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Comprehensive Numerical Modeling of
Vertical-Cavity Surface-Emitting Lasers
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M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine

Abstract— We present a comprehensive numerical model for
vertical-cavity surface-emitting lasers that includes all major
processes affecting cw operation of axisymmetric devices. In
particular, our model includes a description of the 2-D transport
of electrons and holes through the cladding layers to the quantum
well(s), diffusion and recombination of these carriers within the
wells, the 2-D transport of heat throughout the device, and a
multilateral-mode effective index optical model. The optical gain
acquired by photons traversing the quantum wells is computed
including the effects of strained band structure and quantum
confinement. We employ our model to predict the behavior of
higher-order lateral modes in proton-implanted devices and to
provide an understanding of index-guiding in devices fabricated
using selective oxidation.

1. INTRODUCTION

ERTICAL-CAVITY surface-emitting lasers (VCSEL’s)

are presently the subject of intense research due to their
promise as compact, efficient laser sources for a number
of important applications. Interest in these devices has been
spurred by recent advances in output power [1], efficiency
[2], [3], and the extension of operating wavelengths into
the visible [4], [5]. These advances, coupled with inherent
advantages such as astigmatic output and epitaxially-grown
cavities, are placing VCSEL’s in a potentially competitive
position relative to edge-emitting lasers for the first time.
However, further optimization of VCSEL designs will require
more elaborate models that are capable of including the many
interdependent processes, such as the self-consistent transport
of charge carriers, heat and photons, occurring within the
device structure.

In this paper, we present such a model for the purpose
of understanding the complex physical processes governing
cw VCSEL operation, with the ultimate goal of producing a
numerical simulation tool capable of designing more efficient
and useful devices. In particular, our model includes the
following physical processes modeled in 2-D axisymmetric
geometry: 1) the ohmic transport of carriers through the
cladding layers to a quantum well(s), including anisotropic
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conductivities and carrier leakage effects, 2) the transport of
heat toward a heat sink, including source terms from ohmic
dissipation, nonradiative recombination and reabsorbed laser
radiation, 3) the diffusion of carriers inside the quantum well(s)
and their recombination via spontaneous emission, stimulated
emission, and nonradiative processes (both through traps and
Auger transitions), 4) the cw behavior of five different optical
cavity modes, delineated by their azimuthal dependence, and
5) the interaction of each of these modes with carriers in
the quantum well through a comprehensive gain model that
includes effects arising from the strained band structure usually
present in the quantum wells. We further validate our model
through comparison of predicted performance with measured
results for two different types of VCSEL’s: 1) gain-guided
devices fabricated by ion-implantation and 2) index-guided
devices fabricated using selective oxidation.

Most previous VCSEL models [6]-[9] have concentrated
on overall device behavior such as threshold and quantum
efficiency using simplified treatments of current and heat flow.
Such models typically neglect lateral dependencies, due to
the obvious difficulty of calculating the 2-D transport, and
utilize empirical methods to treat only a few aspects of device
behavior. More recently, new models have been reported
that attempt a more comprehensive approach. Piprek et al.
[10] perform elaborate 2-D carrier and heat transport calcula-
tions, but neglect all lateral waveguiding effects. Zhang and
Petermann [11] employ a more complete radially-dependent
optical model for a single lateral mode, but restrict their
carrier and heat transport analysis with the use of simple
analytic formulas that are invalid above threshold. Shimizu
et al. [12] utilize a two-lateral-mode beam propagation optical
model and include gain saturation, but do not treat carrier
and heat transport through the cladding layers. Michalzik and
Ebeling [13] include 2-D current and heat flow and provide
an insightful look at the effects of thermal lensing, but do
not include mode competition arising from gain saturation.
Thode et al. [14] have presented the most comprehensive
model to date, including fully time-dependent 3-D optical,
carrier and heat transport models. This very ambitious model
is aimed primarily at transient device behavior, and requires
extensive mainframe computer resources to implement. The
present model concentrates on the phenomena most influential
in cw operation, and includes the major physical processes
in a self consistent manner, while requiring modest computer
resources (The results reported here were obtained on an IBM
RS/6000 model 590 workstation).
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In the following sections, we first derive the relevant gov-
erning equations for each of the three component models
and describe the physical assumptions employed in their
use. Next, we discuss the numerical procedures utilized for
the solution of these equations. Finally, the overall model
is used to predict device behavior for two different device
- geometries, and the resulting predictions are compared with
actual measured performance. The results of these comparisons
are then discussed not only as they relate to model verification,
but also in terms of the new insights they provide into VCSEL
operation and subsequent design issues.

II. MATHEMATICAL MODEL

Transport processes occurring in the VCSEL to be simulated
are modeled using the rectangular domain shown in Fig. 1(a).
Carriers flow from arbitrarily-tailored contacts through the
substrate and cladding layers to the active region, usually
composed of one or more quantum wells. Carriers residing
in the wells may then diffuse laterally and undergo various
recombination processes, while providing gain to the various
optical cavity modes. Heat is generated within the device, both
due to ohmic heating of carriers during transport and also due
to nonradiative processes occurring in the quantum well, as
well as reabsorbed radiation. This heat then flows through the
device toward a heat sink located either below the substrate
or adjacent to the p-cladding layers as shown. The transport
of these quantities is computed in the large (~100 pm x 100
pm) domain shown in Fig. 1(a) using a nonuniform mesh. This
domain is kept large so as to adequately treat the spreading
of both current and heat as it moves toward the bottom of the
substrate.

Optical activity, on the other hand, occurs on a more limited
spatial scale that is confined to the dashed region shown in
Fig. 1(a). The optical field (Fig. 1(b)) is confined vertically by
the mirror stacks and laterally by either gain or index guiding.
The resulting field is computed on a smaller domain using a
separate (and much finer) optical mesh that may be located
arbitrarily with respect to the transport mesh. Solution of the
optical fields is obtained using an effective index method (as
shown schematically in the figure for the case of an etched
air-post device) and described in detail below.

The various processes described above are interdependent
to varying degrees, thus requiring a highly self-consistent
model if accurate predictions are to be obtained. Many of
these interdependencies are included in the present model,
as depicted in the influence chart shown in Fig. 2. Perhaps
the strongest of these is gain saturation, which links carrier
transport in the quantum well (the quantum well diffusion
model) with the optical model. In addition, the optical model
and the heat transport mode] are linked through thermal lensing
and reabsorbed laser radiation. One could also add the effects
of band filling on the carrier transport through the cladding
layers, but this effect has not been included at present.

A. Heat and Carrier Transport

The steady-state transport of charge carriers and heat
throughout the device is assumed to be linear in nature and
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Fig. 1. Schematic diagram for a generic device simulation showing the
computational domain for the transport of heat and carriers (a) and the
effective index optical model (b). The optical domain occupies approximately
the dashed region in (a).

thus satisfy the general Poisson Equation
V- -EVy =S, 1)

where the tensor k describes the spatially variable transport
properties of the materials, ¢ is the transported field quantity,
and S is the source. For the heat equation, S is'the heat
source and % the thermal conductivity tensor, assumed to be
independent of the temperature . For the carriet transport
equation, S is zero and % is the electrical conductivity tensor,
that once again is assumed to be independent of the potential
1. The transport of carriers is also known to depend upon
a variety of nonlinear effects, such as thermionic emission,
in the vicinity of material interfaces. We will not attempt a
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Fig. 2. Flow of information between the various submodels illustrates the
complex interdependencies and the need for self-consistent solutions.

detailed treatment of these effects, but rather model transport
in the directions normal to and parallel to the interfaces of
the DBR mirrors using (1) together with anisotropic average
electrical conductivities.

The appropriate source term S for the heat equation de-
scribes several different heat generation mechanisms, includ-
ing ohmic heating by carriers, dissipative recombination pro-
cesses in the quantum wells, and the reabsorption of both
laser and spontaneously-emitted radiation. We include all
but the last effect in our treatment, due to the difficulty of
calculating its spatial dependence, together with the knowledge
that it is relatively diffuse in comparison with the other more
concentrated sources [15].
~ We solve a finite-differenced form of (1) inside a rectangular
region of the r—z plane using an iterative procedure that
allows mixed boundary conditions to facilitate the simulation
of more general heat sink and contact geometries. Internal
transport barriers such as implanted regions are modeled by
locally decreasing the value of the transport tensor. The finite
difference equations we employ are conservative in form
and derived starting from an integrated form of (1). Details
of both the derivation of these equations as well as the
technique employed in their solution is described in detail in
the Appendix. '

Obtaining the solution of the above general carrier transport
equation results in-a knowledge of the current density J(r)
impinging upon the active region. Carriers thus arriving at the
active region that do not leak through the confinement barriers
are assumed to diffuse radially within the quantum wells
and recombine in a manner described by the 1-D nonlinear
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TABLE 1
Typical. VALUES USED FOR PARAMETERS APPEARING IN (2)
Symbol Meaning Value
D Diffusion 10.0 cm%/sec
j Coefficient
T, Non-radiative 5 nsec
Recombination
Time
B Spontaneous 1.0x 10710
Emission cm’fsec
Coefficient
C Auger 35x1030
Coefficient cm®%sec
ambipolar diffusion equation
D d dN Jo N( ‘
il :__i(r_)+_(_)+BN2_|_CN3
r dr dr qd nr
L 20 S ®
hvd - £~ " '

where N is the density of electrons and holes in the quantum
well, D is the (constant) diffusion coefficient, ¢ the magnitude
of the electronic charge, d the effective quantum well width
(the total width for multiple quantum wells), 7,,, the nonra-
diative recombination time, B the coefficient for spontaneous
emission, C' the Auger coefficient, hv the photon energy, and
gegr the effective gain coefficient. Jog represents the remaining
current density after leakage current is subtracted off. The
leakage current density is estimated through the approximate
relation [7]

E;—E

Tt = Joe T ©
In (3), E, is the effective barrier height, E; the quasi-Fermi
level separation, and .Jy is determined by a fit of threshold
versus temperature data for a particular device structure.
Representative values for these parameters are reported in
[7], although the current leakage model was not employed
for the calculations reported here since the devices being
modeled were designed to have large values of Ey. Referring
back to (2), the gain coefficient g depends on radius through
its dependence upon carrier density, lasing wavelength, and
temperature via an elaborate gain model to be described in a
later section. The lasing intensity term is summed incoherently
over all lateral modes present, since each lases at a different
frequency. Typical values employed for the above parameters
are listed in Table L.

We produce a finite-differenced form of (2) for the carrier
density N, by premultiplication by r and integration over the
range 7;_(1/2) 10 7i1(1/2). This equation is then linearized
by expansion about the previous solution at each mesh point.
The resulting linear equation is then solved using the Thomas
tridiagonal algorithm and the iterative process repeated until
convergence is obtained. Due to the strong nonlinearities
involved, under-relaxation is used to prevent gain overshoot
and undershoot.
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B. Optical Model

Lasing modes in a vertical cavity laser are characterized
by near-paraxial propagation normal to the mitror layers, with
polarizations in the plane of the mirrors. Under these condi-
tions, only a single electric field component is appreciable, and
we may describe that field adequately with the scalar wave
equation

e 8%F
“zoe Y @
where ¢ is the relative permittivity, and we have assumed the
relative permeability to be unity. Since F' depends on all three
spatial coordinates and time, we cannot easily solve (4) for a
complicated structure such as a VCSEL. Instead, we invoke
two simplifying assumptions: (1) that the time dependence is
nearly harmonic with (complex) frequency wp, and (2) that
the VCSEL structure depends only upon z within each of a
number of concentric cylindrical regions. Thus, we write for
region 1,

ViF

F(r,z,¢,t) & @i (2)E(r, ¢,t)e ™"t ®

Substituting (5) into (4) and writing V? = 8%/8z% + V3
results in

QOQ/E + (,DiViE + Ekg(piE + Qiékotpiaa—f
where we have introduced the vacuum wavevector kg = wg/c
and the modified time coordinate 7 = c¢t, and have invoked the
slowly-varying envelope approximation by neglecting second
derivatives with respect to time when acting on the function E.
In anticipation of the separability assumption, we next write
the relative permittivity as the sum of a structural component
€; and a nonstructural component ¢, that is expected to include
such effects as radially-dependent gain in the quantum well,
and thermal lensing:

e€(r,z) = €i(2) + €4(r). @)

At this point, we introduce the effective index approxima-
tion by assuming that (1) the functions ¢; éach satisfy a 1-D
eigenvalue equation of the form

o7 + k(1= &)e(2)pi = 0, ' ®)

where the complex eigenvalue ¢; is related to the effective
index, and (2) that the eigenfunctions ¢; are all approximately
identical in each of the problem regions, so that for distinct
regions ¢ and §,p;(z) =~ ¢;(z) = p(z). The latter statement
embodies the essence of the effective index method by im-
plying approximate separability, with the dominant effect of
structure variations appearing primarily as a variation in the
effective index. Consequently, we might expect the model to
give inaccurate results when applied to devices with severe
structural variations that violate separability. Such effects
are seen in the simulations of the index-guided VCSEL’s
described below. ,

If we now use (8) to eliminate the " term in (6), we have

=0, (©

. . OF
k2(eg(r) + €es(2))oE + V3 E + 2zkoei(z)gp§ =0. (9
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The z-dependence in (9) may be removed by multiplying by
¢* and integrating over z, resulting in

K2 ((eq) + E(e)) E + V2 B + 2ikole) 22

or
o) = / prei(2)p dZ.

/w*so‘dz

Equation (10) may be rewritten in the» form of a beam
propagation equation where the propagation direction is the
time-like variable 7 = ct The result is

OFE

= Vi + kA

or = Tiafey (V- +KEAGE, |
where we have defined the variation in effective dielectric
constant as Ae.g = (eg) + & {€;) and (e;) is given by

(eo) =2/Ra(E) (T} ) — Ty) — L2t

where dn/dT is the derivative of the refractive index with
respect to temperature, g and n, are the material gain co-
efficient and index of refraction of the quantum wells, and
u is a function that is unity in the quantum wells and zero
otherwise. We have ignored changes in refractive index. due
to the presence of carriers in (13), because the small value of
(u) renders those changes small (5 x 10~*) compared with
those due to thermal lensing (~5 x 1073). Also, we neglect
the dependence of the parameter dn/d7 upon aluminum
composition, interpreting its value as a material average.

Note that despite the familiar form of (12), it is in real-
ity an expression of time variation, so that the model we
are espousing is not a true beam propagation model. This
distinction is clarified by the observation that in our model
there is no necessity of defining an effective mirror penetration
depth, as is the case with true beam propagation models [12].
This is of considerable advantage for calculating the losses
incurred, for example, by free carrier absorption resulting from
mirrors grown using arbitrary doping profiles, The inclusion
of such losses is awkward with a beam propagation approach,
but appears naturally in our model as a contribution to the
imaginary part of the eigenvalue &;.

Our optical model thus consists of two parts (1) initial
solutions of (8) for each region that result in the eigenvalues
&, and (2) iterative solutions of (12) for each lateral mode
that continue until both the radial dependence and magnitude
of £ (proportional to the square root of the recirculating
power) cease to change. Different lateral modes are defined
by requiring cylindrical symmetry for the field E. Thus, E
must be of the form

E(r,¢,t) =

Inserting (14) into (12) and writing the Laplacian in cylindrical
coordinates results in the following propagatlon equatlon for
the mth lateral mode: )
o = Zhole) (; oo T

=0, (10

where we have defined

an

(12)

(13)

By (r; £)em9, (14)

+ kgAeeﬁ») E.. (15
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Equation (15) is discretized on a nonuniform mesh and solved
using the Thomas tridiagonal algorithm.

Before continuing, we shall digress temporarily to explore
both some useful relations and some important concepts that
proceed naturally from (5)—(12). First, we examine more
closely the information contained in the field profile ¢(z)
and its eigenvalues £;. To this end, we first consider a 1-D
cold cavity, ignoring any radial dependence for the moment.
The field in such a cavity may be described by (12) with the
Laplacian operator deleted. The solution (expressed as a time
dependence) is thus

E ~ ¢iwott/2 (16)

and if we include the explicit time dependence assumed in
(5), we have

B~ omiwot(1—(Re(€)/2)~ (woTm(£)t/2).

an
Thus, the energy stored in the cavity decays as
U ~ e~ wolm(®t (18)

and the cavity @ is thus @ = 1/Im(§) [17]. Therefore, we
see that the real part of the eigenvalue & corresponds to a
shift in the Fabry-Perot resonance of the cavity relative to
the initial guess wg, and the imaginary part describes the
cavity losses. In order to calculate the radiated power, we need
to distinguish between radiative losses through the mirrors
and nonradiative losses due to absorption in the dielectric
layers. This is accomplished by multiplication of (8) (without
subscripts) by ¢*, its conjugate by ¢, and subtracting. The
result, after an integration by parts, is

d de* 1" .. .
[ - 2] i i - )] [ o b =0,
19)

where the subscript and superscript around the brackets denote
the upper and lower problem boundaries. Now we assume
that each end of the cavity is terminated in a single lossless
dielectric, so that in those regions

Py ~ eikonuz

or ~ e—ikon;z

(20)

in which case (19) may be solved for the imaginary part of
¢, yielding

Im((e))(1 - Re(£)) nll
Im(€) = n
Re((<)) o Re((€)) / oo dz
ko Re((€)) / oo o

The first term in (21) describes absorption loss, being pro-
portional to a weighted average of the imaginary part of the
dielectric constant of each layer. The remaining terms describe
radiation losses at the upper and lower problem boundaries,
with material indexes n, and n;, respectively. Returning to
(17), we see that a nonzero value for the real part of the
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eigenvalue corresponds with a shift in the cavity resonance
frequency given by

&z_A)\: Re(§)

S Wl 22)

But we previously noted that the change in effective dielectric
constant arising from the real part of £ was

Acet  Anesr _ Re(¢)

2(e)
Combining these results leads to the important connection that
a shift of the cavity resonance in one radial region relative to

another leads to a change in effective index. The magnitude
of this change is given by

. 23)

Neff 2

Anex _ AA

Neff - )\0 (24)

and can be substantial. For example, a 10 nm red-shift in cavity
resonance for a VCSEL operating at 975 nm corresponds
to an effective index increase of about 0.033, a large value
when compared with the index contrast of ~10~3 typically
required for index guiding in rib waveguides. Thus, our model
leads naturally to the surprising conclusion that the relative
change in effective index in a certain region of a vertical cavity
laser is due entirely to a shift in the Fabry-Perot resonance
frequency in that region, with red (blue) shifts leading to
increases (decreases) in effective index, respectively. Thus, an
alteration in index of the material making up the cavity affects
the index by altering the cavity resonance frequency. This
statement can be understood heuristically in terms of a simple
optical cavity made up of a single material, whose optical path
length is nL. An increase in cavity length with constant index
is seen to be equivalent to a proportionate increase in index
with cavity length held constant. Of course, an increase in
the effective cavity length red-shifts the Fabry-Perot resonance
wavelength proportionately, so the two pictures are consistent.
These conclusions are reinforced by the experimental data to
be discussed in a later section, and are expected to lead to the
design of future VCSEL’s with improved modal properties.
Up to this point, all field expressions have been written in
such a way as to be independent of normalization. The latter
must however be determined consistently with the stimulated
emission term in (2) so that the recombination of one electron-
hole pair produces exactly one photon. This condition is
properly met if we define the effective gain coefficient in (2) as

Nag <u>
off = T ——F % 25)
9et = 1 Re((e:)) (
and the radiated output power density by
Poue = Tm(&)raal EI*. (26)

With the above choice of normalization, |E|? is proportional
to the recirculating power density, having units of W /cmz.
We note in passing that the expression for the effective gain
coefficient in (25) is a weighted average and therefore auto-
matically accounts for resonant-periodic-gain effects, yielding
zero gain if the quantum well is placed exactly at a field node.
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C. Gain Model

The material gain coefficient g(N, A, T') appearing in (13) is
determined from detailed band structure calculations for the 8-
nm-wide compressively-strained Ing »Gag g As quantum wells.
The details of these calculations have been reported elsewhere
[18], [19], and will be briefly summarized here for the sake
of completeness. Due to the level of sophistication of these
calculations, they are performed only once for a given quantum
well structure with the results being stored in lookup tables or
fitted by analytic functions. These tables or functions are then
employed in the VCSEL simulations.

These calculations begin with a determination of the sub-
band structure of the strained quantum well for both conduc-
tion and valence bands. The quantized subband edge energy
levels in both bands are determined by solving Schroedinger’s
Equation with a finite barrier potential appropriate for the
Ing 2Gag s As/GaAs system (Fe(GaAs:C-HH,LH) = 1.424 eV
and E¢(Ing 2Gag gAs:strained C-HH) = 1.215 eV with 60% of
the bandgap discontinuity assumed to appear in the conduction
band). In the valence band, a different potential well is seen by
heavy and light holes due to strain [18]. The three potential
well depths used are: Vo = 125 meV, Vg = 83.6 meV,
and Vg = 3.75 meV (due to the strain-induced splitting
of the heavy and light hole bands, the light holes are nearly
unconfined). The resulting quantized energies in the quantum
well are: Fe,, = 374, 122, Egg, = 9.61, 37.3, 76.2, and
Erp. = 83.1, all in meV.

The next step involves determining the subbands associated
with each quantized energy level. In the conduction band, each
subband is assumed to be parabolic in our model, with an in-
plane effective mass that is a weighted average of the band
edge conduction band effective masses in and out of the well
(0.059m0 and 0.067mg, respectively). In the valence band,
a realistic model must account for the complex interactions
between the heavy and light hole subbands that lead to subband
warping. To include these valence band-mixing effects, the
Luttinger-Kohn (L-K) Hamiltonian [20] is employed. In our
model, we use the 4 x 4 version of the L-K Hamiltonian that
takes into account the coupling between the heavy and light
hole valence bands, but neglects the coupling to the split-off
band (aside from strain shifts in the bandgaps that do include
split-off band coupling).

A unity transformation applied to the 4 x 4 L-K Hamil-
tonian transforms it into two 2 X 2 decoupled Hamiltonians,
making the analysis much simpler, as first suggested by
Broido and Sham [21] (and outlined in more detail by Ahn
and Chuang [22]). After adding the strained heavy hole and
light hole finite barrier potential well profiles to the L-K
Hamiltonian (in 2 manner equivalent to that described in [22]),
we can solve for the quantum well envelope functions. The
corresponding energy eigenvalues as a function of in-plane
- k vector are then found successively, producing the entire
valence subband structure. )

Once the subband structure is determined, we can con-
cenirate on the more relevant topic of calculating the gain
function. To predict the gain/absorption characteristics of
quantum well structures in general, we need to know €))]
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the density of states in both the conduction and valence
bands, (2) the interband transition matrix elements, and (3) the
quasi-Fermi levels in both bands. With the subband. structure
results as described above, we can easily calculate the density
of states. A knowledge of the envelope functions combined
with the strength of the bulk momentum matrix element (for
Ing 2Gag sAs we assumed 2|M|?/mg = 27.48 eV) allows a
determination of the interband transition matrix element as a
function of in-plane k vector for every subband transition pair
[18]. .
This leaves only the task of determining the quasi-Fermi
levels in each band. In our model, we treat the conduction band
quasi-Fermi level as the independent variable of the calculation
and relate the valence band quasi-Fermi level to it by invoking
charge neutrality in the quantum well region (including “bulk”
states at energies beyond the potential barrier heights). With
these defined, we can uniquely determine the carrier density
within each band and the gain/absorption spectrum of the
quantum well. Spectral broadening of the transitions is taken
into account by convolving the resulting gain spectrum with
an energy-dependent lineshape function [23] (it is similar to
a Lorentzian with an intraband scattering time of 0.1 ps, with
the exception that the function used here is reduced by more
than an order of magnitude “in the wings” as compared to the
Lorentzian). In this way, the carrier density and broadened gain
spectrum can be found as a function of increasing quasi-Fermi
level separation. '
The resulting gain model has been compared with experi-
ment by integrating the total emission rate over all possible
transitions as calculated above, and comparing calculated
gain versus radiative current density with measured values
for edge-emitting lasers employing both single and double
Ing.2Gag sAs/GaAs 8-nm-wide quantum wells. The resulting
comparisons, shown in Fig. 3, are excellent [24], particularly
in view of the fact that the calculations employed no fitting
parameters.

HI. COMPARISON WITH EXPERIMENT

We illustrate the use and demonstrate the validity of the
model described in this paper by comparing model predictions
against measured device performance for two different types
of vertical cavity lasers. The first is a gain-guided device
with no built-in index structure whose lateral mode shape is
determined by the shape of the gain profile. The second is an
index-guided laser whose index step results from the insertion
of a low-index layer using selective oxidation. This device
offers a challenging test of the effective index model described
above. Problem-dependent parameters used to simulate these
two devices are listed in Table II.

A. Gain-Guided VCSEL

The devices used for this comparison were processed from
molecular-beam-epitaxially-grown wafers of AlIGaAs mirrors
on n-type GaAs substrates with triple InGaAs quantum wells,
as described in detail elsewhere [2]. Gain-guided VCSEL’s -
with circular symmetry and diameters ranging from 10-35 pm
were then defined by proton bombardment, resulting in device
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Fig. 3. A comparison between theoretical gain and measured gain (taken
from different length devices) as a function of current density in single and
double Ing 2Gag g As/GaAs 8 nm quantum well active region edge-emitting
lasers (after [24]). The theoretical plot includes current contributions from
Auger and barrier recombination.

TABLE 1I
PARMAETERS EMPLOYED IN THE DEVICE SIMULATIONS DISCUSSED
IN THE TEXT. TRANSPORT QUANTITIES REPRESENT FITS, AND
DEVIATE IN SOME CASES FROM TYPICAL PUBLISHED VALUES

Property Gain-Guided Simulation Index-Guided Simulation

Optical Cavity:
Lower Mirror Periods 30 38
Upper Mirror Periods 22 18
Cavity Length 1 1A
Resonant Wavelength 975.7 nm 966.8 nm
Quantum Well Overlap 0.0269 0.0337
Round Trip Loss 1.58% 0.64%
Resonant Wavelength 975.7 nm 948.4 nm
Quantum Well Overlap 0.0269 0.0365
‘Round Trip Loss 4.41% 0.4%
Electrical Transport: (Conductivities in Mho/cm)
P-Type Mirror Conduct. 6,=10 .0, =5 0,=75 o, =4
Implanted/Oxidized Region:

thickness L5pm 0.1 um

conductivity 6, =10 o, =10% o, = 2x10~8 o, = 2x10°6
N-Type Mirror Conduct. c,=10 o,=15 6, =75 o,=12
Substrate Conductivity o, =500 o, =500 6, =500 o, =500
Thermal Transport: (Conductivities in W/cmK)
Mirror Conductivities k, =008 k =003 k, = 0125 k, = 0075
Substrate Conductivity k, =039 &k, =039 k, =039 k =039
Temp dependence of Cond. ke T-12
Contact metal Conductivity | &, = 1.0k, = 1.0 k=10 k =10

geometries shown schematically in Fig. 4. We modeled a
simplified version of the devices in which the triple quantum
wells were assumed to have equal carrier density profiles [6].
The electrical resistivities were modified to reproduce the mea-
sured device resistance for several different device diameters.
Likewise, the thermal conductivities were modified [25] to
reproduce the measured device temperature rise. The latter
quantity was determined by first observing the Fabry-Perot
resonance shift (at zero device current) as the temperature of
the mounting stage was varied. This procedure provided not
only the relationship between device temperature and emission
wavelength, but also the material parameter dn/dT, which
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Fig. 4. Schematic diagram of the structure of an implanted gain-guided
device. The implanted region is assumed to have negligible effect on the
optical properties, but have very low electrical conductivity.
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Fig. 5. Comparison between model results and data for the implanted
gain-guided device. The model predicts only the fundamental mode at low
power, with higher-order lateral modes coming above threshold at the points
shown. The onset of higher-order modes in the data is shown by the kinks in
the curve. The bottom theoretical curve computed with thermal lensing turned
off shows lower quantum efficiency and only the fundamental mode.

was found to have a value of 2.3 x 10~ The device was
then simulated using the model described in the previous
sections and the measured value of dn/dT. Optical losses
were increased in the implanted region to model the effects
of the ion implantation. The resulting predicted LI curves
for the 15-um-diameter device are shown in Fig. 5 along
with the measured results. The simulation clearly predicts
the onset of two higher-order lateral modes at the currents
shown. These two modes were also observed experimentally,
appearing at currents corresponding to the kinks in the curve
marked “Experiment” in Fig. 5 (and confirmed by near-field
and spectral measurements). In addition,. the calculated re-
sults accurately predict the measured threshold current and
differential quantum efficiency, and approximately predict the
observed thermal rollover. Further calculations performed with
thermal lensing effects removed show a decreased differential
quantum efficiency and only a singie lateral mode (Fig. 5). The
thermal lens is clearly seen in the isotherms corresponding to
a current of 14.5 mA, shown in Fig. 6.

These results demonstrate clearly the crucial role played
by thermal lensing in determining the cw modal behavior of
implanted devices. The thermal lens acts to pull the higher-
order modes into the gain region, where they compete more
effectively with the fundamental mode. It also leads to tighter
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Fig. 6. Isotherms for the simulation of the gain-guided implanted device

corresponding to a current of 14.5 mA. The presence of a thermal lens
is clearly seen as a decrease in temperature along the plane of the active
region. Discontinuities in the isotherms reflect decreased values of thermal
conductivity in the mirror regions [25] needed to reproduce measured device
temperature rises.

confinement of the fundamental mode, with the resulting
higher efficiency.

B. Index-Guided VCSEL

Devices used for this paper were processed from wafers
grown using MOVPE of a design similar to that previously
used to make implanted devices. The wafers differed only in
‘the use of fewer upper mirror pairs, and the modification of the
aluminum content of one mirror layer adjacent to the cavity
from 96 to 98%. These wafers were processed by first etching
large rectangular mesas followed by oxidation as described
elsewhere [3]. The slight difference in Al content of the mirror
layers resulted in the preferential oxidation of the single 98%
layer, and the consequent formation of a current aperture with
a rectangular shape of varying dimensions as shown in Fig. 7.
The lower index of refraction of the oxide layer also results
in the reduction of the effective index in the oxidized region
of the VCSEL as computed using (8). The magnitude of the
resulting index step has been computed to be approximately
0.066, a large enough value to cause highly effective optical
confinement. This is also in good agreement with the value
of 0.062 inferred from a measurement of lateral mode spacing
below threshold [26].

We chose two devices for comparison whose apertures
were squares with sides of approximately 3 and 7 pm, and
simulated their performance using the model described above
as circular devices with radii of 1.5 and 3.5 pum, respectively.
The two simulations employed identical properties, with only
the oxidation diameter being varied. The resulting measured
and calculated LI curves are shown in Figs. 8 and 9. As can
be seen, the 7 pym-diameter simulation matches the data very
closely, with the predicted threshold (240 mA) slightly under
the measured value of 350 mA, and the maximum wallplug
efficiency (46%) just under the world-record measured effi-
ciency of 50% [3]. The observed single-lateral-mode operation
to 1.5 mW output power was not, however, reproduced in
the simulation, which predicted higher-order lateral modes just
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Fig. 7. Schematic diagram’ of the structure of an index-guided device fab-
ricated using selective oxidation of a single quarter-wave mirror layer. The
oxide functions both as a means of current confinement and as an index guide.
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Fig. 8. Measured and predicted LI curves for a 7-um-diameter index-guided

device of the type shown in Fig. 7. This device lases at a maximum wallplug
efficiency of (46%) 52% at 2 mA drive current as determined by (calculations)
measurement. .

above threshold. For the 3 pum-diameter device (see Fig. 9),
the simulations predict lower threshold current and higher
quantum efficiency than were measured in the laboratory. Also,
they predict the lasing of two lateral modes as opposed to the
observed single mode operation. It thus appears that the oxide
layer is introducing an extra mode-dependent loss into the
cavity that is not being accounted for by the effective index
formalism. We believe that this loss results because the low-
index oxide layer represents a lumped rather than a distributed
index change that causes both scattering and confinement. The
scattering would be expected to be greater for higher-order
lateral modes that more strongly overlap the oxidized region,
and is not predicted by the effective index formalism since the
latter describes an average (or distributed) change in index.
Inclusion of this loss mechanism would bring the 3-um LI
results more closely into agreement with the observations,
and also discriminate against the operation of higher-order
lateral modes. Thus, we conclude that more accurate modeling
of such strongly index-guided devices will require a more
sophisticated optical model.
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IV. CONCLUSION

In summary, we have presented a comprehensive model
for the simulation of vertical-cavity surface-emitting semicon-
ductor lasers that calculates the transport of both heat and
carriers as well as the behavior of the multilateral-mode optical
fields and their interaction with the quantum well gain region.
The resulting model has successfully predicted the threshold
currents, output powers, and lateral mode behavior of gain-
guided VCSEL’s, including thermal rollover effects at high
injection currents. Considerable success has also been achieved
at predicting and understanding the impact of thermal lensing
on the onset of higher-order lateral modes. For the strongly
index-guided devices fabricated with selective oxidation, the
model still predicts thresholds and efficiencies well for the
large diameter (7 um) case. However, index guiding in these
devices results from a single low-index layer that causes
both scattering and confinement. Because this layer strongly
perturbs the shape of the field profile, the separability assump-
tion used in the derivation of the effective index equations
is violated, and the method does not predict the scattering,
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leading to inaccuracies in predicted device behavior that are
the most noticeable for the small diameter (3 pm) lasers.
Accurate predictions of the model behavior of these devices
may require a more sophisticated optical model.

APPENDIX

Here we derive the finite difference equations used to solve
(1). We begin by integrating the latter equation over the
dashed region shown in Fig. 10. Remembering the cylindrical
symmetry, the formal result is

fﬁVq/wdA:/SdV

where the area and volume integrals refer to the volume of
revolution produced by revolving the dashed area through an
angle of 27, The resulting difference equation is thus

(A1

mri-(1/2)(A%; + Azj—l)ﬁr,w(l/z),j('%%;—lﬂ
= i (1/2)(Az; + Azj1)krit(1/2),5
(¢1+1,1 me) 2 2
T An + 7 (ripy2) — Tie(1/2))
(i; — Yij-1)
: {ﬁzm—um TR Rt
. (1/}%1'*'1 ‘ﬁw)
Azj
(Azj + Azj_y)
= ~7r(7°z‘2+(1/2) - ?—(1/2)) X _—]_TJ—S@ﬁ
(A2)

where for simplicity we have assumed the transport tensor to
have only two diagonal elements, «, and k.. Equation (A2)
is solved using the iterative two-step ADI algorithm [27] that
may be described symbolically by the equations

9 O\ .iqa2)
(wn + 8z/iz 3z>¢

19 a\\ ..
I 0 n+1
(“’" ty 5;(””5))“”
_ 9 0N meas _
= <an 5" 82) W S (Ad)

with the differential operators replaced by their finite differ-
ence counterparts from (A2). In (A3) and (A4), the superscripts
refer to iteration level, and w,, is a two-level sequence of accel-
eration parameters [27]. These parameters are approximately
given by

VI+RZ+R-1
__\/2R_*T2_____

VITRE—R+1
R,

where L is the maximum problem extent, and R the ratio of
the latter to the minimum mesh size. However, (A5) should be
interpreted only as a guide, and may not represent optimum

(A5)

Wy = —
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convergence rates. The latter are best determined by trial and
error for a specific problem. Alternatively, (A2) may be solved
by direct inversion of the band matrix using commercially-
available matrix inversion routines. This latter approach has
been found to be generally faster unless an accurate initial
guess for the solution is available. However, more storage is
required for direct inversion, with a 75 x 100 mesh requiring
10 Mbytes of memory (currently within the range of most
PC’s).

REFERENCES

[1] D.B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B.
J. Thibeault, S. ' W. Corzine, and L. A. Coldren, “Enhanced performance
of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE
J. Quantum Electron., vol. 29, no. 6, pp. 2013-2022, 1993.

[2] K.L.Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion
efficiencies and scaling issues for multimode vertical-cavity top-surface-
emitting lasers,” IEEE Photon. Technol. Lett., vol. 6, no. 7, pp. 778-781,
1994.

[3]1 K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and
K. M. Geib, “Selectively oxidized vertical cavity surface emitting lasers
with 50% power conversion efficiency,” Electron. Leit., vol. 31, no. 3,
pp. 208-209, 1995.

[4] J. A. Lott, R. P. Schneider, Jr., K. D. Choquette, S. P. Kilcoyne
and J. J. Figiel, “Room temperature continuous wave operation of réd
vertical cavity surface emitting laser diodes,” Electron. Lett., vol. 29,
pp. 1693-1694, 1993.

[5] R. P. Schneider, Jr., K. D. Choquette, J. A. Lott, K. L. Lear, J. J.
Figiel, and K. J. Malloy, “Efficient room-temperature continuous-wave
AlGalnP/AlGaAs visible (670 nm) vertical-cavity surface-emitting laser
diodes,” IEEE Photon. Technol. Lett., vol. 6, no. 3, pp. 313-316, 1994.

[6] J. W Scott, S. W. Corzine, D. B. Young, and L. A. Coldren, “Mod-
eling the current-to-light characteristics of index-guided vertical-cavity
surface-emitting lasers,” App. Phys. Lett,, vol. 62, no. 10, pp. 1050-1052,
1993.

[71 J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modeling
temperature effects and spatial hole burning to optimize vertical-cavity
surface-emitting laser performance,” IEEE J. Quantum Electron., vol.
29, no. 5, pp. 1295-1308, 1993.

[8] W. W. Chow, R. P. Schneider, Jr., J. A. Lott, and K. D. Choquette,
“Wavelength dependence of the threshold in an InGaP-InAlGaP vertical
cavity surface emitting laser,” Appl. Phys. Leit., vol. 65, no. 2, pp.
135-137, 1994.

[91 D.I. Babic, R. J. Ram, J. E. Bowers, M. Tan, and L. Yang, “Scaling laws

for gain-guided vertical cavity lasers with distributed Bragg reflectors,”

Appl. Phys. Lett., vol. 64, no. 14, p. 1762-1764, 1994.

J. Piprek, H. Wenzel, and G. Sztefka, “Modeling thermal effects on

the light vs. current characteristic of gain-guided vertical-cavity surface-

emitting lasers,” IEEE Photon. Technol. Lett., vol. 6, no. 2, pp. 139-142,

1994,

[11] J.-P. Zhang and K. Petermann, “Beam propagation model for vertical-

cavity surface-emitting lasers: threshold properties,” IEEE J. Quantum

Electron., vol. 30, no. 7, pp. 1529-1536, 1994.

M. Shimizu, F. Koyama, and K. Iga, “Transverse mode analysis for

surface emitting laser using beam propagation method,” JEICE Trans.,

vol. E 74, no. 10, pp. 3334-3341, 1991.

R. Michalzik and K. J. Ebeling, “Modeling and design of proton-

implanted ultralow-threshold vertical-cavity laser diodes,” IEEE J.

Quantum Electron., vol. 29, no. 6, pp. 1963-1973, 1993.

L. E. Thode, G. Csanak, L. L. So, and T. J. T. Kwan, “Time-dependent

numerical simulation of vertical cavity lasers,” in Proc. SPIE, Symp.

Physics and Simulation of Optoelectron. Devices II, Los Angeles, CA,

Jan. 24, 1994, vol. 2146, pp. 174-184.

[15] G. R. Hadley, J. P. Hohimer, and A. Owyoung, “Comprehensive

modeling of diode arrays and broad-area devices with applications to

[10]

[12]

[13]

[14]

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 32, NO. 4, APRIL 1996

lateral index tailoring,” IEEE J. Quantum Electron., vol. 24, no. 11, pp.
2138-2152, 1988.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in FORTRAN, 2nd ed. New York: Cambridge
University Press, p. 861.

[17] A. E. Siegman, Lasers.
p. 430.

[18] S. W. Corzine, R. H. Yan, and L. A. Coldren, “Optical gain in II-V
bulk and quantum well semiconductors,” in Quantum Well Lasers, P. S.
Zory, Ed. New York: Academic, 1993, ch. 1.

, “Theoretical gain in strained InGaAs/AlGaAs quantum wells
mcludmg valence-band mixing effects,” Appl Phys. Lett., vol. 57, p.
2835, 1990.

[201 J. M Luttinger and W. Kohn, “Motion of electrons and holes in

perturbed fields,” Phys. Rev., vol. 97, p. 869, 1955.

D. A. Broido and L. J. Sham, “Effective masses of holes at GaAs-

AlGaAs heterojunctions,” Phys. Rev., vol. B 31, p. 888, 1985.

[22] D. Ahn and S. L. Chuang, “Optical gain in a strained-layer quantum-well

laser,” IEEE J. Quantum Electron., vol. 24, p. 2400, 1988.

S. R. Chinn, P. S. Zory, and A. R. Reisinger, “A model for GRIN-

SCH-SQW diode lasers,” JEEE J. Quantum Electron., vol. 24, p. 2191,

1988.

[24] S. Y. Hu, D. B. Young, S. W. Corzine, A. C. Gossard, and L. A.
Coldren, “High efficiency and low threshold InGaAs/AlGaAs quantum
well lasers,” J. Appl. Phys., vol. 76, p. 3932, 1994.

[25] P. M. Norris, G. Chen, and C.-L. Tien, “Size effects on the temperature
rise in vertical-cavity surface-emitting laser diodes,” Int. J. Heat Mass
Transfer, vol. 37, suppl. 1, pp. 9-17, 1994.

[26] K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., and S. P. Kilcoyne,
“Modal analysis of a small surface-emitting laser with a selectively
oxidized waveguide,” Appl. Phys. Lett., vol. 66, p. 2616, 1995,

[27] R.S. Varga, Matrix Iterative Analysis. Englewood Cliffs, NJ: Prentice-
Hall, 1963, ch. 7, p. 212.

Mill Valley, CA: University Science Books,

[19]

G. Ronald Hadley (SM’93), photograph and biography not available at the
time of publication.

K. L. Lear (S"83-M’88), photograph and biography not available at the time
of publication. -

M. E. Warren, photograph and biography not available at the time of
publication.

K. D. Choquette, photograph and biography not available at the time of _
publication.

J. W. Scott, photograph and biography not available at the time of publication.

S. W. Corzine, photograph and biography not available at the time of
publication. i



