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ABSTRACT 

 

 

ASSESSMENT OF THE CLASIC URBAN HYDROLOGY MODEL, IN THE SPRING 

CREEK WATERSHED, NORTHERN COLORADO 

 

Urban development influences the quantity and quality of water at local to watershed 

scales. Urban hydrology models are commonly used to plan, design, and implement stormwater 

infrastructure systems to minimize water quality and flooding consequences of urban 

development. However, the applicability of existing models at municipal scales is hampered by 

extensive data and computational requirements. The Community-enabled Life-cycle Analysis of 

Stormwater Infrastructure Costs (CLASIC) tool is a cloud-computing web application that 

facilitates the simulation of hydrological and water quality responses at municipal scales. The 

tool also provides modules to assess the lifecycle costs of green stormwater infrastructure 

systems. CLASIC is a modified version of the EPA’s SWMM model with direct linkages to 

disperse land use, climate, soils, and other data resources.  

This study aims to assess the performance validity of the CLASIC tool for the 

characterization of urban hydrologic processes and responses. Specifically, the objectives of the 

study are to: i) evaluate the performance of the model compared to the SWMM model and 

observed stream discharge at various spatial and temporal scales; and ii) identify the most 

influential model parameters to inform model parameterization. The study is conducted in the 

Spring Creek catchment within the Cache la Poudre River watershed in Colorado. Streamflow in 

Spring Creek is influenced by urban activities in the City of Fort Collins. Model evaluation is 

conducted at hourly, daily, and monthly time steps at two USGS gaging stations along the 
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stream. Comparison of observed and simulated flow duration curves along with several 

goodness-of-fit measures, including Nash-Sutcliff coefficient of efficiency and percent bias are 

used to evaluate the model performance. The Sobol’ Global Sensitivity Analysis method is used 

to assess the importance of model parameters for different model responses, including mean and 

peak stream discharge. The first and total order sensitivity indices are computed to evaluate the 

effects of parameters individually and in combination.  

Overall, hydrological budgets are simulated similarly between CLASIC and SWMM. The 

results indicate the performance validity of CLASIC stream discharge simulations at 

computational time steps greater than the time of concentration of the catchment. However, 

SWMM peak discharge simulations at smaller time steps are closer to the observed behavior of 

the system. Sensitivity analysis results underline the importance of the Horton infiltration 

parameters and the percent of imperviousness of the catchment. 
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1. Introduction 

Rapid urbanization and growing population have resulted in a significant increase in 

impervious lands and vegetation removal, altering the natural water balance and threatening the 

quantity and quality of water resources. Studies have shown that urbanization caused a 

substantial increase in stormwater runoff and a significant reduction in evapotranspiration (C. Li 

et al., 2018; Locatelli et al., 2017; Miller et al., 2014). Moreover, the population is growing fast, 

the rainfall pattern is changing, and the existing infrastructures are aging (Shifflett et al., 2019; 

Suriya & Mudgal, 2012). Consequently, communities are experiencing severe problems that their 

conventional infrastructure failed to address, such as increasing flood hazards, property damages, 

and water quality degradation (McGrane, 2016; Shahed Behrouz et al., 2020; Suriya & Mudgal, 

2012). The conventional stormwater infrastructure, also known as Gray Infrastructure, collects 

the stormwater runoff, conveys it through a piping network, and drains it into water bodies or 

treatment plants outside the watershed. In contrast, Green Infrastructure mimics the natural water 

cycle and provides the opportunity for on-site stormwater runoff reduction and treatment 

(MacMullan & Reich, 2007). The American Society of Civil Engineers (ASCE), in its 2017 

Report Card for America’s Infrastructure, has declared that investing in upgrading the current 

stormwater infrastructure is a critical need for the nation’s economy and public health (DiLoreto 

et al., 2020). 

The existing problems have triggered municipalities to plan for a shift from their 

conventional infrastructure to a sustainable infrastructure (e.g., Green Infrastructure); however, 

they should tackle multiple barriers and challenges. For instance, they are not sure about the 

performance of green infrastructure, its construction and maintenance costs, or its benefits 

specifically for their region, with their specific resources and condition (Hammit, 2010). 
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Therefore, to overcome the barriers, municipalities need a robust tool to help them find the best 

and most effective alternatives for their current stormwater systems. Nevertheless, modeling 

urban watersheds and the hydrologic cycle at the municipal scale has been a challenge. 

 Current models and planning tools have some limitations, such as complexity and need 

of extensive data to quantify a large number of required parameters (e.g., SWMM), inaccuracy or 

inability for modeling a large-scale study area (e.g., EPA Storm Water Calculator (SWC)), the 

limited number of GI practices (e.g., RECARGA), etc. (Dell et al., 2021; Jayasooriya & Ng, 

2014). A study in Fort Collins (Dell et al., 2021) was conducted on a large scale study area (2153 

acres) that assessed the performance of SWC compared to SWMM. Their study has 

demonstrated that although the SWC has a reasonable performance in evaluating the average 

annual hydrologic components (runoff, infiltration, and evaporation) compared to SWMM, it is 

suggested for smaller study areas up to 50 acres. 

The Storm Water Management Model (SWMM) is one of the most popular urban 

watershed drainage system design and management tools (Haris et al., 2016; Shahed et al., 

2020). Many hydrological research studies have been done using SWMM. Jang et al. used the 

SWMM model to improve the traditional approach of conducting a synthetic hydrograph-urban 

hydrology model combination for pre- and post-development conditions to model the hydrologic 

impact of urbanization (Jang et al., 2007). Moreover, the literature shows that SWMM is a 

reliable tool for flood simulation. An analysis in India was performed in the Brahmani river delta 

to develop a calibrated SWMM model to predict river floods (Rai et al., 2017). Another study in 

Urmia city was conducted to find the subcatchments that are most prone to urban flooding during 

rainy seasons using SWMM (Babaei et al., 2018).  



 

 

3 

 

SWMM can also be used to evaluate the performance of Green Infrastructures within an 

urban area by implementing Low Impact Development (LID) controls. In 2010, LID controls 

were added to SWMM, including five different generic types (Bio-retention cells, Infiltration 

Trenches, Continuous Porous Pavement Systems, Rain Barrels (or Cisterns), and Vegetative 

Swales). Since 2015, this tool has been able to model three more types (Rain Gardens, Green 

Roofs, and Rooftops) to support managers in planning and designing Green Infrastructures and 

assessing their effectiveness in runoff reduction (Lewis A. Rossman, 2010, 2015). Many studies 

have used the SWMM model to evaluate the efficiency of LID controls. For instance, the effect 

of green roofs in restoring the natural water balance was assessed and compared to impervious 

roofs using SWMM by Cipolla et al. and Hamouz and Muthanna. Comparing the results between 

SWMM and the observations illustrated that SWMM has a good performance in simulating 

runoff from green roofs (Cipolla et al., 2016; Hamouz & Muthanna, 2019). The hydrologic 

performance of green roofs, porous pavement, vegetative swale, and rain garden compared to a 

traditional urban development was also evaluated by Kong et al. using the GIS-based SWMM 

(Kong et al., 2017). Their study has indicated that using LID controls helps to reduce the effect 

of urbanization on stormwater runoff.  

Although SWMM has lots of capabilities, modeling a large-scale watershed with this 

model requires detailed information about the site-specific parameters and drainage structure that 

makes a challenge for modelers, especially when there is a lack of data in their study area 

(Shahed Behrouz et al., 2020).  

Community-enabled Lifecycle Analysis of Stormwater Infrastructure Costs tool (Catena 

Analytics, 2020) is developed as a simplified version of the SWMM model to address the 

abovementioned issues. CLASIC is a web-based GIS tool funded by the United States 
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Environmental Protection Agency (EPA) and the Water Research Foundation (WRF), hosted on 

CSU, eRAMS server, to support stormwater planning and decision making by estimating 

Lifecycle costs, runoff volume reduction, pollutant removal, economic benefits, social benefits, 

and environmental benefits. This tool enables users to assess different scenarios of stormwater 

infrastructure by using different settings and technologies and compare them in terms of their 

costs and benefits to decide on the extent and combination of green, hybrid green-gray, and gray 

infrastructure practices (Catena Analytics, 2020). There are ten different types of LID controls, 

including rain gardens, sand filters, infiltration trench, detention basins, wet ponds, stormwater 

harvesting, storage vault, permeable pavement, disconnection, and green roof. Each LID type has 

some default values that are fixed and some input variables that the user can decide on their 

value. CLASIC needs fewer parameters than a complex model in SWMM since the detailed 

drainage system is removed and some of the catchment properties are fixed as the default values. 

Moreover, it populates most of the required data and parameters, such as rainfall and evaporation 

data, % Land Use, % Imperviousness, slope, soil group, etc., from the national datasets. It also 

enables users to modify these parameters as desired. It is also worth mentioning that this tool is 

not intended to be used for flood control (Catena Analytics, 2020; Dell et al., 2021).  

To publicly release the CLASIC tool and inform the planners and decision makers about 

its performance, careful testing of the tool is required to corroborate its reliability and 

performance validity. This study aims to investigate the reliability of the CLASIC tool for 

assessing the hydrologic responses compared to a calibrated full SWMM model. It also seeks to 

identify the important factors in the watershed. Specifically, the objectives are to i) evaluate the 

performance of the model compared to the SWMM model and the observed stream discharge at 

various spatial and temporal scales; and ii) identify the most important model parameters to 
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inform model parameterization. This study will inform the decision-makers about the 

performance of the CLASIC tool in terms of hydrologic responses as a simple tool to evaluate 

different scenarios and find the best stormwater infrastructure alternatives for their communities.  

 

2. Material and Methods 

In this study, we developed a SWMM model using the available data of the Spring Creek 

watershed and the observed flow data of two gaged locations within the creek. Then a MATLAB 

code was developed to calibrate the model using 2560 sample sets generated by SIMLAB 

(method of Sobol) for nine different catchment parameters. Afterward, the CLASIC models were 

built, and the results were compared to the SWMM model and observed data. An Excel 

conversion tool is provided to translate the inputs of SWMM into the ones in the CLASIC tool. 

Moreover, global sensitivity analysis was performed to find the most influential factors of the 

watershed using the method of Sobol in SIMLAB 2.2.1 and a MATLAB code. 

 

2.1. Study area 

Every model is a simplified version of the real world based on assumptions made by the 

modeler. Calibration is therefore required to estimate the model parameters (Shahed et al., 2020). 

The Spring Creek watershed in northern Colorado, east of Horsetooth Reservoir, was selected as 

the study area because there is available observed flow data for this creek.  

Spring Creek originates in western Fort Collins, north of Horsetooth Mountain, and after 

passing through the Horsetooth Reservoir, flows eastward to its confluence with Cache La 

Poudre River. The Spring Creek watershed (Figure 1), which is mainly covered with soil types 
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B (moderately low runoff potential) and C (moderately high runoff potential) (Figure 2), is an 

urban watershed located in central Fort Collins, Colorado. (Figure 3), with an area of about nine 

square miles, and can be divided into multiple subbasins.  

  

Figure 1: Spring Creek Watershed (Imperviousness Map) 
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  Figure 2: Spring Creek Watershed (Hydrologic Soil Group Map) 

Figure 3: Spring Creek Watershed (Land Cover Map) 
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2.2. Urban Hydrology Model: Storm Water Management Model (SWMM) 

A full SWMM model (SWMM 5.1) for the watershed is built with 134 separate subbasins. 

Within the watershed, there are two gauged locations where the hourly observed flow values 

from 2000 to 2018 are collected. These two locations are the intersections of the creek with 

Center Ave. and with Timberline Rd. (Figure 4). The required data of each subbasin and the 

drainage network were collected from the City of Fort Collins dataset and the Google Earth 

measuring tool. The City of Fort Collins provided the input and output files of an old version of 

the SWMM model for the Spring Creek watershed. This model was first developed by the 

University of Florida in 1970 and then updated in 1973, 1974, 1985, and 2003 by the University 

of Florida, Missouri River Division, Boyle Engineering Corporation, and Anderson Consulting 

Engineers, respectively. SWMM96 (Watson, 1996) was used to build the old version, and there 

are some differences in the modeling approach and notations between this version and the recent 

versions. For instance, there is no invert elevation of nodes reported in the old version file; 

instead, it has the invert slope of each conduit. Invert elevation of a node is the elevation of the 

bottom of a manhole or the joint of two conduits. To address this issue, the approach was to start 

from the outlet’s surface elevation and subtract the maximum depth of the conduit at that point 

from this elevation. Then, calculate an invert elevation for each upper node using the slope of the 

conduits.  

Another difference between these two versions is how they represent the storage unit 

properties. In the old version, the approach is to enter the total storage volume of the storage unit 

versus the spillway outflow; however, in the new version, it is done by creating storage curves to 

represent the cross-section of the storage unit based on depth versus area of different levels, and 

rating curves to represent head versus outflow. Since there was no data available for the cross-
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section of the storage units, they are assumed to be rectangular. The surface area of each storage 

unit was extracted from the GIS shapefiles provided by the City of Fort Collins and the Google 

Earth measuring tool. Then their depth was calculated by dividing the volume by the surface 

area. Moreover, some additional storage units were added to the old model based on the current 

maps. 

There are also some other differences between the old and recent versions related to 

routing models. Dynamic Wave routing model is selected for the SWMM model in this study 

since it accounts for different phenomena such as backwater effects, flow reversals, pressurized 

flow, and entrance/exit energy losses (L.A. Rossman, 2006). 

The selected settings for this model are the Dynamic Wave routing model, Horton 

infiltration method, and continuous simulation. Horton infiltration (Horton, 1941) is a well-

known method to calculate the infiltration capacity of the soil. Based on this approach, 

infiltration capacity decreases during a long rainfall event. It starts from a maximum infiltration 

rate and decreases exponentially to a minimum rate, with a specific decay rate (James & 

Rossman, 2003). 

The drainage system is a complex network including 144 junctions and an outfall node, 

185 conduits consisting of pipes and channels, and 48 storage units representing the detention 

and retention ponds and their outlet links (Figure 5). The drainage network collects the runoff of 

each subbasin that is drained to the assigned node, then conveys the water through the conduits 

and drains to the Spring Creek on its path to the outfall node.    

To perform a continuous simulation, we need to use long-term precipitation and monthly 

evaporation data. National Stormwater Calculator (SWC) and CoAgMET are used to collect 
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monthly evaporation and hourly precipitation data (2006-2018), respectively. The first nine years 

of the precipitation data (2006-2014) are used for calibration, and the first two years of this 

period are considered as the model's warm-up period. Furthermore, the last four years of the 

precipitation data are used to test the calibrated model's performance. Furthermore, SSURGO 

data (Soil Survey Staff, 2019) is used to identify the soil characteristics beneath the storage units. 

Baseflow is also extracted using the WHAT baseflow separation tool and added to the models 

(Lim et al., 2006). 

 

 

Figure 4: Spring Creek Watershed 
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2.3. Sensitivity Analysis and Calibration 

Hydrological models are merely simplified representation of the real-world phenomena 

and resolve hydrologic processes responses at discrete spatial and temporal scales. Thus, 

discrepancies between model predictions and observations are unavoidable. Various sources of 

uncertainty in hydrological modeling include (Beven, 2001; Renard et al., 2010; Song et al., 

2015; Tasdighi et al., 2018; Vrugt, 2016):  

• Input uncertainty: This kind of uncertainty is related to the inaccurate forcing inputs 

while collecting data or initial conditions (e.g., precipitation data). 

Figure 5: Spring Creek Watershed SWMM Model 
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• Structural uncertainty (model uncertainty): This source of uncertainty results from 

simplifying the model and processes in the model, errors in the methods used, and/or the 

lack of information.  

• Parameter uncertainty: The lack of knowledge about some parameters or inability to find 

their exact value would cause this type of uncertainty in the model. 

• Measurement uncertainty: The uncertainty related to the measurement of observed data 

(e.g., discharge data). 

Sensitivity Analysis (SA) is used to determine how model outputs are influenced by the 

uncertainty of input factors, and it plays an essential role in any hydrological research. There are 

different techniques for sensitivity analysis, such as Global SA, Local SA, and screening SA, and 

each of them has different methods.  

Local SA is the simplest approach type of sensitivity analysis, which considers a small 

local range of each input factor, one at a time, around its base point. Thus, in this approach, a 

meaningful initial value for the uncertain input factor is needed (Pianosi et al., 2016). This 

technique is computationally cheap to implement but has some shortcomings, such as its 

dependence on the size of the perturbation and the basepoint in nonlinear models and inability to 

account for parameter interactions (i.e., one parameter depends on the value of another 

parameter) (A. Saltelli, 1999; Song et al., 2015). This method was used widely as a pre-

calibration sensitivity method to reduce the number of factors in calibration, as it is reviewed by 

Shahed Behrouz et al. (Shahed Behrouz et al., 2020).  

Screening method, proposed by Morris in 1991, is based on the elementary effects to 

show the overall effect of each input on the output (Morris, 1991). In this method, the elementary 

effects are calculated for each input, then their average (µ) and standard deviation (σ) are 
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computed as sensitivity measures. A higher mean value indicates that the input factor has a more 

overall influence on the output, and a high standard deviation shows non-linearity or interaction 

between the input factor to other input factors (Campolongo et al., 2007; Wagener, 2013). This 

approach is suitable to lower computational costs for the models with a high number of uncertain 

parameters compared to global SA methods. However, not accounting for the interactions 

between parameters, the effect of different inputs on the output at a time, and self-verification are 

some of the weaknesses of this method (Campolongo et al., 2007; Song et al., 2015). 

Global SA technique explores the whole feasible range of the uncertain parameter and 

evaluates the interactions between the parameters. Based on Saltelli et al.'s studies, the global 

method is more reliable than the Local method when Error type II (acceptance of a false null 

hypothesis) is important, and it is suitable for nonlinear and non-monotonic models (A. Saltelli et 

al., 2008; Song et al., 2015). According to Song et al. (2015), some of the commonly used global 

SA techniques in hydrologic modeling are the Regressive-based method, Variance-based 

method, Metamodeling-based method, RSA, and Entropy method. In their work, the main 

studies of global sensitivity analysis in hydrological models since 2005 are reviewed, and it is 

concluded that variance-based methods are of more interest than other methods of global SA 

techniques (Song et al., 2015). Variance-based methods are robust model-independent methods 

that aim to evaluate the sensitivity of the output variance to the uncertainty of the inputs and 

interactions between them, assuming that the variance is sufficient to assess the uncertainties and 

sensitivities. However, the drawback of this approach is its computational cost, which led 

researchers to make the process more efficient (Baroni & Francke, 2020; Giap & Kosuke, 2014; 

Khorashadi et al., 2017; K. C. A. Saltelli & Tarantola, 1997). 
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Considering the wide range of advantages and capabilities of global sensitivity analysis 

compared to other sensitivity approaches, modelers have used this method for many different 

purposes in hydrological and hydraulic modeling (J. Li et al., 2013; Nossent et al., 2011; 

Pfannerstill et al., 2015; Sanadhya et al., 2014). Therefore, in this study, the method of Sobol is 

used, which is one of the variance-based methods.  

2.3.1. Method of Sobol Global Sensitivity Analysis 

The method of Sobol, named after a Russian mathematician Ilya M. Sobol, was 

developed in 1990 based on the Fourier Haar series (1969) for nonlinear models. Sobol used 

Monte Carlo methods to evaluate multidimensional integrals to estimate sensitivity measures 

(Archer et al., 1997). These integrals are used to calculate all terms of the decomposition of the 

output function 𝑓(𝑥) (K. C. A. Saltelli & Tarantola, 1997; Andrea Saltelli et al., 2010): 

𝑌 = 𝑓(𝑥1, … 𝑥𝑛) = 𝑓0 + ∑ 𝑓𝑖(𝑥𝑖)𝑛
𝑖=1   

+ ∑ ∑ 𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗) + ⋯ + 𝑓1,2,…,𝑛(𝑥1, … 𝑥𝑛)𝑛𝑗=𝑖+1𝑛𝑖=1 ; (𝑥𝑚 ∈ 𝐾𝑛) 

(1) 

               

Then, by squaring and integrating (1) over 𝐾𝑛 and considering that all the summands in 

(1) are orthogonal, the decomposition of the output variance would be obtained: 

𝑉 = ∑ 𝑉𝑖𝑛
𝑖=1 + ∑ ∑ 𝑉𝑖𝑗 + ⋯ + 𝑉1,2,3,..,𝑛𝑛

𝑗=𝑖+1
𝑛

𝑖=1  

(2) 

 

 

Afterward, by dividing partial variances of each term in (1) by the total output variance, 

first-order sensitivity measures will be calculated: 
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𝑆𝑖 = 𝑉𝑖𝑉(𝑌) = 𝑉𝑥𝑖(𝐸𝑥~𝑖(𝑌|𝑥𝑖))𝑉(𝑌)  
(3) 

The FAST method could be used instead of Sobol if the sum of the 𝑉𝑖 terms were close to 

the total output variance. Otherwise, higher order indices—that are, the interactions between the 

selected factor and other factors—need to be calculated to allow the investigator to find the total 

effect index (𝑆𝑖𝑇) of each parameter (𝑥𝑖) on the output variance in addition to the main effect. (A. 

Saltelli & Homma, 1996)  

𝑆𝑖𝑇 would be the sum of all terms, including the subscript i (A. Saltelli et al., 2012). As an 

example, if we consider only three input factors, then 𝑆𝑖𝑇 would be defined as follow: 

𝑆𝑖𝑇 = 𝑆𝑖 + 𝑆𝑖𝑗 + 𝑆𝑖𝑘 + 𝑆𝑖𝑗𝑘 (4) 

When Sij and Sijk are the second-order and third-order indices, respectively. 

The smallest sample size in this method is n(2k+2). The term “n” is the minimum model 

evaluation for estimating one individual effect, taking a value of 16, or 32, 64, 128,…, and the 

term k is the number of input factors (Koo et al., 2020; Nguyen & Reiter, 2015; A. Saltelli, 

2014). 

The main drawback of the Sobol method is that it is computationally expensive and time-

consuming, and its main advantage is that one can estimate the sensitivity of any order with this 

method. Furthermore, the application of this method is suitable for nonlinear, non-monotonic 

models and can be considered as a quantitative, model-independent approach. (Andraddttir et al., 

1997;Becker, 2014) 

This method is widely used in hydrologic and environmental models. Studies have found 

the method of Sobol very successful in factor fixing and factor prioritization for flow simulations 
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(Cibin et al., 2014; Nossent et al., 2011). Leimgruber et al. also found this method proper to 

evaluate the sensitivity of water balance components to LID parameters using a SWMM model 

(Leimgruber et al., 2018).  

To perform global sensitivity analysis on the SWMM model, SIMLAB 2.2.1 is used to 

generate 2560 sample sets for nine independent parameters with the method of Sobol (Table 1). 

The parameters are width of the subbasins, slope of the subbasins, percent of imperviousness, 

depression storage in impervious and pervious area, the percent of impervious area without 

depression storage, and Horton infiltration parameters. A range of fractions (scale factors) is 

selected for each parameter based on the parameters’ feasible range (Dell et al., 2021; Lewis A. 

Rossman, 2015). To simplify the process, each parameter would have the same scale factor for 

all the subbasins in each sample set. It is assumed that all parameters are uniformly distributed so 

that for each parameter, there is the same probability of having any value within its feasible 

range. Since estimating the indices of all orders is very expensive in the method of Sobol, it is 

customary to estimate only first and total order indices (A. Saltelli et al., 2010). 

Table 1: Range of parameters for sensitivity analysis in SIMLAB 

 

Parameter unit 

Lower 

bound 

Upper 

bound 

Lower bound 

fraction(unitless) 

Upper bound 

fraction(unitless) 

Width ft 350 20820 0.7 1.2 

Slope % 0.25 43.8 0.5 2 

%Imperv % 4 99.9 0.5 1 

DstoreImperv in 0 0.1 0 1 

DstorePerv in 0.1 0.3 0.33 1 

%ZeroImperv % 1 5 1 5 

Max Infil Rate in/hr 1 10 1 19.6 

Min Infil Rate in/hr 0.01 0.5 0.02 1 

Decay Rate 1/hr 2 13 0.3 2 
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Afterward, a MATLAB code is developed to run the model in SWMM for each sample 

set and generate the flow at both gauged locations (i.e., intersections of Spring Creek with Center 

Ave. and Timberline Rd.). Each sample set of parameters is the product of the selected 

parameters and their respective generated scale factor from SIMLAB for that parameter.  

After running all sample sets in SWMM, the simulated flow for each set and location is 

compared to the available observed flow to find the best sample set by evaluating the model 

performance metrics. Statistical model performance metrics that are evaluated for this study are 

Coefficient of determination (R2), Root Mean Square Error (RMSE), Nash-Sutcliffe coefficient 

of efficiency (NSE), and PBIAS. Table 2 shows the formula to calculate each metric (Moriasi et 

al., 2015). N is the number of samples, 𝑆𝑖 is the simulated flow and 𝑂𝑖 is the observed flow. 

  

Table 2: Model performance Metrics (statistical) 

Equation Range Best value 𝑅2 = 𝐶𝑜𝑟𝑟2(𝑆, 𝑂) 0 to1 1 

𝑅𝑀𝑆𝐸 = √∑ (𝑂𝑖 − 𝑆𝑖)2𝑁𝑖=1 𝑁  0 to ∞ 0 

𝑁𝑆𝐶𝐸 = 1 − ∑ (𝑂𝑖 − 𝑆𝑖)2𝑁𝑖=1∑ (𝑂𝑖 − �̅�𝑖)2𝑁𝑖=1  -∞ to 1 1 

𝑃𝐵𝐼𝐴𝑆 = ∑ (𝑂𝑖 − 𝑆𝑖)𝑁𝑖=1∑ (𝑂𝑖)𝑁𝑖=1 × 100 -∞ to ∞ 0 

 

Each metric has some advantages and disadvantages discussed by Moriasi et al. (Moriasi 

et al., 2015). The objective of the calibration process was to find the parameter set with the best 
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NSE value. Moreover, it is recommended to use a combination of statistical and graphical 

performance measures to understand the model's performance better (Loague & Green, 1991; 

Moriasi et al., 2015). Hence, this study selected time series, 1:1 scatter plot, Cumulative 

distribution curves (CDF), and Flow Duration curves (FDC) as the graphical measures. As one of 

the most commonly used graphical measures in hydrology, Flow Duration Curve represents the 

percent of the time a given flow is equaled or exceeded (Vogel & Fennessey, 1996). Many 

studies related to hydrology, water quality, watershed management, flood assessment, etc., have 

considered FDC a useful means (Leong & Yokoo, 2021). For example, Brown et al. found FDC 

helpful in evaluating the impact of vegetation change on flow distribution (Brown et al., 2005). 

FDC has also been used extensively in predicting streamflow in ungagged locations (Burgan & 

Aksoy, 2018, 2020; Müller & Thompson, 2016). Moreover, this curve can be an alternative to 

CDF curves (Leong & Yokoo, 2021), but both are presented in this study.  

Sensitivity indices for total effect and main effect are generated using SIMLAB by 

performing global sensitivity analysis with the method of Sobol for Average Annual flow, 

Standard Deviation (SD) of Annual flow, Average Annual Peak flow, and SD of Annual Peak 

flow. 

2.4. CLASIC model 

CLASIC tool uses a simplified methodology to route stormwater with and without Low 

Impact Development technologies called SWMM-LITE (Dell et al., 2021). After calibrating the 

SWMM model, three models were built in the CLASIC tool. Building a model in the CLASIC 

tool requires fewer parameters than the SWMM model. There is no need to have the drainage 

system parameters, or some parameters related to the subbasins such as manning N for the 

impervious and pervious area, depression storage of impervious and pervious area, and percent 
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of the impervious area without depression storage. CLASIC models each subbasin (with or 

without LID) separately and drains its runoff to a separate conduit. Then, all conduits drain into 

the outfall. Thus, to get the flow of each channel in the watershed, we need to model the 

upstream drainage area of that channel so that the outfall node of the model would represent the 

upstream node of the channel in the watershed. Since we have two gauged locations, two models 

were created to simulate the flow of these two locations. One model is the upstream drainage 

area of Center Ave. gauge (Figure 7), and the second model is the upstream drainage area of 

Timberline Rd. gauge (Figure 8). Another model (Figure 6) is also built for the entire watershed 

to simulate the hydrologic components of the study area (Runoff, Evaporation, and Infiltration). 

To build each model, the shapefile of the desired drainage area is imported into the tool as the 

project area. Then, the precipitation and evaporation data are entered in the Climate Data tab. 

Afterward, the properties of the subbasins are applied to them separately. At this point, the 

baseline scenario is built (a scenario without any LID controls). By creating a new scenario, we 

can build our final model with LID controls. Since only the data of Detention ponds and 

Retention ponds were available for this watershed, they are the only LID controls considered in 

this study.  

Considering the differences between the model that can be built in the CLASIC tool and 

the model already built in the SWMM, a conversion tool is provided to translate the storage units 

from SWMM into the LID controls in the CLASIC tool (Figure 9). This tool is a spreadsheet 

that summarizes the main factors of the drainage area and LID controls (or storage units) for 

each subbasin and calculates the number of the converted technologies needed in the CLASIC 

tool to maintain the main factors. The most similar technology to what we have on the site 

should be selected in the conversion process, and the main factors should be kept consistent. The 
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main factors are total drainage area, total technology area, total captured volume, seepage rate, 

and total % of imperviousness. Since detention ponds and retention ponds are volume-based 

technologies, the most important factor in the CLASIC models is the total captured volume (Dell 

et al., 2021). 

Time of concentration (𝑇𝐶) at each gauged location is also evaluated by the SCS method. 𝑇𝐶 is the time that runoff needs to reach the outlet from the hydraulically furthest point of the 

watershed (USDA-NRCS, 2010). The SCS method uses curve number (CN) and the catchment 

characteristics to evaluate the time of concentration:  

𝑇𝐶 = 𝐿0.8(𝑆 + 1)0.71140𝑌0.5  
(5) 

Where: 

𝑇𝐶 = time of concentration (hr) 

L= flow length (ft) 

S= maximum potential retention (in) (S = 
1000𝐶𝑁 − 10) 

Y= average watershed land slope (%) 

The selected average value of 80 as the curve number (CN) is determined based on the watershed 

land cover and soil group (NEH630.09, 2004). 
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Figure 6: CLASIC model for the entire watershed 

Figure 7: CLASIC model for Center location 
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Figure 8: CLASIC model for Timberline location 
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Import the data of drainage area 

and LID control measures 

Summarize the data based on each 

type of the LID control measure 

Calculate the drainage area and the 

percent of impervious area 

Convert the LID control measures 

to the available ones in the 

CLASIC tool and calculate the 

number of technologies required 

for each of them 

Translate the data into the 

parameters required in the 

CLASIC tool 

Conversion tool process 

Figure 9: Conversion tool flowchart 
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3. Results 

3.1. SWMM Calibration and testing 

The SWMM model was calibrated against observed flow data at two locations (Center and 

Timberline) for 2008 through 2014 using feasible ranges of catchment parameters (Table 1). A 

parameter set with the closest NSE to one is selected as the best set for the model, while other 

performance metrics are also tested to be acceptable (Table 3). The selected set of fractions is 

0.7273 for width, 1.9414 for slope, 0.5039 for percent of impervious, 0.7890 for depression 

storage of impervious area (DstoreImperv), 0.76445 for depression storage of pervious area 

(DstorePerv), 2.78125 for percent impervious area with no depression storage (%ZeroImperv), 

13.0609 for max infiltration rate, 0.76265 for min infiltration rate, and 0.6320 for decay rate. The 

model is then tested for another period (2015-2018), and the results are shown in Table 4.  

Based on the performance evaluation criteria by Moriasi et al. for a watershed scale model, 

NSE>0.8, R2>0.85, and PBIAS<±5 show “Very Good” performance for daily and monthly 

temporal scale (Moriasi et al., 2015). Their study also found that 0.7< NSE ≤0.8, 0.75< R2 ≤0.85, 

±5≤PBIAS≤10 represent “Good” performance. Table 3 shows that the calibrated model has a 

very good performance based on NSE and R2 in the calibration period (2008-2014) in both 

observed locations. PBIAS in Center location for all temporal scales has a “Good” rating while 

in Timberline location has a “Very Good” rating. Moreover, Singh et al. recommended that the 

RMSE value less than the standard deviation (SD) of the observations be considered low 

(Moriasi et al., 2015; Singh et al., 2005). SD for hourly, daily, and monthly observation flows are 

25.53, 19.62, and 16.8 (CFS) in the Center location and 21.78, 12.59, and 10.14 (CFS) in 

Timberline location, respectively. Thus, the results in Table 3 indicate that RMSE values are low 

for all the temporal scales, and in both locations, that is very good.  
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As mentioned above, Table 4 shows the model's performance in a period other than the 

calibration period. This table shows that PBIAS has a “Good” rating, and NSE and R2 have a 

“Very Good” rating for all temporal scales and locations. Furthermore, SD for hourly, daily, and 

monthly observed flow equals 14.64, 10.75, 9.64 in the Center location, and 19.32, 13.37, and 

10.79 in Timberline location, respectively. Based on the SD values and Table 4, the SWMM 

model also has low RMSE in this period of time. 

Table 3: Model performance metrics (2008-2014) 

Location  PBIAS (%) RMSE (CFS) 𝑹𝟐 NSE 

Center 

Hourly 8.7 9.8 0.87 0.85 

Daily 7.22 5.33 0.94 0.93 

Monthly 8.15 3.77 0.98 0.95 

Timberline 

Hourly -0.06 11.99 0.86 0.70 

Daily 4.95 5.51 0.89 0.81 

Monthly 1.22 2.52 0.95 0.94 

 

Table 4: Model performance metrics (2015-2018) 

Location  PBIAS (%) RMSE (CFS) 𝑹𝟐 NSE 

Center 

Hourly 9.03 4.9 0.90 0.89 

Daily 8.30 2.52 0.96 0.94 

Monthly 8.80 1.79 0.99 0.96 

Timberline 

Hourly 6.51 7.98 0.87 0.83 

Daily 8.10 3.91 0.92 0.91 

Monthly 9.74 2.66 0.95 0.94 

 

 



 

 

26 

 

To get a visual indication of the model performance, graphical performance measures are 

also provided in Figures 10 to 17 for the calibration period and Figures 18 to 25 for 2015-2018. 

Figure 10 and Figure 11 show the time series of observed and simulated flows for different 

temporal scales in the Center and Timberline locations, respectively, for the calibration period. 

These figures show that the model could capture the shape and peak time of the observed flow 

very well in both locations. However, there are some locations in the time series that the model 

has underestimated or overestimated the peak flow. In the Center location, the SWMM model 

mostly underestimated the peak flow, while the model mostly overestimated the peak flow in the 

Timberline location.  

There is a significant peak flow in both time series of gauged locations due to a large 

precipitation event in July 2009. The time series show that the SWMM model couldn’t evaluate 

the actual magnitude of that event; hence it has caused overestimation of flow at both locations. 

Moreover, as the computational time scale gets bigger, the difference between observed and 

simulated peak flows becomes smaller. 
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Figure 11: Timeseries of observed and simulated flow in Timberline (2008-2014) 

Figure 10: Timeseries of observed and simulated flow in Center (2008-2014) 
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Figure 12 and Figure 13 show the scatter plots of observed flow versus simulated flow 

for different temporal scales in Center and Timberline locations, respectively, for the calibration 

period. These figures show that the model mostly underestimated the flow in the Center location, 

while it mostly overestimated the flow in the Timberline location. These plots also show that the 

points are more scattered with more distance from the 1:1 line in a smaller time scale, and they 

get closer to the line as the temporal scale gets larger.   

 

 

 

Figure 12: Scatter Plot of simulated vs observed flow at Center (2008-2014) 

Figure 13: Scatter Plot of simulated vs observed flow at Timberline (2008-2014) 



 

 

29 

 

 Figure 14 and Figure 15 show the Cumulative Distribution Function (CDF) curves of 

observed flow and simulated flow for different temporal scales in Center and Timberline 

locations, respectively, for the calibration period. Based on Figure 14, the CDF of simulation 

flow could capture the shape of the CDF of observed flow with reasonable accuracy on the 

hourly and daily scale, while on a monthly scale, these two curves are close in low flows and 

more distant in high flows. Figure 15 shows that in Timberline location, CDF curves of 

observed and simulated flows are very tight in all temporal scales. On the monthly scale, there 

are some parts with overestimation or underestimation, but the overall performance is acceptable. 

 

Figure 14: CDF of observed and simulated flow in Center (2008-2014) 

Figure 15: CDF of observed and simulated flow in Timberline (2008-2014) 
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 Flow duration curves of the observed and simulated flows for different temporal scales in 

both locations are also provided in Figure 16 and 17. Both figures indicate that the calibrated 

model can simulate the exceedance probability of flows with acceptable accuracy.  

 

 

 

 

 

 

Figure 16: FDC in Center (2008-2014) 

Figure 17: FDC in Timberline (2008-2014) 
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Figure 18 and Figure 19 show the time series of observed and simulated flows for 

different temporal scales in Center and Timberline locations, respectively, for 2015 to 2018. 

These figures show that the model can predict the shape and peak time of the observed flow very 

well in both locations. There are some locations in the hourly and daily time series that the model 

has underestimated or overestimated the peak flows. However, in both locations, the model 

mostly underestimated the monthly peak flows. Furthermore, as the temporal scale gets bigger, 

the difference between the observed peak flow and simulated peak flow gets smaller. 

 

 

 

Figure 18: Timeseries of observed and simulated flow in Center (2015-2018) 

Figure 19: Timeseries of observed and simulated flow in Timberline (2015-2018) 
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Figure 20 and Figure 21 show the scatter plots of observed flow versus simulated flow 

for different temporal scales in Center and Timberline locations, respectively, for 2015 to 2018. 

These figures show that in the Center location, the model mostly underestimated the flow, and in 

the Timberline location, flows are mostly underestimated in low to median flows and 

overestimated in high flows. These plots also show that the points are more scattered with more 

distance from the 1:1 line in smaller temporal scale, and they get closer to the line as the 

temporal scale gets larger and show more accuracy in the model prediction.   

 

 

 

Figure 21: Scatter plots of simulated vs observed flow at Timberline (2015-2018) 

Figure 20: Scatter plots of simulated vs observed flow at Center (2015-2018) 
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Figure 22 and Figure 23 show the Cumulative Distribution Function (CDF) curves of 

observed flow and simulated flow for different temporal scales in the Center and Timberline 

locations, respectively, for 2015 to 2018. Based on Figure 22, the CDF of simulation flow can 

successfully predict the non-exceedance probability of the observed flow. Figure 23 shows that 

in Timberline location, CDF curves of observed and simulated flows are very close in all 

temporal scales. However, on a monthly scale, the model overestimated the non-exceedance 

probability of the flow above the median, but the overall performance is acceptable. 

 

 

 

Figure 22: CDF of observed and simulated flow in Center (2015-2018) 

Figure 23: CDF of observed and simulated flow in Timberline (2015-2018) 
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Flow duration curves of the observed and simulated flows for different temporal scales in 

both locations are also provided in Figure 24 and Figure 25. Both figures indicate that the 

calibrated model can simulate the flows with acceptable accuracy. However, in the Timberline 

location, the model has overestimated the exceedance probability in low flows. 

 

 

 

 

 

 

 

Figure 25: FDC for observed and simulated flow in Timberline (2015-2018) 

Figure 24: FDC for observed and simulated flow in Center (2015-2018) 
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3.2. CLASIC tool results 

 

After running the CLASIC tool for the desired period, the results of each scenario can be 

found in the results panel. A SWMM version of each scenario is also available in the results 

panel that can be downloaded and imported into the SWMM. The first model representing the 

whole watershed is downloaded, imported into SWMM, and run from 2008 to 2014. Then, the 

average annual hydrologic components (Runoff, Infiltration, and Evaporation) were extracted 

from the report file and compared with those from the calibrated SWMM model. Figure 26 

shows the pie charts of both models representing how the total precipitation is divided among 

hydrologic components. It is understood from this figure that the models report very close 

fractions for each component. CLASIC has overestimated the runoff compared to the calibrated 

SWMM model by about 2%, infiltration about 0.5%, and underestimated the evaporation by 

about 2.5%. It is worth mentioning that the CLASIC tool creates and shows the pie chart of 

hydrologic components for each scenario in its result panel. 

 

Figure 26: CLASIC vs SWMM in computing the proportion of each hydrologic component in the total 

precipitation  
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The second and third CLASIC models were also built in the CLASIC tool and imported into 

SWMM. Then the total flow at the outlet was then calculated for each model to represent the 

flow at observation locations. Afterward, the flow for each temporal scale was compared with 

the observed flows. Table 5 shows the statistical performance metrics for CLASIC models. It is 

understood from the Nash-Sutcliff values that the Timberline model is not satisfactory for small 

temporal scales (hourly and daily), but its performance is good for the monthly scale. In the 

Center model, the hourly results are not good but still acceptable; however, daily and monthly 

results are very good. Thus, the CLASIC tool has more accuracy in estimating the flow in the 

Center location, which is in the middle of the watershed, than in the Timberline location near the 

outlet. The time of concentration for Center and Timberline locations are about 7 and 10 hours, 

respectively, and it is understood from Table 5 that although the model does not show good R2 

and NSE on the daily scale, at Timberline location, it has a good PBIAS, and RMSE is not 

significantly larger than the SD of observed daily flow. Thus, it can be concluded that even in the 

Timberline location, the CLASIC tool shows an acceptable performance, but not great, for time 

scales larger than the time of concentration. 

Table 5: CLASIC models performance metrics 

Location  PBIAS (%) RMSE (CFS) 𝑹𝟐 NSE 

Center 

Hourly 4.7 17.39 0.64 0.54 

Daily 4.95 8.01 0.85 0.83 

Monthly 4.5 3.17 0.97 0.96 

Timberline 

Hourly -12.28 38.99 0.36 -2.21 

Daily -5 17.53 0.50 -0.94 

Monthly -10.68 4.95 0.88 0.76 
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Figures 27-34 show the graphical performance measures for CLASIC and SWMM 

models compared to observed data in Timberline and Center locations. As the time series show, 

the CLASIC tool has overestimated and underestimated some peaks, but it has captured the peak 

times and the shape of the observed flow in both locations. Comparison of CLASIC and SWMM 

indicates that CLASIC has not been successful in attenuating some peak flows, and it has caused 

extreme peaks at some locations in the time series (e.g., in 2009). Moreover, it is obvious that as 

the temporal scale gets bigger, the model accuracy gets better.  

 

  

Figure 27: Timeseries of observed and simulated flow (CLASIC and SWMM) in Center  

Figure 28: Timeseries of observed and simulated flow (CLASIC and SWMM) in Timberline  
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Figures 29 and 30 illustrate that SWMM has more accuracy than CLASIC in predicting 

the observation flow at an hourly time scale. The points are more scattered with CLASIC than 

SWMM. However, as the time scale gets bigger, CLASIC and SWMM points get closer to each 

other and to the 1:1 line showing more accuracy in both models.  

 

 

 

 

 

  

Figure 29: Scatter plots of simulated vs observed flow (CLASIC and SWMM) at Center  

Figure 30: Scatter plots of simulated vs observed flow (CLASIC and SWMM) at Timberline  
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Moreover, Figures 31-34 demonstrate that the total flows from CLASIC models have a 

close probability to the SWMM and observed total flows. In monthly Center CDF curves, it is 

displayed that SWMM and CLASIC have overestimated the non-exceedance probability of 

flows. These curves also show that the CLASIC tool CDF is slightly closer to the observation 

CDF compared to SWMM. However, in the Timberline location, CDF of CLASIC and SWMM 

have overestimated the observation CDF at some flows and underestimated others. Furthermore, 

both SWMM and CLASIC CDFs are very close to the observation CDF at this location. 

 

 

 

Figure 31: CDF of observed and simulated flow (CLASIC and SWMM) in Center  

Figure 32: CDF of observed and simulated flow (CLASIC and SWMM) in Timberline  
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Flow Duration Curves in Figures 33 and 34 also show that the exceedance probability of the 

CLASIC and SWMM results are very close to the observed ones. In the Center location monthly 

plots, however, both models underestimated the percent of the time a given flow is equaled or 

exceeded. Nevertheless, in the Timberline location monthly plots, the FDC of SWMM and 

CLASIC have overestimated the observed FDC at some flows and underestimated others.  

 

 

 

 

Figure 33: FDC for observed and simulated flow (CLASIC and SWMM) in Center 

Figure 34:FDC for observed and simulated flow (CLASIC and SWMM) in Timberline 
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3.3. Sensitivity analysis results 

 

To calculate the sensitivity indices, Average Annual flow, SD of Annual flow, Average 

Annual Peak flow, and SD of Annual Peak flow from the SWMM model are calculated and 

imported into SIMLAB for both locations as the target model output for the outputs of all 

samples. The first order indices (𝑆𝑖) and total order indices (𝑆𝑖𝑇) are presented in Table 6-9, and 

Figures 35-38show the Sobol indices pie charts.  

The first-order indices should be between zero and one, and the total order indices can be 

equal or greater than the first-order ones. However, there were some total indices with the value 

of zero or less than their value of the first order index, and it shows the errors in estimation. 

Hence, the negative values are replaced with zero in Tables 6-9. The sum of the first indices 

(main effects) can be less than or equal to one, while the sum of total indices can exceed one 

because some higher-order indices may repeat in some total order indices. Tables 6-9 also show 

that the model is non-additive since the sum of the first indices for every target output in both 

locations is less than one (Nossent et al., 2011). 
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Table 6: First and Total sensitivity indices for Average Annual flow 

Sobol first order indices 

Parameter Timberline Center 

Width 0.008 0.008 

%Slope 0.013 0.011 

%Imperv 0.581 0.578 

DstoreImperv 0.054 0.093 

DstorePerv 0.002 0.001 

%ZeroImperv 0.008 0.004 

MaxInfiltration 0.072 0.075 

MinInfiltration 0.145 0.138 

DecayRate 0.057 0.054 

Sum 0.939 0.962 

Sobol total order indices 

Parameter Timberline Center 

Width 0.003 0 

%Slope 0 0.004 

%Imperv 0.586 0.576 

DstoreImperv 0.070 0.101 

DstorePerv 0.001 0 

%ZeroImperv 0.008 0.005 

MaxInfiltration 0.149 0.132 

MinInfiltration 0.229 0.197 

DecayRate 0.108 0.097 

Sum 1.154 1.111 

Difference between total and first order indices 

Parameter Timberline Center 

Width 0 0 

%Slope 0 0 

%Imperv 0.005 0 

DstoreImperv 0.016 0.009 

DstorePerv 0 0 

%ZeroImperv 0 0.001 

MaxInfiltration 0.076 0.057 

MinInfiltration 0.084 0.058 

DecayRate 0.051 0.043 
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Table 7: First and Total sensitivity indices for Average Annual peak flow 

Sobol first order indices 

Parameter Timberline Center 

Width 0.012 0.011 

%Slope 0.016 0.018 

%Imperv 0.418 0.146 

DstoreImperv 0.025 0.002 

DstorePerv 0.011 0.018 

%ZeroImperv 0.022 0.005 

MaxInfiltration 0.115 0.237 

MinInfiltration 0.136 0.224 

DecayRate 0.076 0.171 

Sum 0.831 0.832 

Sobol total order indices 

Parameter Timberline Center 

Width 0.043 0.016 

%Slope 0.027 0.011 

%Imperv 0.470 0.143 

DstoreImperv 0.084 0.014 

DstorePerv 0.027 0.029 

%ZeroImperv 0.056 0.017 

MaxInfiltration 0.227 0.338 

MinInfiltration 0.266 0.340 

DecayRate 0.203 0.249 

Sum 1.403 1.157 

Difference between total and first order indices 

Parameter Timberline Center 

Width 0.031 0.004 

%Slope 0.011 0 

%Imperv 0.052 0 

DstoreImperv 0.059 0.012 

DstorePerv 0.016 0.011 

%ZeroImperv 0.034 0.013 

MaxInfiltration 0.112 0.101 

MinInfiltration 0.130 0.116 

DecayRate 0.127 0.079 
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Table 8: First and Total sensitivity indices for SD of Annual flow 

Sobol first order indices 

Parameter Timberline Center 

Width 0.009 0.013 

%Slope 0.010 0.008 

%Imperv 0.325 0.230 

DstoreImperv 0.009 0.007 

DstorePerv 0.011 0.009 

%ZeroImperv 0.012 0.005 

MaxInfiltration 0.201 0.251 

MinInfiltration 0.131 0.149 

DecayRate 0.132 0.158 

Sum 0.839 0.830 

Sobol total order indices 

Parameter Timberline Center 

Width 0.015 0 

%Slope 0.010 0.012 

%Imperv 0.352 0.239 

DstoreImperv 0.049 0.014 

DstorePerv 0.016 0.013 

%ZeroImperv 0.030 0.005 

MaxInfiltration 0.281 0.316 

MinInfiltration 0.232 0.239 

DecayRate 0.220 0.221 

Sum 1.205 1.059 

Difference between total and first order indices 

Parameter Timberline Center 

Width 0.007 0 

%Slope 0.000 0.004 

%Imperv 0.028 0.009 

DstoreImperv 0.040 0.007 

DstorePerv 0.005 0.004 

%ZeroImperv 0.019 0.000 

MaxInfiltration 0.080 0.064 

MinInfiltration 0.101 0.090 

DecayRate 0.088 0.063 
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Table 9: First and Total sensitivity indices for SD of Annual peak flow 

Sobol first order indices 

Parameter Timberline Center 

Width 0 0.013 

%Slope 0 0.022 

%Imperv 0.219 0.050 

DstoreImperv 0.049 0.001 

DstorePerv 0.010 0.019 

%ZeroImperv 0.032 0.004 

MaxInfiltration 0.183 0.410 

MinInfiltration 0.019 0.089 

DecayRate 0.070 0.232 

Sum 0.582 0.841 

Sobol total order indices 

Parameter Timberline Center 

Width 0.159 0.019 

%Slope 0.145 0.041 

%Imperv 0.398 0.054 

DstoreImperv 0.245 0.009 

DstorePerv 0.134 0.031 

%ZeroImperv 0.220 0.011 

MaxInfiltration 0.333 0.452 

MinInfiltration 0.208 0.141 

DecayRate 0.318 0.271 

Sum 2.161 1.029 

Difference between total and first order indices 

Parameter Timberline Center 

Width 0.159 0.006 

%Slope 0.145 0.018 

%Imperv 0.178 0.004 

DstoreImperv 0.196 0.008 

DstorePerv 0.124 0.012 

%ZeroImperv 0.188 0.007 

MaxInfiltration 0.150 0.042 

MinInfiltration 0.190 0.052 

DecayRate 0.249 0.039 
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Figure 35: Average Annual flow indices 

Figure 36: Average Annual Peak flow indices 
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Figure 37: Standard Deviation of Annual flow indices 

Figure 38: Standard Deviation of Annual Peak flow indices 
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Table 6 and Figure 35 show the sensitivity indices for the average annual flow as a 

target output of the model. Based on the first order and total order indices, the most important 

factor for the average annual flow of the Spring Creek in both locations is the percent of 

imperviousness (%Imperv). Thus, the variance of the average annual flow is most sensitive to 

this factor, and by fixing this factor to its actual value, there would be a significant reduction in 

the output variance. The difference between the total index and first-order index of this output is 

not very substantial, meaning that this input factor has a low interaction with other factors. The 

most important factors after %Imperv, for the Timberline location, are Minimum infiltration rate, 

Maximum infiltration rate, Decay rate, and Depression storage of impervious area, based on the 

order of their importance. The difference between their first and total order indices indicates that 

they have the same order of importance in their interactions with other factors. The rest of the 

factors are not very important because they have very small Si and 𝑆𝑖𝑇.  

The most important factors after %Imperv, for the Center location, are Minimum 

infiltration rate, Depression storage of impervious area, Maximum infiltration rate, and Decay 

rate, and Minimum infiltration rate has the most interaction with other parameters in the total 

variance of the output. 

With the same approach, Table 7 and Figure 36 show that in Timberline location, the 

most important factor, in terms of the individual effect on the average annual peak flow, is the 

percent of imperviousness, and by fixing this factor to its actual value, there would be a great 

reduction in the variance of the output. After this factor, Minimum infiltration rate, Maximum 

infiltration rate, and Decay rate are important. However, in terms of interactions, the Minimum 

infiltration rate has the most significant difference between its first order and total order; hence, 

this factor has the most interaction with other factors among all the factors followed by Decay 
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rate, Max infiltration rate, Depression storage of impervious area, and %ZeroImperv. Other 

factors are not as important as the mentioned ones.  

In the Center location, however, the percent of imperviousness is the 4th important factor 

among all factors, in terms of the main effect. Maximum infiltration rate followed by Minimum 

infiltration rate and the Decay rate are the most important factors. In terms of interaction, the 

factors have the same ranks. Other factors are not very important.  

From Table 8 and Figure 37, it is concluded that for Timberline location, the most 

important factor for SD of annual flow is the percent of imperviousness because it has the 

biggest Si and 𝑆𝑖𝑇. After this factor, Maximum infiltration rate, Decay rate, and Minimum 

infiltration rate are the most important factors. In terms of interaction with other factors, 

however, the Minimum infiltration rate has the greatest effect, followed by Decay rate and 

Maximum infiltration rate. Other factors are not very important.  

Center location shows a different order of importance. The difference is that in this 

location, the Maximum infiltration rate is more important than the percent of imperviousness. 

The factors with most interactions with others are also the same as Timberline, while Maximum 

infiltration rate has more interaction than Decay rate.  

Table 9 and Figure 38 indicate that the important factors for the SD of peak annual flows 

are very different in the two locations. The percent of imperviousness is the most important 

factor in Timberline, while it is ranked 4 in Center, and Maximum infiltration rate is the most 

important one in this location. Nevertheless, Maximum infiltration rate is the second important 

factor in Timberline, while its Si is close to the first important factor. Moreover, Width and 

%Slope have zero Si in Timberline, while they have a small value of Si in Center. Decay rate has 



 

 

50 

 

the 3rd rank in Timberline and second rank in Center, in terms of the main effect. Depression 

storage of impervious area has the 4th rank in Timberline location, while it is the least important 

factor in Center location. An interesting conclusion for Timberline, based on the table, is that all 

other factors with very small Si have significant and almost close 𝑆𝑖𝑇’s. This means that although 

these factors do not have strong individual effect on the output, they have big interactions in 

higher orders. 

4. Discussion 
 

Comparing the results of the CLASIC tool and SWMM model with the observed data 

indicated that SWMM has a better estimation of total flow at smaller computational time scales 

than the CLASIC tool. It results from removing the conveyance system and using dummy 

conduits that do not account for attenuating flow since the CLASIC tool is not intended to be 

used for flood control (Dell et al., 2021). It is understood from the results that the time of 

concentration may have an essential role in the performance of the CLASIC tool. The model 

performance at the Center location was very good at the daily and monthly time scales, but at the 

Timberline location, only the monthly results are very good. Although the time of concentration 

is less than a day at the Timberline location and PBIAS and RMSE are reasonable at the daily 

time scale, NSE is not acceptable. The time series and scatterplots can explain the reason. The 

significant peak flow in July 2009 had more effect on the Timberline results than Center results. 

The size of the peak flow in the CLASIC tool is about five times the size of the observed peak 

flow at that time in the Timberline location, while it is about three times in the Center location. It 

may be due to the size of the upstream drainage area of each gauged location, which was bigger 

for Timberline than Center. The effect of the big storm in 2009 is also apparent when we 

compare the performance of the calibrated SWMM model of 2008-2014 with 2015-2018. The 
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model performed better in 2015-2018 than the calibration period since there was no such storm 

in that period. 

Another important point to consider is that in the CLASIC results, the model parameters are 

based on the calibrated SWMM model; hence they may not be the optimal value for the CLASIC 

model.  

By looking at the flow duration curves, it is understood that although the flow simulated by 

the CLASIC tool and SWMM model had some discrepancies with the observed flow, especially 

in smaller time scales, both models had a great estimate of flow statistics.  

5.  Conclusion 
 

Population growth and rapid urbanization have led municipalities to look for more 

sustainable alternatives for their current stormwater infrastructures. CLASIC tool is an easy-to-

use web tool developed to help decision-makers better plan for their future stormwater 

infrastructures by comparing different scenarios in terms of reduction in runoff and pollutant 

loads, costs, and co-benefits. This study evaluated and compared the hydrologic responses of the 

CLASIC tool to a complex SWMM model to inform the decision-makers about the performance 

validity of this tool which requires fewer parameters and effort than a complex model to simulate 

the hydrologic responses,  

The results of the models showed that the CLASIC tool performs well in estimating the 

hydrologic components (the portion of precipitation allocated to runoff, infiltration, and 

evaporation) compared to the calibrated full SWMM model, and the models report very close 

values for each component. Thus, it is concluded that the CLASIC tool can help the modeler 

assess the water balance in a watershed easier and with fewer parameters.  
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Moreover, the Center and Timberline models showed that the CLASIC tool can estimate the 

total flow for monthly scale with good accuracy in both locations. However, the analysis showed 

a significant peak in the time series of flows in July 2009 caused by a big storm. Furthermore, 

Nash-Sutcliff overestimates the big errors and underestimates the small ones since all the errors 

are squared (Krause et al., 2005). Thus, SWMM has a better performance in estimating this peak 

flow than the CLASIC tool since CLASIC uses a simpler routing method that does not account 

for flow attenuation, and as a result, the NSE values for SWMM is better than the CLASIC tool. 

Hence, although the CLASIC tool is not developed for flow analysis, it performed acceptably in 

the Spring Creek for temporal scales greater than the time of concentration.  

It is understood from the sensitivity analysis results that the order of importance of the 

parameters is different for different target outputs and locations; however, the overall conclusion 

is that the parameters of the Horton infiltration method and the percent of imperviousness are the 

most important factors in the Spring Creek watershed, and “depression storage in the impervious 

area” is important in some cases. 

To better judge the performance of the CLASIC tool in assessing the hydrologic components, 

it is recommended to test the tool in other watersheds inside and outside of Colorado, with 

different scales and for different types of LID control systems. Moreover, other modules of the 

CLASIC tool were not discussed in this project, so future studies can be focused on working 

with other modules of the tool as well as developing the system identification and optimization 

components that enable the selection of systems that are most consistent with the desired goals of 

planners, including hydrologic effects, co-benefits, and life cycle costs. 
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