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ABSTRACT 

PARAMETERIZATION OF ICE CRYSTAL CONVERSION PROCESSES IN CIRRUS 

CLOUDS USING DOUBLE-MOMENT BASIS FUNCTIONS 

With the onset of increased scientific interest in cloud-effects on climate and the need 

of cirrus forecasts to support military operations and the aviation industry has come the 

need to develop more credible microphysical parameterizations of the ice transfer processes 

occuring in cirrus clouds. Herein a parameterization is developed for the transfer between 

two defined categories of ice; pristine ice (which grows by vapor deposition only and is 

constrained to have mean diameters less than 125 µm) and snow (resulting from the direct 

conversion of pristine ice). Each category is assumed to conform to a generalized gamma 

distribution function, with variations in ice crystal habits allowed. Analytical transfer 

equations for the flux of number concentration and mass between the pristine ice and snow 

categories during ice supersaturated and subsaturated atmospheric regimes are derived. A 

parameterization of ice number concentration loss from each of these distributions during 

sublimation is also described. 

These parameterizations are tested in a one-dimensional Lagrangian parcel model for 

ice supersaturated ascents and ice subsaturated decents. These tests allow analysis of the 

parameterizations during variations in physical parameters such as the shape of assumed 

distributions and the ice crystal habit. It is shown that variations in both of these parame-

ters have large impacts on the evolution of the distribtutions. These results show similarities 

to other modeling efforts. 



The ice parameterizations are implemented into the Regional Atmospheric Modeling 

System (RAMS) developed at CSU and two-dimensional sensitivity tests are conducted us-

ing observations from the November 26, 1991 FIRE II cirrus case. Tests of the model using 

rosette crystals and exponential distribution shapes showed the flexibility of the RAMS 

model in simulating these systems. The RAMS results compared favorably with data ob-

tained during the FIRE II field project . Tests with larger values of the distribution shape 

parameter showed possible improvements over the test case in that larger ice masses were 

found near cloud bases (as was observed). The type of crystal modeled was shown to have 

a large impact on the microphysical evolution of the simulated cirrus system; cloud depth, 

ice water content (IWC), number concentrations and updraft profiles were all sensitive to 

these changes. Tests that examined the profiles of ice nuclei (IN), radiative parameteriza-

tion, and two moment versus one moment predictions all showed the importance of credible 

parameterizations and of correct model initialization. 
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Chapter 1 

INTRODUCTION 

Cirrus clouds have a complex microphysical structure that seems to be strongly linked 

to their radiative properties and their heating and dynamics (Mitchell, 1994; Flatau, 1990). 

The growth of real ice crystals in the cloud environment is a complex process involving 

diffusion kinetics (the release of latent heat and its transfer to the environment which is 

a function of vapor content, temperature gradient, and pressure), surface tension effects, 

and crystalline anisotropy (Langer, 1980). Models of crystal formation and growth can be 

extremely complex (e.g. see Ben-Jacob et al., 1983) involving sets of differential equations 

and complex solution methods. Even with these models, there is still much uncertainty 

about the growth of ice crystals and their variation in habit. Habit variation itself, is quite 

important to the radiative properties of cirrus clouds (Flatau, 1992; Mitchell, 1994), and 

to their feedback on any given climate change event (Stephens et al., 1990). In the world 

of cloud modeling, these processes must be parameterized in order to correctly simulate a 

cloud system, especially cirrus. Crystalline habit, and their subsequent size distributions, 

are quite important to the physical processes of cirrus clouds. Habit determines growth rates 

and fall velocities which, in turn, has an effect on the depth of the layer. Crystalline habit 

effects the absorption and scattering of cirrus clouds; this has an effect on the heating of the 

cloud system and, therefore, on the dynamical structure. Thus, it is important to model 

cirrus microphysical processes correctly if one is to successfully simulate these systems. 

Unfortunately, in the realm of multi-dimensional numerical cloud modeling, one does 

not have the computational freedom to explicitly define crystal growth, habit change, and 

size distributions. Parameterizations need to be found which cover, in a simple set of 

equations, the most relevant physical processes associated with cloud systems. To address 
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the problem of modeling cirrus clouds, _with the ultimate goal of forecasting these systems 

operationally or parameterizing them in global models, the Regional Atmospheric Model-

ing System (RAMS) developed at Colorado State University was used. The RAMS model 

sports a new microphysical package that includes 7 hydrometeor species (pristine ice, snow, 

aggregates, cloud water, hail, graupel, and rain) with predictions on two-moments of the 

hydrometeor spectra. (number concentration and mass mixing-ratio) for all species except 

cloud water. Because of recent observational evidence showing the possibility for the exis-

tence of a bimodal spectra of ice in cirrus clouds (Arnott et al., 1993), a parameterization 

wa.s developed in which ice is allowed to have two separate distributions ( defined as pristine 

ice and snow). Within this parameterization, the possibility exists for the addition of the 

two distributions to have only one mode, if the model physics dictates it. Transfer equations 

are developed in which pristine ice is allowed to transfer into the snow category during ice 

supersaturated cloud regimes. A similar transfer occurs in the reverse direction ( snow to 

pristine ice) in ice subsaturated regimes. Number concentration loss during ice subsatu-

ration is parameterized for both the pristine ic,e and snow distributions with the smallest 

crystals in the distribution evaporating first. Depending upon the environmental variables 

in the model six crystal habits are possible; plates, columns, needles, spheres, dendrites, 

and bullet rosettes. 

Background information on cirrus cloud microphysics, radiative properties, dynamics, 

and modeling efforts are presented in Chapter 2. The RAMS model is described in Chapter 

3 with specific attention paid to the new microphysical package. In Chapter 4 efforts 

are directed toward the development of the bimodal ice representation, including the mass 

mixing-ratio and number concentration transfer scheme and the parameterization of number 

concentration loss of ice species to sublimation. In Chapter 5 the evolution of the ice spectra 

in a simple one-dimensional Lagrangian parcel model is discussed. The FIRE II case study of 

November 26, 1991 is briefly overviewed and microphysical results are discussed in Chapter 

6. The two-dimensional simulations and sensitivity studies of the November 26, 1991 FIRE 

II are presented in Chapter 7. Chapter 8 contains summary and conclusions of this work 

and suggestions for future research. 



Chapter 2 

PREVIOUS WORK 

The modeling of cirrus clouds, even with cloud scale models, is a challenging endeavor. 

Cirrus cloud dynamics and the complexity of the detail in their microphysical structure 

tends to test the limits of physical theory and model parameterizations. A large difficulty 

in making a credible physical hypothesis about the nature of cirrus structure is the limited 

measurements of the properties of these clouds due to their atmospheric "remoteness". 

Recently, evidence is mounting that these clouds, due to their structure and high global 

frequency, are important in the global radiation budget and, thus, in calculating atmospheric 

climatic effects. Because of the far reaching implications of these clouds, this section will be 

directed towards a brief explanation of not only the microphysical structure of these clouds 

but also the dynamical structure. A final section deals with modeling work related to the 

mesoscale modeling developed here. 

2.1 Microphysics 

As was stated in the introduction, the microphysical properties of cirrus clouds are 

quite important because of the complex structure of the ice that makes up these clouds 

and the interactions of the growth of ice habits, radiative interactions, and effects on the 

dynamical structure of these clouds. 

Measurements by Heymsfield et al. (1972) of the crystalline habits, size distributions, 

number concentrations and ice water contents (IWC) in cirrus uncinus, cirrus spissatus, 

cirrostratus, and a cumulonimbus cirrus shield showed number concentration, size distribu-

tion, and IWC variation with cloud type. Cirrus uncinus tended to have the largest IWC 

and number concentration (excluding the anvil cirrus shield) with number concentrations 
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up to 40,000 m-3 and IWC up to 0.27 g_ m-3 • The cumulonimbus cirrus shield had number 

concentrations and IWC in excess of 100,000 m-3 and 1.0 g m-3 respectively. The maxima 

in IWC occurred near cloud base, as would be expected since more massive crystals falling 

out of the updraft would be located here. The efae spectra varied between cloud types, but 

showed distinctive gamma-type distribution shapes. Variations in habit were also noted, 

with bullets, columns, and bullet rosettes dominating the generating cells and the larger 

sizes while plates were associated with the smaller crystal sizes. These measurements, how-

ever, were restricted to crystal sizes above about 100 µm since this was the limit of the 

spectrometers lower range. Later measurements by Heymsfield (1975) showed large number 

concentrations in the size range 25-50 µm. 

Heymsfield (1975) also showed that vertical velocities and temperature play a role in 

the determination of IWC (as was suggested by the measurements given above). When 

temperature or vertical velocities increased, it was found that there was a subsequent in-

crease in the measured IWC. The nucleation rate of ice crystals and water drops in clouds 

are also known to be a function of the updraft profile. 

There is also the possibility for the existence of supercooled water at cirrus levels. 

Recently, during the FIRE II experiment December 5, 1991 cirrus case, aircraft wing icing 

was noted. This is not possible with solid ice and presumes some sort of liquid water content 

in these clouds. Sassen (1992) conjectured that aerosol particles from the Mnt. Pinitubo 

eruption carried by the jet stream influenced the formation of cirrus clouds on this day. 

These aerosol could have been abundant enough to allow the formation of supercooled water 

droplets. Lidar measurements ·suggested the existence of liquid water topped cirrus uncinus 

on the day in question. It is expected that volcanic aerosols change the microphysical 

structure of the cirrus cloud and, therefore, its radiative properties. This influence may 

have a climatic effect (Sassen (1992)). 

During the FIRE II experiment in Coffeeville, Kansas Arnott et al. (1993) used ice 

particle replicator data to show the existence of a bimodal spectrum of ice particles in cirrus 

clouds. Small ice was shown to have an exponential shape with a maximum dimension 

between 125-150 µm while a second peak was evident with a gamma-type distribution 



5 

shape and a mean maximum dimension around 400-500 µm. Hein et al. (1993), using a 

forward Monte Carlo method spectral model, showed the need for a large concentration 

of small ice (maximum dimensions less than 50 µm) in their model in order to have their 

spectral calculations conform to observations. Larger concentrations at smaller particle 

sizes were inferred by Intrieri et al. (1993) during the FIRE II experiment with CO 2 lidar 

and 8mm radar. Particle concentrations in the upper level of a cirrus deck that occurred 

on 26 November 1991 were of small sizes (about 25-65 µm) with number concentrations of 

about 1000 1-1• 

Mitchell et al. (1989) and Mitchell et al. (1994) used data from orographic winter 

storms to derive mass-dimensional relationships for ice particles of different habits of the 

form, 

(2.1) 

where D is the maximum dimension of a given crystal. It was found that for needle and 

column type habits that the mass exponent, {3, was around 1.8 while for more spatial habits 

such as hexagonal plates and bullet rosettes it is around 2.5. 

Habits of ice particles, as stated previously, are very important to the scattering and 

absorptive properties of cirrus clouds. Ice particles in cirrus tend to orient themselves 

with the maximum dimensions horizontally. This has important implications for scattering 

calculations since different habits will tend to have different cross-sectional areas (Mitchell 

et al., 1994). Also, differing ice habits have different path lengths through the individual 

crystals, which has important implications when it comes to the scattering and absorptive 

properties of the cloud system. 

Stackhouse et al. (1990) examined the radiative properties of cirrus clouds using a 

two-stream radiative transfer model. They found that the longwave heating and shortwave 

cooling of a cirrus deck depends upon the amount of ice in the clouds. It was also found that 

the longwave budget is altitude dependent, with cirrus clouds in the tropics ( of generally 

higher altitude) produced a net heating while subarctic cirrus (generally lower altitude) 

produced a net cooling. The higher altitude tropical cirrus were more sensitive to changes 

in the IWC of the cloud. The addition of small ice particles (maximum dimensions less 
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than 44 µm) with larger number concentrations had a large impact on solar wavelength 

scattering (because of increased projected surface areas) and longwave absorption, with 

increases in both. 

Using a two-stream radiative transfer model and a simple climate model Stephens et 

al. {1990) showed that the assumed values of the asymmetry parameter, g, and the effective 

radius of cirrus ice particles, re are important when calculating the climate feedback effects of 

cirrus clouds. Cirrus clouds with an assumed asymmetry parameter of 0.87 produced about 

two times the warming during a CO 2 warming event as simulations with an asymmetry 

parameter of 0. 7. The calculated climate feedback was found to vary between warming and 

cooling depending upon the value of re assumed. 

2.2 Dynamics of Cirrus 

The dynamical processes that control the formation of cirrus clouds are as varied as 

the forms of cirrus themselves. Cirrus clouds can form via upper level frontal lifting, from 

the motions around jet streams, upward propagation of waves produced by orography, or 

mountain waves, ascending motions in extra-tropical cyclones, and cumulonimbus anvil 

outflow. However, there are some features of the dynamical processes associated with cirrus 

clouds and their formation that are quite similar. For example, Heymsfield et al. {1972) 

noticed in case studies of cirrus uncinus, cirrus S])issatus, cirrostratus, and a cumulonimbus 

cirrus shield, that all cirrus seem to form by some sort of generating cell with convective 

motions associated with it. Heymsfield {1975) showed that cirrus clouds usually form in 

regions where stable layers exist below cloud and above cloud. These layers are usually thin 

and are shown in the usual "thinness" that is characteristic of cirrus. 

The generation of turbulent kinetic energy (TKE) in cirrus is not likely associated with 

an external diabatic heat source related to surface heating such as is normally observed in 

stratocumulus (Flatau et al., 1990). Generation is most likely associated with radiative 

effects, vertical wind shear, wave instabilities, or latent heat release. Turbulence associated 

with cirrus clouds can generally be characterized as two-dimensional. Flatau et al. {1990), 

using data from the FIRE experiment in Oshkosh, Wisconsin, and the GASP experiment 

I 
J 
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found that vertical velocity variances were about an order of magnitude less than the u 

and ti variances; thus suggesting a two-dimensional nature to turbulence in cirrus. Flatau 

also found that TKE production within cloudy air was noticeably higher than in clear air. 

The authors postulated that turbulence must be due to in-cloud processes. Along similar 

lines, Starr and Cox (1980) noted that buoyancy production of TKE was larger than shear 

production, indicating turbulence origins within cloud. 

Using the FffiE data set, Gultepe et al. (1990) did calculations of the moisture and 

heat budgets of cirrus clouds. The moisture budget of cirrus associated with the October 

31, 1987 case was characterized by moisture convergence at low and mid-levels and moisture 

divergence at cloud top. Moisture sources and sinks seemed to be dominated by advection 

at all levels with microphysics having some significant contributions at mid-level. The heat 

budget of the cirrus system was dominated by vertical advection and radiative cooling. 

2.3 Mesoscale and Cloud Scale Modeling of Cirrus Clouds 

Modeling cirrus clouds is difficult because of the intricate interactions of microphysics, 

radiative properties, and cloud dynamics (Flatau et al., 1990). Even though, the modeling 

of cirrus clouds has taken many routes, some modelers have explained cirrus-anvil cloud 

structure and dynamics with mixed-layer theory which exploits various similarities between 

cirrus clouds and stratocumulus (Lilly (1988)). Modeling cirrus in this fashion requires a 

well mixed layer with a dry adiabatic lapse rate sandwiched between two stable layers. An 

external d.iabatic heat source ( as is usually the case in stratocumulus) is not present in 

cirrus clouds because of a lack of a heated lower boundary. Outside mechanisms for the 

generation of TKE in cirrus exist; such as radiative effects, latent heating from particle 

growth, shear production, gravity waves, orographic effects and lifting due to ageostrophic 

circulations in jet streaks. Lilly (1988) used this model to describe cirrus that forms in the 

outflow regions of cumulonimbus clouds, where the 3-D convectively generated turbulence 

collapses to 2-D turbulence. Flatau et al. (1990) used this model of cirrus clouds along 

with bulk microphysical and radiative properties to derive a model of cirrus for use in global 

climate models. 
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A two-dimensional cloud scale model was developed by Starr and Cox (1985) for the 

simulation of cirrus clouds. The 2-D model (x and z directions) had 100m resolution in both 

the x and the z directions and a model timestep of 30 seconds. The model parameterizations 

included the phase changes of water, radiative processes, and the vertical flux of ice. These 

parameterizations were based upon observation.al evidence when possible. The model was 

constrained in the types of cirrus that it could reasonably simulate due to the fact that 

it was restricted to temperatures between -25 and -45 °C, weak vertical velocities, and no 

vertical shear (which makes it difficult to simulate cirrus uncinus clouds). Their results were 

reasonable, with profiles of ice water content, vertical motions, scale between convective 

cells, and cirrus layering effects all in good ag?eement with observations. The results of 

these modeling efforts showed that the physical properties of cirrus are highly dependent 

upon the large scale ascent (descent) and to changes in the microphysical properties. Tests 

of the effects of day and night radiational effects on cirrus showed that the daytime cirrus 

tended to be more convectively active but less dense in structure when compared to the 

nocturnal case. This seems to show how radiatianal variations can affect in-cloud buoyancy. 

Mitchell et al. (1994) derived an analytical model for cirrus microphysics using a 

gamma function for ice habits of the form, 

N(D) = N0 D11exp(->.D). (2.2) 

Using a general dynamic expression for the number concentration of the given ice species, 

Mitchell came up with both first and second order mass-moment conserving equations. 

The model allows for hexagonal plates, hexagonal columns, and bullet rosette ice crystals. 

Changes in habit within cloud layers is accounted for and happens suddenly with changes 

in the ambient temperature (number concentration is varied in order to keep the IWC field 

constant during the change). Mass-dimensional relationships of the form m(D) = aD/J 

are used in the model where the exponential term (3 can be thought of as a measure of 

the growth of any given ice crystal. The model is initialized with a predetermined IWC 

field ( assumed horizontally homogeneous) and u and v wind fields but does not prognose 

changes to these initial fields. The model performed well when compared with observations 

j 
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of IWC, number concentration, and . maximum dimensions. The most notable conclusions 

drawn from these simulations lies in the effects of various variables on the size distributions. 

It was shown the cloud updrafts had the general characteristic of increasing distribution 

breadth and lowering number concentrations when compared to simulations with no updraft. 

The updraft simply increased the response of ice crystal growth to any change in IWC. 

Changes in habit produced noticeable changes in the distribution parameters. This is easily 

seen to be due to differences in the parameter /3 in the mass-dimensional relationship. 

Larger values of /3 cause smaller increases in particle size for any given growth conditions. 

Thus, ice columns (with /3 = 1.8) grow faster than bullet rosettes (with /3 = 2.26). A 

change in crystal habit from columns to spacial crystals has the tendency to narrow the 

size distribution and increase number concentrations (since IWC is held constant during the 

change). Aggregation may negate this effect since it decreases number concentrations and 

increases sizes {thus, distribution breadth). Mitchell stated, however, that since aggregation 

in cirrus is not well understood on a quantitative level ( the collection kernel is not well 

defined) {but is quite commonly observed) this process could not be looked at in any real 

detail. 

These differences in size distributions and their dependencies upon ice crystal habits 

also has important implications when it comes to cirrus cloud radiative properties. With 

so much recent emphasis placed upon global climate change coupled with the fact that 

cirrus clouds are quite frequent globally, questions about the influence of cirrus clouds 

on a global warming event ( or the effects of cirrus frequency due to warming) are being 

asked. In the literature, there seems to have been considerable evidence showing that cirrus 

clouds can have a positive feedback on a global warming event. Studies by Mitchell et al. 

{1989), however, have shown that the feedback can be negative. Radiative transfer models 

that are used in GCM's for climate study need parameters such as crystalline asymmetry 

parameters, cloud optical depth, and absorptive and reflective cirrus properties in order to 

simulate cirrus effects. Mitchell et al. {1994) shows that these parameters are quite sensitive 

to the habit of the crystal chosen. In their study, the absorptive properties of cirrus crystals 

are not allowed to be parameterized through effective area spheres ( since the path of a ray 

- - - - - ---- - ----
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of light through a sphere can be much longer tha.n that of a needle crystal or rosette). They 

parameterize an effective distance, de, through given crystal habits and integrate the effect 

over the entire size distribution in order to get absorption and reflection from the cirrus 

layer. This has the effect of decreasing the absorption by cirrus clouds and increasing their 

single scattering albedo. The study also showed that absorption and single scatter albedo 

are a strong function of crystal habit. Bullet rosettes had less absorption and larger single 

scattering albedos than did clouds with columnar crystals (this is, again due to the fact 

that the rosettes have narrower distributions and, thus, larger projected areas). 

Heckman et al. (1993) used the RAMS model developed at Colorado State University 

to simulate cirrus cloud systems observed on the 26th of October during the FIRE 1986 

experiment in Oshkosh, Wisconsin. The RAMS model is a mesoscale model and has the 

capability of nested-grids. The model prognosee the wind components, the ice-liquid water 

potential temperature, density of dry air, total liquid mass mixing-ratio, the mixing ratio's 

of the hydrometeor species, and the concentration of pristine ice crystals ( all other number 

concentrations are diagnosed). Heckman used hexagonal plates as the crystalline habit and 

pristine ice nucleation was calculated with the hybrid nucleation of Cotton et al. (1986). 

Resolution in the vertical was high in order to better simulate the cirrus features. The results 

of their study showed that cirrus could be modeled successfully with a mesoscale model. 

The predictions of cloud height, thickness, cloud extent (horizontal), and the dynamics all 

compared well with observations from the FIRE experiment. The simulations were also 

able to resolve the cloud layering often associated with cirrus and cloud-top generation 

mechanisms. The optical thickness of the simulated cirrus was, however, underpredicted. 

_j 



Chapter 3 

THE RAMS MODEL 

3.1 Model Description 

The model used for the cirrus studies presented here is the Regional Atmospheric Mod-

eling System (RAMS) developed at Colorado State University. The model is a mesoscale 

model of such diversity that many different cloud systems of varying physical characteris-

tics may be effectively simulated with it. A general description of the model details may 

be found in Tripoli and Cotton (1982), Cotton et al. (1982; 1986), Tremback et al. (1985), 

Tripoli (1986), Tremback (1990), and Peilke et al. (1992). The version used is a two-

dimensional version of the RAMS model which is ideal for the types of sensitivity studies 

that will be posed in Chapter 6. The version of the model used here includes a hybrid time 

differencing scheme for model solutions. For integration of acoustic terms occur on short 

time steps (while all other terms are integrated on a long time step) a time-splitting scheme 

is utilized. 

RAMS prognoses the u, v, and w components of the wind, the ice-liquid water potential 

temperature (Tripoli and Cotton (1982)), perturbation Exner function, total liquid water 

mass mixing ratio, the mixing ratios and number concentrations (besides cloud water) of 

the various hydrometeor species. This version of RAMS also includes the possibility of 

mixed-phase hydrometeors. A more detailed explanation of this and the other new features 

of the RAMS microphysical module is explained in the next section. Diagnosed variables 

include model dry air density, temperature, potential temperature, and the mass mixing 

ratios of vapor and cloud water. 

The grid system employed in RAMS is the standard Arakawa C-grid (Arakawa and 

Lamb, 1981). In this two-dimensional set-up the nested grid capabilities of RAMS are not 
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utilized. RAMS uses a polar stereographic grid in the horizontal (not used in this study) 

and " - z terrain following coordinates in the vertical. The turbulence scheme employed 

is a deformation eddy viscosity described by Tripoli and Cotton (1982). A soil model 

developed by Tremback and Kessler (1985) that uses 11 vertical levels is used. The "wall 

on top" vertical boundary condition is employed in this study. A modified Rayleigh friction 

scheme is an option in RAMS since this "rigid-lid" causes reflections at the top boundary 

(Heckman, 1991); this scheme is used in this study. The Klemp and Wilhelmson (1978) 

lateral boundary conditions are used in the simulations. The specific grid set-up, spacing 

and initialization is included in the sensitivity studies presented in Chapter 6. 

Radiation is an important consideration in the modeling of cirrus clouds. RAMS cur-

rently contains two possible radiative transfer schemes. The first, developed by Mahrer 

and Pielke (1977) includes the effects of water vapor, CO 2 and 0 3 on radiative transfer. 

This scheme is computationally efficient, but ignores the effects of clouds. The scheme used 

here is one described by Chen and Cotton (1983) and includes the effects of condensate 

on radiative transfer. This scheme uses the total mass mixing-ratio to calculate the radia-

tive transfer and, thus, does not differentiate between liquid water and ice, nor the size 

distribution of the hydrometeors. 

Recently, there has been a trend in modeling (Nickerson, 1978; Ferrier, 1993; and 

Mitchell, 1994) towards prediction on two moments of the hydrometeor spectra, namely 

number concentration and mass mixing-ratio. Similar modifications for predictions on two 

moments of the hydrometeor spectra has been added to RAMS. This and the rest of the 

new RAMS microphysical package will be described in the following section. 

3.2 Model Microphysics 

Cirrus clouds are, as was stated above, quite a challenge to simulate with mesoscale 

models due to their sometimes thin vertical structure and the complexity of the ice crystals 

that make up their microphysical characteristics. Thus, the detail of the microphysical 

package employed is of great importance in the simulations of these systems. The model 

microphysics employed for these simulations include various improvements over old versions 
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of the RAMS model (Cotton et al., 1982; 1986). RAMS Version 3A allows for seven water 

categories defined as vapor, cloud droplets, rain, pristine ice, snow, aggregates, graupel, 

and hail. In older versions of RAMS Marshall-Palmer or exponential-type basis functions 

were used to describe distributions of the various hydrometeor types, except for pristine 

ice which was considered monodisperse. Also, mixed phase hydrometeors were not allowed, 

hydrometeor collection was described by a parameterized form of the continuous collection 

equation, and there was only the possibility to predict on one moment of a given size distri-

bution (the mixing-ratio). A description of the complete two-moment prediction schemes 

can be found in Meyers (1994). 

The new version of the cloud microphysics implemented into the RAMS model (Walko 

et al., 1994) allows for all of the above types of water species (except for water vapor) to 

be described by the generalized gamma function given in Flatau et al. (1990) and Verlinde 

et al. (1990) as, 

1 ( D )"-
1 

1 ( D ) f,a.m(D) = r(v) Dn Dn exp - Dn ' (3.1) 

where vis the shape parameter of the distribution, r(v) is the gamma function of v which 

serves to normalize the integral of this function over 0 - oo, and Dn is the characteristic 

diameter of the distribution which serves to non-dimensionalize the function. 

Heat budget equations are formulated for the rain, graupel, and hail hydrometeor 

species, allowing for non-thermal equilibrium. This allows for mixed-phase hydrometeors 

in the cases of graupel and hail. These are formulated by noting that the temperature of 

any given hydrometeor can differ from that of the surrounding ambient air temperature. 

This temperature differential controls the rate of heat, vapor diffusion to the hydrometeors 

surface, and the sensible heat transferred during Collisional-coalescence processes. Sources 

and sinks to each category are assumed to be: (1) heat generation (loss) due to vapor de-

positional processes, (2) heat generation (loss) due to sensible heat diffusion, and (3) heat 

generation (loss) due to conversion of hydrometeors. Using a reference internal category 

energy of a given hydrometeor species defined for ice at T=0°C, the heat transferred when 

hydrometeor conversion occurs can be calculated simply. The processes of heat generation 

(loss) due to vapor deposition is calculated by integrating the growth equation for hydrom-
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eteors over the hydrometeor distribution. From this a change in the mixing ratio of a given 

hydrometeor species can be found, and, by multiplication by the latent heat (Liv or Liv) 

the heating due to vapor depositional growth is found. A similar relation is found for the 

heat generation (loss) due to sensible heat transfer (see Walko et al., 1994). It should be 

noted that in the older version of the RAMS microphysical module temperature differen-

tials between the hydrometeor surfaces and the ambient environment were allowed, however 

latent heat release was assumed to be always in balance with the sensible heat transfer (i.e. 

diffusion) . 

Nucleation in the model occurs both heterogeneously and homogeneously for pristine 

ice crystals (nucleation of ice is discussed in more detail in the next section). Ice crystals 

nucleate homogeneously from haze solution droplets or supercooled cloud droplets (DeMott 

et al., 1994). Pristine ice, snow, and aggregates are considered completely frozen in the 

model. All of the hydrometeor classes have appreciable fall velocities except for cloud 

droplets. For growth processes, snow is allowed to grow by vapor deposition and riming while 

the pristine ice category only grows by vapor deposition. This is consistent with the results 

of Pitter (1977) and Schlamp and Pruppacher (1977) showing that small ice crystals are 

not affected by riming growth. Aggregates form through collisional-coalescence of pristine 

ice, snow, or other aggregates and is described by the stochastic collection equation. This 

equation is solved in general by Verlinde et al. (1990). Solutions to the general equation are 

calculated and placed in three dimensional look-up tables to reduce computational costs. A 

detailed discussion of these microphysical parameterizations is given in Walko et al. (1994). 

3.3 Ice Nucleation 

Ice nucleation in the model occurs through either heterogeneous or homogeneous pro-

cesses. Since this initiation mechanism is of such importance in cirrus clouds, it will be 

helpful to give a brief discussion of the model parameterizations of these processes here. 
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3.3.1 Heterogeneous nucleation of ice 

Fletcher {1962) parameterized deposition and condensation-freezing nucleation by an 

equation that predicted number as a simple exponential function of the degree of supercool-

ing. This result seriously overpredicted the number of crystals nucleated when temperatures 

ranged below about -25°C and underpredicted at temperatures warmer than about -10°C. 

In order to obtain better ice nucleation estimates, Cotton et al {1986) combined Fletcher's 

equation with Huffman et al's (1973) result that predicted on the degree of ice supersatu-

ration to obtain the following hybrid result 

(3 .2) 

where Nia is the number nucleated, No is a base concentration derived from experimentation, 

(So - 1) is the fractional ice supersaturation at water saturation, and Taup is the degree 

of supercooling. This is the form of the nucleation equation that was previously used in 

RAMS. 

By use of a conglomeration of recent laboratory ice nuclei measurements with contin-

uous flow diffusion chambers, Meyers et al. {1992) suggested that this result is insufficient. 

Meyers et al. (1992), fitted the continuous flow diffusion chamber data with a simple expo-

nential function of ice supersaturation of the form, 

Nia = exp{ a+ b(lOO( Si - 1))} (3.3) 

where Nia is the number nucleated, a and b a.re empirical constants of the fit ( a=-0.639 

a.nd b=0.1296), and Si - 1 is the supersaturation with respect to ice. The laboratory data 

were interpreted to represent a combination of deposition freezing, condensation-freezing, 

a.nd immersion freezing. Since conditions in which these nucleation methods occur {freezing 

temperatures and water supersaturations) a.re similar, the data that the above parameteri-

zation is based on a.re assumed to encompass all of them. 

What is needed next is a formulation for the nucleation of ice crystals through the 

process of contact-freezing. Unfortunately, there a.re not very many measurements available 

that have made actual attempts at isolating the freezing of drops via the contact-freezing 
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mechanism. This makes any model parameterization of the contact-freezing process narrow 

in scope. Nevertheless, it is important to describe this process by some sort of parameteri-

zation that encompasses as much of the relevant data as possible. 

Contact-freezing was parameterized by Young (1974) by fitting a simple function to 

data collected by Blanchard {1957) in a vertical wind tunnel standing in a cold aircraft 

hanger. The air flowing through the wind tunnel was probably not representative of normal 

atmospheric conditions. This fit is given by the equation, 

(3.4) 

where N,c is the number nucleated per liter, Na.a = 2.0 x 1021-1 , and Tc is the cloud 

droplet temperature. As stated in Meyers et al {1992), however, laboratory simulations of 

contact nuclei using airborne membrane filter ciata processed in an electrostatic precipita-

tion {Vali,1974;1976; Cooper, 1990), a thermal gradient diffusion chamber, and techniques 

that rely upon Brownian diffusion and phoretic forces to transport the aerosols to the sur-

faces of supercooled water drops (Deshler,1982) produced results that are inconsistent with 

Banchards {1957) data. Quantification of the contact-freezing process of heterogeneous 

nucleation was accomplished by finding a numerical fit to the data of Vall {1974, 1976), 

Cooper {1980) and Deshler {1982) and is given in Meyers et al {1992) as 

Nae= exp{a + b(273.15 -Tc)} (3.5) 

where a=-2.80 and b=0.262 are constants determined by the numerical fit and Tc is the 

degree of supercooling. This parameterization of ice nucleation is the one that we will 

adopt in this modeling study. It should be noted that these parameterizations are based on 

measurements in the lower troposphere, not at cirrus levels. There are no measurements of 

ice nuclei available at cirrus altitudes. 

3.3.2 Homogeneous nucleation of ice 

Homogeneous freezing production of ice crystals is a process that, until recently (De-

Mott et al., 1993), has not been considered in the microphysics of RAMS. This parameter-

ization of the homogeneous freezing process assumes nucleation upon two separate popula-
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tions; cloud droplets and haze particles. The homogeneous freezing of cloud droplets may 

be formulated in the following manner, following DeMott et al. (1993), 

where 

N1 = fo00 

(1 - exp(-J1, V,.1.t))n(D)dD 

1rD3 
J1, = J1,oi Vi= - 6-, 

(3.6) 

(3.7) 

where n(D) is the distribution of cloud droplets, V, is the volume of the drops, and J1,o is 

the nucleation rate for pure water. In order to solve ( 3.6) for the number of drops frozen 

per time increment, a formulation for J1,o is needed. This was formulated in DeMott et 

al (1993) by following the theoretical framework in Pruppacher and Klett (1978) for the 

steady state approximation of the number of embryos that pass a critical size. Comparison 

to Sassen and Dodd's (1988) numerical calculations coupled with aircraft measurements 

and with the results of DeMott and Rodgers (1988) showed that the theoretical description 

given by ( 3.6) was sufficient. What is needed for a parameterization in a cloud model, 

however, is a formulation of the nucleation process that is a simple function of temperature 

and saturation. Heymsfield and Sabin (1989) used the temperature dependent formulation 

given by Eadie (1971), 

J1,o = 10~ (3.8) 

with 

y = -606.3952- (52.6611Tc) - (1.7439T;) - (0.0265T;) - (1.536E- 4T:) . (3.9) 

Both this parameterization and the result given by ( 3.6) gain support from the above 

experimental results and from Eadie's results. Eadie's results, however tend to be higher at 

the lower end of the temperature range. This is better represented by the parameterization 

of Heymsfield and Sabin (1989). For these reasons, ( 3.8) is used to parameterize the 

homogeneous freezing of cloud droplets in the model. 

The homogeneous freezing of haze solution drops is a little more difficult to approach 

theoretically, however a parameterization is still possible. DeMott et al. (1993) derive a 
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freezing rate for haze solution droplets by considering changes to the nucleation rate, J1., in 

( 3.6) ; such as addition of a water activity term and a term for the additional depression of 

the freezing temperature due to nonideal ionic interactions. The Kohler curves were used to 

obtain values for other needed values such as the solution drop size, D,, the solution density, 

p1', and the molality, M. Using these results, a theoretical expression for the freezing rate 

of haze solution drops was obtained. A simple parameterization of this result was obtained 

that fit the theoretical solutions reasonable wel:. This is given by the following result, 

where 

cl= 0.0277exp(-23.3- (2.12(T, - 273.16))) 

c2 = 4910 + 179.6(T, - 273.16) + l.8(T1 - 273.16)2. 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Using this result it is then easy to write down an expression for the the number of haze 

solution droplets freezing per time increment. This is given by, 

where 

/'limo:& { ( b (Dn )b)} NJ= Nt Jo exp(-y) 1- exp -y Dm dy 

D 
y=-. 

D"l 

(3.14) 

(3.15) 

This equation is solved numerically in the model and tables are made of the nucleation rates 

for various temperatures. Again, it should be noted that there are very few measurements 

of upper tropospheric haze and CCN concentrations. Projects like FIRE II have introduced 

new data such as Levinson et al. (1993) who describes measurements of lidar observations 

of aerosols from the Mount Pinatubo eruption in June of 1991. These stratospheric aerosols 

can enter the troposphere through tropospheric folding events and may effect ice nucleation 

in cirrus clouds; 

j 
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3.4 Two-Moment Predictions 

It has usually been the case with bulk models of the recent past, such as older versions 

of the RAMS model (Cotton et al., 1986), to follow a framework in which only mass moment 

predictions of the hydrometeor spectra were used. In these schemes, mass mixing ratio is 

computed while either the mean diameter or intercept parameter is set by the user. Then, 

the unknown variable is diagnosed from the prognostic variable and the user defined vari-

able. Some recent and bulk models (e.g. Nickerson et al., 1978; Zeigler, 1987; and Ferrier, 

1993) have gone to predictive equations using two moments of the particle distributions; 

namely number concentration and mass mixing ratio. In RAMS the model parameteriza-

tions include number predictions for graupel and hail that include number concentration 

loss due to melting and sublimation, number concentration sources and sinks due to collision 

and coalescence and precipitation processes, and predictions of the number concentration 

and mass transfers between the pristine ice and snow classes. These schemes are discussed 

in detail in Meyers et al. (1994). The parameterization of the number concentration and 

mass mixing ratio transfers for pristine ice and snow are described in the next chapter along 

with the general parameterization of evaporative number concentration loss. This evapora-

tive loss scheme is extended by Meyers et al. (1994) to take into account the melting loss 

of graupel and hail. 



Chapter 4 

THE BIMODAL ICE SPECTRA 

The parameterization of ice species in mesoscale models has always been risky, espe-

cially when it comes to upper tropospheric clouds such as cirrus. The main reason for 

this is that not many significant measurements of ice at those atmospheric heights have 

been obtained (Meyers et al., 1991). Recent evidence, as discussed previously, has sug-

gested a bimodal ice spectra in cirrus clouds which consists of large numbers of small ice 

crystals (Arnott et al., 1993; Hein et al.,1993, Intrieri et al., 1993; and Matrosov et al., 

1993). Because of this, the new RAMS microphysics contains two ice classes, pristine ice 

and snow, which are differentiated by a "cut-ofr' diameter, Db, Each ice class is described 

by a separate, complete gamma distribution function with fluxes of crystals between each 

class dependent upon the ambient saturation with respect to ice. The addition of the 

spectra need not be bimodal, the representation given here allows for a single mode if the 

model physics so dictates. The equations that describe the mass mixing-ratio and number 

concentration flux between the ice classes is developed below. 

4.1 Theoretical Development 

This section describes a parameterization that predicts the flux of concentration and 

mass from a pristine ice category to a snow category. Both pristine ice and snow are 

described by separate gamma distributions. Crystals of either type are allowed to transfer 

between the distributions depending on the ambient saturation with respect to ice. The flux 

equations are developed with the assumption that there is some critical diameter Db that 

is the boundary between the pristine ice and snow classes. Equations are then developed 
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which describe the transfer of concentration and mass between the distributions due solely 

to vapor deposition or evaporation. 

We first describe the relevant equations that will be used in the development of the 

flux model. These are given by, 

(4.1) 

where 

(4.2) 

Also, 

fi = r, = ..!._ ['XJ m(D)n(D)dD 
Pa Jo (4.3) 

where D = D(t) for simplicity and Nt is the total number concentration of ice particles. 

By using a mass-dimensional relationship such as that given by Mitchell et al. (1989) in 

Equation ( 2.1), we may solve the above integral in terms of the complete gamma function. 

Rearranging this expression gives a result for the characteristic diameter, Dn as 

The rate of mass growth of a single ice crystal by vapor deposition (sublimation) is 

dm dt = 4,r(Ci)(Si - l)Gi(T, P) 

( ) { ( 
L, ) L, R,,T }-1 

Gi T, p = R,,T - 1 KT + ei(T)D,, 

(4.4) 

(4.5) 

(4.6) 

In the discussion of the parameterization it is necessary to delineate between the pristine 

ice and snow distributions. To do this we will adopt a general policy of subscripting the 

distribution and it's various parameters with either a i for pristine ice or s for snow. This 

also allows for a more general solution. 

4.Ll Crystal Capacitance 

When the integrals ( 4.1) and ( 4.3) are used to develop the flux representation, it is 

necessary to write the capacitance term in Equation ( 4.5) in such a way that the integration 
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does not have to include both terms (the major and the minor dimensions). In order to do 

this it is possible to write the capacitance as a function of its aspect ratio, A, and its major 

dimension, which we will for now delineate as c: 

C; = f(c, a)= g(c, A) (4.7) 

C; = xD where X = x(A). (4.8) 

The aspect ratio in the capacitance term is held constant only during the integration so 

that analytical solutions are attainable. In order to vary the model aspect ratio, the mass-

diameter relationship is related to the equivalent volume of the crystal. For needles, long 

and short columns this may be written, 

where c is the crystal major axis and a is the minor axis. Solving for a yields, 

4o' a = z1l2c<f3-l)/2 where Z = -. 
7rp; 

For hexagonal plates we may write 

Thus, the equation for a is, 

a= zct3-2• 

(4.9) 

( 4.10) 

(4.11) 

( 4.12) 

Growth of crystals is assumed to occur along the major dimension, c, and the aspect 

ratio is changed by using the above equations for a. Nate that this type of analysis is not 

needed for thin plates and dendrites whose capacitance term is D /1r; thus a major and 

minor axis do not enter the picture. 

4.1.2 Development of the Flux Equations 

Development of a bimodal description of ice in upper level clouds has its foundations 

in some very basic concepts and in some observational evidence, as was stated above. Moti-

vated by these recent studies which suggest a bimodal ice crystal spectrum in cirrus clouds, a 
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bimodal representation of the ice crystal spectru~ was developed using the gamma function 

given by Equation ( 4.2). Figure 4.1 shows a schematic of the distributions with a certain 

diameter, Db, set as a threshold between the pristine ice crystal and snow categories. The 

data of Arnott et al. (1993) suggests that a value of Db of 125 µm is reasonable. There is 

some overlap of each distribution, however, this is usually insignificant artifact of the com-

plete distribution representation. To remove this artifact, truncated distributions would be 

required. Solutions of this type, however, would increase the model time ( and therefore 

cost) of the simulations. 

0 .01 

e: :z: 

0 .005 

0 

0 100 

Snow 

200 
Diameter 

300 400 500 

Figure 4.1: Example of the bimodal representation: Fluxes are assumed to occur across a 
boundary at Db = 125µm 

Following are the equations developed for the flux of crystals across the boundary, Db, 

along with an equation for the mass growth and evaporation of the distribution. This is 

all accomplished by differentiating Equations ( 4.1) and ( 4.3) and using the vapor deposi-

tional growth equation given by ( 4.5). For the total vapor depositional growth rate of the 
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distributions we may write: 

· d 1 /'xi 
r = dt Pa Jo m1'. D)n(D)dD. ( 4.13) 

This is written in the general case, and can be expanded to two distributions by including 

the subscripts i for pristine ice and s for snow as was stated above. 

The flux equations are developed by considering the spectral shift due to the gain of 

mass given by ( 4.13). For the fluxes of pristine ice to the snow category the shift in the 

pristine ice distribution beyond the boundary ,Db, needs to be considered. This shift in 

number concentration and mass-mixing ratio may be written as, 

·! d 1 t'° 
ri = dt Pa Jv,, m(D)ni(D)dD (4.14) 

. d ['10 
N/ (D) = dt J0i, ni(D)dD. ( 4.15) 

Equation ( 4.14) describes the rate of change of mass in the region from Db - oo of the 

pristine ice distribution and ( 4.15) the rate of change of number concentration. This is 

exactly the amount due to the growth of crystals beyond the boundary. 

For the subsaturated case, when snow is being converted to pristine ice, formulations 

similar to ( 4.14) and ( 4.15) are derived as 

·! d 1 ID" 
r. = dt Pa Jo m(D)n.(D)dD ( 4.16) 

. d ID" 
N{(D) = dt Jo n,(D)dD. ( 4.17) 

To solve these equations we will recast them in a more physically digestible form, 

starting by using Leibniz' rule to rewrite ( 4.13) through ( 4.17) as, 

r ,= :h fo00 

(
8

~~D)n(D ) + m(D/n~~)) dD 

., 1 1z00 8 8Db 
ri = - -8 {m(D)ni(D)}dD - m(Db)ni(Db)-8 h t t 

Ni(D) = 100 8ni(D) dD - ni(Db) 8Db 
lv,, at at 

1 fov" a aDb r£ = - -8 {m(D)n,(D)} dD + m(Db)n,(Db)-8 Pa o t t 

( 4.18) 

(4.19) 

(4.20) 

(4.21) 

J 

I ;. 

1 

,1 

:. 
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N,(D) = [Db ana(D) dD + n,(D&) aanb. · k t t (4.22) 

Since Db is not a function of time, all of the aDb/at terms are zero. Equations ( 4.19) and 

( 4.21) can then be written by expanding the derivatives as, 

r{ = ]_ / 00 
(n,(D) am(D) + m(D) an,(D)) dD 

Pa.1Db at at 
( 4.23) 

r{ = :a. foDb ( n,(D) a~~D) + m(D) anl}~D)) dD. (4.24) 

In these equations, the derivatives are all from a Eulerian framework (since we are 

looking at this problem from a distribution-relative point of view). In this framework, 

am(D)/at is zero because we are sitting at points on the distribution and asking questions 

about how particles are growing. At any given diameter the mass per particle at that point 

is not changing because the diameter is not changing. Thus, our equation system becomes, 

r = ]_ / 00 
m(D/n(D) dD 

Pa. lo at 

r{ = ]_ 100 m(D) an,(D) dD 
Pa.1Db 8t 

fe/ = foo an,(D) dD 
1 }Db at 

r{ = ]_ /Db m(D) an,(D) dD 
Pa. lo 8t 

Nf = lDb ana~D) dD. 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

( 4.29) 

By invoking a result from Berry (1965) these equations can be written in a form that 

is more physically understandable. For vapor depositional growth we may write, 

an(D) = _ _!_, {dD (D)} 
at an dt n . 

Using this result in the above equations gives 

. 1 loo a {dD } r = -- m(D)- -n(D) dD 
Pa. o an dt 

, J 1 loo 8 { dD } r, = -- m(D)- -n,(D) dD 
Pa. Db an dt 

• /
00 8 {dD } N/ = - }Db an dtn,(D) dD 

( 4.30) 

(4.31) 

(4.32) 

( 4.33) 
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( 4.34) 

(4.35) 

In finding solutions to the above equations the following hierarchy will be adhered to: 

first, Equation ( 4.31) will be rewritten in a form which is easier to talk about physically, 

then the resulting equation will be solved. Second, we will rewrite and solve Equations 

( 4.32) and ( 4.33). Finally, the results for ( 4.34) and ( 4.35) will simply be written down 

since obvious similarities exist between Equations ( 4.32), ( 4.33), ( 4.34) and ( 4.35). 

The integrand of Equation ( 4.31) may be written in the following form, 

a {dD } a { dD } om(D)dD m(D) oD dtn(D) = oD m(D)dtn(D) - oD dt n(D). ( 4.36) 

Substitution of this result into Equation ( 4.31) gives 

In order to evaluate the terms in this expression it is necessary to break this integral into 

two parts. Since it is an improper integral, however, it is necessary to show that each term 

of the integrand converges separately and, therefore, that the two independent integrals 

may be written in the following manner, 

_ _!_ ( t'° !._ (m(D) dD n(D)) dD - r'° om(D) dD n(D)dD) 
Pa lo 8D dt lo oD dt 

= _.!_ / 00 
{~ (m(D) dD n(D)) - om(D) dD n(D)} dD. (4.38) 

Pa lo 8D dt {)D dt 

To prove this, each term will be examined and shown to converge. The first term on the 

right hand side can be written 

( 4.39) 

The second term on the right hand side of this e,xpression is clearly zero. It is not obvious, 

however, that the first term on the right hand side converges. In order to see this, let us 

J 

I 
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write out the entire expression for the limit . First, we will need an expression for the mass 

of an individual crystal. This is given by an empirical expression from Mitchell et al. (1989) 

( 4.40) 

For dD / dt let us first write Equation ( 4.5) as 

(4.41) 

where 

( 4.42) 

Now, using the definition of crystal mass as given above we may write 

dD = !._n2-p 
dt 0./3 ' 

( 4.43) 

or 
dD - = tn2-P where t = - . 
dt 0./3 

( 4.44) 

In light of these equations the limit becomes, 

(4.45) 

Rewriting this gives, 

( 4.46) 

From this expression it is easy to see that the exponential term will dominate in the limit. 

Thus, this term will go to zero as x approaches infinity and the first term on the right hand 

side of ( 4.37) goes to zero. The second term in ( 4.37) is, 

B = _!.. /''° 8m(D) dD n(D)dD. 
Pa lo an dt 

( 4.47) 

Recall that if we have, 
dm do.DP 
dt =-;u-, ( 4.48) 

we can write, 
dm _ /3DP-t dD dm _ 8m(D) dD 
dt - a dt or dt - 8 D dt . ( 4.49) 



28 

So, we may write ( 4.47) as, 

1 loo dm "iI' loo B = r = - -n(D)dD = - Dn(D)dD. 
Pa. o dt Pa. o 

( 4.50) 

Equation ( 4.50) converges since it is just a description of the complete gamma function. B 

converges for all R(v + 1) > 0 . Therefore it is possible for ( 4.37) to be written as the two 

separate terms, A and B. As we have seen, A goes to zero in the limit which leaves ( 4.50) 

as the final form of the equation for r. 
This equation is easy to interpret. It shows that the amount of mass gained or lost by 

the distribution is calculated by considering the growth/evaporation of a single crystal and 

then summing over the entire distribution. This is definitely easier to see in this version of 

the equation than in the previous version, ( 4.25). 

To solve the integral in ( 4.50) let us write out the expressions for dm/dt and n(D) in 

the integral, 
. f':io Nt ( D ) v- l 1 ( D ) 
r = lo "il'D r(v) Dn Dn exp - Dn dD. (4.51) 

Changing variables from D to D11 where D11 = D / Dn gives 

(4.52) 

Noting that the complete gamma function is defined by 

( 4.53) 

we may write ( 4.52) as 

(4.54) 

Since a moments representation of these solutions tends to be more mathematically 

elegant, Equation ( 4.54) will be written in terms of the moments of the distribution func-

tion. First off, the moments of the complete dist ribution can be described by the following 

relation, 

I(P) = fo 00 

nP n(D)dD. (4.55) 
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If the above definition of n(D) is used then the moments of the complete distribution can 

be written as, 

(4.56) 

So, Equation ( 4.54) when written in terms of the moments of the complete distribution 

function is 

,;, = .!1(1). 
Pu. 

(4.57) 

Equations ( 4.32) and ( 4.33) can be solved in a similar manner to that used to solve 

( 4.31). Starting with ( 4.32) we may write, 

(4.58) 

The first term on the right hand side can be written, 

(4.59) 

The limit above (as shown earlier) goes to zero. Substituting into equation ( 4.58) and 

rewriting the second term on the right hand side of ( 4.58) gives, 

(4.60) 

Equation ( 4.60) describes the flux of mass from distribution i to distribution s across the 

boundary Db. This equation is easily interpreted from a physical perspective. The first 

term on the right hand side of ( 4.60) describes the amount of mass shifted across the 

boundary, Db, due to vapor depositional growth. The second term describes the gain of 

mass of crystals in the Db -+ oo range due to vapor depositional growth. It may seem 

that only the first term is required in order to describe the flux process, however, ignoring 

the second term can lead to some errors. Remember that the description of pristine ice is 

through the use of complete distributions. Therefore, if only the first term is included then, 

the tail of the distribution will continue to grow. Now, the crystals in this tail regime are 

really in the snow category (since Db delineates categories) but, as long as the tail is a small 
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percentage of the mass it contributes little. The second term in ( 4.60) causes this tail to 

grow larger, and after a long enough period, the tail can contain a significant portion of the 

distribution mass. Therefore, we choose to keep the second term in ( 4.60) as part of the 

flux description. 

To solve this equation let us start with the first term on the right hand side of equation 

( 4.60). Substitution of equations ( 4.40), ( 4.44) and ( 4.2) gives 

1 dD 1 fJ 2-jJ Nt·i ( Db ) 1 ( Db ) -m(Db)-d ID=Db ni(Db) = -o:Db tDb r( ') -D. -D. exp --D. . Pa t Pa 11 n;, n;, n;, 
(4.61) 

Or for simplicity, 

(4.62) 

The second term on the right hand side of Equation ( 4.60) can be written by the use 

of Equations ( 4.41) and ( 4.2) as 

2_ t'° dm ~(Db)dD = _!.. f''° '11D Nt;i (_!!_) _l_exp (-_!!_) dD. 
Pa lnb dt Pa lnb r(11) Dn;i Dn;i Dn;i 

(4.63) 

Changing variables from D to ·D'J again gives, 

(4.64) 

The solution to this integral is given in Ambromowitz and Stegun (1972) as the incomplete 

gamma function defined by, 

r(n, Y) = 100 xn-1exp(-X)dX. }y· ( 4.65) 

For completeness, let us also write down the solution for the integral from O to Y. This is 

given as, 

(4.66) 

Using the above definition of the incomplete gamma function we may write, 

(4.67) 

As before, Equation ( 4.67) will be written in terms of the moments of the distribution 

functions. For an incomplete distribution, the moments may be defined as, 

( 4.68) 
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p Nt 
T(P) = Dn f(v/(v + P, X/ Dn), 

For the integral from 0 to X, 

U(P) = fox nP n(D)dD 

p Nt 
U(P) = Dn f(v) ;(v + P,X/ Dn)• 

( 4.69) 

(4.70) 

(4.71) 

Using these definitions of the moments of the incomplete gamma functions we may write 

( 4.67) in the form, 

(4.72) 

Substitution of Equations ( 4.62) and ( 4.72) into ( 4.60) gives our mass flux equation as, 

(4.73) 

In order to complete the description of crystal fluxes from i to distribution s , ( 4.33) 

needs to be solved in order to determine the concentration flux from distribution i to 

distribution s . Following procedures similar to the above derivations ( 4.33) is written in 

the following form, 

ii/= - l7 8~ (~ ni(n)) dD 

N/ = -lim:,: .... oo { ID=:i: ni(x, t)} + dd~ ID=Db ni(Db), 

(4.74) 

(4.75) 

The first term on the right hand side of ( 4.75) is zero in the limit, so ( 4.75) becomes 

(4.76) 

Again, the initial equation reduces to one that is simple to interpret on a physical level. 

Equation ( 4. 76) is a statement of the number concentration that has crossed the boundary, 

Db, due to the spectral shift. 

As a final step in the derivation of this equation, let's substitute ( 4.44) into ( 4. 76); 

this gives, 

(4.77) 

Equations ( 4. 73) and ( 4. 77) are the description of concentration and mass flux from 

distribution i to s . 
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In subsaturated conditions, fluxes will occur from the snow distribution to the pristine 

ice distribution. In order to describe this process, it is necessary to solve equations ( 4.34) 

and ( 4.35). Just by examining these equations and the definitions of the incomplete gamma 

functions, it is possible to immediately write down the solutions to these equations. These 

solutions are, 

·J 2 ( ) °IJ Nt·• ( / ) r. = - Pa aDb n Db + Pa Dn;•r(~); 11 + 1, Db Dn;• 

r! = _.!.aDln(Db) + .!u.(1) 
Pa Pa 

fe! = - ID"_!_ (dD n(D)) dD • lo 8D . dt 
• J dD 

N. = - dt ID=D1, n.(Db) 

. J 2-{J N. = -tDb n.(Db), 

( 4. 78) 

(4.79) 

(4.80) 

( 4.81) 

(4.82) 

(4.83) 

Equations ( 4.80) and ( 4.83) are solutions for fluxes from the snow to the pristine ice 

distribution for sublimating ice crystals. However, the second term in ( 4.78) (and ( 4.80)) 

will be dropped. In order to see why, consider ( 4. 78). The first term on the right hand side 

describes the mass-mixing ratio amount that crosses the Db boundary due to the spectral 

shift (it is positive because 8D/8t < 0). The second term describes the mass loss in the 

tail due to the evaporative process. Equation ( 4. 78) is a statement of the mass change 

in the region of from 0 - Db, so, at times the second term can overpower the first when 

mass loss due to evaporation in the region 0 - Db is large enough. Also, the second term 

describes a reclassification of the ice as vapor. To include the term in the flux equations, 

then, would make no physical sense. For this reason we choose to drop the second term in 

( 4.78) through ( 4.80). 

This may seem a little inconsistent with the mass-mixing ratio flux equation for PI 

to snow transfer. Remember, however, that the extra term was kept there because of the 

possibility of extraneously large tail growth. Also, in that case ( the case of vapor deposition), 
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the extra term described mass going from vapor to ice , so that at the very least the term 

was physically consistent. 

As a summary of the :flux model, let us write out our final equations. For mass growth 

of a complete distribution, 

r = t'° dm n(D)dD lo dt 

r = !.1(1). 
Pa 

For the mass and number flux form distribution i to s in a supersaturated regime, 

or 

and 

or 

(4.84) 

(4.85) 

( 4.86) 

( 4.87) 

(4.88) 

( 4.89) 

The mass mixing-ratio and number concentration :flux from distribution s to i in a subsat-

urated regime is given by, 

(4.90) 

or 

(4.91) 

and 

. lDb 8 (dD ) NI= - - -n(D) dD 
• o 8D dt ' 

(4.92) 

or 

( 4.93) 

These equations are a description of flux during the growth/evaporative processes in the 

cloud environment. In order to complete the model, we need a way of finding number 
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concentration loss from the pristine ice and snow distributions during evaporation. We will 

consider sublimation loss of any given ice category ( e.g. pristine ice, snow, hail, aggregates, 

graupel) in the next section. 

4.2 Loss of Ice Species by Sublimation 

A parameterization of the process of sublimation loss of concentration from the pristine 

ice distribution is considered in this section. What is needed is a way to describe the loss 

of concentration from a given distribution of ice using as few dependent parameters as 

possible. One way to approach this problem is to find the size of crystal that will completely 

disassociate into vapor in a given model time-step by sublimation. This can be done by 

using ( 4.44) in integral form given by, 

f
0 

nP-2dD = [t+At 41rx(A)(Si - l)Gi(T, P)dt = 41rx(A)(Si - l)Gi(T, P)at, ( 4.94) 
}Dawap lt 

where x(A), Si and Gi(T, P) must be assumed constant over the given time-step. This gives 

Devap as 

Devap = {41rx(A)(Si - l)G(T, P)(/3- l)at}1l(/J-t) . ( 4.95) 

The number concentration lost during a given time-step can then by found by integrating 

the following, 

N - /Dev op (D)dD - N -y(v, Devap/ Dn) 
/011 - lo n - t f(v) . ( 4.96) 

Although this result is useful, it unfortunately requires the calculation of the incomplete 

gamma function at every time-step, which is computationally expensive. We could opt to 

create tables of these functions as is done for the incomplete gamma functions given in the 

section above; these tables would be three dimensional and be of the form, 

( 4.97) 

This table would have to range over values of Devap and Dn from about 1 to 500 micrometers. 

Since this table would be quite large, we opt for a different method for the parameterization 

of number concentration loss by sublimation. The following parameterization is based on the 
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idea that the ratio of mass lost from_ the distribution to the total mass (defined as rD..t/rtot) 

is related to the ratio of the concentration loss to the total concentration ( nD..t / ntot) . 

Development of the parameterization is done from the perspective of a bin model. Since 

exact equations which describe the loss of concentration are not known, the parameterization 

is developed here as a table of percent concentration loss versus various important physical 

parameters. 

To develop the scheme, the situation will be considered in which all physical parameters 

are held constant and the crystals in the distribution are slowly allowed to sublimate. Then, 

the relevance of certain physical parameters ( such as temperature and pressure) will be 

examined by relaxing the conditions and allowing them to vary. 

0 . 01 

o.ooe 

o.ooe 

0 .004 

0 .002 

0 

0 150 100 
Diameter 

200 250 

Figure 4.2: Bin Representation: An example of the bin representation of the gamma dis-
tribution. The distribution is divided up into x number of bins of a given diameter defined 
by Di = Di-1 + AD 

Consider the established distribution shown in Figure 4.2 with 11 3. To initialize the 

bin representation, the range of the distribution ( 0 - Dmaz =RANGE) is divided into a 

certain number of bins (Nbin,) by defining each bin in terms of a specific diameter. The 

bins start with Do = 0 and continue as Di = Di-1 + D..D where D..D = Nbin,/ Dmaz and 

i denotes the ith bin. To complete the bin representation of the distribution, the number 

and mass in each bin (at each diameter, Di) needs to be specified. This is accomplished by 
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the use of the following relations, 

( 4.98) 

a.nd 

(4.99) 

where n(Di) is the normalized gamma distribution a.nd M(Di) is defined by using ( 4.3). 

The total mass in the distribution is also needed in order to define the mass loss ratio a.nd 

is defined by, 
Ni,;n, 

rtot = L M(Di), 
i=O 

Note that since ( 4.98) is normalized, Ntot = 1. 

(4.100) 

Using this representation, the model is run using time steps ( chosen by the model) 

which are small enough to resolve a user-defined increment of X% in the rD..t/rtot a.nd 

n!l.t/ntot ratios. During these runs values of Si, Dn, T, P, v and the crystal habit are held 

constant. The total time for the evaporation run is found by integrating ( 4.44) to find the 

time needed to completely evaporate the largest crystal (Dmaz) in the distribution. The 

integral is, 

1° nP-2dD = IT tdt = f IT dt, 
lvmu lo lo (4.101) 

as long as we assume that t is not a function of time. This is not necessarily true, however 

we are only after a.n estimate of the time for the evaporation run, so this formulation is 

sufficient. Solving for T gives, 

(4.102) 

This time, T (or a multiple of T depending upon the time step used), is used to put an 

upward limit on the amount of time needed for the distribution to completely evaporate. 

Tabulation of the relationship between the r!l.t/rtot and n!l.t/ntot ratios is accomplished 

by using the growth equations ( 4.41) and ( 4.44). In order to find the new diameter in a 

given bin after a time step, D..t, ( 4.44) is written in integral form as, 

(4.103) 
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where Dt is the diameter at the present time, after mass has evaporated from the crystal, 

and Dt-/:J,.t is the previous value of the diameter. Assuming that I does not vary over the 

time-step ( a reasonable assumption if the time step is small) allows this integral to be solved 

easily, it yields 

{ 
(3-1 }1/((3-1) 

Dt = (/3 - l)IAt + Dt-l:J,.t • (4.104) 

This relation is used to describe the evaporative number and mass loss processes. Note that 

according to ( 4.104) two possible situations exist. The first being when in ( 4.104) the 

following condition exists, 

(4.105) 

When this condition exists in any given bin, the crystals in that bin have completely evap-

orated. When this occurs the number within that bin is passed to a variable for the total 

loss. This is done for all bins in which the above condition exists. ff le is assumed to 

describe the maximum bin in which the above condition is true, then the variable for the 

total concentration loss can be written as, 

le 
Nt1011 = Nt/011 + L Ni, 

i:O 

The mass lost due to the complete evaporation of crystals is given by 

le 
Me= LM(Di)• 

i=O 

( 4.106) 

(4.107) 

The total mass removed, however, cannot be written just at this point. The reason is that 

we are looking for the ratio of total mass loss to the total mass in the distribution. To 

describe total mass loss we need to look at the second situation described by ( 4.104). This 

condition is, 

(4.108) 

When this condition is true the crystals in that bin shrink due to evaporation but do not 

completely evaporate. The new diameter that the crystal obtains is described by ( 4.104). 

Mass removal from this bin is given by, 

(4.109) 
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The total mass removed is then descri_bed by adding the amount from the crystals that 

completely evaporate, Me, and the amount given by ( 4.107). This is, 

Ni,;n, 

Mtloaa = Mt/oaa +Me+ I: M1oaa(Di), 
le 

(4.110) 

Equations ( 4.106) and ( 4.110) are the equations that are needed to calculate the ratios, 

r!:1t Mtloaa (4.111) --=--
Ttot Ttot 

r!:1t Nt1oaa (4.112) --=--. 
Ttot ntot 

This procedure is continued with values of the a.hove ratios stored in X% increments until 

all of the crystals in the distribution have completely evaporated. 

At this point it should be noted that the new diameter calculated with ( 4.104) is 

not reclassified a.nd placed into a. different bin. The bins in this model a.re fixed a.nd the 

diameters in the bins are allowed to shrink by evaporation in accordance with ( 4.104). This 

is not an exactly realistic representation since the real spectra. would shift to smaller sizes as 

the evaporative process takes place. For our purposes, however, this shift is not necessary. 

All we are after is the relation between the two ratios and the shift in the spectra. will not 

affect this in this model set up. 

To check the importance of the physical parameters Si, T, P, Dn, v and crystal ha.bit 

on the mass and number loss ratios, runs were done in which these physical para.meters 

were varied over a. wide range of values. The reason for doing this becomes apparent when 

one considers the fa.ct that any variable that ca.uses significant variations in the results will 

need to be included in the look-up tables. Therefore we would like to minimize these. 

Runs were done of this evaporative concentration loss scheme in which Si, P, T, and 

D were varied over large ranges. Figure 4.3 shows the generated curves of mass loss ratios 

plotted against number concentration loss ratios. In this simulation, temperature, pressure, 

and mean diameter were a.11 held fixed; also the runs were done for needles a.nd for hexagonal 

plates. Note that variation of t"l1e curves is slight o~er the range of Si used. There seems 

to be larger variations a.t sma.ller mass loss ratios for needles, but this is mostly due to 

uncertainty a.t these points. 
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Figure 4.3: Plots of (rl:l.t)/rtot vs. (nl:l.t)/ntot: Curve (1) is for needles and curve (2) is for 
hexagonal plates. Variation is over the range Si = 0.1 - 0.9 
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Figure 4.4: Plots of (rtl.t)/rtot vs. (nl:l.t)/ntot: Curve (1) is for .needles and curve (2) is for 
hexagonal plates. Variation is over the range T = -30 - 30°C 
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Figure 4.5: Plots of (rAt)/rtot vs. (nAt)/ntot: Curve (1) is for needles and curve {2) is for 
hexagonal plates. Variation is over the range P = 600 - 200mb 
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Figure 4.6: Plots of (rAt)/rtot vs. (nAt)/ntot: Curve (1) is for needles and curve (2) is for 
hexagonal plates. Variation is over the range jj = 10 - 300µm 
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As a quick a.side, the reason for using only two habits is that habit, a.s will be shown, 

is important in the evaporative scheme because of the power, /3, in the mass-diameter 

relationships. Since the lowest value of /3 is 1.8 for needles and the highest is 2.5 for 

hexagonal plates, these two crystal habits were used a.s examples to illustrate the effect. 

Figures 4.4 and 4.5 show the results for variation in temperature and pressure, respec-

tively. Note that these curves are very similar to the variation in S; curve. It seems that 

both pressure and temperature do not affect out number concentration loss values enough 

to include them in the look-up table. Figure 4.6 shows the results for variation in fJ. This 

curve, unlike the others, has a noticeable spread. Since the dependence of the ratios on fJ 

is not too large, we will choose to leave any D dependence out of the look-up tables; instead 

the fJ results are used to define the fJ used in creating the look-up tables. 

o.a 
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J o.e 
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0 

Figure 4.7: Plots of (rAt)/rtot vs. (nAt)/ntot: Simulation for needles with v = l; ranges 
over pressure from P = 600 - 200mb, temperature from T = -30 - 30°C and mean 
diameter from fJ = 10 - 300µm 

Figure 4. 7 shows a plot of the mass-loss and number concentration-loss curve with 

variation over ranges in P, T, and fJ; S; was set to 0.8 and the distribution shape was 

assumed to be Marshall-Palmer (v = 1). Simulations were done over these different ranges 

in order to test a.s many possible cases that may cause deviations in the curve. Note that 

there is little variation in the curve for the evaporative ratios over the given ranges. The 
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widest variations shown in the figure are due to the diameter variation. Still, we feel it 

is possible to parameterize the evaporative number concentration-loss look-up tables with 

values of these parameters set at values that define the bulk average of the curve. The values 

chosen here are T=273.15 K, P=400 mb, and iJ = 40µm. These values are representative 

of values that define an average curve. Errors associated with the removal of D from the 

tables are around a maximum of about 9 % . Similar results can be shown for different 

values of the II and for different habits. However, these are not produced here. 
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Figure 4.8: Sublimation ratio's varying 11: Curve (1) describes evaporation for 11 = 1, curve 
(2) describes evaporation for 11 = 2, etc. up to 11 = 6. For these simulations T=273.15 K, 
P=400mb, D = 30µm, and Si = 0.8. Crystal habit was needles. 

The parameters that do cause significant shifts in the evaporative loss curves are II and 

the crystal habit. The reasons for this will be explained shortly. Figure 4.8 shows plots of 

the mass-loss and number concentration-loss ratios for different values of 11. Note that for 

a value of 11 = 1 the mass-loss ratio to number loss ratio is roughly 1:1, and as the value 

of II increases, the evaporation ratio must become larger and larger before a significant loss 

in number concentration is observed. This is due to the fa.ct that as II increases, the tail 

of the distribution near zero becomes tighter. For example, a. distribution with 11 = 1 has 

more of its mass and number near zero than a distribution with 11 = 3. Thus, it only makes 

sense that evaporation of crystals (since the tail end is removed first in the bin model) would 
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Figure 4.9: Sublimation ratio's varying crystal habit. Curve (1) describes evaporation for 
needles and for long columns, curve (2) for hexagonal plates, curve (3) for short columns 
and curve (4) for spheres. Simulation T, P, S1, and jj are the same as above. A shape 
parameter of 11 = 3 was used. 

proceed faster initially from a number-concentration-loss stand-point for a distribution with 

11 = 1 than for a distribution with 11 = 3. 

Figure 4.9 shows the relation of the mass-loss ratio and number concentration-loss 

ratio to the choice of habit. Again, note the shift in the curve due to this choice. Of 

particular interest is the fact that for spheres, the percentage number concentration-loss 

is larger initially for any given percentage mass-loss with this tendency reversing as the 

ratios approach 1. The opposite trend is observed for needles, with large initial percentage 

mass-losses being needed in order to see any appreciable change in the percentage number 

concentration loss. The reason for this shift in the curve due to the different habits is related 

to the mass-diameter relationship. Recall that this is given by, 

m(D) = aD/3 (4.113) 

where a and /3 are given constants. Now, for spheres, f3 = 3 while for needles f3 1.8. 

This power influences the way in which the given crystals evaporate. To see this recall,.our 

equation for the time change of diameter, 

dD = 1n2-f3. 
dt (4.114) 
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This equation, which was used above t_o evaporate the distributions, is the reason for the 

observed shifts in the curves. For spheres, 2 - /3 = -1 , giving a 1/D dependence while 

for needles 2 - f3 = 0.2 , giving a D0•2 relationship. Since the bin model allows for the 

evaporation of the smallest crystals first, note that the 1/D relationship for a small diameter 

will give a larger number than the D0•2 relationship for needles. Thus, for a given percentage 

mass-loss ratio (below about 0.50) the percentage number concentration-loss will be larger 

for the sphere than for the need.le habit. This can be seen for the hexagonal plates and 

the short columns. Hexagonal plates have a f3 = 2.5 while short columns have a /3 = 2.6. 

For hexagonal plates we then have a n-o.s dependence to the dD/dt equation while short 

columns have a n-0•6 dependence. Thus, we would expect to see larger initial losses in 

number concentration (for percentage mass-losses of less than about 0.5) for short columns 

than for hexagonal plates, this is what Figure 4.9 shows. 

Upon examining Figures 4.3 to 4.9 it is obvious that the number loss ratio is weakly 

dependent upon T, P, Dn, and Si, It may seem that certain parameters such as Si should 

have a large effect on the number loss ratio, it does; through the mass loss ratio. The mass 

loss ratio is a strong function of ice subsaturation and, as it would seem, the number loss 

ratio is a strong function of the mass loss ratio. Thus, the Si dependence really is taken 

into account through the relation of the number loss ratio to the mass loss ratio. Since the 

evaporative number loss ratio is weakly dependent upon these parameters, we choose here 

to fix the values of these parameters at physically realistic values for the creation of the 

tables. Values of v and variation in crystal habit, however, have a large effect upon the 

shape of the curves off !:,,.t/rtot and n!:,,.t/rtot• Our table of evaporative number loss is thus 

set to be a function of the shape of the distribution, the crystal habit, and the evaporative 

mass loss ratio. 



Chapter 5 

MICROPHYSICAL TESTS USING A ONE-DIMENSIONAL 

LAGRANGIAN MODEL 

The evolution of the ice spectra described above is examined through the use of a simple 

one-dimensional Lagrangian parcel model as described by Tripoli and Cotton {1981). In 

this section the one-dimensional model will be described breifly. Then, the basic set-up of 

the model for the tests of the spectral evolution will be explained. Finally, examination and 

comparison of the tests will be done. 

5.1 Lagrangian Model 

The one-dimensional model used here is run for ice-saturated accent and ice-

subsaturated descent. The model is initialized with a given pressure level, Pi,0 t, a given 

vapor content rt, and a given temperature, Tinii• An updraft profile is assumed and has the 

following matehmatical form, 

(5.1) 

where Wmu is the maximum of the updraft. This formulation for w is used here simply as a 

means of finding a time scale for the microphysical calculations. The pressure in the model 

was lowered (or raised) in increments of !l.P and a height scale derived from this using the 

hypsometric equation, given in Tripoli and Cotton as 

RT { P } !l.Z = - 9 ln p + f:::..P , (5.2) 

where !l.Z is the height change associated with the given pressure drop (or increase). This 

is then used to calculate the time scale for the calculations as, 

f:::..Z 
!l.t=-. 

w 
(5.3) 
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Diagnosis of temperature at every step is accomplished by using the conservative vari-

able, 9il. The ice-liquid water potential temperature, 9il is conservative during phase changes 

of water as long as fluxes of water species into or out of the parcel do not occur. Because it 

is conserved during phase changes of water, 9i1 is ideal for use as a thermodynamic variable. 

Since all water species must travel with the parcel, the total initial mixing ratio is set as, 

(5.4) 

where rt is the total mixing ratio, r 11 is the mixing ratio of water vapor, rp is the mixing 

ratio of pristine ice, and r. is the mixing ratio of snow. The model is run with preexisting 

distributions ( rp and r. not zero ) and with initially only water vapor present. 

In order to diagnose temperature during the model generated ascent or descent an 

initial value of 8i1 needs to be known, and can be calculated with the following relation, 

(5.5) 

where Liv is the latent heat of sublimation, ri = rp + r. is the ice mixing ratio, Gp is the 

specific heat of dry air at constant pressure, and 8init is the value of 8 calculated from the 

initial temperature. Note that this equation for 8i1 lacks the terms for the liquid phase. 

This is not a problem here, however, since only the vapor and ice phases of water are used. 

Knowing the value of 9il allows the value of 9 and T to be calculated at every step. 

Calculation of an exact value of 8 requires solution of the equation, 

where L1v is the latent heat of vaporization and r1 is the mixing ratio of liquid water. The 

terms in the above equation that include these variables are not of interest here since only 

vapor and ice phases of water are used. Approximations to the solutions of this equation are 

common for the diagnosis of 8, one of which is to throw out the last two terms that deal with 

the changes in the latent heats by assuming that they are small. Since the second term in 

the above equation becomes increasingly important at low temperatures approximations of 

this sort can result in large errors in the diagnosis of 9 at low temperatures. To compensate 

j 
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for this, Tripoli and Cotton (1981) _defined the following function that allowed for better 

diagnosis of 8, 

8 8 { Liv(To)ri } = ii 1 + Cpmax(T, 253) (5.7) 

The term for the liquid phase has been left out. This equation is used here to diagnose 8 

during the model runs. 

5.2 Results of the One-Dimensional Simulations 

One-dimensional simulations of the prognostic equations were run using the a.hove 

model for distributions initiated with the Meyers et al. (1992) nucleation equation. Before 

going into a. description of the simulations, the bounds of the distributions a.re defined and 

how the calculations a.re corrected if the distributions beyond these. 

5.2.1 Distribution Bounds 

During any type of modeling study, it is important to make sure that the physical 

processes that a.re being studied stay within a. certain set of realistic bounds. When using a. 

bimodal description of the ice spectra, one of these bounds is on the mean diameter of the 

particles. Since we define pristine ice to be any crystal with a. diameter less than Db a.nd 

snow to be a.ny crystal larger than Db, it seems reasonable that this value should bound the 

diameters of the two ice classes. The bounds for pristine ice a.nd snow a.re defined as, 

Dm":c = 0.9Db: for pristine ice (5.8) 

Dmin = 1.lDb: for snow. (5.9) 

The mean diameter for pristine ice is not allowed to get larger than Dm":c a.nd the mean 

diameter of snow is not allowed to get smaller than Dmin• 

The reason for imposing these constraints, besides the obvious fa.ct that pristine ice and 

snow should be confined to a definite size range, has to do with reforming the distribution 

a.s a. complete gamma distribution after every time-step. Consider the situation shown in 

Figure 5.1 , which shows an example of the pristine ice distribution at times t and t + ~t 

during evolution in an environment that is supersaturated with respect to ice. Since the 
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crystals are in a ice supersaturated environment, pristine ice crystals will grow by vapor 

deposition, and some of the pristine ice mass and number concentration will be transfered 

to the snow distribution. The process of vapor depositional growth causes the spectra to 

shift to larger diameters since Dn is diagnosed from r11 • The flux process moves mass and 

number concentration from a region of D + tiD around the boundary Db of the pristine ice 

distribution to the snow category causing a decrease in the pristine ice Dn, There are two 

possible limiting situations for the evolution of the Dn profile. The first is when the flux of 

crystals becomes greater than the vapor depositional growth of the distribution. For this 

case, the mean diameter, and therefore Dn will decrease. The second situation is when the 

vapor depositional growth of the distribution is greater than the transfer rate. When this 

occurs the mean diameter of the ice crystals increases, as shown in Figure 5.1. There is, 

therefore, the possibility of the values of Dn going beyond their physical bounds. 
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Figure 5.1: Pristine ice distribution at times t and t + tit. The value of Dn at time, t, is 20 
µ m; at time t + tit the value of Dn is 25 µ m. Note the larger amount of mass associated 
with the distribution tail at time t + tit. 

A similar thing happens for the snow distribution when the ambient air is subsaturated 

with respect to ice. As mass is lost from the distribution due to evaporation and due to 

the flux of mass and number concentration from snow to pristine ice, the values of Dn can 

become smaller than physically plausible. 
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In order to constrain the distribution mean diameters from becoming too large or too 

small (depending upon the case), the above constraints are placed on the mean diameters 

of the pristine ice and snow distributions. If, in a given time-step, the values of Dn become 

too large for the case of pristine ice, then the number concentration transfer to snow is 

suppressed while the mass transfer is kept at the model determined value. This keeps the 

pristine ice Dn value within reasonable physical bounds since Dn is an inverse function of 

number concentration (recall ( 4.4)). For the case of the transfer of snow to pristine ice, 

if the value of the mean diameter of snow becomes less than the given constraint, number 

concentration flux to pristine ice is increased to compensate. Our choice of limiting number 

concentrations is an arbitrary one. We argue, however, that it is more important to conserve 

mass than particle number concentration. 

5.2.2 One-dimensional simulations 

The model that was described above is used here to show the evolution of the ice spectra 

for various ice crystal habits and distribution shape parameters, 11. The growth of the ice 

spectra also varies depending upon the initial temperature and water vapor mixing ratio, 

however, variations in these parameters just tend to shift the model profiles. Lowering or 

raising these parameters either enhances ice nucleation or causes it to occur at higher model 

levels. Thus, variations in these parameters will not be examined. Two model crystal habits, 

needles and hexagonal plates, were examined. The reason for picking these two habits has 

to do with the exponential parameter /3 in the ice crystal mass relation. The parameter 

{J is an important parameter in the determination of the mass and number concentration 

fluxes and in the equations for the mass gain and loss of the distributions, crystals which 

characterized the lowest and highest values of f3 were used. Needles have the lowest value, 

{J = 1.8 while hexagonal plates have one of the highest values at {J = 2.6. A constant 

updraft of 1 m/s was used, giving a time step of .6.t = 1.7 seconds. 

The simulations conducted test how the equations respond to the different crystal types 

and distribution shapes given above. Simulations are first conducted for needle crystals with 

a distribution shape of 11 = 3. This simulation is compared with a run initialized with the 
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same physical conditions except that the distribution shape is Marshall-Palmer; v = 1. This 

shape of the pristine ice distribution conforms to the replicator data of Arnott et. al. (1993) 

from the FIRE II experiment. A final simulation tests the difference in spectral evolution 

when a different crystal type is considered. For this simulation hexagonal plates were used 

with a distribution shape of v = 1. 

Case 1: Needle crystals with pristine ice distribution shape v = 3 

Figure 5.2 shows the evolution of the ice spectra during parcel ascent for ice super-

saturated conditions. Ice supersaturation increases quite rapidly as the parcel ascends but 

drops of as pristine ice crystals nucleate and grow by vapor deposition (see Figure 5.3). 

After the first 61 time-steps (about 103.7 seco::ids), the initial peak of pristine ice due to 

nucleation via the Meyers et al. (1992) formulation ca.n be seen. The distribution of pristine 

ice grows quickly, broadening as mass is added by vapor deposition. Peak (2) is reached 

after only 400 time-steps and (3) after 500 time-steps. The rapid broadening of the pristine 

ice distribution can also be seen by examining the profile of D with pressure (see Figure 5.4). 

Note that D for pristine ice increases quite quickly during the ascent and reaches its 

maximum value around P=379 mb. At this point, the model doesn't allow for further 

broadening of the distribution. 

The snow distribution becomes noticeable after 150 time-steps ( as denoted by ( 4) in 

the figure) and broadens after this point very quickly. The reason for the rapid broadening 

of the distributions has to do with the dependence of the growth equation (dD/dt) on the 

parameter f3 and will be examined in more detail later. Again, this rapid broadening is 

shown in Figure 5.4; D for snow initially resides around it's minimum value, however, once 

the distribution accumulates a significant amount of snow mass, the broadening becomes 

rapid. Refering to Figure 5.5 (dr/dt 6.t) shows this. 

Examination of the number concentration profile with pressure given in Figure 5.6 

shows that pristine ic~ number concentration peaks quickly due to nucleation, but starts to 

fall off as crystals become large enough to becoa.e classified as snow. 
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Figure 5.2: Evolution of the ice spectra during model saturated ascent. T=243 K, 
r11 = 0.0007 kg/kg, and the habit assumed for pristine ice and snow is needles. 
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Figure 5.3: Si vs. Pressure: Model ascent and descent denoted by (1) and (2) respectively 
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Figure 5.4: Dmean vs. Pressure for model ascent and descent. Profile of pristine ice Dmean 
for model ascent and descent are denoted by (1) and (2) respectively. Snow Dmean profiles 
are denoted by (3) and ( 4) for model ascent and descent respectively. 
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Figure 5.5: (dr/dt)~t vs. Pressure. (1): Pristine ice distribution growth due to vapor 
deposition. (2): Snow distribution growth due to vapor deposition. (3) The flux of mass 
from the pristine ice to the snow distribution. 
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Figure 5.6: Number concentration vs. pressure. (1) Pristine ice number concentration 
profile during model ascent. (2): Pristine ice number concentration during model descent. 
(3) Snow number concentration during model ascent. (4): Snow number concentration 
during model descent. 
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Figure 5. 7: Evolution of the ice spectra during model subsaturated descent. Initialization 
of the model parameters was with the parameters at the top of the ascent 
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Figure 5.8: (dr/dt)t::J..t vs. pressure for the model descent. (!):Pristine ice mass loss due 
to sublimation, (2): Snow mass loss due to sublimation (3): Mass transfer from snow to 
pristine ice. 

Note that the number concentration of snow increases quickly and then tends to level 

off with increases occuring slowly. The initial increase in the snow distribution's number 

concentration is due to the large number of rapidly growing needle ice crystals produced by 

nucleation. The snow number concentration increase with height slows during asscent due 

to the decrease in the initial number concentration of pristine ice. 

The ice spectra evolution for the descent is shown in Figure 5. 7. The final pristine 

ice and snow distributions from the ascent phase are used as the initializations for the 

model descent. In Figure 5. 7 the initial pristine ice distribution becomes increasingly more 

narrow in time due to the evaporation. The peaking of the distribution shown is due 

to the narrowing and the increase in number concentration due to the flux of number 

concentration from snow to pristine ice. This narrowing of the pristine ice distribution is 

shown in Figure 5.4; where the value of jj slowly decreases as the parcel descends. 

Figure 5.5 shows the values of the mass evaporation rates for the pristine ice and snow 

along with the flux of mass from snow to pristine: ice. Note that pristine ice loses more mass 

due to evaporation than it gains from the flux of snow; this is the reason for the narrowing of 

the distribution. Number concentrations peaking as the distribution narrows is controlled 
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by- the evaporative number loss routine. Figure 5.6 shows the number concentration loss 

from the pristine ice and snow distribution. Note that the number loss follows the shape of 

the mass loss curves given in Figure 5.8; as it should, since number concentration loss is a 

function of distribution mass loss. 

Case 2: Needle crystals with pristine ice distribution shape (v = 1) 

The above simulation was repeated for the case of a Marshall-Palmer shaped pristine 

ice distribution (v = 1). The evolution of the ice spectra is shown in Figure 5.9. The initial 

slope of the pristine ice distribution is quite steep due to the large number of ice crystals 

nucleated at a small diameter. 

As the parcel ascends, ice supersaturations increase (see Figure 5.10) and, as a result, 

ice nucleation increases as does vapor depositional growth of the pristine ice distribution. 

Thus, the distribution increases drastically at the smaller diameters while continuing to 

broaden due to growth processes. 

As shown in the ice saturation profile, the ice supersaturation continues to increase 

during ascent until the nucleation and growth processes halt its increase. At this point ( or 

before) nucleation shuts off (since the Meyers et al (1992) formulation is a number tendency 

and needs to be compared with the number of crystals currently in the parcel). When this 

occurs, the concentration at smaller diameters (D $ 40µm) decreases due to the broadening 

occuring through vapor depositional growth. 

The number concentration profile in Figure 5.11 shows the burst in nucleation of prisi-

tine ice. At P=385 mb nucleation effectively "shuts-off" and the pristine ice number concen-

tration decreases due to the transfer of pristine ice crystals. The snow number concentration 

increases quickly due to the large amount of pristine ice around. This increase slows as the 

parcel ascends since pristine ice number concentration is decreasing. 

Initially, the snow distribution shown in Figure 5.12 has a small number concentration 

and mixing ratio due to the fluxes from a pristine ice distribution that is narrow. Thus, 

the mean diameter of the ice crystals in the distribution are centered around the minimum 

allowed for snow (as discussed above). 
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Figure 5.9: Ice spectra evolution during ascent for: 11 = 1, Tanit = 243 K, and rv = 0.0007 
kg/kg. The pristine ice distribution after 61, 200, and 600 time-steps are denoted by (1), 
(2), and (3) respectively. (4) shows the snow distribution. 
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Figure 5.10: Si vs. Pressure for, (1): model ascent, and (2): model descent. 
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Figure 5.11: Number concentration profile for; (1): pristine ice, model ascent. (2): pristine 
ice, model descent. {3): snow, model ascent. (4): snow, model descent. 
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Figure 5.12: Evolution of the ice sepctra for model descent. 
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Figure 5.13: ( dr / dt)~t vs. Pressure for model ascent: Vapor depositional growth of pristine 
ice and snow are denoted by {1) and {2) respectively. Mass flux to snow from pristine ice 
denoted by ( 3). 
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Figure 5.14: D profile for; {1): pristine ice, mocel ascent. {2): pristine ice, model descent. 
{3): snow, model ascent. {4): snow, model descent. 
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Figure 5.15: ( dr / dt)~t vs. Pressure for model descent: Evaporation of mass from pristine 
ice and snow are denoted by (1) and (2) respectively. Mass flux to pristine ice to snow 
denoted by ( 3). 

As the distribution of snow gains mass and the distribution broadens it is constrained by 

the number concentration and mass that is continually added through the flux equations. 

Both snow and pristine ice distributional broadening are due to the vapor depositional 

growth rates shown in Figure 5.13. Pristine ice broadening is hindered by the transfer of 

mass to the snow category while the snow broadening is enhance by this mass transfer. 

The evolution of the spectra for the model descent is shown in Figure 5.12. Both 

pristine ice and snow distributions become increasingly more narrow as ice mass is lost to 

the ambient air in the form of vapor. The evolution of the profiles of iJ (Figure 5.14), the 

number concentration and mass flux profiles (Figures 5.11 and 5.15 respectively) are similar 

to those presented for the previous case. 

Case 3: Hexagonal Plates with Pristine ice distribution shape v = 1 

To examine the effects of crystal habit on the spectral evolution, simulations were 

conducted in which the physical parameters were the same as for the simulations presented 

above, however, the crystal shapes were assumed to be hexagonal plates. 
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Figure 5.16: Evolution of the ice spectra for hexagonal plates, model ascent. (1): Pristine 
ice at model time step 61, (2): Pristine ice at model time-step 600. 
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Figure 5.17: iJ vs. Pressure. Ascent and desc:2nt profiles for pristine ice are denoted by 
(1) and (2) respectively. Ascent and descent profiles for snow are denoted by (3) and (4) 
respectively. 
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Figure 5.18: Number concentration vs. Pressure. Ascent and descent profiles for pristine 
ice are denoted by (1) and (2) respectively. Ascent and descent profiles for snow are denoted 
by (3) and (4) respectively. 
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Figure 5.19: Ice mixing ratio vs. Pressure. Ascent and descent profiles for pristine ice are 
denoted by (1) and (2) respectively. Ascent and descent profiles for snow are denoted by 
(3) and (4) resJ>ectively. 
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Figure 5.20: dr/dtll.t vs. Pressure for model ascent. Mass growth of the pristine ice and 
snow distributions are denoted by (1) and (3) respectively. Mass flux from pristine ice to 
snow is denoted by (2). 
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Figure 5.21: Evolution of the ice spectra for hexagonal plates, model descent. 
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Figure 5.22: dr / dt~t vs. Pressure for model descent. Mass loss due to evaporation of the 
pristine ice and snow distributions are denoted by (1) and (2) respectively. Mass flux from 
snow to pristine ice is denoted by (3). 

Figure 5.16 shows the evolution of the ice spectra for hexagonal plates with T=243 K 

and r,, = 0. 7 g/kg. As with the simulations given above the inital distribution is narrow with 

the largest concentrations associated with the smallest diameters. As the parcel ascends, 

the distribution of pristine ice broadens as it grows due to vapor deposition. After 200 

model time-steps the snow distribution becomes noticable, however, it is still much smaller 

and broader than the pristine ice distribution. 

Note that the snow distribution does not broaden much during model ascent. This is 

also noted in Figure 5.17, the profile of D with pressure. The reasons for this will become 

apparant when comparisons between this simulation and Case 2 are discussed. 

Examination of the number concentration profile (Figure 5.18) shows pristine ice in-

creasing quickly during ascent while snow concentrations never reach very large values. The 

profiles of mixing ratio with respect to pressure, Figure 5.19, show that the masses of pris-

tine ice and snow are comparable during ascent with pristine ice always having the larger 

value. 

The mass growth of the pristine ice and snow distributions are shown in Figure 5.20. 

The mass growth of the pristine ice distribution is quite large (labeled (1) in the figure) 
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when compared to the mass growth of the snow distribution. This is due to the interactions 

between the high number concentration of pristine ice and the growth equation for hexagonal 

plates and will be discussed in the next section. Also, note that the mass added to the snow 

distribution by the transfer of pristine ice is larger than the actual growth of the snow 

distribution by vapor deposition during the first 45 mb of ascent. 

During model descent the pristine ice distribution ( shown in figure 5.21) slowly narrows 

as does the snow distribution. The narrowing of the distributions is much less than was 

examined for the case of needle crystals. This will be examined in the next section. 

Comparison of the model results 

Intercomparisons between the results for needle crystals, Cases 1 and 2, and of the 

differing crystal habit simulations, Cases 2 and 3 are made in this section. For cases 1 

and 2, the prominent difference in the two simulations is the faster broadening of the 

11 = 3 case as compared to the 11 = 1 case; note the larger mean diameters attained for 

snow in Figure 5.4 as compared with Figure 5.14, the 11 = 3 case reaches mean diameters 

approximately 200 µm larger. The reason for the larger distribution broadening has to do 

with the vapor depositional growth of the distributions. According to ( 4.54), the vapor 

depositional growth of a given distribution is a function of 11, 

. _ q;D Nf(11+l) 
r - Pa n t f(11) . 

Writing the gamma function fractions for 11 = 1 and 11 = 3 gives 

f(l + 1) = 1! = l 
f(l) O! 

r(3 + 1) _ 3! _ 3 r(3) - 21 - · 

(5.10) 

(5.11) 

(5.12) 

Thus, for a distribution with 11 = 3 the vapor depositional growth will be 3 times as large as 

for a 11 = 1 distribution. Since the transfer of mass and number concentration is a function 

of the crystal ·growth rates, mass will be transfered at a larger rate for the 11 = 3 pristine ice 

distribution. This larger mass transfer rate is shown by comparison of Figures 5.5 and 5.13. 

Since more mass and number concentration is transfered to the snow distribution, and since 

l 
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dm./dt is written as a linear function of D, the snow distribution for the v = 3 case will 

grow faster and broaden more . 

... 
0 

-2JC10-

0 0 .0001 0 .0002 0 .0003 0 .0004 0 .0005 
Diameter (m) 

Figure 5.23: dD/dt vs. D for various values of S,. (1)-(2) are curves for hexagonal plates 
and (3)-( 4) are for needles. The range of S, that these curves represent are 1.1 - 1.5 in 0.1 
increments of S, . Curves for the range 0.5 - 0.9 are also plotted 

Upon comparison of the distribution evolution for cases 2 and 3 (Figures 5.9 and 5.16) 

it is apparent that the snow distribution composed of hexagonal plates does not broaden 

as much as the needle crystals. Figures 5.14 and 5.17 show the mean diameters for the 

needle crystals reach much larger maximum values than do the hexagonal plates. The 

number concentrations of pristine ice reach much larger values and stay consistently higher 

for needle crystals than for hexagonal plates. Also, note the differences in the mass growth 

and transfer values between the two different habits. The vapor depositional growth of 

pristine ice needles is much less than pristine ice hexagonal plates, while snow needle vapor 

depositional growth rates are much larger than snow hexagonal plates. In fact, during the 

first 55 mb of the parcel ascent, the vapor depositional growth of the snow hexagonal plates 

is less than the mass transfered from the pristine ice distribution. This has important 

consequences when trying to explain the differences in the two simulations. 

The differences between these two simulations can be explained by examining the figures 

of the mass growth rates hinted at above (Figures 5.16 and 5.20). As stated above, for the 
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hexagonal plates, more mass is added t_o the snow class by transfer from pristine ice than 

by vapor depositional growth during the first 55 mb of the model ascent. This keeps the 

snow distribution narrow, as noted by the minimum value of the snow mean diameter in 

Figure 5.17. As the model ascent continues, the mass transfer becomes less than the vapor 

depositional growth of the distribution, however the two processes are still quite comparable 

and the snow distribution does not broaden much. For the snow distribution composed of 

needle crystals, distribution broadening is quite fast and can be seen by noting the larger 

vapor depositional growth rates of the snow distribution as compared to the mass transfer 

rates shown in Figure 5.20. 

These explanations are satisfactory when examining the broadening of the distributions. 

They do not, however, explain why the mass growth of the pristine ice distribution for 

hexagonal plates is greater than for the needle case, why the mass transfer rates from 

pristine ice to snow is lower for hexagonal plates than for needles, and why the vapor 

depositional growth rate of snow is less for hexagonal plates than for needles. To answer 

these questions, the growth of needle crystals and hexagonal plates (dD/dt) are plotted 

over a range of diameters for various saturations over ice in Figure 5.23. Recalling that the 

equation for dD/dt is a function of D like 

dD / dt n<2-P> 

and that /3 = 1.8 for needles and /3 = 2.5 for hexagonal plates, respectively. Thus, 

dD / dt 7 n-0•2for needles 

and 

dD / dt D0·5for hexagonal plates. 

(5.13) 

(5.14) 

(5.15) 

This is the tendency shown in Figure 5.23 for needles and hexagonal plates. Note that for 

needles, the growth rate is larger for large particles than for smaller particles. This explains 
j 
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the larger growth of the snow distribution by vapor depositional processes than by mass and 

number concentration transfer from the pristine ice distribution; mass and number transfer 

are functions of the vapor depositional growth equation. For the hexagonal plate crystals, 

the vapor depositional growth is largest for the smaller crystals, thus mass and number 

concentration transfers from the pristine ice distribution to snow can be as large or larger 

than the vapor depositional growth of the snow distribution itself. This is shown in the 

slow broadening of the snow distribution composed of hexagonal plates given above. 

These routines were implemented into the microphysical module of the RAMS model. 

The next chapter is dedicated to two-dimensional sensitivity studies of cirrus clouds, where 

model tests of this scheme and both the homogeneous and heterogeneous nucleation schemes 

are given. 



Chapter 6 

THE NOVEMBER 26, 1991 FIRE II CIRRUS EVENT: OBSERVATIONS 

This chapter is dedicated to an analysis of the cirrus event that occured on the 26th 

of November, 1991. A discussion of the development of the cloud system and it's observed 

dynamical processes will be discussed in the first section. The second section will be tay-

lored towards a description of the observed microphysical fields derived from lidar, radar, 

and aircraft measurements. The purpose of this is to identify the physical processes that 

produced the cirrus clouds that we are attempting to simulate and to give some information 

upon which to draw conclusions as to how well the two-dimensional version of RAMS faired 

in simulating the cloud system. Since we are interested in the sensitivity of the model to 

the chosen physical parameters (e.g. crystal habit, distribution shape parameter, nucleation 

scheme etc ... ) these results will also serve as a basis for the examination of sensitivity of 

the physical parameters. 

6.0.3 Cirrus cloud development and dynamics 

The cirrus cloud system that developed on the 26th of November, 1991 developed in 

the region of a mobile upper tropospheric trough that was associated with the dynamics of 

the exit region of an upper tropospheric jet streak. The upper level analysis (300 mb) of 

heights/isotachs (Figuer 6.1) for 0000 UTC on the 26th of November shows a jet streak with 

maximum winds of up to 110 knots centered over the northwestern portion of the United 

States. By 1200 UTC (Figure 6.2) the right, eas-:ern exit region of the jet and an associated 

upper level trough entered the western part of Kansas. The system was first picked up by 

lidar and radar (Intreiri et al., 1993) at around 1800 UTC. By about 1930 UTC the base 

of the cirrus deck descended to about 6km retaining its top at around 9 km. After about 

2100 UTC the cloud base descended to between 2 and 3 km. 
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Figure 6.1: 300 mb analysis of heights/isotachs for 00 Z, November 26, 1991. 

Figure 6.2: 300 mb analysis of heights/isotachs for 12 Z, November 26, 1991. 
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Figure 6.3: 300 mb analysis of heights/isotachs for 00 Z, November 27, 1991. 
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Figure 6.4: 700 mb NGM analysis of heights/RH for 00 Z, November 27, 1991. 



" 

" 

" 

71 

Figure 6.3 shows the jet at 0000_ UTC on November 27th; the right , eastern exit region 

of the jet is centered over portions of eastern Kansas, and the trough is moving out . The 

analysis of the NGM on 0000 UTC of the 27th shows 70 % relative humidity at 700 mb 

(about 3 km); the cloud base was at this level at this time (Figure 6.4) . 

Figure 6.5: Wind speeds contoured at 10km on Nov. 26, 1991 (Mace et al., 1993). 

Figure 6.5 shows the contours of wind speeds at 10 km (Mace et al. 1993) at 2100 

UTC; the extent of the jet streak from South Dakota to northeastern Texas is evident . 

Mace et al. (1993) attributed the formation and maintenance of the November 26th cirrus 

cloud system to a difluent trough associated with the right, eastern edge of the jet streak 

shown in Figure 6.5. The authors noted that the geopotential height field exhibited a tilt 

in the upper level trough from the southeast below to the northwest at higher altitudes. 

This was noted as resembling a upper level jet front propagating through a synoptic scale 

baroclinic wave; both barotropic amplification of the front through the tilt in the height 

field and baroclinic amplification by cold advection were tell-tail signs of this . The upper 

level front motivated the formation and eastward propagation of the cirrus event as the 

dynamics of the system moved and intensified. This is noted in the vorticity field from 

Mace et al. (1993) (Figure 6.6) which shows the motion and intensification of the cyclonic 

vorticity pattern between 1800 UTC and 2100 UTC. These fields were constructed by the 

authors using both radiosonde and wind profiler data. 
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Figure 6.6: Vertical vorticity cross-sections for 18 UTC (a) and 21 UTC (b) on the 26th 
of November, 1991. Positive values of the relative vorticity are shaded; contours are in 
intervals of 10-5 s-1 , (Mace et al., 1993). 

Figure 6.7: Vertical velocities from adiabatic flow for 18 and 21 UTC (a and b respectively). 
Velocities are in cm s-1 , (Mace et al., 1993). 
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Vertical motions were diagnosed by Mace et al. {1993) from the first law of thermody-

namics assuming adiabatic flow. The 1800 UTC vertical motion field from their results at 

the 7.5 km level (Figure 6.7) show weak vertical motions over Coffeyville of around 0.01 m 

s-1 • Similar fields were constructed for the 2100 UTC data and shows the stronger vertical 

motions induced by the intensifying upper level trough (up to about 0.15 m s-1 ) . 

Gultepe et al. (1993) used aricraft and radar measurements to derive some of the 

dynamical properties of the cirrus clouds that were observed during the Novemer 26-26 and 

the December 5-6 events. Their results showed that the vertical velocites observed in the 

cirrus layers were between a. few hundreths of a meter per second and 1 m s-1• Within the 

cirrus generating cells vertical motions were on the order of 1 m s-1 • The authors compared 

the fluxes of momentum and heat on the small ( cloud) scale to the mesoscale and find that 

there is much momentum and heat transport being accomplished by the cloud-scale eddies. 

6.1 Microphysical observations 

A topic of general interest in the observational study of cirrus clouds ( and one that 

needs to be parameterized correctly in numerical models) is the dominant crystalline habit 

in cloud. Heymsfield et al. (1993) used 2D-C probe and ice replicator data to examine 

crystalline shapes of the November 26 cirrus case. The 2D-C probe creates shadowed images 

of particles that pass through its beam. The 2D-C probe is known to undercount particles 

with sizes less than 70 µm while the ice replicator tends to overpredict the sizes of particles 

greater than 150 µmin size. Figure 6.8 shows the data. from the probes. The 2D-C probe 

shows bullet and rosette shaped crystals and some, irreguarly shape crystals. The ice 

replica.tor data. shows many small spherical-shaped crystals, irregular shaped crystals, and 

some bullets and rosettes. 

Arnott et al. (1993) used these {2D-C probe and ice crystal replica.tor) data. to derive 

spectral information of the ice pa.rticel size distributions in the cirrus clouds. Their results 

showed that a bimodal spectrum of ice particles can exist in cirrus clouds (see Figure 6.9) . 



..... 
tO co n ... 
'-' '-< • en 

I .. 

• 

• • 

• 

:r 

• 
0 

• 
• • • 

• 

• 

I • 

• 

.. 

·• 
•• • 

' 
• • 

• • 

r.-
• 

II 

• 

" 

IU4 U I 
!>WI! 

[t '> 
4t, 

3 

1114227 
2iJ'l21~0J \ 21 

184227 
. !di751 

11142 2 1 
'17b4 

525 

184127 
141511 

~5 __ 

IU4 U 7 

411 
J 

41! 
J 

;$ 

3 I 
3 

'hJ:J ~II 4l, _~!" . >; 

184.!2/ 
pt,25 

150 

1ll422 1 
OOH1 

4/5 _ _ 

42 
J 

45 
3 

0 
3 

-- --

,o~ .•n 
'IJIU ,· ... 

IU4 ~2 I 

41 
] 

ot../.1 '"I i 
.!'l'5 " 

...,__ , 

184227 
• -Jfq% 

----

184 U 7 
lb75b 

3/5 

1114 2 27 

40 
J 

32 
J 

44 
3 

blJ1 114 

'.': ~· 
-

1114 /l / 
1tJ4~] 

bl'J 

184JIIS 
51Jb 

150 

18430'1 

14 
5 

12 
5 

74 
'j 

4;.>40 J4 
4 75 J 

IU4 JU\I 
~ 2U4'1 

l'jll 

IHI 
I 

V 
J 

1B4J"U 
44 5 0 1~4 

300 I 

184]011 

3 i,SJ4b 

18430U 
~e•n<i 

2~11 

IU4J0U 
lbll2 

225 =-
- · -

184 30U 
d,J"J 

I U4 J IIU 
20'11 

~0 

IU4JlltJ 
f.f441 

18430~ 

41 
3 

55 
_2 _ 
---

<J0 
1 

4f1 
) 

t,t, 
4 

40 • 
. . 

5 7 J4 
I / ~ 'I 

1114 10U 
I t:11Jt, /J ~·,~ 

I 114 me 
I •j] , ' J 7L 

1~ 16 ':> 

111431!11 
IL l 'J IL 

15 4 

184JUll 
2 /.t'IIIJ e~ 

I 

IH4JIIII 
IU tlUI 114 . 

2UII I 

.. 

...., 
,I:>-

IH4JO~ ,,:t"' 'j HI 
I 

···- -

-

l(M .rnU 
1 .' tt JI It, 

300 

-

IU4 J~IJ 
/ 4 ·p, L4 .,., ., 

I IJ 4 J,,U 
1'1.t/ ( , 10 J 

1/'j :•u J 1 



II 

75 

The analysis showed that there was a delination between the distribution of smaller particles 

and the distribution of larger particles; this delineation occured between about 120 and 190 

µm. 

Matrosov et al. (1993) retrieved cirrus cloud microphysical information by using 

doppler radar and and IR radiometer techniques. 
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Figure 6.9: Spectral representation of the 2D-C probe (thick line) and ice replicator (thin 
line) data. A bimodal spectrum is evident (Arnott et al., 1993). 

Their results, shown in Figure 6.10 and 6.11, show the general trend observed in the cloud 

layer; the cloud, initially thin, at about 8-9 km, dropping cloud base to about 6 km by 1900 

UTC while maintaining its top at around 9 km. Concentrations near cloud top are in excess 

of 1000 z-1 while concentrations near cloud base are low (about 2.7 z-1). Associated with 

the higher concentrations, these results showed particle median diameters of about 50 µm 

while the low concentrations at cloud base were associated with larger median diameters 

(about 400 µm) as one would expect. These general results were also shown by Intrieri 

et al. (1993). Their data (shown in Figure 6.12) showed concentrations up to 1000 z-1 

at cloud top; associated with smaller diameters (around 30 µm) and usually smaller IWC. 

Concentrations near cloud base were low (about 101 z-1) and associated with larger sizes 

(200 µm) and usually high IWC (up to 0.046 gm-3). 
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Figure 6.10: Time-height cross-section ofretrieved ice crystal concentrations; in log(number 
1-1 ) (Matrosov et al., 1993). 
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Figure 6.11: Time-height cross-section of retrieved ice crystal median diameters in µm 
(Matrosov et al., 1993). 
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Uttal et al. (1993) used radar data to de:lne the upper and lower cloud boundaries 

observed during the November 26 cirrus case. Figure 6.13 shows a time-series plot of the 

radar echo boundaries of the cirrus cloud system. The cloud was initally thin, with a 

thickness of only about 1 km and a cloud top around 9 km. After about 19 UTC the cloud 

base dropped to 6km, and after about 21 UTC the cloud base dropped to around 3 km; the 

whole time the cloud top stayed at around 9.km. 
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Figure 6.13: Radar echo boundaries of the Kov. 26 cirrus event (Uttal et al., 1993). 

The next chapter describes the two-dimensional modeling study of this cirrus event. 

Variations in crystal habit, distribution shape, nucleation parameters, both single and dou-

ble moment predictions, and radiation parameterizations are used to study the effects of 

these variations on the simulations of cirrus clouds with the RAMS modeling system. 
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Chapter 7 

TWO-DIMENSIONAL SENSITIVITY TESTS WITH RAMS 

This chapter is dedicated to two-dimensional simulations of the November 26, 1991 

FffiE II cirrus case. The model was set up for the two dimensional simulations with 20 grid 

points in the east-west direction and a grid spacing of 10 km. In the vertical, the model 

contains 7 4 levels starting with 1500 m grid spacing at the ground, shrinking this to 50 m 

spacing at cloud level, and then strectching this spacing back to 1500 m above cloud. The 

model was initialized with a sounding that is representative of the atmospheric structure 

that occured on that day. As was pointed out by Heymsfield et al. {1993), the moisture 

profile derived from rawindsondes exhibited up to 20 % in cloud. Figure 7.1 shows the 

Heymsfield et al. {1993) data from the King Air and Saberliner flights in cloud. The model 

was run for 6 hours during the period of active cirrus on November 26 (about 1800 UTC to 

2400 UTC). 

As one can see, the relative humidity at cloud levels was significantly below that mea-

sured by the aircraft; it was in fact, lower than ice saturation at all levels. Because of this, 

we opted to modify our sounding between the 6 and 10 km levels in order to better conform 

with the atmospheric data at those levels. 

The model was run using various properties of the two moment prediction scheme in 

order to understand the effects of these new parameterizations on the simulations of a cirrus 

cloud system. The following heirarchy was adheared to for the simulations: First, a control 

simulation was conducted and compared to observations of the case given in Chapter 6, the 

next section is dedicated to this simulation; second, various simulations were conducted 
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Figure 7.1: King Air and Saberliner data in cloud for the November 26 cirrus case. Upper 
abscissa is RH ( % ), ordinant is height (km). Note the larger RH values measured by the 
probes as compared to the rawindsonde sounding. 

in which certain aspects of the two moment mi rophysical parameterization were changed, 

and are presented in Section 7.2. Table 7.1 contains a summary of the simulations and the 

va.riatons in parameters that were conducted. 

The control simulation is compared to observations, thus all relevant parameterizations 

are turned on. The other simulations serve as sensitivities to the control. Simulations NNl 

and PNl test model sensitivity to changes in the assumed habit. Variable habits are allowed 

during model simulations but are not considered here since the idea is to test the sensitivity 

of these parameters. Simulations NN3 and R1't3 test the effect of a different distribution 

shape parameter ( 11 ) for snow and aggregates on the model results. The simulation RSM 

was done using the single moment prediction scheme in the model, RNR was done without 

the model radiative parameterization and shows the importance of radiative effects on cirrus 

simulations, RNH was done without homogeneous nucleation and RCIN was done with a 

pertubed ice nuclei profile. 

j 
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Table 7.1: Simulations 
Test Two Moment Snow Shape Habit Radiation 

Control yes 1 Rosettes on 
NNl yes 1 Needles on 
PNl yes 1 Plates on 
NN3 yes 3 Needles on 
RN3 yes 3 Rosettes on 
RSM no 1 Rosettes on 
RNR yes 1 Rosettes off 
RNH yes 1 Rosettes on 
N5RH yes 1 Needles on 
RCIN yes 1 Rosettes on 

Table 7.1: Simulations, continued 
Test Homogeneous Nucleation Ice Nuclei Profile 

Control on tapered 
NNl on tapered 
PNl on tapered 
NN3 on tapered 
RN3 on tapered 
RSM on tapered 
RNR on tapered 
RNH off tapered 
N5RH on tapered 
RCIN on perturbed 

Table 7.1: Conducted simulations. Control simulation is compared to observations. Other 
simulations include variations of model parameters. For example, NNl (Needles 11 =1) and 
PNl (Plates 11 =1) are done to check model dependence on crystal habit. 

The simulation N5RH was done with an increase of 5 % in the sounding RH values in cloud 

(from 7.5 to 9 km), showing the importance of correct sounding values in the simulations 

of these systems. 

7.1 Control Simulation and Comparison with Observations 

The control simulation was done with the full two moment prediction scheme, consider-

ing rosette crystals to be dominant in the cloud. Rosettes were chosen since, as is shown in 

Figure 6.8, many of the crystals observed in cirrus were of irregular shapes or were rosettes . 

. Figure 7.2 shows the total ice mixing ratio after 2 hours of simulation. Maximum values 

are upwards of 0.55 x 10-2 g/kg and cloud base has descended to about 5 km. 
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Figure 7.2: Total Ice Mixing Ratio for the RNl simulation. Maximum contour, 0.55E-5 
kg/kg; Smallest contour, 0.lE-6 kg/kg; Contour interval, 0.9E-6 kg/kg. 
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Figure 7.3: W (m/s) for the RNl simulation. Maximum contour, 0.42E-2 m/s; Smallest 
contour, -0.48E-2 m/s; Contour interval, 0.6E-3 '!D./s. 



83 

Figure 7.3 shows maximums in updraft and downdraft velocities near cloud base which are 

on the order of 0.42 x 10-2 m/s ( -0.48 x 10-2 m/s). 

Figures 7.4-7.15 show the relevant ice fields for the cirrus simulations after 5 hours 

of model time. Figure 7.4 shows the pristine ice mixing ratio fields; maximums in mixing 

ratio values are up to 0.27 x 10-1 g/kg at mid-cloud levels. Cloud top is near 9.5 km while 

small values of pristine ice exist down to 6 km. Pristine ice concentrations, Figure 7.5, 

have maximum values of up to 960 1-1 near cloud top, dropping of to 10 1-1 near 7.5 km. 

As one would expect (Figure 7.6) the larger concentrations and smaller masses near cloud 

top are associated with smaller crystal sizes, while the smaller number concentrations near 

and below 7 .5 km are associated with larger sizes. The snow mixing ratio and number 

concentraion values (Figures 7.7 and 7.8) show similar structure and have maximum values 

near the 6.5 km level (0.8 x 10-2 g/kg and 9 1-1 ). Large values of the size of the snow 

crystals are associated with the low number concentrations and masses near cloud base 

(Figure 7.9). These values are in good agreement with the lidar and radar data presented 

in Figures 6.10 and 6.11. These observations show high number concentrations (up to 1000 

1-1 ) with small crystal sizes (around 20-40 µm) and masses. Smaller concentrations (down 

to 3 1-1 ) and larger sizes (up to 400 µm) associated with cloud base seem to compare well 

with the snow and the aggregate model results described below. 

Figures 7.10-7.12 show the contours of the aggregate mixing ratio fields, number con-

centration, and size. Significant aggregate mass and number concentrations are associated 

with the 6.2 km level; at this level aggregate sizes are respectively small. The largest aggre-

gates are associated with the lower cloud level. The contours of total ice mass (Figure 7.13) 

shows maxima in total cloud ice around the 8km level with cloud top exisiting up to about 

9.5 km and bases lowering to below the 5 km level. Lidar and radar measurements of cloud 

ice content (Figure 6.11) show significant mass in these regions; however larger masses exist 

in this data near cloud base than was predicted by the model. Model ice showed maxima 

up to 0.28 x 10-1 g/kg (about 0.02 gm-3 ) at mid to upper cloud levels and mixing ratios 

near cloud base of 0.4 x 10-2 g/kg (about 0.004 gm-3). 
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Figure 7.4: RNl Pristine Ice Mixing Ratio. Max contour, 0.27E-4 kg/kg; Min contour, 
0.lE-6 kg/kg; Contour interval, 0.3E-5 kg/kg. 
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Figure 7.5: RNl Pristine Ice Concentration. Max contour, 960 1-1 ; Min contour, 10 1-1; 
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Figure 7.6: RNl Pristine Ice Size. Max contour, 121 µm; Min contour, 1 µm; Contour 
interval, 20 µm. 
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Figure 7.7: RNl Snow Mixing Ratio. Max contour, 0.8E-5 kg/kg; Min contour, 0.0 kg/kg; 
Contour interval, 0.5E-6 kg/kg. 
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Figure 7.8: RNl Snow Concentration. Max contour, 9 1-1 ; Min contour, 0.0 z-1; Contour 
interval, 1 1-1 . 
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Figure 7.10: RNl Aggregate Mixing Ratio. Max contour, 0.51E-6 kg/kg; Min contour, 0.0 
kg/kg; Contour interval, 0.3E-7 kg/kg. 
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Figure 7.11: RNl Aggregate Concentration. Max contour, 0.3 z-1 ; Min contour, 0.0 z-1 ; 

Contour interval, 0.3E-1 z-1• 
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Figure 7.12: RNl Aggregate Size. Max contour, 600 µm; Min contour, 50 µm; Contour 
interval, 50 µm. 

12 . 0 

10.0 

E 
:: 8 . 0 

N 

6 . 0 -------40 

4.0 

-80. -60 . -40. -20. 0. 20. 40. 60 . 80. 
x ( km l 

Figure 7.13: RNl Total Mixing Ratio. Max contour, 0.28E-4 kg/kg; Min contour, 0.5E-7 
kg/kg; Contour interval, 0.4E-5 kg/kg. 
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Figure 7.14: RNl w field. Max contour, 0.16E-1 m/s; Smallest contour, -0.9E-2 m/s; 
Contour interval, 0.lE-2 m/s . 
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Figure 7.15: RNl Total Mixing Ratio Time-Series. Max contour, 0.28E-4 kg/kg; Min 
contour, 0.25E-6 kg/kg; Contour interval, 0.2E-5 kg/kg. 
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The model predicited updraft and downdraft profiles (Figure 7.14) shows maximums in 

cloud of 0.16 x 10-1 m/s (-0.9 x 10-2 m/s). The observations presented in Figure 6.7 by 

Mace et al. (1993) shows values of w up to about 18 cm/s while model maxima were up to 

2-3 cm/s. 

The model results were lower than observations because cloud-top radiative cooling 

is the major source of convective motions. There is no mechanical forcing of updrafts 

by convergence of u wind component which would produce larger updraft velocities. The 

cloud boundaries as shown in a time-series plot of the cloud total ice content (Figure 7.15) 

compares well with the boundaries observed with radar (Figure 6.12). The model result 

shows cloud base lower than was observed, however the smallest contoured value of the 

mixing ratio in Figure 7.15 is 0.25 x 10-3 g/k,g which is smaller than that observed by 

radar. Overall, the model seems to have done significantly well in describing the cirrus 

event. 

7.2 Sensitivity Tests of the Model Parameterizations 

In order to examine the multitude of sensitivity tests illustrated in Table 7.1 without 

the use of hundreds of figures, we will examine the relevant plots for each case and utilize 

tables in order to streamline the discussion process. Tables 7 .2 and 7 .3 contain maximum 

values for the various fields at 2 hours and 5 hours respectively. These tables will be referred 

to as necessary. In the following subsections we will discuss the sensitivity test results in 

comparison to the control run. 

7.2.1 Needle Crystals, Snow and Aggregate Distribution Shape, 11 = 1 

The use of needle crystals in the cirrus simulation differs quite substantially after 5 

model hours from those done for the control ru:i above. Even after 2 hours of simulation 

(Table 7.2) large differences in the mixing ratios of all fields is observed. Figure 7.16 and 

7 .17 show less structure to the pristine ice fields after 5 hours than that of the control 

run (Figures 7.2 and 7.3). Pristine ice concentrations are smaller for the needle simulation 

and ice masses are less. Note also that the pristine ice fields for needles is of much less 
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vertical extent than for the control. The less vertical structure of these fields has to do 

with the stronger vertical motion exhibited by the control simulation (see Table 7.3) and 

the larger terminal velocities associated with the rosette crystals. As Mitchell et al. (1994) 

observed in his modeling of cirrus clouds, the more spatial habits tend to have larger number 

concentrations; this has to do with the growth of the given habit. 

Table 7.2: Simulations: 2 Hour Values 
Test ra (kg/kg) Na (l-1) r,, (kg/kg) Np (l-1) r, (kg/kg) 

Control 0.16 X 10-i:s 0.27 X 10-~ 0.54 X 10-4 270 0.57 X 10-t> 
NNl 0.112 X 10-9 0.68 X 10-3 0.26 X 10-5 540 0.72 X 10-7 

PNl 0.64 X 10-lO 0.10 X 10-2 0.17 X 10-5 440 0.10 X 10-8 

NN3 0.90 X 10-9 0.11 X 10-2 0.32 X 10-5 460 0.64 X 10-7 

RN3 0.16 X 10-7 0.20 X 10-2 0.46 X 10-5 260 0.51 X 10-6 

RSM 0.96 X 10-7 - 0.40 X 10-5 280 0.17 X 10-6 

RNR 0.16 X 10-6 0.80 X 10-2 0.85 X 10-6 38 0.38 X 10-6 

RNH 0.17 X 10-6 0.85 X 10-2 0.85 X 10-6 6.3 0.40 X 10-6 

N5RH 0.11 X 10-5 .30 0.48 X 10-4 9500 0.31 X 10-6 

RCIN 0.14 X 10-4 2.5 0.12 X 10-4 144 0.26 X 10-5 

Table 7.2: Simulations: 2 Hour Values, cont. 
Test N, ( 1-1 ) rtot (kg/kg) Dp (µm) D, (µm) D 0 (µm) w (m/s) 

Control 0.68 0.54 X 10-:, 121 1700 850 0.54 X 10-~ 
NNl 0.19 0.26 X 10-s 121 1600 950 0.54 X 10-2 

PNl 0.0012 0.17 X 10-5 121 1700 160 0.54 X 10-2 

NN3 0.038 0.32 X 10-5 121 190 1900 0.54 X 10-2 

RN3 0.112 0.48 X 10-5 121 290 380 0.54 X 10-2 

RSM - 0.44 X 10-5 121 - - 0.53 X 10-2 

RNR 0.57 0.11 X 10-5 121 1020 760 0.72 X 10-2 

RNH 0.60 0.12 X 10-5 121 1010 780 0.54 X 10-2 

N5RH 0.96 0.48 X 10-4 121 340 900 0.30 X 10-l 
RCIN 3.8 0.20 X 10-4 121 250 270 0.49 X 10-2 

Table 7.2: Model values for all tests after 2 hours of simulation. The table headings are 
defined as: ra = aggregate mixing ratio, Na= aggregate number concentration, rp = pristine 
ice mixing ratio, Np= prisine ice number concentration, r, = snow mixing ratio, N, = snow 
number concentration, Ttot = total ice mixing ratio, Dp = pristine ice size, 15, = snow size, 
150 = aggregate size, and w = updraft velocity. 
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Table 7 .3: Simulations: 5 Hour Values 
Test Ta (kg/kg) Na (m-3 ) Tp (kg/kg) N,, (m-3 ) r. (kg/kg) 

Control 0.51 X 10-, 0.31 0.27 X 10-4 960 0.80 X 10_., 
NNl 0.85 X 10-7 0.57 X 10-l 0.11 X 10-4 200 0.16 X 10-5 

PNl 0.10 X 10-8 0.15 X 10-2 0.32 X 10-5 310 0.40 X 10-7 

NN3 0.64 X 10-6 0.76 X 10-l 0.76 X 10-5 136 0.13 X 10-5 

RN3 0.18 X 10-5 .22 0.90 X 10-5 54 0.42 X 10-5 

RSM 0.11 X 10-5 - 0.85 X 10-5 60 0.48 X 10-6 

RNR 0.36 X 10-6 0.11 X 10-l 0.12 X 10-5 4.8 0.46 X 10-6 

RNH 0.11 X 10-6 0.32 X 10-2 0.12 X 10-5 3.8 0.16 X 10-6 

N5RH 0.96 X 10-5 4.0 0.60 X 10-4 7200 0.85 X 10-6 

RCIN 0.68 X 10-5 0.72 0.90 X 10-5 96 0.14 X 10-5 

Table 7.3: Simulations: 5 Hour Values, cont. 
Test N, (m-") Ttot (kg/kg) Dr, (µm) D, (µm) Da (µm) w 

Control 9.0 0.28 X 10-4 121 2300 960 0.16 X 10-1 

NNl 3.6 0.11 X 10-4 121 2000 1120 0.64 X 10-2 

PNl 0.051 0.32 X 10-5 121 2400 640 0.64 X 10-2 

NN3 0.76 0.80 X 10-5 121 210 310 0.64 X 10-2 

RN3 0.96 0.10 X 10-4 121 290 1180 0.90 X 10-2 

RSM - 0.90 X 10-5 121 - - 0.56 X 10-2 

RNR 0.64 0.17 X 10-5 121 1020 1080 0.52 X 10-2 

RNH 0.14 0.14 X 10-5 121 1360 800 0.51 X 10-2 

N5RH 2.6 0.63 X 10-4 121 153 680 0.32 X 10-1 

RCIN 2.1 0.11 X 10-4 121 300 380 0.56 X 10-2 

Table 7.3: Model values of various quantites after 5 hours of model simulations. Symbols 
are as stated above in Table 7.2. 

A more spatial habit has a larger value of the mass-dimensional exponent, /3; this means 

that for a given mass increase a habit with a smaller value of /3 will increase in size more 

than that of a habit with a larger /3 exponent (shown in Figure 5.23). One can think of 

this simply as having to distribute the given mass over a larger surface area in the case of 

the habit with larger /3 values; this causes the smaller /3 valued crystals to transfer number 

concentrations faster with less associated mass. 

Of course, there are many other factors acting than just vapor deposition, such as 

aggregation, however this general trend seems to hold. Examination of the diameters of 

pristine ice in the region of the largest mass and number concentration ( about 8.2 km in 

Figure 7.18) shows that the needle 
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Figure 7.16: NNl Pristine Ice Mixing Ratio. Max contour, 0.12E-4 kg/kg; Min contour, 
0.lE-5 kg/kg; Contour interval, 0.lE-5 kg/kg . 
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Figure 7.17: NNl Pristine Ice Concentration. Max contour, 185 z-1 ; Min contour, 5 z-1; 
Contour interval, 30 z-1 . 
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Figure 7.18: NNl Pristine Ice Size. Max contour, 121 µm; Min contour, 1 µm; Contour 
interval, 15 µm. 
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Figure 7.19: NNl Snow Mixing Ratio. Max contour, 0.16E-5 kg/kg; Min contour, 0.0 kg/kg; 
Contour interval, 0.lE-6 kg/kg. 
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Figure 7.20: NNl Snow Concentration. Max contour, 3.61-1 ; Min contour, 0.01-1 ; Contour 
interval, 0.4 1-1• 
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Figure 7.21: NNl Snow Size. Max contour, 1080 µm; Min contour, 130 µm; Contour 
interval, 50 µm. 
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Figure 7.22: NNl Total Ice Mixing Ratio. Max contour, 0.llE-4 kg/kg; Min contour, 0.lE-6 
kg/kg; Contour interval, 0.lE-5 kg/kg. 

simulations contain larger size crystals than do the rosettes. This tendency would also, 

assumedly, produce smaller overall masses for the distributions. This can be seen in Table 

7.3 where the overall masses for all of the fields are less for NNl than for the control 

simulation. The model produced snow fields (Hgures 7.19 and 7.20) show lower mass and 

number concentrations than are produced for the control simulation, (Figures 7.5 and 7.6), 

however the sizes of the snow crystals are larger in the rosette case ( compare Figures 7.21 

and 7.7). The total ice fields (Figure 7.22) as compared to the fields produced by the model 

for the control simulation (Figure 7.13) shows that the needle crystal cloud has about 1/2 

the mass of the rosette cloud. · The rosette cloud contains more mass at lower level due 

to the enhanced growth due to the stronger updraft velocities, fallout from upper cloud 

levels due tci°'ih~ir larg~r terminal-velocites and their larger masses associated with their 

mass-dimensional relationship. The total ice field also shows that the control simulation 

has much more of an overal structure to it than the NNl simulation. 

This is in part due to the more complex updraft structure of the control simulation, 

which no doubt is effected by the differing growth kinetics of the rosette crystals. These 
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crystals would most likely release more heat during vapor depositional growth which affect 

the cloud updraft and downdraft structure. 

7.2.2 Plate Crystals with Snow Distribution Shape v = 1 

The plate crystal simulation (PNl), shows much less structure in its pristine ice fields 

than the control and the NNl simulation. After 2 hours of model simulation (Table 7.2) this 

simulation produces less overall mass but higher number concentrations than the control 

simulation. Figures 7.23 and 7.24 show the pristine ice modeled mixing ratio and num-

ber concentration contour plots after 5 horus of simulation. Mixing ratios and number 

concentrations are much smaller for the plate simulation than for the rosette simulation. 

Since plate crystals have mass-dimension exponent that is larger than for rosettes (2.5 as 

compared with 2.26) one would expect that their might be larger number cocnentrations 

associated with this simulation than with the control. It appears, however, that the updraft 

profiles produced by the model in the control case played a large role in the maintenance 

of ice in cloud. Interaction with microphysics is also important; for rosette crystals, as was 

stated above, growth kinetics can play a greater role in the heat budget. The sizes of the 

pristine ice crystals are much smaller in cloud for the plate simulation than for the control, 

evidence that a much narrower distribution of ice exists in this case (see Figure 7.25). 

The contour plots of the snow fields for plate crystals shown in Figures 7.26 and 7.27 

show maximum values of the mixing ratio of two orders of magnitude higher in the control 

case. This field is very low because the pristine ice distribution for plates contains low mass 

and is very narrow. Since these crystals tend to grow slowly in comparison to needles or 

rosettes, there will not be a very large transfer of pristine ice to snow. The plots of snow size 

(Figure 7.28) shows crystals on the order of 1 mm down to 2 km. In the control simulation, 
--

as is shown in Table 7 .3, snow in both simulations reach about the same maximum size, 

however, the control simulation has larger mass and number concentraitons associated with 

these snow sizes. 
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Figure 7.23: PNl Pristine Ice Mixing Ratio. Max contour, 0.37E-5 kg/kg; Min contour, 
0.lE-6 kg/kg; Contour interval, 0.4E-6 kg/kg . 
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Figure 7.24: PNl Pristine Ice Concentration. Max contour, 325 z-1 ; Min contour, 5 z-1 ; 

Contour interval, 40 1-1 • 
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Figure 7.25: PNl Pristine Ice Size. Max contour, 121 µm; Min contour, 1 µm; Contour 
interval, 20 µm. 
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Figure 7.26: PNl Snow Mixing Ratio. Max contour, 0.49E-7 kg/kg; Min contour, 0.lE-8 
kg/kg; Contour interval, 0.3E-8 kg/kg. 



100 

t--12 . 0 ---... --: 
10.0 ---= 0 0 -0 -

8 . 0 120 120 ,,20 

- --, .. ,. _.,,.,. ,_ b0 

N 6 . 0 --c::::::::::=-:--::i: .--=::::,. 
:;;,..--

•n~ • ,'41/l ;;.--.--_,,nlA 

120 120 -120 --
4 . 0 -----
2 . 0 ---

t-
I I I I I I I I I I I I I I I I I I 

I I ' I I I ' I I 

-80. -60 . -40 . -20 . 0 . 20 . 40 . 60 . 80. 
x (km) 

Figure 7.27: PNl Snow Concentration. Max cootour, 0.48E-1 z-1 ; Min contour, 0.0 z-1 ; 
Contour interval, 0.6E-2 z-1. 
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Figure 7.28: PNl Snow Size. Max contour, 1080 µm; Min contour, 130 µm; Contour 
interval, 50 µm. 
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Overall, it can be seen from these simulations that choice of crystalline habit makes a 

large difference in the final results. 

7.2.3 Needle crystals with Snow Distribution Shape v = 3 

The simulations in which the shape of the snow distribution is varied shows how im-

portant this parameter is in cirrus simulations. Figure 6.9 (from Arnott et al., 1993) shows 

that larger cirrus ice crystals can be distributed in what appears to be av= 3 distribution 

shape. In this and the next subsection we examine the effects of distribution shape on the 

cirrus cloud simulations. 

The total ice mixing ratio produced for this case, NN3 (Figure 7.29), shows smaller val-

ues than for the NNl case simulation; Figure 7.22. Cloud ·structure and height is about the 

same as for the NNl case, however. Also, the number concentrations are lower for pristine 

ice and snow in this case than the NNl case. This has to do with the v = 3 distribution 

shape assumed for snow and aggregates which affects, vapor depositional growth, collection, 

and transfer rates from pristine ice to snow. The difference is due to the higher weight given 

to larger crystals in the v = 3 distribution; thus vapor deposition, collection, and transfers 

from pristine ice to snow should be about 3 times larger. This is shown in Table 7.3, note 

that the mass of aggregates for this case is much larger than for the NNl case. Aggregate 

mass is enhanced over the control due to the higher weighted collection functions in this 

case. Figure 7 .32 shows the effect on pristine ice mean diameter. Since mass is a higher 

weighted moment, the largest crystals will contribute the most to this process. Also, the 

higher weighted snow and aggregate distributions will increase competiton for the available 

vapor, thus there will not be as much around for the vapor depositional transfer process or 

nucleation. Therefore, pristine ice mean diameters decrease. This will decrease the transfer 

of pristine ice to snow since the pristine ice in the vicinty of 125 µm are weigheted much 

less. The larger value of v for the snow and aggregate cases increases their masses due to 

collection. These effects can be noted in Table 7 .3 by examining the differences between 

the simulations NNl and NN3. 
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Figure 7.29: NN3 Total Ice Mixing Ratio. Max contour, 0.7E-5 kg/kg; Min contour, 0.lE-7 
kg/kg; Contour interval, 0.lE-5 kg/kg. 
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Figure 7.31: NN3 Snow Concentration. Max contour, 7.2 z-1 ; Min contour, 0.0 z-1 ; Contour 
interval, .9E-1 1-1 • 
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Figure 7.32: NN3 Pristine Ice Size. Max contour, 121 µm; Min contour, 1 µm; Contour 
interval, 20 µm. 
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For NNl there is quite a large gap between the masses of pristine ice and snow, with pristine 

ice having almost and order of magnitude larger mixing ratio value than snow. Also, in the 

NNl case, aggregates are much smaller in mass than either snow or pristine ice. For the 

NN3 simulation, snow and pristine ice have comparable mixing ratios, and the value of the 

aggregate mixing ratio is much closer to either pristine ice or snow than in the NNl case. 

7.2.4 Rosettes with Snow and Aggregate Distribution Shape 11 = 3 

This situation of a larger distribution shape parameter was tested with rosette crystals 

in the RN3 simulation. Comparison of the total ice mixing ratio field for this simulation 

(figure 7.33) with that of the control simulation (Figure 7.13) shows that about half of the 

mass of the control simulation was produced in the RN3 simulation. Cloud structure is 

different in the RN3 simulation with more mass being associated with the lower cloud levels 

(about 6.5 km); in the control simulation the lc.rgest values in mass were associated with 

the 8.5 km level. Also, pristine ice and snow concentrations, shown in Figures 7.34 and 

7.35 respectively, have lower values than in the control simulation. The reasons for this are 

the same as those presented above for the NN3 simulation; the larger value of II increases 

the mass gained by both snow and aggregates with respect to pristine ice due to increases 

in the collection and vapor depositional processes. Table 7 .3 and Figure 7 .33 show this 

well; in Figure 7 .33 more mass is associated with the lower cloud regions, indicitive of mass 

associated with larger crystals. Table 7 .3 shows that pristine ice, snow, and aggregates all 

have similar mixing ratio maxima; in contrast to the control simulation in which pristine 

ice dominated_._ The pristine ice sizes ( not shown for this case) had a similar profile as 

compared_ to Figure 7.6 for the control, except -:;hat the maxima at 121 µm occured at a 

higher level. These simulations show the importance of the chosen distribution shapes in 

modeling studies. It seems that 11 = 3 may be a better choice for larger ice classes such as 

snow and aggregates since it weights the larger crystals more and, therefore, seems more 

physically plausible. 

I 
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Figure 7.33: RN3 Total Ice Mixing Ratio. Max contour, 0.8E-5 kg/kg; Min contour, 0.lE-7 
kg/kg; Contour interval, 0.lE-5 kg/kg. 
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Figure 7.34: RN3 Pristine Ice Concentration. Max contour, 61 1-1 ; Min contour, 5 1-1 ; 

Contour interval, 7 1-1• 
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Figure 7.35: RN3 Snow Concentration. Ma.x contour, 0.9 z-1 ; Min contour, 0.0 z-1 ; Contour 
interval, .lE-1 z-1 • 

Also, the simulations using this distribution shape produced larger masses near cloud 

base as opposed to the mid and upper cloud levels which is also more physically reasonable. 

7.2.5 Rosette Crystals, Single Moment Predictions 

The differences between the single moment prediction scheme and the results using 

the two moment scheme ( control) a.re drastic. In order for RAMS to predict on only one 

moment of the size spectra., some user-defined :;>a.ra.meter must be set; either a. constant 

number concentration or a constant median size of the ice species must be defined. In this 

case, we opt to allow pristine ice to use two moment prediction because of ice initiation 

processes. Instead of pristine ice flux into the snow distirbution, the distribution size is 

kept in bounds by not allowing the mean diameter of the pristine ice particles to go beyond 

the Db threshold. This is accomplished by conserving mass when the distribution gets too 

large and adjusting number concentration to compensate. Mass mixing ratio is predicted 

for snow and aggregates and number concentration is diagnosed from the specified mean 

diameter. 
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Figure 7.36: RSM Pristine Ice Mixing Ratio. Max contour, 0.89E-5 kg/kg; Min contour, 
0.lE-6 kg/kg; Contour interval, 0.8E-6 kg/kg. 
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Figure 7.37: RSM Pristine Ice Concentration. Max contour, 61 z-t ; Min contour, 5 1-1 ; 

Contour interval, 7 1-1• 
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Figure 7.38: RSM Snow Mixing Ratio. Max contour, 0.48E-6 kg/kg; Min contour, 0.0 
kg/kg; Contour interval, 0.3E-7 kg/kg. 
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Figure 7.39: RSM Aggregate Mixing Ratio. Max contour, 0.llE-5 kg/kg; Min contour, 0.0 
kg/kg; Contour interval, 0.6E-7 kg/kg. · 
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Observations have shown crystals in_ cirrus for the November 26 case to be up to 400 µm 

(see Figure 6.10) in size. This number seems reasonable, thus, snow and aggregates are 

assumed to be 400 µm in sizes for this simulation. 

The pristine ice mixing ratio for the single momemnt predictions (RSM) (Figure 7.36) 

show mixing ratio maxima that are about half that of the control simulation. Comparisons 

of the pristine ice concentrations produced by the RSM simulation (Figure 7.37) and the 

control simulation (Figure 7.5) shows much less structure produced by the single moment 

scheme and lower number concentrations through a thinner pristine ice layer. The snow 

mixing ratio shown in Figure 7 .38 is similarly lower in magnitude than that produced by 

the control. The model produced aggregate field of mass mixing ratio (Figure 7.39) is much 

larger than that produced by the control simulation (Figure 7.10) and includes only one 

maxima in the fields (around 6 km). The reasons for the differences are easily explained. 

In the case of the single moment scheme, the sizes of snow and aggregates are set at the 

aforementioned values. So, for any given transfer process these values must be conserved; 

this puts constraints on the transfer processes itself. 

Since larger masses must be transfered to conserve the set sizes of the crystals, the 

number concentrations that are removed from the pristine ice distribution are larger. Also, 

vapor depositional growth rates are much larger initially for the snow and aggregates in this 

simulation since the sizes of these ice species are set mean values. For the control simulation, 

vapor depositional growth rates will be much less since their sizes will be smaller initially. 

This constant value of the mean size of the larger ice species artifically depleats the available 

vapor which in turn hinders the ice initiation processes. Since aggregates have a larger initial 

size, collection in order to keep the set size of aggregates high must be large, this would 

reduce the size and masses of both pristine ice and snow. This is shown to occur in Table 

7.3 where it can be seen that aggregates have much larger maxima in mass mixing ratio 

than in the control simulation. This artifical process of conserving the mean size ( or spread) 

of the ice crystal spectra as is done in the single moment scheme obviously limits the results 

possible by the model. 
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7.2.6 Rosettes without the Radiative Parameterization 

Radiative effects are important to the formation and maintenance of real atmospheric 

cirrus cloud systems. Thus, it should seem that the radiative parameterization used in 

a numerical model for the prediction of these clouds would be of equal importance. The 

following figures demonstrate this well. The total ice produced without the use of the model 

radiative parameterization is lower than any other simulation except the simulation without 

homogeneous nucelation (Tables 7.2 and 7.3). 
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Figure 7.40: RNR Total Ice Mixing Ratio. Max contour, 0.14E-5 kg/kg; Min contour, 
0.lE-7 kg/kg; Contour interval, 0.2E-6 kg/kg. 

Note that the fields of pristine ice and snow concentration (Figures 7.41 and 7.42) 

are similarly low. All of these fields lack the structure evident in the control simulation. 

Examination of the w profile given in Figure 7.43 in comparison to that of the control 

simulation (Figure 7.14) shows that the updraft (downdraft) field is much less structured 

and contains much smaller updraft and downdraft maxima. 

l 
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Figure 7.41: RNR Pristine Ice Concentration. Max contour, 5.7 z-1 ; Min contour, 0.1 z-1 ; 

Contour interval, 0. 7 z-1 • 
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Figure 7.42: RNR Snow Concentration. Max contour, 0.64 z-1 ; Min contour, 0.0 z-1; 
Contour interval, 0.08 z-1• 
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Figure 7.43: RNR W Fields. Max contour, 0.72E-2 m/s; Min contour, -0.72E-2 m/s; 
Contour interval, 0.9E-3 m/s. 

Without the radiative parameterization, cloud top cooling does not occur; this cooling helps 

to increase the convection in the cirrus layer and ice initiation near cloud top ( due to the 

colder temperatures) . Obviously, the radiative parameterization is a major element in the 

forcing of vertical motion and in the developement of the structure of the cirrus cloud layer. 

7.2.7 Rosettes without Homogeneous Nucleation 

The effects of homogeneous nucleation on the control simulation is examined here by 

turning off homogeneous nucleation in the model but allowing heterogeneous nucelation to 

proceed. Total ice masses (Figure 7.44) and pristine ice and snow concentrations (Figures 

7.45 and 7.46) are of much smaller maginitudes and show much less structure than their 

counter-parts in the control simulation. Note that pristine ice concentration maxima appear 

at lower altitudes (about 6.7 km) than in the control simulation. At the level where the 
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Figure 7.44: RNH Total Ice Mixing Ratio. Max contour, 0.14E-5 kg/kg; Min contour, 
0.lE-7 kg/kg; Contour interval, 0.2E-6 kg/kg. 
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Figure 7.45: RNH Pristine Ice Concentration. Max contour, 5.7 1-1 ; Min contour, 0.11-1 ; 

Contour interval, 0. 7 z-1• 
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Figure 7.46: RNH Snow Concentration. Max contour, 0.14 1-1 ; Min contour, 0.0 1-1; 
Contour interval, 0.01 1-1• 

the pristine ice fields is largest (6 to 7 km) is the level where the model relative humidity 

increases to values exceeding ice saturation. Since ice nuclei taper with height, we expect 

the heighest concentrations in pristine ice to occur at these lower levels, where relative 

humidities and ice nuclei concentrations a.re high. 

The tapering of ice nuclei explains the decrease in ice species above the 7 km level. Snow 

crystals and total ice a.re also associated with these lower altitudes since the processes that 

produce the snow a.re linked directly to the pristine ice fields . Tables 7.2 and 7.3 show that 

snow and aggregate sizes a.re quite large for both the 2 hour and 5 hour model times. This 

is due to the fa.ct that not many ice crystals a.re initiated by just the heterogeneous process. 

Thus, there is less competition for the availab e vapor; more is available for the vapor 

depositional growth of the ice crystals. Obviously, the homogeneous nucelation scheme 

contributes significantly to the model cirrus simulations. 
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7.2.8 Needles with a Modified . Sounding 

In order to examine the effects of perturbations in the RH fields to the overall effects 

of the cirrus simulation, runs are done in which the relative humidity in cloud is increased 

by 5 %. The total ice field produced by the model is shown in Figure 7 .4 7 and contains 

maxima that are larger than those produced by the NNl simulation (Figure 7.22). The 

modified sounding field shows much more structure in cloud, however the cloud base does 

not drop as low as it does in the case of the NNl simulation. As is shown in Table 7.3, 

the diameters of snow and aggregates neven reach the sizes as in the NNl "control" run; 

this is why the cloud base is higher in this simulation. Also, at these higher saturations, 

there is a lot of initial ice nucelation (Table 7.2 shows concentrations of pristine ice up to 

9500 z-1 ) that depleates the available vapor. Thus, most of the ice stays in the pristine ice 

category (Table 7 .3 shows these values) at smaller sizes. Most of the mass should then be 

associated with the upper cloud level; this is verified by Figure 7.4 7. Figures 7 .48 and 7.49 

both show maxima in number concentration in the mid to upper cloud levels. The pristine 

ice fields show more structure than the NNl simulation; pristine ice concentrations reach 

large values (up to 7200 z-1 in the 9 km region while snow concentrations stay relatively 

small. Since the high nucleation rates depleate the available water vapor, the pristine ice 

distribution is relatively narrow and can be seen in Figure 7.50; high number concentrations 

and mixing ratios result in smaller ice crystal sizes. This shows that the bulk of the mass 

and number concentration is associated with smaller sizes ( around 20 µm ). This narrow 

distribution coupled with the lower vapor depositional growth rates due to the high vapor 

competition causes the low transfer rates and, consequently, the low snow mass and number 

concentrations observed in the simulation. 

The sounding values input into the model are quite important to the simulation of the 

cirrus system. As is shown in this simulation, the values of the meterological conditions put 

into the model can drastically affect the results. 
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Figure 7.47: N5RH Total Ice Mixing Ratio. Max contour, 0.66E-4 kg/kg; Min contour, 
0.lE-7 kg/kg; Contour interval, 0.6E-5 kg/kg. 
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Figure 7.48: N5RH Pristine Ice Concentration. Max contour, 7200 z-1 ; Min contour, 50 
z-1; Contour interval, 400 z-1 . 
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Figure 7.49: N5RH Snow Concentration. Max contour, 2.4 z-1 

Contour interval, 0.3 1-1 . 
; Min contour, 0.0 z-1 ; 
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Figure 7.50: N5RH Pristine Ice Size. Max contour, 121 µm; Min contour, 1 µm; Contour 
interval, 20 µ.m. 
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7.2.9 Rosettes with Perturbed Ice Nuclei Profile 

To simulate the effect of perturbed ice nuclei profiles influencing the nucleation of ice 

in the upper troposphere, we have modified the model ice nuclei profile by not tapering it 

with height ( as was done in the previous simulations) and using the ground based value 

throughout the depth of the troposphere. The simulation shows the effects of ice nuclei 

injection from natural and anthropogenic sources (high flying aircraft, volcanic debris, etc ... ) 

on the control simulation. 
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Figure 7.51: RCIN Total Ice Mixing Ratio. Max contour, 0.14E-4 kg/kg; Min contour, 
0.lE-7 kg/kg; Contour interval, 0.lE-5 kg/kg. 

Figure 7.51 shows the model produced total ice fields. In comparison to the control 

simulation results (Figure 7.13), total mixing rat:os are similar, however in the RCIN simu-

lation the maxima in ice mixing ratio occur near mid-cloud (about 7 km) while the control 

has maxima between 8.5 and 9 km. The vertical extent of the simulated cloud is deeper, 

even though the sizes of the snow and aggregates are less than the control run (Table 7.3). 

The pristine ice concentration field (Figure 7.52) contains two areas of maxima; one near 

9.5 km and the second around 7 km. S now concentrations presented in Figure 7.53, show 
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lower concentrations with less vertical extent than the control simulation. The reason for 

lower ice concentrations and ice sizes in these simulations has to do with the increased 

competition for vapor by the larger concentration of IN at cirrus levels. These IN compete 

for the available vapor and hinder homogeneous nucleation; which we have already seen as 

a large contributor to ice in these simulations. 
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Figure 7.52: RCIN Pristine Ice Concentration. Max contour, 89 z-1 ; Min contour, 9 z-1 ; 

Contour interval, 10 z-1 • 
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Figure 7.53: RCIN Snow Concentration. Max contour, 2 z-1 ; Min contour, 0.0 z-1 ; Contour 
interval, 0.2 1-1. 
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Chapter 8 

SUMMARY AND CONCLUSIONS 

8.1 Conclusions 

The accurate prediction of cirrus cloud microphysical properties is important for a 

number of reasons. First of all, there exists the current "climate problem" . The climate 

effects of various perturbations in the earth-atmosphere-ocean system is, in general, difficult 

to understand without the aid of numerical modeling. It is important to derive reasonable 

parameterizations of the microphysics of clouds, such as in the case of cirrus clouds described 

here, to better understand the radiative feedback effects. Cirrus clouds are globally frequent 

and, as stated by Stephens et al. (1990) and Mitchell (1994), their complex microphysical 

properties and radiative interactions makes credible parameterizations of these processes 

important. On a more practical side, predictions of cirrus clouds and their microphysical 

properties has importance to the aviation industry. As was noted by Sassen (1992), aircraft 

:flying at cirrus levels have detected significant wing icing ( evidence of supercooled liquid 

water at these levels). The difficulties in the modeling of ice clouds are, on a physical level, 

quite large. Cirrus clouds contain various ice crystal habits and understanding variations 

in these habits is a must to better simulate these systems. Ice crystals have very complex 

growth kinetics in vapor fields, and the interaction between the various habits with radiation 

is quite complex. 

In this study we have presented a parameterization of ice crystal conversion processes 

for cirrus cloud modeling. This process is based on two-moment basis functions describing 

the hydromemtor species. Two categories are defined, pristine ice and snow, with each 

species described by separate, complete gamma functions . Pristine ice is, as its name 

describes, pristine in it's modeled nature; these crystals are assumed to grow only by vapor 
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deposition and are initiated by both heterogeneous and homogeneous processes. Since 

vapor deposition is the only growth mode of pristine ice, transfer equatiions are developed 

for the flux of pristine ice number concentration and mass mixing ratio between the two 

distributions for both ice supersaturated and subsaturated atmospheric regimes. A number 

sink for the smallest pristine ice and snow crys-:;als existing in ice subsaturated regimes is 

parameterized by a function of the form, 

NJ= J(rJ, habit, 11) (8.1) 

where NJ is the fractional number concentraiton loss, TJ is the fractional mass loss and 11 

is the distribution shape parameter. A bin model is calculated to test the supposition that 

NJ depends only on the above parameters. The tests show that the above variables are the 

most important for the parameterization. Since cost-efficient analytical expressions may be 

impossible to formulate for this function, values are calculated and stored in look-up table 

format. 

The one-dimensional Lagrangian model de.scribed in Tripoli and Cotton (1982) was 

used for simple tests of the transfer and sublirr.ational number loss schemes. The model 

is a simple parcel model that calculates the distribution evolutions during an ice saturated 

ascent and an ice subsaturated descent between two user-defined atmospheric pressure levels. 

The distributions are allowed to evolve due to vapor depositional growth (sublimation). 

Tests were run for needle and plate crystals using various values of the distribution shape 

parameter, 11. The simulations showed the sensitivity of ice crystal habit and distribution 

shape parameter to the evolution of the distributions . The results showed that, as one would 

expect, a larger value of 11 tends to increase the mass growth of the distribution since the 

larger particles in the distribution are weighted more. Crystals with a smaller value of f3 in 

the mass-dimensional relationship tend to grow faster in maximum dimension with a lesser 

increase in mass. This causes greater fluxes of number concentrations (but not necessarily 

mass) to snow in ice supersaturated regimes, as compared to runs with larger values of {3. 

The distribution of pristine ice needles, therefore, exhibited lesser number concentrations 

with larger mean particle sizes as compared to :plates (which have a larger f3 value). One 
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way to think of this is that with a smaller value of the mass-dimensional exponent, a given 

increase in mass, ~m, is distributed over a smaller surface area than for crystals with larger 

/3 values. Thus, the needles will gain size faster but not necessarily mass. Mitchell (1994) 

noted similar effects in his two-dimensional explicit cirrus cloud simulations; he noted that 

"more spatial" habits (habits with larger /3 values, such as rosettes or speheres) tended to 

have higher number concentrations as compared to the less spatial habits, such as needles 

or columns. 

The transfer and sublimation number concentration loss schemes were implemented 

into the RAMS model ( the sublimation scheme was made general. so that it included all 

ice hydrometeor species) and two-dimensional. tests were run using sounding data from the 

FIRE IT experiment in Coffeyville, Kansas for the November 26, 1991 cirrus event. The 

model grid domain consisted of 20 points in the x (east-west) direction with a grid spacing 

of 10 km and 7 4 points in the vertical. with a grid spacing starting at 1500 m at the ground, 

shrinking this to 50 m at 8 km, and then stretching back to 1500 m at 14 km. The sounding 

used was modified in the 6 to 10 km levels since it was noted by Heymsfield et al.. (1993) 

that the rawindsonde data was in error generally by about 20 % in cloud ( the rawindsonde 

data was consistently below ice saturation levels). A heirarchy was constructed for the test 

simulations which consisited of the following parts: 1) control simulation for comparistion 

with radar and lidar observations of the November 26, 1991 case; 2) variations in the various 

model parameterizations to test their effects on the simulations of cirrus clouds with the 

RAMS model. 

The control simulation consisited of a cloud made up of rosette crystal.s, distribution 

shapes are assumed exponential, homogeneous and hetereogeneous nucelation are utilized 

and the radiative parameterization (Chen and Cotton, 1983) is used. The model allows for 

variations in these crystalline habits, but this parameterization is foregone here since tests 

of the sensitivity of the model to different crystalline habits is important; al.so the control 

could have been run with different values of v, however keeping all of the values of v the 

same for the control simulation seemed the best way to isolate the tests. 
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The control simulation compared quite well wtih observations. After 2 hours of simu-

lation maximum ice concentrations were 270 1-1 , masses and vertical motions were small. 

The number concentrations were small in comparision to observations, however, there is a 

certain degree of model "spin-up" time that needs to be considered. Cloud base at this time 

had dropped to around 6 km. After 5 hours of simulation crystal concentrations had maxi-

mum values of 960 z-1, IWC were around 0.28 x 10-1 g/kg ( or 0.02 g m-3), and cloud base 

was down to about 3 km. The values of the ice crystal number concentrations and masses 

compared very favorably to lidar and radar studies if this system. The control simulation 

also predicted small ice sizes (20-40 µm) near cloud top with larger sizes near cloud base ( 

1000 µm ) . A time-series plot of the modeled cirrus layer shows the cloud initially at about 

8km and having a very thin vertical structure. After about 2 hours the cloud deepens to 

around 6km, and after the full 6 hours of simulation the cloud base has dropped to around 

2.5-3km while cloud top has remained fairly constant at 9-9.5 km. This time-series com-

pares favorably with radar-echo boundaries observed during the FIRE II Noveber 26 cirrus 

case. 

Sensitivity tests were run to understand the effects of variations in certain parameter-

izations on the simulated cirrus system. Variations in the crystalline habit (needles and 

plates were substituted for rosettes) had the effect of decreasing the simulated number con-

cetrations and mass mixing ratios of the cloud deck. Also, cloud depths were not as great 

and cloud structure was more homogeneous for these simulations. These variations were 

attributed to the differences in the mass-dimensional exponent, modeled updraft profiles, 

and to the different growth kinetics of the crystalline habits. To test variations in distri-

bution shape parameters, the value of 11 was set; to 3 for the larger ice species ( snow and 

aggregates). The larger value of the shape parameter has the effect of weighting mass gain 

by collection and vapor depositional growth of these distributions more than in the 11 = 1 

counterparts. Masses of the ice fields were lower : han the control after 5 hours of simulation 

due to the increased depleation of the vapor field by the snow and aggregate distributions. 

Since the snow and aggregate distributions are weighted more due to the larger value of 

11, the masses of pristine ice, snow and aggregates are comparable in this simulation as 
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compared to the control in which pristine ice mass dominates. Maxima in masses are in the 

mid to lower cloud regions, as shown by observations. This is a reason for considering using 

larger shape parameters for larger ice species in the model. Also, number concentrations of 

pristine ice and snow were lower than the control and can be attributed to less nucleation 

due to more vapor depletion by the larger hydrometeors and larger transfer rates. 

The single moment prediction scheme was used to show the importance of two-moment 

predictions. The fields produced were much less structured than the control and contained 

lower number concentrations and ice masses. This is attributed to the snow and aggregates 

starting with a much larger value of their mean size than they would in the two-moment 

scheme. The artifical constraint tends to depleate the available vapor ( thus constraining 

ice production) and artificially increases collection and ice transfer between pristine ice and 

snow. The simulations in which the radiative parameterization was turned off shows a very 

homogeneous field with low ice mass, high cloud base and low number concentrations. With-

out the radiative parameterization, cloud top cooling does not occur. This would tend to 

supress nucleation at cloud top and, as the w fields showed, decreases the converction in the 

cloud. Thus, the radiative parameterization is important to the initiation and maintenance 

of the modeled cirrus layer. The simulation in which the homogeneous nucleation param-

eterization was turned off showed that model nucleation was dominated by this process. 

This simulation produced a much thinner cloud than the control. 

A simulation in which the RH field in cloud was perturbed systematically by 5% shows 

how important the initial moisture profile is to model simulations. The cirrus cloud ice 

mass was much higher than the needle simulation without the perturbed RH values. The 

cloud depth was larger, however pristine ice sizes were small as were concentrations of snow 

and aggregates. This was attributed to the nucleation processes in the model. Nucleation 

rates were so high throughout the simulation that pristine ice crystals remained small. 

Even though there was plenty of vapor for the transfer equations, nucleation kept the 

number concentrations of pristine ice high enough so that pristine ice sizes were small, thus 

mass and number concentrations were transfered to snow. This was verified by the large 

ice mass and number concentrations near cloud top, associated with small mean pristine 
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ice sizes. The final test that was run _utilized a perturbed IN profile to simulate aerosol 

perturbations. The results of the model showed that the IN competition for the available 

vapor was large enough to hinder the homogeneous nucelation processes. The overall effect 

of which produced a homogeneous cloud layer with a vertical extent from above 10km to 4 

km. This IN perturbation caused slow ice tramfer rates and smaller overall masses to be 

produced. 

These simulations show the not only the flexibility of the RAMS model in upper level 

cloud simulations, but also its ability to produce reasonable cirrus cloud fields . The con-

trol simulation produced values and contoured fields that agree well with lidar and radar 

measurements of the observed cirrus microphysical fields. Vertical motion fields were low 

in comparison to observations, however, the major driving force of the vertical velocities 

was the cloud top radiative cooling induced with the Chen and Cotton (1983) radiative pa-

rameterization. It is not unreasonable to assume that 3-D modeling studies would produce 

better vertical motion fields due mechanical forcing of the vertical winds. The sensitivity 

tests that were run show the varied sensitivity of the model to many different changes in 

the model parameterizations. In order to produce credible simulations of these systems, it 

is important to initialize the model with these values as best as one can. 

8.2 Future Research 

Since observations at cirrus levels are sparse and limited to few field projects, it will be 

important in the future to get a better understanding of the microphysical processes from 

an observational standpoint. Cirrus cloud particle size spectra need to be measured with a 

good degree of accuracy down to smaller crystal sizes. Also, more measurements of IN and 

nucelation processes in cirrus need to be made in order to increase the accuracy of model 

parameterizations. More ground based laboratory work needs to be done on these areas 

as well. Observations and measurements of the influences of volcanic aerosols on cirrus 

properties needs to be done. 

On the modeling side of things, better observations make for better parameterizations! 

Better observations would increase the accuracy of modeled predictions of these systems. 

.. 
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In the future full, three-dimensional. _simulations of the November 25-26 and December 5-6, 

1991 FIRE II cirrus cases should be carried out with the above parameterization. This 

would show the applicability of the new microphysics parameterizations to fully 3-D cirrus 

cloud simulations. A two-stream parameterization of cloud radiative transfer processes 

should be incorporated and run with the above cases. The two-stream model takes into 

account individual. hydrometeor species distirbution parameters. This should increase the 

accurcy of the RAMS model simulations. Also, it might be important to introduce a bulk 

change in crystalline habit aspect ratio as discussed in Chapter 4; this would favour larger 

growth rates for larger crystals . 
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