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ABSTRACT OF THESIS 

CLINOPTILOLITE, AS A N, K, AND Zn 

SOURCE FOR PLANTS 

Clinoptilolite was tested for its capacity to enhance availability 

of N, K, and Zn in the production of vegetable and flower species. 

Ammonium charged zeolite and mixtures of zeolite plus ammonium 

sulfate or urea were evaluated in a greenhouse experiment involving a 

medium ( 13% clay) textured alkaline soil with no drainage provided and 

a light ( 6% clay) textured soil which was leached 6 times during the 

course of the experiment. Controls were ammonium sulfate and urea. 

Banding provided the most effective method of application of zeolite 

compared to incorporation when radish, Raphanus sativus cv. Improved 

Scarlet Globe, was used as a test species. 

Banded ammonium charged zeolite increased radish growth in both 

medium and light textured soils. A decrease in N0 3-N loss occurred 

in the leached light soil. A physical mixture of uncharged zeolite and 

ammonium sulfate provided no increase in radish growth or reduction 

in leachate nitrate. Banding zeolite, in conjunction with urea, reduced 

growth suppression which occurred when only urea was added. 

Growth response of tomato Lycopersicon esculentum cv. Spring 

Giant, were evaluated under field conditions, using banded treatments 

of ammonium charged zeolite, ammonium charged zeolite plus ammonium 

sulfate and uncharged zeolite plus ammonium sulfate. No differences 

in plant growth occurred among zeolite and control treatments due 

to unavoidable additions of nitrate nitrogen in the irrigation water. 
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Two greenhouse experiments were used to evaluate the influence 

of zeolite on vegetables, cut flowers and potted plant crops in two 

different media. Radish, Raphanus sativus cv. Improved Scarlet Globe 

responded positively to charged and naturally potassic zeolites, equaling 

growth obtained by the fertilizer injection method. Lettuce, Lactuca 

sativa cv. Grand Rapids Forcing (H-54); beans, Phaseolus vulgaris cv. 

Cherokee; chrysanthemums, Chrysanthemum morifolium cv. Bonnie Jean 

and snapdragon, Antirrhinum majus cv. Missouri growth was not posi-

tively affected by predesigned zeolite levels. Pot crops of poinsettia, 

Euphorbia pulcherrima cv. Dark Red Annette Hegg and Easter I ily, 

Lilium longiflorum cv. Ace also were not responsive. 
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INTRODUCTION 

Zeolites are a group of minerals that are receiving greater 

attention in the agronomic and horticultural world due to their abun­

dance, availability, and their physical and chemical uniqueness. 

Zeolite has been used in Japanese agriculture for hundreds of years 

as a soil amendment, yet very little scientific data has been published 

with regard to its usefulness as a nutrient source. Clinoptilolite, a 

naturally occurring zeolite, noted for its ion selectivity and affinity 

for N H~, has in the past quarter-century, received the greatest 

attention. 

Crop production is becoming increasingly difficult with increasing 

fertilizer cost. Crop demand for nutrients, especially N, K and some 

cases Zn, varies with the species and stage of growth. Frequent surface 

irrigations in the arid West and high rainfall areas of the East result 

in severe leaching of plant nutrients, primarily N; thus, establishing 

a priority in agricultural research to develop new nutrient sources 

and/or new ways to increase fertilizer efficiency. 

Nitrogen is often the most limiting nutrient in crop production. 

This important nutrient undergoes a biological transformation in soil 

from NH:, essentially an immobile form, to No;, a mobile form. The 

effectiveness of a nitrogen application can be increased by maintaining 

that element in the root zone in the NH: form by suppressing or delay­

ing nitrification. 
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This study investigates the feasibility of using zeolite, clinop­

tilolite, to control the availability of NH
11

, K, and Zn in soils and 

"artificial" media using primarily plant growth as an indicator in both 

field and greenhouse environments. 

Reference to commercial products or trade names is made with 

the understanding that no discrimination is intended and no endorse­

ment by the author of this thesis is implied. 



LITERATURE REVIEW 

History and Characteristics of Zeolites 

Early history reveals zeolites were used as building stones as 

long ago as 600 B.C. ( 75), although the first reported discovery of 

zeolites was in 1756 by Baron Axel Frederick Cronstedt, a Swedish 

mineralogist ( 77), who gave zeolite its name. An 1891 report docu­

mented the occurrence of phillipsite zeolite in deep sea sediments ( 79). 

Prior to the early 19501s, most zeolite occurrences were in fracture and 

vesicle fillings in igneous rocks, particularly basaltic rocks; occasional 

non-igneous occurrences were also reported ( 75). In the 19601s, three­

fourths of more than 350 reports described zeolites as being found in 

sedimentary rocks ( 96, 50). Modern technology and a more thorough 

understanding of how zeolites form ( 37) assisted in bringing about this 

rather sudden change. Since their 11 rediscovery 11 in the 19501s, more 

than a thousand occurrences of zeolite minerals have been reported 

from sedimentary rocks of volcanic origin in more than forty countries 

( 75). By 1971, Breck ( 25) recognized 34 naturally occurring species 

of which analcime, chabazite, phillipsite, erionite, mordenite and 

clinoptilolite were the most common sedimentary zeolites. 

Zeolites, among the most common authigenic (secondary) silicate 

minerals, form directly from silicic glass by a solution-precipitation 

mechanism ( 96). Hay ( 49) in 1966, correlated zeolite mineralogy with 

composition of host, water chemistry, age, and burial depth for the 

purpose of establishing the conditions under which zeolite-bearing 
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mineral assemblages form and react in sedimentary rocks. Zeolite im­

purities of quartz, feldspars, phyllosilicates and volcanic glass may be 

found in minute to major quantities ( 24). 

A review of the literature reveals various zeolite structure 

classification schemes ( 71, 85, 99). The literature also provides a very 

modern classification scheme based on framework topology as well as 

an excellent discussion of the unique chemical and physical properties 

of various zeolites (13,24,45, 100). 

Zeolite is a crystalline hydrated aluminosilicate of the alkali and 

alkaline earth cations, having infinite three-dimensional structures 

which classified it as a tektosilicate ( 77). Their ability to gain and 

lose water reversibly and to exchange cations without major structure 

change are unique characteristics. 

One natural zeolite group, Clinoptilolite (klino-tee-lo-lite), has, 

in the past quarter-century, received the greatest attention. Clinop­

tilolite was first discovered in a basaltic rock from Wyoming ( 87). It 

was named 11amygldales11 and later given its present name by Schaller 

in 1932 (91). Occurrence of clinoptilolite was first documented as an 

alternation product of vitric tuffs of marine origin. 

One of the earliest reports on clinoptilolite in sedimentary rock, 

was published in Japan ( 82) • Sheppard ( 96} and Barrer ( 12} agreed 

that clinoptilolite is abundant in the United States in rocks of the 

cenozonic age and is a product of low-temperature reactions between 

sediment and saline lake waters. Early problems arose in classifying 

zeolites but a redefining of clinoptilolite established it separate from 
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heulandite ( 74). The design of clinoptilolite framework is the reason 

for its unique physical and chemical properties. 

Clinoptilolite has both eight-membered and ten-membered oxygen 
0 

ring structures ( 31), with dimensional openings (windows) of 3. 0 x 4. 4 A 
0 

and 3.5 x 7.9 A (108) respectively. Unlike feldspars, which are also 

tektosilicates, the zeolite framework contains large cavities (the ex-

change site in which cation and water are bound) and two or three-

dimensional channels (restrictions between exchange sites) ( 13, 26, 49). 

A two-dimensional system has main channels which are linked by a net-

work of smaller channels, where a three-dimensional system is composed 

of two types of channels which are equidimensional or non-equidimen-

sional ( 24). The exact channel arrangement has not been satisfactorily 

determined. The electrostatically charged structure comes from replace-

ment of quadrivalent silicon by trivalent aluminum, balanced by mono 

and divalant cations ( 77). The reasons for ion selectivity of the 

windows and/or the channels include: (a) nature of cation species with 

respect to hydrated radius and charge; (b) solution temperature; (c) 

concentration and distribution of cation, anion species, and (d) struc-

tural characteristics of the particular zeolite ( 68). A thorough dis-

cuss ion of the ion-sieve properties (59) and detailed descriptions on the 

adsorption properties of zeolites are available ( 27, 77). Ames ( 8) 

showed that the structural water of clinoptilolite is not firmly bound 

to the zeolite framework. Thus, ammonium does not attract as much 

water via hydration and therefore, is free to move through the lattice 

and closely approach the exchange sites. Barrer et al. ( 14) described 

a steric effect in the exchange process of adsorbed cation and organic 
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ions. Due to the selectivity effect of cl inoptilol ite, the cation exchange 

capacity (CEC) varies from approximately 160 to 200 meq per 100 g 

( 1 07) to a high of 230 meq per 100 g ( 77) . Barrer et al. ( 14) found 

that the exchange capacity corresponded to 98% of the total possible 

capacity. Thus, practically all of the exchange sites in clinoptilolite 

are accessible by alkali and alkaline earth metal ions. 

+ Ames { 7) identified the selectivity or lyotropic series for the Cs 

exchange of clinoptilolite from the Hector, California deposit as Cs > 

Fe > AI > Mg > Li. In a later study on Na-based clinoptilolite, part 

of the series was later confirmed, Cs > NH 4 >> Na, by Howery and 

Thomas (57). Vaughan ( 1 08) states, "Ciinoptilolite works best when 

the cation to be removed is present (in solution) in low concentrations ... 

Also, appreciable quantities of Ca++ and Mg ++ have detrimental effects 

on the NH: exchange capacity of this zeolite. One of the most unique 

properties of clinoptilolite is its affinity and selectivity for NH: which 

was investigated by Ames ( 1 O) and Mercer et al. ( 72) • 

The ion exchange and diffusion rates of cl inoptilolite were studied 

by Ames ( 9), who demonstrated how the diffusion coefficient decreased 

with increasing cation balance and clinoptilolite particle size. His 

findings were based on the sum of interspace and intracrystalline 

diffusion of which intracrystalline was the controlling phase of the 

diffusion. 

Zeolite as a Fertilizer Carrier 
and /or Slow Release Fertilizer 

Due to the affinity of clinoptilolite for NH:, numerous industrial 

and agricultural uses have arisen. A review of its uses includes 
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lightweight aggregates, filler in the paper industry, ion exchange 

processes, animal husbandry and aquacultural applications, soil amend­

ments and fertilizers ( 75,76, 1 06}. 

Very I ittle research has been reported on the use of zeolites as 

a slow-release type fertilizer or fertilizer carrier, especially clinoptilo­

lite. Nitrogenous fertilizers, (NH 4}2so
4

, NH 4CI, NH 4N0 3 and urea, 

were treated with zeolite or bentonite to prevent hygroscopicity or loss 

by leaching when applied to soil (53}. Sasaharu (90} utilized domestic 

animal wastes and zeolites as a fertilizer. Synthetic zeolites have been 

patented as a formulation in which zeolite is mixed with NPK fertilizer 

(92}. Mumpton (76} stated, 11 ln Japan, the ion-exchange selectivity of 

clinoptilolite has been exploited in the preparation of chemical fertilizers 

which tend to improve the nitrogen retention of soils by prompting a 

slow-release of ammonium ions. 11 No literature was cited to support this 

statement. 

Zeolite has also been used as a pesticide carrier. Organophos­

phate, granulated with zeolite, was used to prevent the development of 

stem blast in rice paddies ( 112} • 

A comprehensive study on the use of erionite and two clinoptilo­

lites, as potential soil amendments and N fertilizer carriers for two 

soils, was reported by MacKown ( 68}. He showed that the chemical 

and physical properties of the experimental soils were affected very 

little by the zeolite at rates of 10 g zeolite/kg soil {IV 10 tons/acre}, 

although a significant increase in CEC of both soils was noted with 

increasing additions of the 0. 85 to 0. 3 mm sized zeolites. By leaching 

a saturated column containing mixtures of a silty clay loam textured soil, 
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and erionite and clinoptilolite at rates of 0 to 50 g zeolite/kg of soil, 

MacKown ( 68) showed a significantly greater retention of applied NH~ -N 

with increasing zeolite rates. The author ( 68) suggested that retention 

of NH~ was influenced by the CEC of the soil and would probably be 

favored by restricting the depth of zeolite incorporation at a given rate 

of application. This seems to indicate that a band application of 

zeolite might be very effective. In another experiment using a loamy 

sand and a silty clay loam amended with natural and NH 4-preadsorbed 

zeolites (charged zeolites), MacKown (68) indicated that by changing 

the particle size from 0.85-0.30 mm to 2.0-1.0 mm size range, the NH: 

preadsorbed zeolites reduced nitrification. A greenhouse experiment 

with ryegrass grown in nonfree drainage containers was used to 

evaluate the availability and utilization of NH:-N and benefits of zeolite 

amended soils on plant growth. The results showed no positive effects 

due to zeolite additions on plant growth or N utilization. A second 

greenhouse experiment using Sudan-grass grown in silty clay loam 

soil, amended with natural erionite and NH: preadsorbed erionite, 

resulted in greater yields and utilization of applied N especially in the 

preadsorbed form. Although the leachate data were inconclusive and 

indicated no significant treatment differences. 

In areas of heavy rainfall, where nutrient loss due to leaching 

is a constant problem and in areas with soils of high fixing capacity, 

slow-release fertilizers may be a partial answer for increasing production. 

The concept of nitrogen immobilization was first reported in 1948 by 

Goring and Clark (44) and later supported by Legg and Allison (63). 
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The ultimate goal of a slow-release source, either fertilizer or 

zeolite, is to release nutrients at a rate equal to, or slightly greater 

than the demands of a growing plant, yet resist loss due to various 

soil and environmental phenomena. 

Parr (84) listed a number of problems that occur with most 

common nitrogen and other fertilizers which can decrease the efficiency 

to approximately SO% under many agriculture situations. 

The concept of controlled release fertilizer is to take a common 

fertilizer, such as urea or ammonium nitrate, and coat it with an inert, 

water-resistant coating or membrane-like plastic, resin, wax, paraffin, 

asphaltic compounds or elemental sulphur. 

Oertli and Lunt (81) showed that the release of N from coated 

granules of ammonium nitrate could be regulated by varying the thick­

ness of the coating; K was released at a slower rate compared to the N. 

They also concluded that the soil pH, biologically tolerable salt concen­

tration in soil solution and soil moisture conditions within normal plant 

growth ranges had very little effect on release rates. Oertli and Lunt 

( 81) further stated that the temperature was directly related to release 

rates and was the biggest rate controlling factor. Dahnke ( 36) using 

polyethylene membranes effectively controlled the rate of release of the 

fertilizer constituents, NPK. In 1952, Goring ( 42, 43) reported a classic 

example of the inhibitor approach in which N-serve acts as a repressor 

or inhibitor of the genus Nitrosomonas bacteria, which is the ammonium 

oxidizer in the nitrification sequenceo 

Other types of coating have been reported. Army ( 11) listed a 

slow-release concept utilizing three different membrane-type coatings. 
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In later studies, the slow-release trend shifted toward resinous mem­

branes (51) and coating granular fertilizers, especially K+ (61). Lunt 

and Kwate ( 66} used K -frit successfully to supply K+ for prolonged 

periods to chrysanthemums, poinsettias, hydrangeas, cyclamen and 

cotton grown in pots. Using a capsuled 24-5-10 fertilizer, Dahnke (36) 

reported an insignificant difference in yield but a more uniform growth 

of Kentucky bluegrass. Cochrane and Matkin ( 33) designed an experi­

ment to evaluate the efficiency of slow-release fertilizers. It was con­

cluded that the organic and synthetic fertilizers were not highly efficient 

in providing a slow-release of potassium. Hershey et al. (52) evaluated 

clinoptilolite as a controlled-release K source by leaching in growth 

studies of Chrysanthemum morifolium Ramat. The authors (52} deter­

mined that clinoptilolite from the amount of K+ released, did not behave 

like a soluble K+ fertilizer but similar to a slow-release fertilizer. 

In two experiments, Holden and Brown (55) showed that zinc 

glass in small applications increased yields as compared to five crys­

talline zinc sulfates and that zinc ammonium phosphates supplied 

adequate zinc in the powder form compared to the granulated form. 

Sharpee et al. ( 95) conducted a study on the uptake of zinc, copper, 

and iron by four successive crops of corn ( Zea mays L.) from appli­

cations of trace elements-sulfur fusion to plain field sand in pots. The 

results showed that the various zinc treatments gave increased total 

yields and that the concentrations of tissue zinc were inversely related 

to granule size of the ZnO-S and ZnC0 3-s fusions. This supported 

earlier reports that slowly soluble zinc carriers must be at least as fine 

as 200 mesh for satisfactory performance ( 32). Hoeft and Welsh (54) 
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demonstrated the effectiveness of granular Zn frit-CSP mixtures. The 

chelating compounds provided another source of Zn to fulfill plant re­

quirements. Zn EDTA increased the Zn content of the crop, twice as 

much as zinc sulfate in the neutral soil, and up to six times as much 

in the calcareous soil. Boekle and Lindsay ( 20) reported that banded 

chelates may be more effective than inorganic Zn sources because of 

their greater mobility in the root zone. 

Zeolite Effect on Plant Nutrient Availability 

Nitrogen 

The growth of agricultural plants is limited more often by a 

deficiency of nitrogen than any other nutrient. Nitrogen present in 

soils, the bulk in organic form, is negligible compared to the total 

nitrogen of the earth ( 19). The principal source of nitrogen used by 

plants that do not fix nitrogen by symbiosis with microorganisms is in 

the mineral form of nitrogen. This mineral form constitutes the 

chemically combined nitrogen which is the sum of the exchangeable 

ammonium and the ammonium, nitrite, and nitrate in the soil solution. 

It should be noted that many of the chemical and biological transforma­

tions of nitrogen in the environment are not clearly understood. 

The soil is an environment governed by various interactions 

between phases. Thus, a comparison of zeolite and clay effects on 

these phases and nitrification is warranted. The importance· of the 

relationship between the soil adsorbed phase of plant nutrients and 

their availability to the plant by means of ion exchange has been em­

phasized ( 21,69, 1 OS). The role of surface areas on nitrification is 
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conflicting and inconclusive. Enhancement of microbe respiration, 

thus population, by addition of clay minerals was observed by Stotzky 

( 101) and Stotzky et al. ( 1 03). Discrepancies about the site of nitrifi­

cation exist (1,2,62,63). It was not until 1955 (41) that researchers 

using active cultures of nitrifying bacteria concluded that the NH: 

availability to nitrifying bacteria was directly related to the solution 

phase NH: or to the NH; released by the cation exchange process. This 

is contradictory to previous reports ( 1, 2, 62, 63). 

Kai and Harada (58) investigating the effects of nitrification rates 

by adding clay minerals to culture solutions, concluded that the addi­

tion of montmorillonite and halloysite to a culture solution led to the 

stimulation of nitrification in various degrees, thus depending on the 

type and amount of clay minerals added C;lnd upon the concentration of 

NH 4 -N applied. They also found significant positive correlations be­

tween nitrifying activity and calcium saturation degree of clay minerals. 

Some support to these results was given in an earlier report (56) that 

calcium acts as a catalysis in nitrogen fixation by Azotobacter, stimu­

lating population increases. Stotzky and Rem ( 1 03), supported with 

unpublished work by Macura and Stotzky ( 1 02), reported that nitrifica­

tion was enhanced, not by kaolinite, but by montmorillonite. They 

concluded that the pH sensitive nitrifier activities may have been en­

hanced by a pH buffering mechanism of the montmorillonite clay ( 1 03). 

Nitrification researchers have reported on other factors that 

influenced the nitrifying process. High concentrations of total salts, 

> 2000 ppm, and a concentration of NH: -N > 200 ppm in solutions, was 

directly related to the depression of the ammonification process ( 48). 
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Conflicting evidence has been reported on the effects of zeolite 

on nitrification. Sims and Little ( 97} used a tertiary activated sludge 

pilot plant aeration tank with recirculated sludge to evaluate effects of 

additions of clinoptilolite on nitrification ( 97}. They provided very weak 

evidence that clinoptilolite increased nitrification efficiency in the acti-

vated sludge process, and that zeoljte provided an ideal surface for 

attachment of nitrifying bacteria. Semmens and Goodrich ( 93) undertook 

a study to determine whether nitrifying bacteria could "regenerate" 

clinoptilolite and to what extent. Regenerate was defined as the removal 

of ammonium. They found that the rate of nitrification during regenera-

tion was always observed to be much slower than the rate of nitrifica­

tion of the free NH~ in the solution. This seems to support early 

reports on NH~ exchange association with nitrification in clays (LJl). 

Semmens et al. ( 9LJ) developed an equation to show that the amount of 

NH~ displaced from zeolite is influenced both by the amount of absorbed 

NH~ on the zeolite and the salt concentration in solution. They also 

concluded that the rate of nitrification was dependent upon the solution 

concentration of NH~. Surface area enhancement of nitrification was 

considered negligible, thus, observed differences in nitrification rates 

were attributed to difference in the rates of ion exchange between the 

two different zeolite particle sizes. Therefore, by decreasing the 

particle size of clinoptilolite and increasing the salt concentration in 

the solution, the rate of ion exchange would increase. A study con-

ducted by the Environmental Protection Agency (EPA) revealed a 

simplified technique for quickly approximating the absorption capacity 

for clinoptilolite and varying concentrations of competing cations ( 1 07) . 
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An earlier EPA report by Koon and Kaufman (59) showed the pH range 

to be 4 to 8 for optimum conditions for ammonium exchange of zeolite, 

which decreased rapidly outside this range. Also, the ammonium ex­

change capacity was observed to decrease sharply with increasing 

competing cation concentrations. This is in agreement with Semmens 

etal. (94). 

MacKown ( 68) reported on a clay fixation study by Faurie, and 

Faurie et al., which confirmed that a reduction in nitrification by clay 

additions to a calcareous coarse-textured soil, employing a perfusion 

technique, was due to initial adsorption and fixation of NH; by the 

clay fraction. Their conclusion was similar to that of Allison et al. 

( 5), which also stated that ammonium fixation is shown to be a factor 

of importance in agriculture, especially where NH: fertilizers are added 

to the soil of nonkaolinitic soils. Allison et al. ( 5) showed, by using 

a leaching method in a glass extraction tube with NH 4c1 and wetting 

and drying methods, that illite and vermiculite containing soils are able 

to fix ammonium, especially under wet conditions. The pH was of little 

importance. The authors ( 5) also demonstrated using fine-textured, 

nonkaolinitic soils, that nitrification could be increased 20 to 100% by 

first preventing fixations before addition of the ammonium. Welch and 

Scott ( 110) later demonstrated how added K+ interfered with nitrifica­

tion of adsorbed NH: because it blocked the release of the NH;. Cer­

tain colloids exhibit unusually high preferences for specific cations. 

This affinity may be due to the relative hydration energies of various 

ions and of individual cation exchange sites on different minerals ( 21), 

as may be the case with the zeolite cavity. The conclusion of limited 
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availability of fixed NH: to plants, has been reported by previous 

researchers (4,5,6). 

Denitrification losses are in the order of 10-30% of nitrogen lost 

within a year ( 28). The term denitrification refers to the biological 

reduction of nitrate and nitrite to volatile gases, usually nitrous oxide 

and/or molecular nitrogen. Broadbent and Clark ( 28) described enzyme 

denitrification as a biological process where the anaerobic bacteria under 

aerobic conditions oxidize carbohydrates such as glucose to C0 2 and 

water. In the absence of oxygen the anerobic bacteria with nitrate 

present are capable of nitrate respiration which is expressed as: 

Cooper and Smith ( 34) reported the distribution of various nitrogen 

species as a function of time in soils, within a closed atmosphere condi­

tion and in an anaerobic system using gas chromatography. The 

sequence was: No; -+ No; -+ N20 -+ N2. Broadbent and Clark 1s (28) 

review of the literature showed that poor soil aeration and the presence 

of nitrate and organic matter were requirements for denitrification. 

They ( 28) also listed factors that affect denitrification; partial pressure 

of oxygen, organic matter, pH, moisture content, nitrate concentration 

and redox potential. A complete discussion of each factor is presented. 

They also stated that enzymatic denitrification can occur following use 

of ammoniacal fertilizers, provided there are suitable conditi·ons for 

nitrification; nitrate formed by nitrification processes and fertilizer 

nitrate are equally susceptible. 



16 

Clinoptilolite, with the NH: adsorbed internally could act as a 

depressant against NH: fixation by the soil clay faction and denitrifica­

tion in anaerobic conditions, and microbial immobilization. 

The movement of nitrogen in and on soils is receiving greater 

attention from our society today due to the pollution aspect. The two 

forms of nitrogen in the soil that are utilized by the plant are NH: 

and No;, with the latter form being the most readily lost in leaching. 

Reports listed the factors or characteristics of the leaching process 

that supplies the root zone with an adequate distribution of ions 

( 40, 88, 111) • The amount of percolating water and the soil porosity 

were reported to determine the magnitude of leaching ( 104). Fuller ( 40) 

reviewed the influence of environmental factors peculiar to arid and 

semiarid calcarceous soils on the reactions and movement of nitrogen 

fertilizers. The relative leaching series ( 111) of some common ions are 

as follows: 

The exchangeable basic cations in soils consist mainly of Ca, Mg, K 

and Na; the other cation nutrients usually occur only in very small 

amounts (19,105). 

Nitrate nitrogen, in pH ranges of waste water, moves quite freely 

in soil columns ( 88). Bates and Tisdale ( 15) using laboratory tech­

niques predicted NO; movement when certain factors were known. 

Preul and Schroepfer ( 88) reported that NH: flow through a soil bed, 

under well aerated conditions, was determined by total nitrification. 

The authors ( 88) concluded that the CEC plays an important role in N 
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movement in the soil, due to the physical adsorption of NH:, and that 

the NH: adsorption may be influenced by other ions. They summarized 

that the adsorption and biological action are the main factors which 

control movement of nitrogen through soils. This report gave support 

to earlier reports ( 22, 80) that movement of ammonium by leaching in 

coarse textured, calcareous soils may be significant and influenced 

mainly by the soil CEC. 

As early as 1935, various N-source fertilizers were categorized 

by Parker ( 83) based on the retention of the N-source by the soil: 

sodium nitrate, readily leached; urea, ammonium sulfate and insoluble 

organics, leached with difficulty. 

Using a small percolation-type lysimeter with Norfolk sand treated 

with several nitrogenous materials, Benson and Barnette ( 16) sum-

marized that all nitrogen applied as nitrate was leached and one-third 

of the ammonium nitrogen applied as ammonium sulfate or ammonium 

nitrate was leached. They also conducted a second series of cultures 

using four soil types which were treated with sodium nitrate, ammonium 

sulfate, urea, castor bean pomace and no fertilizer treatment. The 

results substantiated the earlier findings and further showed urea was 

not found in any of the leachates. 

Potassium 

Potassium is absorbed by plants in larger amounts than any other 

mineral element with the exception of nitrogen and is present in rela­

tively large quantities in most soils. However, only a fraction, water­

soluble plus exchangeable, of the total potassium in most soils is avail-

able to plants ( 19). Terry and McCants ( 1 04) reported that in certain 
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North Carolina soils, the order of leaching of ions was Mg > N0 3 > K = 
NH 4• Lunt and Kwate (66) stated, "The depletion of potassium from 

bench soils, either by plant absorption or leaching, can be very rapid." 

A complete review of the factors influencing movement of K+ in soils is 

provided by Munson and Nelson ( 78) • In general, the greater the 

percentage clay, the higher the exchange capacity and moisture holding 

capacity which interact to retard K+ movement. The authors (78) noted 

that the leachability of added K+ was markedly reduced as pH approached 

neutrality. Lunt et al. ( 67) reported decreasing K+ levels in fine­

textured and higher losses in coarse-textured soils, in raised benches. 

The range was 1. 7 to 0. 7 meq per 100 g in a period of 4 months. 

Working with nursery soils, Krause (60) showed a need for an adjust­

ment of rate and frequency of K+ fertilization according to pH and base 

saturation. This lends support to an early report ( 86) that demon­

strated physiologically acid nitrogen sources greatly increased the 

downward movement of potassium. Pearson ( 86) after conducting 

various experiments and reviewing the literature stated, "It is obvious 

that efficient use of potassium fertilizer demands that it be applied 

frequently in relatively small amounts and the source of nitrogen used 

and the calcium status of the soil affect. the rate of leaching of 

potassium. 11 

Zinc 

Zinc deficiency in the semiarid Great Plains area is a serious 

problem. Chesnin ( 32) reported that zinc deficiencies are not neces­

sarily confined to this area. The deficiency may occur on soils of both 

acid and alkaline conditions. The acid soil may contain low total zinc 



19 

whereas the alkaline soil may be considered low in available Zn although 

very high in total zinc content. Zinc is relatively immobile in most 

soils (17,20, 105). The normal level ranges between 10-300 ppm total 

zinc, although reported accumulation rates of up to 358 and 13,960 kg 

Zn /ha for Nebraska field corn on acid and alkaline soils, respectively, 

without the appearance of toxicity ( 32}. Berger ( 17} describes in­

stances in New York where leached Zn concentrations of 23,000 to 

67,000 ppm accumulated in peat and muck soils. Very little has been 

published on the toxicity of Zn to plants. The predominant zinc species 

in solutions below pH 7. 7 is Zn 2+, although ZnOH+ is more prevalent 

above this pH. Lindsay (64} provided an estimation of the equilibrium 

constant for the reaction: 

Soii-Zn + 2H+ ':;;#!:! Zn +2 log K0 = 5. 8 

He also showed using graphs and equations that the solubilities 

of various zinc minerals decrease 1 00-fold for each unit increase in pH. 

Tisdale and Nelson ( 1 OS) reported on a study carried out in Illinois 

that suggested zinc retention by soils has the following relation to 

other cations: 

H > Z n > Ca > Mg > K. 

The problems that cause or are related to zinc deficiency in 

various soils are: zinc fixation with inorganic and organic forms, 

leaching losses, positional unavailability, temperature and phosphorous­

induced zinc deficiency. Detailed reports on these problems are avail­

able for review (20, 23, 32, 73, 105). 
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Zeolite Influence on Ammonia 

and Nitrite Toxicity 

Autotrophic ammonium-oxidizing organisms are sensitive to combi-

nations of high concentrations of ammonium and high pH values 

developed in soil by ammonium containing-producing fertilizers. 

Smith ( 98) investigated the mineralization and nitrification of 

alfalfa particles when added to soil mixtures. The author stated that 

the nitrification rate decreased with decreasing CEC of the soil. Smith 

( 98) concluded that the decreasing CEC, and the resulting increase in 

soil solution pH, produced a NH 3 concentration that is toxic to 

N itrobacter. 

The U.S. Environmental Protection Agency reported that NH 4 

fertilizer, when added to various soils, increased the pH ( 107). Fuller 

( 40) noted that the nitrifying rates and availability to plants of N-

fertilizer sources vary in calcareous soils. It has also been reported 

that banding an organic N-source, like urea, in a calcareous coarse 

textured soil, may drive the pH to levels ~ 9. 0 (20, 35). Urea hydroly­

sis produces a N source for the nitrifiers of NH: and NH 3 (48). As 

the pH increases, the equilibrium in equation [ 1] shifts to the left 

increasing the NH 3 concentration. 

From Lindsay's ( 64) equations [ 1, 2], it can be calculated that at 

pH of 9. 28 NH: and NH 3 ° are equal in concentration. Therefore, adding 
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certain NH: fertilizers in calcareous soils, increases the concentration 

of ammonia. The proportion of the total NH 3 that is ionized depends 

on the pH ( 40) and the dissociation constant for that molecule ( 98, 1 09) • 

Hence, with increasing pH, NH 3 may be lost through volatization to 

atmosphere ( 40) and /or may accumulate in the soil to a level toxic to 

seedlings ( 19, 1 OS) and the nitrite oxidizer, Nitrobactor agilis ( 3, 94). 

Court et al. ( 35) reported that volatization of N H 3 from the soil, initial 

pH of 7. 4, during the first week could be detected by smell. Excellent 

discussions on nitrification and its associated equations are available 

(19,48,105). 

+ MacKown ( 68) suggested that NH 4 preadsorbed erionite and to a 

limited extent, natural erionite reduced toxic effects of high concentra­

tions of NH 3, although no justifications were given. 

Koon and Kaufman (59) demonstrated that regeneration or removal 

of NH 3 from clinoptilollte using sodium salts, calcium being second, 

proved to be the most effective, at pH 12. 5. It was hypothesized that 

the unionized ammonia formed at the high pH was able to diffuse through 

the zeolite pores more readily than the ammonium ion. 

Fuller ( 40) reported that nitrite will accumulate at almost any pH 

level above neutral, depending upon the concentration of NH; as it 

interacts with the pH levels. Chapman and Liebig ( 30) attributed 

nitrite accumulation to the inhibition of Nitrobacter by ammonia under 

neutral or alkaline conditions. They concluded that heavy applications 

of ammonium or ammonium-forming fertilizer are likely to lead to high 

levels of nitrite. It was pointed out that levels of 10 ppm of N0 2-N 

at 20% soil moisture in the root zone might inflict plant damage ( 18). 



22 

Court et al. ( 35) provided an excellent review on nitrite toxicity 

arising from use of urea. Grogan and Zinc (46) discussed how toxicity 

of nitrite and ammonia nitrogen may possibly be dependent upon the 

absorption and utilization or detoxification within the plant. 



MATERIALS AND METHODS 

Plant Responses to Zeolite-N Governed 
by Soil Texture and Leaching 

Two experiments were conducted in the Plant Science Greenhouse, 

Colorado State University, Fort Collins, Colorado ( 105° Ll' W. Long. 

and 40° 351 N. Lat .. , Elev. 1550 m) • Each experiment involved a dif-

ferent soil, created by combinations of clay loam obtained from W. D. 

Holley Plant Environmental Research Center at CSU and sand purchased 

from Sterling Sand and Gravel Co., Fort Collins. Both the clay loam 

soil and sand were steam pasteurized at 83°C for 2LI hours, air-dried, 

passed through a 6. 35 mm screen, then mixed in a 57 liter portable 

cement mixer in proportions to form the media referred to as 11 medium11 

and 11 1ight11 textured soils (Tables 1 and 2). Nutrients were available 

in adequate quantities, except nitrogen (Table 1). 

Charged and uncharged natural zeolites, California clinoptilolite 

deposits, were donated by J. J. Lawson, Resource Industries Inter-

national Ltd., Denver, Colorado 80222. The samples as supplied, 

Tables 3 and 7, had been crushed and sieved to retain those particles 

that passed through • 044 mm screen. The cation exchange capacity 

(CEC) of the clinoptilolite was 1. 93 meq/g (Appendix Explanation 1). 

The experiments consisted of 2, 12 x 12 Latin Squares, one for each 

soil and the treatments were as follows: 

1. Ammonium charged zeolite, CZ-21, incorporated, 2. 99% N 

which 2.86% was exchangeable N and 0.13% was associated No 
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2. Uncharged zeolite mixed with ammonium sulfate and granu­

lated, UZ-21, incorporated, 2. 76% N. 

3. Uncharged zeolite mixed with urea and granulated, UZ-45, 

incorporated, 2.34% N. 

4. Ammonium sulfate, 21, incorporated, 21.2% N. 

5. Urea, 45, incorporated, 46.65% N. 

6. Ammonium charged zeolite, CZ-21, banded, 2. 99% N which 

2. 86% was exchangeable N and 0. 13% was associated N. 

7. Uncharged zeolite mixed with ammonium sulfate and granu­

lated, UZ-45, banded, 2. 76% N. 

8. Uncharged zeolite mixed with urea and granulated, UZ-45, 

banded, 2. 34% N. 

9. Ammonium sulfate, 21, banded, 21.2% N. 

10. Urea, 45, banded, 2.99% N. 

11. Uncharged zeolite, STD-Z. 

12. No nitrogen added, NN. 

Treatments were added to both soils to provide levels of supple­

mental N of 300 and 400 mg/2 kg of dry soil in the medium and light 

soil, respectively. Each treatment was mixed in bulk with each of the 

two soils in a cement mixer for 3 minutes. 

Medium soil containers were lined with 25 x 36 x 0. 010 em poly­

ethylene bags to eliminate possible contamination. Light soil containers, 

in which a leaching study was conducted, were coated with an asphalt 

based paint and center-punched in the bottom with a 2. 5 em diameter 

hole for drainage. 
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All containers (2.4 liter, number 10 cans) were equalized with 

regard to weight and soil surface height ( 2 em from the top) by means 

of lead shot (contained) and perlite prior to the addition of the soil. 

Screens separated perlite and soil and covered the drainage hole in the 

light soil containers. Each container held 2 kg of air dried soil. 

Twenty-one Cap tan® treated seeds of radish, Raphanus sativus, 

cv. Improved Scarlet Globe, were planted on a 2.54 em grid, 0.6 em 

deep in each container, on April 26, 1979. 

Watering was accomplished with untreated tap water, using a 

weighing technique. Both soils were maintained within their respective 

field capacity ranges; medium soil at 12-20% and light soil at 16-28%, 

by weight. The field capacity was predetermined by saturating 2 kg 

of each soil, allowing it to drain for 48 hours, then determining the 

moisture content. 

The greenhouse was heated to 15-17°C day and night. Cooling 

began when air temperatures reached 25°C. A slight aphid infestation 

was controlled by use of Pirimor. ® 

Emergence counts were taken for a period of 1 45 hours after 

planting. Coefficient of velocity of emergence (Appendix Explanation 2) 

and median time until SO% emergence (F. D. Moore, Ill, personal com­

munications) were used to determine the possible influence of treatments 

on germination. 

Harvests occurred on the 11, 15, 20, 25, 33 and 36 and 11, 15, 

20, 25, 29 and 34 days from planting, in the medium and light soil, 

respectively. Controlled harvesting acted as a thinning process, 

allowing two plants to remain for the fifth and sixth harvest, thus 
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avoiding plant competition. Plants were harvested, washed to remove 

soil, blotted dry and placed in plastic bags. Roots and leaves were 

separated at the hypocotyl and leaf area was measured with a Lambda 

ILZ-3100 photoelectric meter leaf area meter (resolution to o. 1 mm2). 

Root diameter, fresh root weight and commercial grade roots 

( > 16 mm diameter) were recorded only on the fifth and sixth harvests. 

Harvested tops and roots were dried in a forced-draft oven at 70°C for 

ll8 hours, and dry weight were taken. Dried plant tops were ground 

with a Wiley Mill through a lJO-mesh stainless steel screen, then com-

bined to form three samples per treatment (Reps 1-lJ, 5-8, 9-12) and 

analyzed at the CSU Soil Testing Laboratory for total N. 

A leaching study was conducted in the light soil. Six leachings 

were carried out at 8, 13, 19, 35 and 111 days after planting. Three 

hundred ml of tap water were added to each container; the leachate, 

approximately 75 to 125 ml, was collected and analyzed for NO 
3 
-N using 

the specific ion electrode method ( 70) . 

After final harvest, soil samples were taken and combined to form 

four samples per treatment (Reps 1-3, lJ-6, 7-9, 10-12). Subsequent 

analysis for NH 11-N and N03-N was completed by the Soil Testing Labora­

tory at CSU. Unpaired t-test, paired t-test or analysis of variance 

with mean separation using Tukey•s H. S.D. was used in evaluating data. 

Mean separation was at the 5% level of probability in all cases. 

Effects of Zeolite-N Combinations 
on Field Tomatoes 

The Horticultural Research Farm, 6. 5 km West and 3. 2 km North 

of Fort Collins, Colorado, was the site for this experiment. Previous 



27 

crop was potatoes. The soil chemical and physical characteristics are 

presented in Tables q. and 5, respectively. 

Zeolite used in this experiment was the same as in the Plant 

Science greenhouse experiment, however, the N charge level was 

slightly higher. The field nutrition treatments consisted of: 

1. Ammonium charged zeolite, CZ-21, 4.64% N, which contained 

2. 66% exchangeable N and 1. 98% associated N. 

2. Ammonium sulfate, 21, 21.2% N. 

3. Ammonium charged zeolite plus ammonium sulfate, CZ-21+21, 

physical mix 50/50 by weight, 12.8% N. 

4. Uncharged zeolite plus ammonium sulfate, NUZ, in bead 

form from the manufacturer, !1. 07% N, which contained 

1 • 80% exchangeable N and 2. 28% associated N . 

All treatments were applied at the rate of 56 kg/ha, sidebanded 

( 10 x 10 em) on one side at transplanting. Adequate nutrients were 

available for optimum plant growth except NO 3 -N and P. Phosphorus 

was broadcast at a rate of 36 kg P/ha (84 kg P20 5/ha) and incorporated 

prior to treatment application and planting. 

An 1 All American Selection, 1 Lycopersicon esculentum cv. Spring 

Giant, a 65 day maturing determinate hybrid was seeded, 2 Captan ® 

treated seeds per cell in flats of peat-vermiculite on April 17, 1979. 

Seedlings were thinned to one plant per cell on May 8. Watering was 

with untreated tap water until seedling emergence, thereafter with 

nutrient solution ( 47) until transplanting. 

Plants were acclimated for 5 days, selected for vigor and uni­

formity, then transplanted to the field on June 13. 
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Treatments were applied preplant to the field. Transplants were 

planted on 102 em row centers with a 61 em intra row spacing. Border 

rows were planted along perimeter and one in center of plot. A ran­

domized complete block, with 10 replications each of which consisted of 

10 plants, provided a total of 500 plants employed, for a population 

density of 2631 plants per hectare. Only the center four plants per 

treatment per replication were harvested for data. Planting depth was 

to bottom leaves of transplants. 

Irrigation frequency was determined by tensiometers placed at 

15 em and 31 em depth across the center of field plot. Fifty centibars 

was the soil matric potential when furrow irrigation began. The field 

was cultivated, hand-weeded as needed and plants sprayed twice, once 

each with Malathion® and Sevin.® Visual observations of treatment dif­

ferences were noted and pictures taken throughout the experiment. 

Ripe fruit were harvested, weighed and counted on a weekly 

basis from August 27, 1979 to October 2, 1979, a total of six harvests. 

Green fruit were also included in the last harvest. On October 10, 

tops of the two middle plants of the four plant treatment were cut at 

ground level, placed in paper bags, dried in forced-draft ovens at 

70°C for 48 hours and weighed. 

The data were subjected to analysis of variance and Tukey's 

H.S.D. mean separation at the 5% level of probability. 
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Effects of Zeolite on Growth of Bench Crops 

and Potted Plants 

Bench Crops 

The determination of zeolite influence on radish, lettuce, snap­

bean, chrysanthemum and snapdragon in a standard bench medium was 

conducted at the Department of Horticulture Bay Farm Facility. 

Greenhouses were heated to 12-14°C day and night in the 11cooP1 

house and 15-17°C day and night in the 11 warm" house. Cooling in 

both houses began when air temperatures reached 23°C. 

Raised benches in the fiberglass covered greenhouses were dis­

infected with Amphyl® prior to adding the growing medium. They 

were sectioned off with 6 mil polyethylene dividers so that each treat­

ment held approximately 57 liters of medium. 

The growing medium ( 2: 1: 1) consisted of 2 parts top soil, 1 part 

#6 horticulture grade perlite and 1 part Canadian sphagnum peat moss, 

by volume (Table 6) • 

The bench medium for each plant species was mixed in bulk with 

each treatment in a 170 liter paddle mixer for 5 minutes. 

All zeolite used in this experiment was of the clinoptilolite group. 

The NH: charged material was the same as that used in the Plant 

Science greenhouse experiment. The bulk composition of the naturally 

potassic zeolite is presented in Table 7. The bench nutrient treat-

ments were as follows: 

NH 4 Experiment 

1. Injected -- Ammonium sulfate ( 20-0-0) was injected at the 

rate of 75 ppm N per watering, total N injected per bench 

varied due to the number of waterings required. 
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2. No nitrogen ( N N) -- No form of nitrogen was added to the 

irrigation water or the growing medium. 

3. Uncharged zeolite (UZ + injected) -- Untreated natural 

zeolite was incorporated in the same proportions as the 

charged zeolite. Nitrogen was injected at the same rate 

as the control. 

4. Ammonium charged zeolite (CZ-NH:) -- Has been NH: 

exchanged or charged. It contains 2. 99% total N, of which 

2. 86% is exchanged and 0. 13% is associated. 

Note: The zeolite was incorporated into the medium to main-

tain a base level of 75 mg /kg ( 75 ppm) N, which was 

0. 25% of the total medium weight. + No form NH 4 was 

added through the irrigation system. 

K Experiment 

1. Injected -- Potassium chloride ( 0-0-62) was injected at the 

rate of 52.25 ppm K+ (75 ppm K20) per watering. Total 

K20 injected per bench varied due to number of waterings 

required. 

2. No potassium ( N K) -- No form of potassium was added 

through the irrigation system or to the growing medium. 

3. Uncharged zeolite (UZ + injected) -- Untreated natural 

zeolite was incorporated in the same amounts as the charged 

zeolite. Potassium was injected at the same rate as the 

control. 

4. Potassium zeolite (CZ-K) -- Naturally potassic zeolite, con­

tained 2. 7% exchangeable K+. 
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Note: The zeolite was incorporated into the medium to raise 

the base fertility level to 62.26 ppm K+ (75 ppm K
2
0), 

which was Oo 23% of the total medium weight. No K+ 

was added through the irrigation system. 

Zn Experiment 

1. Injected -- Zinc sulfate was injected at the rate of 0. 5 ppm 

Zn per watering. Total Zn injected per bench varied due 

to the number of waterings required. 

2. No zinc (NZn) -- No form of zinc was added through the 

irrigation system or to the growing medium. 

3. Uncharged zeolite (UZ + injected) -- Untreated natural 

zeolite was incorporated in the same amounts as the charged 

zeolite. Zinc was injected at the same rate as the control. 

4. Zinc charged zeolite (CZ-Zn) -- The zinc charged zeolite 

has been zinc exchanged and contains 2. 1% Zn, all of which 

should be exchangeable. 

Note: The zeolite was incorporated into the medium to main-

tain a base level of 0. 5 ppm Zn, which was 0.0024% 

of the total medium weight~ No zinc was added 

through the irrigation system. 

Standard nutrients ( 47) less the treatment element were injected 

® ® 
with a Commander , 1 to 128, proportioning pump, through a Chapin 

twin wall drip irrigation system. 

Experimental plants included radish and lettuce in the cool house 

and snapbean, chrysanthemum and snapdragon in the warm house. 

The plant spacing was determined by commercial recommendations 

( K. L. Goldsberry, personal communication) • 
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Radish, Raphanus sativus cv. Improved Scarlet Globe, Captan ® 

treated, was planted on April 19 at a 1 x 5 em spacing. Each treat-

ment had a population of 100 plants and was replicated three times. 

Outer rows of all treatments were considered border rows. 

Ten randomly chosen plants were harvested, washed to remove 

soil, blotted dry and placed in plastic bags on May 23. Harvested 

roots and leaves were separated at the hypocotyl and leaf areas mea-

sured with a Lambda #LI-3100 photoelectric meter (resolution to 

2 0. 1 mm ) • Root diameter and fresh weight were taken. Leaves and 

roots were dried in a forced..-draft ov~n at 70°C for !18 hours and dry 

weight were taken. 

Lettuce, Lactuca sativa cv. Grand Rapids Forcing (H-54), ( 31 

days maturing), was sown in plastic flats of peat-vermiculite on 

April 23, and transplanted in the plots on May 14, 1979, at a density 

2 of 32 plants/m • The treatments were replicated three times and 6 of 

the 9 plants per treatment were used for data. Border rows consisted 

of outer perimeter plants and outside rows of each treatment. 

All treatments were harvested at ground level on June 20, 1979, 

and fresh weight taken. 

Snapbean, Phaseolus vulgaris cv. Cherokee, was sown on May 12; 

a 5 x 10 em plant spacing was utilized. A total of 16 seeds per treat-

ment was planted and replicated 3 times. Perimeter plants were used 

as border rows. On June 23, 14 plants from each replication were 

harvested and fresh weight taken. 

Rooted cuttings of chrysanthemums, Chrysanthemum morifolium 

cv. Bonnie Jean, were planted April 7. The 10 week, intermediate, 
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white daisy variety was spaced 10 x 15 em. A total of 21 plants per 

treatment was planted and replicated 3 times. End rows and perimeter 

plants were used as border rows. Pirimor ® was used to control slight 

aphid infestation. 

Seven plants in each replication were sampled for fresh weight, 

plant height and commercial grade ( N. F. Gaone and K. L. Goldsberry, 

personal communication). 

Snapdragon, Antirrhinum majus cv. Missouri was sown on March 7 

and transplanted on April 17. Stems were harvested (June 19) and 

the same parameters measured as used on the chrysanthemums. 

Following harvest, soil samples were taken of all treatments with 

the exception of the radish bench, only the NH: section was sampled. 

Analysis was completed by CSU Soil Testing Laboratory for routine 

analysis, NH 4-N and total nitrogen. 

The experimental design was a randomized complete block, using 

the sectioned benches for three charged zeolite treatments and a 

control, replicated three times. Data were subjected to analysis of 

variance and the L.S.D. mean separation at the 5% level of probability. 

Potted Plants 

Rooted poinsettia cuttings, Euphorbia pulcherrima cv. Dark Red 

Annette Hegg were transplanted into 14 em plastic Azalea pots on 

September 21. The growing medium consisted of equal parts Fort 

Collins clay loam, horticulture grade perlite #6, and Canadian sphagnum 

peat moss (Table 8) plus the treatment. Medium involving all treat­

ments was mixed in 170 liter paddle mixer for 5 minutes. Zeolite was 

slowly added in dry form as each medium treatment was mixed. 
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Plants were grown on raised benches in a fiberglass covered 

greenhouse, heated to an air temperature of 15-17°C day and night. 

Thermostats were set to cool at 23°C. 

The clinoptilolite, NH: charged and naturally potassic zeolite 

(Tables 3 and 7} were the same as those used in the bench plant ex-

periment. The poinsettia nutrition treatments were as follows: 

NH 4 Experiment 

1. 0 ppm -- No nitrogen added (NN). 

2. 125 ppm -- Ammonium charged zeolite (CZ-NH 4) contained 

2. 66% associated N and 1. 98% exchanged N for a total of 

4. 64% N. 

3. 250 ppm -- CZ-NH
4

• 

4. 500 ppm -- cz...,NH 4• 

5. 250 ppm - ..... Ammonium sulfate ( 20-0-0) was added with each 

watering. No zeolite was added to medium. 

K Experiment 

1. 0 ppm -- No potassium added (NK). 

2. 75 ppm -- Potassium zeolite (CZ-K). Naturally potassic 

3. 

4. 

5. 

+ zeolite contained 2. 7% exchangeable K ( 3. 24% K
2
0). 

150 ppm 

300 ppm 

150 ppm 

CZ-K. 

CZ-K. 

Potassium chloride ( 0-0-62) was added with 

each watering. No zeolite was added to medium. 

+ + Treatment levels of NH 4 and K were based on recommendations 

presented in the Poinsettia Handbook (39). The K and NH 4 experi­

mental pots were placed on separate lath-covered benches. 
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Nutrient solutions were injected with drip irrigation pot watering 

equipment. All treatments received phosphate at rates of 21.5 ppm P 

(50 ppm P20 5). The K experiment was supplied with NH: at 250 ppm 

while the NH 4 experiment received K+ at 150 ppm ( 180 ppm K20) to 

maintain balanced fertility, except for the element in question. 

All pots were drenched with three separate applications of Ban rot® 

throughout the growing season, at rates of 0.6 g per liter of water. 

A randomized complete block design with three replications was 

used for each experiment. Each treatment consisted of nine plants per 

replication ( 45 pQts per block) • Perimeter plants on each bench were 

considered border plants and not included in the data. No border was 

placed between replications. The total population per experiment was 

141 plants for a density of approximately 10 pots/m2. 

No statistical data was taken on vegetative growth. Visual ob-

servations were noted and pictures taken for comparison. 

Post NH 4 and K experimental soil samples were taken and analyzed 

by CSU Soil Testing Laboratory for K+ and total N. 

Precooled Easter lily bulbs, Lilium longiflorum cv. Ace were 

planted in 15 em standard plastic pots using a 1: 1: 1 v /v growing 

medium plus treatments, on December 21, at the W. D. Holley Plant 

Environmental Research Center (P.E.R.C.) on campus of CSU. The 

growing medium and clinoptilolite were the same as those used in the 

poinsettia experiment (Tables 3, 7 and 8). 

Lilies were grown on raised benches in fiberglass covered green-

house, heated to an air temperature of 15-16°C during the day and 

night and cooled to 22-23°C. Plants were forced for a period of 
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5 weeks starting February 29, by covering both experiments with 4 mil 

clear polyethylene and adding supplemental heat to raise the night tem-

perature to a minimum of 21°C. The greenhouse effect created by the 

poly cover on sunny days raised the temperature to 30-32°C. Cooling 

of the plastic canopy occurred at 32°C by opening the ends of the 

cover to allow air circulation. The lily nutrition treatments were as 

follows: 

N H 4 Experiment 

1. 0 ppm -- No nitrogen added {NN). 

2. 125 ppm -- Ammonium charged zeolite {CZ-NH4) contained 

2. 66% associated N and 1. 98% exchanged N for a total of 

3. 

4. 

14.64% N. 

250 ppm 

500 ppm 

5. 250 ppm ~- Ammonium sulfate { 20-0-0) was injected with 

each watering. No zeolite was added to medium. 

K Experiment 

1. 0 ppm -- No potassium added {NK). 

2. 75 ppm -- Potassium zeolite {CZ-K), naturally potassic 

zeolite contained 2. 7% exchangeable K+ ( 3. 24% K
2
0). 

3. 150 ppm -- CZ-K. 

4. 300 ppm -- CZ-K. 

5. 150 ppm -- Potassium chloride ( 0-0-62) was injected with 

each watering. No zeolite was added to medium. 

+ + Treatment levels of NH 4 and K were based on the same recom-

mendation for the poinsettias ( 39). The bulbs were potted and K and 
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NH 4 experiments placed on separate benches. Plants were watered with 

nutrient solution every watering. 

All treatments received phosphate at r~tes of 21 • 5 ppm P (50 ppm 

P20 5). The K experiment was supplied with NH~ at 250 ppm while the 

NH 4 experiment received K+ at 150 ppm ( 180 ppm K
2
0) to maintain a 

balance fertility, except for the element in question. 

Pots were drenched with three separate applications of Ban rot® 

throughout the growing season, at rates of 0.6 g per liter of water .. 

A randomized complete block design was utllized with 4 replica­

tions, which consisted of 6 plants per replication, 30 pots per block. 

Perimeter plants were considered border rows.. Total population per 

experiment was 120 plants for a density of approximately 25 plants 

per m2• 

Stem heights were taken from ground level and number of primary 

buds were counted. Data were subjected to analysis of variance and 

L.S.D. mean separation at the 5% level of probability. Visual observa .... 

tions were noted throughout the growing season. 
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Table 1. Initial chemical characteristic of the soils used in the Plant 
Science greenhouse experiments. 

Medium soil Light soil 
Analysis ( 13% clay) (6% clay) 

pHz 8.1 8.6 

Total soluble salts (mmhos/cm) Y 3.8 2.7 

Organic matter (%)X 2.6 1. 1 

P (ppm) w 68.0 26.0 

K (ppm) v 428.0 122.0 

Zn (ppm) v 4.2 2.2 

Fe (ppm) v 20.8 10.4 

Cu (ppm) v 1.5 0.5 

Mn {ppm) v 52.4 13.3 

NO-N 3 
(ppm)u Ll1.0 22.0 

NH -N 4 
(ppm) t 33.0 11.0 

Total nitrogen (%)s 0.152 0.044 

zPaste method. 

Y Filtered extract from saturated soil paste was measured for 
conductivity. 

xSulfuric acid/potassium dichromate oxidation with colorimetric 
determinations. 

w Ammonium bicarbonate/DTPA bicarbonate and colorimetric 
determination. 

v Ammonium bicarbonate/DTPA extraction and inductively coupled 
plasma spectrometry. 

uChromotropic acid ( CT A) colorimetric determination. 

tPotassium citrate ( KCT) extraction and ammonium ion selective 
electrode. 

sKjeldahl distillation method. 
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Table 2. Initial physical characteristics of the soils used in Plant 
Science greenhouse experim~nts. 

Texture z Medium soil Light soil 

Sand % 76 88 

Silt % 11 6 

Clay %y 13 6 

Classification Sandy loam Sand 

zHydrometer method. 

YThe clay fraction of both soils is approximately 35% illite and 
vermiculite (W. T. Franklin, Department of Agronomy, Colorado State 
University, Fort Collins, Colorado, per$onal communication). 
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Table 3. Bulk composition of natural zeolite, clinoptilolite. Supplier's 
sample, ZBS-1'1. 

Amount z 

Oxides % by weight 

SiOq. 65.'1 

AI 20 3 10.'1 

CaO 1. 75 

MgO 0.65 

Ti0 2 0.1 

Na 2o 3,25 

K20 1. 81 

Fe2o3 1.26 

MnO 0.03 

SrO O.LILJ 

BaO 0.15 

zThe sample was 80% ± 5% clinoptilolite with a trace of mordenite. 
Percentage does not include water. Contaminants are quartz, feldspar, 
and clay (J. J. Lawson, personal communications}. 
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Table 4. Initial chemical characteristics of the clay soil from the field 
experiment. 

Analysis 

pHz 

Total soluble salts (mmhos/cm) Y 

0 . (%)X rgan1c matter 

w p (ppm) 

K (ppm)v 

Zn (ppm) v 

Fe (ppm) v 

Cu (ppm) v 

Mn (ppm) v 

N0
3
-N (ppm)u 

NH
4

..-N (ppm) t 

Total nitrogen ( %) s 

zPaste method. 

Clay soil 

8.0 

2.9 

2.4 

7.7 

429 

2.3 

13.2 

5.8 

3.8 

15 

23 

0.152 

YFiltered extract saturated soil paste was measured for conduc­
tivity. 

xSulfuric acid/potassium dichromate oxidation with colorimetric 
determinations. 

w Ammonium bicarbonate/DTPA bicarbonate and colorimetric 
determination. 

v Ammonium bicarbonate/DTPA extraction and inductively coupled 
plasm~ spectrometry. 

uChromotropic acid ( CT A) colorimetric determination. 

tPotassium citrate (KCT) extraction and ammonium ion selective 
electrode. 

sKjeldahl distillation method. 
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Table 5. Initial physical characteristics of the soil from the field 
experiment. 

z 

z Texture 

Sand 

Silt 

Clay 

Classification 

Texture-hydrometer method. 

% 

26 

31 

43 

Clay 
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Table 6. Initial chemical characteristics of the 2:1:1 medium used in 
greenhouse bench crop experiment. 

Analysis 

pHz 

Total soluble salts (mmhos/cm) Y 

Organic matter (%)x 

w p (ppm) 

K (ppm)v 

Zn (ppm) v 

Fe (ppm) v 

Cu (ppm) v 

Mn (ppm) v 

N0
3
-N (ppm) u 

zPaste method. 

Medium 
(2:1:1) 

7.1 

1. 0 

4.9 

4 

114 

1.2 

1.2 

56.0 

7.5 

23 

Y Filtered extract from saturated soil paste was measured for 
conductivity. 

xSulfuric acid /potassium dicromate oxidation with colorimetric 
determination. 

w Ammonium bicarbonate/ DTPA extraction and colorimetric deter~ 
mination. 

v Ammonium bicarbonate/DTPA extraction and inductively coupled 
plasma spectrometry. 

uChromotropic acid ( CT A) colorimetric determination. 
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Table 7. Bulk composition of naturally potassic zeolite, clinoptilolite. 
Supplier•s sample, ZBS-6. 

Amountz 
Oxides % by weight 

Si0 2 64.6 

AI 20 3 10.4 

CaO 1. 54 

MgO 0.44 

Ti02 0.3 

Na 20 0.5 

K20 4.35 

Fe2o3 1.17 

MnO 0.02 

zThe sample was 80% ± 5% clinoptilolite with a trace of mordenite. 
Percentage does not include water. Contaminants are quartz, feldspar, 
and clay (J. J. Lawson, personal communications). 
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Table 8. Initial chemical characteristics of the 1: 1: 1 medium used in 
the greenhouse potted plant experiment. 

Analysis 

pHz 

Total soluble salts (mmhos/cm) Y 

0 rgan ic matter ( %) x 

P (ppm) w 

K (ppm) v 

Zn (ppm) v 

Fe (ppm) v 

Cu (ppm) v 

Mn (ppm) v 

N0
3
-N (ppm)u 

Total nitrogen ( %) t 

zPaste method. 

Medium 
(1:1:1) 

7.0 

2.1 

6.1 

123 

717 

5.2 

45.3 

15.8 

2.6 

72 

0.192 

Y Filtered extract from saturated soil paste was measured for 
conductivity. 

xSulfuric acid/potassium dichromate oxidation with colorimetric 
determination. 

w Ammonium bicarbonate/ DTPA extraction and colorimetric 
determination. 

v Ammonium bicarbonate/DTPA extraction and inductively coupled 
plasma spectrometry. 

uChromotropic acid ( CT A) colorimetric determination. 

tKjeldahl distillation method. 



RESULTS 

Plant Responses to Zeolite-N Governed 

by Soil Texture and Leaching 

Seedling Emergence Rate 

There was no significant difference among radish seed emergence 

rates with regard to the treatments in either of the two soils (Appendix 

Table 22). 

Banding vs. Incorporation 

In most cases radishes responded positively to all treatments con-

taining nitrogen; however, no significant difference was noted between 

the STD-Z and NN (Appendix Tables 22-28). 

In some cases seedling injury and death resulted from applying 

urea without zeolite in the medium and light soils. Generally this 

treatment reduced growth and resulted in a large coefficient of varia-

tion (C. V.), Appendix Tables 23 through 28o 

Banding resulted in a greater growth response to zeolite-nitrogen 

treatments than did incorporation. Significant increases in root fresh 

weight due to banding of CZ-21, UZ-21 and UZ-45 in the light and 

medium soils, with the exception of the UZ-21 treatment in the medium 

soil, are shown in Figures 1, 2 and 3, respectively. The fresh root 

weight increases, due to banding of zeolite-nitrogen treatments, ranged 

from 4. 7 to 33. 3% in the medium soil and 11.5 to 58.8% in the light soil. 

Additional results of band (B) and incorporation (I) treatments are in 

Appendix Tables 22-36. 
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Since the band method of application proved superior to incor-

poration, the following results are based on banding, only. 

Ammonium Charged Zeolite vs. Ammonium 
Sulfate in Medium Soil 

A positive response due to CZ-21 occurred in all growth parame-

ters (Appendix Tables 23, 25 and 27). Leaf area, dry weight and 

root fresh weight were increased 25, 63 and 59%, respectively, com-

pared to the 21, control (Table 9). 

The number of commercial grade radishes was positively affected 

by the zeolite-N treatments in the medium and light soil (Appendix 

Table 29). 

One way analysis of variance with replications was used to 

analyze all N-uptake data due to combining of replications. CZ-21 

demonstrated the only significant increase in N-uptake of the zeolite-

N treatments in the medium soil (Table 9) . 

Higher levels of NH 4 -N were available for plants and soil nitri­

fiers when CZ-21 was used (Table 10). 

Ammonium Charged Zeolite vs. Ammonium 
Sulfate in Light Soil 

Plant responses to CZ-21 were generally positive (Appendix 

Tables 24, 26 and 28), considering the soil was leached 6 times. How-

ever, the magnitude of the difference between the CZ-21 and 21 was 

not as great as that found in the medium soil. Leaf area and root 

weight exhibited significant increases of 25 and 53%, respectively 

(Table 11). No other parameters were of significance. 
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N-uptake, based on a sampling 34 days from planting, did not 

show a significant increase due to the presence of CZ-21 (Table 11). 

High significant residual soil NH 4-N and N0
3
-N levels were 

responsible for the 290% increase in available N when contrasted with 

21 (Table 12). 

There was no significant difference in the leachate N03-N content 

in the zeolite-N and the controls (Appendix Table 36) with one excep-

tion; there was a definite reduction in leachate NO 
3 
-N due to the addi­

tion of CZ-21 (Fig. 4). 

Unc:har ed Zeolite Plus Ammonium Sulfate 
vs. Ammon tum Sulfate in Me ium 011 

UZ-21 plant response and N-uptake were not significant when 

compared to 21 (Table 9) • 

A significant level of residual soil NH 
4 
-N was maintained by the 

UZ-21 although N03-N and available N levels were not significantly 

higher than the 21, control (Table 1 O). 

Uncharged Zeolite Plus Ammonium Sulfate 
vs. Ammonium Sulfate in Light Soil 

Generally, a positive increase in the growth response of the 

UZ-21 treatment was noted. Leaf area and fresh root weight showed 

an increase of 32 and 59%, respectively, because of the UZ-21 addition 

when compared to the 21, control (Table 11). 

The UZ-21 treatment maintained high residual soil levels of 

NH 4-N and available N when contrasted with 21 (Table 12). The 

UZ-21 soil N0
3
-N level was higher than the 21 but the difference was 

not significant. 
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No statistical difference in leachate NO 3 -N was determined be­

tween UZ-21 and 21 treatments. 

Uncharged Zeolite Plus Urea vs. Urea 
in Medium Soil 

The UZ-45 treatment demonstrated no significant responses in 

the four plant growth parameters when compared with the 45, control 

(Table 9). 

Higher levels of NH 4-N and N0 3-N, in the UZ-45 treatment, 

increased the available N by 22% compared to the 45, control (Table 

10). 

Uncharged Zeolite Plus Urea vs. Urea 
in Light Soil 

The effect of applying zeolite with urea contributed to positive 

responses in all four plant growth parameters as compared to the 

application of urea, alone (Table 11). Leaf area, dry weight and root 

fresh weight were increased 79, 94 and 97%, respectively. N-uptake 

demonstrated the largest increase of 135% due to the UZ-45. 

The residual soil NH 4-N was maintained at a significantly higher 

level due to the UZ-45 treatment compared to the 45 treatment (Table 

12). The available N levels due to UZ-45 additions, although not 

significant, vvere slightly higher than those in the 45 treatments. 

No statistical leachate NO 3 ..-N difference was exhibited between 

the UZ-45 and 45 treatments. 
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Effects of Zeolite-N Combinations 

on Field Tomatoes 

Fruit numbers and weight are present in Tables 13 and 11J, 

respectively. No significant differences were noted among treatments 

at the 5% level of probability. 

Although there were no significant differences between measured 

parameters, treatment NUZ provided the largest increase in cumulative 

tomato weight (g) per plant (Fig. 5) and the cumulative number of 

tomatoes per plant (Fig. 6) of ripe fruit produced. 

Bench Crops 

Effects of Zeolite on the Growth of 

Bench Crops and Potted Plants 

RADISH: No significant differences were observed among most 

radish N, K and Zn treatments, but a definite growth response was 

noted between the treated and untreated (Table 15). 

The growth response due to the addition of zeolite, although 

not significant, was in most parameters slightly less than that noted 

for the fertilizer injected treatment; the UZ plus fertilizer injected 

treatment showed the highest increase. 

A slight yellowing occurred in the radish leaves of the CZ-NH
4 

treatment at harvest time (approximately 35 days after planting). 

LETTUCE: The uncharged zeolite plus injected fertilizer and the 

injected fertilizer treatments attributed a significant increase in lettuce 

fresh weight with no response from the CZ-treatments when contrasted 

with the untreated in the NH 4, K and Zn experiments (Table 16). 
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BEAN: Bean plants were used only to evaluate growth responses 

of Zn ++ charged zeolite. The UZ plus injected fertilizer treatment 

demonstrated a significant increase in whole plant top fresh weight 

when compared to the nontreated (Table 17) . Although no significant 

difference was found between the zeolite and the nontreated, an increase 

in the fresh weight was noted. 

CHRYSANTHEMUMS: The presence of zeolite combined with in­

jected fertilizer increased the salable quality of cut chrysanthemums 

(Table 18). In the NH 4 experiment, the CZ--NH 4 treated plants showed 

less response in the above-ground fresh weight, but were approxi­

mately equal in height when compared to the injected fertilizer treat­

ment. A slight yellowing of older leaves at harvest time was noted. 

No differences between treatments were noted in the three growth 

parameters in the K experiment. The Zn experiment had a significant 

response between treatments; the zeolite treatments produced the 

greatest increases in plant height compared to the non treated. Number 

of salable quality flowers in the Zn experiment was higher due to the 

zeolite treatments. 

SNAPDRAGON: Plant respcnses to the addition of charged and 

uncharged zeolite at the concentrations used in this experiment were 

not significantly effective (Table 19). Although the zeolite treated 

plants produced less fresh weight, the number of salable quality 

flowers was 333% greater than the untreated in the NH 4 experiment. 
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Potted Plants 

POINSETTIAS: No statistical data were taken on the poinsettias. 

The results were determined through visual observations and photo-

graphs for the N H 4 and K experiments. 

+ The poinsettias showed a response to the NH 4 treatment levels 

(Fig. 7}. The 250 ppm N injected fertilizer tre~tment, with no added 

zeolite, had the best growth characteristics including excellent color, 

good bract (upper modified colored leaves} development, height and 

compactness. There was a positive response to the NH: charged 

zeolite treatments of 500, 250 and 125 ppm N compared to 0 ppm N 

treatment but very limited and directly related to the treatment con-

cent ration. 

No visual poinsettia response between the fol,Jr concentrations 

of natural potassic zeolites and injected fertilizer treatments was ob-

served {Fig. 8}. 

EASTER Ll L Y: Significant increases in plant heights due to 

treatments were obtained in the NH 4 experiment (Table 20}. The 

injected N-fertilizer treatment exhibited the largest response in plant 

height in comparison to the 0 ppm N treatment although there was no 

significant difference in plant height between 250 and 500 ppm NH
4 

charged zeolite and the fertilizer injected treatment. 

There was no significant difference among treatments in plant 

height and number of open buds, within the K experiment (Table 21). 
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Table 9. Growth response of radish to banded applications of zeolite­
N in medium soil. z Plant Science greenhouse experiment. 

21 45 
Growth parameter CZ-21 UZ-21 (control) UZ-115 (control) 

Leaf area 
(cm2/plant) 243* 188 167 210 187 

Dry weight 
1.811* 1.20 1.12 1.59 1.23 (g/whole plant) 

Root weight 13.5* 10.0 8.5 13.8 9.2 (g f. w ./plant) 

N-uptake 
57.2* 34.0 35.9 45.5 38.6 (mg N /plant top) 

z Sampled plants 36 days after planting. 

* Differed significantly from respective control at the 5% level of 
probability using an unpaired t--test. 
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Table 10. Residual soil N after zeolite-N applications to medium soil. z 
Plant Science greenhouse experiment. 

21 45 
N-form (ppm) CZ-21 UZ-21 (control) uz,...4s (control) 

NH -N 4 18.3* 16.8* 10.0 14.5* 8.0 

NO-N 3 66.5 79.5 72.3 74.5* 65.2 

NH -N +NO -N 4 3 83.0 96.2 a2.3 89.0* 73.2 

(available N) 

zSoil was sampled 43 days from planting. 

* Differed significantly from respective control at the 5% level of 
probability using an unpaired t-test. 
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Table 11. Growth response of radish to banded applications of zeolite­
N in light soil. z Plant Science greenhouse experiment. 

21 45 
Growth parameter CZ-21 UZ-21 (control) UZ-45 (control) 

Leaf area 
(cm 2 /plant) 187* 198* 150 208* 116 

Dry weight 1.1.10 1.26 1.10 1.38* 0.71 ( g I whole plant) 

Root weight 11.6* 12.1* 7.6 12.4* 6.3 (g f.w./plant) 

N-uptake 42.6 32.6 38.9 44.4* 18.9 (mg N /plant top) 

zleached 5 times; plants sampled 34 days after planting. 

* Differed significantly from respective control at the 5% level of 
probability using an unpaired t-test. 
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Table 12. Residual soil N after zeolite-N applications to light soil. z 
Plant Science greenhouse experiment. 

21 45 
N-form (ppm) CZ-21 UZ-21 (control) UZ-45 (control) 

NH -N 4 82"8* 36.8* 4.2 13.0* 5.5 

NO-N 3 48.8* 37.8 29.8 31.2 36.2 

NH -N +NO -N 4 3 132.3* 74.5* 34.0 44.2 41.8 

(available N) 

2 Leached 6 times; sampled 43 days from planting. 

* Differed significantly from respective control at the 5% level of 
probability using an unpaired t-test. 



Table 13. Total number of ripe, green and ripe plus green tomato fruit per plant based on 6 harvests. 
Analysis of variance on each parameter indjcated no significant difference at the 5% level of 
probability. 

Treatments Ripe Green Ripe + Green 

1. NH 11 charged zeolite {CZ-21) 51.6 20.7 72.3 

2. {NH 11) 250 4 {21) 48.9 23.8 72.7 

3. {NH 4) 2so4 + NH4 charged zeolite (50} SO) 52.0 18.8 70.8 

4. (NH 4) 2504 + uncharged zeolite {NUZ) 55.4 21. () 76.4 

Zeolite - no zeolite* 0.5 0.5 1. 0 

* The response to the control was subtracted from the average response to the zeo1ite treatments. 
The differences for each of the 3 parameters were not significant at the 5% level of probability. 

IJl 
.....J 



Table 14. Weight of ripe, green and ripe plus green tomato fruit per plant based on 6 harvests. 
Analysis of variance on each parameter indicated no significant difference at the S% level of 
probability. 

Treatments Ripe (g) Green (g) Ripe + Green (g) 

1. NH 4 charged zeolite (CZ-21) 63S5 139S 77SO 

2. < N H 41 2so 4 c 21 > 6368 168S 80S3 

3. (NH 4) 2S04 + NH 4 charged zeoHte (SO/SO) 6SOS 1346 78S1 

4. (NH 4) 2so4 + uncharged zeolite (NUZ) 6923 1449 8372 

Zeolite - no zeolite* 266 -288 -62 

* The response to the control was subtracted from the average response to the 3 zeolite treat-
ments. The differences for each of the 3 parameters wer-e not significant at the S% level of probability. 

Ul 
00 



Table 15. Influence of zeolite and injected fertilizer treatments on the growth of radish, i.e., 4 
parameters. Greenhouse bench crop experiment. 

Leaf area Dry weight Root fresh weight Commercial grade roots 
(cm2/plant) {g/plant) (g/root) (no. ~ 16 mm) 

NH 4 Experiment 

1 • Injected 15.4 0.65 7.2 7.0 
2. NN 2.2 0.15 1. 0 0.0 
3. UZ + injected 15.7 0.65 7 .. 0 7.0 
4 .. CZ-NH 4 11.5 0.59 6.8 6.7 

L.S.D. I 5% 4.5 0 .. 24 3.2 3.3 

K Experiment 

1. Injected 15-.5 0.67 8.0 7.0 
2. NK 12.8 0.55 4.5 4.3 U't 

...0 
3. UZ + injected 17.2 0.72 8.3 8.3 
4. CZ-K 15.3 0.73 8.2 8.3 

L.S.D., 5% 3.5 0.17 3.2 3.4 

Zn Experiment 

1. Injected 15. 1 0.61 6.3 6.0 
2. NZn 10.2 0.53 5.4 4.0 
3. UZ-injected 16.9 0.73 8.7 8.0 
4. CZ-Zn 12.8 0.70 8.4 7.3 

L.S .. D. I 5% 2.3 0.12 3.0 3.0 
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Table 16. Influence of zeolite and injected fertilizer treatments on 
lettuce fresh weight. Greenhouse bench crop experiment. 

NH
4 

Experiment 

1. Injected 

2. NN 

3. UZ + injected 

4. CZ-NH
4 

L.S~D., 5% 

K Experiment 

1. Injected 

2. NK 

3. UZ + injected 

4. CZ-K 

L.S.O., 5% 

Zn Experiment 

1. Injected 

2. NZn 

3. UZ + injected 

L.S.O., 5% 

Fresh weight (g) 

205.7 

21.4 

226.2 

29.4 

57.9 

231.9 

136.7 

208.7 

123.7 

49.4 

196.2 

185.3 

158.1 

110.5 

76.2 
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Table 17. Influence of zeolite and injected fertilizer treatments on bean 
fresh weight. Greenhou$e bench crop experiment. 

Fresh weight (g) 

Zn Experiment 

1. Injected 107.7 

2. NZn 83.3 

3. uz + injected 122.0 

4. CZ-Zn 99.8 

L.S.D., 5% 25.6 



Table 18. Influence of zeolite and injected fertilizer treatments on the growth of chrysanthemum, i.e .. , 
3 parameters. Greenhouse bench crop experiment. 

Fresh weight (g) Height (em) Salable quality (no.) 

NH 4 Experiment 

1 • Injected 60.1 46.2 0 
2. NN-N 7.7 26.4 0 
3. CZ + injected 54.1 49.7 1. 3 
4. CZ-NH 4 30.0 45.7 0 

L.S.D., 5% 24.4 6.6 0.6 

K Experiment 

1. Injected 69.2 48.7 1.3 
2. NN-K 60.7 49.5 0.7 0" 

3. U Z + injected 70.4 51.5 1.3 
N 

4. CZ-K 62. 1 51.7 0.7 
L. s. D. I -5% 12.2 2.7 2.7 

Zn Experiment 

1. Injected 86. 1 51.5 1. 7 
2. NN-Zn 55.8 46.2 0.3 
3. UZ + injected 114.1 54.3 2.7 
4. CZ-Zn 69.4 52.5 2.3 

L.S.D. I 5% 11 .a 4.0 1.3 



Table 19. Influence of zeolite and injected fertilizer treatments on the growth of snapdragon 1 i o e. 1 2 
parameters. Greenhouse bench crop experiment. 

Fresh weight (g) Salable quality (no.) 

NH 4 Experiment 

1 • Injected 71.5 Oo3 

2. NN-N 5.1 0 

3. UZ + injected 64.2 1.0 

4. CZ-NH 4 27.3 1. 0 

L.S.D .. 1 5% 26.9 L.3 

K Experiment 

1. Injected 76.2 2.0 
2. NN-K 71.4 2.7 
3. U Z + injected 54.5 1. 7 
4. CZ-K 40.8 1.0 

L. s. D. I 5% 23.2 1.2 

0" 
v.> 
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Table 20. Influence of zeolite-N concentrations and injected fertilizer 
treatments on Easter lily heights. Greenhouse potted plant 
experiment. 

Plant height (em) 

NH 4 Experiment 

1. 0 ppm N (NN) 25.6 

2. 125 ppm N (CZ-NH 4) 24.8 

3. 250 ppm N (CZ-NH 4) 27.2 

4o 500 ppm N (CZ-NH 4) 27.2 

5. 250 ppm injected-N 28.2 

L.S.D., 5% 2.3 

K Experiment 

1. + 0 ppm K (NK) 29.5 

2. + 75 ppm K (CZ-K) 28.7 

3. 150 ppm K+ (CZ-K) 30.0 

4. 300 ppm K+ (CZ-K) 28.4 

5. 150 ppm . . d K+ lnJecte - 33.1 

L.S. D., 5% 4.1 
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Table 21. Influence of zeolite-N concentrations and injected fertilizer 
treatments on Easter lily buds. Greenhouse potted plant 
experiment. 

Plant buds (no.) 

NH 4 Experiment 

1. 0 ppm N (NN) 4.1 

2. 125 ppm N (CZ-NH
4
) 4.2 

3. 250 ppm N (CZ-NH
4
) 4.6 

4. 500 ppm N (CZ-NH
4
) 4.1 

5. 250 ppm injected-N 4.3 

L.S.D. I 5% 0.7 

K Experiment 

1. + 0 ppm K (NK) 4.2 

2. + 75 ppm K (CZ-K) 5.0 

3. 150 ppm K+ (CZ-K) 4.4 

4. 300 ppm K+ (CZ-K) 4. 1 

5. 150 ppm . . d K+ tnJecte - 4.6 

L.S. D. I 5% 0.8 
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Fig. 1. Banding versus incorporation of ammonium charged zeolite. Plant Science greenhouse 5th and 
6th (final) harvests were combined. Application methods differed significantly at the 5% level 
of probability in the Jight soil only. 
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Fig. 2. Banding versus incorporation of uncharged zeolite plus ammonium sulfate. Plant Science green­
house, 5th and 6th (final) harvests were combined. Application methods differed significantly 
at the 5% level of probability in the light soil only. 
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Fig. 3. Banding versus incorporation of uncharged zeolite plus urea. Plant Science greenhouse, 5th 
and 6th (final) harvests were combined. Application methods differed significantly at the 5% 
level of probability in both soils. 
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Fig. 4. Cumulative leachate N0 3-N comparing banded ammonium charged zeolite and banded ammonium 
sulfate. Treatments differed significantly at the 5% level of probability. Plant Science green­
house experiment. 
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Fig. So Cumulative ripe tomato fruit weight comparing three banded zeolite treatments and banded 
ammonium sulfate. There was no significant difference among treatments at the 5% level of 
probability. Field experiment. 
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Fig. 7. Growth response of poinsettia to zeolite treatments in the NH 4 experiment.. Greenhouse potted plant experiment. 

Fig. 8. Growth response of poinsettia to zeolite treatments in the K 
experiment. Greenhouse potted plant experiment e 
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DISCUSSION 

Plant Responses to Zeolite-N Governed by 

Soil Texture and Leaching 

An unpublished report (F. D. Moore et al.) indicated that 

incorporation of ammonium charged zeolite hastened seedling emergence 

in a soil with a conductivity of 3. 6 mmhos/cm. No beneficial effect of 

zeolite on seedling emergence was evident in his study, however. 

One of the objectives of this study was to determine the most 

effective method of applying clinoptilolite-nitrogen combinations. 

Banding clinoptilolite treatments increased growth and N-uptake, while 

maintaining higher levels of available soil N compared with incorpora­

tion of these treatments in both medium and light soils. Therefore, 

a banding experiment was developed for use in a field tomato experi-

ment. 

The mode of action of charged clinoptilolite in soil depends on 

many factors; the concentration of the preadsorbed ion on the zeal ite 

and in the soil solution as well as the solution cation concentration, 

soil pH, leaching pressure, and other factors (26, 77,101, 108). Ini­

tially, banded zeolite should be less influenced by such factors, than 

when incorporated, due to limited contact between the band and the 

soil. Zeolite bands should eventually become active in the exchange 

process after a period of time. 

The radish growth response was highly influenced by the band­

ing of ammonium charged zeolite in the medium soil. The clay fraction 
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of the two soils was approximately 35%, by weight, illite and vermicu­

lite, which are known for their ability to render NH; unavailable. 

Reduced fixation of NH; may have been partially responsible for the 

growth responses in the medium soil which contained more than twice 

the amount of illite and vermiculite than did the light soil. A reduc-

tion in possible denitrification N loss, due to lack of drainage, by 

ammonium charged zeolite is not to be ruled out.. The addition of 

ammonium charged zeolite may have provided a fairly uniform flow 

of NH: for the soil nitrifiers and plants via the exchange process, 

thus increasing plant response. It has been shown that combinations 

of available NH; and No; contributes to greater plant yields than N 

supplied as NH; or No; (53}. Riggert (89}, a nitrification suppres­

sion researcher stated: "It appears that with a portion of the N 

supplied and maintained as NH;, plant growth and development may be 

accelerated. 11 

The high levels of soil NH 4 -N maintained by the ammonium 

charged zeolite when compared with the ammonium sulfate control, 

indicated that more NH 4 -N was available for both the plant and soil 

nitrifiers in the medium soil. 

Plant responses to ammonium charged zeolite in the light soil 

were in general positive; however, the magnitude of the differences 

between the ammonium charged zeolite and ammonium sulfate was not 

as great as that found in the medium soil. 

Even though the light soil was leached 6 times, the ammonium 

charged zeolite treatment seemed to provide adequate nitrogen as indi-

cated by radish leaf area and fresh root weight. Other indications of 
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how ammonium charged zeolite withstood the severe leaching pressure, 

were the 290% higher available nitrogen level and the definite reduc-

tion in leachate N0
3
-N when contrasted with ammonium sulfate. 

Mackown ( 68) reported similar results on the retention of residual 

NH 4-N in soil containing ammonium charged zeolite. It should be noted 

that the residual soil NH 4-N concentration was lower in the medium 

soil, compared to the leach stressed light soil; however, initial soil 

nitrogen level plus the nitrogen treatment additions brought the pre­

plant nitrogen base to approximately equal levels in both soils. It is 

hypothesized that the suppressed availability of the adsorbed NH: ion 

within the ammonium charged zeolite, to the soil solution and soil 

nitrifying bacteria, was the main reason for the decrease in N0
3
-N 

loss in the leached soil. The rate at which zeolite-ammonium is made 

available to the soil-root system is probably due to two factors, cation 

exchange and Nitrosomonas sieving. 

If the charged zeolite is placed in an arid or semiarid soil, K+ 

would probably play a role in the ammonium exchange because of its 

position in the lyotropic series of clinoptilolite ( 1 O). Although the 

affinity of clinoptilolite is less for Na +, Ca ++, and Mg ++, these cations 

are present in arid and semiarid soils in large quantities and there-

fore could also exchange for zeolite-ammonium by mass action (21). 

It is also hypothesized that the NH: on the outer exchange sites is 

immediately available for oxidation. However, only after exchange from 

the central cavity sites, exiting the channel, is the adsorbed NH: 
0 

available to the nitrifiers, due to the sieving of the 8000 A nitrifying 
0 

organism by the 3. 0-4.4 and 3. S-7. 9 A channel window openings. 
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Zeolite may provide an optimum environment for microbial 

activity. An increase in microorganism population around zeolite 

particles has been observed (J. J. Lawson, personal communication) • 

Plant growth responses to uncharged zeolite plus ammonium 

sulfate, were generally significant in the light soil only. In both 

the medium and light soils, a significant soil NH 4-N level was demon­

strated by the uncharged zeolite plus ammonium sulfate compared to 

the ammonium sulfate control. It is conjectured that the uncharged 

zeolite may have the potential to "self-charged, 11 i.e., adsorb ammonium 

ions internally by the association with ammonium sulfate, in the soil 

band. No positive evidence was unveiled in this experiment, however. 

Uncharged zeolite plus urea showed no statistical difference in 

plant response compared with the addition of urea alone, in the medium 

soil. The residual medium soil N levels were higher in the uncharged 

zeolite plus urea treatment when contrasted with the urea treatment. 

When urea is applied to coarse textured alkaline soils, especially as a 

band, increases in pH and therefore, NH 3 concentration, occur ( 19). 

Some clay soils will buffer the pH of such a reaction thus possibly 

reducing the detrimental effects of urea ( 102). Theoretically, the 

medium soil ( 13%) clay should have approximately twice the pH buffering 

capacity as the light (6%) soil. Thus, the potential for demonstrating 

the ability of the zeolite to absorb ammonia was not as great as in the 

more alkaline light textured soil which also received one-third more 

zeolite and urea. 

The benefit of adding zeolite in conjunction with high amounts 

of urea, as in the light textured soil, was well illustrated by the 
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significant increases in the four plant growth parameters {leaf area, 

dry weight, root fresh weight, and N-uptake). The protection pro­

vided by the zeolite is probably due to the ability of the zeolite to 

absorb ammonia {59) thereby depressing ammonia toxicity as well as 

nitrite toxicity by preventing disruption of the nitrification process 

{98). 

It should be noted that the N content of the zeolite N treatment 

was low and the added zeolite comprised 0. 5% by weight of the medium 

soil, 0. 86% by weight of the light soil. The application rates were of 

heavy fertilizer quantities and should not influence soil structure as 

do zeolites used as soil conditioners or amendments ( 68) • 

Effects of Zeolite-N Combinations 

on Field Tomatoes 

The lack of response to zeolite used, not as a soil amendment but 

as a slow-release N source or N fertilizer facilitator in this phase of 

research, may have been due to availability of residual soil nitrogen. 

Soil analysis revealed that the organic matter content was 2. 4% with an 

unknown N mineralization rate. Soil available N was 85 kg of N per 

hectare, and approximately 108 kg of nitrate N per hectare may have 

been unavoidably applied in the irrigation water, as determined from 

water analysis (Appendix Table 37). Therefore, a base level of 193 kg 

of N /ha plus a small amount from mineralized organic matter, would 

normally not stress tomato plants, which require approximately 168 kg 

of N per hectare as a minimum ( 38, 65). However, the N requirement 

must have been high since the yield of ripe fruit was estimated at 50 

metric tons. 
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Although no beneficial effects of zeolite were apparent, no 

detrimental effects were noted. 

Bench Crops 

Effects of Zeolite on the Growth of 

Bench Crops and Potted Plants 

Plants treated with zeolite demonstrated a growth response equal 

to or less than those in injected fertilizer treatments. Of the plants 

evaluated, the radisn showed the best response, especially to the NH: 

charged zeolite treatment. Apparently, the 75 ppm N application through 

NH: charged zeolite can supply adequate nitrogen to short-lived crops 

under the conditions of this experiment. 

However, the yellowing symptom, exhibited by the ammonium 

charged zeolite treated plants at harvest, 35 days after planting, was 

probably due to the low base level at which the zeolite was incorporated. 

Therefore, due to the apparent N depletion, a base level of 100 ppm N 

should be considered in the future for radish production in clay loam 

modified soils. The NH: fertilizer injected treatments produced larger 

radish leaf area, compared to the NH: charged zeolite, yet all three 

treatments produced approximately the same root fresh weight. The 

zeolite treatment seemed to provide a more effective growth response 

by producing less top and more root. 

The uncharged zeolite plus injected fertilizer treatment produced 

slightly greater root fresh weight than the ammonium charged zeolite 

treatment. It is possible that a 11 self-charging" phenomenon of the 

uncharged zeolite occurred due to the high rates of injected NH:, 
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which helped to maintain a greater level of NH: for the plants and 

soil nitrifiers between waterings. 

The lettuce displayed a much greater requirement for nitrogen 

than radishes, but a smaller req\Jirement for K+ and Zn ++. Also, it 

seemed that the lettuce required NH 4-N or N0 3-N faster than the 

ammonium charged zeolite could exchange it. The growth response of 

the lettuce to the zeolite treatments was in contrast to the results of 

other plants tested. Thus, due to the inconclusive results, another 

greenhouse lettuce experiment is warranted. It is also suggested 

that a range of 75 to 300 ppm N, supplied by the ammonium charged 

zeolite, be incorporated into the experiment to determine required levels 

for maximizing lettuce yields. 

The bean variety used to evaluate growth responses of zinc 

charged zeolites may not have been as Zn ++ sensitive as other varieties. 

The beans did not significantly respond to the Zn ++ treatment with 

the exception of the uncharged zeolite plus injected fertilizer treat­

ment. The significant response 9f the uncharged zeolite plus injected 

fertilizer treatment seemed to demonstrate how fertilizer efficiency could 

be increased. Future experiments should include Zn-deficient seed, 

grown in Zn-deficient soil, especially for field experiments. 

Although the presence of zeolite increased the yield of cut chry­

santhemums, a slight yellowing was noted in the NH 4 experiment during 

harvest. Again, an exhausted zeolite-N supply was probably a factor, 

levels of 100 to 500 ppm nitrogen should be used as a range in the 

next chrysanthemum growth study. 
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The K experiment showed no significant plant fresh weight dif-

ference response between chrysanthemum treatments. The results 

were not in a.greement with an earlier reported potted chrysanthemum 

research (52). The naturally potassic and the zinc charged zeolite 

treatments showed no increases in plant height, suggesting that K+ 

and Zn ++ were being made available to the plant by the medium. 

Snapdragon responses to the zeolite treatments were inconclu-

sive. The ammonium charged zeolite treatment, in both the NH 4 and K 

experiments, produced smaller plant fresh weight than the injected 

fertilizer treatments. The snapdragons were elongated at transplanting 

+ + time and may have influenced the response. Inadequate NH 4 and K 

levels may have again been partially responsible for the poor zeolite 

treatment response. 

Potted Plants 

The responses. of the poinsettia and the Easter lily were basically 

identical. The N-fertilizer injection treatment produced the highest 

quality plants in NH 4 experiment; there were no growth differences 

between treatments in the K experiment. The response of the two plant 

species to higher ammonium charged zeolite treatment levels seemed to 

indicate that zeolite cannot exchange NH: at a rate high enough or the 

base level was not adequate to provide enough N for optimum plant 

growth, at least under the conditions of this experiment. The 

presence of Fort Collins clay loam in the medium, plus the decompo­

+ sit ion of the peat moss may have supplied sufficient amounts of K to 

maintain adequate growth in the K experiments. 
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Observations made at initial "watering in 11 of Easter lily bulbs, 

revealed a slight off-white colored suspension in the leachate. An 

experiment was designed to evaluate zeolite movement in two different 

media, with and without zeolite of two different mesh. The results 

indicated that zeolite was not leached out of the soils. 

The soluble salts level in the bench medium was 1. 0 mmhos/cm, 

whereas the potting medium was 2.1 mmhos/cm. Both levels would 

allow slower exchange rates of zeolite adsorbed NH:, thus varying 

the availability of N for the plant and microorganisms. Vaughan ( 108) 

stated, "Ciinoptilolite works best when the cation to be exchanged is 

present in low concentrations. 11 AI so, 11appreciable quantities of Ca ++ 

and Mg ++ have detrimental effects on the NH:-exchange capacity of 

this zeolite. " 



SUMMARY AND CONCLUSIONS 

Among methods of application for zeolite-N, the band application 

proved to be the most effective resulting in increased radish root 

fresh weight, ranging from 5 to 33% in the medium soil and 11 to 59% 

in the I ight soil, when compared to the incorporation method. 

Ammonium charged clinoptilolite appeared to act as a type of 

slow-release fertilizer, increasing growth of radishes in both a medium 

and light textured soil and decreasing N0 3-N loss due to leaching in 

the light soil. Clinoptilolite, when physically combined with ammonium 

sulfate, had only minimal effects; yet, when combined with urea, there 

were positive plant growth responses and retention of soil nitrogen in 

the ammonium form. Clinoptilolite apparently acted as a type of 

11 protectant11 against the injurious effect of urea when the two were 

combined and added to an alkaline soil. 

The lack of response to the zeolite treatments in the field tomato 

experiment was attributed to excessive nitrogen particularly that from 

the irrigation water. Further field experiments need to be conducted 

using low N irrigation water in field soils across the United States 

in order to determine their impact on the mode of action of clinoptilolite. 

The ammonium charged and the naturally potassic clinoptilolite 

were very effective in increasing yield of short-lived greenhouse bench 

radishes, probably because they acted as a type of slow-release 

fertilizer. Zinc charged zeolite proved to be an effective zinc source 

by also increasing the yield of radishes. The nutrient level of 
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75 ppm N, supplied by the clinoptilolite, was not adequate for optimum 

growth of lettuce, bean, chrysanthemum and snapdragon. The potted 

plants failed to attain desired yield with additions of 500 ppm nitrogen 

from the ammonium charged clinoptilolite and 250 ppm K from the 

naturally potassic clinoptilolite. Therefore, it is suggested for future 

research, that ammonium charged clinoptilolite be added at a minimum 

base level of 100 ppm N for bench crops and 500 ppm N for potted 

plants. Naturally potassic clinoptilolite should also be added at a 

minimum base level of 100 ppm K. Increasing levels of zeolite-N and 

potassic zeolite should be added to determine the concentration re­

quired for maximum growth of greenhouse crops grown in artificial 

media. 

Ammonium charged clinoptilolite should be a beneficial product 

when used in high rainfall areas, in irrigated areas and/or in modified 

greenhouse soils, where leaching is known to be a problem. The use 

of ammonium charged cUnoptilolite might overcome problems of nitrogen 

loss due to nitrogen fixation by clay and organic matter and possibly 

denitrification which is related to poor drainage. 

The plant protection provided by clinoptilolite when combined 

with urea could prove advantageous by preventing plant injury when 

urea is used in alkaline soils with low cation exchange capacity. The 

absorption of ammonia by the clinoptilolite, could be the main reason 

for this reduction in plant injury. More detailed study in this area 

is warranted. 

Zeolite as a fertilizer facilitator or "specialty" fertilizer could 

be used in certain horticultural industries. The injection of fertilizer 
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is very effectively used in the production of greenhouse crops, 

however, the addition of clinoptilolite to the media may increase the 

efficiency of the injected fertilizer. 

Clinoptilolite charged with Zn ++ or Fe++ micronutrients could be 

beneficial as a source of micronutrients frequently deficient in soils 

of arid or semiarid regions. 

The evaluation of the usefulness of zeolite-nutrient combinations 

for the production of plants and plant products of economic importance, 

has just begun. With the expanding agronomic and horticultural 

world, new and more effective nutrient sources are in great demand. 

The results of my research suggest that clinoptilolite can act in a 

beneficial way, however, its economic value has yet to be determined. 
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Appendix Explanation 1 : Cation Exchange Caeacity { CEC-T) 

The CEC-T procedure consists of the following: 

1. Place approximately SO mg of finely ground zeolite samples in 10 
ml centrifuge tubes. Weigh to ±0. OQ02 g. 

2. Add 10 ml of 2 N NaCI to each tube and let stand overnight at 
25±2°C. Centrifuge and discard the supernatant liquors. 

3. Add 5 ml of 2 M NaCI to each tube, mix thoroughly and let stand 
for about 4 hours at 25°C. Centrifuge and discard the supernatant 
liquors. 

4. Repeat Step 3. 

5. Add 10 ml of distilled water to each tube and mix thoroughly. 
Centrifuge and discard the supernatant liquors. 

6. Repeat Step 5 three times. 

7. Place tubes in a drying oven at 11 0°C overnight. Weigh each 
tube when sample is dry to 0. 0002 g. 

8. 

9. 

1 o. 

11. 

12. 

13. 

Add 10.0 ml of 0.1 M {NH4) 2so4 to each tube and mix with 
contents at 25°C several times over a period of about 4 hours. 

Centrifuge and add o. 1 ml of each supernatant solution to 9. 9 ml 
of a solution of 1000 ppm La and mix each thoroughly. 

Prepare standards from 0.1 ml of 0. 01 M Na 2so4. and 0.1 ml of 
0.001 M Na 2so4, each added to 9.9 ml of 1000 ppm La. 

The Na concentrations of the sample solutions from Step 9· are 
determined by AA using the standards described and a blank 
solution prepared by adding 0.1 ml of 1 M (NH 4) 

2
so4 to 9. 9 ml 

of 1 000 PP"l La. 

The CEC-T of the zeolite samples is calculated from the Na con­
centration of the final solutions and weight of the samples obtained 
by the difference in weights of each empty tube and the weights 
of each tube containing the sample following the overnight drying 
described in Step 7. 

The calculation is as follows: 

CEC-T (meq/g) = [Na+] in final solution x 0.01 x 1000 (meq/mole) 

X 1 
sample wt. (g) 
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This procedure was designed for zeolite CEC determination (S. W. 
Boese., Dept. of Geology, Univ. of Wyo., personal communications). 

Appendix Explanation 2: Formula for coefficient of velocity of emergence 

Coefficient of velocity 

where: A* = percentage of seedlings 

T * = number of days after planting corresponding to A 

* = the first day any seeclings were observed, was taken 
as day 11 111

• 

Kotowski, Felix. 1926. Temperature relations to germination of 
vegetable seed. Proc. A mer. Soc. Hort. Sci • 2 3 : 176-184. 



Table 22. Influence of zeolite on speed of radish germination, i.e., 2 parameters. Plant Science 
greenhouse experiment. 

Treatments 
CZ-21 UZ-21 UZ-45 21 4s----·-····sTo-r·---~N 

Coefficient of velocity, % 

Medium soil t 19.5 19.3 19.4 19.0 19.2 19.5 19.4 

8 19.2 19.4 19.5 19.4 19.5 

Light soil I 19.9 19.6 19.8 19.2 19.9 19.9 19.9 

8 19.8 19.8 19.7 19.7 20.0 

P 50, days 
........ 

Medium soil I 3.6 3.7 3.9 3.9 3.8 3.5 3.5 0 
w 

8 3.4 4.0 3.6 3.6 3.5 

Light soil I 3.3 3. 5 3.3 3.9 3.14 3.5 3.3 
B 3.3 3.3 3.5 3.6 3.2 



Table 23. Meanz radish leaf area of final harvest comparing th~ effect of zeolite and N-fertilizer in 
medium soil. Plant Science greenhouse experiment. 

Treatments 
CZ-21 UZ-21 UZ-45 21 45 STD-Z NN 

2 Leaf area (em ) I 226.5 212.5 182.7 137.5 77.3 135.4 144.4 

% c. v. y 20 26 30 37 94 14 17 

B 243.4 188.3 210.6 167.1 162.2 

%c. v. 15 30 38 34 56 

Analysis of Variance 

Source df MS F value 
-

Rows 11 6424.3 2.4* 
Column 11 5763.3 2.1* 
Treatment 11 26085.8 9.6** 
Error 110 2726.0 

z 
H.S.D. I 5% = 71.1 

Yoverall coefficient of variation = 8.6 

* ** , 
Indicates significance at the 5% and 1% level of probability I respectively. 

~ 
0 
~ 



Table 21J. Meanz radish leaf area of final harvest comparing the effect of zeolite and N-fertilizer in 
I ight soil. P1ant Science greenhouse experiment. 

Treatments 
CZ-21 UZ-21 UZ-IJ5 21 

--··,-·- -·--

IJ5 STD-Z ~N 

Leaf area (cm 2) I 182.8 156.5 185.6 165.8 103.1J 56.0 51.2 

% c. v. y 25 16 

B 187.1J 198.5 

% c.v. 28 

Source 

Rows 
Columns 
Treatments 
Error 

z 
H.S.D., 5% = 74.2 

Yoverall coefficient of variation = 10.8 

* ** 

26 

36 31 63 

208.5 149.7 116.0 

43 20 60 

Analysls of Variance 

df MS F value -
11 4147.5 1.6 
11 3988.3 1.5 
11 3518.0 13.4** 

110 2622.5 

' Indicates significance at the 5% and 1% level of probability, respectively. 

27 27 

"""" 0 
U'1 



Table 25. Meanz radish dry weight of final harvest comparing the effect of zeolite and N-fertilizer in 
medium soil. Plant Science greenhouse experiment. 

CZ-21 --uz-21 

Dry weight (g) I 1.681 1.343 

% c. v. y 24 33 

8 1. 836 1.195 

%c. v. 20 47 

Source 

Rows 
Columns 
Treatments 
Error 

z 
H.S.D., 5% = 0.645 

Yoverall coefficient of variation = 10.7 

* ** 

Treatments 
UZ-45 21 45 

1.192 0.757 0.455 

42 46 110 

1. 585 1.125 1.233 

42 44 65 

Analysis of Variance 

df MS F value 
- --

11 0.457 2.04* 
11 '0.494 2.21* 
11 1.544 6.90** 

110 0.224 

' Indicates significance at the 5% and 1% level of probability, respectively. 

STD-Z NN 

1.304 1.486 

19 34 

~ 
0 
0' 



Table 26. Meanz radish dry weight of final harvest comparing the effect of zeolite and N-fertilizer in 
I ight soil. Plant Science greenhouse experiment. 

Treatments 
CZ-21 UL-21 uz::45 ----- 21 -ti~-- SID-Z ______ NN 

Dry weight {g) 

z 

% c.v.Y 

B 

%c. v. 

H. S.D. , 5% = 0. 528 

1. 088 0.997 

35 25 

1.402 1.264 

36 44 

Source 

Rows 
Columns 
Treatments 
Error 

Y Overall coefficient of varlation = 11. q 

* ** 

1.138 1.082 0.604 

34 38 73 

1.381f 1. 098 0.708 

27 38 66 

Analysis of Variance 

df MS F value 
-

11 0.0969 0.65 
11 0_..1437 0.96 
11 1.3086 8.75** 

110 0. 1149 

' Indicates significance at the 5% and 1% level of probability, respectively. 

0.476 0.483 

23 32 

'"""' 0 
-..J 



Table 27. Meanz root fresh weight of final harvest comparing the effect of zeolite and N-fertilizer in 
medium soil. Plant Science greenhouse experiment. 

Treatments 
CL-2-1 ---~-u t-2T----~ U z-=~-----2-f _____ ----TS _____ -sTD-Z ---- -NN 

Root weight (g) I 12.11 8.26 10.25 4.32 2.43 12.56 15.00 

% c.v.Y 50 43 46 66 154 27 33 

B 13.51 9.96 13.84 8.54 9.16 

% c.v. 33 56 43 71 74 

Analysis of Variance 

Source df MS F value -
Rows 11 31~4 1.43 
Columns 11 117.0 2.14* 
Treatments 11 173.1 7.88** 
Error 110 22.0 

z H • S • D • , 5% = 6 .I.JO 

Yoverall coefficient of variation = 13. SI.J 

* ** , 
Indicates significance at the 5% and 1% level of probability, respectively. 

....... 
0 
00 



Table 28. Meanz root fresh weight of final harvest comparing the effect of zeolite and N-fertilizer in 
light soil. Plant Science greenhouse experiment. 

Treatments 
CZ-21 UZ-2l----uz=~--~-- -··n- ···~· ~-~- ~- --115-- -----s-To=--z-~ --~- ~·· NN 

Root weight (g) I 8.18 8.96 11.23 6.64 4.46 4.43 3.74 

% c. v. y 57 32 38 51 108 34 39 

B 11.60 12.10 12.38 7.62 6.27 

% c.v. 26 34 35 53 82 

Analysis of Variance 

Source df MS F value 
-

Rows 11 5.5 0.37 
Columns 11 22.2 1. 50 
Treatments 11 118.4 8.03** 
Error 110 14.7 

z H. S.D., 5% = 5. 24 

Yoverall coefficient of variation = 13. 63 

* ** , 
Indicates significance at the 5% and 1% level of probability, respectively. 

...... 
c 
..0 



Table 29. 

Medium soil 

Light soil 

Mean number of commercial grade radishes (dia. > 16 mm) of the 5th and 6th (final) harvests 
in two soils. Plant Science greenhouse experiment. 

Treatments 
cz=-tr UZ-21 UZ-45 21 45 STD-Z NN 

I 10 10 8.5 6 1. 5 11. 5 11.5 

B 9 9 10 4 8 

I 4.5 6 7 4 3 1.5 1. 5 

B 9 8.5 7 5.5 3.5 

....... 

....... 
0 



Table 30. Meanz N-uptake [% total N (Appendix Table 30) times mg of dry leaf tissue (Appendix 
Table 31)] of the final harvest comparing the effect of zeolite and N-fertilizer in medium 
soil. Plant Science greenhouse experiment. 

N-uptake ( mg) 

B 

z H.S.D., 5% = 29.41 

* ** 

Treatments 
CZ::2l ______ --- uz-=21_____ UZ-45 21 45 STD-Z NN 

63.87 

57.23 

Source 

Treatments 
Replications 
Error 

49.97 

33.97 

32.83 

45.47 

24.80 

35.87 

Analysis of Variance 

df 

2 
11 
22 

MS 

14.86 
759.55 
101.78 

15.40 

38.40 

F value 

0.15 
7.fl3** 

17 .. 60 16.87 

1 Indicates significance at the 5% and 1% level of probability 1 respectively. 

..... ...... ..... 



Table 31. Meanz N-uptake (% total N (Appendix Table 30) times mg of dry leaf tissue (Appendix 
Table 31)] of the final harvest comparing the effect of zeolite and N-fertilizer in light soil. 
Plant Science greenhouse experiment. 

N-uptake (mg) 

8 

z H.S.D., 5% = 23.95 

* ** 

CZ-21 

42.70 

42.63 

Source 

Treatments 
Replications 
E·rror 

UZ-21 

29.67 

32.60 

Treatments 
UZ-!45 21 

32.07 43.67 

44.43 38.93 

Analysis of Variance 

df 

2 
11 
22 

MS 

18.73 
563.82 
67.47 

liS 

20.30 

18.93 

F value 

0.28 
8.3** 

' Indicates significance at the 5% and 1% level of probability, respectively. 

S TIY..:.r--~---NN 

6.00 7.77 

...... 

...... 
N 



Table 32. Total N ( %) per radish plant of leaf tissue of final harvest in two soils. Plant Science 
greenhouse experiment. 

Treatments 
Rep CZ-21 UZ-21 UZ-45 21 45 STD-Z NN 
--
Medium 1 I 5.9 6.0 5.,8 5.5 6.3 3.9 3.6 

soil B 6.0 6.0 6.0 6.4 6.2 

2 I 5.8 6.3 5.8 5.1 4.9 3.6 3.6 
B 6.0 6.3 6.3 6.6 6.3 

3 I 6.0 6.2 6 .. 0 5.5 6.2 4.0 4.0 
B 6.0 6.2 6.2 6.2 6.4 

Light 1 I 6.3 6.3 6.3 6.4 5.9 3.5 3.2 ...... 
...... 

soil B 6.2 6.5 6.11 6.5 6.2 - - w 

2 I 6.4 6.3 5.9 6.5 6.2 4.6 3.1 
B 6 .. 1 6.ll 6.1 6.4 6.2 

3 I 6.3 6.2 6.0 6. 1 6.4 3.2 3.3 
B 6.0 6.1 6.5 6.2 6.6 



Table 33. Dry weight per radish plant of leaf tissue of final harvest in two soils. Plant Science 
greenhouse experiment. 

Treatments 
Rep CZ-21 UZ-21 UZ-45 21 45 STD-Z NN 
-
Medium 1 I 1100 897 457 421 1314 1458 397 

soil B 920 713 920 560 791 

2 I 892 8143 619 4140 408 435 4914 
B 898 284 843 611 817 

3 I 1261 690 604 5314 2814 489 471 
B 1051 658 453 510 2144 

Light 1 I 613 584 5614 508 1468 142 157 ...... 
soil B 727 387 602 708 316 - - ...... 

~ 

2 I 615 323 756 791 332 170 449 
B 556 482 884 551 360 

3 I 792 516 264 713 202 163 132 
B 805 682 629 569 227 



Table 34. Mean residual soil N after final harvestz in medium soil. Plant Science greenhouse 
experiment. 

Treatments 
CZ-21 lJZ-21 -- -- UZ-45 - 21 45 STD=z--- ---- NN 

N0 3-N (ppm) I 66.2 
B 66.5 

69.2 61.7 70.0 83.5 11.2 13.7 
79.5 74.5 72.2 65.2 

NH
4
-N (ppm) I 12.0 

B 18.2 
14.2 13.7 12.5 13.0 7.2 6.5 
16.7 14.5 10.0 8.0 

Available-N I 7-8.2 83.5 75.5 82.5 96.5 18.2 20.2 
(ppm) B 83.0 96.2 89.0 82.2 73.2 

zSoils were sampled 43 days from planting. ~ 
~ 
U1 



Table 35. Mean residual soil N after final harvestz in light soil. Y Plant Science greenhouse 
experiment. 

Treatments 
CZ-21 UZ-21 UZ-45 21 45 STD-Z 

N0
3
-N (ppm) I 38.5 36.7 24.7 24.2 34.0 3.1 

8 48.7 37.7 31.2 29.7 36.2 

NH
4
-N (ppm) I 12.2 8.0 7.0 5.2 7.0 5.5 

8 82.7 36.7 13.0 4.2 5.5 

Available-N I 50.7 44.2 31.7 29.5 41.0 8.6 
(ppm) 8 132.2 74.5 44.2 34.0 41.7 
--

zSoils were sampled 43 days from planting. 

Y Leached 6 times. 

NN 

4.5 

5.0 

9.5 

1-l 
1-l 
0' 



Table 36. Influence of zeolite on leachate N03-N (ppm). Plant Science greenhouse experiment. 

Days from Treatments 
planting CZ-21 UZ-21 UZ-45 21 45 STD-Z NN 

8 I 90 111 78 101 61 71 74 
B 84 144 144 174 94 

13 I 47 49 36 58 40 32 34 
B 47 70 68 96 55 

19 I 45 42 32 38 30 15 16 
B 43 57 liS 59 37 

26 I 136 138 123 103 74 4 4 
B 93 138 73 186 89 ..... ..... 

35 I 224 258 190 205 168 q 4 
.....:I 

B 178 228 120 2'10 220 

41 I 138 143 99 101 92 q q 

B 151 146 110 115 150 
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Table 37. Chemical characteristics of the Horticulture farm water. 

-6 
Conductivity (micromhos/cm, EC x 10 ) 

CationY 

Calcium 

Magnesium 

Sodium 

Potassium 

Anions 

Carbonatew 

Bicarbonate v 

Chlorideu 

Sulfatet 

Nitrates 

SAR 

Salinity hazard 

Sodium hazard 

zPaste method. 

Y Inductively coupled plasma spectrometry. 

xTitration determination. 

vTitration with standard acid determinations. 

ulon selective electrode determination. 

tBarium sulfate turbidimetric determinations. 

sChromotropic acid (CTA) colorimetric determinations. 

7.6 

3000.0 

424 

146 

166 

12 

0 

292 

38 

1411 

52 

1. 8 

High 

Low 
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