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ABSTRACT

HIERARCHICAL MODELS PROVIDE INSIGHT INTO

WILDLIFE AND DISEASE MANAGEMENT

Wildlife diseases can alter host populations with cascading effects throughout ecosystems

and human economies that rely on those wildlife. Pathological effects can be the ultimate

cause of wildlife population decline through depressing host reproduction and survival. Oth-

erwise, less virulent pathogens can harm host populations indirectly, through management

actions imposed on wildlife populations harboring diseases that harm people or their liveli-

hoods. Hierarchical Bayesian methods provide a framework for factoring highly dimensional

problems into lower dimensional ones. These techniques decompose a problem into data,

the underlying process, and parameters, and identify uncertainty associated with each com-

ponent. Appropriately quantifying uncertainty fosters clearer understanding of wildlife and

disease management problems.

Bison Bos bison migrating from Yellowstone National Park into the state of Montana

during winter and spring concern ranchers on lands surrounding the park because bison

can transmit brucellosis (Brucella abortus) to cattle. Migrations have been constrained

with bison being lethally removed or moved back into the park. I, and several coauthors

(we) developed a state-space model to support decisions on bison management aimed at

mitigating conflict with landowners outside the park. The model integrated recent GPS

observations with 22 years (1990-2012) of aerial counts to forecast monthly distributions and

identify factors driving migration. Wintering areas were located along decreasing elevation

gradients and bison accumulated in wintering areas prior to moving to progressively lower

elevation areas. Bison movements were affected by time since the onset of snow pack, snow

pack magnitude, standing crop, and herd size. Migration pathways were increasingly used
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over time, suggesting experience or learning influenced movements. To support adaptive

management of Yellowstone bison, we forecast future movements to evaluate alternatives.

Our approach of developing models capable of making explicit probabilistic forecasts of large

herbivore movements and seasonal distributions is applicable to managing the migratory

movements of large herbivores worldwide. These forecasts allow managers to develop and

refine strategies in advance, and promote sound decision-making that reduces conflict as

migratory animals come into contact with people.

Chronic wasting disease (CWD) is a fatal, neurodegenerative prion disease that affects

members of the deer family (Cervidae). There is worldwide concern that the disease may

harm ecosystems and human economies by causing demise of deer populations. Little is

known about effects of the disease on population dynamics. We studied a mule deer popula-

tion where CWD has been present for at least four decades. We developed a disease model

to estimate the effect of CWD on population growth rate and extent that the epidemic is

increasing. Our model integrated capture-mark-recapture histories of adult female mule deer

during a four year study with long-term population monitoring data on abundance, compo-

sition, and CWD prevalence. Our model was capable of deciphering probabilities of infection

and correct identification of infected individuals from disease tests.

We provide compelling evidence that prion epidemics can affect mule deer populations

both locally and at coarse spatial scales. Chances of population decline were greatest at

the wintering subpopulation scale, but differences in infection rate among subpopulations

caused CWD to have virtually no effect on growth in some wintering subpopulations. At

larger scales, deer populations showed some natural resistance against CWD by localizing

areas of higher infection. Overall, disease effects were subtle and the protracted time-scale

of the epidemic is likely much longer than the thirty year time span of our research. As a

result, we could not identify the inevitable fate of deer populations with CWD. Our findings

do suggest, in the nearer-term (e.g., decades), mule deer populations persisting at lower

levels after disease establishment.
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CHAPTER 1: INTRODUCTION

Wildlife diseases can alter host populations with cascading effects throughout ecosystems

and human economies that rely on those wildlife. Pathological effects can be the ultimate

cause of wildlife population decline through depressing host reproduction and survival. Oth-

erwise, less virulent pathogens can harm host populations indirectly, through management

actions imposed on wildlife populations harboring diseases that harm people or their liveli-

hoods.

Brucellosis is a bacterial disease caused by Brucella abortus that may induce abortions

or the birth of non-viable calves in livestock and wildlife. When livestock are infected it also

results in economic loss from slaughtering infected cattle, increased testing requirements,

and possibly, reduced marketability of cattle. Bison and elk in Yellowstone National Park

are chronically infected with brucellosis. Feared transmission of brucellosis from bison to

livestock has resulted in intensive management and reductions of bison exiting Yellowstone

National Park. Implementing brucellosis management strategies is contingent on these sea-

sonal migrations and understanding the forces that shape migratory movements can improve

management. In Chapter 2, I and several coauthors (we) developed a movement model ca-

pable of forecasting seasonal bison distributions. We used this model to compare alternative

strategies for managing the trans-boundary movements of Yellowstone bison.

In the remaining chapters, we focused on chronic wasting disease (CWD), an emergent,

neurodegenerative prion disease that affects deer, elk, and moose throughout North America.

CWD has raised worldwide concern because it can be transmitted among species of the deer

family, is uniformly fatal, and the infectious agent, PrPSc, persists in the environment for long

periods. Simulation models suggested that the consequence of CWD for deer populations

could vary widely with predictions ranging from limited population decline and sustained

low disease prevalence to widespread local extinction within decades of disease introduction.

Empirical studies have shown CWD can depress growth rates of local populations with
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remarkably high infection prevalence. Declines in deer abundance over larger spatial extents

could pose debilitating effects on ecosystems and human economies, because deer populations

play important roles in ecosystems, provide primary prey for large carnivores, and serve as a

food resource to people. The inevitable consequence of CWD will only begin to play out over

our lifetimes. Today’s challenge is making decisions about CWD in the face of incomplete

understanding.

We completed a four year capture-mark-recapture study of female mule deer to estimate

survival and infection probability. In Chapter 3, we integrated these data with long-term

information on deer abundance, demography, and CWD prevalence to estimate the effect

of CWD on population growth rate. Disease tests on live animals were imperfect, which

complicated estimating disease effects. In turn, we developed a disease model capable of

identifying probabilities of infection, correct diagnosis, and uncertainties associated with

each component. In Chapters 4 and 5, we analyzed our disease model in detail. Chapter

4 focused on factors affecting test accuracy and Chapter 5 evaluated individual effects on

infection probability.

A unifying goal of my dissertation research was to illustrate the usefulness of hierar-

chical Bayesian modeling in gaining understanding from data collected from wildlife and

disease management studies. Hierarchical Bayesian methods provide a framework for factor-

ing highly dimensional problems into lower dimensional ones. These techniques decompose

a problem into data, the underlying process, and parameters, and identify uncertainty asso-

ciated with each component. I aimed to show how these approaches are general and can be

applied to a variety of problems. I challenged myself to build better tools to address pressing

wildlife and disease management concerns.
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CHAPTER 2: INTEGRATING INDIVIDUAL- AND POPULATION- LEVEL DATA IN

A MOVEMENT MODEL OF YELLOWSTONE BISON

Large herbivore movements occur at multiple scales of time and space. Annual migration

is the manifestation of choices made at the regional scale that allow animals to respond to

changes in resources that cannot be exploited year round (Senft et al., 1987; Fryxell and

Sinclair, 1988). Migration is a regular, long distance pattern of movement typically observed

in systems with predictable, seasonal fluctuations in environmental conditions (Mueller and

Fagan, 2008). In montane environments, such movements along elevation gradients provide

large herbivores access to newly emerging vegetation during the growing season resulting in

increased long-term rates of energy gain (Albon and Langvatn, 1992; Wilmshurst et al., 1995;

Mysterud et al., 2001; Hebblewhite et al., 2008). Migratory movements may also diminish

predation pressure as animals move beyond the boundaries of predator territories (Laundre

et al., 2001; Fortin et al., 2004; Hebblewhite and Merrill, 2007). Montane environments are

characterized by a prolonged period when newly emerging vegetation is no longer available

and decisions to move are often influenced by increased energetic costs of locomotion and

foraging with snow pack establishment (Parker et al., 1984; Larter and Gates, 1991; Schaefer

and Messier, 1995; Fryxell et al., 2004; Doerr et al., 2005). Within patch foraging movements

are affected by localized heterogeneity, whereas migratory movements are typically driven

by factors at the landscape-scale (Ball et al., 2001; D’Eon and Serrouya, 2005; Holdo et al.,

2009; Zweifel-Schielly et al., 2009).

Human activities have fragmented landscapes throughout the world, severing historic

pathways for migration of many species of large herbivores (Galvin et al., 2008; Hobbs et al.,

2008). Rural landscapes supporting livestock production and agriculture often provide us-

able habitat for migrating large herbivores (Hansen and DeFries, 2007). Road development

(Nellemann et al., 2001; Ito et al., 2005; Fox et al., 2009; Holdo et al., 2011), fencing (Fox

et al., 2009; Bartlam-Brooks et al., 2011; Li et al., 2012), natural resource extraction (Sawyer
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et al., 2009), and recreation-based development (Vistnes et al., 2004; Wittmer et al., 2007)

now threaten many remaining long distance migrations (Berger, 2004). Furthermore, migra-

tory wildlife may come into conflict with people beyond the boundaries of protected areas

because wildlife transmit disease, damage property, or compete with livestock for forage.

(Thouless, 1995; Plumb et al., 2009; Metzger et al., 2010). Severing migrations has had

adverse demographic effects on large herbivores and there is increasing support at regional

and global levels to preserve these natural phenomena (Berger, 2004). However, the interests

of local economies often conflict with conservation goals. Maintaining migrations in the face

of this conflict requires understanding the forces that shape migratory patterns.

Human hunting reduced plains bison (Bos bison) from an estimated 28 million animals

to fewer than 100 by the end of the nineteenth century. Approximately 25 of these surviving

bison occupied remote areas in Yellowstone National Park and the remainder were found in

private preserves across the western United States. Beginning in 1902, a second herd was

started in Yellowstone with 21 bison from two private reserves. Total bison abundance in

Yellowstone has gradually increased through protection, husbandry, and relocation. Begin-

ning in 1968, bison numbers were allowed to fluctuate in response to weather, predators,

and resource limitations (Meagher, 1973). Seasonal movements were re-established as the

population increased in size and expansion of the winter range was detected by the 1980s

(Meagher, 1989). Yellowstone bison eventually began using lower elevation winter ranges

outside the park in Montana where winter snow pack is less severe and it is easier to ac-

cess forage. Range expansion much beyond the park boundary is now precluded by intense

management intervention due to concerns of brucellosis transmission to cattle (White et al.,

2011).

Approximately 60% of the Yellowstone bison population has been exposed to brucellosis,

a bacterial disease caused by Brucella abortus that may induce abortions or the birth of non-

viable calves in livestock and wildlife (Rhyan et al., 2009). When livestock are infected it

also results in economic loss from slaughtering infected cattle, increased testing requirements,
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and possibly, reduced marketability of cattle. The United States government and the state

of Montana agreed to an adaptive interagency bison management plan (USDI and USDA,

2000a,b) for cooperatively managing the risk of brucellosis transmission from Yellowstone

bison to cattle while conserving bison as a natural component of the ecosystem and allowing

some bison to migrate out of the park. Before cattle are stocked in the area during summer,

bison that migrated into Montana during winter are either hazed (i.e., moved) back into

Yellowstone National Park, harvested by hunters, or captured and transported to slaughter

(USDI and USDA, 2000a,b).

Adaptive management is a structured decision making approach for improving resource

management by systematic learning from management actions and outcomes (Walters and

Holling, 1990). It involves the exploration of alternatives for meeting objectives; prediction

of outcomes from alternatives using current understanding; implementation of at least one

alternative; monitoring of outcomes; and using results to update our knowledge and adjust

actions (Williams et al., 2007). Adaptive management provides a framework for decision

making in the face of uncertainty and a formal process for reducing uncertainly to improve

management and outcomes over time.

White et al. (2011) provided an assessment of the Interagency Bison Management Plan

that indicated migrations far exceeded expectations of initial models and approximately

3,200 bison were culled during 2001-2011. More than 20% of the population was removed

during 2006 and 2008 which contributed to a skewed sex ratio, gaps in the population age

structure, and reduced productivity, which could threaten the integrity of the population

if continued (White et al., 2011). These authors and stakeholders recommended reduced

culling of animals at park boundaries and increased tolerance in adjacent areas in the state

of Montana to support sport hunting. Managers agreed to reduce large scale culls through

gather-and-slaughter and requested a predictive model of trans-boundary movements to as-

sess revised management alternatives.
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Model development is a component of the structured decision-making process that brings

together data and uncertainty through testable hypotheses representing our understanding

of the system and effects of management alternatives. Uncertainty arises from our lack of

understanding of the ecological process, measurement error, environmental variability, and

our lack of complete control over management actions (Williams et al., 2007). Hierarchi-

cal models are particularly well suited for adaptive management because of the ability to

appropriately incorporate data with different error structures and identify both observation

error and process variance. Bayesian techniques provide a particularly clear method for

constructing these models.

Here, we develop a hierarchical Bayesian model of regional scale movements of Yellow-

stone bison. The structural connectivity of the bison range is identified by differentiating

the landscape into wintering areas linked by migration paths. We used a state transition

approach (Caswell, 2001) in discrete time to estimate monthly distributions during 1990-

2012 and to relate transition probabilities to environmental covariates. Future migrations

are forecasted under different scenarios of environmental conditions and herd sizes to iden-

tify the timing and magnitude of movements, and assess the appropriateness of alternative

management interventions. This approach of using Bayesian inference in support of adaptive

management is applicable to addressing trans-boundary movements of wildlife worldwide.

Study Area

Yellowstone bison live in a single population of approximately 2,500-5,000 bison in at least

two breeding herds (central and northern). The central herd occupies the central plateau of

Yellowstone National Park, extending from the Hayden Valley and nearby grasslands in the

east to the lower elevation and thermally influenced Gibbon (also referred to as Madison)

River drainage and Hebgen Lake basin in the west (Figure 1). The central plateau is charac-

terized by several large meadow complexes located along a east-west gradient of decreasing
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elevation linked by narrow travel corridors which coincide with rivers. At the highest end,

the Hayden Valley is characterized by highly productive upland grass communities with the

majority of habitat classified as big sagebrush/Idaho fescue or silver sagebrush/Idaho fescue.

Elevations exceed 2,450 m and snow water equivalents are more severe than alternative bison

use areas, with refuge areas provided by windswept hills and geothermal influenced areas

during winter. The mid-elevation Firehole River drainage (2,225 m) encompasses several

interconnected, thermally influenced, geyser basins with ground cover dominated by sedges

at the base of the basins and cool season grasses on the slopes. The Gibbon Valley and

Hebgen Lake basin are a series of small and disjoint meadows spanning a decreasing gradi-

ent from 2,200 m in the east to 2,050 m at the western boundary of the park north of West

Yellowstone, Montana.

The northern herd congregates in the Lamar Valley and on adjacent plateaus in northern

Yellowstone during the breeding season (July 15-August 15; Figure 1). During the remainder

of the year, these bison use habitats in the Yellowstone River drainage, which extends 100

km between Cooke City and the Paradise Valley north of Gardiner, Montana. This area is

characterized by a large expanse of upland grassland meadows occurring along a decreasing

elevation gradient from east (2,200 m) to west (1,650 m). This area has drier and warmer

summers and less severe winters than the central interior of the park. There is limited

geothermal influence and the majority of the habitat is characterized as big sagebrush/Idaho

fescue or big sagebrush/sticky Idaho fescue. The western extent of these northern grasslands

occurs near Gardiner, Montana. Although it is the least productive wintering range, it

generally contains snow-free areas during most winters, so forage availability can be high

even though production is low.
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Methods

Movement Data

Sixty-six bison >1 year of age were captured in autumn during 2004-2012 by immobi-

lization with carfentanil and xylazine (Rhyan et al., 2009) or at handling facilities near the

boundary of the park (USDI and USDA, 2000a,b). Individuals were fit with a store-on-

board GPS collar (Telonics Inc. Mesa, Arizona) that collected between 2 months and 5

years of information. Bison were captured from the central herd during 2004-2012 and from

the northern herd during 2006-2012. GPS devices were programmed to collect one location

every 48 min during 2004-2005 and one location every 2 h during 2005-2012. A total of

512,621 locations were collected.

Migration paths used by bison in the central portions of Yellowstone generally passed

through constricted regions at some point, and remotely triggered camera stations (PM-175,

Silent Image, Reconyx Inc., Holmen, WI) were installed in these areas during November-

April, 2010-2012 to record total numbers of bison and their direction of travel. Cameras

were visited biweekly to download images and replace batteries. Pictures were viewed using

Mapview (Reconyx Inc., Holmen, WI).

Aerial Counts

During 1990-2012, 136 aerial counts were completed to estimate population size where

observers recorded the location and size of encountered bison groups during systematic sur-

veying of wintering areas (Hess, 2002). Counts occurred monthly from 1990 to 1997, ap-

proximately quarterly from 1998 to 2006, and again monthly from 2007 to 2012.

Model Covariates

Three movement covariates were observed throughout the duration of this research. i)

Herd Size: Between two and three annual aerial counts of bison on breeding areas were
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completed to estimate herd sizes. ii) Snow Pack: Daily snow estimates were generated using a

simulation model that predicted 28 m2 resolution surfaces of snow water equivalents (Watson

et al., 2006; Geremia et al., 2009). Daily snow surfaces of the bison utilization distribution

area across the central and northern portions of park were averaged to single north and

central values for each day of the year. We added these averaged, daily values across the year

to create single, annual snow pack values for the northern and central regions. iii) Standing

Crop: Standing crop estimates at the conclusion of the growing season were generated using

a simulation model that predicted 30 m2 resolution surfaces of modeled monthly net primary

productivity from NASA’s Carnegie-Ames-Standford-Approach (Potter et al., 2007; Geremia

et al., 2011). CASA, a biophysical ecosystem model, incorporates temperature, precipitation,

solar radiation, vegetation cover, and the normalized differentiation vegetation index from

LandSat satellite data as inputs during April through October (Potter and Klooster, 1999;

Crabtree et al., 2009; Huang et al., 2010). Values were averaged across central and northern

grassland regions of the bison utilization distribution for each year.

Bison Utilization Distribution

Brownian bridge movement models were used to approximate the continuous movement

path of individual adult female bison between successive locations recorded by store-on-

board global positioning system (GPS) devices (Horne et al., 2007). We created utilization

distributions that were two dimensional gridded surfaces representing relative use according

to frequency of visits to and movement rate through areas for each individual. A single

cumulative utilization distribution for the entire population was created by summing across

each individual utilization distribution (Sawyer et al. 2009; Figure 1).

Structural Connectivity

We used a graph theoretic approach to define the structural connectivity of Yellowstone

bison (Urban and Keitt, 2001). We differentiated the landscape into a set of nodes that
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were wintering areas connected by edges that were migration paths. Wintering areas and

migration paths were determined by looking at the cumulative utilization distribution and

identifying the two types of areas. GPS histories of individually marked animals were then

examined to confirm our classification. Our graph included 10 wintering areas connected by

8 migration paths (Figure 1).

Statistical Approach

State-space models can be used to join stochastic models of observations with a stochastic

model portraying the underlying mechanisms of movement (Patterson et al., 2008; Schick

et al., 2008). In the state-space approach, we assume there is a time series of unobserved,

true states such that the current state directly influences the state at the next time. A second

time series, running in parallel, includes the observations of the true states. We assume the

observations fail to represent the true state perfectly because they are made with error. Hi-

erarchical Bayesian methods provide a framework for factoring highly dimensional problems

into lower dimensional ones (Berliner, 1996). These techniques decompose a problem into

data, the underlying process, and parameters, and identify uncertainty associated with each

component. The following sections describe the decomposition of the problem into process,

data, and parameter models.

Process Model

The true numbers of bison in wintering areas and movement probabilities between areas

were estimated using a state-transition model (see also Harrison et al. 2006; Morrison and

Bolger 2012) in discrete time (Figure 2). The model updated on a monthly time step. The

initial spatial distribution of bison for each year was estimated during July when bison were

congregated on breeding areas for the rut. Model updates were generated each subsequent

month through peak migration which occurred when highest numbers of bison were located

on alternative wintering areas. The column vector zt,j represents the true number of bison

11



1

1

1

Count 1

Month Interval

Count 2

Figure 2: We present a conceptual figure of our model. Top: Aerial count units (square
boxes with dotted line) did not completely overlap wintering areas (gray shaded region).
Bison were observed in aerial count units or in wintering areas based on GPS devices fit
to animals. Uncollared bison outside of count areas were not observed which we represent
using the transparent icon. Middle: movements between wintering areas during the ensuing
month were not observed. Bottom: One month later bison were again observed in aerial
count units or or in wintering areas based on GPS devices fit to animals. Unobserved
quantities including the true number of bison in wintering areas at the time of counting and
movements between counts were estimated. These unobserved quantities (e.g., movements)
were related to covariates mainly reflecting food availability.
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in each wintering area during month t and year j. The matrix A represents transitions of

bison between wintering areas (e.g. survival and movement along migration paths) during

∆t (Appendix 1). We assume the ith element of zt,j follows a gamma distribution with rate β

and shape Aizt−1,jβ where Ai is the ith row of A. The parameters of the gamma distribution

are the rate and shape which correspond to the meanAizt−1,j and process variance 1
β
Aizt−1,j

using moment matching (Appendix 1).

Survival and movement determined the number of bison remaining in each wintering area

at the next time step. The monthly probability of survival is φ and the monthly movement

probability along the ith migration path is γi. Each movement probability is related to

covariates using the logistic model that reflect increased energetic costs of locomotion and

foraging during winter (Appendix 1). These covariates include days since the onset of snow

cover, annual snow pack magnitude, herd size, standing crop at the conclusion of the growing

season, and year of study. Days since the onset of snow cover is represented using a quadratic

term. This allows movement probabilities to reach minima corresponding to optimal times of

the year for wintering area use. Year was included as a covariate to allow annual movement

probabilities to steadily increase or decrease throughout the duration of our research.

Initial Conditions

The number of bison in each wintering area at the current time zt,j was conditioned on

the number of bison at all previous times, but could be expressed by conditioning only on the

most recent time. Then, the joint distribution of the movement process could be factored

as [z1:t,j] = [zt,j|Azt−1,j][zt−1,j|Azt−2,j][zt−2,j|Azt−3,j] . . . [z1,j]. We needed to specify prior

distributions on the initial numbers of bison in each wintering area z1,j during each year.

We chose informative priors that were based on the numbers of bison observed during initial

counts, where log(z1,j) ∼N(log(y1,j),0.5) (Appendix 1).
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Data Models

Aerial counts did not occur exactly one month apart and we adjusted our process model

to have a variable time step. Model updates occurred on the day of counting or on the 15th

day of the month when counts did not occur. To align the intervals in the process model

with the intervals in observed counts, transition probabilities were scaled by the fraction

of elapsed time to the monthly time step. We defined ∆tt,j as this proportion and scaled

survival using φ∆tt,j and movement using 1 − γ∆tt,j
i . For example, if counting occurred 45

days (e.g. 1.5 months) after the previous model update, then survival during that interval

was estimated as φ1.5 and movement as 1− γ1.5
i .

Counts of wintering areas were assumed to follow a Poisson-gamma mixture distribu-

tion. Count areas overlapped wintering areas and the relation matrix B was created to align

counting and wintering areas (Appendix 1). The vector λt,j was the true average number

of bison in count areas during month t and year j and y1t,j was the observed count. We

assumed the kth element of λt,j follows a gamma distribution with rate α and shape Bkzt,jα

where Bk is the kth row of B. Then, each element of y1t,j follows a Poisson distribution with

intensity λt,j (Appendix 1). The shape parameters of the gamma distribution correspond

to the mean (Bzt,j) and observation variance ( 1
α
Bzt,j) using moment matching. Our spec-

ification assumed that observers had perfect detection during counting which was based on

>0.97 sightability reported by Hess (2002). Discrepancies between process model predictions

and counts were attributed to sampling error, such as bison moving outside of count unit

boundaries or incomplete surveying of units due to inclement weather.

Monthly locations of all bison fit with GPS devices were assumed to follow a multinomial

distribution with the vector y2t,j as the number of individually marked bison located in each

wintering area during month t and year j. Multinomial probabilities were the proportion of

bison in each wintering area predicted by the process model where the probability for the

ith wintering area was zt,j,i/
∑

i zt,j,i (Appendix 1).
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Covariates were treated as being measured with error. We assumed observations (x) of

annual snow pack magnitude, standing crop at the conclusion of the growing season, and

herd size followed normal distributions. The vector µxj represented latent snow, herd, and

standing crop conditions during year j (Appendix 1). The vector σx had one element for

each latent covariate type (Appendix 1). Informative prior distributions were chosen for

standard deviations of snow pack magnitude and standing crop conditions (see Parameter

Models). Up to three replicate observations of herd sizes were recorded annually and dif-

fuse prior distributions were specified for standard deviations of herd sizes (See Parameter

Models). Covariates were standardized to improve model convergence, reduce auto correla-

tion, and facilitate comparison of covariate effects. Because covariates were treated as latent

quantities, standardization occurred during each MCMC update. The difference of each cur-

rent covariate value and mean of all current covariate values were divided by the standard

deviation of all current covariate values.

Parameter Models

We assumed that monthly survival followed a Beta(97,0.98) distribution based on pre-

vious research identifying survival in Yellowstone bison using mark-recapture techniques

(Geremia et al., 2009). Note, the posterior distribution of the survival parameter was iden-

tical to the prior distribution and, as a result, we do not discuss this result further. Snow

model generated metrics were produced for sites corresponding with four SNOTEL stations

located within and surrounding Yellowstone. Predictions were compared to reported values

to create informative N(1.60,0.10) prior distributions for log standard deviations of snow con-

ditions. Standing crop measures were collected at the conclusion of the growing season from

across Yellowstone and compared to forage model predictions to create informative N(1,0.10)

prior distributions for log standard deviations of standing crop conditions. Otherwise, the

diffuse prior distribution N(0,1000) was assumed for all model parameters including: the lo-

gistic model coefficients relating covariates to movement probabilities; the log parameters of
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gamma distributions for the true (β) and observed (α) numbers of bison occupying wintering

areas; the log means (µxj) of annual herd size, snow, and standing crop conditions; and the

log standard deviations of herd size conditions (σx; Appendix 1).

Model Implementation

Marginal posterior distributions of latent states and parameters were estimated using

Markov chain Monte Carlo (MCMC) methods. Samples were drawn from the posterior

distribution of each parameter and latent state using a hybrid Gibbs sampler with Metropolis-

Hastings steps. All analyses were completed using program R (R Core Development Team

2013) and we included code to simulate data and implement our model in the Supplemental

Material.

Each of three MCMC chains was run for 500,000 iterations and the first 250,000 iterations

were discarded to allow for burn-in. We confirmed convergence using the Gelman and Rubin

test statistic by assuring that the potential scale reduction factor was <1.02 for each variable

(Gelman and Rubin, 1992). Trace plots of marginal posterior distributions were inspected to

ensure reasonable exploration of the parameter space. Metropolis-Hastings acceptance rates

were tracked to assure values near 0.40.

Posterior predictive checks help assess whether observed data are consistent with the

model (Gelman et al., 1996; Gelman and Hill, 2007). Posterior predictive realizations of

count observations were obtained during each MCMC update after the burn-in period. These

realizations can be conceptualized as replicated data produced by the model. We assessed

how replicated data resembled the distribution of the real data by defining test statistics

and calculating Bayesian p-values as the proportion of MCMC iterations for which the test

statistic of the replicated data was more extreme than the observed data. One test statis-

tic was created as the proportion of bison in each count area to indicate discrepancies in

central tendency. Mean squared error was defined as an additional test statistic to indicate

discrepancies in dispersion.
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Posterior predictive realizations of counts should exhibit a strong linear relationship to

observed counts. We estimated the posterior predictive distribution of r between the observed

and replicated data during each MCMC iteration after the burn-in period. Out-of-sample

prediction was also used to assess model performance by comparing predicted numbers of

bison moving along migration paths to numbers of bison recorded using remote camera

stations.

Predictions for Adaptive Management

Bayesian inference provides a framework for prediction that estimates the uncertainty in

the model parameters, process error, and observation error (Clark, 2007). The same model

that is used for estimating the parameters is used to make predictions. This is done by

conditioning the predictive distribution of future numbers of bison in wintering areas on the

parameters, process error, and future covariate variables. Because these covariate variables

are not known in advance, an additional source of uncertainty enters which we refer to as

scenario uncertainty (Clark, 2007). Future snow and standing crop conditions can be condi-

tioned on what has been observed. For example, x̃ is a predicted covariate and we assume x̃

follows a normal distribution with the mean and standard deviation of previously observed

snow or standing crop conditions. It is more challenging to estimate future herd sizes which

depend on herd size during the previous year x̃j−1, population growth λ̃, and removals r̃j

such that x̃j = λ̃(x̃j−1 − r̃j). Population growth can be estimated as a derived quantity in

our model by calculating this quantity for each year since 1990. Then, predictions of λ̃ fol-

low a normal distribution with the mean and standard deviation of these derived quantities.

Management reductions occur through hunting, or gather-and-consignment where bison are

moved into livestock facilities and shipped to slaughter, terminal pastures, or research or

quarantine facilities. Managers have complete control over gather-and-consignment, since

riders on horseback are used to haze targeted animals into processing facilities. Therefore,

we do not need to incorporate uncertainty in r̃ for predicting removals occurring through
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gather-and-consignment. However, there is uncertainty in predicted hunter success because

not all bison occupying hunting districts are harvested by hunters. Observations during

2005-2012 indicated that it is reasonable to assume that the probability of harvest of bison

occupying hunt areas follows a Beta(1,5) distribution. Using these steps, we were able to

incorporate all reasonable sources of scenario uncertainty in forecasting future movements.

Bison distributions were forecasted for the 15th of each month during August-March on

the northern portions and August-May on the central portions of Yellowstone during 2013

through 2017. Starting bison population size during August 2013 was assumed as 4,170-4,230

(approximately 1,600 central and 2,600 northern) based on aerial counting. Five management

alternatives were compared including:

1. Low Hunting: supporting recent levels of public and treaty hunting that included

50 total permits issued during early (November-January) and late (February-March)

seasons.

2. Moderate Hunting: increased hunting that included 50 permits issued for the western

management area and 300 permits for the northern management area during early and

late seasons.

3. Moderate Consignment: gather-and-consignment of up to 350 bison near the northern

park boundary during early March.

4. Aggressive Consignment: gather-and-consignment of up to 1,000 bison near the north-

ern park boundary during early March.

5. Moderate Hunting - Supplemental Consignment: hunting as described in alternative

2 with supplemental gather-and-consignment during early March such that total re-

movals do not exceed 350 bison

Plumb et al. (2009) recommended maintaining the bison population between 2,500-4,500

to satisfy collective interests concerning the park’s forage base, bison movement ecology,
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retention of genetic diversity, brucellosis risk management, and prevailing social conditions.

Furthermore, White et al. (2011) found that increased conflict with humans occurred in Mon-

tana when more than 500 bison exit either park boundary. We established three constraints

on model output; that total population size was kept between 2,500-4,500, that individual

herd size was between 1,250-1,750 animals, and that the number of migrants (excluding

harvests and culls) was below 500.

Results

Assessment of Model Performance

We begin by assessing model performance to confirm that our model appropriately por-

trayed bison movements. Comparison of posterior predicted realizations of counts to 819

real count observations indicated a r value of 0.82 (0.79 - 0.85, 95% credible interval). The

Bayesian p-value of the proportion of bison in any single count area assessed across all count

observations was 0.30, but the Bayesian p-value based on mean squared error was <0.01.

These test statistics show that our model was able to generate replicated data with similar

average numbers of bison in wintering areas as the observed data. However, mean squared

error between replicated data and true numbers of bison in each wintering area was greater

than mean squared error between the observed data and true numbers of bison. Replicated

MSE values were likely larger because errors propagate across levels of the modeling hier-

archy. Overestimating uncertainty at the parameter level produces overdispersed estimates

of latent states and subsequent replicated data would be overdispersed compared to the ob-

served data. This finding was not unexpected given the large numbers of parameters and

latent states that were estimated.

Derived quantities of numbers of bison moving along migration paths were compared to

observations recorded by remotely triggered camera stations. Our process model only allowed

for one directional moves along edges that linked nodes representing wintering areas. Camera
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Figure 3: Estimated numbers of bison moving along migration paths were generated as
derived quantities and compared to net observed movements recorded by remote camera
stations (triangles) during November 2009 - March 2012 . Solid and dotted lines represent
medians and 95% credible intervals of model predictions.
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observations identified that back-and-forth movements occurred. However, net movements

were in the direction of the process model in 94% (51/55) of monthly observations and

generally within 95% credible intervals of derived quantities (Figure 3). Thus, our model

was capable of predicting movements similar to those recorded by an independent data set.

Process variance was estimated as 1
β
Aizt−1,j and aerial counting error was estimated as

1
α
zt,j,k using moment matching. Each of these quantities depended on numbers of bison in

wintering areas (Table 3). To provide an illustration of the relative contribution of each

of these sources of uncertainty, a process model prediction mean of 500 animals in a win-

tering area corresponded to a 95% credible interval of 230-861 animals truly present. The

corresponding average count would be 490 with a standard deviation of 251 (Figures 4 and

5).

Individual Animal Movements

Individual animal movement histories were used to develop a graph of wintering areas

and migration paths from the cumulative distribution of bison use. Alternative graphs of

wintering areas and migration paths were compared against GPS histories of adult female

bison. We identified a graph (Figure 1) that matched>90% of monthly locations of individual

animals, which served as our state-transition matrix for predicting monthly distributions

and movements. This graph was appropriate for the entire study period because migration

routes were re-established by 1990 after nearly a century of recovery and population increase

(Meagher, 1989, 1998). Also, telemetry locations of adult female bison recorded since 1995

(Fuller et al., 2007; Olexa and Gogan, 2007; Geremia et al., 2009) indicated that identified

migration paths were present and used extensively during our study.

Radio collared adult female bison from the central herd congregated in non-forested areas

of the Hayden Valley for the breeding season, after which most animals began to regularly

travel between the Hayden Valley and alternative areas along the north shore of Yellowstone

Lake and within the Pelican Valley. During most years, all animals exited these higher
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elevation areas directly to the Firehole River drainage by the conclusion of winter. Some

brief return movements to the Hayden Valley occurred, and a few bison directly accessed the

Gibbon River drainage from the Hayden Valley. From the Firehole River drainage, bison

accessed several disjoint meadows along the Gibbon and Madison rivers. Movements were

fluid between these areas, resulting in low residence time in any single meadow. Bison next

moved towards the western park boundary (23 of 46 bison fit with GPS devices) or accessed

the western portion of the grasslands in northern Yellowstone by moving north along the

road connecting Mammoth Hot Springs and the interior of the park (23/46). Most females

from the central herd exhibited strong fidelity to breeding sites and wintering areas (40/46).

However, six individuals that migrated to the northern portions of Yellowstone moved to the

Lamar Valley during the following summer, interbreeding with the northern herd.

Use of northern Yellowstone by adult female bison fit with telemetry devices showed that

animals fluidly moved across an approximately 40-km region along the Lamar River from

Cache Creek in the east to west of the confluence of the Yellowstone River in the west. Use

was concentrated in the eastern portions of this area and adjacent higher elevation slopes

during the breeding season and early autumn, and concentrated in the western portions

during winter. During some years, most, if not all individuals, moved northwest to the

Blacktail Deer Plateau. Several movement corridors connected these areas. Bison also

moved further north to the lower-elevation Gardiner basin during many of these years. These

movements were made along several pathways that followed the Yellowstone and Gardner

rivers. Females from the northern herd exhibited strong fidelity to breeding sites (19/20), but

within-year variation in use of wintering areas. Only a single individual from the northern

herd was observed using the central interior of the park.

Estimation of population level parameters

Monthly estimated abundance of bison on wintering areas suggested that migrations fol-

lowed a movement cascade, with animals moving progressively from higher to lower elevation
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areas. Abundance on breeding areas that corresponded to the highest elevation wintering

areas steadily decreased after the conclusion of the rut in September. Abundance on mid-

elevation wintering areas peaked during migration periods, suggesting these areas were used

much like stop-over sites. Abundance on wintering areas at the termination of migration

paths peaked during May and June in the Hebgen Lake basin and during February-April in

the Gardiner basin. Similar numbers of bison tended to remain on higher elevation winter-

ing areas at the conclusion of migration periods along central migration paths (Figure 4).

The timing, magnitude, and extent of movements along northern migration paths was more

variable between years. Most, if not all, bison remained on middle elevation wintering areas

during some years, with nearly all animals exiting to the lower elevation areas during others

(Figure 5).

We found strong seasonality of monthly movement probabilities along central migration

paths based on days since the onset of snow cover (Table 1). Movement probabilities reached

minima during the migration period, supporting that early migrants exhibited higher prob-

abilities of movement to subsequent wintering areas. Minima corresponded to optimal times

of use of wintering areas, which occurred at similar days after snow onset each year. There-

after, movement probabilities rapidly increased. Seasonality of movement probabilities along

northern migration paths was less apparent (Table 2), with increased inter-annual variation

related to herd size, snow pack magnitude, and standing crop (Figures 6 and 7).

The size of the northern herd was related to increases in monthly movement probabilities.

There was a 0.85 probability that the northern herd covariate coefficient was greater than zero

for movements between the Lamar Valley and the lower Yellowstone River drainage and a

0.87 probability for movements between the Lower Yellowstone River drainage and Blacktail

Deer Plateau. The effect of central herd size was less clear. Movement probabilities from the

breeding area for the central herd decreased with herd size, suggesting that larger herd sizes

prolonged congregation on the breeding area. Perhaps bison cooperatively displace snow,

thereby facilitating foraging and locomotion early in winter. Central herd animals moved
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marginal posterior distributions of numbers of bison occupying wintering areas in central
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to the northern or western park boundaries from the Gibbon River drainage. Movements

towards the northern park boundary were believed to be infrequent prior to the central

herd increasing in size after large-scale reductions during 1996-97 (Gates et al., 2005). We

found 0.90 probability that the central herd covariate coefficient was greater than zero for

movements to the north and 0.89 probability that the central herd covariate was less than

zero for movements to the west. Thus, as the central herd increased in size, use of the the

northern migration pathway increased (Table 1).

Snow pack magnitude was related to increased monthly movement probabilities along

northern migration paths, with a 0.94 probability that the northern snow pack covariate co-

efficient was greater than zero for movements between the Lower Yellowstone River drainage

and Blacktail Deer Plateau and a 0.86 probability for movements between the Blacktail Deer

Plateau and Gardiner basin (Table 2). Snow pack magnitude effects were in opposition across

central migration paths. Snow was related to increased movements from the Hayden Valley

to the Firehole River drainage (0.89 probability) and the Gibbon River drainage to the Heb-

gen Lake basin (0.81 probability), but decreased movements from the Firehole to Gibbon

River drainages (1.00 probability; Table 1). The Firehole River drainage is characterized by

thermally influenced areas that likely offset the negative effects of snow on accessing food.

The effects of standing crop at the conclusion of the growing season were ambiguous.

While nearly all coefficients were in the expected direction with increases in standing crop

related to decreased per capita movements, all credible intervals broadly spanned zero (Tables

1 and 2). Monthly movement probabilities along most central migration paths increased

through the duration of our research and probabilities from the Blacktail Deer Plateau to

the Gardiner basin decreased (Tables 1 and 2)

Adaptive Management

Continued large-scale gather-and-consignment (alternative 4), as has occurred sporadi-

cally since the inception of the Interagency Bison Management Plan, exhibited the highest
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Figure 6: Mean posterior predicted monthly movement probabilities along migration paths
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Table 2: Posterior estimates of logistic model coefficients of monthly movement probabilities
along northern Yellowstone migration paths. Bold text indicates covariates with >0.85
probability of an effect.
Migration path parameter median 0.025% 0.975%
Lamar to Lower Yellowstone intercept -1.20 -1.88 -0.66

snow onset 0.36 -0.74 1.02
snow onset (2 order) -0.87 -2.16 0.17
herd size 0.29 -0.25 0.84
snow pack severity -0.05 -0.26 0.15
standing crop -0.16 -0.47 0.16
year of study -0.10 -0.71 0.51

Lower Yellowstone to Blacktail intercept -2.20 -2.74 -1.73
snow onset -0.17 -0.67 0.31
snow onset (2nd order) -0.84 -0.20 0.39
herd size 0.36 -0.28 1.04
snow pack severity 0.19 -0.05 0.44
standing crop 0.14 -0.24 0.52
year of study -0.14 -0.87 0.54

Blacktail to Gardiner intercept -0.47 -1.06 0.14
snow onset -0.26 -0.69 0.14
snow onset (2 order) 0.39 -0.29 1.07
herd size -0.11 -0.54 0.28
snow pack severity 0.13 -0.12 0.39
standing crop 0.03 -0.38 0.48
year of study -0.68 -1.05 -0.35

Table 3: Posterior estimates of model parameters representing process uncertainty and obser-
vation error. Process uncertainty and counting error are functions of estimated parameters
where A is a transition matrix of movement and survival probabilities, zt,j is a column vector
of true numbers of bison in each wintering area during month t and year j, and k are count
areas.
parameter definition median 0.025% 0.975%
β process uncertainty ( 1

β
Aizt−1,j) 0.018 0.016 0.021

α counting error ( 1
α
zt,j,k) 0.012 0.011 0.013

σx(central) herd abundance 141.97 114.61 181.37
snow pack magnitude 5.16 4.20 6.38
standing crop 2.20 1.81 2.68

σx(northern) herd abundance 165.60 132.67 216.72
snow pack magnitude 7.28 5.85 8.74
standing crop 2.20 1.81 2.68
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probability of reducing herd sizes below targeted levels (Table 4). Alternatives that relied

exclusively on hunting were least likely to meet decision criteria (alternatives 1 and 2). Under

low levels of hunting (alternative 1), herd sizes increased and there was a high probability

of more than 1,500 migrants moving beyond park boundaries. Issuing more annual hunting

permits (alternative 2) increased the probability of meeting decision criteria. However, there

was large variation in forecasted herd sizes due to broad uncertainty in hunter success rate.

Supplementing increased numbers of state and tribal hunting permits with moderated

late winter gather-and-consignment (alternative 5) provided the highest certainty of meet-

ing key management criteria over the next five years (Table 4). Under this alternative

tribal members would be afforded greater opportunity for the consumption of bison as food,

and the associated cultural and spiritual benefits. By issuing 350 permits each year, we

forecasted average hunter harvests of more than 100 animals each of the next five winters.

In turn, numbers of bison removed by gather-and-consignment were reduced by one-half

compared to scenarios that excluded hunting. Reduced numbers of bison removed through

gather-and-consignment mitigates social conflicts that arise from slaughtering wild animals.

Also, managers are provided increased flexibility for pursuing non-lethal alternatives, such as

transport to quarantine facilities for eventual supplementation of tribal, private, and publicly

owned bison populations throughout North America.

Under alternative 5 (hunting and consignment) and a starting population near 4,200

bison, we found a 29% chance of more than 500 and 10% chance of more than 1,000 animals

exiting the northern park boundary (in addition to removals) within one year. After five

years, we forecasted a 18% chance of more than 500 animals and only 5% chance of more than

1,000 animals exiting the northern park boundary. Consistent hunting supplemented with

gather-and-consignment of bison increased the chances that future migrations do not surpass

levels that are generally accepted by prevailing social conditions. At the same time, harvests

and culls did not remove all migrants during most years. Consequently, managers would

be afforded the opportunity to selectively remove animals through gather-and-consignment.
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Culls could be targeted at desired age and sex classes to offset potential adverse effects

of selective hunting (e.g., by sex or herd) or reduce brucellosis infection through removing

individuals capable of transmitting infection to livestock or other wildlife (Treanor et al.,

2011; White et al., 2011).

In contrast to the northern park boundary, management alternatives that reduced herd

sizes to the targeted range of 1,250-1,750 animals did little to moderate numbers of bison

migrating to the western park boundary. Further, these movements coincided with the calv-

ing period when bison are most likely to transmit brucellosis by shedding infectious material

onto the landscape through parturition. Therefore, successful trans-boundary management

must focus on spatio-temporal separation of livestock and bison, rather than on removing

migrants through harvest or gather-and-slaughter. Fencing or hazing bison away from areas

soon to be occupied by cattle, and targeted gather-and-haze of bison from these potential

conflict areas, should create this separation. Also, current management policies attempt to

gather-and-haze all bison back into the park by May 15th. However, movement probabili-

ties out of the park peak at this time, thereby complicating management efforts. Fostering

increased tolerance in regions where bison cannot come into contact with cattle until bison

naturally return to breeding areas may be a sensible alternative.

Discussion

We provide a first assessment identifying regional scale movements of bison throughout

Yellowstone and nearby areas of Montana. This research extends existing work that de-

termined relationships between numbers of bison exiting the park, herd sizes, snow pack

severity, and forage production (Gates et al., 2005; Bruggeman et al., 2009; Kilpatrick et al.,

2009; Geremia et al., 2011). We used a hierarchical approach, which allowed us to bring

together detailed movement history data collected on individual animals over relatively brief

periods of time with long term monitoring data of seasonal distributions, and account for
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uncertainty resulting from each component. By treating this as a hierarchical problem, we

were able to estimate monthly distributions during more than two decades in the face of

incomplete data, and identify changes in monthly movement probabilities between bison

wintering areas. Our approach allowed a clearer understanding of the forces that shape

migratory patterns, which is necessary for managing trans-boundary movements of wildlife

where there are disease, property, or safety concerns.

Bison select habitats that facilitate group formation to reduce predation risk and support

cooperative displacement of snow (Fortin et al., 2009). Meagher (1998) referred to this

phenomenon as a desire for bison to maintain their social bonds. We found that bison were

congregated on high elevation breeding areas at the conclusion of the rut. Foraging efficiency

in these areas likely declined as food was consumed and snow accumulated, and bison made

coordinated movements to lower elevation areas which provided improved access to food.

Animals rapidly accumulated in lower elevation areas. As food accessibility declined in these

areas due to consumption and snow accumulation, animals moved to progressively lower

elevation areas.

The net effect of snow and herd size conditions on northern migration pathways resulted in

dramatic year-to-year differences in numbers of bison moving to the Gardiner basin wintering

area. This finding is corroborated by previous research that indicated snow, standing crop,

and herd size as significant predictors of numbers of bison exiting Yellowstone (Gates et al.,

2005; Kilpatrick et al., 2009; Geremia et al., 2011). We found little net effect of snow and

herd size conditions on monthly movement probabilities along central migration pathways.

Central herd animals moved to wintering areas that span park boundaries across all observed

central herd sizes. More animals moved sooner with larger herd sizes, which corroborates

earlier work by Bruggeman et al. (2009) and increases were proportional to changes in herd

size.

Our findings could be interpreted as snow acting as a stronger control on movements in

northern Yellowstone. However, snow conditions are clearly more severe in central Yellow-
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stone with earlier and deeper snow pack establishment (Meagher, 1973; Gates et al., 2005;

Watson et al., 2006; Geremia et al., 2009), and our northern snow covariate levels averaged

32% lower than central snow conditions. Covariate levels were standardized, such that we

compared the effect of a condition relative to the average. We believe that snow condi-

tions in central Yellowstone reached levels that affected movements each year. Therefore,

year-to-year variations had little additional effect.

Emergent seasonal distributions during years characterized by above or below average

snow conditions were similar in central Yellowstone and variable in northern Yellowstone.

Fidelity to summering and wintering locations declines as conditions affecting foraging be-

come less predictable (Mueller and Fagan, 2008). Wildebeest (Connochaetes taurinus) in the

Serengeti provide an excellent example, where animals make nomadic movements during the

wet season tracking highly unpredictable vegetation dynamics in response to rainfall (Holdo

et al., 2009). When conditions affecting foraging are highly predictable from year-to-year,

experience and learning play an increasingly important role in movement decision-making

(Bailey et al., 1996; Mueller and Fagan, 2008). Such behavior has been observed in large

herbivores in snow-limited environments, including elk (Cervus elaphus ; Morgantini and

Hudson 1988; Hebblewhite et al. 2008), mule deer (Odocoileus hemionus ; Nicholson et al.

1997), white-tailed deer (Odocoileus virginianus ; Nelson and Mech 1991), pronghorn (An-

tilocapra americana; White et al. 2007) and caribou (Rangifer tarandus ; Mueller et al. 2011).

It is difficult to determine if moving herbivores are responding to food or basing deci-

sions on experience. We did not directly test if experience affected movements in our model.

GPS histories of central herd adult female bison indicated that animals increased fidelity

to movement patterns with age which is suggestive of learning. We also found strong year

effects on most central Yellowstone migration paths suggesting that routes became increas-

ingly entrenched over time. The central herd reached record abundance in 2005, which

coincided with a winter characterized by above-average snow pack. Concurrently, changes

in management policy allowed increased use of the Hebgen Lake basin wintering area, which
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afforded bison access to newly emerging vegetation while high elevation areas remained snow

covered. Range expansion as the result of food limitation caused by the record population

abundance and above-average snow pack is likely what facilitated bison in pioneering new

areas. Movements out of the central interior to northern portions of the park and expanded

use of areas adjacent the western park boundary became established and likely persisted due

to experience and learning.

Posterior predictive checks indicated that our model accurately estimates the mean. Un-

surprisingly, the variance estimates are slightly too large. Snow pack estimates were averaged

over the entire year across large areas. Snow is a highly local variable and consideration of

snow in each wintering area per month may provide better spatial-temporal resolution of

the covariate. Additional covariates could be developed as we continue this research. For

example, wolves (Canus lupus) were reintroduced to Yellowstone during 1995-97. Wintering

areas with increased wolf occurrence during times of increased snow may affect bison move-

ments. Elk numbers have also declined substantially since the return of the wolf, which may

provide increased foraging opportunities for bison. It would also be interesting to develop a

metric for management pressure to test if bison are learning and possibly avoiding certain

types of interventions. However, additional data are needed before these covariates based on

recent changes in the system can be adequately addressed.

Our research suggests population size and out-of-park abundance objectives can be met

using hunting and gather-and-consignment, with removal actions limited to bison that exit

the northern boundary. Spatial and temporal separation of livestock and bison that exit

the western boundary has effectively prevented disease spillover. Beyond Yellowstone our

research provides some general insight of managing migratory wildlife populations in frag-

mented landscapes. Managers should acknowledge that they have limited control, because

movements are themselves affected by unpredictable variation (e.g., weather). As a result,

a clear single best management strategy does not exist or is not identifiable. Instead, it is

essential to work over short time frames with continual reassessment of management guide-
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lines and outcomes. Management is further complicated when animals seasonally occupy

protected areas such as National Parks. These areas serve many purposes, one of which is

providing visitors with an opportunity to view wildlife in a natural setting. Management

interventions (e.g., culls, harvests, sterilization, contraception) are often limited within these

areas, with the unintended consequence of population growth which increases movements and

the chances of episodic reductions outside these protected areas. Learning and experience

may affect movements by allowing a behavior like the use of a migration path or wintering

area to become increasingly entrenched. If a particular learned behavior increases conflict,

it may be reasonable to target animals that exhibit the behavior for removal. We developed

a tool to make probabilistic forecasts of migratory ungulate distributions. These forecasts

promote sound decision-making by allowing managers to develop and refine strategies in

advance. Models are unique to each situation, but the framework we used is applicable to

the global concern of managing wildlife in fragmented habitats.
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CHAPTER 3: A MULE DEER POPULATION PERSISTS WITH ENZOOTIC CWD

Epizootics can affect the health and stability of host populations, ecosystems, and human

economies (McCallum and Dobson, 1995; Daszak et al., 2000). Rinderpest provides the case

example where episodic viral outbreaks led to dramatic declines in buffalo Syncerus caffer

and wildbeest Connochates taurinus populations in the Serengeti with cascading effects on

predator-prey and grassland dynamics (Sinclair and Arcese, 1995). More recent examples

include marine epizootics that are reducing the abundance of reef-building corral species and

altering community structure and ecosystem processes (Harvell et al., 1999, 2002; Bruno

et al., 2003), as well as chytrid fungus that is associated with a worldwide amphibian taxa

decline (Daszak et al., 2003). Chronic wasting disease (CWD) is a transmissible spongiform

encephalopathy that occurs naturally in members of the deer family (Cervidae) of North

America (Prusiner, 1998; Williams and Young, 1992). CWD has been detected in nineteen

states and two Canadian provinces. It continues to be identified in wild deer populations

across a wider geographic extent (Williams et al., 2002; Miller and Conner, 2005; Saunders

et al., 2012a).

CWD has raised worldwide concern because it can be transmitted among species of the

deer family, is uniformly fatal, and the infectious agent persists in the environment for long

periods (Williams and Young, 1992; Williams, 2005). The infectious agent of CWD, PrPSc,

is a malformed variant of host prion protein. PrPSc appears to replicate by temporarily

interacting with normally formed host prion, PrP, to cause mis-folding and new infectious

agent (Williams and Young, 1992; Ryou, 2007). Horizontal transmission likely contributes to

disease spread (Miller and Williams, 2003) and infectious material can be excreted through

feces, saliva, and urine (Mathiason et al., 2006; Tamgüney et al., 2009; Gough and Maddison,

2010; Haley et al., 2011). Indirect transmission through an environmental reservoir plays

an important role in infection dynamics (Miller et al., 2004; Mathiason et al., 2009). Direct

transmission is also believed to occur (Miller et al., 2000).
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Simulation models suggested that the consequence of CWD for deer populations could

vary widely (Gross and Miller, 2001; Wasserberg et al., 2009; Almberg et al., 2011). Pre-

dictions ranged from limited population decline and sustained low disease prevalence to

widespread local extinction within decades of disease introduction. Outcomes varied as a

result of differences in assumptions about controls on the number of new infections, including

the relative importance of direct and indirect transmission, decay rate of infectious agent in

the environment, habitat configuration, and host social behavior, gender, and age (Miller

and Conner, 2005; Farnsworth et al., 2006; Miller et al., 2008; Wasserberg et al., 2009; Grear

et al., 2010; Almberg et al., 2011; Storm et al., 2013).

Empirical studies have shown CWD can depress growth rates of local populations with

remarkably high infection prevalence (Miller et al., 2008; Edmunds, 2013). Declines in deer

abundance over larger spatial extents could pose debilitating effects on ecosystems and hu-

man economies because deer populations play important roles in ecosystems, provide primary

prey for large carnivores, and serve as a food resource to people. Studies implemented over

larger geographic extents are needed to better understand the course of CWD infections

and fate of deer populations. Such research is hard to implement because of the timespan of

CWD epidemics and magnitude and distribution of deer populations. It necessitates integra-

tion of long-term monitoring information with detailed short-term studies, and collaborative

efforts between wildlife management agencies and research institutions.

The origin of CWD in wild deer populations is unknown. The initial case in a wild

mule deer Odocoileus hemionus was documented in the Red Feather-Poudre River mule deer

population of north-central Colorado and southern Wyoming in 1985 (Spraker et al., 1997).

At that time, CWD had likely been present for at least two decades (Miller et al., 2000). State

management agencies targeted the Red Feather-Poudre River mule deer population for long-

term population monitoring and disease surveillance. Consequently, this population provides

an opportunity to study host and pathogen dynamics long after disease establishment and

provide some indication of how recently detected CWD epidemics may progress.

39



We conducted research to understand the effect of CWD on the growth rate of the Red

Feather-Poudre River mule deer population. Capture-mark-recapture techniques were used

to estimate infection rates and survival. Fertility estimates were determined from age and sex

surveys. Three decades of population counts enabled us to estimate deer density and confirm

model predicted growth rates. Previous disease tests from harvested and culled deer allowed

us to compare our findings to disease prevalence up to fifteen years ago. We determined the

effect of CWD on population growth under current infection levels and evaluated the degree

to which the CWD epidemic is increasing.

Materials and Methods

Study Area

The Red Feather-Poudre River mule deer population is estimated near 7 000 individuals

and located across the foothills and higher elevation areas of the northern Front Range of

the Rocky Mountains, Colorado USA (Vieira, 2006). CWD has persisted in the population

for at least 40 years. Mule deer share habitats with elk Cervus elaphus and white-tailed

deer Odocoileus virgianius that are also infected with CWD. The mule deer population is

partially migratory. Some individuals move up to 70 km between wintering areas north

of Fort Collins, Colorado into the headwaters of the Laramie River in southern Wyoming

and headwaters of the Poudre River in north-central Colorado. Others remain on wintering

areas year-round. Deer occupy lands owned privately for agriculture and livestock indus-

tries and publicly by the National Forest Service, Colorado Division of Parks and Wildlife,

Larimer County, and the city of Fort Collins. State and national public lands are managed

to support sport hunting. County and city areas are largely managed for open-space and

recreation. Habitats are characterized by short grass prairie and croplands in the lowest el-

evation southern and eastern regions. Foothill areas to the north and west include a variety

of shrubs (e.g., Cercocarpus sp., Amelanchier sp., Purshia sp.) interspersed with ponderosa
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pine Pinus ponderosa. Higher elevation areas are characterized by ponderosa pine, douglass

fir Psuedotsuga menziesii, and sub alpine forests. Capture-mark-recapture studies, CWD

surveillance efforts, and population monitoring were completed on wintering areas north of

Fort Collins, Colorado (Figure 8).

Data Collection

We used capture-mark-recapture methods to estimate survival probability and probability

of infection during January, 2010 - 2014. Deer were caught by helicopter net gunning and

transferred to nearby processing locations. During the initial year of study, groups of female

deer were located by helicopter personnel by randomly searching six areas that were each

approximately 75 km2. A single female from each group was captured. In subsequent

years, deer were also captured from groups that did not include existing study animals. We

attempted to capture individuals each year after initial handling. Infection with CWD was

determined from immunohistochemistry staining of rectal mucosa associated lymphatic tissue

(Wolfe et al., 2007). Age was determined using incisor and molar eruption and wear patterns

(Robinette et al., 1957). Deer were fit with very high frequency radio collars (Advanced

Telemetry Systems, Isanti, Minnesota, USA). After release, deer were tracked weekly to

determine if they were alive and to identify their approximate location. Mortalities were

investigated to determine the cause of death. All animals were handled in accordance with

IACUC (11-2758A).

The wintering subpopulation has been used effectively to represent the spatial epidemiol-

ogy of CWD (Conner and Miller, 2004; Farnsworth et al., 2006). Using methods described in

detail by Conner and Miller (2004) we used cluster analysis to categorize radio collared deer

into four wintering population units. Deer were located every 2 wk to 2 mo during November

- February, 2010-13 using aerial telemetry homing techniques. Coordinate medians of winter

locations for each individual were used for cluster analysis.
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Figure 8: The Red Feather-Poudre River mule deer population is located in the endemic
area for CWD. Capture-mark-recapture studies, CWD surveillance efforts, and population
monitoring were completed in Colorado Division of Parks and Wildlife Game Management
Units (GMU) 9 and 191. Deer Analysis Unit 4 describes the approximate spatial extent
of the deer population. Capture-mark-recapture studied deer were further categorized into
four population units based on spatial association during winter. Units included Big Hole
(diamond), Campbell (triangle), Cherokee (circle),, and Red Mountain (square). The map of
CWD in North America was provided by the Chronic Wasting Disease Alliance (www.cwd-
info.org).
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Clusters were identified by unweighted pair-group method using arithmetic averages. We

refer to these units as Big Hole, Cherokee, Campbell, and Red Mountain.

Using methods described in detail by Conner and Miller (2004), we delineated the area

used by radio collared deer using a bivariate kernel home range estimator. We chose the 80%

use contour to represent the area commonly used by deer in winter. This region served as a

boundary for helicopter surveys and disease surveillance tests (described below). Therefore,

long-term population monitoring data was restricted to a similar geographic area as our

capture-mark-recapture study.

Annual helicopter surveys were completed by the Colorado Division of Parks and Wildlife

during December-January, 2009-12 to estimate herd composition. Groups were located dur-

ing systematic searches of areas known to be occupied by deer. Deer in encountered groups

were classified as adult females (>12 mo), young of the year (5-6 mo), and males (>12

mo). In total, 184 groups were observed and 1,302 deer were classified. Population density

was estimated by counting deer observed on 66 established quarter land section (0.92 km2,

0.25 mi2) quadrats. Surveys were completed during 1985-89, 1993, 1996, 1998, 2000-02, and

2009. CWD population prevalence was estimated from disease tests of hunter harvested or

culled deer during 1997-2003 (Conner et al., 2007). Four hundred and ten adult female mule

deer were determined as CWD positive or negative based on immunohistochemistry exam

of retropharyngeal lymph node or tonsil tissue (Miller et al., 2000; Conner et al., 2007)

Population Growth and Disease Trajectory

We aimed to determine the growth rate of a mule deer population infected with CWD and

determine if CWD has reached quasi-equilibrium conditions characteristic of an enzootic. We

developed a single sex Leslie matrix model that portrayed the deer population in 21 female

age and disease stages. The vector nt described the number of deer in each of these stages

during January of year t. The first element, n1,t was for deer that were 6 months old and

CWD susceptible. The next ten elements n2,t, . . . , n11,t represented CWD susceptible deer
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from 1.5 to 10.5 years old. The final ten elements n12,t, . . . , n21,t portrayed CWD infected

deer from 1.5 to 10.5 years old. The vector Ant described the deer population during the

subsequent year where A was a 21×21 projection matrix defined by,

A =



0 fsus,1.5 fsus,2.5 . . . fsus,10.5 finf finf . . . finf

ssus,0.5(1− ψ) 0 0 . . . 0 0 0 . . . 0

0 ssus,1.5(1− ψ) 0 . . . 0 0 0 . . . 0

...
...

...
...

...
...

...
...

0 0 0 . . . 0 0 0 . . . 0

sinfψ 0 0 . . . 0 0 0 . . . 0

0 sinfψ 0 . . . 0 sinf 0 . . . 0

...
...

...
...

...
...

...
...

...

0 0 0 . . . 0 0 0 . . . 0


We assumed that all deer were born susceptible to CWD and did not develop infection

during the first 6 months of life. Deer could develop infection as yearlings or during any

subsequent year of life. We treated annual infection probability ψ as constant. Nonlinear

infection probability is a hallmark of disease models because the per capita rate of new

infections changes with the number of infected and susceptible individuals (McCallum et al.,

2001). We realize this is a strong assumption and we addressed the appropriateness of this

assumption below (see Data Analysis).

However, CWD has been present in this region for at least 40 years (Miller et al., 2000)

providing some support that the disease has reached some form of steady state and the rate

of new infections is constant or changing slowly in relation to the lifespan of deer.

We allowed different survival of infected sinf and susceptible deer. For susceptible deer,

survival varied with age. Age-specific survival probabilities were ssus,0.5, . . . , ssus,10.5. Survival

probabilities of deer in the n11,t and n21,t stages representing 10.5 year old animals were fixed
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at zero. Elements of the top row of A are fertilities in a Leslie matrix. To align model

updates that occurred in January with the timing of fawning in June, fertility elements

were the product of female survival from census to the birth pulse s6,inf, s6,sus,1.5 . . . , s6,sus,10.5,

birth rate b, and neonate survival to census sneo. CWD infection has small effects on birth

rate and neonate survival (Dulberger et al., 2010) and we simplified our model by defining

recruitment as r = bsneo. It follows that fertility elements were finf = s6,inf r for infected deer

and fsus,j = s6,sus,j r for a susceptible deer of the jth age. Survival and fertility were observed

over a four year period without substantial variation in population density and we did not

include population density feedbacks.

We evaluated two models, each representing a different spatial scale. The first model

represented a single intermixing deer population. Infection probability was constant be-

tween individuals. At a finer spatial scale, the second model delineated the population into

wintering units and survival, infection, and fertility varied among units.

Data Analysis

Our analysis was divided into three stages. We first developed a hierarchical Bayesian

model to estimate the parameters of A. Next we analyzed A to determine the population

growth rate with and without CWD. We assumed a linear projection model where fertility,

survival, and infection probability were constant with time. We concluded by comparing

stable prevalence predicted under these assumptions and prevalence from historic CWD

surveillance efforts to, in part, validate our assumption.

Infection probability was estimated using an occupancy model (Adams et al., 2010; Mc-

Clintock et al., 2010) fit to capture-mark-recapture data (Appendix 2). CWD status was

treated as a latent binomial random variable where zi,t was the infection status of individual

i on the t testing occasion. When an individual was susceptible zi,t = 0; when a deer was

infected zi,t = 1. Infection status followed a first order Markov process. Our model assumed

that an infected individual remained infected during the subsequent testing year and a sus-
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ceptible individual became infected with probability ψ. Annual infection probability varied

among wintering areas and we incorporated these effects using the logistic model. Infection

with CWD was determined from immunohistochemistry staining of rectal mucosa associated

lymphatic tissue. Tests were imperfect. The presence of infectious agent was indicated by

the staining of at least one lymphoid follicle (where infection agent is found) within a tis-

sue sample. Tissue samples contained several lymphoid follicles with yi,t representing the

observed number of follicles exhibiting staining and Ji,t being the total number of follicles

obtained. False positive test results were not believed to occur. Therefore, when zi,t = 0

then yi,t = 0. However, we may or may not have observed at least one positive follicle when

an individual was infected, meaning when zi,t = 1 then yi,t ≥ 0.

Survival probability was estimated using a hazard model fit to capture-mark-recapture

data (Appendix 2). Separate hazard functions were used for CWD susceptible and infected

deer. The survival function, which is derived from the hazard function gives the probability

density that individual i will survive past time ti (Appendix 2). The survival function for

susceptible deer was exp (−λ1t
α1
i )exp(βxi), where λ1 was the monthly hazard, α1 described

increases in hazards over time, and β were Cox proportional hazard coefficients for age and

wintering population unit. For infected deer, the survival function was exp (−λ2t
α2
i ). Annual

survival probabilities of our projection matrix were derived using these survival functions

(Appendix 2). That is, we set ti=12 (e.g., 12 months) and used posterior estimates of α,

λ, and β to estimate the posterior distribution of age- and disease specific annual survival

probabilities sinf, ssus,0.5 . . . , ssus,10.5.

Several steps were needed to estimate the elements ofA representing fertilities. A Poisson

model fit to consecutive annual counts of adult females and fawns was used to estimate

recruitment r (Appendix 2). We assumed an equal sex ratio of fawns and only included half

of the fawns counted in our analysis. Survival probabilities from census to the birth pulse

s6,inf, s6,sus,1.5 . . . , s6,sus,10.5 were derived using the above survival functions and setting ti=6
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months. In turn, posterior distributions of age- and disease specific fertility elements of A

were approximated as the product of recruitment and survival to the birth pulse.

We estimated the posterior distribution of the dominant eigenvalue of A (Appendix 2).

The eigenvalue provided an estimate of the population rate of growth in the presence of

CWD (Caswell, 2001). We repeated this analysis for a population in the absence of CWD

by evaluating the upper left 11x11 sub-matrix of A and fixing annual infection probability

at zero. The effect of CWD on population growth was measured as the difference between

these two quantities. We also estimated the posterior distribution of the eigenvector of A

associated with the dominant eigenvalue (Appendix 2). These values provided the ergodic

composition of age and disease states in the population, assuming a linear projection matrix

(Caswell, 2001). Stable CWD prevalence level can be estimated from the ergodic composi-

tion. We tested our assumption of linear dynamics by examining predicted stable prevalence

and prevalence determined from intense surveillance more than a decade ago (1997-2001).

Substantial overlap of these quantities would provide evidence that infection probability was

similar during these two points in time.

Results

We monitored survival and CWD infection of 217 female deer with individuals studied

for up to four years. Observations totaled 608 animal years. Sixty-seven deer belonged to

the Big Hole unit, 30 to Campbell, 39 to Cherokee, 81 to Red Mountain. Twenty-two deer

were observed infected with CWD. Seven of these deer entered our research as infected and

15 individuals became infected under study. Ages of conversion from susceptible to infected

were 1.5 (1 deer; e.g. 1), 2.5 (1), 3.5 (2), 4.5 (2), 5.5 (2), 6.5 (4), 7.5 (2), and 8.5 (1). New

infections were not observed in deer >8.5 years of age. Population prevalence measured as

the proportion of CWD positive female deer (>1.5 years of age) during the first year that

animals were captured was 0.04 (95% credible interval 0.02 - 0.07).
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Annual CWD infection probability averaged across the entire study population was 0.05

(0.02 - 0.08). Spatial differences in infection probability among subpopulations were striking.

New infections were spatially localized with all but one case limited to the Red Mountain

and Big Hole wintering population units. Nearly 70% (15/22) of new infections occurred

within an approximate 50 km2 area (Figure 9). New infections were observed in this geo-

graphic area each year. Infection probability at the wintering population unit scale varied

by nearly an order of magnitude (Table 5). Highest annual infection probability was found

in the Red Mountain unit 0.07 (0.03 - 0.12). Therefore, we could not rule out local annual

infection probability as high as 0.12 in this unit. Deer in the adjoining Big Hole unit ex-

perienced somewhat lower annual infection probability (0.04, 0.01 - 0.10). Deer occupying

wintering areas less than 30 km away from this apparent ’hot spot’ exhibited annual infection

probabilities <0.01 (Figure 10).

After initially being detected as infected with CWD, deer lifetime averaged 410 days

(range = 41 - 1,016). Two deer that survived the extent of study lived for more than 700

days. The hazard rate progressively increased after an individual became infected (α2=1.67,

1.07 - 2.53). This equated to annual survival of 0.66 (0.49-0.82) during the first year with

infection that declined to 0.42 (0.19 - 0.66) during the second and 0.31 (0.05 - 0.62) during

the third year (Figure 11).

Survival of susceptible deer was higher (0.81, 0.76 - 0.86, Figure 11) than survival of

infected deer (Table 5). Their hazard rate did not change over time (α1=1.09, 0.91 - 1.28),

but hazards were higher for deer that were older at the time of first capture. Susceptible

deer survival decreased with age from 0.86 (0.81 - 0.90) in 1.5 year old to 0.65 (0.47 - 0.80)

in 10.5 year old animals and varied among wintering areas (Figure 12). Highest survival was

found in the Cherokee unit (0.88, 0.79 - 0.94). Survival of susceptible deer was lower in areas

with higher CWD prevalence.

One hundred and fourteen deer died due to natural causes. However, 81 (71%) of these

deaths were identified resulting from unknown natural cause. Four (4%) deaths were
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Figure 9: Median winter locations of female mule deer studied during 2010-2014. Deer that
entered (black) or converted (white) to CWD positive were mostly located in the central
region of the study area. Shaded polygons delineate the area occupied by these infected deer
estimated using a bivariate kernel home range estimator.
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Figure 10: Posterior estimates of annual infection probability for deer of each wintering
population unit. Abbreviations are Big Hole (BH), Cherokee (CP), Campbell (CV), and
Red Mountain (RM). Boxes show median (dark line), 25%, and 75% quantiles and whiskers
show 99% quantiles of posterior distributions.
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Figure 11: Posterior estimates of survival curves for CWD susceptible and infected adult
female mule deer. Curves illustrate the probability of surviving beyond the given month
after entry into study for CWD negative animals or after the initial positive test for CWD
infected deer.
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Figure 12: Posterior estimates of adult female survival varied among wintering populations
and declined with age. Averaged across these ages, survival was highest in the Cherokee
population unit (0.88, 0.79 - 0.94) and progressively lower in the Red Mountain (0.83, 0.76
- 0.89), Campbell (0.80, 0.69 - 0.88) and Big Hole 0.75 (0.66 - 0.83) units. Solid lines show
posterior medians and dotted lines show 95% credible intervals.
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attributed to CWD. Carcasses from these animals were often found intact. Death was

attributed to predation in 23 cases (20%). Field necropsy suggested that nearly all predation

events were associated with mountain lion. Additionally, two (1%) deaths were attributed

to winter kill and four (4%) to vehicle collision. Two deer were harvested by hunters.

The estimated number of female fawns produced per infected female alive at census

that survived until the subsequent census was lower for CWD infected deer. An infected

female alive at census produced 0.17 (0.11 - 0.23) female fawns that survived until the next

census. Susceptible deer produced fewer female fawns surviving until the next census with

age. Averaged among ages, a susceptible female alive at census produced 0.24 (0.20 - 0.28)

female fawns that survived until the next census.

At the population scale, there was overlap in the growth rate with CWD (λCWD = 0.98;

0.91 - 1.04) and without CWD (λ = 1.00; 0.94 - 1.07, Table 5). It is important to note that

this overlap does not show that CWD has no impact on the deer population. The posterior

distribution of the difference in growth rates averaged -0.03 (-0.11 - 0.06). This equates

to a 71% chance that CWD lowered growth. With CWD, the population exhibited a 74%

chance of decline (e.g., growth rate <1.0). Removing CWD lowered this chance to 45% and

a growing population became the more likely outcome. Stable CWD prevalence predicted

by our model was 0.05 (0.01 - 0.15). Observed CWD prevalence recorded from intense

surveillance during 1997 - 2003 was 0.08 (0.05 - 0.11). The difference between prevalence

estimates was -0.05 (-0.09 - 0.02) suggesting similarities in the CWD epidemic during the

two observation periods.

CWD effects on growth rate differed at the wintering population unit scale. Much like at

the population scale, we did not detect clear differences between growth with and without

CWD. Including CWD increased chances of population decline in units with higher annual

infection probability (Figures 10 and 14). Disease effects were strongest in Red Mountain

with a 93% chance of local decline (λCWD=0.93, 0.83 - 1.03) and 73% chance that population

growth rate was lower with CWD. In Big Hole, local decline was the more likely outcome

53



1980 1985 1990 1995 2000 2005 2010 2015

0
5

1
0

1
5

2
0

2
5

3
0

year

a
v
e

ra
g

e
 d

e
e

r 
p

e
r 

s
q

 k
m

Figure 13: Posterior estimates of deer density km−2 estimated from helicopter abundance
surveys completed during December, 1985 - 2009. During the middle 1990’s the population
was managed to maximize hunter opportunity for male harvest. Limited female harvests
occurred at that time and male harvests were progressively lower during the middle 1990’s
suggesting the population decline was unrelated to sport hunting. Management policies were
adjusted during 2001 - 2006 to reduce the deer population through liberal female harvest
and agency culling in an attempt to suppress CWD prevalence and spread. Since, managers
resumed a policy of limited female harvest to support deer population increase.
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Figure 14: Posterior estimates of population growth rates for wintering mule deer population
units with and without CWD.
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Table 5: Mean and 95% quantiles of posterior distributions of model parameters and derived quantities.

Description Quantity Mean 0.025 0.975

population prevalence ψ0 0.04 0.02 0.07

annual infection probability for single population ψ 0.05 0.02 0.08

annual infection probability population unit coefficients :

intercept (Red Mountain) ζ0 -2.69 -3.48 -2.02

Cherokee ζ1 -1.80 -4.56 0.08

Campbell ζ2 -4.72 -11.35 -0.49

Big Hole ζ3 -0.60 -2.07 0.70

proportion follicles positive in infected deer π 0.56 0.51 0.60

survival :

hazard change for susceptible deer α1 1.09 0.90 1.30

hazard change for infected deer α2 1.88 1.12 2.78

baseline monthly hazard for susceptible deer λ1 0.009 0.003 0.023

baseline monthly hazard for infected deer λ2 0.0063 0.0002 0.0303

age effect on hazard β1 1.20 0.08 2.26

population unit effect on hazard (Cherokee) β2 -0.44 -1.33 0.45

population unit effect on hazard (Red Mountain) β3 -0.18 -0.88 0.50
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Table 5: Mean and 95% quantiles of posterior distributions of model parameters and derived quantities.

Description Quantity Mean 0.025 0.975

population unit effect on hazard (Big Hole) β4 0.26 -0.43 0.95

recruitment for single population r 0.26 0.21 0.31

population prevalence 1997-2003 p 0.08 0.06 0.11

population prevalence 1997-2003 by units :

Cherokee 0.07 0.04 0.11

Red Mountain 0.14 0.08 0.22

Big Hole 0.17 0.07 0.31

Campbell No Data No Data No Data

difference in prevalence over time for single population -0.04 -0.09 0.02

Cherokee -0.05 -0.10 0.00

Red Mountain -0.06 -0.16 0.07

Big Hole -0.12 -0.24 0.03

Campbell NA NA NA

growth rate with CWD for single population λCWD 0.98 0.91 1.04

growth rate without CWD for single population λfree 1.00 0.94 1.07
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Table 5: Mean and 95% quantiles of posterior distributions of model parameters and derived quantities.

Description Quantity Mean 0.025 0.975

difference in growth rate for single population λdiff -0.02 -0.11 0.07

Cherokee λCWD 1.01 0.87 1.14

λfree 1.02 0.89 1.16

λdiff -0.01 -0.20 0.18

Red Mountain λCWD 0.93 0.83 1.03

λfree 0.97 0.87 1.07

λdiff -0.04 -0.18 0.10

Big Hole λCWD 0.92 0.80 1.02

λfree 0.94 0.82 1.04

λdiff -0.02 -0.18 0.13

Campbell λCWD 1.00 0.86 1.09

λfree 1.00 0.86 1.09

λdiff -0.003 -0.170 0.159
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regardless of CWD (λCWD=0.92, 0.80 - 1.02, λ=0.94, 0.82 - 1.04). Yet, CWD increased the

chance of decline from 86% to 94%. Disease effects were less apparent in the Cherokee and

Campbell units with virtually no impact of CWD on λ (Figure 14). Growth rates in the

absence of disease were higher in Cherokee (λ=1.02, 0.89 - 1.16) and Campbell (λ=1.00,

0.86 - 1.09) compared to Red Mountain and Big Hole suggesting important indirect effects

of CWD on deer populations.

Modeled stable prevalence was similar to prevalence estimated from earlier surveillance

efforts in Red Mountain and Big Hole (Table 5). This was not the case for the Cherokee

unit. There, the difference between modeled stable prevalence and surveillance was less than

zero (-0.05, -0.10 - 0.00) suggesting a decline in annual infection probability over time.

Discussion

The inevitable consequence of CWD will only begin to play out over our lifetimes. Today’s

challenge is making decisions about CWD in the face of incomplete understanding. Our

research begins to answer important questions about the effect of CWD on deer populations

and we offer several clarifying insights.

CWD did not sufficiently lower population growth rate to cause rapid, catastrophic de-

cline and widespread extinction. Instead, effects on growth were more subtle in a population

where CWD has been present for at least 40 years. Estimated growth rate with disease

centered near one, indicating slow, gradual change in deer abundance. Nonetheless, decline

(74%), rather than population increase (26%), was the more likely outcome. On average,

deer lived for 17 months after being diagnosed with disease. In terms of understanding CWD

population ecology, CWD can be thought of as accelerating the time of demise for infected

individuals. Disease moved deer into an equivalent demographic stage as senescent animals,

characterized by progressively lower survival and reproduction associated with declines in

body condition over time. Moving large numbers of deer early in life into ”disease-related
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senescence” could have debilitating effects on population growth. However, infection rates

were relatively constant between 1.5 and 8.5 years of age with no new infections observed in

younger or older deer. Further, the average life expectancy of CWD-free deer was 5.39 (4.23

- 6.91) years and the majority (9 of 15) of new infections were observed in deer that were

at least 5.5 years old. Such timing of infection combined with the slow progression of dis-

ease offset effects of CWD on population growth. Furthermore, infection was localized with

annual infection probability varying by an order of magnitude across relatively fine spatial

extents, such that at the population scale insufficient numbers of deer became infected to

cause rapid and widespread population collapse.

The Red Feather-Poudre River mule deer population may not be destined to become

extinct, but it is clearly less robust today. Deer density has likely declined since the 1980s

(Figure 13; Vieira 2006). Although we cannot be sure of the cause of decline, it likely

resulted from the interaction of several limiting and regulating pressures, including CWD,

other disease outbreaks, habitat fragmentation, a changing climate, and wildlife management

practices (Robinson et al., 1992; Daszak et al., 2000; Thomas et al., 2004). We measured

the deer population under historically low density and expected to detect higher growth

rates. Such discrepancy suggests that we underestimated the CWD effect. Average adult

female survival for susceptible deer was 0.81, which is below the range-wide average of 0.85.

Because CWD directly lowered population growth by decreasing adult female survival, the

difference between susceptible and infected deer survival was less than would be expected if

susceptible deer survival was near the range-wide average.

Population growth rates in the absence of CWD were lowest in the Red Mountain and

Big Hole. Deer from these units migrated into southern Wyoming where hemorrhagic disease

outbreaks were reported during summer 2012. Our data indicated pulses of mortality likely

attributable to hemorrhagic disease, which has been associated with local high mortality in

deer. Also, apparent competition is an indirect interaction among prey species mediated by

a shared predator and has been linked to declines in prey species (Ostfeld and Holt, 2004;
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DeCesare et al., 2010). Mountain lions prey selectively on CWD infected deer (Krumm

et al., 2010). CWD could be producing an abundance of vulnerable prey, thereby enhancing

mountain lion survival and reproduction (Miller et al., 2008). A resulting outcome could be

increased predation on susceptible deer and overall depression of the deer population.

The effect of CWD partly depended on the scale of analysis. At the population level, we

did not find the remarkably high prevalence observed in two local deer populations (<600 in-

dividuals) of the Colorado and Wyoming outbreaks. Mule deer in the Table Mesa population

in central Colorado exhibited female prevalence near 20% with annual infection probability

of susceptible deer averaging 0.23 (Miller et al., 2008). Similarly, 42% of female white-tailed

deer developed CWD during a seven year study of the Deer Creek population in central

Wyoming (Edmunds, 2013). The Table Mesa and Deer Creek populations declined and

CWD was implicated as an ultimate or contributing cause (Miller et al., 2008; Dulberger

et al., 2010; Edmunds, 2013). Annual infection probabilities approached these levels within

highly localized areas (<50 km2) of our research (Figure 9) and population decline was the

more likely scenario in associated population units (Red Mountain and Big Hole). However,

declines were offset by growth in population units with lower infection rates. The emergent

pattern was largely unchanging deer abundance at the scale of the entire population (Figure

13).

Long-term outcomes of CWD depend heavily on whether high infection remains a local-

ized phenomenon. To some extent, the causative agent of CWD must rely on the host to be

transmitted among individual hosts. Deer show extraordinary fidelity to female structured

social groups and home ranges that are established early in life, which may limit the mobility

of PrPSc affording deer some natural resistance against CWD. However, males have larger

home ranges and potentially serve as an infection pathway among bands of females through

interactions associated with mating. Nonetheless, the role of males in the CWD epidemic

was beyond the scope of our research and remains an unanswered question.
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CWD prevalence predicted under equilibrium conditions was similar to prevalence es-

timated from intense surveillance during the preceding decade at both the population and

population-unit scales. A variety of dynamics could cause such behavior. Perhaps, the CWD

epidemic is playing out as a series of reoccurring epidemics characterized by stable limit cy-

cles or damped or increasing oscillations (Sharp and Pastor, 2011). As a result, numbers of

infected and susceptible hosts and infection rates may have varied widely between our two

observation periods. Otherwise, the disease may have remained in an approximate steady-

state over the past decade. Finally, sufficient time may not have passed to detect whether

the CWD epidemic is increasing. If this were the case then the timespan of CWD epidemics

is likely that of centuries rather than decades.

As an exception, our findings suggest that the epidemic has decreased in the Cherokee

unit. These deer mostly occupy state lands that are heavily hunted. Harvests are pre-

dominantly weighted towards males (Vieira, 2006), except during brief periods when deer

numbers have been actively reduced through female harvest. In contrast, deer belonging to

the other population units occupy private, county, and city lands with limited hunting. A

resulting outcome is fewer deer, and lower proportions of males in the Cherokee population

units. Male prevalence tends to be nearly twice that of female deer (Miller and Conner,

2005; Osnas et al., 2009), infected deer exhibited higher harvest vulnerability, and more

rapid turnover of infected deer could reduce transmission. The state game management

agency completed a multi-year effort to reduce deer abundance ending in the early 2000s.

At that time, it was determined that reductions in deer density had little impact on CWD

prevalence (Conner et al., 2007). Reductions were mostly implemented in the Cherokee unit.

Perhaps, these practices augmented with continued male harvests have been more successful

than initially reported in affecting the epidemic.

CWD outbreaks suggest average prevalence is highest in mule deer (Colorado and Wyoming

5%, Saskatchwean <2%, Nebraska 1.3%), lower in white-tailed deer (Colorado and Wyoming

2%, Wisconsin 3%, Saskatchewan <1%), and lowest in elk (Colorado and Wyoming 0.5%;
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Miller et al. 2000; Joly et al. 2003; Conner and Miller 2004; Miller and Conner 2005; Osnas

et al. 2009; Rees et al. 2012). Differences within and among geographic areas have been at-

tributed to time since disease introduction with the Colorado and Wyoming outbreak being

the oldest (Conner and Miller, 2004; Miller and Conner, 2005; Heisey et al., 2010). These

epidemics show many similarities and our research provides indication of how these other

epidemics may progress. We provide compelling evidence that prion epidemics can affect

mule deer populations both locally and at coarse spatial scales. Effects were subtle and the

protracted time-scale of the epidemic is likely much longer than the thirty year time span of

our research. As a result, we could not identify the inevitable fate of deer populations with

CWD. Our findings do suggest, in the nearer-term (e.g., decades), mule deer populations

persisting at lower levels after disease establishment.
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CHAPTER 4: AGE DRIVES CWD ANTE MORTEM TEST SENSITIVITY

IN MULE DEER

Developing effective strategies for managing wildlife diseases requires identifying relation-

ships between hosts and pathogens (Dobson and Foufopoulos, 2001; McCallum et al., 2001).

Accurate diagnosis of infection status is a necessary first step because imperfect detection

can lead to erroneous inferences about disease (McClintock et al., 2010; LaDeau et al., 2011).

The veterinary and medical fields have developed statistical techniques for estimating the

actual infection status when diagnostic tests are imperfect. Such techniques rarely are appli-

cable to wildlife diseases because little is generally known about the underlying prevalence

of disease in the population, and reference tests and repeated independent tests of disease

status are not available (Greiner and Gardner, 2000; Toft et al., 2005; Lachish et al., 2012).

Also, capture and testing of individuals is inherently difficult and costly, and the information

available is often limited to a single test or observation of a sick animal (Morner et al., 2002).

Chronic Wasting Disease (CWD) is a naturally occurring prion disease found in free-

ranging elk (Cervus elaphus), mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus

virginianus), and moose (Alces alces) (Williams and Young, 1992). A malformed variant of

native prion protein, PrPSc, is speculated as the causative agent of disease (Williams et al.,

2002). PrPSc interacts with native prion protein to cause malformation of host PrP and

accumulation of the disease-associated variant (Williams et al., 2002). PrPSc progresses into

the lymphatic system early in the infection process where terminal lymphoid follicles serve

as a collection center (Fox et al., 2006).

PrPSc can be identified using live techniques through biopsy of tonsil or rectal tissue and

immunohistochemistry staining (Wild et al., 2002; Wolfe et al., 2002; Schuler et al., 2005;

Wolfe et al., 2007; Keane et al., 2009; Spraker et al., 2009). Tissue samples typically contain

several lymphoid follicles. However, all lymphoid follicles do not necessarily exhibit PrPSc
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presence. The possibility exists that PrPSc occurs within a tested animal, but is not found

during disease testing, particularly if small numbers of follicles are observed. As a result,

some researchers proposed that tests are only useful when sufficient numbers of follicles are

obtained. For example, Wolfe et al. (2002) recommended that at least nine follicles are

necessary to assure an accurate test from tonsil tissue in mule deer. Similar thresholds of

six follicles in rectal tissue from white-tailed deer (Keane et al., 2009) and ten follicles from

elk (Spraker et al., 2009) have been suggested.

Using such follicle thresholds discards test results that actually provide meaningful in-

formation about the infection status of an individual. The probability that a test produces

a false negative depends on the true infection status of the animal, the number of follicles

tested, and the proportion of follicles that are positive. Tissue samples with large numbers

of follicles provide accurate assessment of the infection status of the individual (Wolfe et al.,

2002), but samples with fewer follicles contain meaningful information if the uncertainties

associated with detection can be quantified. We desired a method to account for this uncer-

tainty. We developed a hierarchical Bayesian occupancy model that simultaneously identified

the probability that an individual is infected and probability that a single follicle shows in-

fection in an infected individual. Infection and detection probabilities were determined from

numbers of test positive and test negative follicles found in tissue samples collected repeat-

edly from the same individuals over time. We fit our model to data on free-ranging mule

deer in northern Colorado, USA during 2010-14. We identified individual-level effects on

test sensitivity. We concluded by estimating chances of false negative diagnosis associated

with age and numbers of follicles obtained in tissues.
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Materials and Methods

Data Collection

We completed a capture-mark-recapture study of free-ranging mule in northern Colorado.

Handling and disease testing occurred during January, 2010 - 2014. Deer were caught by

helicopter net gunning and transferred to nearby processing locations. Two hundred and ten

adult (≥ 1.5 years) female mule deer were captured by helicopter net gun. Individual deer

were captured between one and five times and never more than once during a single year.

Five hundred and nineteen disease tests were completed during this research.

Rectal-anal mucosa associated lymphoid tissue (RMALT) was collected using methods

described in detail by Wolfe et al. (2007). CWD status was determined through immuno-

histochemistry (IHC) staining of RMALT using methods described elsewhere (Wild et al.,

2002; Wolfe et al., 2002; Thomsen et al., 2012). Briefly, RMALT was embedded in a paraffin

block and a 5 µm tissue section was collected from a depth of approximately 250 µm and

mounted onto a glass slide for IHC analysis. When fewer than 10 lymphoid follicles were

detected in the first section (see Results), a second section was collected from a depth of

approximately 350 µm. The second slide enabled us to identify additional lymphoid follicles

that were deeper within the biopsy. IHC analyses were completed by the Colorado State

University Veterinary Diagnostics Laboratory. We estimated age using tooth wear patterns

(Robinette et al., 1957). Genotype of the prion precursor (Prnp) gene was determined using

the approach of Jewell et al. (2005). Deer were fit with a mortality sensing collar (Advanced

Telemetry Systems, Isanti, MN). Field personnel determined weekly survival using standard

telemetry techniques. Carcasses were investigated to obtain a post mortem test of CWD in-

fection. The head and spinal column were collected from carcasses whenever possible. Field

samples were transported to the Colorado State University Veterinary Diagnostics Labo-

ratory for necropsy and IMH testing of tonsil, retropharyngeal lymph node, dorsal motor

nucleus of the vagus nerve, and/or spinal column.
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Background and Statistical Analysis Framework

We developed an occupancy model that allowed CWD status (susceptible, infected) to

change with test occasion. We assumed that infected animals could be misdiagnosed as

susceptible (false negative) and that false positive tests did not occur. Deer were either

infected with CWD or susceptible at the time of the first disease test. Deer that entered

susceptible could become infected each year and, once infected, animals remained infected

for the duration of study.

We assumed that detection varied among individuals. PrP and PrPSc naturally associate

with lymphatic cells. The quantity of lymphoid tissue found within animals decreases with

age (Spraker et al., 2009). It follows that these age-related declines diminish our ability to

detect PrPSc in older animals. Other individual-level factors likely influenced our ability to

detect CWD such as differences in initial dosing and time since exposure. In addition, PrPSc

does not deposit uniformly in an infected individual. This creates the opportunity to sample

areas with local differences in PrPSc concentration within the same individual. For these

reasons, we included age and additional unstructured error in our ability to detect a positive

lymphoid follicle in an infected deer.

CWD is affected by various polymorphisms in the gene encoding the hosts cellular prion

protein (Prnp) (Ryou, 2007). A non-synonymous substitution of serine (S) for phenylalanine

(F) at codon 225 (Jewell et al., 2005) appears to increase the time course of CWD and delay

deposition throughout the body (Fox et al., 2006). There is also evidence that deer homozy-

gous for phenylalanine fail to exhibit IMH staining with infection (Wolfe in preparation).

Consequently, we thought that deer expressing phenylalanine would have lower detection.

We initially intended to include an indicator variable for Prnp genotype in our model. How-

ever, insufficient numbers of infected deer of different Prnp genotypes were included in our

field study to evaluate this hypothesis (see Results).
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Detailed Statistical Methods

Next we describe how this conceptual model was represented as a hierarchical Bayesian

statistical model. Detailed methods can also be referenced in Chapter 3 and Appendix 3.

The observed data Y , the number of follicles showing PrPSc, is assumed to depend on the

true infection status Z. The true infection status Z is latent and therefore not observed.

We define Z as an infectious status matrix. Elements of Z are zi,t = 0 indicating no

infection for the ith deer at the tth testing occasion, ’year’ i = 1, . . . , I, t = 1, . . . , T , and

zi,t = 1 when a deer was infected. The model for the initial test, zi,1, is described below

(equation 4.3). After the initial test, infection status at the current time t is conditioned on

infections status at the previous time t− 1 where

[zi,t|ψ] =


1 zi,t−1 = 1

Bern(ψ) zi,t−1 = 0

. (4.1)

The parameter ψ is the infection probability. Infection probabilities are assumed to be time

invariant and similar between individuals. Our model assumes that an infected individual

remains infected during the subsequent testing year and a susceptible individual becomes

infected with probability ψ.

We define Y as an observation matrix, where yi,t represents the observed number of

follicles exhibiting PrPSc from individual i during testing occasion t. We define the corre-

sponding matrix, J , where Ji,t is the total number of follicles obtained for individual i at

year t. False positive test results were not believed to occur. Therefore, when zi,t = 0 then

yi,t = 0. However, we may or may not have observed at least one positive follicle when

an individual was infected, meaning when zi,t = 1 then yi,t ≥ 0. The probability that an
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individual follicle is positive is πi,t, and

[yi,t|πi,t, Ji,t] =


0 zi,t = 0

Binom(Ji,t, πi,t) zi,t = 1

. (4.2)

The infectious status at time 1 depends on the observed infection value, where a false

negative is possible. That is,

[zi,1|ψ0, yi,1] =


1 yi,1 ≥ 1

Bern(ψ0) yi,1 = 0

, (4.3)

where ψ0 is the probability that an individual developed disease prior to initial testing. There

is an important distinction between ψ and ψ0; ψ only captures infection during a single year,

while ψ0 is the population prevalence.

We incorporated individual effects on detection. We let πi,t in equation 4.2 be the de-

tection probability of individual i on occasion t and πi,t is related to covariates using the

logistic model such that logit(πi,t) = Xβ + εi,t. The vector β = [β0, β1]T is a 2 × 1 vector

of coefficients representing covariate effects with the first element being the intercept term.

The matrix X represents covariate levels and εi,t represents additional unstructured error

where εi,t ∼ N(0, σ2). We estimated the parameters of our model using the implementation

described in Appendix 3. As a note to readers, we chose to report findings on infection

probability in a separate manuscript (Chapters 3 and 5).

Estimating the Chance of a False Negative Test

We estimated the probability of obtaining a false negative diagnosis for deer of different

ages. The posterior predictive distribution ỹi,t was determined for the ith deer at the tth

occasion. Posterior predictive distributions were determined for deer between one and ten

years old. All deer were assumed infected at the time of testing and we varied the total
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number of follicles obtained in tissue sections from one to forty. The proportion of times

when ỹi,t = 0, e.g. the times when no positive follicles were observed, provided a probability

of obtaining a false negative test for each age and total follicle count level.

Results

At least one lymphoid follicle was obtained from the first tissue section in 482 of 519

(93%) tests (mean = 9 follicles; standard deviation = 9 follicles; range = 0 - 72 follicles).

The number of lymphoid follicles obtained during tests decreased with animal age (Figure

15). The mean number of follicles obtained during the initial test year was 12.2 (n=210,

SD=10.7), and decreased to 4.8 (n=138, SD=5.9) during the second, 4.9 (n=87, SD=4.4)

during the third, 8.5 (n=59, SD=8.1) during the fourth, and 11.5 (n=26, SD=6.5) during

the fifth test year. A second tissue section was analyzed when fewer than 10 follicles were

detected in the first tissue section. Follicle counts were summed between the first and second

tissue sections. Our approach increased the average follicle count across all test years to 13.5

(SD=11.1) and increased the number of tests with at least a single follicle to 506 (97%). All

remaining results summarize our findings from the complete data set.

We identified 21 deer that tested CWD positive at some point during our research (Figure

16). Individual deer were tested multiple times and at least one positive lymphoid follicle

was detected in 29 tests. Four deer exhibited a negative test finding subsequent to a positive

test (Figure 16). Only one of these individuals was tested a third time, when a positive test

provided evidence of a false-negative result (Figure 16, deer M).

Carcasses were recovered from 127 previously tested deer. Consumption of carcasses by

predators complicated obtaining post mortem samples. Gaining access to privately owned

lands also delayed necropsy efforts. Consequently, we secured diagnostic post mortem sam-

ples from 31 (24%) carcasses. Post mortem samples from five carcasses tested positive for

CWD with these deer also testing RMALT positive. Negative post mortem findings were
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Figure 15: Number of follicles detected in a single rectal-anal mucosa associated lymphoid
tissue slide of female deer. Bar widths are proportional to the square root of the number
of samples for each age. Bars include multiple tests from the same individual, because deer
were tested on more than one occasion.
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Figure 16: Numbers of positive and negative follicles detected in rectal-anal mucosa associ-
ated lymphoid tissue by deer and testing occasion. For each deer, demarcated by capitalized
letters, individual bars represent subsequent testing occasions (from left to right) beginning
with the first positive test.
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confirmed for 25 deer that tested RMALT negative. There was a discrepancy for one deer

that tested RMALT and CWD positive in tonsil and retropharyngeal lymph node. This deer

was tested by RMALT more than twelve months previous, so it is possible that conversion

occurred after RMALT testing.

Monitoring of survival status confirmed RMALT as a good early detection test. Fifteen

individuals were observed developing CWD infection based on an initial negative test followed

by a positive test during a later year. We were unaware of the exact time of true exposure

of these deer. Yet, seven individuals survived at least 365 days (d), five deer survived more

than 500 d, and two deer survived more than 700 d (see also Chapter 3) .

Probability that a follicle tested positive in an infected individual declined with age

(Figure 17, Table 6). The age coefficient credible interval indicated there was 100% chance

that increases in age lowered detection (Table 6). CWD positive deer exhibited additional

variation in the chance of detecting a positive follicle than described by age effects alone

(Figure 18, Table 6). On average, this probability declined from 88% in 1.5 to 3% in 10.5

year old deer (Figure 19). This does not mean that there was only a 3% chance of correctly

identifying an older infected deer. Instead, the probability that a single follicle tests positive

in this animal is low requiring more follicles in a test to avoid a false-negative result.

We observed positive tests on nineteen deer that were homozygous for serine (SS) at

codon 225. Positive tests were also recorded on two deer that were heterozygous for serine

and phenylalanine (SF). FF deer were rare with four individuals in our study and we did not

detect infection in these deer. Due to these limited observations, we were unable to evaluate

Prnp effects on detection. Yet, we found preliminary evidence that the probability of a

follicle testing positive in an infected deer is lower in SF deer (Figure 20). The percentage

of follicles testing positive in deer that were known to be positive were 0.52 (sd = 0.38) in

SS and 0.16 (sd = 0.15) in SF deer.

Given these findings, we determined the probability of a false negative test associated

with ages and follicle counts (Figure 21). In deer less than five years of age, biopsies with
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Figure 17: Numbers of positive and negative follicles detected in rectal-anal mucosa associ-
ated lymphoid tissue by age in known CWD positive deer.
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Figure 18: Numbers of positive and negative follicles detected in rectal-anal mucosa asso-
ciated lymphoid tissue by deer and age in known CWD positive deer. Capitalized letters
demarcate individuals.
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Figure 19: Posterior estimates of age-specific probabilities that a follicle in rectal-anal mucosa
associated lymphoid tissue exhibits a positive test (IHC staining) in an infected deer. The
solid line shows the mean and dotted lines show 95% credible intervals.
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Figure 20: Percentages of positive and negative follicles detected in rectal-anal mucosa as-
sociated lymphoid tissue for SS and SF Prnp genotypes in known CWD positive deer.
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at least five total follicles had a >95% chance of correctly identifying an infected deer.

In older deer, biopsies required greater total follicle counts to provide a similar chance of

identifying infected animals. For example, 10 follicles were necessary for 6 year old and 20

follicles for 7 year old deer. Follicle counts of ≥40 were needed to reach a 95% chance for

deer 8+ years old. However, we aimed to demonstrate that tests with fewer follicles provided

meaningful information about the infection status of an individual. On average, we obtained

>13 follicles per test in our research. Such follicle counts corresponded a >90% chance of

correctly identifying infected deer less than seven years old. This probability declined to a

50% chance in older deer.

Table 6: Posterior estimates of model parameters controlling the probability that an indi-
vidual follicle tests positive through IHC staining of RMALT in a CWD infected deer.

Definition Parameter Median 0.025% 0.975%
Intercept β0 -0.73 -1.21 -0.35
Age effect β1 -1.94 -2.55 -1.47
Additional individual level variation σ2 0.41 0.02 1.42

Discussion

CWD disease surveillance and containment programs benefit from an ability to correctly

identify animals using live tests. The model we developed can easily be applied to live

surveillance data on mule deer CWD prevalence. Our approach would allow all existing

tests regardless of total follicle counts to be used. Our approach would produce probabilistic

estimates of the infection status of each tested individual which could then be used to provide

95% credible intervals of population prevalence that account for differences in test quality.

Our approach also has application to CWD screening for transport of wild or captive deer

or targeted culling efforts. Individuals could be identified that require additional testing to

confirm disease status with desired levels of certainty. Others (Wolfe et al., 2002; Espenes

et al., 2006; Gonzalez et al., 2006; Keane et al., 2009; Spraker et al., 2009; Thomsen et al.,

2012) who have collected similar ante mortem test data on deer and elk with CWD and
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Figure 21: Probabilities of a false negative test by age for total follicles (positive and negative
combined) obtained in a rectal-anal mucosa associated lymphoid tissue biopsy.
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sheep with scrapie could apply this approach to their data to obtain species specific detec-

tion probabilities. Advancement of such multi-species detection probabilities would improve

CWD surveillance throughout North America.

Our findings are consistent, in part, with the earlier work of Wolfe et al. (2002) who

suggested at least nine follicles were necessary in a tonsil biopsy to accurately determine

CWD status in mule deer. Although this was largely the case for young and prime-aged deer,

it was not true for older animals. The timing and nature of exposure likely contribute to the

age effects we observed. Infection in young deer is in part attributed to a shared neonatal

environment with other infected kin (Grear et al., 2010; Cullingham et al., 2011). Deer

exhibit extraordinary fidelity to female-structured social groups and home ranges which are

established early in life. In turn, deer born into social units with infection may experience

repeated exposures early in life (Miller and Conner, 2005). These cumulative exposures

likely contributed to the increased deposition of PrPSc we observed. Adult deer experience

similar infection risk each year during the remainder of their life (Miller and Conner, 2005).

Adult exposures may result from encountering contaminated environments or unrelated, but

infected, deer during courtship and breeding. These exposures likely vary in extent and

magnitude. Perhaps, such variation causes the PrPSc deposition patterns we observed in

older deer.

PrPSc associates with cells of the lymphatic system including follicular dendritic cells, B

lymphocytes, and associated macrophages (Sigurdson et al., 2002). Oral exposure to PrPSc

and introduction into the lymphatic tissue of the mouth and esophagus is the likely route of

pathogen introduction (Fox et al., 2006). After which, lymphatic cells serve as a vehicle for

deposition of PrPSc in terminal lymphoid follicles of rectal-anal mucosa associated lymphoid

tissue (Fox et al., 2006). Declines in immunocompetence with age may hinder proliferation

and deposition of PrPSc in terminal lymphatic tissue, thereby contributing to the PrPSc

patterns we observed. The design of our research precluded us from identifying

80



the underlying cause of declines of PrPSc deposition with age. Regardless, our observations

suggest slowed CWD progression in older animals.

Every test is not the same and each individual exhibits unique variation. We developed a

technique for estimating the state of CWD infection premised on these complications. Dis-

ease state becomes a probabilistic statement conditioned on the current test result, previous

disease state, and infection and test sensitivity probabilities. Therefore, uncertainty in test-

ing becomes incorporated into the placement of individuals into discrete disease categories.

This step forward allows us to make explicit probabilistic statements about whether an in-

dividual is infected and the chance that a test result is indeed correct. With CWD, rather

than conclude that an individual is infected based on a test result with few follicles or decide

that the test was inconclusive, we can now state the probability that an individual is indeed

infected. Consequently, we can make statements like ”there is a 90% chance that this deer

is not infected based on these results.”

The model we developed is applicable to other wildlife diseases provided that repeated

tests occur. For example, this could include replicate culture plates or serology tests for

bacterial microparasite infection, fecal samples for macroparasite infection, or qPCR plates

for viral microparasite infection. Furthermore, the infection model we described included two

states (susceptible, infected) and a single transition parameter (infection probability). This

structure was appropriate for representing CWD. However, our model can be generalized

to include additional disease states (exposed, recovered) and transition parameters, such as

recovery, recrudescence, and latency.
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CHAPTER 5: MOBILITY AND CLAY SOILS UNDERLIE CWD INFECTION IN

ADULT FEMALE MULE DEER

Estimation of disease transmission rates is fundamental to understanding host and pathogen

dynamics (Anderson et al., 1979; Daszak et al., 2000; McCallum et al., 2001). Accurate es-

timation of this quantity is essential to evaluating the long term consequence of disease on

host populations and implementing meaningful disease containment and eradication efforts

(McCallum et al., 2001). Measuring transmission is extremely difficult, because it requires

identifying changes in the infection stage of hosts over time. In studying disease in free-

ranging wildlife, capture and testing of individuals is inherently difficult and costly, and the

information available is often limited to a single test or observation of a sick animal. Fur-

thermore, test results may be imperfect and inaccurate testing results can lead to erroneous

inferences about disease (Cooch et al., 2012; LaDeau et al., 2011). The most common type

of data collected from disease systems in free-ranging animals is apparent prevalence, defined

as the proportion of animals detected in a sample that test positive for disease of interest

(Grenfell and Dobson, 1995; Heisey et al., 2006). However, prevalence often provides a less

than ideal measure of determining the rate at which animals develop disease (Heisey et al.,

2006; Cooch et al., 2012). Estimation from these data is complicated by age and mortality

related effects of disease, and inference from apparent prevalence may be strongly influenced

by the age-structure of the data sample (Heisey et al., 2006). As a costly and time consum-

ing alternative, infection rate can be explicitly estimated by monitoring the disease status of

individual animals over time (Cooch et al., 2012). Such information is obtainable through

a capture-mark-recapture study design where the disease status of animals is determined

through initial handling and tracked through subsequent handling and testing.

Chronic wasting disease (CWD) of deer (Odocoileus hemionus, Odocoileus virginianus),

elk (Cervus elaphus) and moose (Alces alces) is a fatal neurodegenerative prion disease that

is now found throughout North America (Williams and Young, 1992). CWD has been ob-
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served in wild populations in nineteen states and two Canadian provinces and continues

to be detected in wild populations across a wider geographic extent (Williams et al., 2002;

Miller and Conner, 2005; Saunders et al., 2012a). The long term consequence of CWD on

cervid populations is unknown. But, reductions in survival caused by CWD (Miller et al.,

2008; Edmunds, 2013) have been implicated in the local decline of mule deer in populations

with high disease prevalence. Simulation models predict the potential for population decline

and potential extinction (Gross and Miller, 2001; Almberg et al., 2011). Furthermore, man-

agement actions have been largely ineffective once disease has established in a population

(Conner et al., 2007).

The infectious agent of CWD, PrPSc, is a malformed variant of host prion protein. PrPSc

appears to replicate by temporarily interacting with normally formed host prion, PrP, to

cause mis-folding and new infectious agent (Williams and Young, 1992; Ryou, 2007). Hor-

izontal transmission likely contributes to disease spread (Miller and Williams, 2003) and

infectious material can be excreted through feces, saliva, and urine (Mathiason et al., 2006;

Tamgüney et al., 2009; Gough and Maddison, 2010; Haley et al., 2011). Indirect trans-

mission through an environmental reservoir plays an important role in infection dynamics

(Miller et al., 2004; Mathiason et al., 2009). Direct transmission is also believed to occur

(Miller et al., 2000).

Age, population abundance, maternal-relatedness, deer mobility, clay soils, spatial dis-

tributions, and variation in the prion precusor gene have been implicated as risk factors for

CWD (Miller and Conner, 2005; Farnsworth et al., 2006; Osnas et al., 2009; Grear et al.,

2010; Heisey et al., 2010; Cullingham et al., 2011; Walter et al., 2011). To date, findings

have been based on inoculation of mice or captive deer with infectious agent or analyses of

apparent prevalence. As a result, much remains debated about the factors that contribute

to CWD infection in wild deer. To begin clarifying the relative importance of CWD risk fac-

tors, we completed a five year capture-mark-recapture study of free-ranging female mule deer

in northern Colorado, USA during 2010-14. The same individual deer were captured and
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released each winter. Deer were tested for CWD using a live test and fit with a radio collar.

We developed a hierarchical Bayesian disease model to portray CWD. Our model treated

the true infection status of each individual as a latent (unobserved) variable, which enabled

us to estimate infection probability (transitioning from CWD susceptible to infected), effects

on infection probability, and allowed for imperfect test detection. Our model is general and

our approach can be applied to a variety of wildlife diseases.

Materials and Methods

Data Collection

We completed a capture-mark-recapture study of free-ranging female mule in northern

Colorado (Figure 22). Handling and disease testing occurred during January, 2010 - 2014.

Two hundred and ten adult (≥ 1.5 years) female mule deer were captured by helicopter net

gun. Individual deer were captured between one and five times and never more than once

during a single year.

Rectal-anal mucosa associated lymphoid tissue (RMALT) was collected using methods

described in detail by Wolfe et al. (2007). CWD status was determined through immunohis-

tochemistry (IHC) staining of RMALT using methods described elsewhere (Wild et al., 2002;

Wolfe et al., 2002; Thomsen et al., 2012). Briefly, RMALT was embedded in a paraffin block

and a 5 µm tissue section was collected from a depth of approximately 250 µm and mounted

onto a glass slide for IHC analysis. When fewer than 10 lymphoid follicles were detected

in the first section, a second section was collected from a depth of approximately 350 µm.

The second slide enabled us to identify additional lymphoid follicles that were deeper within

the biopsy. IHC analyses were completed by the Colorado State University Veterinary Di-

agnostics Laboratory. We estimated age using tooth wear patterns (Robinette et al., 1957).

Genotype of the prion precursor (Prnp) gene was determined using the approach of Jewell

et al. (2005).
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Figure 22: The Red Feather-Poudre River mule deer population is located in the endemic
area for CWD. Capture-mark-recapture studies were completed in Colorado Division of Parks
and Wildlife Game Management Units (GMU) 9 and 191. Deer Analysis Unit 4 describes
the approximate spatial extent of the deer population. Gray polygons show 90% contours of
utilization distributions for deer fit with radio collars and GPS devices. The map of CWD in
North America was provided by the Chronic Wasting Disease Alliance (www.cwd-info.org).
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A set of 105 deer were fit with collars that had an embedded global positioning system

(Advanced Telemetry Systems, Isanti, MN). GPS units were programmed to collect one

location every 8 hours for one year. The remaining animals were fit with very high frequency

radio collars (Advanced Telemetry Systems, Isanti, Minnesota, USA). After release, deer were

tracked weekly to determine if they were alive and to identify their approximate location.

Deer were located every 2 wk to 2 mo during November - February, 2010-13 using aerial

telemetry homing techniques. Deer were again located at least once each year during July and

August. All animals were handled in accordance with IACUC protocol 11-2758A, Colorado

State University.

Disease Model

The observed data Y , the number of follicles showing PrPSc, is assumed to depend on

the true infection status Z. The true infection status Z is latent and therefore not observed.

We define Z as an infectious status matrix. Elements of Z are zi,t = 0 indicating no

infection for the ith deer at the tth testing occasion, ’year’ i = 1, . . . , I, t = 1, . . . , T , and

zi,t = 1 when a deer was infected. The model for the initial test, zi,1, is described below

(equation 5.3). After the initial test, infection status at the current time t is conditioned on

infections status at the previous time t− 1 where

[zi,t|ψi,t] =


1 zi,t−1 = 1

Bernψi,t) zi,t−1 = 0

. (5.1)

Infection probability measured over an annual time step is ψi,t for the ith individual during

the tth year. We assumed that infection probability varied among individuals and with time

(Figure 23). We used the logistic model to estimate infection probability, where logit(ψi,t) =

xti,tβ. Here xi,t is the covariate vector for the ith deer during the tth year and β is a vector

of logistic model coefficients. Continuous covariates were standardized by subtracting each
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value by the mean and dividing the difference by two standard deviations (Gelman, 2008;

Schielzeth, 2010). Dividing by two standard deviations, rather than one, allowed direct

comparison of coefficient estimates between standardized continuous and unstandardized

categorical predictors (Gelman, 2008). Covariates are described in the following subsections.

PrPSc can be identified using live techniques through biopsy of tonsil or rectal tissue

and immunohistochemistry staining (Wild et al., 2002; Wolfe et al., 2002; Schuler et al.,

2005; Wolfe et al., 2007; Keane et al., 2009; Spraker et al., 2009). Tissue samples typically

contain several lymphoid follicles. However, all lymphoid follicles do not necessarily exhibit

PrPSc presence. We define Y as an observation matrix, where yi,t represents the observed

number of follicles exhibiting PrPSc from individual i during testing occasion t. We define

the corresponding matrix, J , where Ji,t is the total number of follicles obtained for individual

i at year t. False positive test results were not believed to occur. Therefore, when zi,t = 0

then yi,t = 0. However, we may or may not have observed at least one positive follicle when

an individual was infected, meaning when zi,t = 1 then yi,t ≥ 0. The probability that an

individual follicle is positive is π, and

[yi,t|π, Ji,t] =


0 zi,t = 0

Binom(Ji,t, π) zi,t = 1

. (5.2)

The infectious status at time 1 depends on the observed infection value, where a false negative

is possible. That is,

[zi,1|ψ0, yi,1] =


1 yi,1 ≥ 1

Bern(ψ0) yi,1 = 0

, (5.3)

where ψ0 is the probability that an individual developed disease prior to initial testing. We

estimated the parameters of our model using the implementation described in Appendix

4. As a note to readers, we chose to report findings on infection probability in a separate

manuscript (Chapter4).
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Developing Landscape- and Individual- Level Covariates

Disease histories were available from 210 deer, but we chose to fit our model to the

subset of 105 animals with GPS devices. This allowed us to include CWD prevalence and

percent clay content in areas used by deer as predictors of CWD infection. We began

by creating a utilization distribution for each deer. Each utilization distribution was a two

dimensional gridded surface of space use generated from a Brownian bridge movement model.

The Brownian bridge movement model creates the utilization distribution by estimating the

continuous movement path of an individual from successive GPS locations (Horne et al.,

2007). Then, we identified the 90% use contour of each utilization distribution as the area

commonly used by each deer. Covariate levels for each deer were calculated by averaging

spatially explicit covariate values across the 90% use area. Landscape-level covariates were

i) CWD prevalence and ii) percent clay content (Figure 23). We also calculated other

individual-level covariates, including iii) age, iv) Prnp genotype, v) home range size, and

vi) migration behavior.

A. CWD Prevalence and Infection Risk

CWD prevalence varies widely among biologically segregated populations (Miller et al.,

2000; Miller and Conner, 2005). Transmission likely occurs within population segments

that share wintering areas, because deer aggregate into larger groups, are concentrated into

relatively small areas compared to summer, and show strong fidelity to wintering associations

(Conner and Miller, 2004). Also, areas with disease likely maintain it over time due to agent

persistence in the environment from feces, decaying carcasses, and residue in vegetation and

soil (Miller et al., 2004; Miller and Conner, 2005). For these reasons, we believed deer using

areas with higher CWD prevalence experienced increased infection risk.

We used a geostatistical model to build a CWD prevalence surface that served as a proxy

for the spatial distribution of the magnitude of the CWD epidemic. The complete set of 210

adult female deer were used to generate the prevalence surface. Each deer was assigned a
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Figure 23: One hundred and five adult female mule deer were captured each year to identify
animals that converted from susceptible to infected with CWD. We identified landscape-
and individual- level factors contributing to annual infection probability: i) deer utilization
distributions were estimated from GPS locations; ii) landscape-level covariate levels were
determined by averaging clay and prevalence data across utilization distributions; and iii)
other individual-level covariates were measured by identifying age, Prnp genotype, migration
status, and home range size.
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winter location wi and a summer location si that was the median of aerial telemetry loca-

tions recorded during each season. Disease status (infected or susceptible) was determined

by the first disease test for each deer. Therefore, the disease status of the ith deer dur-

ing winter y(wi) and summer y(si) was the same. Elements of the infection status vector

y = (y(s1), y(w1), y(s2), y(w2), ..., y(sn), y(wn))T were y(wi), y(si)=1 when the ith deer

tested CWD positive during the first test and y(wi), y(si)=0 when the ith deer tested CWD

negative. We assumed y(li) followed a Bernoulli distribution with probability p(li). Bernoulli

probabilities were related to covariates using the logistic model logit (p(li)) = xliζ where xli

are the covariate data for the ith deer and ζ is a vector of spatial regression coefficients. Lo-

cations y(li) were recorded in Universe Transverse Mercator, a projected coordinate system.

We included northing as a covariate, because disease flow of CWD into our study area was

likely from north to south (Conner and Miller, 2004). A quadratic term was included in

representing northing effects. We also included easting as a covariate, because CWD preva-

lence historically increased from west to east in this area (Farnsworth et al., 2006). Moran’s

I calculated using Pearson’s residuals of our model confirmed that errors were spatially un-

correlated. We generated posterior predictive mean values for each 310 × 310 m grid cell

that overlapped deer utilization distributions. CWD Prevalence values for each deer were

the mean of all grid cells within the individual’s 90% use contour.

B. Clay Soils and Infection Risk

Inoculation studies in mice have shown that PrPSc binds to clay minerals and clay-laden

whole soils with dramatic increases on infectivity (Johnson et al., 2006b, 2007). Ruminants

ingest soil both deliberatively and inadvertently during foraging and grooming. PrPSc pro-

liferated in lymphoid tissue of the mouth, esophagus and gut may bind to ingested soil

particles enhancing infectivity within the host. Rumination may extend exposure within

the host, as ingested infectious material repeatedly comes into contact with these lymphoid

tissues through regurgitation of food (Fox et al., 2006). Furthermore, ruminants rely on mi-
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crobes within the rumen for digestion of highly fibrous materials. Bypass protein describes

dietary protein that by some means or alteration is resistant to degradation by rumen mi-

crobes and is potentially available to the host through digestion in the small intestine (Leng

and Nolan, 1984). Small amounts of clay within ruminant diets has been shown to increase

bypass protein. Thus, clay soils may also extend exposure within the host by facilitating

transport of infectious material to the lower gut where it may come into contact with distal

lymphatic tissue. Outside the host, excretion of soil-bound complexes into the environment

may provide a reservoir for future infection (Walter et al., 2011). Likely owing to these

reasons, a 1% increase in clay sizes particle content in soils of deer home ranges has been

related to increases in infection odds of nearly 9% (Walter et al., 2011) in wild mule deer.

Clay-laden soils in our study area were derived from Cretaceous shale and the clay sized

particles include high smectite content (Walter et al., 2011). A variety of clay minerals

have been shown to adsorb PrPSc and enhance infectivity (Johnson et al., 2007), including

montmorillonite which comprises 26-40% of clay content in our study area (Schmehl and

Jackson, 1957). We used a soil data mapping tool to determine the weighted average of

percent clay in the surface layer of the Soil Survey Geographic (SSURGO) database. Clay

consisted of mineral soil particles that are less than 0.002 millimeter in diameter. The

estimated clay content of each soil layer was given as a percentage, by weight, of the soil

material that was less than 2 millimeters in diameter. SSURGO data was converted into a

310 × 310 m gridded surface and clay values for each deer were the mean of all grid cells

within the individual’s 90% use contour.

C. Migration and Infection Risk

Animals that migrate from wintering areas may experience decreased infection rate, be-

cause individuals are spending time on areas with comparatively less disease associated

residue (Conner and Miller, 2004). Female mule deer were partially migratory. Some in-

dividuals moved up to 70 km between wintering areas north of Fort Collins, Colorado into
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the headwaters of the Laramie River in southern Wyoming and headwaters of the Poudre

River in north-central Colorado. Others remained on wintering areas year-round. Migra-

tions began during late March and early April. Some migrants were located on transitional

ranges before being found on final summer ranges in July-August. Most migrants returned to

wintering areas between October and November. Earlier studies established that Euclidean

distances of ≥6 km between seasonal use areas differentiated migratory from resident deer

(Conner and Miller, 2004). Utilization distributions were inspected to identify the spatial

extent of deer home ranges. We defined migration as a categorical covariate with migrants

being deer with 90% use areas that were more than 6 km apart.

We also considered home range size as a predictor of infection probability. Resident

deer had smaller home ranges and we believed an inverse relationship between infection

probability and home range size. Covariate levels for each deer were the size of 90% use

areas.

D. Age and Infection Risk

Infection risk appears to increase in early adulthood resulting in relatively high preva-

lence in mule deer >2 years of age compared to younger animals (Miller and Conner, 2005).

Increases likely result from cumulative exposures early in life combined with slow progression

of disease and potential changes in susceptibility with reproductive maturity. After, risk of

infection seems to be similar across prime reproductive ages with some decline in senescent

individuals (Miller and Conner, 2005). Deer exhibit extraordinary fidelity to female struc-

tured social groups and home ranges which are established early in life. There is strong

influence of infected female kin on infection risk compared to less-related kin in close geo-

graphic proximity (Grear et al., 2010; Cullingham et al., 2011). Also, spatially distant kin

show correlated infection risk (Grear et al., 2010). Therefore, age effects on infection may

arise from a shared neonatal environment, after which, animals experience similar lifetime

risk due to chances of encountering contaminated environments or unrelated deer during
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courtship and breeding. For these reasons, we considered age as a continuous covariate and

believed infection risk would decline with age.

E. Prnp Genotype and Infection Risk

Disruption of the protein replication process and reduced accumulation of the malformed

variant provide a mechanism for disease resistance (Caughey, 2003; Caughey and Baron,

2006). A nucleotide substitution in the 225th codon of mule deer leads to an amino acid

change of serine for phenylalanine (Jewell et al., 2005). It is unknown whether this amino

acid change disrupts the protein replication process. But, substitution of phenylalanine for

serine has been associated with slower disease progression in mule deer (Fox et al., 2006).

Similar non-synonymous nucleotide substitutions in white-tailed deer (O’Rourke et al., 2004;

Johnson et al., 2006a) and elk (Green et al., 2008) indicate reduced prevalence in individuals

exhibiting the rare allele. Therefore, we included genotype as a categorical covariate. Too

few deer were detected that were homozygous for phenylalanine and we did not distinguish

between heterozygous and homozygous deer.

Model Selection

We thought the strength and direction of covariate effects would depend on the magnitude

of the CWD epidemic in areas used by deer. Our modeled disease prevalence surface served as

a proxy for the magnitude of the epidemic. We considered ten models. The first five models

included the additive effects of prevalence and a single main effect term and included 1)

prevalence + clay; 2) prevalence + home range size; 3) prevalence + migration; 4) prevalence

+ age; and 5) prevalence + Prnp. The remaining five models included the interaction between

prevalence and a single main effect term and were 6) prevalence × clay; 7) prevalence × home

range size; 8) prevalence × migration; 9) prevalence × age; and 10) prevalence × Prnp.

In our hierarchical framework, a logistic model was used to estimate effects on infection

probability. Identifying covariate effects is complicated when logistic models contain interac-
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tions particularly when interactions are among continuous covariates. However, only a single

model with an interaction was supported by our data (see Results). The posterior predictive

distribution was used to compare covariate effects (Gelman and Hill, 2007). For models with

only additive effects, we estimated posterior predictive distributions of log odds. Odds are

defined as the ratio of the probability of success (becoming infected) over the probability of

failure (remaining susceptible) (Gelman and Hill, 2007). Models contained more than one

covariate and we estimated log odds ratios as the log of ratio of odds when a single predictor

variable was varied and the others were held at a certain value. Because log odds ratios

also followed a probability distribution, we were able to identify the area of the posterior

predictive distribution that was greater than zero. This area indicated the probability, or

chance, that a covariate increased CWD infection.

The posterior predictive distribution was also used to compare covariate effects for models

with interactions between continuous covariates. We generated posterior predictive distri-

butions of annual infection probability by holding a single predictor at a fixed value and

varying the other.

We used the Deviance Information Criterion (DIC) to select among models. Due to the

missing data structure, we used a modified form of the DIC statistic, DIC4, introduced by

Celeux et al. (2006). Let θ = (ψ0, ψ, π) be the vector of unknown parameters. Then formula

for DIC4 for the model proposed above is given by

DIC4 = −4Eθ,Z
(
log[Y,Z|θ]

∣∣Y)+ 2EZ

(
log [Y,Z|Eθ(θ|Y,Z)]

∣∣Y)
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The above equation can be estimated using MCMC for B iterations after burn-in. The

first term is approximated by

Eθ,Z

(
log
[
Y,Z

∣∣θ] ∣∣∣Y) ≈ 1

B

B∑
b=1

m∑
i=1

z
(b)
i,1 log

([
yi,1
∣∣π(b)

])
+ log

([
z

(b)
i,1

∣∣ψ(b)
0

])
+

1

B

T∑
t=2

m∑
i=1

{(
z

(b)
i,t

)
Vi,t log

[
yi,t
∣∣π(b)

]
+
((

1− z(b)
i,t−1

)
Ui,t

)
log
[
z

(b)
i,t

∣∣β(b)
]}

,

where z
(b)
i,1 denotes the value of zi,1 at the bth MCMC iteration and the other parameters are

definited similarly. The second term is given by

EZ

(
log
[
Y,Z

∣∣Eθ(θ∣∣Y,Z)
] ∣∣Y) ≈ m∑

i=1

ẑi,1 log
([
yi,1
∣∣π̂])+ log

([
ẑi,1
∣∣ψ̂0

])
+

T∑
t=2

m∑
i=1

{
(ẑi,t)Vi,t log

[
yi,t
∣∣π̂]+ ((1− ẑi,t−1)Ui,t) log

[
ẑi,t
∣∣β̂]}

where π̂ is the posterior estimate of π, i.e., π̂ = (1/B)
∑B

b=1 π
(b) and the parameters β and

ψ0 are estimated similarly. For all ẑi,t quantities, estimation is based on the mode of the

posterior distribution. For example, ẑi,1 = mode of
{
ẑ

(1)
i,1 , . . . , ẑ

(B)
i,1

}
. This allows the ẑ values

to be equal to 0 or 1.

Results

We monitored CWD infection of 95 female deer with individuals studied for up to four

years. Observations totaled 322 animal years. Two hundred eighty-four disease tests were

completed on these deer. Ten deer (9.5%) were observed infected with CWD by the end of

our research. One deer was infected when first tested and nine deer became infected during

the study. Deer that developed infection were concentrated in the central regions of the

95



wintering area (Figure 27). All but a single infected deer migrated to summering areas in

southern Wyoming (Figures 25 - 28). The resident animal remained on the central portions

of the wintering area year round.

The model representing the effects of the interaction between clay and prevalence on

infection probability was most supported by our data (Table 7). DIC4 for this model was

nearly three units lower than any other model. DIC4 and posterior distributions of the

interaction term in all remaining models (Tables 8 and 9) suggested that additive models

were more appropriate for representing age, Prnp, migration, and home range size effects.

Therefore, we do not discuss these interaction models further. Models portraying effects of

deer mobility on infection probability were also supported by our data. There was noticeably

less support for models including age or Prnp genotype.

Table 7: Deviance information criteria (DIC4) for disease models fit to capture-mark-
recapture data on adult female mule deer. Models varied in their representation of annual
infection probability.

Model DIC4 ∆DIC4

prevalence × clay 317.0 0.0
prevalence + home range size 319.7 2.7
prevalence × home range size 319.8 2.8
prevalence + migration 319.8 2.8
prevalence + Prnp 322.8 5.8
prevalence × migration 322.9 5.9
prevalence + clay 323.7 6.7
prevalence × age 325.2 8.2
prevalence + age 325.4 8.4
prevalence × Prnp 326.3 9.3
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Figure 24: Posterior predictive means (emphasized) and 95% quantiles of infection prob-
ability generated for clay values ranging from one standardized unit below average to one
standardized unit above average. The black lines show posterior predictions when CWD
prevalence is one standardized unit below average and the gray lines show posterior predic-
tions when CWD prevalence is one standardized unit above average.
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Clay effects on infection probability varied with disease prevalence (Figure 24). Enhanc-

ing effects of clay on infection probability were stronger for deer using areas with lower

prevalence. As prevalence increased, enhancing effects of clay lessened. Percent clay content

averaged across 90% deer utilization distributions ranged from 10.1% to 20.2%. Clay values

were standardized and a value one standardized unit above average equated to 15.7% and a

value one standardized unit below average was 12.2%. Small differences in clay content ex-

isted among deer, yet, these differences resulted in important effects on infection probability.

Clay increased infection probability when deer used areas with low CWD prevalence, which

we defined as 1% (one standardized unit below average prevalence; Figure 24 and Table 9).

The mean posterior predictive log odds ratio of infection under low prevalence was 3.68 (SD

= 2.12) and we found 96% probability that increases in clay resulted in higher infection

probability. However, the mean posterior predictive log odds ratio of infection under high

prevalence (5%; one standardized unit above average prevalence) was -1.19 (SD = 1.18) and

there was only 15% probability that increases in clay resulted in higher infection probability

(Figure 29).

Migration reduced infection probability. Seventy-seven deer were categorized as migrants

and eighteen deer were resident on wintering areas year round. The mean posterior predictive

log odds ratio of migration was -1.20 (SD = 0.80). This equated to 94% probability that

migration lowered infection probability. Furthermore, migration effects were unrelated to

CWD prevalence in areas used by deer (Table 9). We considered home range size as an

alternate measure of deer mobility. Because home range size was calculated as the extent

of 90% use areas, smaller home range sizes did not necessarily indicate resident deer. But,

home range size of resident deer (mean = 726 km2, sd = 432) was smaller (Two sample

T-test, p-value = 0.04) than migrants (mean = 947 km2, sd = 435). Overall, home range

sizes varied from 192 km2 to 3391 km2. The mean posterior predictive log odds ratio of home

range size was -2.18 (SD = 1.14) which meant a decrease in one standardized unit of home

range size equated to 98% probability of an increase in annual infection probability.
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Northern

Infected
Susceptible GMU 9GMU191

0 10 km

Figure 25: Ninety percent use areas of adult female mule deer that were susceptible through-
out or developed CWD during January 2010-14. Contours were derived from Brownian
bridge movement models fit to GPS histories. Individual dots show GPS locations outside
90% use areas and indicate approximate migration paths. Use areas and migration routes
are displayed for deer that developed CWD or concentrated in northern portions of the
wintering area.
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Figure 26: Ninety percent use areas of adult female mule deer that were susceptible through-
out or developed CWD during January 2010-14. Contours were derived from Brownian
bridge movement models fit to GPS histories. Individual dots show GPS locations outside
90% use areas and indicate approximate migration paths. Use areas and migration routes are
displayed for deer that developed CWD or concentrated in western portions of the wintering
area.
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Figure 27: Ninety percent use areas of adult female mule deer that were susceptible through-
out or developed CWD during January 2010-14. Contours were derived from Brownian
bridge movement models fit to GPS histories. Individual dots show GPS locations outside
90% use areas and indicate approximate migration paths. Use areas and migration routes are
displayed for deer that developed CWD or concentrated in central portions of the wintering
area.

103



Southern

Infected
Susceptible

GMU 9
GMU191
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Figure 28: Ninety percent use areas of adult female mule deer that were susceptible through-
out or developed CWD during January 2010-14. Contours were derived from Brownian
bridge movement models fit to GPS histories. Individual dots show GPS locations outside
90% use areas and indicate approximate migration paths. Use areas and migration routes
are displayed for deer that developed CWD or concentrated in southern portions of the
wintering area.
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Utilization distributions showed that deer segregated into four spatially segregated popula-

tion segments on the wintering area (Figure 25 - 28). However, some deer from wintering

population segments overlapped use areas during migration.

Deer expressing phenylalanine experienced lower infection probability. We tracked the

disease status of 68 deer that were homozygous for serine, 35 heterozygous for serine and

phenylalanine, and 2 homozygous for phenylalanine. A single heterozygous deer was observed

becoming infected and the remaining eight converting deer were homozygous for serine.

We found 95% probability that deer expressing phenylalanine experienced lower infection

probability and effects did not vary with CWD prevalence in areas used by deer. The mean

posterior predictive log odds ratio of phenylalanine was -1.74 (SD = 1.20).

Deer developed CWD between 1.5 and 8.5 years old. Deer younger than one year of age

were not tested for CWD. The posterior predictive log odds ratio of age broadly spanned

zero (mean = -0.33; SD = 1.05), which equated to 62% probability that age lowered infection

risk. Similarly, there was 48% probability that age increased infection risk. Our findings

suggest infection probability is relatively constant among adult aged deer.

Discussion

Soil characteristics have been linked to patterns of prion disease occurrence at broad

geographical scales (Walter et al., 2011). Whether soils play an important role in facilitating

indirect transmission of CWD remains an unresolved issue (Imrie et al., 2009; Saunders et al.,

2012b; Storm et al., 2013). Evaluation of fine-scale data can reveal the importance of soils

in CWD transmission.

Previous research on mule and white-tailed deer related spatially referenced disease tests

of deer harvested by hunters or sharp shooters to soil attributes. We built on these studies

by tracking individual adult female deer both before and after CWD exposure and collecting

detailed mobility data using global positioning devices. We demonstrated that a meaningful
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Figure 29: Posterior predictive log odds ratios for models showing the direction and relative
magnitude of covariate effects of clay (top row), migration and home range size (middle
row), and Prnp and age (bottom row). Regions shaded in black show the probability that
the covariate increased or lowered infection probability.
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index (percent clay) shown to experimentally enhance oral prion transmission experimentally

in mice has an important effect on infection probability. When prevalence in areas used by

deer was near 1%, we found that increases in clay content from 12 to 16% increased infection

odds by nearly 45%. However, as CWD prevalence increased in areas, the enhancing effect

of clay declined, such that increases in clay soils were more likely associated with declines

in infection probability. Our findings provide evidence that clay soils may be a particularly

important component of the transmission process during the early and late stages of epi-

demics. When prevalence is low, such as during the early stages of an epidemic, clays provide

a means for increasing infection risk by enhancing infectivity. As CWD prevalence increases,

infection spreads throughout entire wintering areas leading to more uniform distribution of

infected hosts (Figure 27). As a result, all deer within the wintering area experience increased

infection probability regardless of fine scale changes in clay soils.

An increasing number of studies have concluded that silent and non-synonymous nu-

cleotide substitutions in white tailed deer (O’Rourke et al., 2004; Johnson et al., 2006a;

Kelly et al., 2008; Blanchong et al., 2009; Wilson et al., 2009), elk (Green et al., 2008), and

mule deer (Jewell et al., 2005; Wilson et al., 2009) correlate reduced prevalence in individuals

expressing the rare allele. Current evidence is based on hunter or sharp shooter harvested

deer and these findings could be confounded by allele-specific differences in survival of sus-

ceptible and infected individuals and familial associations. Inoculation studies have shown

that deer expressing the rare allele uniformly develop disease (Jewell et al., 2005; Fox et al.,

2006; Johnson et al., 2011).Therefore, the contribution of polymorphism of the Prnp gene to

infection risk remains an unanswered question.

Our capture-mark-recapture study design controls for some of these confounding sources.

We showed that deer expressing phenylalanine experience lower annual infection probability.

PrPSc, the infectious agent of CWD, replicates through the protein only hypothesis. PrPSc

temporarily interacts with normally formed host prion, PrP, to cause mis-folding and new

infectious agent (Williams and Young, 1992; Ryou, 2007). This change is thought to be a two
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step process of aggregation and temporary binding (Ryou, 2007) followed by conversion to

the malformed variant (Cohen and Prusiner, 1998; Prusiner, 1998). Amino acid substitutions

that contribute to the efficiency of the aggregation step provide a plausible mechanism for

changes in host susceptibility. Alternatively, our findings may in part due to the methods

of CWD testing. There is evidence that deer expressing phenylalanine fail to exhibit IMH

staining with infection (Wolfe in preparation).

CWD has existed in wild deer in our study area for at least four decades (Spraker et al.,

1997; Miller et al., 2000). However, the spatial distribution of new infections appeared to be

a localized phenomenon. Deer that became infected spent winter concentrated in the central

portion of the wintering area (Figure 25). Otherwise, wintering contours of deer using the

northern (Figure 25), western (Figure 26), and southern (Figure 28) portions of the wintering

area overlapped only a single deer that became infected. Deer show extraordinary fidelity to

female structured social groups and home ranges that are established early in life (Garrott

et al., 1987). These movement tendencies appear to provide some natural containment of the

CWD epidemic. Even though deer were concentrated during winter, individuals in relatively

close proximity, such as deer found within a single hunting district or game management

unit, did not use shared areas. Consequently, infection remained in a relative ’hot spot’ in

the central portion of the entire wintering area (Figure 27). Furthermore, spatial structuring

of disease did not appear to be a phenomenon limited to the timespan of our research.

CWD prevalence was previously estimated using disease tests of hunter harvested or culled

deer during 1997-2003 (Farnsworth et al., 2006; Conner et al., 2007). Historic prevalence

(Farnsworth et al., 2006) resembled the prevalence surface we developed as part of our

research (Figure 30).

Migration was a plausible mechanism of disease spread. Migratory deer from the north-

ern, western, and southern portions of the wintering area shared migration routes, stop-over

sites, and summering areas with infected deer. A single individual became infected that

wintered outside of the central portions of the wintering area (Figure 26). This deer shared
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Figure 30: The bottom layer are posterior predictive mean values of CWD prevalence in
adult female mule deer generated using a geostatistical model fit to the disease tests on 210
adult female. Black circles show infected and gray circles show susceptible deer. There are
two locations for each individual, a winter and summer. A gridded CWD prevalence surface
developed by (Farnsworth et al., 2006) fit to disease tests from hunter harvested or culled
deer during 1997-2003 is overlaid to show consistency in prevalence over time.
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a summering area with other deer that developed infection and spent winters in the rela-

tive ’hot spot’ for disease. Pathogens that are highly virulent threaten their own existence

through demise of the host and reductions in transmission opportunities. In turn, highly

virulent pathogens have developed strategies to persist, such as remaining infectious in a

free-stage in the environment and delaying progression of the pathological effects of disease

(Ewald, 1994). Host migration serves as an eloquent mechanism of the spread of CWD.

Delays in the onset of clinical effects of CWD allow newly infected individuals to spread in-

fectious agent to new areas. Once there, PrPSc has the ability to remain in the environment

for years.

The spatial structuring we observed among deer suggests that CWD epidemics may best

be conceptualized as several, largely independent epidemics that are occurring simultane-

ously. Our findings suggest a continuing epidemic in the central portions of the deer wintering

area that is at a different point in the epidemic wave compared to nearby areas. We are left

to reconcile why. Some have theorized that CWD epidemics cannot establish when host pop-

ulations are below critical densities (Sharp and Pastor, 2011) and deer densities are highest

in the central portions of the study area (Vieira, 2006). Deer from the central area share

migration routes and summering areas with some individuals from the other wintering areas.

Therefore, it is likely that diseased deer from the central area have come into contact with

deer from adjoining wintering areas during summer. Deer densities in the alternative areas

may be below levels necessary to allow for epidemic dynamics. Particularly, deer occupying

western areas use state lands that allow hunting and deer densities are lowest there (Vieira,

2006).

Furthermore, clay soils in areas used by deer from the central portions of the wintering

area averaged higher than areas used by deer from any of the remaining areas. These soil

attributes may have promoted earlier establishment, proliferation, or maintenance of the

epidemic.
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Our findings were also limited to adult female mule deer. CWD prevalence is approxi-

mately twice as high in male deer (Miller and Conner, 2005). Male deer are believed to use

larger areas during breeding when searching and competing for mates. Male deer densities

are highest in the central portions of the wintering area, because these areas are largely

protected from sport hunting practices. Consequently, males may play an important role in

CWD transmission, which was hidden from our research.
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APPENDIX 1: SUPPLEMENTARY MATERIAL

Here we describe the model described in the Statistical Analysis section in more detail

and provide the details of the Markov chain Monte Carlo algorithm (steps 1-8).

The latent variable for the true number of bison in each wintering area during month

t and year j is a 10×1 column vector assumed to follow a gamma distribution zt,j ∼

Gamma(β,Azt−1,jβ) where β is the rate parameter and A is a transition matrix for move-

ment γ and survival φ. Note that zt,j = Azt−1,j and are given by Figure 1.

zt,j =



Hayden

Firehole

Gibbon

Hebgen

Blacktail(central)

Gardiner(central)

Lamar

Lower Yellowstone

Blacktail(northern)

Gardiner(northern)
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A = φ



(1 − γ∗1 )(1 − γ∗5 ) 0 0 0 0 0 0 0 0 0

γ∗1 (1 − γ∗2 ) 0 0 0 0 0 0 0 0

γ∗5 γ∗2 (1 − γ∗3 )(1 − γ∗4 ) 0 0 0 0 0 0 0

0 0 γ∗4 1 0 0 0 0 0 0

0 0 γ∗3 0 (1 − γ∗6 ) 0 0 0 0 0

0 0 0 0 γ∗6 1 0 0 0 0

0 0 0 0 0 0 (1 − γ∗7 ) 0 0 0

0 0 0 0 0 0 γ∗7 (1 − γ∗8 ) 0 0

0 0 0 0 0 0 0 γ∗8 (1 − γ∗6 ) 0

0 0 0 0 0 0 0 0 γ∗6 1



The matrix A varies with each month and year because movement probabilities are

affected by time-varying covariates. Rather than subscriptA and each movement probability

with time, we generalize our notation where γ∗1 , γ∗2 , ... , γ∗8 refer to the eight movement

probabilities at a given time. We model movement probabilities via a logistic model, so, for

example, the movement probability along the first migration path is given by logit(γ∗1) =

γ1µxj , where γ1 is a column vector of logistic model coeffficients and µxj is a corresponding

row in a covariate matrix. The other movement probabilities are defined similarly.

The observed aerial count during during month t and year j is a 8×1 column vector

assumed to follow a Poisson-gamma mixture distribution (e.g., Negative binomial) with

intensity λt,j. Note that y1t,j ∼ Poisson(λt,j) and λt,j ∼ Gamma (α,Bzt,jα) where α is the

rate parameter for gamma and B is an alignment matrix to align wintering areas and aerial

counts described below in step 7. Also observed are individual animal GPS locations y2 which

follow multinomial distributions with multinomial probabilities equal to the proportion of

bison in the ith wintering area zm,j,i/Σizm,j,i.
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Covariates are assumed to be measured with error as described below in step 2. A normal

model was assumed for each covariate. For example, if annual snow pack is considered

to be the first covariate, then observed annual snow pack in the jth year is modeled as

log(xj1) ∼N(µxj1, σx1).

Parameter prior distributions are as follows: log(z1,j) ∼ N(log(y11,j), .5), φ ∼Beta(1,1),

γ ∼N(0,1000), log(σx1) ∼N(1.6,.1) for snow conditions, log(σx2) ∼N(1,.1) for standing crop,

and the log of all remaining parameters were N(0,100). Additional model subscripts are

the subset of months when aerial counting occurred Tj, l, the subset of months when GPS

locations were collected m, and the number of years of study N .

The joint posterior distribution of the unknown parameters of interest and the latent

variables given the observed data can be factored and written as

[z,γ, φ,µx,σx, α, β|y1,y2,x] ∝
N∏
j=1

Tj∏
t=2

[zt,j|zt−1,j,µxj ,γ, φ, β]
N∏
j=1

∏
l

[λl,j|zl,j, α][y1l,j |λl,j]

×
N∏
j=1

∏
m

[y2m,j
|zm,j]

N∏
j=1

[z1,j]
N∏
j=1

[xj|µxj ,σx][γ][φ][µx][σx][α][β].

The joint posterior distribution is not available in closed form. We use a Markov chain

Monte Carlo (MCMC) algorithm to simulate from the posterior distribution and to estimate

the parameters of the of the unknown parameters of interest and the latent variables. The

MCMC algorithm proceeds as follows:

1. Initialize each parameter z,λ,γ, φ,σx, α, β,µx with a starting value.

2. The matrix µx are covariate conditions with rows representing years and columns as

covariate types. For the jth year, µxj = [µxj1, µxj2, ..., µxjn] is a vector of covariate

conditions where elements are snow, standing crop, and herd size conditions. Note

that snow, standing crop, and herd size conditions are treated as latent variables and

xj are observed covariate conditions. Update each element of µxj from its complete
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conditional distribution given by

[µxj |·] ∝
Tj∏
t=2

[zt,j|zt−1,j,µxj ,γ, φ, β][xj|µxj ,σx][µxj ].

3. The vector σx = [σx1, σx2, ..., σxn]T has one element for each latent covariate type, e.g.,

snow, standing crop, and herd sizes. Sequentially update each element of σx from its

complete conditional distribution. The first element is given by

[σx1|·] ∝
N∏
j=1

[xj1|µxj1, σx1][σx1]

and the others are defnied similarly.

4. Update the survival parameter φ from its full conditional distribution given by

[φ|·] ∝
N∏
j=1

Tj∏
t=2

[zt,j|zt−1,j,µxj ,γ, φ, β][φ].

5. Movement parameters are given by the matrix γ with rows corresponding to logistic

regression coefficients of covariate effects and columns as each migration route. The

ith migration route is given by the seven element vector γi = [γi1, γi2, ..., γi7]T where

elements are the intercept term, months since snow as a second order polynomial,

snow, herd size, standing crop, and year of study. At this point, the matrix µx consists

only of latent covariate conditions. Additional columns are added to the matrix µx

that correspond covariate conditions that are measured without error including months

since snow and year of study. Batch update each vector γi sequentially beginning with

γ1 from their full conditional distributions. New values are proposed for elements of

each vector simultaneously. The full conditional distribution of the ith vector γi is

[γi|·] ∝
N∏
j=1

Tj∏
t=2

[zt,j|zt−1,j,µxj ,γi, φ, β][γi.]
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6. Process variance enters the model through the parameter β. Update β from its com-

plete conditional distribution given by

[β|·] ∝
N∏
j=1

Tj∏
t=2

[zt,j|zt−1,j,µxj ,γ, φ, β][β].

7. Aerial count y1 are assumed to follow a Poisson-gamma mixture distribution based on

observed and unobserved data on average abundance in count areas λ and numbers of

bison in wintering areas z. The values y1 and z differ for three reasons: sampling error,

count and wintering areas do not completely overlap, and some counts of wintering

areas were incomplete. Both λ and z are latent gamma variables.

Several steps are necessary to handle this hierarchically.

(a) The 10×1 column vector zt,j is the number of bison in each of 10 wintering areas

during year j and month t. The 8×1 column vector λt,j is the average number

of bison in each of 8 count areas during year j and month t. The 8×10 relation

matrix B aligns count and wintering areas and is given by,

B =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0



.

Numbers of bison in each wintering area were estimated during each month of

the year and are referenced by the subscript t. Counts did not occur during each
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month and the subscript l references the subset of months when counts occurred.

(b) Counting variance enters the model through the parameter α. Update α from its

complete conditional distribution given by

[α|·] ∝
N∏
j=1

∏
l

[λl,j|Bzl,j, α][α].

(c) Update λ from their complete conditional distribution given by

[λ|·] ∝
N∏
j=1

∏
l

[λl,j|Bzl,j, α][y1l,j |λl,j].

8. y2 are individual animal GPS locations and follow multinomial distributions with

multinomial probabilities equal to the proportion of bison in the ith wintering area

zm,j,i/Σizm,j,i. The full conditional distribution of z depends on the timing of the

model update. During the first time step of each year,

[z1,j|·] ∝
N∏
j=1

[z2,j|z1,j,µxj ,γ, φ, β]
N∏
j=1

[λ1,j|Bz1,j, α]
N∏
j=1

[z1,j][y21,j |z1,j].

Between the first and final time steps,

[zt,j|·] ∝
N∏
j=1

Tj∏
t=2

[zt,j|zt−1,j,µxj ,γ, φ, β]
N∏
j=1

Tj−1∏
t=1

[zt+1,j|zt,j,µxj ,γ, φ, β]

×
N∏
j=1

∏
l

[λl,j|Bzl,j, α]
N∏
j=1

∏
m

y2m,j
|zm,j].

During the final time step,

[zTj ,j|·] ∝
N∏
j=1

[zTj ,j|zTj−1,j,µxj ,γ, φ, β]
N∏
j=1

[λTj ,j|BzTj ,j, α]
N∏
j=1

[y2Tj,j
|zTj ,j].
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9. Repeat steps 2 through 8 many times.

This completes the MCMC algorithm.
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APPENDIX 2: SUPPLEMENTARY MATERIAL

We proceed by developing each component of the model, specifying the posterior dis-

tribution, and outlining the Markov chain Monte Carlo algorithm. Within the MCMC

algorithm we also describe the estimation process for derived quantities including elements

of the projection matrix A, population growth, and the stable stage structure.

We evaluated two models, each representing a different spatial scale. The first model rep-

resented a single intermixing deer population. Infection probability was constant between

individuals. At a finer spatial scale, the second model delineated the population into win-

tering units. Differences among winter units were reflected in estimates of survival, annual

infection probability, and fertility. Here, we describe the subpopulation model.

CWD Infection: CWD infection status was estimated using an occupancy model. We

define Z as an infectious status matrix, Z = [zi,t] for the ith deer i = 1, . . . , I and the tth

the testing occasion (year) t = 1, . . . , T . When an individual is infected in the tth year,

zi,t = 1; zi,t = 0 otherwise. Infection status was treated as a first order Markov process. The

model for the initial test, zi,1, is described below. After the initial test, infection status at

the current time t is conditioned on infection status at the previous time t− 1 where

[zi,t|zi,t−1, ψi] =


1 zi,t−1 = 1

Bern(ψi) zi,t−1 = 0

.

The parameter ψi is the infection probability for the ith deer. Our model assumes that

an infected individual remains infected during the subsequent testing year and a susceptible

individual becomes infected with probability ψi. Infection probability is assumed to be time

invariant but may vary between individuals based on wintering population unit membership.

We use the logistic model to estimate the probability of infection, where logit(ψ)i = xtiζ.
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Here xi is the covariate vector for the ith deer with columns representing wintering popula-

tion unit membership and ζ is a vector of logistic model coefficients.

We define Y as an observation matrix, where yi,t represents the observed number of

follicles exhibiting PrPSc from individual i during testing occasion t. We define the corre-

sponding matrix, J , where Ji,t is the total number of follicles obtained for individual i at

year t. False positive test results were not believed to occur. Therefore, when zi,t = 0 then

yi,t = 0. However, we may or may not have observed at least one positive follicle when

an individual was infected, meaning when zi,t = 1 then yi,t ≥ 0. The probability that an

individual test is positive is π, and

[yi,t|π, Ji,t, zi,t] =


0 zi,t = 0

Binom(Ji,t, π) zi,t = 1

.

The infectious status at time 1, ψ0, depends on the observed infection value, where a

false negative is possible. That is,

[zi,1|ψ0, yi,1] =


1 yi,1 ≥ 1

Bern(ψ0) yi,1 = 0

,

where ψ0 is the probability that an individual developed disease prior to initial testing. There

is an important distinction between ψi and ψ0; ψi only captures infection during a single

year, while ψ0 is the population prevalence.

We specify diffuse Beta(1,1) prior distributions for ψ0 and π and slightly informative

N(0,5) prior distributions for elements of ψ. There are I total individuals which were in the

study for a variable number of years. We define the indicator variable Ui,t coded using the

reference value of 0 when an individual i was no longer in the study on occasion t and with

the value of 1 when individual i was in the study. Similarly, we define the indicator variable

Vi,t coded as 0 when individual i was not tested and 1 when individual i was tested.
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Survival: A Bayesian hazard model was used to estimate survival. The response variable

ti is the final time that an individual is observed. We were unable to observe the time of

death for each individual because deer died unnaturally due to hunter harvest or capture

related cause, telemetry devices failed, or animals survived the extent of the study. The

indicator variable δi identifies animals that were censored. We set δi = 1 when the death

of the ith deer is observed; δi = 0 when the ith deer exits the study prior to death. From

established results in hazard modeling, survival and hazard functions provide different but

equivalent characterizations of the distribution of t. The hazard function h(ti) gives the

instantaneous rate of death. Integrating the hazard function over a duration provides the

cumulative hazard Λ(ti) which can be thought of as the sum of risks during this interval. The

survival function S(ti) is the reciprocal of the cumulative hazard and gives the probability

density that individual i will survive past time t, so

h(ti) = −∂log (S(ti))

∂t
.

Only the survival function contributes to the likelihood expression when δi = 0 because

the individual is still alive at time t. However, when a death is observed δi = 1, both the

survival and hazard functions contribute to the likelihood. The likelihood for t is given by

[t|λ, α,β, z] =
I∏
i=1

h(ti)
δiS(ti, ).

where the survival times, ti, are assumed to follow a Weibull distribution.

Separate survival and hazard functions were used for CWD susceptible and infected deer.

The survival function for CWD susceptible deer was S(ti) = exp (−λ1t
α1
i )exp(βxi) with the

corresponding hazard function h(ti) = λ1α1t
α1−1
i exp(βxi). Age and wintering population

unit affected survival. The covariate vector for the ith deer xi included the age of each

deer when initially captured and wintering population unit membership. The covariate for

the age of entry for fawns (6 mo) was coded using the value 0. Therefore, juveniles were
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allowed lower survival than adults. For CWD infected deer, we used the survival function

S(ti) = exp (−λ2t
α2
i ) with the corresponding hazard function h(ti) = λ2α2t

α2−1
i . The vector

λ = [λ1, λ2]t was the monthly hazard rate for susceptible and infected deer. The vector

α = [α1, α2]t were parameters affecting the degree to which these hazards increased over

time. Note, values of α near one indicate constant hazard over time, whereas values greater

than one show increasing hazards.

We define the indicator variable Wi coded using the reference value of 0 for CWD suscep-

tible and 1 for infected animals. We specify diffuse N(0,1000) prior distributions for elements

of log(α), log(λ), and β .

To evaluate the projection matrix A, we approximated the posterior distribution of an-

nual survival probabilities using the survival functions for CWD susceptible and infected

deer. For infected deer, we set ti=36 (e.g., 36 months) and evaluated the survival function

using posterior estimates of α2 and λ2. We used a 36 month time step because monthly haz-

ards increased over time. Therefore, annual survival was progressively lower each year after

initially becoming infected. The 36 month survival was then raised to the one third power

to approximate the posterior distribution of sinf. For susceptible deer, we approximated the

posterior distribution of annual survival for each age ssus,0.5 . . . , ssus,10.5 by setting elements of

xi equal to the desired covariate levels, ti=12 (e.g., 12 months), and evaluating the survival

function using posterior estimates of α1, λ1, and β.

Fertility: Elements of the top row of A are fertilities in a Leslie matrix. To align model

updates that occurred in January with the timing of fawning in June, fertility elements were

the product of female survival from census to the birth pulse s6,inf, s6,sus,1.5 . . . , s6,sus,10.5, birth

rate b, and neonate survival to census sneo. CWD infection has small effects on birth rate

and neonate survival and we simplified our model by defining recruitment as r = bsneo. It

follows that fertility elements were finf = s6,infr for infected deer and fsus,j = s6,sus,jr for a

susceptible deer of the jth age.
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We began by generating age- and disease- specific survival probabilities for a six month

period from census to the birth pulse. We used the approach outlined in the above section

on survival modeling, except that we set ti=6 (e.g., 6 months).

Second, we used a Poisson model fit to consecutive annual counts of adult females and

fawns to estimate r. Fawns and adult females were counted in separate groups encountered

during helicopter surveys. We assumed an equal sex ratio of fawns and only included half

of the fawns counted in our analysis. The vector yf is half the sum of fawns observed in

groups each year. The corresponding vector a is the sum of females observed in groups in

each year. Elements of these vectors correspond to observations from the tth year.

It follows that the proportion of female fawns at t is yft/at. The number of female fawns

observed at t, yft , can be approximated as the product of the number of CWD infected and

susceptible adult females alive at t− 1 that survive to the birthing pulse, (1−ψ0)s6,susat−1 +

ψ0s6,infat−1, and r. The number of adult females observed at t, at, can be approximated as

the number of CWD infected and susceptible adult females alive at t − 1 that survive to t,

(1−ψ0)ssusat−1 +ψ0sinfat−1, plus the number of reproductively immature deer alive at t− 1

that survive to t, ssus,0.5yft−1 . It follows that the proportion of female fanws is given by,

yft
at

= r
((1− ψ0)s6,susat−1 + ψ0s6,infat−1)

(1− ψ0)ssusat−1 + ψ0sinfat−1 + ssus,0.5yft−1

= r d.

Continuing, yft follows a Poisson distribution with intensity at r d.

Survival and infection probabilities in the above expression were generated as described

in the preceding sections, except for one notable exception. Helicopter surveys did not

differentiate adult ages. Therefore, we estimated ssus using a survival function that did not

include adult age effects.

143



To evaluate the projection matrix A, we needed age- and disease specific fertilities. We

derived finf = s6,inf × r for infected deer and fsus,j = s6,sus,j × r for a susceptible deer of the

jth age.

CWD Prevalence: A Beta-binomial model was used to estimate CWD prevalence during

1997-2003 from hunter harvested deer and animals removed through management culling

that overlapped the winter spatial extent of capture-mark-recapture studied deer. It follows

that p ∼ Beta(ycwd + 1, Ncwd− ycwd + 1) where ycwd is the number of CWD positive deer and

Ncwd is the total number of tested deer.

Abundance: Quadrats that were one quarter land section were counted semiannually to es-

timate population abundance. The vector yquad is the sum of annual counts across quadrats.

We assumed each element of yquad follows a negative binomial distribution with average

count γk and over dispersion σk. We specify diffuse N(0,1000) distributions for log(γ) and

log(σ).

Posterior Distribution: The posterior distribution for the complete model is,

[ψ0, ζ, π,Z,β,λ,α, r, p,γ,σ|Y ,T ,yf ,a, ycwd, Ncwd,yquad] ∝
I∏
i=1

(
[yi,1|π]zi,1 [zi,1|ψ0]

) T∏
t=2

I∏
i=1

{(
[yi,t|π](zi,t)Vi,t

)(
[zi,t|ζ](1−zi,t−1)Ui,t

)}
[ψ0][ζ][π]

×
I∏
i=1

(
[ti|λ1, α1,β]1−Wi [ti|λ2, α2]Wi

)
[β][λ][α]

×
N∏
n=2

[yfn|r, an][r]

×[ycwd|p,Ncwd][p]

×
K∏
k=1

[yquadk
|γk, σk][γ][σ].
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The joint posterior distribution is not available in closed form. We use a Markov chain

Monte Carlo (MCMC) algorithm to simulate from the posterior distribution and to estimate

the unknown parameters of interest and the latent variables. Samples were drawn from the

posterior distribution of each parameter and latent state using a hybrid Gibbs sampler. All

analyses were completed using program R (R Core Development Team 2013). Each of three

MCMC chains was run for 100,000 iterations and the first 25,000 iterations were discarded

to allow for burn-in. We confirmed convergence using the Gelman and Rubin test statistic

by assuring that the potential scale reduction factor was <1.02 for each variable. Trace plots

of marginal posterior distributions were inspected to ensure reasonable exploration of the

parameter space. Metropolis-Hastings acceptance rates were tracked to assure values near

0.40.

A variety of tools were used to assess our model. We used posterior predictive checks to

confirm whether observed data were consistent with the model. Bayesian p-values were cal-

culated for mean and standard deviation of various data, including numbers of positive folli-

cles in capture-mark-recapture studied deer and months till death of capture-mark-recapture

studied deer. Bayesian p-values indicated an ability of our model to replicate data with simi-

lar means to the observed data. We found some inability for our model to replicate data with

similar standard deviations. Cox Snell residuals were also used to confirm the proportional

hazards assumption of our survival analysis.

Overview of MCMC algorithm: The MCMC algorithm proceeds as follows:

1. Initialize each parameter and the elements of the latent infection matrix with a starting

value.

2. Sample [zi,1|·] when yi,1 = 0 otherwise zi,1 = 1.

[zi,1|·] ∝ Brn

(
ψ0(1− π)Ji,1

ψ0(1− π)Ji,1 + 1− ψ0

)
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3. Sample [zi,2|·] when yi,1 = 0 and yi,2 = 0 otherwise zi,2 = 1. Note that if deer i during

occasion t is in the study, but not tested, then yi,t and Ji,t was coded as 0.

[zi,2|·] ∝ Brn

(
(1− π)Ji,2Vi,2 ψ

(1−zi,1)Ui,2

i

(1− π)Ji,2Vi,2 ψ
(1−zi,1)Ui,2

i + ψ
zi,3Ui,3

i (1− ψi)(1−zi,3)Ui,3 (1− ψi)(1−zi,1)Ui,2

)

4. Sample [zi,3|·] when when yi,1 = 0, yi,2 = 0, and yi,3 = 0 otherwise zi,3 = 1.

[zi,3|·] ∝ Brn

(
(1− π)Ji,3Vi,3 ψ

(1−zi,2)Ui,3

i

(1− π)Ji,3Vi,3 ψ
(1−zi,2)Ui,3

i + ψ
zi,4Ui,4

i (1− ψi)(1−zi,4)Ui,4 (1− ψi)(1−zi,2)Ui,3

)

5. Sample [zi,4|·] when when yi,1 = 0, yi,2 = 0, yi,3 = 0, and yi,4 = 0 otherwise zi,4 = 1.

[zi,4|·] ∝ Brn

(
(1− π)Ji,4Vi,4 ψ

(1−zi,3)Ui,4

i

(1− π)Ji,4Vi,4 ψ
(1−zi,3)Ui,4

i + ψ
zi,5Ui,5

i (1− ψi)(1−zi,5)Ui,5 (1− ψi)(1−zi,3)Ui,4

)

6. Sample [zi,5|·] when when yi,1 = 0, yi,2 = 0, yi,3 = 0,yi,4 = 0 and yi,5 = 0 otherwise

zi,5 = 1.

[zi,5|·] ∝ Brn

(
(1− π)Ji,5Vi,5 ψ

(1−zi,4)Ui,5

i

(1− π)Ji,5Vi,5 ψ
(1−zi,4)Ui,5

i + (1− ψi)(1−zi,4)Ui,5

)

7. Sample [ψ0|·] ∝ Beta (Σizi,1 + 1,m− Σizi,1 + 1).

8. Sample elements of [ζ|·] sequentially using a Metropolis step.

9. Sample [π|·] ∝ Beta
(
Σzi,t=1yi,t + 1,Σzi,t=1 (Ji,t − yi,t) + 1

)
.

10. Sample elements of [α|·] sequentially using a Metropolis step.

11. Sample elements of [λ|·] sequentially using a Metropolis step.

12. Sample elements of [β|·] sequentially using a Metropolis step.

13. Derive annual survival estimates for susceptible deer ssus,0.5, . . . , ssus,10.5 using posterior

estimates of λ1, α1, and β.
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14. Derive annual survival of infected deer sinf using posterior estimates of λ2 and α2.

15. Sample [r|·] using using a Metropolis step.

16. Sample [p|· ∝ Beta(ycwd + 1, Ncwd − ycwd + 1).

17. Sample [γ|·] using a Metropolis step.

18. Sample [σ|·] using a Metropolis step.

19. We portrayed the deer population in 21 demographic and disease stages. The vector

nt described the number of deer in each of these stages during January of a given year.

The first element, n1,t was for deer that were 6 months old and CWD susceptible. The

next ten elements n2,t, . . . , n11,t represented CWD susceptible deer from in 1.5 to 10.5

years old. The final ten elements n12,t, . . . , n21,t portrayed CWD infected deer from

in 1.5 to 10.5 years old. The vector Ant described the deer population during the

subsequent year where A was a 21×21 projection matrix. Construct A.

A =



0 fsus,1.5 fsus,2.5 . . . fsus,10.5 finf finf . . . finf

ssus,0.5(1− ψ) 0 0 . . . 0 0 0 . . . 0

0 ssus,1.5(1− ψ) 0 . . . 0 0 0 . . . 0

...
...

...
...

...
...

...
...

0 0 0 . . . 0 0 0 . . . 0

sinfψ 0 0 . . . 0 0 0 . . . 0

0 sinfψ 0 . . . 0 sinf 0 . . . 0

...
...

...
...

...
...

...
...

...

0 0 0 . . . 0 0 0 . . . 0


This step was repeated for each wintering population unit.

20. Derive the population growth rate for a CWD infected population λcwd by calculat-

ing the dominant eigenvalue of A. Also derive CWD prevalence under equilibrium
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conditions (p?) from the dominant eigenvector of A. This step was repeated for each

wintering population unit.

21. Derive the population growth rate for a CWD free population λfree by calculating the

dominant eigenvalue of the upper left 12x12 sub matrix of A and setting ψ equal to

zero. This step was repeated for each wintering population unit.

22. Repeat steps 2 through 19 many times.

This completes the MCMC algorithm.

Monte Carlo estimates of i) differences in population growth rates with and

without CWD and ii) differences in prevalence during intense surveillance (1997-

2001) and under disease equilibrium:

1. Derive the difference between population growth rates λcwd and λfree. This quantity

was a measure of the effect of CWD on deer population growth. Select with replace

ment an element of λcwd and λfree and calculate the difference of these values. This

step was repeated for each wintering population unit.

2. Derive the difference between prevalence recorded during intense surveillance efforts p

and predicted under disease equilibirum p?. Select with replacement an element of p

and p? and calculate the difference of these values. This step was repeated for each

population unit where surveillance data were available.

3. Repeat steps 21 through 23 many times.

148



APPENDIX 3: SUPPLEMENTARY MATERIAL

We define Z as the true infectious status matrix. We define Y as an observation matrix

of the observed number of follicles exhibiting PrPSc. We define the corresponding matrix,

J , as total numbers of follicles. There are I total individuals which were in the study for

a variable number of years. We define the indicator variable Ui,t coded using the reference

value of 0 when an individual i was no longer in the study on occasion t and with the

value of 1 when individual i was in the study. Similarly, we define the indicator variable

Vi,t coded as 0 when individual i was not tested and 1 when individual i was tested. Model

parameters are annual infection probability (ψ), population prevalence (ψ0), and probability

that a follicle tests positive in deer i on occasion t (πi,t). We treated πi,t hierarchically.

That is, logit(πi,t) = Xβ + εi,t where β were logistic model coefficients, X was a matrix of

covariate levels, and εi,t were additional unstructured error. Errors εi,t followed a N(0,σ2)

distribution. Then, the posterior distribution follows,

[ψ, ψ0,β, σ
2,Z|Y] ∝

I∏
i=1

(
[yi,1|β, σ2]zi,1 [zi,1|ψ0]

)
T∏
t=2

I∏
i=1

{(
[yi,t|β, σ2](zi,t)Vi,t

)(
[zi,t|ψ](1−zi,t−1)Ui,t

)}
[ψ0][ψ][β][σ2]

The first product in the posterior refers to the initial testing occasion. The mixture distri-

bution for the number of observed positive tests is expressed [yi,1|β, σ2]zi,1Vi,t . When zi,1 = 1

(e.g., an infected individual) the probability density of the number of positive tests reduces

to [yi,1|β, σ2] otherwise, when zi,1 = 0 (i.e., a susceptible individual) or Vi,t = 0 (i.e., indi-

vidual i not tested), the probability density reduces to 1. The second product refers to the
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subsequent testing occasions. The mixture distribution for the infection status is expressed

[zi,t|ψ](1−zi,t−1)Ui,t . When zi,t−1 = 1 (e.g., individual i was found to be infected in a previous

time period) or Ui,t = 0 (e.g., individual i is no longer in the study), then the probability

density reduces to 1 otherwise the probability density equals [zi,t|ψ].

We specify a diffuse Beta(1,1) prior distribution for ψ0 and ψ, and a diffuse N(0,1000)

prior distribution for elements of β and log(σ2). Marginal posterior distributions of latent

states zi,t and parameters were estimated using Markov chain Monte Carlo (MCMC) meth-

ods. Full conditional distributions were found in closed form for zi,t, ψ0, and ψ. These

derivations can be found in Chapter 3. Full conditional distributions for logistic model co-

efficients were not found in closed form and updated using a Metropolis step. Samples were

drawn from the posterior distribution of each parameter and latent state using a hybrid

Gibbs sampler. Each of three MCMC chains was run for 100,000 iterations and the first

25,000 iterations were discarded to allow for burn-in. We confirmed convergence using the

Gelman and Rubin test statistic by assuring that the potential scale reduction factor was

<1.01 for each variable. We confirmed ability of our model to replicate the observed data

using posterior predictive checking.
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APPENDIX 4: SUPPLEMENTARY MATERIAL

We define Z as an infectious status matrix. We define Y as an observation matrix of the

observed number of follicles exhibiting PrPSc. We define the corresponding matrix, J , as

total numbers of follicles. There are I total individuals which were in the study for a variable

number of years. We define the indicator variable Ui,t coded using the reference value of 0

when an individual i was no longer in the study on occasion t and with the value of 1 when

individual i was in the study. Similarly, we define the indicator variable Vi,t coded as 0 when

individual i was not tested and 1 when individual i was tested. Model parameters are annual

infection probability of the ith individual on the tthoccasion ψi,t, population prevalence ψ0,

and probability that a follicle tests positive π. We treated infection probability hierarchically.

That is, logit(ψi,t) = Xβ where β were logistic model coefficients and X was a matrix of

covariate levels. The posterior distribution follows,

[π, ψ0,β,Z|Y] ∝
I∏
i=1

(
[yi,1|π]zi,1 [zi,1|ψ0]

)
T∏
t=2

I∏
i=1

{(
[yi,t|π](zi,t)Vi,t

)(
[zi,t|β](1−zi,t−1)Ui,t

)}
[ψ0][π][β]

The first product in the posterior refers to the initial testing occasion. The mixture distri-

bution for the number of observed positive tests is expressed [yi,1|π]zi,1Vi,t . When zi,1 = 1

(e.g., an infected individual) the probability density of the number of positive tests reduces

to [yi,1|π] otherwise, when zi,1 = 0 (i.e., a susceptible individual) or Vi,t = 0 (i.e., individ-

ual i not tested), the probability density reduces to 1. The second product refers to the

subsequent testing occasions. The mixture distribution for the infection status is expressed
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[zi,t|β](1−zi,t−1)Ui,t . When zi,t−1 = 1 (e.g., individual i was found to be infected in a previous

time period) or Ui,t = 0 (e.g., individual i is no longer in the study), then the probability

density reduces to 1 otherwise the probability density equals [zi,t|β].

We specify diffuse Beta(1,1) prior distributions for ψ0 and ψ, and diffuse N(0,1000) prior

distributions for elements of β and log(σ2). Marginal posterior distributions of latent states

zi,t and parameters were estimated using Markov chain Monte Carlo (MCMC) methods. Full

conditional distributions were found in closed form for zi,t, ψ0, and ψ. These derivations can

be found in Chapter 3. Full conditional distributions for logistic model coefficients were not

found in closed form and updated using a metropolis step. Samples were drawn from the

posterior distribution of each parameter and latent state using a hybrid Gibbs sampler. Each

of three MCMC chains was run for 100,000 iterations and the first 25,000 iterations were

discarded to allow for burn-in. We confirmed convergence using the Gelman and Rubin test

statistic by assuring that the potential scale reduction factor was <1.01 for each variable.

We confirmed ability of our model to replicate the observed data using posterior predictive

checking.
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