, 8-, 24-hour or annual averaging times, multiply the 1-hour (wind tunnel) value by the indicated factor:

³The concentration ratios were computed for all wind directions (300 series tests) by assuming that the maximum concentration for the 72 degree wind direction building out case was nearly the same as it would have been for the other wind directions.

Averaging Time	Scaling or Multiplying Factors
3 hours	0.9 (± 0.1)
8 hours	0.7 (± 0.2)
24 hours	0.4 (± 0.2)
Annual	0.08 (± 0.02)

The average multiplication factors were used in the analysis. The bottom portion of Table 16 shows the results of this analysis. The table shows that the 24-hr and annual NAAQS and MAAQS are exceeded due to the FCC COB stack alone. Hence, an additional background concentration is not needed to make this demonstration. Based on this result alone, a 76.7 m FCC COB stack produces an excessive concentration and is a creditable stack height.

5.4 Summary

In summary, the above sections have demonstrated that a 76.7 m FCC COB stack height is creditable as GEP. The results have shown that for a 76.7 meter stack the maximum concentration with the structures present is 40% greater than that with the structures removed and that NAAQS/MAAQS are exceeded with all structures present. The results have further shown that a 100 m stack meets the 40% test. Future analysis may be able to show that NAAQS/MAAQS are exceeded at this height when other background sources are considered.

⁴The concentration ratios were computed for all wind directions (300 series tests) by assuming that the maximum stration (at the 72 degree wind direction building out case was nearly the same as it would have been for the other wind

REFERENCES

Following is a list of reference materials related to this study.

- Arya, S.P.S., and J.F. Lape, Jr., "A Comparative Study of the Different Criteria for the Physical Modeling of Buoyant Plume Rise in a Neutral Atmosphere," *Atmospheric Environment*, Vol. 24A, No. 2, pp. 289–295, 1990.
- Coefield, J., "Exxon FCC-COB Stack Height Credit, Office Memoranda," Montana Department of Health and Environmental Sciences Air Quality Division, Cogswell Building, Helena, MT, August 15, 1994.
- E.H. Pechan & Associates, Inc., "Development of a Sulfur Dioxide Emissions Inventory for Billings and Laurel, Montana, Volume 1: Project Summary," E.H. Pechan & Associates, Inc., 3514 University Drive, Durham, NC. 27707, February 1991.
- EPA, "Guideline for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulation)," USEPA Office of Air Quality, Planning and Standards, Research Triangle Park, North Carolina, EPA-450/4-80-023R, 1985.
- EPA, "Guideline for Use of Fluid Modeling to Determine Good Engineering Practice Stack Height," USEPA Office of Air Quality, Planning and Standards, Research Triangle Park, NC, EPA-450/4-81-003, July 1981.
- EPA, "Workshop on Implementing the Stack Height Regulations (Revised)," USEPA Office of Air Quality, Planning and Standards, Research Triangle Park, North Carolina, October 29-30, 1985.
- EPA, "Determination of Good Engineering Practice Stack Height A Fluid Model Demonstration Study for a Power Plant," EPA/600/3-85/022, U.S. Environmental Protection Agency, Research Triangle Park, NC, April 1983.
- EPA, "Fluid Model Demonstration of Good Engineering Practice Stack Height in Complex Terrain," EPA/600/3-85/022, U.S. Environmental Protection Agency, Research Triangle Park, NC, April 1985.
- Greenway, A.R., J.E. Cermak, R.L. Petersen and H.C. McCullough, "Physical Modeling Studies for GEP Stack Height Determinations," 74th Annual Meeting of the APCA, Paper No. 81–20.3, CEP80–81 JAP–JEC33, Philadelphia, PA, 21–26 June 1981.
- Halitsky, J.A., R.L. Petersen, S.D. Taylor and R.B. Lantz, "Nearby Terrain Effects on a Good Engineering Practice Stack Height," paper to be presented at 79th Annual APCA Meeting in Minneapolis, Minnesota, 1986.
- Iwanchuk, R., R.L. Petersen, and M. Bellanca, "Excessive Concentration Demonstration Study at Chesapeake's West Point Mill," proceedings of TAPPI Environmental Conference, Richmond, Virginia, April 1992.
- Neff, D.E. and EL-Badry, Hesham, "Wind Tunnel Modeling for GEP Stack Height, Island End Cogeneration Project," for Cabot Power Corporation, Boston, Massachusetts, September 1991.
- Neff, D.E., "Wind Tunnel Good Engineering Stack Height Study of the FCC COB Stack at the Billings Refinery <u>Study</u> <u>Protocol</u>," Technical Report for Exxon Research and Engineering Company, Fluid Dynamics and Diffusion Laboratory, Colorado State University, Fort Collins, Colorado, June 1995a.
- Neff, D.E., "Wind Tunnel Good Engineering Stack Height Study of the FCC COB Stack at the Billings Refinery -<u>Atmospheric Dispersion Comparability Testing Documentation</u>," Technical Report for Exxon Research and Engineering Company, Fluid Dynamics and Diffusion Laboratory, Colorado State University, Fort Collins, Colorado, July 1995b.

- Petersen, R.L., D.K. Parce, J.L. West, and R.J. Londergan, "Effect of a Nearby Hill on Good Engineering Practice Stack Height," presented at the 86th Annual AWMA Conference, Denver, Colorado, June 14–18, 1993.
- Petersen, R.L., "Fluid Modeling to Demonstrate Excessive Concentrations at Archer Daniels Midland Facility," CPP Report No. 89-0621 prepared for Stanley Consultants, Inc., Muscatine, IA, March 29, 1990a.
- Petersen, R.L., "Fluid Modeling for Good Engineering Practice Stack Height at McMeekin Station," CPP Report No. 89–0603 prepared for ENSR Consulting and Engineering, Acton, MA, January 18, 1990b.
- Petersen, R.L., "Excessive Concentration Demonstration For Thilmany Pulp and Paper Company," prepared for Thilmany Pulp and Paper, Kaukauna, Wisconsin by Cermak/Peterka and Associates, Inc., Fort Collins, CO, Report No. CPP 86-0306, 1986.
- Petersen, R.L., "Dispersion Comparability of the Wind Tunnel and Atmosphere for Adiabatic Boundary Layers," Seventh Symposium of Turbulence and Diffusion, American Meteorological Society, Boulder Colorado, November 12-15, 1985.
- Petersen, R.L., "Fluid Modeling for Good Engineering Practice Stack Height at Pennsylvania Power & Light's Martins Creek Steam Electric Station," prepared for Pennsylvania Power & light Company, Allentown, Pennsylvania by Cermak Peterka Petersen, Inc., Inc., Fort Collins, CO, Report No. CPP 87-0390, 1987.
- Petersen, R.L., "Fluid Modeling for Good Engineering Practice Stack Height at Homer City Generating Station," prepared for TRC Environmental Consultants, Inc., East Hartford, Connecticut by Cermak Peterka Petersen, Inc., Inc., Fort Collins, CO, Report No. CPP 86-0338HC, 1987.
- Snyder, W.H., "Guideline for Fluid Modeling of Atmospheric Diffusion," USEPA, Environmental Sciences Research Laboratory, Office of Research and Development, Research Triangle Park, NC 27711, Report No. EPA-600/8-81-009, 1981.
- Turner, D. B., "Workbook of Atmospheric Dispersion Estimates, 2nd Edition" CRC Press, Inc., 2000 Corporate Blvd., Boca Raton, Florida, ISBN 1-56670-023-X, 1994.

Wieringa, J., "Representative Roughness Parameters for Homogeneous Terrain," Boundary Layer Meteorology, Vol. 63, pp. 323–363, 1993.

20

Fluid Dynamics and Diffusion Laboratory - Colorado State University Wind Engineering Research and Application Specialists TABLES

Source Parameters for Stack Being Evaluated

English Units

Source Descriptio	on	Stack ID	Typical Building Height (ft)	Stack Height (ft)	Stack Base (ft, MSL)	Exit Diameter (ft)	Exit Temperature (deg F)	Ambient mperatu (deg F)	Volume Flow Rate (cfm)	Exit Velocity (fpm)	Emission Rates SO2 (Ib/hr)
Exxon FCC COB		СОВ	175.2	251.58	947.0	9.71	435.0	46.0	182,164	2460.0	1134.9
		2 01 2				Heliun	50.5	. 116			
Metric Units Source Descriptio	on	Stack ID	Typical Building Height	Stack Height	Stack Base	Exit Diameter	Exit Temperature	Ambient mperatu	Volume Flow Rate	Exit Velocity	Emission Rates SO2

Source Description	Stack ID	Building Height (m)	Stack Height (m)	Stack Base (m, MSL)	Exit Diameter (m)	Exit Temperature (deg K)	Ambient mperatu (deg K)	Flow Rate (m3/s)	Exit Velocity (m/s)	Emis	sion Rates SO2 (g/s)
Exxon FCC COB	COB	53.40	76.7	288.7	2.96	497.0	280.9	86.0	12.5		143.0
Notes:	2012	11			Nitrage	n 2.4	3.6	1.0	2	1991	
8 Conc.				585							
Other Simulation Factors			Full Scale	Model							
 Site Surface Roughness Leg Anemometer Site Surface R Anemometer Height (m) Length Scaling Factor 	ngth (m) oughness L	ength (m)	0.2 0.1 7.62 400	0.2 0.1 0.019 1							

ing Research

brado State University Application Specialists

Table 1 Source Parameters for Stacks Being Evaluated

			FL	III Scale	Condi	tions				Model	Condition	IS
	Stack			Wind	Stack	19				V	Reference	Reference
Run No.	ID 1	Stack ID 2	3	Direction (Deg.)	Height (m)	Uanem* (m/s)	Building Config	Zo (m)	Meas Type	(cm3/s)	Speed (m/s)	Height (m)
Testina	Phase 1	Worst Wi	nd Dire	ection Tests	s (Select	ed From	Visualizati	20)	8	3 8 8		
301	COR		na Dire	72	76.7	50	In	0.2	GL	230.02	4 00	1.00
302	COB			77	76.7	5.0	In	0.2	GL	230.02	4.00	1.00
302	COB			67	76.7	5.0	in	0.2	GL	230.02	4.00	1.00
304	COB			32.5	76.7	5.0	In	0.2	GL	230.02	4.00	1.00
205	COB			27.5	76.7	5.0	In	0.2	GL	230.02	4.00	1.00
305	COB			27.5	76.7	5.0	In	0.2	GL	230.02	4.00	1.00
207	COB			47 5	76.7	5.0	In	0.2	GL	230.02	4.00	1.00
307	COB			17.5	70.7	5.0	In	0.2	GL	230.02	4.00	1.00
308	COB			120	70.7	5.0	in	0.2	GL	230.02	4.00	1.00
309	COB			330	70.7	5.0	in	0.2	GL	230.02	4.00	1.00
310	COB			62	70.7	5.0	in	0.2	GL	230.02	4.00	1.00
311	COB			72	76.7	5.0	Out	0.2	GL	230.02	4.00	1.00
312	COB			72	76.7	5.0	In	0.2	GL	230.02	4.00	1.00
Testing	Phase 2	- Worst Wil	nd Spe	ed Tests	70.7				~			
401	COB			72	76.7	3.0	In	0.2	GL	383.36	4.00	1.00
402	COB			12	76.7	8.0	in	0.2	GL	143.76	4.00	1.00
403	COB			12	10.1	11.0	In	0.2	GL	104.55	4.00	1.00
404	COB			72	76.7	3.0	Out	0.2	GL	383.36	4.00	1.00
405	COB			72	76.7	8.0	Out	0.2	GL	143.76	4.00	1.00
406	COB			12	/6./	11.0	Out	0.2	GL	104.55	4.00	1.00
Prelimin	ary GEP	Stack Heigi	ht Test	s								8
501	COB			72	80.0	11.0	In	0.2	GL	104.55	4.00	1.00
502	COR			72	85.0	11.0	In	0.2	GL	104.55	4.00	1.00
503	COB			72	90.0	11.0	In	0.2	GL	104.55	4.00	1.00
504	COB			72	95.0	11.0	In	0.2	GL	104.55	4.00	1.00
505	COB			72	100.0	11.0	In	0.2	GL	104.55	4.00	1.00
506	COB			72	80.0	11.0	Out	0.2	GL	104.55	4.00	1.00
507	COB			72	85.0	11.0	Out	0.2	GL	104.55	4.00	1.00
508	COB			72	90.0	11.0	Out	0.2	GL	104.55	4.00	1.00
509	COB			72	100.0	11.0	Out	0.2	GL	104.55	4.00	1.00
										2 章 景		
GEP Sta	ick Heigh	nt Document	tation 1	rests								
701	COB			72	76.7	5.0	In	0.2	GL	230.02	4.00	1.00
702	COB			72	76.7	5.0	In	0.2	GL	230.02	4.00	1.00
703	COB			72	76.7	5.0	In	0.2	GL	230.02	4.00	1.00
704	COB			72	76.7	5.0	Out	0.2	GL	230.02	4.00	1.00
705	COB			72	76.7	5.0	Out	0.2	GL	230.02	4.00	1.00
706	COB			72	76.7	5.0	Out	0.2	GL	230.02	4.00	1.00
707	COB			72	76.7	5.0	In	0.2	Hor/Vert	230.02	4.00	1.00
708	COB			72	76.7	5.0	In	0.2	Hor/Vert	230.02	4.00	1.00
709	COB			72	76.7	5.0	In	0.2	Hor/Vert	230.02	4.00	1.00
710	COB			72	76.7	5.0	In	0.2	Hor/Vert	230.02	4.00	1.00
711	COB			72	76.7	5.0	Out	0.2	Hor/Vert	230.02	4.00	1.00
712	COB			72	76.7	5.0	Out	0.2	Hor/Vert	230.02	4.00	1.00
713	COB			72	76.7	5.0	Out	0.2	Hor/Vert	230.02	4.00	1.00
714	COB			72	76.7	5.0	Out	0.2	Hor/Vert	230.02	4.00	1.00
* - Win	d Speed	at Billings A	Airport,	7.6 m aner	nometer	height		-	(1)	27-Feb		

Concentration Measurement Test Plan -- GEP Tests

Table 2 Concentration Measurement Test Plan

Mass Flow System Settings

{SETTING1.WK4}

Field Wind Speed (mps)	Test Type	Gas Mixture Comp.#	Total Flow Rate (ccs)	Mix Specific Gravity	Gas Type	Percent of Total Mixture (%)	Comp. Flow Rate (ccs)	Meter Fullscale Range (SLPM)	Meter Setting (%FS)
3	Visual	1 of 1	104.6	0.565	Air	49.5	51.8	10.0	25.8
	"	2 of 2	н		Helium	50.5	52.8	5.0	36.1
5	Visual	1 of 1	143.8	0.565	Air	49.5	71.2	10.0	35.4
	n = = 1	2 of 2	н		Helium	50.5	72.6	5.0	49.7
8	Visual	1 of 1	230.0	0.565	Air	49.5	113.9	10.0	56.7
		2 of 2	и		Helium	50.5	116.1	5.0	79.5
11	Visual	1 of 1	383.4	0.565	Air	49.5	189.9	10.0	94.5
	н	2 of 2	н	"	Helium	50.5	193.5	5.0	90.9
3	Conc.	1 of 1	104.6	0.565	Methane	97.3	101.8	10.0	70.0
н	н	2 of 2	н	u	Nitrogen	2.7	2.8	1.0	13.9
5	Conc.	1 of 1	143.8	0.565	Methane	97.3	139.9	10.0	96.3
	н	2 of 2	н	н	Nitrogen	2.7	3.8	1.0	19.1
8	Conc.	1 of 1	230.0	0.565	Methane	97.3	223.9	100.0	15.4
• 2	н	2 of 2	н	н	Nitrogen	2.7	6.1	1.0	30.5
11	Conc.	1 of 1	383.4	0.565	Methane	97.3	373.1	100.0	25.7
		2 of 2	1 2 0	2	Nitrogen	2.7	10.2	1.0	50.9

			Measu	remen	t Location	ns		15.5.657	Sec.
Test Type		Measured Quantity	×	v	Le le	z	Traverse Direction	No. c Test	of s
Atmospher Dispersion Comparabi (ADC) Tests	ric ility	T ¹ U,U'IU,W'IU,UJU U,U'IU C C	0 0, <i>L</i> /2, <i>L</i> 0, <i>L</i> 1,2,3 v	0 0 v v v	h/2,h	v v ,1.5 <i>h</i> v 0	z z y y,z x,y	1 3 6 3 1	WHI TESS 8 8
Documenta with Buildings Present	ation	U,U'IU,W'IU,UJU U,U'IU C C	0, <i>L</i> /2, <i>L</i> 0, <i>L</i> 1,2,3,4 V	0 * * *	h/2,h	v ,1.5 <i>h</i> v	z y y,z x,y	3 6 4 3	repeats
Documenta with Buildings Removed	ation	ССС	1,2,3,4 v	v v	2.02	v D	y,z x,y	4 3	repeats
Notatio T U	in: 	Ambient Temperature Mean Velocity							
UI'W ULU	-	Vertical Turbulence Inte Normalized Friction Velo	nsity						
C h L		Concentration Stack Height Length of Test Area from	n Stack						
v 1,2,3,4 x		Variable Locations to be Determine Longitudinal	ned						
y z	1818	Lateral Vertical							

Summary of Test Measurements as Required by EPA (1981)

¹May be omitted if U is greater than 3 m/s

Table 4 Summary of Test Measurements as Required by EPA (1981)

Page 4 (tables)

	LUES IN	(V, V, 6)	in a literation	an an an an Alban an Alban An an Alban a	MODEL	(ALLIERA)			
ELU VA	LUES	m/s at an	porti		NOUEL	ALUES			
rleight	Velocity	Long II	Ven II	MAN U WZ	Height	Velocity	Long II	Vert 11	UW.
(m)	(m/s)	(%)	(%)	NEW COLOR	(cm)	(cm/s)	- (°5)	(%)	(cm/s)^
4.0	2.1	51.0	16.5	0.02	1.0	90.5	51.0	16.5	-8.0
6.0	2.2	52.8	17.4	0.21	1.5	91.3	52.8	17.4	-92.7
8.0	2.3	51.7	18.1	0.38	2.0	96.5	51.7	18.1	-166.5
12.0	2.4	56.0	19.1	0.67	3.0	100.7	56.0	19.1	-291.5
16.0	26	52.5	19.4	0.74	40	108.3	52.5	19.4	-320.3
20.0	2.0	49.8	20.3	0.97	5.0	116.4	40.8	20.3	-410
20.0	2.1	49.0	40.7	0.57	3.0	450.4	45.0	20.3	-413.0
30.0	3.0	30.3	19.7	1.50	1.5	152.4	38.3	19.7	.100-
40.0	4.5	29.5	17.9	1.79	10.0	190.9	29.5	17.9	-///.:
60.0	6.4	18.6	11.2	1.44	15.0	272.0	18.6	11.2	-624.2
80.0	7.2	13.2	8.6	0.78	20.0	307.3	13.2	8.6	-337.9
120.0	7.7	11.0	8.5	0.70	30.0	326.8	11.0	8.5	-304.3
160.0	8.1	10.4	8.3	0.77	40.0	344.2	10.4	8.3	-333.4
200.0	83	9.6	81	0.82	50.0	351.2	9.6	8.1	-354 6
240.0	9.6	2.9	73	0.70	60.0	364.4	3.3	73	-302 /
240.0	0.0	0.0	1.0	0.10	00.0	204.4	0.0	1.5	478
320.0	9.5	0.4	5.9	0.40	00.0	394.2	0.4	5.9	-1/5.
400.0	9.6	5.5	4.9	0.27	100.0	406.5	5.5	4.9	-117.0
480.0	9.6	6.0	5.0	0.10	120.0	409.0	6.0	5.0	-45.2
eference	es				Reference	es			
400.0	9.4	ALC: N	1.1.2	0.49	7.6	400.0	1.10.1	10.0	
0 km P	rofile	TINEA							
ocation	8	(1000.0.7	Manager Street	State of the second					
EL D.VA	I LICE IF	mic at al	(Dott)		MODEL	ALLICE		and the second secon	
ELD VA	LUES ID	invo al di	North	Land the	Hainer I	Males		Mod TI	
reight	velocity	Long II	ven II	-uw/u-2	rieight	velocity	Long	vert 11	uw
(m)	(m/s)	(%)	(%)	A CONTRACT	(cm)	(cm/s)	(%)	(%)	(cm/s)^
4.0	3.4	30.7	13.3	0.99	1.0	145.6	30.7	13.3	-430.5
6.0	40	26.6	11.9	0.98	1.5	170 7	26.6	11.9	-424.4
8.0	45	24.4	11 3	1.00	20	191 2	24.4	113	-432 (
12.0	5.1	21.5	10.0	0.02	2.0	219.2	21.5	10.0	402.4
12.0	5.1	21.5	10.0	0.93	3.0	210.3	21.5	10.0	-402.
16.0	5.4	18.5	9.7	0.77	4.0	227.6	18.5	9.7	-334.0
20.0	5.7	17.5	9.7	0.86	5.0	243.2	17.5	9.7	-370.9
30.0	6.1	17.0	10.3	1.04	7.5	258.5	17.0	10.3	-450.6
40.0	6.4	16.3	10.0	1.04	10.0	269.9	16.3	10.0	-452.3
60.0	7.0	14.5	91	1.03	15.0	298.5	14.5	91	-446
20.0	7.0	12.7	0.1	1.00	20.0	212.6	12.7	0.1	522.6
00.0	7.4	13.7	9.1	1.21	20.0	313.0	13.7	9.1	-523.0
120.0	7.9	11.0	7.8	0.76	30.0	334.8	11.0	7.8	-331.5
160.0	8.2	9.9	7.5	0.80	40.0	349.7	9.9	7.5	-348.1
200.0	8.5	8.9	7.1	0.67	50.0	359.7	8.9	7.1	-290.9
240.0	8.8	7.9	6.3	0.54	60.0	375.2	7.9	6.3	-234.6
320.0	92	6.6	56	0.41	80.0	391.2	6.6	56	-177 3
400.0	0.2	5.2	4.9	0.77	100.0	411.2	5.0	4.9	117.
400.0	9.7	0.2	4.0	0.27	100.0	411.0	0.2	4.0	-117.0
480.01	9.7	4.8	4.4	-0.02	120.0	412.3	4.8	4.4	10.4
alerence	es				Reference	es			
400.0	9.4			0.49	100.0	400.0			
km Pro	file						a the		
ocation	=	(2000.0.Z	1.00000000.040	AND DESCRIPTION		Section 2	Contraction of	and the address	an a
ELD VA	LUES (5	m/s at ai	Dort)	Section 1	MODEL	ALUES	Charles Last out	Bed and that	Merceland
delaht d	Velocity	Long TI	Ver TI	+10/11*42	Height	Velocity	Long TI	Vert TI	INV
(m)	(m/c)	10/1	191	and the second	(cm)	(cm/c)*	(96)	10(1)	(cm/c)A
2000	00051	[(0)]	1/01	AND IN A REAL PROPERTY.	(can)	[cina]	[10]	0.01 [10] = [0	(cinvs)
						477.7			
4.0	3.7	29.0	13.5	0.93	1.0	155.5	29.0	13.5	-402.0
6.0	4.5	23.7	10.3	0.94	1.5	190.1	23.7	10.3	-406.8
8.0	5.0	20.9	9.3	0.79	2.0	210.4	20.9	9.3	-340.
12.0	5.4	18.9	8.9	0.77	3.0	228.9	18.9	8.9	-333 -
14.0	5.9	17.8	8.9	0.81	4.0	247.0	17.8	8.9	-350
16.0	0.0	17.0	0.0	0.01	4.0	241.0	17.0	0.0	-000.
16.0		16.6	8.6	0.76	5.0	254.6	16.6	8.6	-328.1
16.0 20.0	0.0		0.4	0.71	7.5	273.2	14.6	8.4	-308.3
16.0 20.0 30.0	6.4	14.6	8.4		10.0	288 1	14.1	8.2	-329.0
16.0 20.0 30.0 40.0	6.4 6.8	14.6 14.1	8.4	0.76	10.0	200.1			
16.0 20.0 30.0 40.0 60.0	6.4 6.8 7.1	14.6 14.1 13.0	8.4 8.2 8.3	0.76	15.0	301.9	13.0	8.3	-361 3
16.0 20.0 30.0 40.0 60.0	6.4 6.8 7.1 7.3	14.6 14.1 13.0	8.4 8.2 8.3	0.76	15.0	301.9	13.0	8.3	-361.2
16.0 20.0 30.0 40.0 60.0 80.0	6.4 6.8 7.1 7.3	14.6 14.1 13.0 11.9	8.4 8.2 8.3 8.4	0.76 0.83 0.84	15.0	301.9 310.5	13.0 11.9	8.3 8.4	-361.2 -362.2
16.0 20.0 30.0 40.0 60.0 80.0 120.0	6.0 6.4 6.8 7.1 7.3 7.7	14.6 14.1 13.0 11.9 11.0	8.4 8.2 8.3 8.4 8.0	0.76 0.83 0.84 0.78	15.0 20.0 30.0	301.9 310.5 325.8	13.0 11.9 11.0	8.3 8.4 8.0	-361.2 -362.2 -339.0
16.0 20.0 30.0 40.0 60.0 80.0 120.0 160.0	6.0 6.4 6.8 7.1 7.3 7.7 8.0	14.6 14.1 13.0 11.9 11.0 9.8	8.4 8.2 8.3 8.4 8.0 7.4	0.76 0.83 0.84 0.78 0.72	10.0 15.0 20.0 30.0 40.0	301.9 310.5 325.8 340.9	13.0 11.9 11.0 9.8	8.3 8.4 8.0 7.4	-361.2 -362.2 -339.0 -310.2
16.0 20.0 30.0 40.0 60.0 80.0 120.0 160.0 200.0	6.0 6.4 6.8 7.1 7.3 7.7 8.0 8.4	14.6 14.1 13.0 11.9 11.0 9.8 9.0	8.4 8.2 8.3 8.4 8.0 7.4 6.9	0.76 0.83 0.84 0.78 0.72 0.65	10.0 15.0 20.0 30.0 40.0 50.0	301.9 310.5 325.8 340.9 356.9	13.0 11.9 11.0 9.8 9.0	8.3 8.4 8.0 7.4 6.9	-361.2 -362.2 -339.0 -310.2 -283.4
16.0 20.0 30.0 40.0 60.0 30.0 120.0 160.0 200.0 240.0	6.4 6.8 7.1 7.3 7.7 8.0 8.4 8.7	14.6 14.1 13.0 11.9 11.0 9.8 9.0 7.8	8.4 8.2 8.3 8.4 8.0 7.4 6.9 6.4	0.76 0.83 0.84 0.78 0.72 0.65 0.56	10.0 15.0 20.0 30.0 40.0 50.0 60.0	301.9 310.5 325.8 340.9 356.9 369.1	13.0 11.9 11.0 9.8 9.0 7.8	8.3 8.4 8.0 7.4 6.9 6.4	-361.2 -362.2 -339.0 -310.2 -283.4 -242.5
16.0 20.0 30.0 40.0 60.0 80.0 120.0 160.0 200.0 240.0 320.0	6.4 6.8 7.1 7.3 7.7 8.0 8.4 8.7 9.2	14.6 14.1 13.0 11.9 11.0 9.8 9.0 7.8 6.7	8.4 8.2 8.3 8.4 8.0 7.4 6.9 6.4 5.4	0.76 0.83 0.84 0.78 0.72 0.65 0.56 0.42	10.0 15.0 20.0 30.0 40.0 50.0 60.0 80.0	301.9 310.5 325.8 340.9 356.9 369.1 390.1	13.0 11.9 11.0 9.8 9.0 7.8 6.7	8.3 8.4 8.0 7.4 6.9 6.4 5.4	-361.2 -362.2 -339.0 -310.2 -283.4 -242.5 -182.2
16.0 20.0 30.0 40.0 60.0 120.0 160.0 200.0 240.0 320.0	6.4 6.8 7.1 7.3 7.7 8.0 8.4 8.7 9.2	14.6 14.1 13.0 11.9 11.0 9.8 9.0 7.8 6.7	8.4 8.2 8.3 8.4 8.0 7.4 6.9 6.4 6.4 5.4	0.76 0.83 0.84 0.78 0.72 0.65 0.56 0.42	10.0 15.0 20.0 30.0 40.0 50.0 60.0 80.0	301.9 310.5 325.8 340.9 356.9 369.1 390.1	13.0 11.9 11.0 9.8 9.0 7.8 6.7	8.3 8.4 8.0 7.4 6.9 6.4 5.4	-361.2 -362.1 -339.0 -310.1 -283.4 -242.5 -182.8
16.0 20.0 30.0 40.0 60.0 80.0 120.0 160.0 200.0 240.0 320.0 400.0	6.0 6.4 6.8 7.1 7.3 7.7 8.0 8.4 8.7 9.2 9.5	14.6 14.1 13.0 11.9 11.0 9.8 9.0 7.8 6.7 5.6	8.4 8.2 8.3 8.4 8.0 7.4 6.9 6.4 5.4 4.7 2.2	0.76 0.83 0.84 0.78 0.72 0.65 0.56 0.56 0.42 0.28	10.0 15.0 20.0 30.0 40.0 50.0 60.0 80.0 100.0	301.9 310.5 325.8 340.9 356.9 369.1 390.1 403.0	13.0 11.9 11.0 9.8 9.0 7.8 6.7 5.6	8.3 8.4 8.0 7.4 6.9 6.4 5.4 5.4	-361.2 -362.1 -339.0 -310.7 -283.4 -242.5 -182.8 -182.8
16.0 20.0 30.0 40.0 60.0 80.0 120.0 160.0 200.0 240.0 320.0 400.0 480.0	6.0 6.4 6.8 7.1 7.3 7.7 8.0 8.4 8.7 9.2 9.5 9.5 9.7	14.6 14.1 13.0 11.9 11.0 9.8 9.0 7.8 6.7 5.6 4.4	8.4 8.2 8.3 8.4 8.0 7.4 6.9 6.4 5.4 4.7 3.8	0.76 0.83 0.84 0.78 0.72 0.65 0.56 0.42 0.28 0.03	10.0 15.0 20.0 30.0 40.0 50.0 60.0 80.0 100.0 120.0	301.9 310.5 325.8 340.9 356.9 369.1 390.1 403.0 412.7	13.0 11.9 11.0 9.8 9.0 7.8 6.7 5.6 4.4	8.3 8.4 8.0 7.4 6.9 6.4 5.4 4.7 3.8	-361.2 -362.1 -339.0 -310.1 -283.4 -242.5 -182.8 -182.8 -122.1 -12.6

Table 5 Centerline Velocity and Turbulence Profile Data

GEP Model IN - Lateral Velocity Profiles

Field Wind Speed (cm/s) at X = 0 km

	1. 19 Mar	Y (m)										
Z (m)	-360	-240	-120	- 0	120	240	360					
40	5.0	5.6	6.1	3.5	5.9	5.5	5.3					
60	5.7	6.2	6.7	5.4	6.2	5.7	5.8					
80	5.9	6.6	6.9	6.4	6.5	5.9	6.6					
120	6.5	6.9	7.3	7.2	6.7	6.3	7.1					
and the second		1.2.0					1					

Model Wind Speed (cm/s) at X = 0 cm

ALC: NO.	Y (cm)										
Z (cm)	-90	-60	-30	0	30	60	90				
10	212	240	259	151	249	233	223				
15	244	261	284	231	262	243	244				
20	252	280	292	273	275	250	282				
- 30	276	292	312	307	286	268	300				
- 12 - 28-29-47											

Field Wind Speed (cm/s) at X = 2 km

- Carlos and a second		Y (m)											
Z (m)	-360	-240	-120	0	120	240	360						
40	6.0	6.1	6.0	6.5	6.3	6.1	6.0						
60	6.4	6.5	6.9	6.9	6.8	6.3	6.2						
80	6.4	7.1	7.2	7.1	7.2	6.6	6.6						
120	7.2	7.3	7.7	7.8	7.5	6.9	6.9						
ANT CHAN													

Model Wind Speed (cm/s) at X = 500 cm

	Y (cm)										
Z (cm)	-90	-60	-30	0	30	60	90				
10	255	258	253	276	269	258	254				
15	270	277	293	292	288	267	262				
20	273	299	307	303	303	279	281				
30	306	308	325	330	318	291	294				
				(AN		. 3	180				

GEP Model IN - Lateral Turbulence Profiles

Field Long. Turb. Int. (%) at X = 0 km

	Y (m)										
Z (m)	-360	-240	-120	0	120	240	360				
40	23	21	19	34	17	17	20				
60	19	17	15	24	17	18	20				
80	18	16	16	18	16	18	17				
120	17	16	15	14	16	17	15				
动的时间 。					10.0	01	101 11				

Field Long. Turb. Int. (%) at X = 2 km

And the second second	Y (m)										
Z (m)	-360	-240	-120	0	120	240	360				
40	18	19	19	18	18	18	19				
60	17	17	17	16	16	16	18				
80	17	16	16	16	16	16	16				
120	15	15	13	16	15	16	15				
1200000000000				1.0		61 20	61				

Model Long. Turb. Int. (%) at X = 0 cm

	Y (cm)										
Z (cm)	-90	-60	-30	0	30	60	90				
10	23	21	19	34	17	17	20				
15	19	17	15	24	17	18	20				
20	18	16	16	18	16	18	17				
30	17	16	15	14	16	17	15				
是形式四方		14.0	10.00								

Model Long. Turb. Int. (%) at X = 500 cm

	Y (cm)										
Z (cm)	-90	-60	-30	0	30	60	90				
10	18	19	19	18	18	18	19				
15	17	17	17	16	16	16	18				
20	17	16	16	16	16	16	16				
30	15	15	13	16	15	16	15				
A. M. C. L.	12.85	4.0	1004								

Table 6 Lateral Velocity and Turbulence Profiles

RUN NO.				303	301	302	307	306	305	304	308	309	310
STACK (r	n)			76.7	76,7	76.7	76.7	76.7	76.7	76.7	76.7	76.7	76.7
WIND DIF	2.			67.0	72.0	77.0	17.5	22.5	27.5	32.5	120.0	338.0	62
Nearby B	luiiding C	onfig.		In	in 🕤	In	In	In	In	In	In	In	In
Model WI	ind (cm/s	s) at 100c	:m =	403	406	406	405	407	394	402	396	411	398
Model St	ack Flow	Rate (cc	s) =	230	230	230	230	230	230	230	230	230	230
Field Win	d Speed	at Wind	nstr.	~5m/s	~5m/s	~5m/s	~5m/s	~5m/s	~5m/s	~5m/s	~5m/s	~5m/s	~5m/s
Fleid	Dist	Mode	I Dist.	Model	Model	Model	Model	Model	Model	Model	Model	Model	Model
X	Y.	X	Y	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
(m)	(m)	(cm)	(cm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
284	40	71	10	30	34	23	7	6	4	9	0	6	13
284	20	71	5	38	49	27	15	14	16	12	3	15	23
284	0	71	0	40	57	23	23	19	23	17	7	18	23
284	-20	71	-5	30	44	23	19	22	17	17	9	14	19
284	-40	71	-10	15	29	24	16	13	9	12	4	8	8
348	40	87	10	71	82	149	27	26	28	39	27	26	77
348	20	87	5	97	135	115	45	57	58	57	46	54	88
348	0	87	0	100	139	90	57	77	69	55	52	61	84
348	-20	87	-5	73	113	71	54	66	59	60	42	59	54
348	-40	87	-10	78	81	51	42	40	33	37	27	32	18
476	48	119	12	237	236	270	119	149	108	117	121	101	174
476	24	119	6	332	354	363	185	213	162	161	246	153	261
476	0	119	0	319	380	319	198	237	190	205	259	171	306
476	-24	119	-6	337	301	266	185	203	170	216	208	172	229
4/6	-48	119	-12	258	180	1/4	142	137	131	129	130	113	153
600	64	150	10	303	349	328	210	250	155	232	191	126	2//
600	32	150	0	400	472	4/0	317	303	290	341	302	204	428
600	32	150	8	161	102	396	252	2/1	201	364	415	272	409
600	-52	150	-0	206	2402	226	102	207	230	244	106	107	213
780	80	195	20	319	352	341	251	190	186	236	203	147	213
780	40	195	10	509	517	545	406	360	334	450	434	314	457
780	0	195	0	545	552	525	460	448	407	483	454	342	480
780	-40	195	-10	444	437	418	318	369	349	350	351	287	314
780	-80	195	-20	299	285	264	212	229	209	241	207	193	200
952	80	238	20	423	467	421	377	380	289	378	320	256	386
952	40	238	10	570	590	574	489	503	394	527	480	382	522
952	0	238	0	622	620	607	540	535	481	555	522	436	548
952	-40	238	-10	541	536	533	478	474	468	474	479	406	478
952	-80	238	-20	399	385	373	317	324	332	321	343	269	316
1200	80	300	20	463	448	450	390	405	288	433	343	277	411
1200	40	300	10	549	548	546	494	510	388	520	481	396	517
1200	0	300	0	585	578	571	535	530	452	539	521	462	537
1200	-40	300	-10	524	515	521	490	478	451	481	475	435	482
1200	-80	300	-20	413	411	412	406	3/1	367	351	394	335	3/8
Row maxi	mum valu	es repeat	ted from a	above									
284	max	71	max	40	57	27	23	22	23	17	9	18	23
348	max	87	max	100	139	149	57	77	69	60	52	61	88
476	max	119	max	337	380	363	198	237	190	216	259	172	306
600	max	150	max	485	472	478	353	363	301	364	415	321	469
780	max	195	max	545	552	545	460	448	407	483	454	342	480
952	max	238	max	622	620	607	540	535	481	555	522	436	548
1200	max	300	max	585	578	571	535	530	452	539	521	462	537
Maulau	Mak	-		001.0	000 (007.0			100 7			100.0	510.0
Field Dict	(m) to M		=	021.9	020.4	607.0	540.2	535.3	480.7	555.0	521.7	462.2	548.2
leiu Dist.	(III) to M	αλ.	-	952	952	952	952	952	952	952	952	1200	952
THE PROPERTY.			and the second second				and the second second		and the second second		and the second second	and the second se	4.5.4

Table 7 Conc. Data - Variation of Wind Direction - 5 m/s Wind

Fluid Dynamics and Dig	Husion Laboratory	- Colorado State	University
Wind En	gineering Research	and Application	Specialists

RUN N0. STACK (n WIND DIF Nearby B Model WI Model St Field Win	n) Luiiding C nd (cm/s ack Flow d Speed	onfig. at 100ci Rate (ccs	n =) = 1str-	404 76.7 72 Out 406 383 ~3m/s	401 76.7 72 In 404 383 ~3m/s	312 76.7 72 Out 403 230 ~5m/s	311 76.7 72 In 405 230 ~5m/s	405 76.7 72 Out 406 144 ~8m/s	402 76.7 72 In 401 144 ~8m/s	406 76.7 72 Out 400 105 ~11m/s	403 76.7 72 In 395 105 ~11m/s
Eleld	Dist	Mode	Dist	Mo	del	Mo	del	Mo	del	Mo	del
Y	Y	X	Y	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
(m)	(m)	(cm)	(cm)	(nom)	(opm)	(nom)	(nnm)	(nom)	(pom)	(npm)	(nom)
011	(m)	(citi)	(GIII)	(ppin)		(ppin)	(bbuil)	(ppin)	(ppin)	(ppin)	(ppm)
	40	74	10	-	10	0	25	0	E1	0	C1
204	40	74	10	4	10	0	20	0	05	0	01
284	20	74	5	5	20	0	30	0	100		95
284	0	71	0	4	24	0	39	0	102	1	99
284	-20	/1	-5	4	12	0	19	0	61	2	63
284	-40	71	-10	4	5	0	11	0	23	1	27
348	40	87	10	5	32	3	70	3	119	5	128
348	20	87	5	7	69	5	140	6	216	9	217
348	0	87	0	7	71	5	147	7	216	9	226
348	-20	87	-5	6	59	4	128	5	195	11	191
348	-40	87	-10	5	28	5	60	3	104	6	109
476	48	119	12	16	142	23	209	27	255	34	232
476	24	119	6	28	236	42	346	41	404	49	360
476	0	119	0	30	277	53	419	46	459	58	437
476	-24	119	-6	31	215	59	344	42	383	55	365
476	-48	119	-12	23	119	38	205	23	231	33	227
600	64	150	16	42	262	55	323	58	338	62	280
600	32	150	8	66	384	96	486	100	477	101	416
600	0	150	0	82	427	117	555	114	524	120	410
000	22	150	0	64	921	02	400	102	420	101	404
600	-32	150	-0	04 E4	304	93	402	102	439	101	409
600	-64	150	-10	54	209	6/	207	49	250	59	237
780	80	195	20	80	323	100	310	104	284	90	239
780	40	195	10	1/1	445	211	497	182	405	167	330
780	0	195	0	192	535	232	611	213	478	196	398
780	-40	195	-10	167	381	187	495	170	322	146	273
780	-80	195	-20	107	266	105	301	85	225	81	195
952	80	238	20	175	460	182	414	162	341	139	278
952	40	238	10	267	591	282	574	240	437	197	352
952	0	238	0	296	639	303	651	265	480	230	388
952	-40	238	-10	264	591	261	580	229	432	191	346
952	-80	238	-20	182	424	185	410	142	304	125	255
1200	80	300	20	264	499	236	421	195	323	156	248
1200	40	300	10	352	651	332	563	273	404	216	314
1200	0	300	0	392	698	356	614	294	429	231	340
1200	-40	300	-10	366	654	318	572	258	402	212	315
1200	-80	300	-20	267	524	244	442	196	320	159	251
1200		000	20	201	024	244	442	100	020	100	201
Pour mavi		oc repeate	d from ab	01/0							
204	may alu	23 Tepeald	mov	5	24	0	20	0	102	2	00
204	TidX	07	max	7	74	0	147	7	210	44	226
348	max	140	max	1	/1	5	14/	1	210	11	220
4/6	max	119	max	31	2//	59	419	46	459	58	43/
600	max	150	max	82	427	11/	555	114	524	120	464
780	max	195	max	192	535	232	611	213	478	196	398
952	max	238	max	296	639	303	651	265	480	230	388
1200	max	300	max	392	698	356	614	294	429	231	340
Maximum	Value	150.1	=	391.5	698.0	356.4	651.2	293.8	523.8	230.6	464.1
Field Dist.	(m) to M	ax.	=	1200	1200	1200	952	1200	600	1200	600
Percent	Increas	е	=		78		83		78		101

Table 8 Conc. Data - Variation of Wind Speed - 72° Wind Dir.
RUN NO. STACK (n	n)			506 80.0	501 80.0	507 85.0	502 85.0	508 90.0	503 90.0	509 95.0	504 95.0	510 100.0	505 100.0
WIND DI	C.	onfig		12	12	12	(2 In	12	12	12	12	12	12
Nearby D	and (cm/s	c) at 100c	ma	397	401	404	407	308	104	306	308	402	308
Model St	ack Flow	Rate Iccs		105	105	105	105	105	105	105	105	105	105
Field Win	d Speed	at Wind I	nstr.	~11m/s	~11m/s	~11m/s	~11m/s	~11m/s	~11m/s	~11m/s	~11m/s	~11m/s	~11m/s
Field	Dist	Mode	Dist	Model	Model	Mo	del	Mo	del	Mo	del	Mo	del
X	Y	X	Y	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
(m)	(m)	(cm)	(cm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
		CP			OLS		145	21		1921			
476	48	119	12	27	200	23	134	8	82	8	43	4	32
476	24	119	6	48	293	37	217	18	134	12	73	9	56
476	0	119	0	64	336	40	252	19	159	16	95	11	69
476	-24	119	-6	55	259	34	195	17	122	19	71	10	51
476	-48	119	-12	40	185	23	129	13	79	16	44	5	27
600	64	150	16	54	230	41	165	21	114	26	80	13	63
600	32	150	8	92	338	79	266	54	195	39	131	30	104
600	22	150	0	104	302	99	265	50	100	40	143	42	124
600	-52	150	-0	71	220	14	200	30	114	40	143	22	57
780	-04	195	-10	84	220	70	212	63	172	10	122	35	111
780	40	195	10	144	351	139	212	107	241	80	182	67	159
780		195	0	174	387	150	340	116	259	89	207	88	175
780	-40	195	-10	156	323	120	269	94	215	83	182	78	151
780	-80	195	-20	103	224	72	175	56	137	59	116	47	87
952	80	238	20	125	291	120	240	112	209	87	161	75	150
952	40	238	10	185	349	172	307	146	266	121	213	104	192
952	0	238	0	199	361	182	332	151	269	130	238	117	203
952	-40	238	-10	181	323	154	278	125	234	114	217	109	176
952	-80	238	-20	132	239	99	192	87	166	81	151	73	129
1200	80	300	20	158	275	155	244	146	218	122	187	109	173
1200	40	300	10	200	309	189	287	170	251	153	224	133	198
1200	0	300	0	201	312	192	290	171	250	159	228	143	205
1200	-40	300	-10	179	284	168	253	144	224	137	208	127	192
1200	-80	300	-20	143	215	120	189	105	163	106	165	97	146
1512	120	3/8	30	116	199	126	1/4	121	162	103	139	88	133
1512	60	3/8	15	1/2	251	1/4	231	15/	210	142	189	131	1/4
1512	0	3/8	15	181	260	182	241	161	214	156	200	143	188
1512	-00	370	-15	109	142	140	199	132	101	134	1/5	124	105
1704	120	426	-30	113	143	125	12/	112	1/18	93	122	70	100
1704	60	420	15	153	217	161	201	147	140	134	129	122	158
1704	0	426	0	166	225	167	210	152	193	150	179	140	169
1704	-60	426	-15	149	203	142	181	130	166	134	164	123	155
1704	-120	426	-30	110	151	100	128	86	112	97	125	85	111
Row maxi	mum valu	es repeate	ed from ab	ove	207	200	hkg	- starter	1011			-	
476	max	119	max	63.9	336.4	39.8	252.0	18.7	158.8	18.5	94.8	10.6	68.7
600	max	150	max	116.6	381.8	98.8	317.4	55.8	217.9	44.5	143.4	41.6	123.9
780	max	195	max	174.3	387.0	149.8	340.3	115.8	259.2	89.2	206.9	88.0	175.1
952	max	238	max	199.3	360.5	181.7	331.8	150.8	269.2	129.9	238.0	117.0	203.0
1200	max	300	max	201.2	311.9	192.4	289.5	170.6	251.4	158.6	227.8	143.0	204.7
1512	max	378	max	180.9	259.8	182.0	240.7	161.2	214.3	155.6	200,0	142.6	187.7
1704	max	426	max	166.1	225.4	166.8	210.4	151.8	193.4	150.2	178.5	140.1	169.4
Maximu	Malus	La Barri											
Field Dict	value		=	201.2	387.0	192.4	340.3	170.6	269.2	158.6	238.0	143.0	204.7
Porcont	(m) to M	ax.	=	1200		1200		1200	952	1200	952	1200	1200
rercent	increas	6	=		or white points		77	1.000	58		50	and the second second	43

RUN NO. STACK (I	m)			701 76.7	702 76.7	703 76.7	Avg. 76.7	704 76.7	705 76.7	706 76.7	Avg. 76.7
Nearby E Model W	nc Building C ind (cm/s	onfig. s) at 100c	m =	In 400	/2 In 401	ln 402	In 401	Out 402	Out 395	Out 400	Out 399
Model St	ack Flow	Rate (cc	s) =	230	230	230	230	230	230	230	230
Field Wir	nd Speed	at Wind I	nstr.	~5m/s	~5m/s	~5m/s	~5m/s	~5m/s	~5m/s	~5m/s	~5m/s
Field	Dist.	Mode	Dist.	Model	Model	Model	Model	Model	Model	Model	Model
X	Y	All and X and A	Y	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
(m)	(m)	(cm)	(cm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
476	48	119	12	237	211	236	228	23	43	37	34
476	24	119	6	336	325	346	336	40	58	58	52
476	0	119	0	384	365	398	383	53	70	68	64
476	-24	119	-6	317	280	324	307	40	63	59	54
476	-48	119	-12	215	169	201	195	18	42	33	31
600	64	150	16	342	341	351	345	52	75	72	66
600	32	150	8	478	450	462	463	104	115	116	112
600	0	150	0	498	472	542	504	129	146	147	140
600	-32	150	-8	453	403	465	440	129	161	144	145
600	-64	150	-16	297	263	284	281	59	101	77	79
780	80	195	20	408	381	403	398	105	110	120	112
780	40	195	10	563	547	539	550	192	196	207	198
780	0	195	0	612	578	632	607	235	261	263	253
780	-40	195	-10	496	483	496	492	203	226	222	217
780	-80	195	-20	347	316	319	327	117	150	137	135
952	80	238	20	473	468	469	470	196	176	211	194
952	40	238	10	608	580	583	591	267	254	289	270
952	0	238	0	626	605	634	621	304	321	324	316
952	-40	238	-10	531	521	546	533	268	293	286	282
952	-80	238	-20	390	384	372	382	181	208	204	198
1200	80	300	20	485	497	481	488	250	231	277	253
1200	40	300	10	569	556	553	559	323	295	343	321
1200	0	300	0	573	558	563	565	338	344	351	345
1200	-40	300	-10	498	498	509	501	308	338	326	324
1200	-80	300	-20	400	379	382	387	246	265	251	254
1512	120	378	30	356	358	351	355	187	168	231	195
1512	60	378	15	471	468	467	469	296	275	327	299
1512	0	378	0	492	485	460	479	335	334	362	344
1512	-60	378	-15	411	396	383	397	290	312	303	301
1512	-120	378	-30	274	245	243	254	195	211	186	197
1704	120	426	30	322	328	328	326	185	168	219	191
1704	60	426	15	410	410	410	410	268	252	304	275
1704	0	426	0	437	435	417	430	322	309	333	321
1704	-60	426	-15	380	371	363	371	283	305	287	292
1704	-120	426	-30	261	245	241	249	202	216	189	202
		ELS MAL	10	051	921-11	191		115-1-1	C.P		
Row max	imum valu	les repeat	ed from a	above	0.05	2001	000	50	70	0.01	
4/0	max	119	max	384	300	398	383	53	10	68	64
600	max	150	max	498	4/2	542	504	129	161	14/	145
780	max	195	max	612	5/8	632	607	235	261	263	253
1200	max	238	max	626	605	5034	621	304	321	324	316
1200	max	300	max	5/3	558	363	265	338	344	351	345
1704	max	126	max	492	480	407	479	335	334	362	344
1704	max	420	max	437	435	417	430	322	209	333	521
Maximum	Value		=	626.1	604.7	633.6	621.5	338.3	344.4	361.5	344.5
Field Dist.	(m) to M	ax.	=	952	952	952	952	1200	1200	1200	1200
Percent	Increase	e	=		Cost -		80		1942	10 00 G	12
		and the second se								And the second second	

Table 10 Conc. Data - Ground Level Repeated Runs - 5 m/s, 72° Wind

76.7m Stack GEP Documentation Tests

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.180	0.180
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Model	Model
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ppm)	(ppm)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	220	24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	336	52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	383	64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	307	54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	195	31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	345	66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	463	112
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	504	140
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	440	145
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	281	79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	398	112
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	550	198
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	607	253
780 -80 0 195 -20 0 17 26 11 4 952 80 0 238 20 0 18 38 16 7 952 40 0 238 10 0 23 48 22 11 952 0 0 238 10 0 23 48 22 11 952 0 0 238 10 0 23 48 22 11 952 -40 0 238 -10 0 23 43 23 11 952 -80 0 238 -20 0 18 31 16 7	492	217
952 80 0 238 20 0 18 38 16 7 952 40 0 238 10 0 23 48 22 11 952 0 0 238 0 0 25 50 25 13 952 -40 0 238 -10 0 23 43 23 11 952 -80 0 238 -20 0 18 31 16 7	327	135
952 40 0 238 10 0 23 48 22 11 952 0 0 238 0 0 25 50 25 13 952 -40 0 238 -10 0 23 43 23 11 952 -80 0 238 -20 0 18 31 16 7	470	194
952 0 0 238 0 0 25 50 25 13 952 -40 0 238 -10 0 23 43 23 11 952 -80 0 238 -20 0 18 31 16 7	591	270
952 -40 0 238 -10 0 23 43 23 11 952 -80 0 238 -20 0 18 31 16 7	621	316
952 -80 0 238 -20 0 18 31 16 7	533	282
	382	198
1200 80 0 300 20 0 16 39 20 11	488	253
1200 40 0 300 10 0 19 45 26 15	559	321
	565	345
1200 -40 0 300 -10 0 19 41 26 15	501	324
1200 -80 0 300 -20 0 16 31 20 11	387	254
1512 120 0 378 30 0 11 29 16 10	355	195
1512 60 0 378 15 0 14 38 24 15	469	299
1512 0 0 378 0 0 15 39 28 17	479	344
1512 -60 0 378 -15 0 14 32 24 15	397	301
1512 -120 0 378 -30 0 11 21 16 10	254	197
1704 120 0 426 30 0 10 26 15 11	326	191
1704 60 0 426 15 0 12 33 22 15	410	275
1704 0 0 426 0 0 13 35 26 17	430	321
1704 -60 0 426 -15 0 12 30 24 15	371	292
1704 -120 0 426 -30 0 10 20 16 11	249	202
Row maximum values repeated from above		000 84
476 max 0 119 max 0 19 31 5 1	383	64
600 max 0 150 max 0 26 41 12 3	504	145
780 max 0 195 max 0 28 49 20 9	607	253
952 max 0 238 max 0 25 50 25 13	621	316
1200 max 0 300 max 0 20 46 28 17	565	345
1512 max 0 378 max 0 15 39 28 17	479	344
1704 max 0 426 max 0 13 35 26 17	430	321
2500 0 0 7 14	100 01	008
4000 0 0 3 9	800	008 0
Maximum Value = 50.3 27.8	0.00	nna T
Field Dist. (m) to Max. = 952 1200		
Percent Increase = 81	And a state of the	

Table 11 Normalized Conc. Data - GEP Ground Level Documentation

Page 12 (tables)

Page 11 (tables)

76.7m Stack GEP Documentation Tests

venical	and Latera	al Proli	les al 0.5	KITI dowi	Iwina						
Field Va	lues (MK	S)	Model V	/alues (C	GS)		1.5	Reference	es (CGS)	IN	OUT
400	<length s<="" th=""><th>Scale</th><th>IN</th><th>OUT</th><th></th><th></th><th></th><th></th><th>Href =</th><th>100.0</th><th>100.0</th></length>	Scale	IN	OUT					Href =	100.0	100.0
5.0			296.8	300.2		< Wind S	speed at l	leff	Uref =	399.5	404.1
86.0			230.0	230.0		< Flow R	late		PL index	0.180	0.180
76.7			19.2	19.2		< Effecti	ve Stack	Height			
Field Po	sition		Model P	osition	a starter	PG-C	IN	OUT	PG-D	IN -	OUT
X	e can Y	Z	X	Y	Z	K*10^6	K*10^6	K*10^6	K*10^6	Model	Model
(m)	(m)	(m)	(cm)	(cm)	(cm)	(m^-2)	(m^-2)	(m^-2)	(m^-2)	(ppm)	(ppm)
	. J							10			
500	0	0	125	0	0	21	31	5	1	384	61
500	0	16	125	0	4	26	50	23	5	623	278
500	0	32	125	0	8	40	80	55	26	987	674
500	0	48	125	0	12	59	109	93	81	1353	1146
500	0	64	125	0	16	74	117	114	154	1447	1400
500	0	80	125	0	20	77	109	115	178	1346	1407
500	0	96	125	0	24	68	/8	98	125	968	1203
500	0	112	125	0	28	51	49	/1	54	606	8/5
500	0	128	125	0	32	31	20	42	14	322	519
500	0	144	125	0	30	10	15	25	2	181	309
500	0	176	125	0	40	1	0	10	0	74	123
500	0	102	125	0	44	3	4	4	0	29	49
500	0	208	125	0	52	0	0	1	0	3	7
500	0	200	125	0	56	0	0	0	0	1	2
500	0	240	125	0	60	0	0	0	0	1	
500	0	256	125	0	64	0	0	0	0	1	0
500	0	272	125	0	68	0	0	0	0	1	0
500	0	288	125	0	72	0	0	0	0	1	0
500	0	304	125	0	76	0	0	0	0	1	0
500	0	320	125	0	80	0	0	0	0	1	0
500	-300	80	125	-75	20	0	0	0	0	1	0
500	-276	80	125	-69	20	0	0	0	0	1	0
500	-252	80	125	-63	20	0	0	0	0	0	0
500	-228	80	125	-57	20	0	0	0	0	1	0
500	-204	80	125	-51	20	0	0	0	0	2	0
500	-180	80	125	-45	20	0	0	1	0	5	10
500	-156	80	125	-39	20	1	1	3	0	14	31
500	-132	80	125	-33	20	4	4	5	1	46	60
500	-108	80	125	-27	20	10	10	15	4	128	178
500	-84	80	125	-21	20	23	25	34	18	305	415
500	-60	80	125	-15	20	41	55	69	55	682	847
500	-36	80	125	-9	20	62		98	116		1198
500	-12	80	125	-3	20	76	102	112	170	1269	1367
500	12	80	125	3	20	/6	108	109	1/0	1345	1342
500	36	80	125	9	20	62	90	82	116	1120	1009
500	60	80	125	15	20	41	69	5/	55	852	698
500	84	80	125	21	20	23	38	24	18	4/4	293
500	132	80	125	21	20	10	16	9	4	196	108
500	156	80	125	33	20	4	0	2	1	08	22
500	180	80	125	39	20	1	1	0	0	15	3
500	204	80	125	45	20	0	0	0	0	2	2
500	228	80	125	57	20	0	0	0	0	2	2
500	252	80	125	63	20	0	0	0	0	0	0
500	276	80	125	69	20	0	0	0	0	0	0
500	300	80	125	75	20	0	0	0	0	0	0

Table 12 Normalized Conc. Data - GEP X = 0.5km Documentation

Page 12 (tables)

76.7m Stack GEP Documentation Tests

Vertical and Lateral Profiles at 0.9 km downwind (at GLCmax distance)

	Field Val	ues (MK	S)	Model V	alues (C	GS)			IN	OUT		
3.0298.1297.9c Wind Speed at Heff $Uref = 402.8$ 401.886.0230.0230.0230.0c Wind Speed at Heff $Uref = 402.8$ 401.80.18076.713.219.2PG-CNOUTPG-DINOUTTXXZKindPG-CNOUTPG-DINOUT9000022500265024126133029000122250285542306755139000642250162855504767567390006422501227555047676633900080225024223843564735309000122250223815162111202287900012822503615162111202287900012225044161112022279000122250441211120229000122250261115141414182900012225044121115141414 </td <td>400 <</td> <td>l ength</td> <td>Scale</td> <td>IN</td> <td>OUT</td> <td></td> <td></td> <td>- IUC</td> <td>1</td> <td>Href =</td> <td>100.0</td> <td>100.0</td>	400 <	l ength	Scale	IN	OUT			- IUC	1	Href =	100.0	100.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50	Lengui	oouro	299.1	297.9		< Wind S	peed at l	leff	Uref =	402.6	401.1
19.2 19.2 <	86.0		unbrit_	230.0	230.0		< Flow R	ate	230.0 22	Pl index	0.180	0.180
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	76.7			19.2	19.2		< Effecti	ve Stack	Height	I L IIIGOA	0	01100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Floid Dos	ition	Contraction of	Model P	osition		PG-C	IN	OUT	PG-D	IN	OUT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Field Pos	NILION V	7	X	V	7	K*1046	K*1046	K*1046	K*1046	Model	Model
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	/m)	(m)	(m)	(cm)	(cm)	(cm)	(m^-2)	(m^-2)	(m^-2)	(m^-2)	(nom)	(nnm)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Contraction (111) and	un/	UIII	(om)	(only)	(OIII)	101 -44		(11) - 24		(ppm)	(ppin)
	000	0	0	225	0	0	26	50	24	12	613	302
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	900	0	16	225	0	4	26	53	32	17	658	396
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	32	225	0	8	27	55	42	30	675	513
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	48	225	0	12	27	55	50	47	676	623
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	64	225	0	16	28	51	52	61	625	638
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	80	225	0	20	27	46	49	65	563	603
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	900	0	96	225	0	24	25	38	43	56	473	530
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	112	225	0	28	22	30	36	40	370	444
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	128	225	0	32	19	22	28	23	273	345
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	900	0	144	225	0	36	15	16	21	11	202	257
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	160	225	0	40	12	11	15	4	134	182
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	900	0	176	225	0	44	8	7	10	1	90	121
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	192	225	0	48	6	4	6	0	52	77
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	208	225	0	52	4	2	4	0	31	54
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	900	0	224	225	0	56	2	1	3	0	16	34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	900	0	240	225	0	60	1	1	2	0	7	20
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	256	225	0	64	1	0	1	0	3	13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	272	225	0	68	0	0	1	0	2	9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	288	225	0	72	0	0	1	0	1	7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	0	304	225	0	76	0	0	1	0	0	7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	900	0	320	225	0	80	0	0	1	0	0	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900	-300	80	225	-75	20	0	0	1	0	0	7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	-276	80	225	-69	20	0	0	1	0	0	8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	-252	80	225	-63	20	1	0	1	0	2	11
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	-228	80	225	-57	20	1	1	1	0	6	18
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	-204	80	225	-51	20	3	2	3	1	19	34
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	-180	80	225	-45	20	4	4	4	2	49	55
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	900	-156	80	225	-39	20	7	8	8	5	96	101
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	900	-132	80	225	-33	20	10	14	13	10	169	164
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900	-108	80	225	-27	20	14	21	21	19	261	264
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900	-84	80	225	-21	20	18	29	29	31	354	364
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900	-60	80	225	-15	20	22	36	36	45	448	448
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900	-36	80	225	-9	20	25		43	57	110	526
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900	-12	80	225	-3	20	27	43	47	64	534	579
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900	12	80	225	3	20	27	46	48	64	563	598
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900	36	80	225	9	20	25	42	45	57	519	560
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900	60	80	225	15	20	22	37	37	45	456	460
900 108 80 225 27 20 14 21 22 19 264 268 900 132 80 225 33 20 10 14 21 22 19 264 268 900 132 80 225 33 20 10 14 14 10 175 173 900 156 80 225 39 20 7 9 7 5 105 87 900 180 80 225 45 20 4 4 3 2 54 43 900 204 80 225 51 20 3 2 2 1 23 21 900 228 80 225 57 20 1 1 1 0 8 10 900 252 80 225 63 20 1 0 1 <td< td=""><td>900</td><td>34</td><td>80</td><td>225</td><td>21</td><td>20</td><td>18</td><td>29</td><td>30</td><td>31</td><td>357</td><td>374</td></td<>	900	34	80	225	21	20	18	29	30	31	357	374
900 132 80 225 33 20 11 11 14 14 10 175 173 900 156 80 225 39 20 7 9 7 5 105 87 900 180 80 225 45 20 4 4 3 2 54 43 900 204 80 225 51 20 3 2 2 1 23 21 900 228 80 225 57 20 1 1 1 0 8 10 900 252 80 225 63 20 1 0 1 0 3 6 900 276 80 225 69 20 0 0 0 0 6 900 276 80 225 75 20 0 0 0 0 6 <td>900</td> <td>108</td> <td>80</td> <td>225</td> <td>27</td> <td>20</td> <td>14</td> <td>21</td> <td>22</td> <td>19</td> <td>264</td> <td>268</td>	900	108	80	225	27	20	14	21	22	19	264	268
900 156 80 225 39 20 7 9 7 5 105 87 900 180 80 225 45 20 4 4 3 2 54 43 900 204 80 225 51 20 3 2 2 1 23 21 900 228 80 225 57 20 1 1 1 0 8 10 900 252 80 225 63 20 1 0 1 0 8 10 900 276 80 225 69 20 0 0 0 0 6 900 300 80 225 75 20 0 0 0 0 0 6	900	132	80	225	33	20	10	14	14	10	175	173
900 180 80 225 45 20 4 4 3 2 54 43 900 204 80 225 51 20 3 2 2 1 23 21 900 228 80 225 57 20 1 1 1 0 8 10 900 252 80 225 63 20 1 0 1 0 8 10 900 276 80 225 63 20 1 0 1 0 3 6 900 276 80 225 69 20 0 0 0 0 6 900 300 80 225 75 20 0 0 0 0 0 6	900	156	80	225	39	20	7	9	7	5	105	87
900 204 80 225 51 20 3 2 2 1 23 21 900 228 80 225 57 20 1 1 1 0 8 10 900 252 80 225 63 20 1 0 1 0 8 10 900 252 80 225 63 20 1 0 1 0 3 6 900 276 80 225 69 20 0 0 0 0 6 900 300 80 225 75 20 0 0 0 0 0 6	900	180	80	225	45	20	4	4	3	2	54	43
900 228 80 225 57 20 1 1 1 0 8 10 900 252 80 225 63 20 1 1 1 0 8 10 900 252 80 225 63 20 1 0 1 0 3 6 900 276 80 225 69 20 0 0 0 6 6 900 300 80 225 75 20 0 0 0 0 6	900	204	80	225	51	20	3	2	2	1	23	21
900 252 80 225 63 20 1 1 0 3 6 900 276 80 225 63 20 1 0 1 0 3 6 900 276 80 225 69 20 0 0 0 6 900 300 80 225 75 20 0 0 0 0 6	900	228	80	225	57	20	1	1	1	0	8	10
900 276 80 225 69 20 0 0 0 0 0 6 900 300 80 225 75 20 0 0 0 0 0 0 0 0 6	900	252	80	225	63	20	1	0	1	0	3	6
900 300 80 225 75 20 0 0 0 0 0 0	900	276	80	225	69	20	0	0	0	0	0	6
	900	300	80	225	75	20	0	0	0	0	0	6

Table 13 Normalized Conc. Data - GEP X = 0.9km Documentation

76.7m Stack GEP Documentation Tests

Field Val	ues (MK	S)	Model V	alues (C	GS)		ennina	Referenc	es (CGS)	IN	OUT
400 <	Length	Scale	IN	OUT					Href =	100.0	100.0
5.0			299.0	293.6		< Wind S	speed at I	Heff	Uref =	402.6	395.2
86.0			230.0	230.0		< Flow R	late		PL index	0.180	0.180
76.7			19.2	19.2		< Effecti	ve Stack	Height			
Field Pos	sition		Model P	osition	The second	PG-C	IN	OUT	PG-D	IN	OUT
X	Y	Z	X	Y	a ter Z	K*10^6	K*10^6	K*10^6	K*10^6	Model	Model
(m)	(m)	(m)	(cm)	(cm)	(cm)	(m^-2)	(m^-2)	(m^-2)	(m^-2)	(ppm)	(ppm)
1000	0	0	250	0	0	24	47	24	14	584	305
1000	0	16	250	0	4	24	48	26	18	596	328
1000	0	32	250	0	8	24	49	34	28	607	422
1000	0	48	250	0	12	24	48	40	42	588	498
1000	0	64	250	0	16	24	45	43	52	559	539
1000	0	80	250	0	20	23	40	42	55	497	524
1000	0	96	250	0	24	21	33	37	48	408	466
1000	0	112	250	0	28	19	26	32	36	323	405
1000	0	128	250	0	32	17	20	26	22	243	329
1000	0	144	250	0	36	14	14	21	11	175	267
1000	0	160	250	0	40	11	9	16	5	116	205
1000	0	176	250	0	44	8	7	13	2	81	157
1000	0	192	250	0	48	6	3	8	1	43	105
1000	0	208	250	0	52	4	2	5	0	25	66
1000	0	224	250	0	56	3	1	3	0	13	40
1000	0	240	250	0	60	2	1	2	0	8	23
1000	0	256	250	0	64	1	0	1	0	5	14
1000	0	272	250	0	68	1	0	1	0	3	10
1000	0	288	250	0	72	0	0	1	0	2	7
1000	0	304	250	0	76	0	0	0	0	2	5
1000	0	320	250	0	80	0	0	0	0	1	5
1000	-300	80	250	-75	20	0	0	0	0	3	5
1000	-276	80	250	-69	20	1	0	1	0	5	6
1000	-252	80	250	-63	20	1	1	1	0	9	9
1000	-228	80	250	-5/	20	2	1	1	1	17	17
1000	-204	80	250	-51	20	3	3	3	2	34	35
1000	-180	80	250	-45	20	5	5	5	3	56	68
1000	-156	80	250	-39	20	8	8	8	100 7	98	107
1000	-132	80	250	-33	20	10	13	13	12	163	159
1000	-108	80	250	-21	20	13	19	20	20	235	247
1000	-84	80	250	-21	20	17	25	26	30	306	330
1000	-60	80	250	-15	20	19	33	34	40	408	432
1000	-36	80	250	-9	20	22	10	40	49	100	496
1000	-12	80	250	-3	20	23	40	40	54	489	507
1000	12	80	250	3	20	23	41	41	54	511	510
1000	36	80	250	9	20	22	40	38	49	493	481
1000	60	80	250	15	20	19	36	35	40	449	433
1000	84	80	250	21	20	17	31	31	30	379	383
1000	108	80	250	21	20	13	25	21	20	306	270
1000	132	80	250	33	20	10	18	16	12	225	198
1000	156	80	250	39	20	8	12	10	7	149	120
1000	180	80	250	45	20	5	7	6	3	89	70
1000	204	80	250	51	20	3	4	4	2	47	45
1000	228	80	250	57	20	2	2	2	1	20	23
1000	252	80	250	63	20	1	1	1	0	9	9
1000	276	80	250	69	20	1	0	0	0	4	6
1000	300	80	250	75	20	0	0	0	0	2	5

Table 14 Normalized Conc. Data - GEP X = 1.0km Documentation

Page 14 (tables)

76.7m Stack GEP Documentation Tests

Field Val	ues (MKS	5) Scale	Model V	OUT	GS)			Referenc	es (CGS) Hrof =	IN 100.0	0UT
400 <	Lengui	scale	200 7	200 7		- Wind S	inond at l	Unite Di	Hier-	402.4	402
5.0			230.0	230.0		< FLOW F	ate	lien	Pl index	0 180	0 180
80.0			10.2	10.2		< Efforti	va Stack	Haight	FL IIIUEA	0.100	0.100
/0./	It on the	SANAGED FR	Model P	ocition		PC C	VE SLACK	OUT	PC D	INI STREET	OUT
leid Pos		7 7	Y	Valuon	7	K*10AG	KA10AG	KALOAR	K*10AG	Model	Model
*	Land Land	4	(am)	(am)	Lam	K 10-0	N 10-0	M 10"D	A 10-0	Model	Model
(m)	(m)	(m)	(cm)	(cm)	(CIII)	(m^-2)	(m^-2)	(m*-2)	(m*-2)	(mqq)	(ppm)
2000	0	0	500	0	0	10	29	22	16	359	268
2000	0	16	500	0	4	10	28	22	16	349	267
2000	0	32	500	0	8	10	26	21	17	313	255
2000	0	48	500	0	12	10	23	19	18	280	237
2000	0	64	500	0	16	9	20	18	19	249	221
2000	0	80	500	0	20	9	18	17	19	224	205
2000	0	96	500	0	24	8	16	15	18	191	190
2000	0	112	500	0	28	8	13	14	15	162	174
2000	0	128	500	0	32	7	11	13	13	138	158
2000	0	144	500	0	36	7	9	12	10	115	143
2000	0	160	500	0	40	6	8	10	7	95	125
2000	0	176	500	0	44	5	6	9	5	78	105
2000	0	192	500	0	48	5	5	7	3	58	89
2000	0	208	500	0	52	4	4	6	2	48	74
2000	0	224	500	0	56	4	3	5	1	34	59
2000	0	240	500	0	60	3	2	4	0	25	46
2000	0	256	500	0	64	3	1	3	0	18	33
2000	0	272	500	0	68	2	1	2	0	13	25
2000	0	288	500	0	72	2	1	2	0	10	19
2000	0	304	500	0	76	2	0	1	0	6	13
2000	0	320	500	0	80	1	0	1	0	4	9
2000	-300	80	500	-75	20	3	2	2	2	25	30
2000	-276	80	500	-69	20	3	3	3	3	33	43
2000	-252	80	500	-63	20	4	4	5	4	50	58
2000	-228	80	500	-57	20	5	5	6	6	67	75
2000	-204	80	500	-51	20	5	7	8	7	85	93
2000	-180	80	500	-45	20	6	9	9	9	107	116
2000	-156	80	500	-39	20	7	10	11	11	125	136
2000	-132	80	500	-33	20	7	12	13	12	149	159
2000	-108	80	500	-27	20	8	13	14	14	165	175
2000	-84	80	500	-21	20	8	15	15	16	183	189
2000	-60	80	500	-15	20	8	16	17	17	199	203
2000	-36	80	500	-9	20	9		0	18		
2000	-12	80	500	-3	20	9	18	17	19	217	204
2000	12	80	500	3	20	9	19	16	19	229	201
2000	36	80	500	9	20	9	19	17	18	230	204
2000	60	80	500	15	20	8	19	16	17	231	198
2000	84	80	500	21	20	8	18	15	16	221	186
2000	108	80	500	27	20	8	17	14	14	204	169
2000	132	80	500	33	20	7	15	12	12	187	149
2000	156	80	500	39	20	7	13	10	11	159	124
2000	180	80	500	45	20	6	11	9	9	138	106
2000	204	80	500	51	20	5	10	7	7	118	86
2000	228	80	500	57	20	5	8	5	6	94	56
2000	252	80	500	63	20	4	6	4	4	70	45
2000	276	80	500	69	20	3	4	2	3	51	30
2000	300	80	500	75	20	3	3	2	2	34	20

Table 15 Normalized Conc. Data - GEP X = 2.0km Documentation

		Stack	Wind	Stack	L. M. Wille		Maximum Cor	ncentrations		Concentration
Run No.		ID	Direction	n Height	Uanem*	Buil	dings In	Building	gs Out	Ratio
Buidlings		1	(Deg.)	(m)	(m/s)	C/Co	С	C/Co	С	In/Out
In	Out					(ppm)	(ug/m3)	(ppm)	(ug/m3)	
			_							
Worst	Wind Di	rection	rests (Se	elected From	Visualizati	on)				
301	312	COB	72	76.7	5.0	620.4	1031.9	356.4	592.8	1.74
302	312	COB	77	76.7	5.0	607.0	1009.6	356.4	592.8	1.70
303	312	COB	67	76.7	5.0	621.9	1034.4	356.4	592.8	1.74
304	312	COB	32.5	76.7	5.0	555.0	923.1	356.4	592.8	1.56
305	312	COB	27.5	76.7	5.0	480.7	799.6	356.4	592.8	1.35
306	312	COB	22.5	76.7	5.0	535.3	890.4	356.4	592.8	1.50
307	312	COB	17.5	76.7	5.0	540.2	898.5	356.4	592.8	1.52
308	312	COB	120	76.7	5.0	521.7	867.8	356.4	592.8	1.46
309	312	COB	338	76.7	5.0	462.2	768.8	356.4	592.8	1.30
310	312	COB	62	76.7	50	548 2	911.8	356.4	592.8	1.54
311	312	COB	72	76.7	5.0	651.2	1083.2	356.4	592.8	1.83
ELT-										
Norst	Wind Sp	peed Tes	ts		0	0-		0.04	000	
401	404	COB	72	76.7	3.0	698.0	1161.0	391.5	651.2	1.78
402	405	COB	72	76.7	8.0	523.8	871.3	293.8	488.7	1.78
403	406	COB	72	76.7	11.0	464.1	772.0	230.6	383.6	2.01
Additio	nal Sta	ck Heiah	t Tests							
501	506	COB	72	80.0	11.0	387.0	6437	201.2	3347	1 92
502	507	COB	72	85.0	11.0	340.3	566.0	102 4	320.0	1 77
502	500	COB	72	00.0	11.0	260.2	447.9	170.6	293.9	1.59
503	500	COB	72	90.0	11.0	209.2	447.0	170.0	200.0	1.50
504	509	COB	72	95.0	11.0	238.0	395.9	100.0	203.0	1.50
505	510	COB	12	100.0	11.0	204.7	340.5	143.0	237.9	1.43
GEP St	ack Hei	ght Doc	umentati	on Tests						
701	704	COB	72	76.7	5.0	626.1	1041.4	338.3	562.7	1.85
702	705	COB	72	76.7	5.0	604.7	1005.8	344.4	572.9	1.76
703	706	COB	72	76.7	5.0	633.6	1053.9	361.5	601.3	1.75
	000				Average		1033.7		579.0	1.79
Excess	ive Con	centratio	on Analy	sis	Ambient	Standar	d Test	100	40	% Test
This ar	alysis co	nducted us	sing 700						000	
series	s tests, 76	.7 m stack	height	Maxim	um Concen	tration (ug	/m3)		Concer	tration Ratio
				Averaging Time	NAAQS	MAAQS	Wind Tunnel		Criteria	wind Tunne
				1-hr		1300	1033.7		1.4	1.79
				3-hr	1300		930.3		-64	Excessive
				24-hr	365	262	413.5	Excessive	2.374.64	
				annual	80	56	82.7	Excessive	BAD 000	

Summary of Maximum Concentration And Excessive Concentration Analysis

Table 16 Excessive Concentration Demonstration Test Results

Page 15 (tables)

Page 16 (tables)

igure I Wind Speed Distribution at Billings Airport

Page 1 (figures)

Figure 2 Site Topography and Model Study Area Extent

.

Page 2 (figures)

Figure 4 Field Site Photograph - FCC COB Stack

Page 4 (figures)

Figure 5 Field Site Photograph - Structures ENE of Stack

Page 5 (figures)

.

Page 6 (figures)

Wind E.

gineering

Research

Color

do State

University

and Application Specialists

Figure 8 Mean Wind Speed Profiles

Page 8 (figures)

Page 10 (figures)

Fluid Dynamics and Diffusion Laboratory - Colorado State University Wind Engineering Research and Application Specialists

Figure 11 Lateral Wind Profiles

Page 11 (figures)

Fluid Dynamics and Diffusion Laboratory - Colorado State University Wind Engineering Research and Application Specialists

Figure 12 Ground Level Conc. Variation with Stack Height (11 m/s Wind)

Page 12 (figures)

aboratory Research and Application Colorado State University Specialists

Downwind Concentration Profile

Page 13 (figures)

Page 14 (figures)

Vertical Concentration Profile at X = 0.5 km

Figure 15 Vertical and Lateral Plume Profiles at 0.5 km Downwind

Page 15 (figures)

Vertical Concentration Profile at X = 0.9 km

Lateral Concentration Profile at Z = 80 m, X = 0.9 km

Figure 16 Vertical and Lateral Plume Profiles at 0.9 km Downwind

Vertical Concentration Profile at X = 1.0 km

Lateral Concentration Profile at Z = 80 m, X = 1.0 km

Page 17 (figures)

Vertical Concentration Profile at X = 2.0 km

Lateral Concentration Profile at Z = 80m, X = 2.0 km

Figure 19 Vertical and Lateral Plume Dispersion Coefficients

Page 19 (figures)

APPENDIX A: MODEL AND FULL SCALE PARAMETERS AND SIMILARITY ANALYSIS

Table A-1
Full and Model Scale Similarity Parameters
Anemometer Speed 3.0 (m/s)
Source Description: Exxon FCC COB

	Model
Dimensional Parameters Full-Scale Scale	Scale
1. Building Height, Hb (m) 175.2 ft 53.4	0.1335
2. Base Elevation above Mean Sea Level, z = 0 (m) 947 ft 288.6	1524
3. Stack Height above grade, h (m) 251.6 ft 76.7	0.1917
4. Stack Inside Diameter, d (m) 9.7 ft 2.96	7.399E-03
5. Stack Inside Area, Ae (m2) 74.1 ft2 6.9	4.300E-05
6 . Exit Velocity, Ve (m/s) 2460 fpm 12.5	8.916
7. Exit Temperature, Ts (K) 435.0 F 497.0	293.2
8. Volume Flow Rate, V (m3/s) 182,164 ft3/min 86.0	3.834E-04
9 Emission rate, Q (g/s) 1133.9 lb/hr 142.9	NA
10 Ambient Pressure, Pa (hPa) 0.97 Atm 979	844
11. Ambient Temperature. Ta (K) 46.0 F 280.9	293.2
12 Air Density, Rho a (kg/m3) 0.076 lb/ft3 1.2	1.004
13 Exhaust Density, Rho s (kg/m3) 0.043 lb/ft3 0.7	0.567
14. Air Viscosity, Nu a (m2/s) 1.56E-04 ft2/s 1.44E-05	1.81E-05
15. Gas Viscosity. Nu s (m2/s) 4.17E-04 ft2/s 3.88E-05	1.72E-05
16 Free Stream Wind Speed Uinf (m/s) 13.5 mph 6.03	4 304
17 Free Stream Height, Zinf (m) 1969 ft 600.00	1.50
18 Reference Wind Speed, Uref (m/s) 12.5 mph 5.61	4 000
19 Reference Height Zref (m) 1312 ft 400.00	1.00
20 Anemometer Wind Speed, Uanem (m/s) 6.7 mph 3.00	2.14
21 Anemometer Height, Zanem (m) 25.0 ft 7.62	0.019
22 Site Wind Speed, Usite (m/s) 6.1 mph 2.74	1.96
23 Site Anemometer' Height, Zsite (m) 25.0 ft 7.62	0.019
24 Stack Height Speed, Uh (m/s) 9.3 mph 4.16	2.97
25 Building Height Speed, Ub (m/s) 87 mph 3.90	2.78
26 Anemometer Surface Roughness Length Zo a (m) 0.33 ft 0.10	2.50E-04
27 Site Surface Roughness Length, Zo s (m) 0.66 ft 0.20	5.00E-04
28 Site Surface Friction Velocity U* (m/s) 0.65 mph 0.29	0.21
Dimensionless Parameters	
29 Length Scale SF 400 400	1.
30 Time Scale TS 285.38 285.38	1.00
31 Anemometer Power Law Exponent na 0.16 0.160	0.16
32 Site Power Law Exponent ns 0 18 0 181	0.18
33 Velocity Ratio R = Ve/Ur 223 223	2.23
34 Stack Velocity Ratio. Rs = Ve/Uh 3.00 3.00	3.00
35 Stack Height to Building Height Ratio h/Hb 144 144	1 44
36 Diameter to Stack Height Ratio d/h 0 039 0 039	0.039
37 Momentum Ratio Mo 4 18E-03 4 18E-03	4.18E-03
38 Froude Number Fr 264 264	37 73
39 Buoyancy Ratio Bo 8 64E-03 8 64E-03	4 24E-05
40 Density Ratio Lambda 0.5652 0.5652	0.5652
41 Stack Reynolds Number (Exterior) d Uh / Nu a 8 52E+05 8 52E+05	1215
42 Stack Flow Reynolds Number (Interior) Res = $d Ve / Nu s$ 9.54E+05 9.54E+05	3826
43 Building Reynolds Number Re $h = Hb l lb / Nu a$ 144E+07 144E+07	20534
44 Surface Revnolds Number, 70 s U* / Nu a 4 03E+03 4 03E+03	6
45 Site Friction Velocity Ratio. U*/Uinf 0.048 0.048	0.048

Table A-2Full and Model Scale Similarity ParametersAnemometer Speed 5.0 (m/s)Source Description: Exxon FCC COB

	English	Full	Model
Dimensional Parameters	Full-Scale	Scale	Scale
1. Building Height, Hb (m)	175.2 ft	53.4	0.1335
2 . Base Elevation above Mean Sea Level, z = 0 (m)	947 ft	288.6	1524
3 . Stack Height above grade, h (m)	251.6 ft	76.7	0.1917
4 . Stack Inside Diameter, d (m)	9.7 ft	2.96	7.399E-03
5 . Stack Inside Area, Ae (m2)	74.1 ft2	6.9	4.300E-05
6 Exit Velocity, Ve (m/s)	2460 fpm	12.5	5.350
7. Exit Temperature, Ts (K)	435.0 F	497.0	293.2
8 Volume Flow Rate, V (m3/s)	182,164 ft3/min	86.0	2.300E-04
9 Emission rate Q (g/s)	1133.9 lb/hr	142.9	NA
10 Ambient Pressure Pa (hPa)	0.97 Atm	979	844
11 Ambient Temperature, Ta (K)	46.0 F	280.9	293.2
12 Air Density Rho a (kg/m3)	0.076 lb/ft3	1.2	1.004
13 Exhaust Density Rho s (kg/m3)	0.043 lb/ft3	0.7	0.567
14 Air Viscosity Nu a (m2/s)	1.56E-04 ft2/s	1.44E-05	1.81E-05
15 Gas Viscosity Nu s (m2/s)	4 17E-04 ft2/s	3.88E-05	1.51E-05
16 Free Stream Wind Speed Llinf (m/s)	22.5 mph	10.05	4 304
17 Free Stream Height Zinf (m)	1969 ft	600.00	1.50
18 Reference Wind Speed Liref (m/s)	20.9 mph	9.34	4 000
19 Reference Height Zref (m)	1312 ft	400.00	1 00
20 Anomometer Wind Speed Llanem (m/s)	11.2 mph	5 00	214
21 Anemometer Height Zanem (m)	25.0 ft	7.62	0.019
22 Site Wind Speed Lisite (m/s)	10.2 mph	4 57	1.96
22 . Site Anemometer' Height Zsite (m)	25.0 ft	7.62	0.019
24 Stack Height Speed Lib (m/s)	15.5 mph	6.93	2.67
25 Building Height Speed, Uh (m/s)	14.5 mph	6.49	2.78
26 Anomometer Surface Roughness Length Zo a (m)	0.33 ft	0.10	2 50E-04
27 Site Surface Roughness Length 70 s (m)	0.66 ft	0.20	5 00E-04
28 Site Surface Friction Velocity 11* (m/s)	1.09 mph	0.49	0.21
	1.00 mpn	Site Suiteds	85.21
Dimensionless Parameters			
29 . Length Scale, SF	400	400	1
30 . Time Scale, TS	171.23	171.23	1.00
31 Anemometer Power Law Exponent, na	0.16	0.160	0.16
32 Site Power Law Exponent, ns	0.18	0.181	0.18
33 Velocity Ratio, R = Ve/Ur	1.34	1.34	1.34
34 Stack Velocity Ratio. Rs = Ve/Uh	1.80	1.80	2.01
35 Stack Height to Building Height Ratio, h/Hb	1.44	1.44	1.44
36 Diameter to Stack Height Ratio, d/h	0.039	0.039	0.039
37 Momentum Ratio Mo	1.51E-03	1.51E-03	1.51E-03
38 Froude Number Fr	2.64	2.64	22.64
39 Buovancy Ratio Bo	1.87E-03	1.87E-03	2.55E-05
40 Density Ratio Lambda	0.5652	0.5652	0.5652
41 Stack Reynolds Number (Exterior) d Uh / Nu a	1.42E+06	1.42E+06	1091
42 Stack Flow Revnolds Number (Interior) Res = d Ve / Nu s	9 54E+05	9.54E+05	2622
43 Building Reynolds Number Re b = Hb Ub / Nu a	2 40E+07	2.40E+07	20534
44 Surface Reynolds Number 70 s U* / Nu a	6.72E+03	6.72E+03	6
45 Site Friction Velocity Ratio U*/Uinf	0.048	0.048	0.048

	English	Full	Model
Dimensional Parameters	Full-Scale	Scale	Scale
1 Building Height, Hb (m)	175.2 ft	53.4	0.1335
2 Base Elevation above Mean Sea Level $z = 0$ (m)	947 ft	288.6	1524
3 Stack Height above grade h (m)	251 6 ft	76.7	0.1917
A Stack Inside Diameter d (m)	97 ft	2.96	7.399E-03
5 Stack Inside Area Ae (m2)	74 1 #2	6.9	4 300E-05
6 Evit Velocity Ve (m/s)	2460 fpm	12.5	3 343
7 Evit Temperature Ts (K)	435.0 F	497.0	293.2
7. Exit reliperature, rs (K) 9. Volume Elevy Pate V (m3/s)	182 164 ft3/min	86.0	1 438E-04
0. Emission rate Q (d/s)	1133 0 lb/br	1/2 9	NA
9. Emission rate, Q (g/s)	0.07 Atm	070	844
10 Ambient Temperature Ta (K)	160 E	280.9	203.2
12 Air Density Bho a (kg/m2)	40.0 P	12	1 004
12. Air Density, Rho a (kg/m3)	0.070 10/113	0.7	0.567
13. Exhaust Density, Rho's (kg/m3)	1 565 04 42/0	1 445 05	1 915 05
14 . Air Viscosity, Nu a (m2/s)	1.30E-04 ILZ/S	1.44E-05	1.012-05
15. Gas viscosity, Nu s (m2/s)	4.17E-04 TZ/S	3.66E-05	1.72E-05
16 . Free Stream Wind Speed, Unit (m/s)	36.0 mpn	16.09	4.304
17. Free Stream Height, Zinf (m)	1969 π	600.00	1.50
18. Reference Wind Speed, Uret (m/s)	33.4 mpn	14.95	4.000
19. Reference Height, Zref (m)	1312 π	400.00	1.00
20 . Anemometer Wind Speed, Uanem (m/s)	17.9 mph	8.00	2.14
21 . Anemometer Height, Zanem (m)	25.0 ft	7.62	0.019
22 . Site Wind Speed, Usite (m/s)	16.3 mph	7.31	1.96
23 . 'Site Anemometer' Height, Zsite (m)	25.0 ft	7.62	0.019
24 . Stack Height Speed, Uh (m/s)	24.8 mph	11.09	2.97
25 . Building Height Speed, Ub (m/s)	23.2 mph	10.39	2.78
26 . Anemometer Surface Roughness Length, Zo a (m)	0.33 ft	0.10	2.50E-04
27 . Site Surface Roughness Length, Zo s (m)	0.66 ft	0.20	5.00E-04
28 . Site Surface Friction Velocity, U* (m/s)	1.74 mph	0.78	0.21
Dimensionless Parameters	est) stelemenes	Mmensionles	
29 . Length Scale, SF	400	400	1 29
30 . Time Scale, TS	107.02	107.02	1.00
31 . Anemometer Power Law Exponent, na	0.16	0.160	0.16
32 . Site Power Law Exponent, ns	0.18	0.181	0.18
33 . Velocity Ratio, R = Ve/Ur	0.84	0.84	0.84
34 . Stack Velocity Ratio, Rs = Ve/Uh	1.13	1.13	1.13
35 . Stack Height to Building Height Ratio, h/Hb	1.44	1.44	1.44
36 Diameter to Stack Height Ratio. d/h	0.039	0.039	0.039
37 Momentum Ratio, Mo	5.88E-04	5.88E-04	5.88E-04
38 Froude Number Fr	2.64	2.64	14.15
39 Buovancy Ratio Bo	4.56E-04	4.56E-04	1.59E-05
40 Density Ratio Lambda	0.5652	0.5652	0.5652
41 Stack Reynolds Number (Exterior) d Uh / Nu a	2 27E+06	2.27E+06	1215
42 Stack Flow Reynolds Number (Interior) Res = d Ve / Nu s	9.54E+05	9.54E+05	1435
43 Building Reynolds Number Re b = Hb Lb / Nu a	3.84E+07	3.84E+07	20534
44 Surface Reynolds Number 70 s 11* / Nu a	1.08E+04	1 08E+04	6
45 . Site Friction Velocity Ratio, U*/Uinf	0.048	0.048	0.048

Table A-3 Full and Model Scale Similarity Parameters Anemometer Speed 8.0 (m/s) Source Description: Exxon FCC COB

Table A-4Full and Model Scale Similarity ParametersAnemometer Speed11.0 (m/s)Source Description:Exxon FCC COB

English Full I M	English	Full	Model
Dimensional Parameters	Full-Scale	Scale	Scale
1. Building Height, Hb (m)	175.2 ft	53.4	0.1335
2. Base Elevation above Mean Sea Level, z = 0 (m)	947 ft	288.6	1524
3 . Stack Height above grade, h (m)	251.6 ft	76.7	0.1917
4 . Stack Inside Diameter, d (m)	9.7 ft	2.96	7.399E-03
5 . Stack Inside Area, Ae (m2)	74.1 ft2	6.9	4.300E-05
6 . Exit Velocity, Ve (m/s)	2460 fpm	12.5	2.432
7. Exit Temperature, Ts (K)	435.0 F	497.0	293.2
8. Volume Flow Rate, V (m3/s)	182,164 ft3/min	86.0	1.046E-04
9. Emission rate, Q (g/s)	1133.9 lb/hr	142.9	NA
10 . Ambient Pressure, Pa (hPa)	0.97 Atm	979	844
11 . Ambient Temperature, Ta (K)	46.0 F	280.9	293.2
12 . Air Density, Rho a (kg/m3)	0.076 lb/ft3	1.2	1.004
13 . Exhaust Density, Rho s (kg/m3)	0.043 lb/ft3	0.7	0.567
14 . Air Viscosity, Nu a (m2/s)	1.56E-04 ft2/s	1.44E-05	1.81E-05
15 . Gas Viscosity, Nu s (m2/s)	4.17E-04 ft2/s	3.88E-05	1.72E-05
16 . Free Stream Wind Speed, Uinf (m/s)	49.5 mph	22.12	4.304
17 . Free Stream Height, Zinf (m)	1969 ft	600.00	1.50
18 . Reference Wind Speed, Uref (m/s)	46.0 mph	20.56	4 000
19 . Reference Height, Zref (m)	1312 ft	400.00	1.00
20 . Anemometer Wind Speed, Uanem (m/s)	24.6 mph	11.00	2.14
21 . Anemometer Height, Zanem (m)	25.0 ft	7.62	0.019
22 . Site Wind Speed, Usite (m/s)	22.5 mph	10.05	1.96
23 . 'Site Anemometer' Height, Zsite (m)	25.0 ft	7.62	0.019
24 . Stack Height Speed, Uh (m/s)	34.1 mph	15.25	2.97
25 . Building Height Speed, Ub (m/s)	32.0 mph	14.29	2.78
26 . Anemometer Surface Roughness Length, Zo a (m)	0.33 ft	0.10	2.50E-04
27 . Site Surface Roughness Length, Zo s (m)	0.66 ft	0.20	5.00E-04
28 . Site Surface Friction Velocity, U* (m/s)	2.39 mph	1.07	0.21
Dimensionless Parameters	Paramatara 1	- alinni ana anta	
29 . Length Scale, SF	400	400	1
30 . Time Scale, TS	77.83	77.83	1.00
31 . Anemometer Power Law Exponent, na	0.16	0.160	0.16
32 . Site Power Law Exponent, ns	0.18	0.181	0.18
33 . Velocity Ratio, R = Ve/Ur	0.61	0.61	0.61
34 . Stack Velocity Ratio, Rs = Ve/Uh	0.82	0.82	0.82
35 . Stack Height to Building Height Ratio, h/Hb	1.44	1.44	1.44
36 . Diameter to Stack Height Ratio, d/h	0.039	0.039	0.039
37 . Momentum Ratio, Mo	3.11E-04	3.11E-04	3.11E-04
38 . Froude Number, Fr	2.64	2.64	10.29
39 Buovancy Ratio, Bo	1.75E-04	1.75E-04	1.16E-05
40 . Density Ratio, Lambda	0.5652	0.5652	0.5652
41 . Stack Reynolds Number (Exterior), d Uh / Nu a	3.12E+06	3.12E+06	1215
42 . Stack Flow Reynolds Number (Interior), Res = d Ve / Nus	9.54E+05	9.54E+05	1044
43. Building Reynolds Number, Re b = Hb Ub / Nu a	5.28E+07	5.28E+07	20534
44 . Surface Reynolds Number, Zo s U* / Nu a	1.48E+04	1.48E+04	6
45 . Site Friction Velocity Ratio, U*/Uinf	0.048	0.048	0.048

APPENDIX B:

VIDEO TAPE ENCLOSURE

(Available upon request)

APPENDIX C:

FACILITIES DOCUMENTATION

(Atmospheric Dispersion Comparability, ADC, Tests) (Facilities and Techniques) (Quality Assurance Information)

Separate Enclosed Report Titled ATMOSPHERIC DISPERSION COMPARABILITY TESTING DOCUMENTATION (July 1995)

Introduction and Backoround

Scron Company U.S.A. operates a perroleum refinery located in Billings, Montana which contains several SC, sources as more particularly described in Exhibit A , Section 1. of the above mentioned Stipulation.

APPENDIX D:

SIP STACK HEIGHT FLUID MODELING AGREEMENT

The FCC CCA stack is located in the process block of the refinery known as the Fluid Catalytic Crecking Unit. The FCC CDE stack is presently 53.4 returns tail with an inside stack diameter of 2.36 meters. The stilluent is emitted at 13.5 m/s at about 137 "K. One of the hearby process structures which produces the downwash effects on the emitted plume is the FCC structure. The four solid components inhedded in the lattice framework of the process unit are the elevator (3.3 m by s m by eF.2 m), the regenerator (7.6 m in diameter and 30 m high), the reactor (6.1 m diameter and 53.4 m high), and the fractionator (5.2 m in diameter and 15.3 m high). These structures were used

Coeffield, J., Excent FCC-COS Stack Reight Credit, Office Neworanda, Montana Department of Realth and Environmental Sciences, Air Quality Division, Helens, MT. August 15, 1994.

Letter from Jaffrey T. Chaffee, Acting Division Administrator, Montana Supertment of Bealth and Environmental Sciences, Air Cuslity Division, to Douglas M. Skie, Chief. Air Programs Brench U.S. 124, Region VIII, Denver, CO., August 17, 1994, with Coeffeld Memoranda, supra, In 1, attached
MAY 1 '95 9:49 FROM TO 813034918671 PAG 04-28-95 10:03AM FROM EXXON BLGS REFINERY TO 8+765-1496 PD09. 012

PAGE.009/012

ATTACHMENT 2 STACK HEIGHT FLUID MODELING AGREEMENT

Introduction and Background

Exxon Company U.S.A. operates a petroleum refinery located in Billings, Montana which contains several 50, sources as more particularly described in Exhibit A , Section 1, of the above mentioned Stipulation.

The dispersion modeling analysis performed by the Department (utilizing EPA approved dispersion models to determine appropriate control strategies for the refinery to ensure compliance with the NAAOS for SO₂) referenced in paragraph 6 of the Stipulation, demonstrated the presence of downwash associated with a stack and nearby structures at the refinery, namely the Fluid Catalytic Cracker CO boiler (FCC COB) stack. As a result, Exxon and the Department performed an analysis of Good Engineering Practice (GEP) stack height as provided in 40 CFR § 51.100 (ii) for the FCC COB stack. That analysis established a GEP formula height over the existing stack. The GEP formula height determination was further supported by additional dispersion modeling analysis and documentation of this analysis was provided to EPA by the Department in August 1994.^{1,4} EPA responded to the GEP determination on September 16, 1994 and indicated modeling credit for increases up to GEP formula heights for existing stacks would not be allowed under existing EPA regulations and policy unless supported by fluid modeling, field study, or public nuisance demonstrations. In an October 24, 1994, letter the Department also addressed the issue of stack height credit for the FCC COB stack. The bepartment's analysis showed that the state and federal stack height rules required a fluid model or field study to obtain GEP credit to the formula height.

While Exxon disputes the Department's and EPA's interpretation of the stack height regulations, it has nevertheless proposed and the Department agrees that a fluid modeling study conducted pursuant to a detailed fluid modeling protocol that follows this agreement, and is approved by the Department and EPA, and that follows existing EPA fluid modeling guidelines can c. stitute a valid and sufficient demonstration in support of the GEP formula height of 76.7 meters for the FCC COB stack.

Unit Description

The FCC COB stack is located in the process block of the refinery known as the Fluid Catalytic Cracking Unit. The FCC COB stack is presently 63.4 meters tall with an inside stack diameter of 2.96 meters. The effluent is emitted at 12.5 m/s at about 497 °K. One of the nearby process structures which produces the downwash effects on the emitted plume is the FCC structure. The four solid components imbedded in the lattice framework of the process unit are the elevator (3.2 m by 5 m by 49.2 m), the regenerator (7.6 m in diameter and 30 m high), the reactor (6.1 m diameter and 53.4 m high), and the fractionator (3.2 m in diameter and 45.3 m high). These structures were used

Coefield, J., Exxon FCC-COB Stack Height Credit, Office Memoranda, Montana Department of Health and Environmental Sciences, Air Quality Division, Helena, MT, August 15, 1994.

Letter from Jeffrey T. Chaffee, Acting Division Administrator, Montana Department of Health and Environmental Sciences, Air Quality Division, to Douglas M. Skie, Chief. Air Programs Branch U.S. IPA, Region VIII, Denver, CO, August 17, 1994, with Coefield Memoranda, supra, fn. 1, attached.

. MAY 1 '95 9:50 FROM 04-28-95 10:03AM FROM EXXON BLGS REFINERY TO 8-755-1496 P010/012

TO 813034918671

to establish the GEP formula height of 76.7 meters pursuant to 40 CFR § 51.100(ii)(2)(ii).

Wind Tunnel Test Methodology

Exxon shall construct a scale model of the FCC structures (the lattice framework and associated solid components, including process piping), the FCC COB stack and other nearby structures, as specified in the detailed fluid modeling protocol, in the fluid modeling facility (i.e., wind tunnel) to demonstrate that the GEP formula height of 76.7 meters is justified. Justification shall be deemed demonstrated by wind tunnel tests which demonstrate (1) the presence of ground level concentrations at certain locations which are at least 40% in excess of maximum concentrations experienced in the absence of FCC COB downwash effects; and (2) at the same locations, FCC COB emissions contribute to a total concentration from all sources that is greater than NAAQS for SO, as established by dispersion modeling.

The wind tunnel testing procedure shall be consistent with the following general requirements:

- 1. The emission rate for the FCC COB stack shall be the existing SIP limits (prior to December 16, 1994) as established in the E.H. Pechan & Associates, Inc. report dated February 1991 and set forth in Table 1 of said report."
- 2. The representative area surrounding the FCC unit structure shall be simulated in the wind tunnel by appropriate surface roughness elements.
 - 3. Representative meteorological conditions will be used consistent with procedures in EPA's Guideline for Use of Fluid Modeling to Determine Good Engineering Practice Stack Height.
 - 4. The 40% differential in ground level concentrations due in whole or in part to downwash effects shall be determined by comparing the respective ground level concentrations produced by (1) running the wind tunnel simulation using scale models of both the FCC COB stack structure and its associated surrounding structures; and (2) running the simulation using scale models of the FCC COB stack alone.
 - 5. Contribution to an exceedance of the NAAQS for SO₂ shall be determined by comparing the concentrations produced by the FCC COB wind tunnel simulation with the background concentrations of all other sources as established by dispersion modeling analysis using the existing SIP limits for all other sources as established in the Pechan report (prior to December 16, 1994).

If the results of the wind tunnel simulations indicate that the GEP formula derived height of 76.7 meters for the FCC COB stack is inadequate to eliminate excessive concentrations due to downwash, then Exxon may run additional simulations. The purpose of additional simulations would be to determine the increase above formula height required to eliminate such concentrations. GEP demonstrations for "above formula" stack heights must meet the more stringent requirements contained in 40 CFR § 51.100(kk)(1).

³ "Development of a Sulfur Dioxide Emissions Inventory for Billings and Laurel Montana -- Volume 1, Project Summary. EPA Contract No. 68-02-4400, Work Assignment No. 53, Final Report, February 1991. E.H. Pechan & Associates, Inc. 3514 University Drive, Durham, NC 27707.

MAY 1 '95 9:50 FROM TO 813034918671 PAGE.011/012 04-28-95 10:03AM FROM EXXON BLGS REFINERY TO 8-765-1496 P011/012

At the conclusion of the simulations, Exxon shall prepare a technical report of the fluid modeling results and submit it to the Department. The report shall contain an analysis, accompanied by any necessary dispersion modeling, of the effect on, or any proposed changes to, the emission limitations established in the Stipulation Requirements (Exhibit A, Section 3(A)). To the extent that the fluid modeling study completed by Exxon (according to the approved protocol) demonstrates that Exxon is entitled to credit for increasing the FCC COB stack height the emission limitations established in the Stipulation Requirements (Exhibit A, Section 3(A)) shall be modified as per (Part B, BINDING EFFECT, Item 4429) consistent with the results of the fluid modeling report, provided that Exxon has also demonstrated through appropriate dispersion modeling that any change in those limitations will assure attainment and maintenance of the primary and secondary SO, NAAQS.

Exxon Research and Engineering Company P.O. Box 101 Florham Park, New Jersey 07932-0101

