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ABSTRACT 

CULICOIDES SPECIES AND LIVESTOCK OVERLAY ANALYSIS: A HABITAT SUITABILITY FRAMEWORK FOR 

CULICOIDES INSIGNIS, STELLIFER, AND VENUSTUS AND POTENTIAL BLUETONGUE VIRUS PRESENCE 

USING ENVIRONMENTAL AND METEOROLOGICAL VARIABLES TO ENHANCE TRAP DETECTION 

 

Culicoides spp. midges are blood feeding insects capable of transmitting a variety of pathogens. 

Of particular concern are Bluetongue virus and Epizootic Hemorrhagic Disease virus. Bluetongue virus is 

extremely dangerous for ruminants, infecting mainly sheep and cattle, and is a growing concern for areas 

like the United States. There is little known about the range and habitat preference for Culicoides midges, 

especially in the United States. Our study focuses on predicting habitat suitability for three species of 

concern: Culicoides insignis, Culicoides. stellifer, and Culicoides. venustus. Each of these species are linked 

to the spread or potential spread of Bluetongue virus. 

 We obtained data from the Southeastern Cooperative Wildlife Disease Study that included the 

presence and absence data from midge traps for each of the species of interest from 2008-2020. We 

combined these data with meteorological data and environmental data to generate a habitat suitability 

model. The maps were then used to predict the probability of midge species presence in that area and 

create an overlay analysis for each species of midge and livestock of interest: goats, sheep, and cattle. For 

the statistical analysis, we used both generalized linear models with binomial regression and random 

forest models to predict potential midge habitat suitability. We then used the AUC scores to determine 

model fit using both training and test datasets. 

 Our results indicated that environmental and meteorological variables of significance vary 

between the species of interest. Most variables were significant for the species of interest, with the most 

common exception being wind direction. The generalized linear models performed better than the 
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random forest model overall, with C. insignis, C. stellifer, and C. venustus having AUC scores of 0.86, 0.70, 

and 0.71, for generalized linear models respectively. 

 Overall, prediction models were successful in visualizing and predicting midge presence on the 

provided environmental and meteorological variables. However, further sampling should be conducted, 

and variables reassessed for suitability. 

  



iv 

 

ACKNOWLEDGEMENTS 

I want to take a moment and thank everyone who has been helping me during this process. First and 

foremost are my advisors: Dr. Sheryl Magzamen and Dr. Angela Bosco-Lauth. Both have been incredible 

during this process and have helped me to develop not only my thesis but also my abilities as a researcher. 

I also want to say thank you to my committee members Dr. Joshua Schaeffer and Dr. Christie Mayo for 

sitting on my committee and offering feedback and advice during this process.  

I also want to say thank you to my mentors at the USDA. Dr. Angela James and Dr. Kelly Patyk for their 

guidance and mentorship. 

I would also like to take this time to say thank you to my friends and family, who have been great 

supporters during my thesis. I appreciate the time they took to offer advice, hang out, or just listen to me 

vent.  

 

  



v 

 

TABLE OF CONTENTS 

ABSTRACT………………………………………………………………………………………………………………………………………………..ii 

ACKNOWLEDGEMENTS……………………………………………………………………………………………………………………………iv 

Chapter 1: Background…………………………………………………………………………………………………………………………….1 

 Culicoides Midge Species…………………………………………………………………………………………………………….1 

 Bluetongue Virus…………………………………………………………………………………………………………………………1 

 Environmental Variables……………………………………………………………………………………………………………..2 

 Trap Characteristics…………………………………………………………………………………………………………………….3 

 Habitat Suitability Model…………………………………………………………………………………………………………….5 

Chapter 2: Manuscript…………………………………………………………………………………………………………………………….7 

 Introduction……………………………………………………………………………………………………………………………….7 

 Methods……………………………………………………………………………………………………………………………………10 

 Results………………………………………………………………………………………………………………………………………17 

 Conclusion………………………………………………………………………………………………………………………………..24 

Chapter 3: Future Directions………………………………………………………………………………………………………………….27 

References…………………………………………………………………………………………………………………………………………….31 

APPENDIX………………………………………………………………………………………………………………………………………………34 

 



1 

 

CHAPTER 1: BACKGROUND 

 

Culicoides midge species 

Culicoides midges are blood feeding insects of the Diptera Ceratopogonidae fly family. They are incredibly 

widespread and versatile, existing throughout much of the globe with more than 1300 species 

worldwide1,2. These small insects, approximately 1-4 mm in size, can inflict a painful bite on animals and 

humans and transmit a variety of viruses, protozoa, and filarial nematodes2,3. While only a handful of 

these cause serious illness, Culicoides can have serious health and economic outcomes, such as 

Bluetongue Virus (BTV). 

Bluetongue Virus 

Bluetongue virus (BTV) is a hemorrhagic orbivirus1,2 and primarily affects ruminants, with a particular 

affinity for sheep1,2. BTV transmission is mainly through vectors, specifically certain species of Culicoides 

midges, though there has been evidence of sexual transmission from infected bulls1–3. In most ruminants, 

clinical disease signs include lesions of the mouth and nasal cavity, with more severe disease resulting in 

fever, muscle weakness, and death1,3. Mortality and morbidity varies by ruminant species1. A signature 

sign of BTV is the cyanosis that can occur due to a lack of oxygen1. This is due to inflammation and fluid 

buildup in the lungs, contributing to the dark blue tongue often seen in BTV afflicted animals1. Deaths 

caused by BTV result in significant economic impact for agricultural communities and industries1,3. One 

main effect is the economic impact faced by owners that lose animals and the resulting downstream 

impact on the industry. Even when an animal survives BTV infection, it often has a significant recovery 

time and has reduced production of goods, such as milk, resulting in economic disruption even without 

the death of the animal1,3. There is no treatment or cure for BTV. Therefore, control measures such as 

travel bans and restrictions during at-risk times are used to reduce the potential for infection1. 
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Environmental Variables 

The environment and meteorology of an area plays a significant role in the presence and prevalence of 

Culicoides midges. Environmental factors that contribute to midge abundance include land type, host 

proximity, soil type, water, and vegetation. Land type or use can influence the midges’ feeding habits4–6. 

Factors such as proximity to pastures with grazing ruminants, or forests with wild deer, can influence 

midge presence5,6. Soil type can impact the midge breeding cycle, with certain soils and characteristics of 

soil (sand fraction, soil pH, and organic content) being conducive to larval stages7. This works in tandem 

with water proximity, with bodies of water influencing soil moisture, soil pH, water pH, and midge 

prevalence7. Vegetation, specifically vegetation cover and biomass production and is often correlated with 

soil moisture and rainfall7,8. Normalized difference vegetation index (NDVI) can be used as a proxy for 

vegetation and is often associated with Culicoides species of interest7,8.  

Environmental factors are also influenced by meteorological variables. Meteorological variables that 

influence presence and abundance of Culicoides spp. include temperature, precipitation, wind speed, and 

wind direction. Temperature is associated with species survivability, with both upper and lower ranges 

negatively impacting Culicoides species survivability and ideal temperatures for species survivability and 

reproduction7–9. These temperature ranges can also influence feeding rate. For example, higher 

temperatures are associated with shorter midge life spans, but an increase in blood meals10. Temperature 

can also influence how quickly a midge can become a vector for BTV10. Higher temperatures facilitate BTV 

incubation and can result in uninfected midges becoming vectors sooner after having an infected blood 

meal10. Precipitation is often used as a standard predictor, along with temperature, for Culicoides 

presence8. This, in combination with NDVI and soil moisture, can create a comprehensive representation 

of the influence of moisture on midge presence. Wind speed can also influence successful trapping and 

surveillance, though the effect of wind direction is still unclear9. Overall knowledge of the influence of 

environmental and meteorological effects on Culilcoides species is limited, in part due to challenges within 
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field studies to understand species presence, abundance and life cycle. One major factor that influences 

field collection of Culicoides are methods used to trap species. Once environmental and meteorological 

variables are properly quantified and linked to midge species presence, their influence on trap 

characteristics can be adjusted and enhance trapping strategies to allow for better surveillance of species 

of concern. 

Trap Characteristics 

Trap characteristics serve important roles in determining the success of a study as well as the potential 

bias that the study may face. Factors include the type of bait used (light, chemical attractants, host), 

location, and height, with sub-factors for each of those categories. There are multiple types of trap baits. 

Light is one of the most common ones for surveillance, especially for Culicoides11. The type of light can be 

set to appropriately target the population of interest, though research is ongoing in determining species 

preference11–16. Certain populations of Culicoides are more attracted to green wavelength while others 

prefer blue or ultraviolet (UV) light12,14. One study suggested that Culicoides could be divided into two 

groups: UV attracted and green-attracted12,17. Furthermore, there are some species, such as Culicoides 

sonorensis, that are more dependent upon wavelength rather than intensity17. This contrasts with one 

recommendation for biting flies, which focuses on high-intensity, short wave-length light-emitting diodes 

(LEDs)17.  

Further, some studies have indicated that disease status can influence trap attractiveness. Culicoides 

sonorensis studies have shown some preliminary data that BTV status changes how the midge species 

interacts with traps15. Typically attracted to UV light, a Culicoides sonorensis midge appears to develop an 

aversion to UV light once positive for BTV15. This finding still needs further research and has interesting 

implications for future surveillance studies, especially if disease prevalence in vector populations is the 

outcome of interest. 
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The success of a light trap can also be influenced by its background, such as foliage. Since the insects have 

poor vision and operate during twilight and nocturnal hours, increasing the contrast between the trap and 

its background can aid in successful trapping11,16,17. Depending on the species that is being targeted, 

certain colors can help to increase the contrast and increase the attractiveness of the trap, while other 

colors can reduce visibility and subsequently decrease collection17.  

Ambient light can also reduce the effectiveness of both contrast and traps by reducing the effective range 

of light-baited traps11,17. Even natural sources, such as a full moon, increase C. sonorensis activity but can 

reduce trap effectiveness due to the increased ambient light11,17. Considering ambient light and competing 

sources, light pollution is a growing problem. Areas that need increased surveillance but are in or close to 

an urban setting can have increased levels of ambient light and increased amounts of competing light 

sources that can make surveillance difficult11,17. Light pollution is increasing by approximately six percent 

per year, and as that trend continues, the effectiveness of light traps will continue to decrease11. 

Range is also a contributing factor to light traps effectiveness and is often influenced by the type of light 

source, intensity, wavelength, contrast, and ambient light. It is estimated that the Centers for Disease 

Control (CDC) miniature light trap has a range of approximately fifteen meters and the onderstepoort light 

trap has a range of thirty meters11,18,19. However, one study found that the estimated range for the 

onderstepoort could be as low as two to four meters for Culicoides11. 

Trap location plays an important role in trap effectiveness. Understanding the breeding grounds, the 

feeding habits, and the ideal habitat of the specific Culicoides species of interest will aid in the setup and 

success of traps16. Trap rates can be influenced by proximity to hosts, such as sheep or cattle16. 

Trap height is another factor with important consequences for successful and representative midge 

trapping. Before studies began to investigate the possible relationship between trap success and trap 

height, there was no rationale as to why traps were set at a chosen height. However, new research has 
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found that height does play a role that varies by species of interest16,20,21. An example would be Culicoides 

insignis, which appears to favor tree canopies over the ground level21. While still attacking ground hosts 

to feed, traps set in the canopy had better trap rates than traps set on the ground21. Traps were set at 

1.37 meters for ground level and 6 meters and 9 meters for 2016 and 2017 respectively21. Traps at 6 

meters and 9 meters were set up to sample the tree canopy21. However, there are still species that favor 

ground traps over canopy traps20,21. Additional research using onderstepoort light traps found that a 

height of 2.8 meters was most effective when compared to lower heights22. 

Understanding trap characteristics and how they influence successful surveillance campaigns is important 

for proper analysis of both species’ presence and potential disease risk. Future studies and Southeastern 

Cooperative Wildlife Disease Study (SCWDS) surveillance campaigns should have duplicate traps with 

differing characteristics, such as modulating height, to allow for comparison and analysis of the influence 

of trap characteristics on species surveillance. However, before deciding where to place traps for this next 

study, modeling needs to be conducted to determine suitable locations. 

Habitat Suitability Model 

Habitat suitability models (HSM), or species distribution models (SDM), are models that use a set of 

predictors to predict an outcome using machine learning and statistical techniques8,23,24. Some common 

options include generalized linear models (GLM), random forest (RF), boosted regression trees (BRT), 

maximum entropy models (Maxent), and multivariate adaptive regression splines (MARS)24. The common 

goal of a habitat suitability model is to investigate the potential relationship between species occurrence 

and environmental variables24. These models use environmental and climate variables to predict a species 

presence as the outcome. This outcome data is usually classified as presence and absence data and uses 

predictor variables for these presence and absence points to extrapolate the probability of presence at 

unsampled sites23,24. Habitat suitability models are important tools for researchers looking to understand 
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what variables are important for species presence, as well as a tool to predict where a species may occur, 

making it invaluable for surveillance. 

Culicoides midges are understudied but are growing in importance. These midges cause significant 

livestock and wildlife morbidity and mortality. However, even with these devastating impacts, we have 

limited research on these midges in comparison to other vectors. Similar to other vectors, Culicoides 

spp. are impacted by both environmental and meteorological variables. Field studies investigating these 

effects are limited due to a lack of surveillance methods and resources, especially around trapping 

methods. Further study on habitat suitability could help to prepare better surveillance network.   
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CHAPTER 2: MANUSCRIPT 

 

Introduction 

Culicoides midges are small, blood-feeding arthropods that are part of the Diptera Ceratopogonidae fly 

family1,2. These small insects, approximately 1-4 mm in size, can inflict a painful bite on animals and 

humans2,3. Along with this bite, these flies are also vectors for a plethora of diseases, the main ones 

being Bluetongue virus (BTV) and Epizootic Hemorrhagic Disease virus (EDHV)2,3. Certain species of 

Culicoides have come under increased scrutiny for their ability to transmit these dangerous viruses1,2. 

The damage to both wild and domestic ruminants can be severe, resulting in economic and ecological      

losses1. 

Bluetongue virus (BTV) is a hemorrhagic orbivirus1,2  that primarily affects ruminants, with a particular 

affinity for sheep1,2. Transmission is mainly through insect vectors, specifically certain species of 

Culicoides midges, though there has been evidence of sexual transmission from infected bulls1–3. 

Typically, ruminants experience symptoms mainly in the mouth and nasal cavity, resulting in fever, 

muscle weakness, and death1,3. A signature sign of BTV is the cyanosis that can occur due to a lack of 

oxygen1. This is due to inflammation and fluid buildup in the lungs, contributing to the dark blue tongue 

often seen in BTV afflicted animals1. Deaths caused by BTV result in significant economic impact for 

agricultural communities and industries1,3. One main effect is the economic impact faced by owners that 

lose animals and the resulting downstream impact on the industry. Even when an animal survives BTV 

infection, it often has a significant recovery time and has reduced production of goods, such as milk, 

resulting in economic disruption even without the death of the animal1,3. There is no treatment or cure 

for BTV. Therefore, control measures such as travel bans and restrictions during at-risk times are used to 

reduce the potential for infection1.  



8 

 

BTV is widespread throughout the United States and is typically found in the southeast, central, and 

western regions1. However, there has been a recent increase in the number of outbreaks moving north1. 

This is related to the change in vector range, as BTV is only transmitted by certain Culicoides species. 

Currently, North America’s primary BTV vector is Culicoides sonorensis. However, there are several 

species that are of concern and implicated in possible BTV transmission. These species include Culicoides 

venustus, Culicoides stellifer, and Culicoides insignis9,25. C. venstus and C. stellifer are suspected vectors 

for BTV but are not confirmed 9,25. C. insignis is a confirmed vector for BTV in the Caribbean and South 

America. There are concerns that it will be able to transmit BTV in the United States as it expands 

North9. This further exemplifies the need for better understanding of meteorological and environmental 

data for use in midge analysis as changing variables such as temperature and precipitation could change 

the effective range of these species. 

The environment and meteorology of an area plays a definitive role in the presence and prevalence of 

Culicoides midges. Environmental factors that contribute to midge abundance include land type, host 

proximity, soil type, water, and vegetation. Land type or use can influence the midges’ feeding habits4–6. 

Factors such as proximity to pastures with grazing ruminants, or forests with wild deer, can influence 

midge presence5,6. Soil type can impact the midge breeding cycle, with certain soils being conducive to 

larval stages7. This works in tandem with water proximity, with bodies of water influencing soil moisture, 

soil pH, water pH, and midge prevalence7. Vegetation represents vegetation cover and biomass 

production and is often correlated with soil moisture and rainfall7,8. Normalized difference vegetation 

index (NDVI) can be used as a proxy for vegetation and is often associated with Culicoides species of 

interest7,8.  

These environmental factors are also influenced by meteorological variables. Meteorological variables 

include temperature, precipitation, wind speed, and wind direction. Temperature is associated with 

species survivability, with both upper and lower ranges negatively impacting Culicoides species 
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survivability and ideal temperatures for species survivability and reproduction7–9. These temperature 

ranges can also influence feeding rate. For example, higher temperatures are associated with shorter 

midge life spans, but an increase in blood meals10. Temperature can also influence how quickly a midge 

can become a vector for BTV10. Higher temperatures facilitate BTV incubation and can result in 

uninfected midges becoming vectors sooner after having an infected blood meal10. Precipitation is often 

used as a standard predictor, along with temperature, for Culicoides presence8. Wind speed can also 

influence successful trapping and surveillance, though the effect of wind direction is still up for debate9. 

Once there is a better understanding of the environmental and meteorological variables, their influence 

on trap characteristics can be adjusted and enhance trapping strategies and allow better surveillance of 

species of concern. These species include C. insignis, C. stellifer, and C. venustus, discussed in previous 

paragraphs, that have been implicated as potential BTV vectors in North America. Both C. stellifer and C. 

venustus have been confirmed through laboratory testing to be competent BTV vectors but are 

unconfirmed in natural environments as playing a major role in BTV transmission7,25. C. insignis is slightly 

different, as it is a confirmed BTV vector in the Caribbean and South America26. However, it is unknown 

whether C. insignis is a significant vector of BTV in the United States7. C. insignis began as an exotic 

species in the United States, but quickly became established in Florida and is moving northward into 

more southeastern states7. Due to all the above, each of these species has become a concern and there 

is a growing need for improved surveillance on these species to understand their potential role in BTV 

transmission. To fill in the gaps, it is necessary to properly quantify environmental and meteorological 

variables to produce a habitat suitability model that can predict midge presence probabilities. Once 

these areas have been identified, trap characteristics can be modulated to enhance surveillance efforts. 

Our goal is to create a habitat suitability model and livestock-midge overlay analysis that can be used to 

determine a successful surveillance campaign before placing any traps. This habitat suitability would 
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allow users to determine the appropriate place to set up traps for the best possible results for midge 

surveillance.  

Methods 

Study Area 

The study area was determined by the Southeastern Cooperative Wildlife Disease Study (SCWDS) and 

focus primarily on the southeastern United States. The states included are Alabama, Arkansas, Florida, 

Georgia, Kentucky, Louisiana, Missouri, North Carolina, South Carolina, and Tennessee. Trap data were 

provided at the county level; only counties with trap sites are represented in the study area (Figure 1). 

Study locations used sites selected for their ability to successfully detect the species of interest, with the 

goal of capturing the wildlife-livestock interface. However, most sites contained more wildlife area than 

livestock area due to availability. United States does not have an official midge surveillance network.  
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Figure 1: Study area with SCWDS midge trap site locations by county 

Midge Population 

Our population of interest includes three different species: Culicoides insignis, Culicoides stellifer, and 

Culicoides venustus. Culicoides insignis is a confirmed vector for BTV, while C. stellifer and C. venustus have 

been shown to be competent vectors but are not confirmed. We selected these populations due to a 

growing concern over exotic midge species and their expansion into new territory in the United States. 

These observations are counts of traps that detected a certain species, not of species in the traps. Species 

were collected as presence or absence data. Traps were initially incandescent light for 2008 and part of 

2009 but were all changed to ultraviolet light from that point forward. Trap height ranged from 1.5 to 2 

meters. Data collection was from July 2008 to October 2020 and included the above study area. Not all 
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traps were constant per location, and more details about the trap placement and function can be found 

in Vigil et al. 2014 and Vigil et al. 2018. 

 

Covariate selection 

The covariates included in this study were selected based on the previous literature and used to create a 

directed acyclic graph (DAG) (Figure 2). Variables included temperature (maximum and minimum) in 

degrees Celsius, precipitation in millimeters, wind speed in meters per second, wind direction in degrees, 

organic soil content, organic soil carbon content, sand fraction, top layer of soil pH, and maximum, 

minimum, and phase normalized difference vegetation index (NDVI). Each of these variables was involved 

in previous literature and was used to generate the habitat suitability model. These variables could also 

influence successful trapping strategies. Furthermore, in reference to the DAG, the soil, pH, and NDVI 

variables would fall under the habitat node. Data was obtained for each of these variables using the 

following sources: meteorological data from GridMET and soil and NDVI from ISRIC. Data types and 

sources of background data to indicate relevant exposures are summarized in Table 1. All data is included 

at a 4 kilometer resolution. 

 

Table 1: Covariates and Data Sources 

Variable Source Description Citations 

Temperature GridMET 1 = Minimum temperature (˚C) 

2 = Maximum temperature (˚C) 

Sloyer et al. 2019 

Zuliana et al. 2015 

Mayo et al. 2020 

Precipitation GridMET 1 = annual precipitation (in) Zuliana et al. 2015 

Wind GridMET 1 = Wind speed (m/s) 

2 = Wind direction (degrees) 

Mayo et al. 2020 



13 

 

NDVI ISRIC 1 = minimum NDVI 

2 = maximum NDVI 

3 = phase NDVI 

Steinke et al. 2016 

Erram et al. 2019 

McGregor et al. 2021 

Sloyer et al. 2019 

Zuliana et al. 2015 

Mayo et al. 2020 

Soil ISRIC 1 = Organic carbon 

2 = organic soil content 

3 = pH top layer 

4 = sand fraction 

Steinke et al. 2016 

Erram et al. 2019 

McGregor et al. 2021 

Sloyer et al. 2019 

Zuliana et al. 2015 

Mayo et al. 2020 
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Figure 2: The DAG shows the causal paths of interest we were interested in based on the previous literature. The DAG looks at 

the relationship between the exposure (surveillance) and the outcome (Midge Abundance) and shows the potential causal paths 

and confounders that could influence that relationship. This DAG includes things like trap characteristics and host proximity as 

parts that will need future adjustment and characterization. In this study, we only focused on the environmental and 

meteorological paths to create the habitat suitability assessment. 

Determination of outcome variable 

Our outcome of interest for our study was the presence and absence of our species of interest. This was 

represented as a binary variable, with one being presence detection and zero being absence detection. 

We also created a fourth outcome of interest that was also a presence and absence binary variable, 

following the same format as the three species of interest. However, this variable, or the group variable, 

includes any species of detection, including the fourth species C. sonorensis that was provided in the 
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dataset but not used as an individual outcome due to nearly no presence detection. Overall, this fourth 

variable is described as an “any” or “none” variable, with either any species or number of species being 

detected as presence, and no species detected as being absence. This group variable, as well as the 

three species of interest, were our final outcome variables included in the analysis. 

Data Cleaning 

All data was loaded into R and cleaned27. This included the midge dataset from SCWDS, the 

meteorological data (GridMET), the soil data, and NDVI data. GridMET data was pulled using the 

ClimateR package28. All other data was cleaned using packages from the R CRAN repository. All data was 

joined into one dataset, with the midge dataset being the parent dataset. Environmental and 

meteorological data was extracted from parent raster maps for each of the trap sites in the SCWDS 

midge dataset and used for model building. The parent rasters themselves were combined into a raster 

stack and we took the median value for each meteorological variable (temperature, precipitation, and 

wind) over the entire study period. These median values were then stacked with the NDVI and soil data 

to form our total raster stack for later prediction.  

We ran univariable models to determine significance of the chosen variables. All variables had 

significance for each species in different combinations, with not all variables being significant per one 

species. Each variable was kept in the model due to the previous literature and significance among 

different species. 

Statistical Model 

There were four statistical models. The first three were a binomial model with individual species 

presence and absence data. These models provided basic statistical analysis and included presence and 

absence for each respective species as the outcome, with the covariates previously discussed as 
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predictors. The fourth model was a binomial model using the “any” and “none” variable as our species 

outcome variable.  

Prediction 

We then make predictions using a habitat suitability framework. We used the SDM package in R to make 

our predictions24. We divided our data into two separate datasets using the caret package in R, a 

training dataset and a testing dataset29. The training dataset had 6181 observations, or 75 percent of the 

dataset, and our test dataset had 2060 observations (25 percent of the dataset). We were able to feed 

both the training and test datasets into the SDM framework and create an SDM model. Using this 

model, we could then use the raster stack we created from earlier that contains all the predictor 

variables to create a new predicted raster for each species, using a generalized linear model (glm) with 

the family set to binomial and a random forest classification model. 

Overlay analysis 

The overlay analysis used the predicted rasters from the habitat suitability model for each species in 

combination with livestock data from FLAPS (Farm location and Agricultural Production Simulator) to 

create categories of concern30. These categories include low concern, moderate concern, and high 

concern. We used criteria from both species probability and livestock count to create these categories at 

the county level. Across all three species, we had cutoffs at less than or equal to twenty percent (0.2), 

greater than twenty percent (0.2) and less than or equal to fifty percent (0.5), and greater than fifty 

percent. We combined these with cutoffs for each of the different livestock species: goats, sheep, and 

cattle. For goats, our cutoffs were less than or equal to 4000, greater than 4000 and less than or equal 

to 6000, and greater than 6000. For sheep, our cutoffs were less than or equal to 1000, greater than 

1000 and less than or equal to 2000, and greater than 2000. For cattle, our cutoffs were less than or 

equal to 75,000, greater than 75,000 and less than or equal to 150,000, and greater than 150,000. Once 
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we had these cutoffs, we combined them to create the levels of concern. These levels of concern are 

low, medium, and high concern. High concern indicates a need for better surveillance and prevention or 

intervention strategies. Low concern indicates no current action is necessary. 

Results 

Our population includes 8293 observations over the study area. Of those, no midges detected (none) 

was the largest category, with 5542 observations. C. stellifer was the next largest, with 1439 

observations. C. Insignis had 854 observations. 

 

Table 2: Number of traps that detected the labeled species. If multiple species were trapped, those traps were included in their 

own row. 

Species Trap Count 

none 5542 

C. stellifer 1439 

C. insignis 854 

C. insignis, C. stellifer 181 

C. stellifer, C. venustus 172 

C. venustus 48 

C. sonorensis 19 

C. sonorensis, C. stellifer 18 

C. insignis, C. stellifer, C. venustus 10 

C. sonorensis, C. stellifer, C. venustus 6 

C. insignis, C. venustus 2 

C. insignis, C. sonorensis 1 

C. insignis, C. sonorensis, C. stellifer 1 

 

Results from univariable models for variable selection, from top to bottom of the tables, include 

maximum temperature, minimum temperature, precipitation, wind speed, wind direction, maximum 

NDVI, minimum NDVI, phase NDVI, pH of top layer of soil, organic soil content, organic soil carbon 

content, and sand fraction. The “estimate” column is the exponentiated value from the model. As an 
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example, in table three, a one degree increase in maximum temperature resulted in a approximate 3.4 

percent decrease in the odds of Culicoides insignis presence. The variables were significant for C. insignis 

except for wind direction. C. stellifer had significant variables except for precipitation and wind 

direction, C. venustus had significant variables for all except wind speed, wind direction, and minimum 

NDVI. The “all” and “none” group had significance for all except precipitation, wind speed, and wind 

direction. All variable results are exponentiated. 

Table 3: Univariable analysis results for Culicoides insignis. Table combines the results of each individual univariable model. 

Digits were restricted to five significant figures, which resulted in some significant p-values becoming zero. 

Term Estimate Conf.low Conf.high 

Maximum temperature 0.96602 0.95230 0.98009 

Minimum temperature 0.98381 0.97148 0.99652 

Precipitation 1.00875 1.00218 1.01497 

Wind velocity 1.11136 1.05636 1.16862 

Wind direction 0.99938 0.99867 1.00008 

Maximum NDVI 0.20017 0.17831 0.22427 

Minimum NDVI 4.12308 3.48614 4.89341 

Phase NDVI 2.56481 2.39371 2.75123 

Soil pH 1.67584 1.53008 1.83448 

Organic soil content 2.73386 2.55228 2.93233 

Organic soil carbon content 1.05546 0.98535 1.12828 

Sand fraction 4.79229 4.34035 5.31012 

Table 4: Univariable analysis results for Culicoides stellifer. Table combines the results of each individual univariable model. 

Digits were restricted to five significant figures, which resulted in some significant p-values becoming zero. 

Term Estimate Conf.low Conf.high 

Maximum temperature 1.13105 1.11522 1.14736 

Minimum temperature 1.08722 1.07362 1.10130 

Precipitation 0.99815 0.99203 1.00397 

Wind velocity 0.89226 0.84766 0.93847 

Wind direction 0.99968 0.99912 1.00025 

Maximum NDVI 2.51048 2.27091 2.77941 

Minimum NDVI 1.15706 1.04388 1.28415 

Phase NDVI 0.64159 0.60699 0.67773 
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Soil pH 0.33842 0.30294 0.37717 

Organic soil content 0.42736 0.39868 0.45744 

Organic soil carbon content 0.70325 0.65782 0.75104 

Sand fraction 0.75673 0.72370 0.79109 

Table 5: Univariable analysis results for Culicoides venustus. Table combines the results of each individual univariable model. 

Digits were restricted to five significant figures, which resulted in some significant p-values becoming zero. 

Term Estimate Conf.low Conf.high 

Maximum temperature 1.04695 1.01478 1.08112 

Minimum temperature 1.06603 1.03404 1.10110 

Precipitation 1.01228 1.00039 1.02239 

Wind velocity 0.90961 0.77836 1.05391 

Wind direction 0.99986 0.99847 1.00126 

Maximum NDVI 3.37517 2.57870 4.46366 

Minimum NDVI 0.95236 0.74592 1.22905 

Phase NDVI 0.65892 0.57438 0.75395 

Soil pH 0.36788 0.27590 0.48323 

Organic soil content 0.40412 0.33288 0.48502 

Organic soil carbon content 0.75851 0.64201 0.89061 

Sand fraction 0.71221 0.63589 0.79626 

Table 6: Univariable analysis results for “any” midge species in the dataset present versus “none” of the species of interest 

present. The table combines the results of each individual univariable model. Digits were restricted to five significant figures, 

which resulted in some significant p-values becoming zero. 

Term Estimate Conf.low Conf.high 

Maximum temperature 1.07214 1.06010 1.08446 

Minimum temperature 1.05075 1.04036 1.06137 

Precipitation 1.00257 0.99748 1.00759 

Wind velocity 0.99002 0.95090 1.03050 

Wind direction 0.99951 0.99901 1.00001 

Maximum NDVI 0.87766 0.81416 0.94621 

Minimum NDVI 1.68839 1.53487 1.85950 

Phase NDVI 1.05009 1.00491 1.09726 

Soil pH 0.79121 0.73455 0.85159 

Organic soil content 0.92976 0.88924 0.97189 

Organic soil carbon content 0.81025 0.76729 0.85486 

Sand fraction 1.21862 1.17223 1.26704 
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We ran four binomial models on species presence for the three species of interest and the grouped 

binomial variable. These were multivariable binomial models for each individual outcome of interest. All 

model outputs were exponentiated, producing the percent odds of species detection per one unit 

increase in that predictor. For example, in C. insignis, there was a 4.5% increase in the odds of C. insignis 

presence per one degree Celsius increase in maximum temperature. 

Table 7: Multivariable binomial model with C. insignis presence as the outcome of interest and with the environmental and 

meteorological variables as predictors 

Term Estimate Conf.low Conf.high 

(Intercept) 0.00330 0.00123 0.00868 

Maximum temperature 1.04548 1.00926 1.08317 

Minimum temperature 0.98236 0.95730 1.00811 

Precipitation 1.00727 0.99822 1.01615 

Wind velocity 1.02493 0.96309 1.09050 

Wind direction 0.99896 0.99814 0.99978 

Maximum NDVI 0.44023 0.33674 0.57383 

Minimum NDVI 1.33950 0.91778 1.96751 

Phase NDVI 0.62752 0.55984 0.70311 

Soil pH 1.68317 1.43702 1.97243 

Organic soil carbon content 1.11140 1.01008 1.22128 

Organic soil content 1.43274 1.28236 1.60107 

Sand fraction 4.41670 3.68799 5.31824 

 

Table 8:  Multivariable binomial model with C. stellifer presence as the outcome of interest and with the environmental and 

meteorological variables as predictors 

Term Estimate Conf.low Conf.high 

(Intercept) 0.00465 0.00226 0.00942 

Maximum temperature 1.12710 1.09820 1.15703 

Minimum temperature 0.99095 0.96834 1.01422 

Precipitation 1.00555 0.99816 1.01265 

Wind velocity 1.08484 1.02141 1.15178 

Wind direction 0.99871 0.99794 0.99949 

Maximum NDVI 1.08102 0.84017 1.39525 
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Term Estimate Conf.low Conf.high 

Minimum NDVI 0.83415 0.66796 1.04152 

Phase NDVI 0.82626 0.73669 0.92735 

Soil pH 0.40733 0.32869 0.50172 

Organic soil carbon content 0.72801 0.65645 0.80637 

Organic soil content 0.62712 0.56147 0.69935 

Sand fraction 1.05461 0.92559 1.20218 

 

Table 9:   Multivariable binomial model with C. stellifer presence as the outcome of interest and with the environmental and 

meteorological variables as predictors 

Term Estimate Conf.low Conf.high 

(Intercept) 0.00365 0.00048 0.02594 

Maximum temperature 1.00399 0.93278 1.08033 

Minimum temperature 1.04941 0.97889 1.12797 

Precipitation 1.01355 0.99707 1.02813 

Wind velocity 1.03022 0.85978 1.22452 

Wind direction 0.99800 0.99570 1.00032 

Maximum NDVI 1.74238 0.77774 3.96218 

Minimum NDVI 0.55334 0.27531 1.10795 

Phase NDVI 0.67581 0.47446 0.96530 

Soil pH 0.30799 0.13934 0.63755 

Organic soil carbon content 0.68553 0.48989 0.94513 

Organic soil content 0.63433 0.44849 0.88046 

Sand fraction 1.34074 0.89688 2.01855 

 

 The “any” and “none” model included presence for any detected species per trap and “none was the 
complete absence of species in the dataset.  

Table 10: Multivariable binomial model with any midge presence as the outcome of interest and with the environmental and 

meteorological variables as predictors 

Term Estimate Conf.low Conf.high 

(Intercept) 0.01736 0.00976 0.03067 

Maximum temperature 1.10677 1.08308 1.13116 

Minimum temperature 0.97519 0.95809 0.99262 

Precipitation 1.00539 0.99932 1.01136 

Wind velocity 1.04746 1.00026 1.09679 



22 

 

Term Estimate Conf.low Conf.high 

Wind direction 0.99880 0.99821 0.99939 

Maximum NDVI 0.77697 0.65264 0.92561 

Minimum NDVI 1.34727 1.13236 1.60458 

Phase NDVI 0.79674 0.73297 0.86589 

Soil pH 0.92269 0.81658 1.04210 

Organic soil carbon content 0.92824 0.86481 0.99534 

Organic soil content 0.93100 0.86174 1.00553 

Sand fraction 1.44379 1.30576 1.59777 

These multivariable models were made with the overall dataset since there was no prediction used for 

these models. Models were consistent with the significance demonstrated from the univariable models, 

except that precipitation did not reach the threshold for significance in any of the multivariable models. 

However, precipitation was kept in the model due to previous literature and use for predictive models.  

The predictive models had AUC scores for each model type (binomial generalized linear model or 

classification random forest). Generalized linear models had higher AUC scores except for C. insignis. C. 

stellifer had the lowest model performance overall and C insignis was the highest AUC for the three 

species. 

Table 11: AUC score by model type and species. AUC scores above 0.8 are considered good performances. AUC scores of equal to 

or greater than 0.7 are considered ok performances. 

Species Model Type AUC Score 

C. insignis glm 0.86 

rf 0.87 

C. stellifer glm 0.70 

rf 0.62 

C. venustus glm 0.71 

rf 0.66 

 

The predicted models then produced rasters with probability of that species presence denoted by color. 

We used the glm prediction maps due to better AUC scores. 
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Figure 2: C. insignis SDM habitat suitability prediction. Presence is for C. insignis detection and absence is if there was no 

detection. Values are probabilities of species in that area, based on the fitted SDM model and the raster used for prediction. 

Points represent presence detections from the test dataset. 

The C. insignis outcome variable was the strongest performing of each of the models, with the glm 

model reaching an AUC score 0.86. The predicted raster indicated stronger probabilities to the south 

and decreasing as the map moves North, with a stronger predicted presence in southern and central 

Florida. C. stellifer and C. venustus are included in figures 6 and 8 in the supplemental material. 
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Figure 3: C. insignis overlay analysis with goat, sheep, and cattle. Using the predicted raster for C. insignis for probabilities in 

combination with cutoffs livestock data 

The overlay analysis had more emphasis on livestock count than purely midge species probability. As 

livestock population increased, levels of concern increased, with areas that had higher Culicoides midge 

probability having higher levels of concern. For C. insignis, higher levels of concern were present for 

both sheep and cattle. All areas of high concern were in Florida. There were also areas of moderate 

concern for both sheep and cattle, with sheep moderate concern dispersed throughout the study area, 

and with cattle moderate concern concentrated in the northwest corner of the study area. Goats, with 

respect to C. insignis, only had low concern. Both C. stellifer and C. venustus overlays are included in 

figures 7 and 9 in the supplemental material. 

 

Conclusion 

Our study showed that C. insignis, C. stellifer, and C. venustus have many intricate variables associated 

with their environments that can influence their predicted ranges. We saw what was expected with 
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respect to the trap site locations and species density. C. insignis was mostly contained to Florida, but the 

other two species were mostly north of Florida. Temperature continued to be one of the main variables 

for species prediction, especially in the multivariable models.  

However, more data are required. C. stellifer was our largest species category but had one of the lower 

model performances, indicating that the model should be reevaluated, and predicator variables 

reassessed. Future studies should consider including relative humidity as a better way to predict 

environment than precipitation. Precipitation should also be reevaluated due to holding low significance 

for most of the species present. However, this could be due to how precipitation was used for modeling, 

as while we extracted point data for overall model building, we used median values over the study 

period for the rasters used for prediction. This could influence the model due to precipitation having 

irregular distributions and removing the model’s ability to differentiate between values. Relative 

humidity may be more consistent and provide a better measure of how moisture influences Culicoides 

midge habitat.  

Another issue of concern is the midge survey data. More samples should be collected over a wider area 

with more consistent trap placement and timing. The midge data we did have was also a biased dataset, 

with traps being placed where they could be and where midge presence was anticipated to aid in 

collection. This resulted in traps being placed in wild areas, state parks, and other nature areas, rather 

than areas with livestock nearby. Having traps with livestock nearby would be better to analyze the 

potential relationship between midge presence and risk of BTV. Furthermore, by not having as many 

traps in areas with livestock, we could be potentially missing important variables for our species’ 

habitat, as livestock yards and pens have been shown to be potential living and breeding grounds for 

several Culicoides spp.  
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Another limitation is time as a covariate in this data. While we did have the date that these traps were 

placed and data was recorded, we did not include this in our model. Time was difficult to incorporate 

correctly into the habitat suitability model and the predicting raster. Furthermore, traps were placed in 

increments, with trapping beginning in Florida in 2008 and gradually expanding out as resources allowed 

for it. Also, some traps were discontinued in one area and relocated to another to allow for a broader 

sampling area. Both of these made incorporating time difficult and time should be considered for future 

studies. 

Another consideration is that more traps should be placed overall to generate more data for better 

modeling. C. stellifer was one of our most abundant species, while C. venustus was one of our least 

abundant. Having more records, especially for lower abundance species, would help produce better 

models and better predictions. Traps should also be placed with trap variation in mind, as this dataset 

does not provide a contrast between important trap characteristics mentioned in the literature and the 

introduction of this paper. Being able to include trap characteristics as predictors in the model would 

enhance surveillance strategies for future use. Future studies should also include lag times and seasonal 

analysis for environmental and meteorological variables regarding midge presence. Seasonal changes 

and performance of previous seasons could potentially influence midge presence in the current season. 

Our future direction will focus on improving our model to provide an in-depth overlay analysis. The goal 

is to provide actionable data that could be used for trap placement and Culicoides midge surveillance. 

On top of that, understanding areas that have higher probabilities of vector presence, along with the 

presence of high numbers of hosts, such as ruminant livestock, could be used to better inform 

prevention strategies to prevent an outbreak.   
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CHAPTER 3: FUTURE DIRECTIONS 

 

This study provided information on environmental and meteorological variables and their influence on 

species distribution for C. insignis, C. stellifer, and C. venustus. However, additional information is 

required to prepare for future surveillance campaigns. A significant group of factors missing from this 

study is trap characteristics. While this study expands on the understanding of environmental variables, 

it lacks information on trapping strategies and characteristics. Traps were set at approximately uniform 

heights and had identical baits. This prevents us from making comparisons on trap efficacy and reveals a 

gap in the data that is required for creating a comprehensive sampling campaign. Therefore, future 

studies need to consider a variety of trap factors. 

Trap characteristics serve important roles in determining the success of a study as well as the potential 

bias that the study may face. Factors include the type of bait used (light, chemical attractants, host), 

location, and height, with sub-factors for each of those categories. 

There are multiple types of trap baits. Light is one of the most common traps for surveillance, especially 

for Culicoides11. The type of light can be set to appropriately target the population of interest, though 

research is ongoing in determining species preference11–16. Certain populations of Culicoides are more 

attracted to green wavelength while others prefer blue or ultraviolet (UV) light12,14. One study suggested 

that Culicoides could be divided into two groups: UV attracted and green-attracted12,17. Furthermore, 

there are some species, such as Culicoides sonorensis, that are more dependent upon wavelength rather 

than intensity17. This contrasts with one recommendation for biting flies, which focuses on high-

intensity, short wave-length light-emitting diodes (LEDs)17.  

Some studies have indicated that disease status can influence trap attractiveness. Culicoides sonorensis 

studies have shown some preliminary data that BTV status changes how the midge species interacts 

with traps15. Typically attracted to UV light, a Culicoides sonorensis midge appears to develop an 
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aversion to UV light once positive for BTV15. This finding still needs further research and has interesting 

implications for future surveillance studies, especially if disease prevalence in vector populations is the 

outcome of interest. 

The success of a light trap can also be influenced by its background, such as foliage. Since the insects 

have poor vision and operate during twilight and nocturnal hours, increasing the contrast between the 

trap and its background can aid in successful trapping11,16,17. Depending on the species that is being 

targeted, certain colors can help to increase the contrast and increase the attractiveness of the trap, 

while other colors can reduce visibility and subsequently hurt collection17.  

Ambient light can also reduce the effectiveness of both contrast and traps,11,17. Even natural sources, 

such as a full moon, increase C. sonorensis activity but can reduce trap effectiveness due to the 

increased ambient light11,17. Considering ambient light and competing sources, light pollution is a 

growing problem. Areas that need increased surveillance but are in or close to an urban setting can have 

increased levels of ambient light and increased amounts of competing light sources that can make 

surveillance difficult11,17. Light pollution is increasing by approximately six percent per year, and as that 

trend continues, the effectiveness of light traps will continue to decrease11. 

Range is also a contributing factor to light trap effectiveness and is often influenced by the type of light 

source, intensity, wavelength, contrast, and ambient light. It is estimated that the Centers for Disease 

Control (CDC) miniature light trap has a range of approximately fifteen meters and the onderstepoort 

light trap has a range of thirty meters11,18,19. However, one study found that the estimated range for the 

onderstepoort could be as low as two to four meters for Culicoides11. 

Trap location plays an important role in trap effectiveness. Understanding the breeding grounds, the 

feeding habits, and the ideal habitat of the specific Culicoides species of interest will aid in the setup and 

success of traps16. Trap rates can be influenced by proximity to hosts, such as sheep or cattle16. 
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Trap height is another factor with important consequences for successful and representative midge 

trapping. Before studies began to investigate the possible relationship between trap success and height, 

there was no rationale as to why traps were set at a chosen height. However, studies have found that 

height does play a role that varies by species of interest16,20,21. An example would be Culicoides insignis, 

which appears to favor tree canopies over the ground level21. While still attacking ground hosts to feed, 

traps set in the canopy had better trap rates than traps set on the ground21. Traps were set at 1.37 

meters for ground level and six meters and 9 meters for 2016 and 2017 respectively21. However, there 

are still species that favor ground traps over canopy traps20,21. Another study using onderstepoort light 

traps found that a height of 2.8 meters was most effective when compared to lower heights22. 

This reinforces the idea that understanding trap characteristics and how they influence successful 

surveillance campaigns is important for proper analysis of both species’ presence and potential disease 

risk. Future studies and SCWDS surveillance campaigns should have duplicate traps with differing 

characteristics, such as modulating height, to allow for comparison and analysis of the influence of trap 

characteristics on species surveillance.  

Future studies should also consider having consistent trapping timelines and placement. The data used 

for this analysis had inconsistent trap time and placement due to limited resources. Traps would 

sometimes be moved to different locations due a limited number of traps, which influenced both the 

location variables of certain traps, as well as time due to some traps having differing time frames than 

others. This made the comparison between traps difficult, and future studies should aim to have 

consistent placement and timing for all traps. 

Finally, future studies should try to have an even distribution of traps across areas of interest. Traps 

should be set in livestock areas to provide a better representation of midge probability in areas of 

concern. Traps in this study were set in areas that were available. This created a biased dataset that 
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focused primarily on parks, natural areas, and wildlife areas. This may not be representative of livestock 

areas and could bias the overlay analysis. 
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APPENDIX 

 

Figure 6: C. stellifer SDM habitat suitability prediction. Presence is for C. stellifer detection and absence is if there was no 

detection. Values are probabilities of species in that area, based on the fitted SDM model and the raster used for prediction. 

Points represent presence detections from the test dataset. 
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Figure 7: C. stellifer overlay analysis with goat, sheep, and cattle. Using the predicted raster for C. stellifer for probabilities in 

combination with cutoffs livestock data. 
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Figure 8: C. venustus SDM habitat suitability prediction. Presence is for C. venustus detection and absence is if there was no 

detection. Values are probabilities of species in that area, based on the fitted SDM model and the raster used for prediction. 

Points represent presence detections from the test dataset. 
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Figure 9: C. venustus overlay analysis with goat, sheep, and cattle. Using the predicted raster for C. venustus for probabilities in 

combination with cutoffs livestock data. 

 


