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ABSTRACT 
 
 
 

SMALL RNA METHYLATION IN CAENORHABDITIS ELEGANS 
 
 
 

Eukaryotes employ small RNAs and RNA interference (RNAi) for such diverse tasks as 

regulating gene expression, suppressing viral infections, and defending their genomes 

from foreign or parasitic sequences such as pseudogenes or transposons. In the 

germlines of animals, piwi-interacting RNAs (piRNAs) target and silence sequences 

such as these to ensure that genetic information passes from one generation to the next 

intact. For many animals, piRNAs must be methylated at their 3’ ends to protect them 

from degradation, and loss of stable piRNAs results in sterility. In this study, we identify 

a role for piRNA methylation in maintaining germline integrity in C. elegans. We also 

show that methylation is important for piRNA stability in worm embryos but dispensable 

in the adult germline. Further, we identify additional classes of methylated small RNAs: 

exogenous primary short interfering RNAs (siRNAs) and a subpopulation of micro RNAs 

(miRNAs), as well as characterizing factors that influence which small RNAs are 

methylated. Finally, we provide a brief review of recent advances in the field of piRNA 

biology that detail the rules governing piRNA targeting and a means by which 

endogenous C. elegans genes avoid silencing by the piRNA-dependent RNAi pathway. 
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CHAPTER 1: Introduction 
 
 
 
RNA interference. RNA interference (RNAi) is a conserved gene regulatory process in 

which noncoding RNAs called small RNAs serve as sequence-specific guides for 

Argonaute effector proteins to influence diverse cellular processes. First identified in the 

1990s (Lee et al., 1993; Wightman et al., 1993), RNAi has since been found to regulate 

developmental timing, maintenance of genome and germline integrity, environmental 

response, and tuning of coding gene expression. Nearly all eukaryotes employ RNAi for 

some or all of these functions (Ketting, 2011; Claycomb, 2014). 

Argonaute proteins are central to the molecular mechanism of RNAi. These proteins 

form an RNA-induced silencing complex (RISC) by binding small RNAs and using them 

as sequence-specific guides to identify and engage mRNA targets (Figure 1.1). When 

bound to Argonaute proteins, the 5’ end of the small RNA is seated in the mid domain, 

while the 3’ end is bound to the paz domain (Kuhn and Joshua-Tor 2013). Between 

these domains is the piwi domain, which contains the catalytic domain of the protein, 

often referred to as the slicer domain. The slicer domain is required for the function of 

some, but not all, Argonaute proteins (Tolia and Joshua-Tor 2007). In general, 

Argonaute proteins downregulate mRNA targets identified by their small RNA guides. 

The specific means of this downregulation varies, and may be initiated by cleaving the 

mRNA (catalyzed by the slicer domain), recruiting decay factors to it, or otherwise 

repressing translation (Ketting, 2011; Ameres and Zamore, 2013; Claycomb, 2014). 
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Figure 1.1. Argonaute structure and small RNA target engagement. (A) A small 
RNA seated in an Argonaute engaging a target with imperfect pairing. (B) A small RNA 
seated in an Argonaute engaging a target with perfect pairing. Adapted from Kuhn and 
Joshua-Tor, 2013 with information from Horwich et al. 2007 incorporated. 
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Small RNAs. There are three known classes of small RNAs, classified by their 

biogenesis pathways and molecular features: microRNAs (miRNAs), small interfering 

RNAs (siRNAs), and piwi interacting RNAs (piRNAs).  

miRNAs. miRNA precursors are transcribed by RNA polymerase II in the nucleus and 

contain short hairpin foldbacks, often with bulges resulting from imperfect pairing in the 

hairpin stem (Lee et al., 2004; Bartel, 2004). These hairpins are cleaved from the longer 

transcript by the endonuclease Drosha before being exported to the cytoplasm, where 

they are further processed into a miRNA duplex by Dicer. This duplex is loaded into an 

Argonaute protein, where one strand remains bound while the other is dissociated, 

either to be degraded or bound by another Argonaute protein (Figure 1.2) (Bartel, 2004; 

Ameres and Zamore, 2013).  

Like other classes of small RNAs, miRNAs serve as sequence-specific guides to 

recruit Argonaute effectors to mRNA targets for downregulation. miRNAs rely on partial 

sequence complementarity, guided by a “seed region” at positions 2-10, to identify their 

targets. These seed sequences are shared among different miRNAs within the same 

“family,” and can be conserved across species (Bartel, 2009). In addition to pairing in 

the 5’ seed region, miRNAs also contain supplementary base pairing regions nearer the 

3’ end of the RNA (Wee et al., 2012). miRNAs guide their associated Argonaute protein 

to the 3’ UTR of a target mRNA, where they use endonucleolytic cleavage, mRNA 

destabilization, or translational repression to downregulate their targets and control 

diverse biological pathways (Bartel, 2004; Ameres and Zamore, 2013).  

siRNAs. Canonical siRNAs are derived from double-stranded RNA (dsRNA) that 

undergoes cleavage by Dicer into to a short duplex with 2 nt overhangs. After binding to  
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Figure 1.2. miRNA biogenesis. The miRNA pathway from transcription to mRNA 
engagement. Both the canonical pathway (left) and an alternative pathway (right) are 
depicted. From Ameres and Zamore, 2013. 
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an Argonaute protein, one strand is discarded while the other is used as a guide for 

identifying mRNA targets (Bernstein et al., 2001; Tomari and Zamore, 2005; Carthew 

and Sontheimer, 2009). The sources of these double-stranded precursors vary, with 

mice and flies generating them via bidirectional transcription from a single locus, 

hybridization of complementary transcripts from individual loci, or hairpins derived from 

transcription of inverted repeats (Claycomb, 2014). siRNAs typically interact with their 

targets with perfect complementarity to perform various functions such as regulation of 

coding genes, defense of the genome against transposons, and innate immune 

response to viral infection (Carthew and Sontheimer, 2009; Claycomb, 2014). In a 

research context, dsRNA can be introduced into a cell, allowing its siRNA processing 

machinery to produce siRNAs and effect targeted knockdown of complementary mRNA 

(Mello and Conte, 2004). In C. elegans, exogenous dsRNA taken up from the 

environment is processed by Dicer into an siRNA duplex, loaded into the Argonaute 

RDE-1, and matured into a functional RNA induced silencing complex (RISC) that 

initiates silencing of complementary RNA via the Mutator-dependent RNAi pathway 

(detailed in “RNAi in C. elegans” section) (Tabara et al., 2002; Pak and Fire, 2007; Sijen 

et al., 2007). 

Endogenous siRNAs in C. elegans fall into several categories, identified by their 

length, 5’ nucleotide, and the Argonaute protein with which they associate. 26G-RNAs, 

named for their 26 nucleotide length and 5’ guanidine residue, associate with the 

Argonaute proteins ALG-3, ALG-4, and ERGO-1 (Han et al., 2009). Those that bind 

ALG-3 and -4 form a distinct class and are primarily known for their participation in the 

spermatogenesis pathway (Conine et al., 2010). ERGO-1 class 26G-RNAs are 
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expressed from embryogenesis through the early larval stages and establish an RNAi-

mediated gene regulation program that targets pseudogenes, replicated genes, and 

persists through adulthood (Vasale et al., 2010; Fisher et al. 2011). To produce these 

26G-RNAs, target mRNAs are engaged by a protein complex containing the RNA-

dependent RNA polymerase RdRP RRF-3, which generates dsRNA substrate for Dicer 

by synthesizing a complementary strand of RNA (Han et al., 2009; Gent et al., 2010). 

The resulting siRNA duplexes can then be bound by an Argonaute protein and matured 

to form a RISC capable of performing RNA surveillance (Figure 1.3). 

In addition to 26G-RNAs, C. elegans also uses RdRPs to manufacture another class 

of siRNAs called 22G-RNAs. These small RNAs can also be further subdivided based 

on the Argonautes to which they bind, and they differ from canonical siRNAs in both 

their biogenesis and structure (Gu et al., 2009). Instead of being processed from dsRNA 

by Dicer, WAGO class 22G-RNAs are produced by a group of proteins called the 

Mutator complex, which contains numerous RNA modifying enzymes and the RdRP 

RRF-1 (Aoki et al., 2007; Phillips et al., 2012). Although the specific mechanics of this 

reaction are not known, current evidence suggests that mRNA targets identified by 

primary small RNAs are routed into the pathway and modified into a substrate for the 

RdRP, which then produces secondary 22G-RNAs antisense to the target (Ambros et 

al., 2003; Aoki et al., 2007; Pak and Fire 2007; Sijen et al., 2007; Gu et al., 2009) (For 

more information on primary and secondary small RNAs, see the “RNAi in C. elegans” 

section below). Structurally, these small RNAs have a triphosphate group at their 5’ end 

rather than the monophosphate found on Dicer products (Gu et al., 2009). WAGO class 

22G-RNAs are also capable of maintaining a “memory” of genes to be silenced - after a  



	 7	

 

Figure 1.3. 26G RNA biogenesis in C. elegans.  The pathway and biogenesis factors 
required for the formation of ERGO-1 class 26G RNAs (left) and ALG-3/4 class 26G 
RNAs (right). Adapted from Billi et al., 2014 
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gene is targeted by the RNAi pathway, it will remain silenced even after the stimulus is 

removed. This heritable RNAi response can be passed from parent to offspring across 

several generations (Buckley et al., 2012). 

There is another class of noncanonical siRNAs in C. elegans known as CSR-1-class 

22G-RNAs. Although they are similar in structure to WAGO-class 22G-RNAs, CSR-1-

class siRNAs appear to function in opposition to the Mutator pathway. Rather than 

silencing them, CSR-1 appears to license its mRNA targets for expression by protecting 

them from targeting by the piRNA-dependent RNAi pathway (Claycomb et al., 2009; 

Seth et al., 2013; Wedeles et al., 2013). 

piRNAs. PIWI-interacting RNAs (piRNAs) are, like miRNAs, transcribed by RNA 

polymerase II from specific loci in the genome (Billi et al., 2013; Cecere et al., 2012). 

Unlike miRNAs, however, piRNA maturation does not involve a double stranded 

foldback intermediate and is Dicer independent. The details of piRNA biogenesis vary 

by organism; in most animals, piRNAs are generated by a phased process called “ping-

pong amplification” in which piRNAs initiate the cleavage of their target transcripts, 

fragments of which are matured into additional piRNAs (Ozata et al., 2019). In C. 

elegans, however, there is no known mechanism of piRNA amplification. Instead, 

piRNA precursors are transcribed by RNA polymerase II, trimmed down to 21 nt by 

nucleases, bound by the C. elegans PIWI homolog PRG-1, and methylated at their 3’ 

end (Figure 1.4) (Billi et al., 2012; Kamminga et al., 2012; Montgomery et al. 2012; 

Iwasaki et al., 2015). PARN-1 is the nuclease that trims the 3’ end down to its 

appropriate size, but the 5’ end nuclease remains unidentified (Tang et al., 2016). It is 

not currently known whether 3’ trimming occurs before or after loading into PRG-1. 
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Figure 1.4. piRNA biogenesis in C. elegans. Model of the piRNA formation pathway 
from transcription to mRNA surveillance. 
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After maturation and loading into PIWI proteins, piRNAs perform genome surveillance, 

distinguishing “self” genes from “non-self” genes and protecting the genome from 

parasitic genetic elements such as transposons and pseudogenes (Ozata et al., 2019). 

For most organisms, loss of piRNAs results in immediate sterility (Thomson and Lin, 

2009). Although piRNAs are important for germline immortality in worms as well, piRNA 

mutations in C. elegans result in gradual loss of fertility, with animals eventually 

becoming sterile after 35-80 generations (Simon et al., 2014; Heestand et al., 2018). 

Interestingly, piRNAs in C. elegans appear to target not only transposons, 

pseudogenes, and exogenous genetic elements such as germline transgenes, but also 

the majority of coding genes in the genome, and appear to be differentially expressed in 

the male and female germlines (Shen et al., 2018; Zhang et al., 2018; Bezler et al. 

2019). Current evidence suggests that competition between the piRNA pathway and the 

CSR-1 22G-RNA pathway, which is thought to license mRNAs for expression, plays a 

role in determining which genes are expressed and which are targeted for silencing by 

the Mutator-dependent RNAi pathway (Shirayama et al., 2012; Seth et al., 2013). 

Small RNA Methylation. In many species, certain classes of small RNAs are 

methylated at their 3’ end. Small RNA methylation was first identified in Arabidopsis, in 

which miRNAs were found to be modified by the 3'-2’-O-methyltransferase Hen1 to 

protect against polyuridylation and degradation (Li et al., 2005). Further investigated in 

flies, small RNA methylation was found to protect siRNAs and piRNAs that share 

perfect complementarity with their targets from degradation (Horwich et al., 2007). 

When a small RNA is bound to an mRNA along its entire length, the small RNA’s 3’ end 

is liberated from the paz domain of the Argonaute protein, as the nucleotides at the 3’ 
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end binding to their target pulls them out of this domain and exposes the end of the 

small RNA. Without the protection provided by a methyl group, these exposed 3’ ends 

are vulnerable to modification and degradation (Figure 1.1) (Horwich et al., 2007; 

Kawamata and Tomari, 2010). Recent work in silkworms also suggests that animals 

that undergo ping-pong amplification of piRNAs may differentially methylate pre-pre-

piRNAs depending on the mechanism of their biogenesis, which also suggests that 

trimming and methylation are tightly associated (Izumi et al. 2020). 

In C. elegans, two classes of small RNAs are known to be methylated: piRNAs and 

ERGO-1-class 26G-RNAs (Billi et al., 2012; Kamminga et al., 2012; Montgomery et al., 

2012; Ruby et al., 2006; Vasale et al., 2010). As in other species, methylation appears 

to be important for stabilization of small RNAs in worms, but unlike in flies, the 

methylation of a small RNA does not appear to be governed by whether it is perfectly 

complementary to its target. piRNAs, for example, do not pair perfectly with their targets 

in worms, but are nonetheless methylated. There is no evidence, however, that 

secondary siRNAs, which do pair perfectly with their targets, are reliant on methylation 

(Billi et al., 2012; Kamminga et al., 2012; Montgomery et al., 2012). Additionally, the 

mechanism by which unmethylated primary small RNAs are destabilized in C. elegans 

remains elusive. Limited evidence suggests that, like in other organisms, polyuridylation 

precedes small RNA degradation in worms, but the molecular machinery responsible for 

the processes of both modification and degradation remains unknown (Li et al., 2005; 

Yu et al., 2005; Horwich et al., 2007; Saito et al., 2007; Kurth and Mochizuki, 2009; Billi 

et al., 2012; Kamminga et al., 2012; Montgomery et al., 2012)  
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RNAi in C. elegans. RNA interference in C. elegans involves numerous, spatially 

separated components. Situated on the cytoplasmic side of the nuclear pores of germ 

cells are non-membrane bound ribonucleoprotein granules called P granules (Pitt et al., 

2000). P granules contain, among other components, the Argonautes PRG-1 and CSR-

1, both of which contribute to RNA surveillance (Batista et al., 2008; Claycomb et al., 

2009; Seth et al., 2013). mRNAs leaving the nucleus must pass through the P granule 

on the way to the cytoplasm to be translated and are therefore subject to surveillance. 

Transcripts engaged by 22G-RNAs carried by CSR-1 are licensed for translation, while 

those that interact with piRNAs carried by PRG-1 are marked for silencing (Shirayama 

et al., 2012; Seth et al., 2013; Wedeles et al., 2013). To achieve this silencing, these 

transcripts are shuttled into adjacent perinuclear Mutator foci, in which a complex of 

proteins called the Mutator complex modifies the target transcript into a substrate for its 

constituent RdRP, which synthesizes 22G-siRNAs antisense to the target (Aoki et al., 

2007; Phillips et al., 2012; Zhang et al., 2012; Phillips et al., 2014; Tsai et al., 2015). 

These 22G-RNAs bind WAGO Argonautes, which then silence the target gene (Gu et 

al., 2009).  

In addition to the piRNAs described in the example above, there are two other 

classes of primary small RNAs that identify targets for the RNAi pathway and initiate the 

production of secondary WAGO-class 22G-RNAs: exogenous siRNAs and ERGO-1 

class 26G-RNAs (Billi et al., 2014; Pak and Fire, 2007; Sijen et al., 2007; Tabara et al., 

2002). After the primary small RNAs initiate the silencing of a given gene, the secondary 

small RNAs maintain the silencing signal (Figure 1.5). Interestingly, this maintenance 

can be maintained even if the initiation step is disabled, allowing these secondary small  
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Figure 1.5. Primary small RNAs. Model depicting the interplay between RNA 
surveillance and WAGO-class 22G production by the RNAi pathway. 
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RNAs to serve not only as the effectors of gene silencing, but also as a “memory” of 

genes to be silenced (Shirayama et al., 2012; Buckley et al., 2012). They can even 

maintain a silencing signal for several generations after the stimulus that initiated it is 

removed through the inheritance of HRDE-1-associated 22G-siRNAs, which perform 

nuclear gene silencing and promote the deposition of repressive H3K9 methylation 

(Buckley et al., 2012).  

piRNA targeting in C. elegans.1 The following is an invited perspective piece written 

for Developmental Cell, published as written in March 2018, that details recent 

advances in the field of piRNA biology. It synthesizes several papers that establish rules 

by which mRNAs are identified for piRNA targeting. 

piRNA Rules of Engagement. Germ cells are under constant attack by foreign 

invaders, such as transposons with the ability to self-replicate and take up residence at 

new locations in the genome. In animals, a major line of defense against foreign genes 

involves PIWI proteins and their associated Piwi-interacting RNAs (piRNAs) (Iwasaki et 

al., 2015). Although their role as master regulators of transposons and pseudogenes in 

the germline is well characterized, additional roles for piRNAs in germ cells, as well as 

in somatic cells, such as neurons (e.g., Kim et al., 2018), have recently come to light. C. 

elegans contains thousands of distinct piRNAs, each produced from its own 

autonomous transcript (Iwasaki et al., 2015). Unlike in insects and mammals, most 

piRNAs in C. elegans lack homology to transposons and rarely interact with perfect 

complementarity to target mRNAs (Lee et al., 2012). Thus, identifying the targets of C. 

																																																								
1 This section was published as written: 
Svendsen, J.M., and Montgomery, T.A. (2018). piRNA Rules of Engagement. 
Developmental Cell 44, 657-658. 
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elegans piRNAs has proved challenging. Now, two independent studies published in 

Cell (Shen et al., 2018) and Science (Zhang et al., 2018) identify targeting rules of the 

piRNA pathway and uncover features that help to distinguish self-genes from non-self 

invaders in the worm. 

Many organisms, including flies, fish, and mammals, use an elaborate mechanism, 

termed the ping-pong cycle, to amplify the piRNA signal (Iwasaki et al., 2015). Although 

an analogous piRNA amplification mechanism is absent in C. elegans, piRNAs 

nonetheless propagate the silencing signal via a specialized class of small interfering 

RNAs (siRNAs) called 22G-RNAs. piRNA targets are handed off by the lone C. elegans 

PIWI protein, PRG-1, to a complex containing an RNA-dependent RNA polymerase that 

spawns out 22G-RNAs antisense to the mRNA target. Although 22G-RNAs provide a 

signature for piRNA targeting, there are additional triggers for 22G-RNA formation, and 

thus they are not always a reliable readout for piRNA activity. Furthermore, once a 

piRNA initiates silencing, the downstream 22G-RNAs provide a memory of targeting 

that can be transmitted from one generation to the next in absence of the piRNA trigger 

(Iwasaki et al., 2015). This phenomenon likely explains why loss of piRNAs has only a 

modest impact on germline development in the worm, whereas in many other animals it 

leads to sterility. piRNA target identification is further complicated by the 22G-RNA 

memory of their activity, because the impact of loss of piwi/prg-1 on gene expression is 

at least partially masked by epigenetic mechanisms. 

Using complementary approaches, Shen et al. (2018) and Zhang et al. (2018) set 

out to identify how piRNAs engage their targets in C. elegans. Shen et al. (2018) 

analyzed, transcriptome-wide, the targets of PIWI/PRG-1 using a method in which the 
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PRG-1-piRNA-mRNA complexes were co-immunoprecipitated and the associated 

RNAs ligated to one another and subjected to high-throughput sequencing (CLASH). 

piRNA-mRNA hybrids captured by the method allowed for identification of direct 

interactions between piRNAs and their mRNA targets. Surprisingly, piRNAs were found 

to interact with essentially all germline mRNAs. Two approaches were then used to 

analyze base-pairing between piRNAs and target mRNAs. The first approach involved 

analysis of the hybrid data to identify pairing patterns between the piRNAs and 

associated mRNA fragments. In the second approach, an endogenous piRNA locus 

was edited using CRISPR/Cas9 to produce a synthetic piRNA targeting a GFP 

transgene. Mutations were then introduced into the synthetic piRNA sequence to 

assess which positions along the piRNA were required for target recognition. A similar 

GFP synthetic piRNA-based approach was used by Zhang et al. (2018). Additionally, to 

explore endogenous targeting rules, Zhang et al. (2018) deleted an endogenous piRNA 

locus or, conversely, introduced a synthetic piRNA targeting endogenous genes and 

used the loss or gain, respectively, of 22G-RNAs as a readout for piRNA activity. 

Together, these experiments revealed that C. elegans piRNA target recognition is 

strikingly similar to that of miRNAs: pairing in the seed sequence (positions 2–8 relative 

to the 5′ end of the piRNA or miRNA) is the primary determinant of target recognition. 

Seed pairing, however, is not sufficient. Additional base-pairing outside of the seed is 

also important, particularly near the 3′ end of the piRNA (positions 14–19), which 

overlaps with a region important for supplementary pairing by miRNAs (positions 13–16) 

(Bartel, 2009) (Figure 1.6A). 
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Figure 1.6. Target Recognition and Regulatory Roles of piRNAs. (A) Canonical 
piRNAs and siRNAs target mRNAs with perfect complementarity, whereas some 
piRNAs, similar to miRNAs, require only partial complementarity, particularly in the seed 
sequence (positions 2–8). Supplementary pairing (supp.) near the 3′ end is also 
important in some instances. (B) C. elegans safeguards against silencing of self-
mRNAs via trans-acting factors (CSR-1) and cis-acting sequences (unknown exonic 
sequences and intronic An/Tn clusters, PATC). (C) piRNAs have essential roles in 
regulating transposons, typically through perfect base-pairing, and have less-
understood roles in regulating self-genes and in mRNA elimination, often via imperfect 
pairing. 
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In insects and mammals, canonical piRNAs interact with perfect complementarity to 

their targets, similar to the way siRNAs engage their targets, often deriving from the 

same or related genes to those that they target (Iwasaki et al., 2015). Pachytene 

piRNAs in mice, however, do not appear to come from transposons and instead target a 

broad range of mRNAs, also using miRNA-like pairing rules, to affect widespread 

mRNA elimination in spermatids (Gou et al., 2014). Some Drosophila piRNAs also 

interact with non-transposon mRNAs through imperfect base-pairing (Iwasaki et al., 

2015). Thus, the piRNA pairing rules identified in C. elegans may be to some extent 

conserved across animals. 

Given the promiscuousness of C. elegans piRNAs, how do beneficial self-genes 

evade silencing? The majority of mRNAs expressed in the germline are also targeted by 

a distinct 22G-RNA pathway involving the worm-specific Argonaute CSR-1 (Iwasaki et 

al., 2015). CSR-1 targets tend to be expressed rather than silenced, pointing to a 

protective role of the pathway that acts in opposition to piRNAs. Indeed, by repeating 

their PIWI/PRG-1 CLASH experiments in a csr-1 conditional mutant background, Shen 

et al. (2018) showed that CSR-1 functions upstream to limit PRG-1 binding to 

expressed genes. It is unclear how a gene goes about obtaining protection by CSR-1. 

However, CSR-1 is not the only safeguard against silencing. Zhang et al. (2018) 

discovered that periodic adenine/thymine clusters (PATCs) found in the introns and 

promoters of some germline genes (Frøkjær-Jensen et al., 2016) also confer resistance 

to piRNAs. Another recent study (Seth et al., 2018) identified a protective role for 

unknown sequences within the coding regions of some endogenous genes. Thus, both 
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trans-acting factors, such as CSR-1, and cis-acting intrinsic sequences can safeguard 

against piRNAs (Figure 1.6B). 

In addition to silencing non-self-genes, Shen et al. (2018) and another study from 

the Mello group in this issue of Developmental Cell (Tang et al., 2018) identified a role 

for piRNAs in fine-tuning gene expression to control sex determination in C. elegans. 

Interestingly, piRNAs also regulate sex determination in silkworms (Iwasaki et al., 

2015). In both species, specific piRNAs regulate genes involved in dosage 

compensation. Thus, despite differences between piRNA pathways in worms and other 

animals, the pathways appear to share many common roles in gene regulation and 

genome defense (Figure 1.6C). The extent to which the promiscuous nature of C. 

elegans piRNAs is shared between other species remains to be determined.  

Thesis Work. The goal of my thesis work was to better characterize the functional 

effects of small RNA methylation in C. elegans. Small RNA methylation is a widely 

conserved mechanism that many organisms employ to protect small RNAs from 

degradation, and methylation is common on animal piRNAs, the small RNAs generally 

responsible for maintaining germline genome integrity. Although small RNA methylation 

in C. elegans likely serves a similar purpose, little work has been done to investigate its 

function, especially as it relates to germline genome maintenance. Below, I summarize 

the gaps in the field that my thesis work is intended to fill and offer brief explanations of 

how filling these gaps would be valuable. 

At the outset of this project, the only classes of small RNAs in C. elegans that were 

known to be methylated were piRNAs and ERGO-1 class 26G RNAs (Billi et al., 2012; 

Kamminga et al., 2012; Montgomery et al., 2012; Ruby et al., 2006; Vasale et al., 2010). 
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These RNAs have in common the fact that they interact with target mRNAs and initiate 

the production of secondary siRNAs antisense to them via the Mutator pathway. These 

are not, however, the only classes of small RNAs that act upstream of the RNAi 

pathway. Exogenous siRNAs, derived from dsRNA that is introduced either naturally by 

viral infection or uptake from the environment or experimentally by feeding RNAi 

treatment or injection, associate with the Argonaute RDE-1, and also initiate secondary 

siRNA production (Pak and Fire, 2007; Sijen et al. 2007; Tabara et al. 2002). We 

hypothesized that the reason primary small RNAs are methylated is related to their role 

in initiating RNAi. If this is true, exo-siRNAs should, like other classes of primary small 

RNAs, also be methylated. A comprehensive understanding of which small RNA 

classes require methylation would make it easier to answer the question of what 

methylation protects small RNAs from. If commonalities can be identified in the 

expression, function, and localization of these RNAs, it is possible that a common factor 

or function that promotes methylation can be identified. Additionally, the methylated 

small RNAs of C. elegans, piRNAs and ERGO-1-class 26G-RNAs, are expressed in the 

germline, and methylation may play a role in ensuring that they are able to properly 

regulate germline gene expression. 

I was also interested in determining how small RNAs are identified for methylation. 

In flies, the Argonaute protein into which a small RNA is loaded determines whether it 

will be methylated (Ameres et al. 2010; Horwich et al. 2007). Argonaute loading comes 

first, followed by methylation at the 3’ end. We hypothesized that Argonaute-directed 

methylation is conserved in worms. Additionally, if, as in flies, C. elegans small RNAs 

are methylated based on which Argonaute they are loaded into, the subpopulation of 
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miRNAs that associate with RDE-1 should also be methylated. Identifying a methylated 

subpopulation of miRNAs could have substantial implications for our understanding of 

miRNAs roles in C. elegans and contribute to a small but growing body of evidence 

indicating that animals employ some degree of miRNA methylation. Additionally, 

evidence for an Argonaute-directed model of small RNA methylation could open new 

avenues for studying the mechanics of small RNA methylation. 

Finally, I wanted to find out why a subset of C. elegans small RNAs are methylated. 

In plants, all small RNAs (both miRNAs and siRNAs) are methylated to protect them 

from degradation (Li et al. 2005). In flies, piRNAs and siRNAs that are perfectly 

complementary to their targets need to be methylated to be protected from degradation 

(Horwich et al. 2007). While loss of small RNA methylation in C. elegans does not 

appear to destabilize small RNAs to the same extent that it does in other organisms, it 

does appear to be important for fertility. Furthermore, it is unclear what methylation 

protects small RNAs from. Limited evidence exists indicating a similar decay pathway to 

those observed in plants and flies, but the specific mechanism of degradation remains 

unknown (Billi et al., 2012; Kamminga et al., 2012; Montgomery et al., 2012). 

Additionally, while the poly(U) polymerase responsible for promoting degradation is 

unknown in C. elegans (or even whether one participates at all), the nuclease 

responsible for small RNA turnover has not been identified in any organism. 
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CHAPTER 2: henn-1 Promotes Germline Immortality in Caenorhabditis elegans1 
 
 
 
Summary. The germline contains an immortal cell lineage that ensures the faithful 

transmission of genetic and, in some instances, epigenetic information from one 

generation to the next. Here, we show that in Caenorhabditis elegans, the small RNA 3’-

2’-O-methyltransferase henn-1/HEN1 is required for sustained fertility across 

generations. In the absence of henn-1, animals become progressively less fertile, 

becoming sterile after ∼30 generations at 25°C. Sterility in henn-1 mutants is 

accompanied by severe defects in germline proliferation and maintenance. The 

requirement for henn-1 in transgenerational fertility is likely due to its role in methylating 

and, thereby, stabilizing Piwi-interacting RNAs (piRNAs). However, despite being 

essential for piRNA stability in embryos, henn-1 is not required for piRNA stability in 

adults. Thus, we propose that methylation is important for the role of piRNAs in 

establishing proper gene silencing during early stages of development but is 

dispensable for their role in the proliferated germline. 

Introduction. Piwi-interacting RNAs (piRNAs) have diverse roles in gene regulation and 

development but are best known for silencing transposons (Ozata et al., 2019). Loss of 

piRNAs often leads to sterility (Thomson and Lin, 2009). In Caenorhabditis elegans, 

however, disabling the piRNA pathway does not lead to immediate sterility but instead 

to a gradual loss of fertility over numerous generations (Heestand et al., 2018; Simon et 

																																																								
1 This chapter was published as written: 
Svendsen, J.M., Reed, K.J., Vijayasarathy, T., Montgomery, B.M., Tucci, R.M., Brown, 
K.C., Marks, T.N., Nguyen, D.A.H., Phillips, C.M., and Montgomery, T.A. (2019). henn-
1/HEN1 Promotes Germline Immortality in Caenorhabditis elegans. Cell Reports 29, 
3187-3199. 
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al., 2014). C. elegans piRNAs initiate mRNA entry into an endogenous RNAi pathway in 

which small RNAs called WAGO-class 22G-RNAs are produced antisense to the mRNA 

target (Ashe et al., 2012; Bagijn et al., 2012; Lee et al., 2012; Luteijn et al., 2012). 

WAGO-class 22G-RNAs are often classified as small interfering RNAs (siRNAs), 

although, unlike canonical siRNAs, they are not derived from double-stranded RNA 

(dsRNA) and are not processed by Dicer (Ambros et al., 2003; Aoki et al., 2007; Gu et 

al., 2009; Pak and Fire, 2007; Sijen et al., 2007). Instead, they are produced by an 

RNA-dependent RNA polymerase in association with a collection of proteins called the 

Mutator complex (Aoki et al., 2007; Phillips et al., 2012). A subset of 22G-RNAs bind 

HRDE-1, a nuclear Argonaute that promotes transgenerational inheritance of RNAi and 

is required for transgenerational fertility (Buckley et al., 2012). The 22G-RNAs produced 

downstream of piRNAs, particularly those bound by HRDE-1, are thought to provide a 

memory of piRNA activity that seemingly persists over multiple generations, which may 

explain why the loss of the primary Piwi Argonaute prg-1 does not cause immediate 

sterility (Ashe et al., 2012; Buckley et al., 2012; Luteijn et al., 2012; Shirayama et al., 

2012). 

piRNAs are methylated at their 3′ ends by the 3′-2′-O-methyltransferase HEN1 

(Ozata et al., 2019). First characterized in Arabidopsis, methylation protects small RNAs 

from 3′–5′ trimming and decay (Billi et al., 2012; Horwich et al., 2007; Kamminga et al., 

2012; Kurth and Mochizuki, 2009; Li et al., 2005; Montgomery et al., 2012; Saito et al., 

2007; Yu et al., 2005). Small RNAs are bound at both their 5′ and 3′ ends by the 

Piwi/Argonaute they associate with. The 3′ end is anchored in the PAZ domain, which 

likely protects the small RNA from nucleases and other base-modifying enzymes. Small 
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RNAs with extensive target complementarity at their 3′ ends are released from the PAZ 

domain to facilitate base pairing with their targets (Kawamata and Tomari, 2010). In 

animals, piRNAs and siRNAs typically have extensive complementarity to their targets 

and are methylated, whereas miRNAs interact with only partial complementarity and are 

not methylated (Ozata et al., 2019). In Drosophila, methylation protects extensively 

base-paired small RNAs from target-directed trimming and tailing, thus explaining the 

link between target complementarity and methylation (Ameres et al., 2010). However, 

this simple complementarity rule for whether or not a class of small RNAs is methylated 

cannot be strictly applied to C. elegans, as most siRNAs, which share perfect 

complementarity to their targets, are not methylated (Billi et al., 2012; Kamminga et al., 

2012; Montgomery et al., 2012). The only class of small RNAs, aside from piRNAs, that 

is thought to be methylated in C. elegans is one of two branches of the 26G-RNA 

pathway involving the Argonaute ERGO-1 (Billi et al., 2012; Kamminga et al., 2012; 

Montgomery et al., 2012; Ruby et al., 2006; Vasale et al., 2010). 

C. elegans bearing mutations in the HEN1 ortholog henn-1 display only modest loss of 

fertility under normal growth conditions (Billi et al., 2012; Kamminga et al., 2012; 

Montgomery et al., 2012). Here, however, we discover a critical role for henn-1 in 

preserving fertility and germline integrity from one generation to the next as we explore 

its role in piRNA, miRNA, and RNAi pathways in the worm. 

Results. henn-1 Is Required for Transgenerational Fertility. In C. elegans, the Piwi 

ortholog prg-1 promotes germline immortality. In the absence of prg-1, sterility ensues 

over ∼35–80 generations (Simon et al., 2014). Given the presumed role of HENN-1 in 

methylating the 3′ ends of piRNAs to promote their stability, we used two separate 
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approaches to test if, like prg-1, henn-1 is required for germline immortality. In the first 

set of experiments, modeled after Buckley et al. (2012), we measured the number of 

progeny produced from recently outcrossed (3×) henn-1(pk2295) mutants across ∼28 

generations at 25°C. In parallel, we measured the brood sizes of wild-type animals and 

freshly outcrossed (1×) prg-1(n4357) mutants as controls. At ∼5 generations, the first 

generation at which measurements were taken, both henn-1 and prg-1 mutants 

displayed modest reductions in the numbers of progeny they produced relative to wild-

type animals (p values = 0.00004 and 0.00002, respectively) (Figures 2.1A and S1A). 

By ∼28 generations, the mean numbers of progeny produced by henn-1 and prg-1 

mutants had diminished to 8 and 23, respectively, compared to 201 in wild-type (p = 

0.00007 and p = 0.0002, respectively, for comparisons to wild-type), and many of the 

mutant animals were sterile (Figures 2.1A and S1A). 

The NL4415[henn-1(pk2295)] strain used in these experiments has been 

propagated over numerous generations and may have acquired background mutations 

that could contribute to defects in fertility. Thus, we repeated the brood size experiments 

with a fresh henn-1 deletion allele generated using CRISPR-Cas9. The new henn-

1(ram13) allele displayed fertility rates indistinguishable from wild-type animals at ∼5 

generations when grown at 25°C (p = 1.0). After ∼20 generations, however, animals 

containing the fresh henn-1 deletion produced only 33 progeny/animal on average and  
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Figure 2.1. Sterility Ensues in the Absence of henn-1. (A) Brood sizes at ∼5 

generations (wild-type, n = 12; henn-1, n = 17; prg-1, n = 15), ∼15 generations (wild-

type, n = 10; henn-1, n = 15; prg-1, n = 13), and ∼28 generations (wild-type, n = 

13; henn-1, n = 15; prg-1, n = 15). The numbers of sterile animals at ∼28 generations 

are shown. p < 0.002 for all comparisons to wild-type (see Figure S1A). Error bars 

report standard deviation. (B) Brood sizes at ∼5 generations (wild-type, n = 14; henn-1, 

n = 12) and ∼20 generations (wild-type, n = 12; henn-1, n = 11). The numbers of sterile 

animals at ∼20 generations are shown. Individual data points and p values are 
in Figure S1B. Error bars report standard deviation. (C) The genetics-based approach 
used to reestablish WAGO-class 22G-RNA production and, thus, endogenous RNAi 
in henn-1+/+ or henn-1−/− animals. RNAi competency is indicated by RNAi+ or RNAi−. 
(D) Mean percentage of F1 progeny from the crosses illustrated in (C) that were sterile 
(n = 2 biological replicates each assaying the progeny from 7–27 crosses). Error bars 



	 27	

report standard deviation. (E) Same as in (D) but with the henn-1(ram13) allele. 
The henn-1 genotype is indicated and because both parents are homozygous mutant or 
wild-type for henn-1, the genotype applies to both the P0 parents and the F1 progeny 
(n = 4 independent experiments each assaying the progeny from 11–34 crosses). Error 
bars report standard deviation. (F) Differential interference contrast (DIC) and GFP 
fluorescence images of the diminutive germlines of sterile glh-1::GFP; henn-
1(pk2295) animals. An image of the germline of a glh-1::GFP animal wild-type for henn-
1 is shown as a control. Strains were grown at 25°C for 10 generations. The colored 
bars under the images relate to the key in (G). (G) Numbers of henn-1+/+ and henn-
1−/− animals displaying germline defects exemplified in (F), as indicated in the key. 
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exhibited a high incidence of sterility, whereas wild-type animals produced 169 progeny 

on average and were all fertile (p = 0.0009 for comparison to wild-type) (Figures 2.1B 

and S1B). 

We then used a second assay for transgenerational fertility, modeled after Simon et 

al. (2014), in which we followed the fertility of 10 independent henn-1(pk2295) and prg-

1(n4357) mutant lines, scoring at every generation whether or not each line was fertile. 

All of the henn-1 mutant lines had become sterile by 29 generations at 25°C (Figure 

S1C). However, sterility occurred after only 12 generations in prg-1 mutants (Figure 

S1C). Additionally, prg-1 mutants displayed progressive sterility at 20°C across 30 

generations, whereas henn-1 mutants did not (Figure S1D). 

To determine if the 3′-2′-O-methyltransferase activity of henn-1 is required for 

transgenerational fertility, we tested whether animals containing a mutation that disrupts 

the catalytic site of henn-1 also display a progressive decline in fertility. Indeed, 

between 1 and 10 generations at 25°C, henn-1(pk2452) mutants displayed an ∼55% 

reduction in the mean number of progeny they produced (p = 0.0072) (Figure S1E). 

Finally, to determine if defects in piRNA function are likely responsible for the 

transgenerational sterility of henn-1 mutants, we assessed whether the loss of the other 

class of small RNAs presumed to be methylated in C. elegans, ERGO-1-class 26G-

RNAs, affects fertility. Mutations in ergo-1 did not cause transgenerational sterility 

(Figures S1C and S1D). Therefore, our results suggest that henn-1, and hence 

presumably methylation, is important for the role of piRNAs in maintaining germline 

immortality, although it is possible that henn-1 has additional unknown roles that 

contribute to its phenotype. 
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Sterility Ensues after Reestablishing WAGO-Class 22G-RNA Production in the 

Absence of henn-1. Disabling both the piRNA pathway and the WAGO-class 22G-RNA 

pathway and then restoring just the WAGO pathway causes sterility, despite neither 

pathway being essential for fertility under normal conditions (de Albuquerque et al., 

2015; Phillips et al., 2015). In the animals in which the WAGO pathway is restored in the 

absence of piRNAs, essential genes are misrouted into the RNAi pathway for silencing 

(de Albuquerque et al., 2015; Phillips et al., 2015). It is not clear if this role for piRNAs in 

preventing silencing of essential genes is related to its role in maintaining germline 

immortality. However, given that henn-1 is required for piRNA stability, we tested if it is 

also required for fertility upon reestablishing the WAGO pathway. To reestablish the 

WAGO pathway, we crossed two strains containing distinct mutations, mut-16 or mut-14 

smut-1, that cause loss of WAGO-class 22G-RNAs, such that their progeny received 

functional copies of mut-14 and smut-1 from one parent and a functional copy of mut-16 

from the other parent. Thus, although neither parent was capable of WAGO-class 22G-

RNA formation, the pathway was restored in their progeny (Figure 2.1C). If henn-1 is 

required for the role of piRNAs in establishing proper RNA silencing, we would predict 

that introducing a henn-1 mutation into the two strains used to reestablish the WAGO 

pathway would lead to sterility in the offspring of the cross, as we previously showed 

occurs when the two strains contain mutations in prg-1 (Phillips et al., 2015). Indeed, 

the vast majority of henn-1 mutants in which WAGO-class 22G-RNA production was 

restored were sterile, whereas, in the presence of henn-1, most animals were fertile (p = 

0.02 for the differences between henn-1+/+ and henn-1−/−) (Figure 2.1D). 
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Reactivating WAGO-class 22G-RNA production causes sterility specifically in the 

absence of maternally contributed prg-1 (de Albuquerque et al., 2015; Phillips et al., 

2015). To determine if, similarly, a maternal contribution of henn-1 is specifically 

required for fertility when reestablishing WAGO-class 22G-RNA production, we set up 

crosses to reactivate the WAGO pathway in which only one parent was mutant for 

henn-1. The progeny of animals that received a paternal, but not a maternal, 

contribution of wild-type henn-1 were mostly sterile (Figure 2.1D). In contrast, progeny 

that received a maternal contribution of wild-type henn-1, regardless of whether they 

received a paternal contribution of wild-type henn-1, were mostly fertile, indicating that, 

like prg-1, a maternal contribution of henn-1 is required for fertility when reestablishing 

WAGO-class 22G-RNA production (Figure 2.1D). It is unlikely that background 

mutations are responsible for the sterility that ensues after restoring the WAGO 

pathway, as both old and new alleles of henn-1 displayed similar proportions of sterile 

animals (∼83%–90%) (Figures 2.1D and 2.1E). 

We next assessed whether henn-1 mutants display germline atrophy or defects in 

germ cell proliferation similar to those exhibited by prg-1/piwi mutants as they go sterile 

either over multiple generations or upon reestablishing WAGO-class 22G-RNA 

production (de Albuquerque et al., 2015; Heestand et al., 2018; Phillips et al., 2015). To 

do so, we introduced a germ cell marker, glh-1::GFP (Andralojc et al., 2017), into henn-

1(pk2295) mutants and examined adult animals after several generations at 25°C. At 

ten generations, many of the glh-1::GFP; henn-1(pk2295) mutants were sterile and 

displayed diminutive and underproliferated germlines reminiscent of sterile prg-1 

mutants (Figures 2.1F and 2.1G) (de Albuquerque et al., 2015; Heestand et al., 2018; 
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Phillips et al., 2015). Thus, henn-1 is required for proper maintenance of the germline 

over multiple generations. That henn-1 and prg-1 have a similar impact on germline 

integrity is further evidence that henn-1 is important for the role of piRNAs in preserving 

generational fertility. 

henn-1 Impacts WAGO-Class 22G-RNA Formation throughout Development. henn-

1 is required for piRNA accumulation in embryos and L1 larvae but mostly dispensable 

later in development (Billi et al., 2012). This suggests that methylation may not be 

required for piRNA stability in the proliferating germline. To assess the impact of henn-1 

on piRNA stability in the germline, we sequenced small RNAs from dissected distal 

gonads of adult animals, which are comprised primarily of germ cells (Pazdernik and 

Schedl, 2013), from wild-type and henn-1 mutants. We also sequenced small RNAs 

from mixed-stage embryos, which have a variable number of somatic cells but contain 

only two germline precursor cells. To determine if piRNAs are more susceptible to 

decay in the germline precursor cells of embryos compared to the proliferated germlines 

of adults, an indicator of which is trimming or truncation at the 3′ ends, we calculated the 

proportions of piRNA reads that displayed 1- to 5-nt truncations in our high-throughput 

sequencing libraries. In henn-1 mutant embryos, we observed an ∼2.9-fold increase in 

the proportion of piRNAs that were truncated relative to wild type (p = 0.00005), 

whereas in gonads, we observed a more modest 1.5-fold increase (p = 0.002) (Figures 

2.2A and 2.2B ). piRNA trimming in gonads was almost exclusively limited to 1 nt, 

whereas in embryos we observed 1- to 2-nt truncations (Figure 2A). To determine if the 

elevated levels of piRNA truncations in henn-1 mutants corresponded to a reduction in 

mature piRNA levels, we used TaqMan qRT-PCR, to measure the levels of three  
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Figure 2.2. Requirement for henn-1 in piRNA Stability and WAGO-Class 22G-RNA 
Production. (A) The proportions of total high-throughput sequencing reads for piRNAs 
and WAGO-class 22G-RNAs in embryos and dissected gonads are plotted by size. 
Mean reads per library are shown as thousand reads per million total mapped reads 
(kRPM) (n = 3 biological replicates). Error bars report standard deviation. (B) The 
proportions of total piRNA reads that display 1- to 5-nt truncations (mean trimmed 
reads/total reads) in embryos and dissected gonads (n = 3 biological replicates). Error 
bars report standard deviation. (C and D) qRT-PCR assay of three piRNAs in embryos 
(C) and dissected gonads (D) (n = 3 biological replicates for each assay). The mean 
cycle threshold (ct) value is shown for each assay. piRNA ct values were normalized to 
miR-35 ct values. Error bars report standard deviation. (E) Northern blot of the piRNA 
21UR-1 in embryos and adults. Ethidium bromide (EtBr)-stained tRNAs are shown as a 
loading control. Two of three biological replicates are shown. (F) Normalized WAGO-
class 22G-RNA reads (reads per million total mapped reads) in wild type (x axis) 
and henn-1(pk2295) (y axis). Data from embryos, L4 larvae, and gravid adults are 
shown (no biological replicates). (G) Venn diagram displaying the overlap in genes 
depleted of WAGO-class 22G-RNAs by >50% in henn-1(pk2295) embryos, L4 larvae, 
and adults. 
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piRNAs. Unlike high-throughput sequencing library preparation, TaqMan small RNA 

qRT-PCR is not thought to be hindered by 3′ methylation. Each of the piRNAs tested 

was strongly depleted in henn-1 mutant embryos, indicating that the relatively high 

levels of truncations we observed in embryos were coincident with their decay (p ≤ 0.01) 

(Figure 2.2C). In contrast, we did not detect any differences in piRNA levels in henn-1 

mutant gonads, despite the modest increase we observed in piRNA trimming (p = 0.5–

1.0) (Figure 2.2D). To confirm our qRT-PCR results, we examined 21UR-1 by northern 

blot. Consistent with our qRT-PCR results, 21UR-1 levels were strongly depleted in 

henn-1-mutant embryos but appeared unchanged in henn-1-mutant adults relative to 

wild-type animals (Figure 2.2E). Our results suggest that henn-1, and thus presumably 

methylation, is important for protecting piRNAs from decay in early embryos but is 

largely dispensable in the proliferated germline of adult animals. 

piRNAs trigger secondary siRNA (WAGO-class 22G-RNA) production from their 

targets, and consequently, 22G-RNA production from many WAGO target genes is 

reduced in prg-1 mutants (Lee et al., 2012). To identify the requirement for henn-1 in 

triggering WAGO-class 22G-RNA production, we subjected small RNAs from wild-type 

and henn-1(pk2295) mutant embryos, L4 larvae, and gravid adults to high-throughput 

sequencing. In each of the developmental stages, we observed a similar modest loss of 

22G-RNAs from WAGO targets in henn-1 mutants (Figure 2.2F). Consistent with 

previous studies, WAGO-class 22G-RNAs did not display 3′ truncations in the absence 

of henn-1, indicating that they are indirectly affected by loss of henn-1 activity (Figure 

2.2A) (Billi et al., 2012; Kamminga et al., 2012; Montgomery et al., 2012). A total of 

∼75% of WAGO targets depleted of 22G-RNAs in henn-1 mutant adults were also 
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depleted of 22G-RNAs in prg-1 mutants, indicating that henn-1 primarily affects piRNA-

dependent 22G-RNAs (Figure S2) (Phillips et al., 2015). The majority of WAGO target 

genes depleted of 22G-RNAs >50% in embryos were also depleted of 22G-RNAs >50% 

in adults and L4 stage larvae (Figure 2.2G). These results suggest that henn-1 impacts 

piRNA-dependent 22G-RNA production throughout development despite the 

requirement for henn-1 in piRNA stability being restricted to early stages of 

development. 

Loss of henn-1 has little impact on gene expression in the germline 

because the loss of henn-1 has a modest impact on the health of animals grown at 

20°C (Billi et al., 2012; Kamminga et al., 2012; Montgomery et al., 2012), we could 

examine its role in regulating gene expression in the germline, where piRNAs are 

active, without developmental defects confounding the results. However, a caveat to 

this approach is that henn-1 is not required for piRNA stability in adults, the stage at 

which we are able to dissect germline tissue. Nonetheless, because many piRNA-

dependent 22G-RNAs are depleted in henn-1 mutant adults at 20°C, we could then 

assess the impact of their loss on germline gene expression. Therefore, we did mRNA 

sequencing using the same wild-type and henn-1(pk2295) RNA samples from adult 

gonads that were used for the small RNA high-throughput sequencing analysis 

described above (Figures 2.2A and 2.2B). We then performed differential gene 

expression analysis applying an arbitrary 1.3-fold change cutoff, which excludes many 

genes that are differentially expressed based on a false discovery rate of 0.05 but which 

increases the likelihood that differences observed are biologically relevant. As we 

predicted based on the health of the animals at 20°C, only modest changes in mRNA 
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expression were observed in henn-1 mutants relative to wild-type animals, with 238 

genes significantly upregulated and 50 genes significantly downregulated >1.3-fold 

(Figure 2.3A; Table S1). 

In parallel, we performed differential expression analysis of small RNAs from these 

samples, which we had earlier used in our trimming analysis, to assess more 

comprehensively the impact of henn-1 on 22G-RNA levels. We identified 1,084 WAGO 

target genes that were depleted of 22G-RNAs >1.3-fold (Figure 2.3B; Table S2). A small 

subset of genes targeted by CSR-1, an Argonaute implicated in licensing genes for 

expression (Claycomb et al., 2009; Seth et al., 2013; Wedeles et al., 2013), also 

displayed altered levels of 22G-RNAs (Figure 2.3B; Table S2). piRNA levels in our 

sequencing data appeared elevated in henn-1 mutants, likely due to increased capture 

efficiency, as 3′-2′-O-methylation inhibits RNA ligation and reverse transcription during 

library preparation, despite our efforts to minimize such biases (Table S2) (Munafó and 

Robb, 2010). 

Among the upregulated genes, 20% are histones, representing each of the core 

families—H2A, H2B, H3, and H4 (Figures 2.3C and S3A; Table S1). As these are 

multicopy gene families and the effects are modest (1.35- to 1.86-fold), it is unclear 

what impact this might have on the chromatin landscape. A small subset of histone 

genes had reduced levels of 22G-RNAs in henn-1 mutants, suggesting that henn-1-

dependent 22G-RNAs may have a role in regulating histones, although it is possible 

that altered cell physiology in henn-1 mutants indirectly impacts histone levels (Figure 

S3A; Table S2). The levels of several genes involved in RNAi—sid-1, rde-11, and wago-

4—were modestly reduced in henn-1 mutants, each of which also had reduced levels in  
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Figure 2.3. Differential Expression of mRNAs and Small RNAs in henn-1 Gonads. 
(A) Scatterplot displaying each gene as the average number of normalized reads in wild 
type (x axis) and henn-1(pk2295) (y axis) (n = 3 biological replicates). Grey lines are at 
−2-, 1-, and 2-fold change relative to wild type. Dashed lines are at 10 reads on each 
axis. (B) Scatterplot displaying each WAGO and CSR-1 target gene as the average 
number of normalized small RNA reads in wild type (x axis) and henn-1(pk2295) (y axis) 
(n = 3 biological replicates). (C) Pie charts displaying the proportions of genes 
upregulated or downregulated in henn-1(pk2295) (p < 0.05) belonging to each of the 
indicated classes. (D) Scatterplot displaying each transposon family as the average 
number of normalized mRNA reads in wild type (x axis) and henn-1(pk2295) (y axis) 
(n = 3 biological replicates). (E) Scatterplot displaying each transposon family as the 
average number of normalized small RNA reads in wild type (x axis) and henn-
1(pk2295) (y axis) (n = 3 biological replicates). (F) mRNA and small RNA read 
distribution across the MIRAGE transposon consensus sequence. One of three 
biological replicates is shown. (G) Scatterplot displaying fold change in mRNA levels 
in henn-1(pk2295) relative to wild type for each gene depleted of 22G-RNAs >1.3-fold 
in henn-1(pk2295). (H) Venn diagrams displaying the overlap between genes depleted 
of 22G-RNAs in henn-1(pk2295) and genes that yield 22G-RNAs enriched >1.3-fold in 
WAGO-1 or HRDE-1 coIPs. The three-way Venn diagram is a combination of the two-
way Venn diagrams. 
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henn-1 in a microarray-based study using whole animals (Figures 2.3C and S3B-S3D; 

Table S1) (Kamminga et al., 2012). sid-1 and rde-11 are required for optimal exogenous 

RNAi, and their downregulation could explain the reduced RNAi efficiency previously 

observed in henn-1 mutants (Billi et al., 2012; Kamminga et al., 2012; Winston et al., 

2002; Yang et al., 2012; Zhang et al., 2012). WAGO-4 transports siRNAs from parent to 

progeny to promote multigenerational RNAi, and thus, its misregulation may have a role 

in the transgenerational sterility of henn-1 mutants (Wan et al., 2018; Xu et al., 2018). 

However, wago-4 levels were reduced by only ∼1.3-fold in henn-1 mutants, suggesting 

that other factors likely contribute to the transgenerational sterility of henn-1 mutants. 

As piRNAs are well known for their role in regulating transposons, we used a more 

targeted approach to assess the role of henn-1 in transposon regulation. We aligned our 

RNA sequencing (RNA-seq) reads from wild-type and henn-1 mutants to each of 152 

transposon family consensus sequences and compared the levels of small RNAs and 

mRNAs produced from each family (Jurka, 2000). Only five transposon families were 

misregulated in henn-1 mutants, most notably MIRAGE, which was upregulated ∼4-fold 

and is also upregulated in prg-1 mutants (Figure 2.3D; Table S3) (McMurchy et al., 

2017). Desilencing of MIRAGE is partially responsible for the sterility of several 

heterochromatin factor mutants linked to small-RNA-mediated gene silencing 

(McMurchy et al., 2017). Most 22G-RNAs produced from MIRAGE were upregulated in 

henn-1, contrary to what would be expected if these siRNAs were involved in RNA 

silencing (Figures 2.3E and 2.3F; Table S3). It is possible that MIRAGE is indirectly 

affected by henn-1, although given that it is also upregulated in prg-1 mutants, it may be 

that other elements of the pathway obscure the relationship between 22G-RNA 
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production and RNA silencing. We, therefore, examined the relationship between henn-

1-dependent 22G-RNAs and mRNA misregulation in henn-1 mutants more generally. 

Genes depleted of 22G-RNAs in henn-1 mutants had a tendency to be upregulated, 

although there was considerable variation and some were instead downregulated 

(Figure 3G). This inconsistency could be due to complex feedback between mRNA 

expression and 22G-RNA production. The numbers of predicted piRNA target sites in 

mRNAs misregulated in henn-1 mutants, as determined by sequence complementarity 

and by PRG-1-mRNA co-immunoprecipitation (coIP) (CLASH), were similar between 

genes that were upregulated and those that were downregulated (Table S1) (Shen et 

al., 2018; Wu et al., 2019; Zhang et al., 2018). However, all but one misregulated gene 

had multiple predicted piRNA target sites in at least one of the two target prediction 

methods, and it is not clear which genes are bona fide piRNA targets (Table S1). 

Further studies exploring the relationship between piRNA-mRNA interactions and gene 

expression may shed light on these results. 

HRDE-1 is a nuclear Argonaute that associates with a subset of WAGO-class 22G-

RNAs and is required for RNAi inheritance, piRNA-mediated transgenerational gene 

silencing, and at 25°C for transgenerational fertility (Ashe et al., 2012; Buckley et al., 

2012; Luteijn et al., 2012; Shirayama et al., 2012). Because henn-1 is also required for 

transgenerational fertility at 25°C and for piRNA stability and may, therefore, promote 

the production of HRDE-1-associated 22G-RNAs, we examined the overlap between 

22G-RNAs that are henn-1-dependent and those that associate with HRDE-1 or with 

WAGO-1, a WAGO Argonaute not implicated in transgenerational inheritance. Of the 

∼1,100 genes depleted of 22G-RNAs in henn-1 mutants, ∼66% were enriched for 22G-
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RNAs that co-immunoprecipitated (coIP’d) with a FLAG::HRDE-1 fusion protein (Figure 

3H; Table S4). Only ∼40% were enriched for 22G-RNAs that coIP’d with 

GFP::FLAG::WAGO-1, the majority of which also coIP’d with HRDE-1 (Figure 2.3H; 

Table S4). 

Together, our results indicate that henn-1 is important for the production of piRNA-

dependent and HRDE-1-associated 22G-RNAs. However, the consequence of the loss 

of henn-1 on gene expression in the adult germline is modest under the optimal growing 

conditions in which our experiments were done. Given that growth at elevated 

temperatures over multiple generations exacerbates the henn-1 phenotype, more 

dramatic defects in gene expression almost certainly underlie the progressive sterility of 

henn-1 mutants. Unfortunately, the severe germline defects that occur under such 

conditions would complicate germline dissections and confound RNA-seq analysis of 

gene expression. 

Exogenous siRNAs Are Modified at Their 3′ Ends. Both classes of small RNAs that 

are presumably methylated in C. elegans, piRNAs, and ERGO-1-class 26G-RNAs are 

thought to function primarily to trigger WAGO-class 22G-RNA production (Figure 2.4A) 

(Billi et al., 2014). Thus, we hypothesized that methylation is specific to small RNAs that 

act upstream of the WAGO pathway. Exogenous siRNAs produced from dsRNA 

administered during RNAi treatment bind to the Argonaute RDE-1 and like piRNAs and 

ERGO-1-class 26G-RNAs act as primary small RNAs to trigger 22G-RNA production 

(Pak and Fire, 2007; Sijen et al., 2007; Tabara et al., 2002). If methylation is specific to 

primary small RNAs upstream of WAGO-class 22G-RNAs, exogenous siRNAs should 

also be methylated. To address this, we did RNAi against the endogenous gene pos-1  
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Figure 2.4. Primary siRNAs Are Modified at Their 3′ Ends. (A) Model depicting the 
interplay between RNA surveillance and WAGO-class 22G-RNA production by the RNAi 
pathway. (B) Size distribution and 5′ nucleotide composition of pos-1 siRNAs 
following pos-1 RNAi, as determined by high-throughput sequencing. Small RNAs were 
treated with sodium periodate (oxidation) to enrich for methylated small RNAs or 
subjected to a control treatment prior to library preparation. The “1° siRNAs” plot 
corresponds to libraries in which the small RNAs were not treated with RNA 5′ 
polyphosphatase and, thus, do not include di- and tri-phosphorylated small RNAs (e.g., 
22G-RNAs). The “All siRNAs” plot corresponds to libraries in which the small RNAs 
were treated with RNA 5′ polyphosphatase and, thus, include both 1° and 2° siRNAs. 
(C) Small RNA read distribution across pos-1 from wild-type high-throughput 
sequencing libraries in which the small RNAs were treated with sodium periodate 
(oxidation +) and RNA 5′ polyphosphatase (polyphosphatase +) as indicated. (D) Bar 
plots displaying normalized reads (reads per million total mapped reads) mapping 
to pos-1 following sodium periodate (oxidation +) or control treatment (oxidation −). The 
plots on the left are from wild-type animals, and the plot on the right is from glp-
4(bn2) mutants, which lack proliferated germlines and for which only primary siRNAs 
are shown. (E) Small RNA read distribution across pos-1 from glp-4(bn2) high-
throughput sequencing libraries in which the small RNAs were treated with sodium 
periodate (oxidation +) and RNA polyphosphatase (polyphosphatase +) as indicated. 
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in wild-type animals and tested whether primary and secondary siRNAs (i.e., WAGO-

class 22G-RNAs) corresponding to pos-1 were modified at their 3′ ends by using a high-

throughput sequencing approach. To enrich for small RNAs containing 3′ modifications, 

a fraction of the small RNA sample from animals undergoing pos-1 RNAi was treated 

with sodium periodate, an oxidizing agent that disrupts the 3′ base of unmethylated, but 

not 2′-O-methylated, small RNAs, thereby inhibiting adaptor ligation to the 3′ end (Seitz 

et al., 2008). Although sodium periodate treatment does not directly assess methylation, 

it is a widely used proxy that is not known to be confounded by other small RNA 

chemical modifications (Yu and Chen, 2010). The other fraction was treated similarly 

but was not oxidized. Each of the two fractions was further split between an RNA 5′ 

polyphosphatase treatment, which reduces the triphosphate group found on 22G-RNAs 

to monophosphate, thereby enabling capture by 5′ ligation during small RNA library 

preparation (Pak and Fire, 2007; Sijen et al., 2007), and a control treatment. The 

fractions treated with RNA 5′ polyphosphatase would presumably yield mostly 22G-

RNAs, as this class of small RNAs is far more abundant than primary siRNAs (Pak and 

Fire, 2007; Sijen et al., 2007). The fractions that were not treated with RNA 5′ 

polyphosphatase would likely exclude 22G-RNAs because of an adaptor-ligation-

incompatible 5′ triphosphate group. The four small RNA fractions were subjected to 

library preparation and high-throughput sequencing. 

Small RNAs derived from pos-1 in both oxidized and non-oxidized libraries in which 

the small RNAs were not treated with RNA 5′ polyphosphatase displayed features 

associated with primary siRNAs: similar proportions of 22- and 23-nt species, little or no 

bias for a 5′ G, and production from both sense and antisense strands of the dsRNA 
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administered to the animals to elicit RNAi (Figures 2.4B and 2.4C) (Zhang et al., 2012). 

These presumptive primary siRNAs were enriched >2-fold by oxidation, indicating that 

at least a subset is modified at their 3′ ends (Figure 2.4D). Libraries in which the small 

RNAs were not subjected to oxidation but were treated with RNA 5′ polyphosphatase 

displayed strong enrichment of small RNAs with features characteristic of 22G-RNAs: 

predominant length of 22 nts, strong bias for a 5′G, and production antisense to pos-1 

mRNA (Figures 2.4B and 2.4C). Oxidation of small RNAs treated with RNA 5′ 

polyphosphatase caused a depletion in these presumptive secondary siRNAs derived 

from pos-1 (Figure 2.4D). Furthermore, the length, 5′ nt distribution, and strand polarity 

of the small RNAs in this library resembled that of primary siRNAs, indicating that the 

more abundant 22G-RNAs were depleted and, hence, largely unmethylated (Figures 

2.4B and 2.4C). In parallel, we assessed whether primary siRNAs are specifically 

modified in the germline or if somatic siRNAs are also modified. In glp-4(bn2) animals, 

which fail to undergo germline proliferation when grown at 25°C (Beanan and Strome, 

1992), we did not capture small RNAs aligning to pos-1 that resembled 22G-RNAs (i.e., 

22-nt-long reads containing a 5′G) regardless of whether the small RNAs were treated 

with RNA 5′ polyphosphatase (Figure 2.4E). This is likely because pos-1 is expressed in 

the germline and, as a consequence, germline-less glp-4 mutants lack an mRNA 

template for 22G-RNA production. Primary siRNAs, which are derived from the dsRNA 

administered to the animals and, therefore, not dependent on an endogenous mRNA 

template, were strongly enriched by oxidation, suggesting that at least a subset of 

somatic primary siRNAs is also modified (Figures 2.4D). 
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We next assessed whether the 3′ modification that we identified on primary siRNAs 

is dependent on henn-1 by sequencing small RNAs from wild-type and henn-1(pk2295) 

mutant animals undergoing pos-1 RNAi. As before, the small RNAs were split into 

oxidized and non-oxidized fractions; however, each fraction was treated with RNA 5′ 

polyphosphatase and, thus, both primary and secondary siRNAs were captured. 

Nonetheless, we could distinguish primary siRNAs from secondary siRNAs by their 

polarity, as any sense-strand siRNAs are presumably produced from the dsRNA 

administered to the animals and are, thus, primary siRNAs. In wild-type animals, sense 

strand siRNAs were enriched ∼5-fold in the library from oxidized small RNAs relative to 

the non-oxidized counterpart, consistent with our earlier conclusion that primary siRNAs 

are modified (Figure S4). In henn-1(pk2295) mutants, however, there was no 

discernable difference between primary siRNA levels in the oxidized and non-oxidized 

libraries, indicating that the 3′ modification on these small RNAs is lost in henn-1 

mutants (Figure S4). 

henn-1 promotes germline RNAi for reasons unknown, although its role in somatic 

RNAi is confounded by its effect on the ERGO-1-class 26G-RNA pathway, which, when 

disrupted, enhances RNAi and could, thus, counter modest RNAi defects (Billi et al., 

2012; Kamminga et al., 2012; Yigit et al., 2006). Our results indicating that exogenous 

primary siRNAs are methylated may explain why henn-1 mutants are partially RNAi-

defective in the germline. It is possible, however, that the reduction in sid-1 and rde-11 

mRNA levels we identified by RNA-seq also contributes to the reduced RNAi sensitivity 

of henn-1 mutants, as these genes are also required for optimal RNAi (Winston et al., 

2002; Yang et al., 2012; Zhang et al., 2012). Our results also demonstrate that each 
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class of small RNAs that acts upstream of the WAGO-class 22G-RNA pathway contains 

a henn-1-dependent 3′ modification. Because HENN-1 is a 3′ methyltransferase, these 

results suggest that methylation is uniquely associated with primary small RNAs. 

Subpopulations of miRNAs Contain 3′-End Modifications. In addition to binding 

primary siRNAs during RNAi, RDE-1 interacts with miRNAs (Corrêa et al., 2010). 

miRNAs are not generally methylated in C. elegans (Billi et al., 2012; Kamminga et al., 

2012; Montgomery et al., 2012), but given our data suggesting that primary siRNAs, 

which bind RDE-1, are methylated, we tested whether a subset of miRNAs, particularly 

those bound by RDE-1, might also be methylated. To individually assess miRNA 3′-end 

modifications, we sequenced small RNAs from wild-type animals after treating the RNA 

with the oxidizing agent sodium periodate or a control. Consistent with previous studies, 

piRNAs and ERGO-1-class 26G-RNAs were enriched in libraries prepared from 

oxidized small RNAs, indicating that they are modified at their 3′ ends (Figure 2.5A) (Billi 

et al., 2012; Kamminga et al., 2012; Montgomery et al., 2012; Ruby et al., 2006; Vasale 

et al., 2010). Other classes of small RNAs were largely depleted in the oxidized 

libraries, although a subset of WAGO-class 22G-RNAs was also modestly enriched, 

which we did not explore further (Figure 2.5A). Six small RNAs annotated as miRNAs 

were enriched in libraries from oxidized small RNAs (Figure 2.5A). Upon closer 

inspection, two of these small RNAs, miR-78 and miR-4936, bear hallmarks of 

piRNAs—21 nt long, contain a 5′ U, and are depleted in prg-1 mutants (Phillips et al., 

2015)—suggesting that they are misannotated. Hence, we identified four high-

confidence miRNAs, namely, miR-232-5p, miR-240-5p, miR-789, and miR-4814-3p, that 

were enriched by oxidation and are, therefore, modified at their 3′ ends. Each of these 
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Figure 2.5. Accumulation of Modified miRNAs and Primary siRNAs Is Dependent 
on rde-1(A) Scatterplot displaying each small RNA feature (miRNA, piRNA, WAGO-
class 22G-RNA locus, CSR-1-class 22G-RNA locus, ALG-3/4-class 26G-RNA locus, 
and ERGO-1-class 26G-RNA locus) as the average number of normalized reads in 
control (x axis, ox−) and oxidized small RNA libraries (y axis, ox+) (n = 3 biological 
replicates). Data are from wild-type L4-stage animals. (B) The proportions of total reads 
for each miRNA in L4 larvae are plotted by size. The “all miRNAs” plot corresponds to 
the combined proportions of reads for all annotated miRNAs. The data do not contain 
biological replicates. (C) Enrichment or depletion of the indicated classes of small RNAs 
in GFP::FLAG::RDE-1 coIPs relative to cell lysates. Data are shown for 1 of 2 biological 
replicates. (D) Scatterplot displaying each miRNA as its enrichment in 
GFP::FLAG::RDE-1 coIPs relative to cell lysates from adult animals wild type (henn-
1+/+) (x axis) or mutant for henn-1 (henn-1(pk2295)) (y axis). Dashed lines are at 1-fold 
enrichment on each axis. (E) Scatterplot displaying each small RNA feature, as in (A), 
as the average number of normalized reads in control (x axis, ox−) and oxidized small 
libraries (y axis, ox+) (n = 3 biological replicates). Data are from rde-1(ne219) L4-stage 
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animals grown in parallel to the wild-type animals used in (A). (F) miR-240-5p and miR-
240-3p reads in rde-1(ne219) relative to wild type (n = 3 biological replicates). Error bars 
report standard deviation. (G) miR-240-5p and miR-240-3p reads in wild type and rde-
1(ne219) from small RNA libraries treated with sodium periodate (oxidation +) relative to 
libraries receiving a control treatment (oxidation −) (n = 3 biological replicates). Error 
bars report standard deviation. (H) Read distribution across the F43E2.6 siRNA-
generating locus from GFP::FLAG::rde-1 cell lysate (input, top plot) and 
GFP::FLAG::RDE-1 coIP small RNA libraries (bottom plot). The most abundant siRNA 
duplex produced from the locus is shown. Enrichment in the GFP::FLAG::RDE-1 coIP 
relative to the input is shown for each siRNA. (I) F43E2.6 sense and antisense siRNA 
reads in rde-1(ne219) relative to wild type (n = 3 biological replicates). Error bars report 
standard deviation. (J) F43E2.6 sense and antisense siRNA reads in wild type and rde-
1(ne219) from small RNA libraries treated with sodium periodate (oxidation +) relative to 
libraries receiving a control treatment (oxidation −) (n = 3 biological replicates). Error 
bars report standard deviation. 
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miRNAs was previously shown to interact with RDE-1 (Corrêa et al., 2010). Three of the 

four miRNAs enriched by oxidation in wild-type animals were truncated in henn-1 

mutants, indicating that henn-1 protects them from 3′ trimming and is, thus, likely 

responsible for modifying their 3′ ends (Figure 2.5B). The levels of the fourth miRNA 

miR-4814-3p did not pass our read threshold (10 reads per million total) in our wild-type 

and henn-1(pk2295) set of libraries and was not analyzed. These data suggest that a 

subset of miRNAs is modified at their 3′ ends, and because this modification requires 

henn-1, we conclude that they are likely methylated. 

miRNA and Primary siRNA 3′ Modifications Are Dependent on rde-1. To determine 

if RDE-1 could have a role in promoting small RNA methylation or, alternatively, if small 

RNA methylation might promote RDE-1 association, we first coIP’d RDE-1 from a strain 

in which a GFP::FLAG cassette was integrated into the endogenous rde-1 locus using 

CRISPR-Cas9. Consistent with a previous study in which RDE-1 was coIP’d from an 

overexpression line, GFP::FLAG::RDE-1 predominantly associated with miRNAs 

(Figure 5C) (Corrêa et al., 2010). miRNA association with RDE-1 was not dependent on 

methylation, as GFP::FLAG::RDE-1 largely bound the same miRNAs in both wild-type 

and henn-1(pk2295) mutants (Figure 2.5D). 

We next tested whether miRNA 3′ modifications are dependent on rde-1. In parallel 

to the wild-type animals described above (Figure 2.5A), we sequenced oxidized and 

non-oxidized small RNAs from rde-1(ne219) mutants. Unlike in wild-type animals, we 

did not identify any authentic miRNAs that were enriched by oxidation in rde-1(ne219) 

mutants; however, piRNAs, which also contain a henn-1-dependent 3′ modification were 

enriched, indicating that the loss of miRNA modifications is not due to henn-1 
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dysfunction in rde-1 mutants (Figure 2.5E). Of the four miRNAs enriched by oxidation in 

our wild-type small RNA sequencing libraries, miR-240-5p was the most strongly 

enriched in our GFP::FLAG::RDE-1 coIP from henn-1+/+ animals (∼1,226-fold) (Figure 

2.5D). miR-240-5p levels were reduced by ∼70% in rde-1 mutants (p = 0.0005), which 

suggests that RDE-1 is its primary binding partner and that it is destabilized in its 

absence (Figure 2.5F). In wild-type libraries prepared from oxidized small RNAs, miR-

240-5p was enriched ∼12-fold relative to non-oxidized small RNA libraries (p = 0.006) 

(Figure 2.5G). In contrast, miR-240-5p was not enriched by oxidation in rde-1 mutant 

libraries (p = 1.0) (Figure 2.5G). miR-240-3p, which is produced from the same 

precursor as miR-240-5p but from the opposite arm of the miRNA duplex, was only 

modestly enriched in our GFP::FLAG::RDE-1 coIP from henn-1+/+ animals (∼4-fold) 

(Figure 2.5D). We were not able to detect a difference in miR-240-3p levels in rde-1 

mutants (Figure 2.5F). miR-240-3p was not enriched in oxidized small RNA libraries 

from either wild-type or rde-1 mutants, indicating that despite being processed from the 

same duplex as miR-240-5p, it is not modified at its 3′ end (Figure 2.5G). Thus, miR-

240-5p, a presumably strong RDE-1 interactor, is enriched by oxidation and, therefore, 

contains a 3′ modification, whereas miR-240-3p, a relatively weak RDE-1 interactor, is 

not modified. miR-240-3p also associates with ALG-1 and ALG-2 and miR-240-5p 

associates with ALG-5, suggesting that the fractions of miR-240 that we detected in rde-

1 mutants are likely associated with other Argonautes in an unmethylated form (Brown 

et al., 2017). 

Endogenous canonical siRNAs resembling those produced from exogenous dsRNA 

are also predicted to bind RDE-1. Indeed, we identified endogenous siRNAs produced 
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from the F43E2.6 gene locus that were strongly enriched in our GFP::FLAG::RDE-1 

coIPs (Figure 2.5H). F43E2.6 siRNAs were produced from a duplex that is 23 nt long 

and has 2-nt 3′ overhangs, indicating that it is likely processed by Dicer and is, 

therefore, a canonical siRNA locus (Figure 2.5H) (Ameres and Zamore, 2013; Warf et 

al., 2012). Furthermore, the levels of F43E2.6 siRNAs were elevated in mut-16 mutants, 

indicating that they are not produced through the Mutator pathway, unlike WAGO-class 

22G-RNAs (Figure S5A) (Phillips et al., 2012; Zhang et al., 2011). F43E2.6 siRNAs 

were modestly elevated in rde-1 mutants (p ≤ 0.004), suggesting that association with 

RDE-1 destabilizes them relative to other Argonautes they might interact with or that 

their production is elevated in the absence of rde-1 (Figure 2.5I). Both sense and 

antisense F43E2.6 siRNAs were enriched in GFP::FLAG::ALG-1 coIPs, indicating that 

they are partitioned between at least two Argonautes (Figure S5B) (Brown et al., 2017). 

In wild-type samples, the F43E2.6 sense strand siRNA was enriched by ∼30-fold and 

the antisense siRNA by ∼55-fold in oxidized small RNA libraries relative to non-oxidized 

small libraries, indicating that both strands of the duplex contain a 3′ modification (p ≤ 

0.0005) (Figure 2.5J). Conversely, neither siRNA was enriched in oxidized small RNA 

libraries from rde-1 mutants, suggesting that accumulation of these siRNAs in their 3′ 

modified form is dependent on their association with RDE-1 (Figure 2.5J). These results 

point to a link between RDE-1 association and miRNA and primary siRNA 3′ 

modification, a modification dependent on henn-1 and, therefore, likely methylation, and 

thus, we speculate that RDE-1 may direct small RNA methylation. 

Discussion. The germline mortality of henn-1 mutants likely relates to its role in the 

piRNA pathway, as disrupting the other small RNA pathways that henn-1 is implicated 
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in, those involving the Argonautes ERGO-1 and RDE-1, does not result in progressive 

sterility (Figures S1C and S1D) (Sakaguchi et al., 2014). The progressive sterility of 

henn-1 mutants follows a similar, albeit temperature sensitive, progression to that of 

prg-1/piwi mutants (Simon et al., 2014). Immediate sterility ensues after reestablishing 

the WAGO pathway, and therefore endogenous RNAi, in the absence of maternal henn-

1 or prg-1 (de Albuquerque et al., 2015; Phillips et al., 2015). Animals heterozygous for 

henn-1 in which the wild-type copy of the gene was contributed by the father, which 

presumably becomes active at the maternal-to-zygotic transition that occurs at the ∼28-

cell stage, displayed equal rates of sterility to animals homozygous mutant for henn-1 

after reestablishing endogenous RNAi. Thus, a model emerges in which maternally 

inherited methylated piRNAs and/or henn-1 establish proper RNA silencing during 

embryogenesis, which presumably persists throughout germline development to 

ultimately impact fertility. This would likely occur through the initiation of secondary 

WAGO-class 22G-RNA production, which is thought to provide a memory of piRNA 

activity (Ashe et al., 2012; Buckley et al., 2012; Luteijn et al., 2012; Shirayama et al., 

2012). In support of this, we observed similar effects on 22G-RNA levels across 

development in henn-1 mutants, despite henn-1 only being required for piRNA stability 

in embryos and early larval stages (Billi et al., 2012). 

Although henn-1, and by extension methylation, has an important role in germline 

proliferation, it appears to have little impact on piRNA stability in the adult germline. 

Why methylation is important for piRNA stability in embryos but not in adult germ cells is 

unclear. It is possible that the genes involved in piRNA decay in embryos are absent in 

adults; however, we saw a similar degree of piRNA trimming in wild-type embryos and 



	 51	

adults, suggesting there may be two distinct mechanisms for piRNA decay, only one of 

which is affected by methylation. Alternatively, methylation may be specifically required 

for stabilizing piRNAs during maternal deposition in the embryo. P granules, the germ 

granules that house PRG-1/Piwi, break away from nuclear envelope after fertilization, 

possibly releasing piRNAs into the cytoplasm, which may expose them to decay 

machinery that they are normally protected from in P granules (Seydoux, 2018). It is 

also possible that piRNAs engage a distinct set of targets in embryos to which they 

have extensive complementarity at their 3′ ends and as a consequence are more 

susceptible to target-directed decay. This would hint at a role for piRNAs in early 

development that is perhaps distinct from their role later in development. piRNA-mRNA 

interactions that require only partial complementarity, which is common in C. elegans 

(Shen et al., 2018; Zhang et al., 2018), may not be affected by methylation. Modulation 

of methylation may even promote one function of piRNAs over another, which could 

explain why genes misregulated in henn-1 mutants, despite nearly all being potential 

piRNA targets, were not uniformly up- or downregulated. 

Our results demonstrate that small RNAs that act upstream of the Mutator complex, 

the WAGO-class 22G-RNA amplification component of the RNAi pathway, contain a 3′ 

modification that is dependent on henn-1 and, thus, presumably methylation, whereas 

those that do not act as primary small RNAs are not modified (Billi et al., 2012; 

Kamminga et al., 2012; Montgomery et al., 2012). The Mutator complex contains a 

nucleotidyltransferase (MUT-2) and a 3′–5′ exonuclease (MUT-7), both of which could 

promote decay of primary small RNAs that feed into the pathway (Phillips et al., 2012). 

It is possible that methylation protects primary small RNAs from degradation by the 
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RNAi machinery or by factors that bridge the primary and secondary small RNA 

pathways. In support of this model, in Arabidopsis, methylation protects small RNAs 

from uridylation by HESO1, which is recruited to mRNA targets by the Argonaute AGO1 

to facilitate decay of the 5′ fragment generated by AGO1 cleavage (Wang et al., 2018). 

We showed that rde-1 is required for the accumulation of miRNAs and canonical 

siRNAs containing modifications at their 3′ ends. Although we identified only a small 

subset of miRNAs that were resistant to oxidation, an indicator of the presence of a 3′ 

modification, most miRNAs were enriched in our RDE-1 coIPs. Therefore, if RDE-1 

directs small RNA methylation, subpopulations of most individual miRNAs are likely 

methylated. Methylated miRNAs bound to RDE-1 may have a distinct function from non-

methylated miRNAs bound to the other miRNA-associated Argonautes, ALG-1, ALG-2, 

and ALG-5. miR-243, for example, promotes mRNA entry into the endogenous RNAi 

pathway through its association with RDE-1 (Corrêa et al., 2010). miR-243, however, 

was not enriched by oxidation possibly because it also binds strongly to ALG-1 (Brown 

et al., 2017). In Drosophila, miRNAs predominantly associate with Ago1 and are not 

methylated; however, some also associate with the predominantly siRNA-associated 

Argonaute Ago2 and are methylated, consistent with Drosophila Ago2 directing small 

RNA methylation (Ameres et al., 2010; Horwich et al., 2007). It seems an analogous 

system may exist in C. elegans between the miRNA-associated Argonaute ALG-1, 

ALG-2, and ALG-5 and the exogenous siRNA-Argonaute RDE-1. It was recently shown 

that miRNAs are methylated in sea anemones, which commonly interact with near-

perfect complementarity to their targets (Modepalli et al., 2018). Together with these 
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studies, our results raise the possibility that some degree of miRNA methylation is 

common in animals. 

Materials and Methods. 

Experimental Model and Subject Details. The Key Resources Table contains all of 

the C. elegans strains used in this study. Hermaphroditic animals were grown on 

nematode growth medium and fed E. coli OP50, except where noted otherwise. Animals 

used in the experiments in Figures 1A-1B, 1F-1G, 4, S1A-S1C, S1E, and S4 were 

grown at 25°C. All other animals were grown at 20°C. The developmental stage at 

which the animals were analyzed is specified in the methods and figures. 

Strain Generation. USC1080 [rde-1(cmp133[(gfp + loxP + 3xFLAG)::rde-1]) V] and 

USC988[mut-16(cmp41[mut-16::mCherry + loxP]) wago-1(cmp92[(GFP + loxP + 

3xFLAG)::wago-1]) I] were generated by introducing a GFP::3xFLAG cassette at the 5’ 

end of the endogenous rde-1 or wago-1 coding sequence using CRISPR-Cas9 genome 

editing (Arribere et al., 2014; Dickinson et al., 2015; Dickinson et al., 2013). The repair 

templates were amplified using primers listed in the Key Resources Table and 

introduced into the vector pDD282 (Addgene #66823) by isothermal assembly (Gibson 

et al., 2009). To protect the repair template from cleavage, a mutation of the PAM 

sequence was incorporated into one of the primers. The guide RNA plasmid was 

generated by ligating oligos containing the guide RNA sequence into BsaI-digested 

pRB1017 (Addgene #59936) (Dickinson et al., 2013). TAM18 [henn-1(ram13[henn-1ko; 

mCherry::Flag-no-stop-codon]) III] was also generated using CRISPR-Cas9 (Dickinson 

et al., 2013). The repair template was amplified with the primers listed in the Key 

Resources Table and introduced into SpeI and ClaI digested pJJR83 (Addgene 
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#75028). The guide RNA construct was generated with the NEBuilder kit (New England 

BioLabs, E2621) using the plasmid pDD162 (Addgene #47549) and the primers listed in 

the Key Resources Table. The entire henn-1 coding sequence was replaced with an 

mCherry::3xFLAG cassette lacking a stop codon and thus does not express mCherry. 

TAM20 [mut-16(pk710) I; henn-1(pk2295) III], TAM21 [mut-16(pk710) I; henn-1(ram13) 

III], TAM22 [henn-1(pk2295) III; mut-14(mg464) smut-1(tm1301) V], and TAM23 [henn-

1(ram13) III; mut-14(mg464) smut-1(tm1301) V] were generated using standard genetic 

methods. 

Multigenerational Brood Size Assays. Worms were grown on a continuous supply of 

E. coli (OP50) and chunked to fresh plates at each new generation (every 2-3 days). 

Because animals lay eggs over multiple days, the number of generations is 

approximate. Brood size assays were performed by separating 15 L4 larvae per strain 

onto individual plates, removing their offspring twice per day, and recording the number 

removed until the animals were no longer laying eggs. P-values were calculated using 

Wilcoxon rank-sum tests. 

Transgenerational Sterility Assays. Transgenerational sterility assays were modeled 

after the approach used by Simon et al. and Ahmed et al. (Ahmed and Hodgkin, 2000; 

Simon et al., 2014). Briefly, 10 independent lines per wild type, henn-1(pk2295), prg-

1(n4357), and ergo-1(tm1860) strain were grown at 20˚C or 25˚C. 10 worms per line 

were transferred to new plates every generation (2-3 days at 25˚C or 3-4 days at 20˚C) 

for 30 generations, and fertility was recorded at each transfer. Animals producing any 

number of offspring were considered fertile, and all offspring were transferred from 

plates on which there were fewer than 10 viable progeny. 
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Reestablishing Endogenous RNAi. The RNAi pathway was restored in RNAi-

defective mutants using the genetics approach illustrated in Figure 1C as described 

(Phillips et al., 2015). Individual F1 animals from each cross were genotyped to confirm 

heterozygosity of smut-1(tm1301), indicating that the progeny were from a cross. 

Animals that were wild-type or homozygous mutant for smut-1 were excluded from the 

analysis. P-values were calculated using two-sample t-tests. 

Imaging. Animals were imaged on a Zeiss Axio Imager Z2 upright microscope after 

immobilization in 10-25 uM sodium azide on 1.5 Agarose pads on glass slides. 

Gonad Dissections. Animals were grown to gravid adult stage at 20˚C for 68-70 hours 

after L1 synchronization and dissected by cutting posterior to the pharynx or anterior to 

the tail in egg buffer containing 10 mM levamisole. Extruded distal gonads were 

collected by mouth pipetting, transferred to 500 ul Trizol, and frozen at -80°C (Campbell 

and Updike, 2015). Because the gonads break at the arms, the samples did not include 

the proximal gonad arms, which contain mature oocytes and sperm. 

RNA Isolation. Dissected gonads and whole animals were flash frozen in liquid 

nitrogen prior to RNA isolation. RNA was isolated using Trizol (Life Technologies) 

followed by two chloroform extractions. RNA was precipitated in isopropanol for 20 

minutes at room temperature for whole animal samples and overnight at -80˚C in the 

presence of 20 ug glycogen for germline, input, and co-IP samples. 

Quantitative Real-Time PCR. Quantitative real-time-PCR of small RNAs was done as 

described using TaqMan reagents and custom probes following the manufacturers 

recommendations (Billi et al., 2012; Montgomery et al., 2012). Ct values were captured 

using a Bio-Rad CF96 Real-Time PCR Detection System. Ct values were averaged 
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across three technical replicates. Mean relative 21U-RNA levels across 3 biological 

replicates were calculated using the 2-ddCt method (Livak and Schmittgen, 2001). miR-35 

levels were used for normalization. Two-sample t-tests were used to compare 

differences between samples. Bonferroni adjustments were applied to correct for 

multiple comparisons. 

Small RNA Northern Blot. 10 ug total RNA from each sample was resolved on a 17% 

denaturing polyacrylamide gel, transferred to a Hybond-N+ membrane (GE Healthcare), 

and UV crosslinked. T4 polynucleotide kinase (NEB) was used to radiolabel an LNA 

oligonucleotide antisense to 21UR-1 with 32P-ATP. The membrane was incubated with 

the probe overnight at 38˚C in PerfectHyb Plus Hybridization Buffer (Sigma) and 

washed 5 times in SSC/SDS buffer at 50˚C for 20 minutes each wash. 

Small RNA-Seq Libraries. Small RNAs were size selected (~16-30 nt) on 17% 

polyacrylamide/urea gels. Small RNA treatment varied by library as indicated in Table 

S5. Oxidation to enrich for 3’-2’-O-methylated small RNAs was done using 200 mM 

sodium periodate in borate buffer (pH 8.6) as described, but without beta-elimination 

(Montgomery et al., 2012; Yu and Chen, 2010). Polyphosphatase treatment to reduce 5’ 

di- and triphosphates to monophosphates was done using RNA 5’ polyphosphatase 

(Illumina). High-throughput sequencing libraries were prepared as described (Brown et 

al., 2017) or using the NEBNext Multiplex Small RNA Library Prep Kit (Illumina) (Table 

S5). The 3’ ligation was done at 16˚C for 18 hours to improve capture of methylated 

small RNAs. PCR amplicons were size selected on 10% polyacrylamide non-denaturing 

gels. 
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Small RNA-Seq Data Analysis. 16-30 nt small RNA sequences were parsed from the 

library adapters, filtered to exclude reads with >1 base having a Phred quality score <30 

and mapped to the C. elegans genome (Wormbase release WS230) using CASHX v. 

2.3 (Fahlgren et al., 2009). miRNAs, piRNAs, WAGO-class 22G-RNA loci, CSR-1-class 

22G-RNA loci, ALG-3/4-class 26G-RNA loci, and ERGO-1-class 26G-RNA loci were 

classified as described (Phillips et al., 2015). Differential expression analysis, including 

fold change and p value calculations, was done using DESeq2 v. 1.18.1 with the 

Benjamin Hochberg multiple test correction applied (FDR = 0.05) (Love et al., 2014). All 

other p-values reported for small RNA sequencing data were calculated using two-

sample t-tests. Custom Perl and Python scripts, R, and Excel were used for all other 

data analyses. Plots were drawn in R, Excel, BioVenn, and IGV (Hulsen et al., 2008; 

Thorvaldsdottir et al., 2013). Sequencing was done on an Illumina NextSeq 500. 

RNA-Seq Libraries. Ribosomal RNA was depleted from total RNA using Ribo-Zero 

rRNA Removal Kit (Human/Mouse/Rat) (Illumina). rRNA depleted RNA was purified 

using the RNA Clean & Concentrator kit (Zymo Research). DNase treatment was done 

on the columns used for RNA purification. High-throughput sequencing libraries were 

prepared from purified rRNA-depleted RNA using NEBNext Ultra™ II Directional RNA 

Library Prep Kit (NEB). Most sequencing was done on an Illumina NextSeq 500 (High 

Output Kit, 75 cycles) (Table S5). 

RNA-Seq Data Analysis. Adapters and low-quality bases were removed using 

Trimmomatic v. 0.35 (Bolger et al., 2014). Reads were mapped to the C. elegans 

genome (Wormbase release WS230) using Star v. 2.5.0a (Dobin et al., 2013). Reads 

from specific genes were counted using RSEM v. 1.3.0 (Li and Dewey, 2011). 
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Differential expression analysis, including fold change and p-value calculation, was 

done using DESeq2 v. 1.18.1 with the Benjamin Hochberg multiple test correction 

applied (FDR = 0.05) (Love et al., 2014). Plots were drawn with R and IGV 

(Thorvaldsdottir et al., 2013).  

Transposon Analysis. To identify reads mapping to each annotated transposon family, 

mRNA and small RNA sequencing reads were aligned to each of 152 transposon family 

consensus sequences within using Bowtie (Langmead, 2010) (Jurka, 2000). Reads 

mapping to more than one transposon family were discarded. Differential expression 

analysis was done using DESeq2 v. 1.18.1 (Love et al., 2014). 

RNAi Assays. Synchronized L1 larvae were transferred to E. coli HT115 containing an 

empty vector (L4440) or expressing dsRNA complementary to pos-1 (Kamath et al., 

2003) and grown at 25˚C. Gravid adults were collected for RNA isolation at 48 hours. 

Co-Immunoprecipitations. FLAG::HRDE-1, GFP::FLAG::WAGO-1, and 

GFP::FLAG::RDE-1 were coimmunoprecipitated from gravid adults 68 hours after L1 

synchronization. Animals were flash frozen in liquid nitrogen and lysed in 50 mM Tris-Cl, 

pH 7.4, 100 mM KCl, 2.5 mM MgCl2, 0.1% Igepal CA-630, 0.5 mM PMSF, and 1X 

Pierce Protease Inhibitor Tablets. Cell lysates were cleared by centrifugation for 10 min 

at 12,000 RCF and incubated with anti-GFP mAb-agarose for 1 hour or with anti-FLAG 

followed by Protein G magnetic beads for a combination of 1 hour. After co-

immunoprecipitation, beads were washed in lysis buffer and split into RNA and protein 

fractions. Antibody specificity for FLAG (FLAG::HRDE-1, GFP::FLAG::WAGO-1 co-IPs) 

or GFP (GFP::FLAG::RDE-1) was confirmed by doing negative control co-IPs from wild-

type animals.  
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Quantification and Statistical Analysis. The statistical tests used are described within 

the methods section describing each experiment. Bonferroni multiple test corrections 

were applied to p-values when comparing >2 conditions. All error bars report standard 

deviation. 

Data and Software Availability. All the high-throughput sequencing data described 

here has been deposited to the Gene Expression Omnibus (GEO) and is available 

under accession number GSE137734. Software used in the study is described in the 

corresponding methods section. Custom R, Perl, and Python scripts are available on 

request. 
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Table 1: Key Resources Table 

Reagent or 

Resource 
Source Identifier 

Antibodies 

anti-GFP mAb-agarose MBL 
Cat# D153-8; 

RRID:AB_591815 

anti-FLAG Sigma 
Cat# F1804; 

RRID:AB_262044 

Bacterial Strains 

E. coli OP50 
Gary Ruvkun (Harvard 

Medical School) 
N/A 

E. coli HT115 

Gary Ruvkun (Harvard 

Medical School) (Kamath 

et al., 2003) 

N/A 

Chemicals, Peptides, and Recombinant Proteins 

Trizol Life Technologies 15596018 

RNA 5′ polyphosphatase Illumina RP8092H 

NEBNext 2X PCR Master 

Mix 
NEB M0541L 

TURBO DNase Life Technologies AM2238 

AMPure XP Beads Beckman Coulter A63881 

Pierce Protease Inhibitor 

Tablets 
Pierce Biotechnology 88266 
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Amersham Hybond -N+ 

Membranes 
GE Healthcare RPN303B 

PerfectHyb Plus 

Hybridization Buffer 
Sigma-Aldrich H7033 

T4 Polynucleotide Kinase 

(3′ phosphatase minus) 
NEB M0236S 

SureBeads Protein G 

Magnetic Beads 
Bio-Rad 161-4023 

Critical Commercial Assays 

TaqMan Life Technologies 
4366596, 4444557, 

4427975 

NEBNext Ultra II Directional 

RNA Library Prep Kit for 

Illumina 

NEB E7760S 

RNA Clean & Concentrator Zymo Research R1015 

Ribo-Zero rRNA Removal 

Kit (Human/Mouse/Rat) 
Illumina MRZH11124 

NEBNext Small RNA 

Library Prep Kit for Illumina 
NEB E7300S or E7580S 

Deposited Data 

NGS data This Study 
Gene Expression Omnibus 

GSE137734 

Experimental Models: Organisms/Strains 
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C. elegans Bristol Strain CGC N2 

glp-4(bn2) I CGC SS104 

henn-1(pk2295) III René Ketting (IMB Mainz) NL4415 

prg-1(n4357) I CGC SX922 

rde-1(ne219) V CGC WM27 

mut-14(mg464) smut-

1(tm1301) V 
Phillips et al., 2015 GR1948 

mut-16(pk710) I CGC NL1810 

henn-1(pk2452) III René Ketting (IMB Mainz) RFK30 

glh-1(sam24[glh-

1::gfp::3Xflag]) I 
Dustin Updike (MDI) DUP64 

glh-1(sam24[glh-

1::gfp::3Xflag]) I; henn-

1(pk2295) III 

This Study TAM56 

rde-1(cmp133[(gfp + loxP + 

3xFLAG)::rde-1]) V 
This Study USC1080 

mut-16(cmp41[mut-

16::mCherry + loxP]) wago-

1(cmp92[(GFP + loxP + 

3xFLAG)::wago-1]) I 

This Study USC988 

henn-1(ram13[henn-1ko; 

mCherry::Flag-no-stop-

codon]) III 

This Study TAM18 
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mut-16(pk710) I; henn-

1(pk2295) III 
This Study TAM26 

mut-16(pk710) I; henn-

1(ram13) III 
This Study TAM36 

henn-1(pk2295) III; mut-

14(mg464) smut-1(tm1301) 

V 

This Study TAM27 

henn-1(ram13) III; mut-

14(mg464) smut-1(tm1301) 

V 

This Study TAM35 

flag::hrde-1([flag::hrde-1, 

cb-unc-119(+)]) II; unc-

119(ed3) III 

Craig Mello (University of 

Massachusetts) (Shirayama 

et al., 2012) 

N/A 

Oligonucleotides 

See Table S5 See Table S5 N/A 

Recombinant DNA 

pDD282 (GFP::3xFLAG 

repair template plasmid) 

Addgene (Dickinson et al., 

2015) 
66823 

pRB1017 (Guide RNA 

plasmid) 

Addgene (Arribere et al., 

2014) 
59936 

pJJR83 (mCherry::3xFLAG 

repair template plasmid) 

Addgene (a gift from Mike 

Boxem) 
75028 

pDD162 (Guide RNA Addgene (Dickinson et al., 47549 



	 64	

plasmid) 2013) 

L4440 (RNAi vector) 
Addgene (a gift from 

Andrew Fire) 
1654 

pos-1 RNAi plasmid 

Gary Ruvkun (Harvard 

Medical School) (Kamath 

et al., 2003) 

N/A 

Software and Algorithms 

CASHX v. 2.3 Fahlgren et al., 2009 N/A 

DESeq2 v. 1.18.1 Love et al., 2014 

https://bioconductor.org/pac

kages/release/bioc/html/DE

Seq2.html 

Trimmomatic v. 0.35 Bolger et al., 2014 
http://www.usadellab.org/c

ms/?page=trimmomatic 

Star v. 2.5.0a Dobin et al., 2013 
https://github.com/alexdobi

n/STAR 

Bowtie Langmead, 2010 

http://bowtie-

bio.sourceforge.net/index.s

html 

RSEM v. 1.3.0 Li and Dewey, 2011 
https://deweylab.github.io/R

SEM/ 

Zen Image Analysis Zeiss N/A 
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CHAPTER 3: Conclusions, Implications, and Future Directions. 
 
 
 
In summary of my thesis work, I identified a role for small RNA methylation in 

maintaining C. elegans germline immortality, characterized the classes of small RNAs 

that are methylated, and identified factors that influence which small RNAs are 

methylated. Additionally, I synthesized recent advances in the field of piRNA biology 

and their potential impacts on future research. 

The Progressive Sterility Phenotype of henn-1 is due to Loss of piRNA 

Modification. Our results demonstrate a requirement for piRNA methylation, but not the 

methylation of other small RNAs, in maintaining germline integrity. A recent study on 

progressive sterility in piRNA mutants provides a possible mechanism underlying this 

phenotype by showing that that the progressive sterility associated with piRNA loss is 

due to deregulation of histone genes. When the Mutator-associated secondary siRNA 

pathway is not directed against targets identified by piRNAs, it is instead capable of 

silencing histone genes, resulting in reduced availability of histones for incorporation 

into chromatin and, eventually, germline mortality (Barucci et al., 2020). This conclusion 

is supported by our own observation that histone genes are downregulated in piRNA 

mutant germlines, and by observations made in another recent paper from our lab 

(Reed et al. 2020). If loss of methylation leads to piRNA destabilization, maintenance of 

histone expression is likely also methylation dependent. 

We have also observed that germline mortality is not a phenotype associated with 

loss of the Mutator complex and the WAGO-class 22G-RNAs it produces. Since the 

only known function of piRNAs in C. elegans is to initiate RNAi, this suggests that future 
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efforts to understand the full functionality of piRNAs should look beyond their well-

characterized participation in the Mutator-dependent RNAi pathway. Further, our 

observation that loss of primary small RNA methylation has only a modest effect on 

WAGO-class 22G-RNA production but severe impacts on fertility and germline integrity 

suggests that any Mutator-independent functions of piRNAs could be dependent on 

methylation by henn-1. It may be valuable to determine whether the progressive sterility 

we observe in piRNA mutants is actually a distinct phenotype from those observed in 

Mutator mutants. Since piRNAs are responsible for initiating the RNA silencing 

maintained by WAGO-class 22G-RNAs, it is possible that, without the guidance of 

piRNAs, essential genes become targeted by the Mutator pathway over the course of 

many generations. Previous work suggests that, in the absence of piRNAs, resetting the 

memory of RNAi conferred by 22G-RNAs results in immediate sterility due to the 

misrouting of essential genes into the RNAi pathway (Phillips et al., 2015). If 22G-RNAs 

are unable to maintain correct gene silencing programs alone, the prolonged absence of 

piRNAs as a means of distinguishing non-self genetic elements could result in 

degradation of the germline’s genome over time. This possibility could be tested by 

isolating RNA from piRNA deficient mutants, methylation deficient mutants, and Mutator 

mutants at several timepoints and looking for either misregulated genes or changes in 

small RNA profiles. If this possibility is tested and ruled out, such a result may point to a 

function of piRNAs that is completely Mutator-independent. It is also possible that 

Mutator mutants do not become progressively sterile because they are not silencing 

histones like they do in piRNA mutants (Barucci et al., 2020), or it may be a combination 

of the two.  
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piRNA Methylation is Required in Embryos, but not the Adult Germline. The 

results of our study imply a role for methylation in stabilizing piRNAs during early 

development. The reason they need to be stabilized at this point but not in the adult 

germline, however, remains unclear. As we speculate earlier in the paper, it is possible 

that maternal piRNAs require protection while being deposited into the oocytes, that 

piRNAs are exposed to decay machinery when the P-granule separates from the 

nuclear envelope at fertilization, or that piRNAs have roles in the embryo that are 

distinct from their roles in the developed germline. A logical starting point for answering 

these questions would be to measure piRNA levels in henn-1 mutant embryos at 

several points in embryogenesis to determine whether there is a point at which 

methylation stops being necessary. If a specific window during which methylation is 

protective can be identified, closer examinations of the coincident processes governing 

RNA metabolism could reveal which one is responsible for turning over piRNAs. The 

specific piRNAs that are present in the embryo could also be examined to determine 

whether different genes are targeted at that stage than are targeted in the adult 

germline, and whether target selection affects piRNA stability as it does in Drosophila 

(Horwich et al., 2007). The difficulty in this approach is gathering enough RNA to 

perform the analysis. We attempted stage-specific embryo collection by dissecting 

gravid adult animals and collecting the embryos by hand, but we were consistently 

unable to recover detectable levels of RNA after extraction. Given the labor-intensive 

nature of this type of sample collection, it may be wise to explore more efficient methods 

such as flow cytometry to separate embryos of different stages for analysis. I personally 

believe that it is a question worth pursuing, as identifying the point or points at which 
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piRNAs are degraded would be helpful in answering not only the question of why 

piRNAs require methylation at different developmental stages, but could also narrow the 

search for the piRNA turnover machinery. 

RDE-1 Directs Methylation of Small RNAs. In other organisms like Drosophila, the 

Argonaute protein into which a small RNA is loaded determines whether it will be 

methylated (Ameres et al. 2010; Horwich et al. 2007). Our results suggest that this is 

true in C. elegans as well. We have not, however, been able to detect a stable 

interaction between HENN-1 and an Argonaute protein. Like previous attempts made 

with PRG-1 by Kamminga et al. (2012), our attempts to co-IP HENN-1 and RDE-1 were 

unsuccessful, meaning that the only meaningful insight we have into the interaction 

between these proteins is that it is not stable enough to survive immunoprecipitation, if it 

occurs at all. The aforementioned study did, however, find evidence that HENN-1 may 

oligomerize with another protein whose identity remains unknown. It is possible that this 

unidentified protein facilitates transient interactions between HENN-1 and Argonaute 

proteins or, even more interestingly, is involved in the decay of unmethylated small 

RNAs. Should future efforts be directed toward understanding the specific biochemical 

mechanism of small RNA methylation in C. elegans, mass spectrometry could be 

helpful in identifying this and any other hypothetical binding partners with which HENN-1 

associates. Although our lab currently lacks the expertise to use mass spec in this way, 

the Ketting lab at IMB Mainz uses this technique to identify protein participants in the C. 

elegans RNAi pathway (Almeida et al. 2018). 

A Subpopulation of miRNAs is Methylated. Although plant miRNAs are commonly 

methylated, animal miRNAs are not. Our results indicate that a subpopulation of C. 
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elegans miRNAs is methylated. We do not yet understand what functions these miRNAs 

perform and how methylation affects them, but knowing which argonaute they bind will 

make these questions easier to answer. For example, the miRNA miR-243 binds to 

RDE-1 and, unlike any other miRNA observed in C. elegans, triggers the entry of its 

targets into the secondary small RNA biogenesis pathway (Corrêa et al. 2010). 

Although this miRNA was not enriched by oxidation in our hands, possibly because it 

also associates with ALG-1 (Brown et al. 2017), it suggests that at least some RDE-1-

associated miRNAs may perform functions that other miRNAs do not. Interestingly, our 

data show that the majority of miRNAs associate to some degree with RDE-1, 

suggesting that a subpopulation of most miRNAs is methylated. Obviously, these results 

raise questions about how RDE-1 fits into the larger landscape of miRNA-mediated 

gene regulation. Previous work from our lab indicates that the miRNA-associated 

Argonoutes of C. elegans display functional specialization (Brown et al., 2017), so it 

would not be unreasonable to hypothesize that RDE-1 and its methylated miRNAs fill a 

functional niche that the other miRNA-associated Argonautes are unable to cover. 

Examining miRNA-associated phenotypes in rde-1 mutants or methylation deficient 

mutants could point to functions that miRNAs may need to be methylated to perform. 

RDE-1-associated (and thus methylated) miRNAs have not been thoroughly 

investigated, but the work that has been done on miR-243, an RDE-1 associated 

miRNA, indicates that it initiates secondary siRNA production (Correa et al., 2010). 

Currently, miR-243 is the only known C. elegans miRNA that does this, but the 

possibility that other methylated miRNAs handle their targets similarly remains to be 

examined. In sea anemones, another animal in which some miRNAs are methylated, 
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methylation protects miRNAs that share perfect complementarity with their targets 

(Modepalli et al., 2018). While our study has not shown perfect complementarity to be a 

reliable determinant of small RNA methylation in C. elegans, different classes of small 

RNAs may need to be methylated for different reasons, and miRNAs whose 3’ ends are 

highly complementary to their targets may need additional protection in the form of 

methylation. Interestingly, a recent study on small RNA profiling in the germline 

indicates that primary small RNA machinery that responds to environmental dsRNA is 

expressed at the same level in both germline sexes, but secondary small RNA 

biogenesis machinery is expressed in lower levels in males (Bezler et al., 2019). In this 

case, miRNAs could associate with RDE-1 as a means of regulating which miRNAs are 

expressed in which germline, and the lack of Mutator proteins in the male germline may 

bias RDE-1 toward miRNA-related rather than RNAi-related functions. 

RDE-1 Interacts with at Least One Endogenous Canonical siRNA. Although RDE-1 

is primarily known for its role in facilitating exogenous RNAi by binding to exogenous 

siRNAs, it also appears to participate in endogenous RNAi pathways. In our study, we 

found that RDE-1 binds to at least one endogenous canonical siRNA derived from the 

F43E2.6 locus. Since endogenous canonical siRNAs are uncommon in C. elegans, the 

identification of an additional Argonaute capable of binding them could provide a means 

of investigating additional biological processes these siRNAs participate in. Additionally, 

since this Argonaute promotes small RNA methylation, enriching for methylated small 

RNAs may be a method of identifying more of these canonical siRNAs.  

The Purpose of Small RNA Methylation in C. elegans Remains Unknown. One of 

the first observations we made about small RNA methylation when this study began 
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was that the small RNAs that function upstream of the Mutator pathway, the primary 

small RNAs, are methylated at their 3’ end. This observation was supported by our 

results indicating that exogenous siRNAs bound by RDE-1 are methylated. We did not, 

however, identify a specific mechanistic reason primary small RNAs need to be 

methylated. The degree of complementarity between a small RNA and its target does 

not appear to influence which small RNAs are methylated in C. elegans, suggesting that 

small RNA methylation serves a purpose in worms that has not already been identified 

in other organisms. One such possible function is protecting piRNAs that bind to 

mRNAs and sequester them in the P granules of germ cells. Surviving extended periods 

of target engagement may require that piRNAs be methylated, a task that has little to do 

with how much complementarity the piRNA shares with its target. One way to test 

whether methylation contributes to this function would be to introduce rde-11 and sid-1 

mutations (both of which are genes that piRNAs sequester in P granules) into henn-1 

mutants and measuring whether there is a change in the stability of piRNAs predicted to 

bind those genes (Ouyang et al. 2019). 

Since the Mutator complex contains a number of RNA-metabolizing enzymes, it is 

also possible that methylation protects primary small RNAs as they engage their targets 

and shuttle them into the Mutator foci. Since, in other organisms, methylation protects 

against degradation preceded by polyuridylation, the small RNAs that feed into the 

pathway may require protection from MUT-7 (a 3’-5’ exonuclease) and MUT-2 (a 

nucleotidyltransferase that adds nontemplated Us). We tested this indirectly by 

measuring piRNA abundance in henn-1 mutants both in the presence and absence of 

an additional mutation that prevents the nucleation of the Mutator complex by disabling 
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the Mutator protein MUT-16 (see Appendix 2 for more information). Our results showed 

no change in piRNA levels, but should by no means be considered conclusive. The mut-

16 mutation we introduced abolishes 22G-RNA formation, but we don’t know whether 

the constituent proteins of the complex such as MUT-2 and MUT-7 remain active even 

when they are not part of the functional mutator complex. Repeating this experiment in 

henn-1;mut-7 mutants would be the most direct way to test this hypothesis, but 

generating the double mutant is complicated by the two genes’ proximity on 

chromosome III. Repeating the experiment with double mutants would certainly be more 

informative should this question be approached again (and if the difficulty of generating 

the mutants could be surpassed, perhaps by CRISPR-Cas9). 

Another potential way to understand why some C. elegans small RNAs are 

methylated would be to identify the decay machinery that turns over unmethylated small 

RNAs. We have worked on answering this question with little success, but our efforts 

have yielded a few interesting insights (see Appendix 2 for more detailed information). 

The primary gene of interest identified by these efforts was pup-3, an annotated poly(U) 

polymerase with no known function. Although this result was promising due to the 

presumption that polyuridylation precedes degradation in worms (as in other organisms 

and as shown by Kamminga et al., 2012), follow-up experiments using a null mutant for 

pup-3 were unable to rescue the piRNA depletion associated with henn-1 mutation. It is 

possible that C. elegans employs redundant poly(U) polymerases to mark small RNAs 

for degradation like Arabidopsis does, but double mutants for other known poly(U) 

polymerases proved difficult to work with genetically (see Appendix 2). We recognize, 

however, that the assay we used to identify pup-3 also comes with numerous caveats, 



	 74	

and that the evidence for U-tailing of C. elegans small RNAs is limited, so whether the 

gene we identified is involved in small RNA turnover at all remains inconclusive. Of all 

the questions we tried to answer over the course of this work, this is the one I find the 

most personally vexing, and I would be satisfied to see it answered. See Appendix 2 for 

more information on the efforts we have devoted to this question already and 

suggestions about how to proceed. 
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APPENDIX 1: Supplementary Material for Chapter 2 
 
 
 
The sequencing data for this study were published under the GEO accession number 

GSE137734. Supplementary tables have been uploaded alongside this dissertation in 

the form of Excel spreadsheets. 

Supplementary data for chapter 2 can also be found online at https://www.cell.com/cell-

reports/fulltext/S2211-1247(19)31447-0#secsectitle0210 
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Figure S1. Related to Figure 1. henn-1 transgenerational fertility assays. (A) Brood 
sizes of wild type, henn1(pk2295), and prg-1(n4357) at ~5, ~10, ~15, and ~28 
generations. Bonferroni adjusted p values were calculated using Wilcoxon rank-sum 
tests. Each data point represents the number of progeny produced by one animal. 
Results summarized in Figure 1A. (B) Brood sizes of wild type, henn-1(pk2295), and 
henn-1(ram13) at ~5 and ~20 generations. Bonferroni adjusted p values calculated 
using Wilcoxon rank-sum tests. Results summarized in Figure 1B. (C-D) Percentages of 
10 independent lines of wild type, henn-1(pk2295), prg1(n4357), and ergo-1(tm1860) 
that remained fertile at each generation at 25˚C (C) and 20˚C (D). Animals that 
produced any progeny were considered fertile. (E) Brood sizes of wild type and henn-
1(pk2452) (catalytic domain mutant) at 1 generation (wild type, n = 15; henn-1, n = 13) 



	 87	

and 10 generations (wild type, n = 13; henn1, n = 14) at 25˚C. The numbers of sterile 
animals at 10 generations are shown. Bonferroni adjusted p values were calculated 
using Wilcoxon rank-sum tests. 
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Figure S2. Related to Figure 2. Most henn-1-dependent 22G-RNAs are derived from 
piRNA targets. The Venn diagram displays overlap in WAGO-class 22G-RNAs that are 
depleted >50% in henn-1(pk2295) and prg1(n4357) adult whole animals relative to wild 
type. 
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Figure S3. Related to Figure 3. Small RNA and mRNA misregulation in henn-1 
mutants. (A) mRNA and small RNA read distribution across a histone cluster in wild 
type and henn-1(pk2295). (B) mRNA and small RNA read distribution across sid-1 in 
wild type and henn-1(pk2295). (C) mRNA and small RNA read distribution across rde-
11 in wild type and henn-1(pk2295). (D) mRNA and small RNA read distribution across 
wago-4 in wild type and henn-1(pk2295). Plots were generated in IGV. 
  



	 90	

 

Figure S4. Related to Figure 4. henn-1 is required for primary siRNA methylation. Bar 
plots display the ratio of normalized reads mapping to pos-1 in sodium periodate treated 
(oxidation +) and control treated (oxidation -) wild type and henn-1(pk2295) small RNA 
libraries. The left plot includes only sense-mapping reads to pos-1, which are 
presumably primary siRNAs. The right plot includes only antisense siRNAs, which are 
predominantly secondary siRNAs (22G-RNAs). 
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Figure S5. Related to Figure 5. F43E2.6 is a mut-16-independent siRNA locus. (A) 
Normalized read distribution across the F43E2.6 siRNA-generating locus in wild type 
(upper panel) and mut-16(pk710) (lower panel). Sense siRNA reads are in blue and 
antisense are in magenta. (B) Normalized read distribution (reads per million total, 
RPM) across the F43E2.6 siRNA-generating locus from HA::alg-1 cell lysate (upper 
panel) and HA::ALG-1 co-IP (lower panel). Fold enrichment in HA::ALG-1 co-IP relative 
to cell lysate is shown. 
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APPENDIX 2: Attempts to Characterize the Small RNA Decay Machinery 
 
 
 
This appendix describes experiments directed at identifying the small RNA decay 

machinery in C. elegans. Although none of them conclusively identified any participants 

in the small RNA turnover pathway, they provide a starting point from which this 

question may be approached in the future. 

3’ methylation is typically a protective measure against small RNA degradation, and 

the specific machinery that degrades small RNAs in C. elegans remains unknown. To 

identify potential degradation factors, we developed an RNAi-based genetic screen. The 

screen was designed to take advantage of the sterility expressed by worms in which 

RNAi has been reset in the absence of methylated piRNAs, as this sterility is 

presumably due to piRNA destabilization in methylation mutants (see Figure A1 as well 

as Figure 2.1 C-E and associated text for more information). By performing feeding 

RNAi against potential genes of interest during this RNAi reset cross, we hoped to 

identify genes that degrade unmethylated piRNAs by knocking them down so that they 

can no longer perform small RNA turnover. Any gene that restored fertility would be 

considered a gene of interest and would be further investigated for roles in piRNA 

decay. Since disabling the secondary siRNA biogenesis pathway also restores fertility 

during RNAi reset, RNAi against mut-2, a gene essential for secondary siRNA 

formation, was used as a positive control (Figure A1). 

In other organisms, small RNA degradation is preceded by polyuridylation. 

Therefore, we first compiled a list of annotated and predicted exonucleases and poly(U) 

polymerases to screen (Tables A1 and A2).  Among the tested genes, pup-3, an 
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Figure A1. Resetting RNAi for genetic screening. A diagram demonstrating the 
expected outputs from the genetic screen used to identify potential small RNA turnover 
genes under each of the indicated RNAi treatments. 
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annotated poly(U) polymerase with no known function (Kwak and Wickens, 2007), 

emerged from the screen as a potential participant in the piRNA turnover pathway. 

Although it failed to reproduce its robust suppression of sterility during repeated trials, it 

was nonetheless deemed promising enough to carry forward for closer analysis. pup-

3(tm5089) was crossed into henn-1(pk2295), and this double mutant was crossed into 

either mut-16(pk710) or mut-14(mg464);smut-1(tm1301) to perform the RNAi reset 

cross with the addition of the pup-3 mutation. As in the RNAi screen, henn-1;pup-3 

double mutants were not statistically significantly more fertile than mutants for henn-1 

(Figure A2A). Alongside this experiment, we used TaqMan qPCR to measure the 

abundance of several piRNAs (all of which have been previously shown to be 

methylation dependent by Montgomery et al., 2012) at two developmental stages: L1s 

and L4s. In addition to these piRNAs, we examined an ERGO-1-class 26G RNA at the 

L4 stage to measure the effect, if any, of pup-3 on another class of methylated small 

RNA and a Mutator-dependent secondary siRNA at the L1 stage to measure the effect, 

if any, of pup-3 on the downstream RNAi pathway. In both L1s (Figure A2B) and L4s 

(Figure A2C), pup-3 mutation failed to rescue the small RNA depletion associated with 

loss of henn-1. In all cases, henn-1 mutants were indistinguishable from henn-1;pup-3 

double mutants. 

In addition to examining poly(U) polymerases, we asked whether the RNA-modifying 

enzymes of the Mutator complex degrade unmethylated small RNAs. To test this, we 

generated mut-16(pk710);henn-1(pk2295) double mutants that are deficient for both 

primary small RNA methylation and secondary small RNA production. We then tested 

the abundance of piRNAs in these mutants. Compared to wild type, henn-1(pk2295) 
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Figure A2. pup-3’s influence on fertility and small RNA abundance.  
(A) Fertility after resetting RNAi in the presence and absence of henn-1 and pup-3. 
Results represent 3 crosses in mut-16(pk710);mut-14(mg464);smut-1(tm1301) (19 total 
offspring scored), 2 crosses in mut-16(pk710);mut-14(mg464);smut-1(tm1301);henn-
1(pk2295) (13 total offspring scored), and 3 crosses in mut-16(pk710);pup-
3(tm5089);mut-14(mg464);smut-1(tm1301);henn-1(pk2295) (24 total offspring scored). 
(B) Abundance of each of the indicated piRNAs (21UR-1, 21UR-3442, 21UR-3502) and 
a secondary siRNA derived from the B0250.8 locus in L1s measured by TaqMan qPCR. 
Comparisons marked with an asterisk are statistically significant (p < 0.05, Student’s t-
test), all other comparisons are nonsignificant. (C) Abundance of each of the indicated 
piRNAs (21UR-1, 21UR-3442, 21UR-3502) and the ERGO-1-class 26G-RNA 26G-siR-
07 in L4s measured by TaqMan qPCR. Comparisons marked with an asterisk are 
statistically significant (p < 0.05, Student’s t-test), all other comparisons are 
nonsignificant. 
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mutants displayed an increase in piRNA reads, likely due to the decreased efficiency of 

ligating the 3’ adapter to small RNAs that are methylated on the 3’ end. Also consistent 

with a loss of methylation, henn-1 mutants showed an increase in the proportion of 

truncated piRNAs (Figure A3). When compared to henn-1 single mutants, mut-

16(pk710);henn-1(pk2295) double mutants were expected to show a decrease in 

truncated piRNAs, as the interaction between the unmethylated small RNAs and the 

Mutator proteins was expected to decrease. Instead, we saw an increase in the 

proportion of trimmed piRNAs in the double mutants (Figure A3).  

Although the result of this experiment suggests that the mutator complex does not 

contribute to degrading unmethylated small RNAs, it has two substantial caveats that 

should be considered while interpreting the results. First, this experiment represents 

only one biological replicate that was submitted for sequencing, so these results could 

be considered suggestive, but by no means definitive. Second, although the mut-16 

mutation that we introduced abolishes secondary siRNA formation, it likely does so 

because it prevents the Mutator complex from nucleating. This means that its 

constituent proteins could still be functional and may be able to act on unmethylated 

small RNAs with the same frequency as mut-16 wild type animals. Future efforts to 

examine the Mutator proteins’ contributions to the turnover of unmethylated small RNAs 

could circumvent this issue by directly mutating mut-7, a known exonuclease in the 

Mutator complex. Due to mut-7’s proximity to henn-1 on chromosome III, however, it 

would be necessary to use non-traditional genetic methods such as CRISPR Cas9 to 

introduce this mutation.  
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Figure A3. Length of piRNAs in methylation and Mutator mutants.  
The proportions of total high-throughput sequencing reads for piRNAs in each of the 
indicated strains plotted by size. The piRNA reads per million total reads in each library 
are as follows: 69.6 kRPM for wild type, 281.6 kRPM for henn-1, 67.2 kRPM for mut-16, 
and 272.2 kRPM for mut-16;henn-1. 
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Since it is possible that pup-3 acts in tandem with another redundant or partially 

redundant poly(U) polymerase as is the case in Arabidopsis, we identified other genes 

of similar function to investigate alongside pup-3 in future experiments. In this case, we 

examined cde-1 (also known as cid-1 or pup-1) and pup-2. While pup-3 mutation 

appeared to have little measurable effect on worm health alone, both cde-1 and pup-2 

mutants were unhealthy and highly susceptible to temperature-dependent sterility when 

grown at 25C. Additionally, they were difficult to work with genetically, as henn-1, cde-1, 

and pup-2 are all in relatively close proximity on chromosome III and generally failed to 

segregate during crosses. Finally, assessing their influence on fertility while resetting 

RNAi was difficult, as they would also need to be combined with mutants for Mutator 

genes mut-16 and mut-14;smut-1 in order to perform the experimental cross. These 

limitations ultimately resulted in the suspension of further investigation into these 

poly(U) polymerases in order to pursue more fruitful aspects of the larger effort to 

functionally characterize small RNA methylation, but any future efforts to examine small 

RNA turnover in C. elegans may find these genes to be worth consideration. 

Finally, another screen was developed with the intent of increasing throughput by 

circumventing the need to reset RNAi for every gene that was tested. In this screen, 

fluorescent sensors for piRNA (mex-5::mCherry-21ur2921as) and secondary siRNA 

(ubl-1-GFP-SiR-1-sensor;ubl-1-mCherry-SiR-1-sensor) activity were introduced to henn-

1(pk2295) mutants. Compared to animals in which the RNAi pathway is functional, 

these sensors are brighter in RNAi deficient animals. Compared to untreated henn-1 

mutants, those in which the RNAi treatment disabled the small RNA decay pathway 

were expected to resemble henn-1 wild type animals more closely than henn-1 mutants. 
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Although this screen did not produce any conclusive genes of interest, the use of 

fluorescent reporters should not be discounted. A screen employing a sufficiently 

sensitive sensor could conceivably be an efficient way to test large numbers of genes 

quickly. The sensors we used, however, were not capable of resolving differences 

between wild-type and mutant animals and, therefore, were unable to produce useful 

results.  

Since the lists of genes we intended to screen included 19 poly(U) polymerases and 

55 exonucleases (see Tables A1 and A2), it would be ideal to employ the simplest 

possible genetic screen to maximize throughput and efficiency. Unfortunately, it may be 

necessary to make use of other approaches that use readouts other than fertility and 

fluorescent reporters. One possibility is to use an approach like Tang et al. (2016) used 

to identify the parn-1 as the exonuclease that trims piRNA precursors in C. elegans. 

They isolated RNA from animals undergoing RNAi treatment against candidate 

nucleases and subjected them to northern blotting to look for changes in piRNA length. 

Since northern blotting has previously shown piRNA truncations in henn-1 mutants (Billi 

et al., 2012; Kamminga et al., 2012; Montgomery et al., 2012), it could also reveal loss 

of truncation in henn-1 mutants undergoing knockdown of a nuclease that degrades 

unmethylated small RNAs. If we are correct that polyuridylation precedes degradation, it 

could presumably show a loss of piRNA decay during poly(U) polymerase knockdown 

as well. It would be a labor intensive and potentially hazardous approach, but it provides 

a readout that is hopefully clearer and more consistent than the screens we have 

attempted in the past. 
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Another, even more labor intensive approach would be to perform protein-protein 

crosslinking in henn-1 mutants to attempt to identify proteins that interact with 

methylated small RNA-associated Argonautes when methylation is not there to protect 

the RNAs. Proteins found to interact with these Argonautes could be further investigated 

for roles in the decay pathway. Another option could be to crosslink proteins to RNA in 

henn-1 mutants with the intent of identifying proteins in the process of tailing or 

degrading unmethylated piRNAs. Both of these approaches have in common the flaw 

that any proteins shown to interact in a way that suggests participation in the 

degradation pathway still need to be positively identified by other means. This means 

that, unlike some of the other proposed and attempted screen-based approaches, the 

identity of the gene contributing to the observed phenotype is not immediately known. 

There is also the issue that even if proteins interact more frequently with Argonautes or 

piRNAs in henn-1 mutants, it wouldn’t necessarily mean they are involved in the 

degradation process. Despite these caveats, crosslinking may be an overall useful, if 

inefficient, way to approach this question should other options fail. 

It may also be possible to use proximity labeling systems to identify unknown 

proteins that interact with HENN-1 or methylation-directing Argonautes. Although such 

tools are used infrequently in C. elegans (Remmelzwaal and Boxem, 2019), the biotin 

ligase TurboID has been used to label proteins in live C. elegans embryos (Branon et al. 

2018). Attaching TurboID to PRG-1, RDE-1, or ERGO-1 could allow for the enrichment 

of factors that interact with these argonautes in both the presence and absence of henn-

1, potentially revealing the proteins that participate in small RNA degradation. 

Employing such a technique comes with many of the same caveats as protein 
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crosslinking along with the additional difficulty of being a method for which few 

resources exist in C. elegans research, but could ultimately prove to be the most 

effective way to identify the components of the small RNA turnover pathway. Although it 

is likely to be difficult, this pathway has not been characterized in any organism, and 

doing so would fill a long-standing gap in our understanding of small RNA biology. 


