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ABSTRACT

ELECTROMECHANICAL AND CURVATURE-DRIVEN MOLECULAR FLOWS FOR

LIPID MEMBRANES

Lipid membranes play a crucial role in sustaining life, appearing ubiquitously in biol-

ogy. Gaining a quantitative understanding of the flows of lipid membranes is critical to

understanding how living systems operate. Additionally, the mechanical properties of lipid

membranes make them ideal material for nanotechnology, further motivating a need for accu-

rate computational models. This thesis is organized in three projects that model important

features of lipid membranes.

First, we define the mechanical energy of vesicle lipid membranes and propose a fast

numerical algorithm for minimizing this energy. The mechanical energy is well known,

and existing computational techniques for minimizing this energy include solving the Euler-

Lagrange equations for axisymmetric shapes [91] or approximating the minimization problem

by minimizing over a subspace of membrane configurations. We choose the latter approach,

making no restrictive symmetry assumptions. Specifically, we use surface harmonic functions

to parameterize the membrane surface, drastically reducing the degrees of freedom compared

to similar existing approaches. Numerical equilibrium shapes are presented, including con-

formations exhibited by red blood cells. The numerical results are verified against analytical

values of axisymmetric shapes.

Second, we develop the electrostatic potential energy for lipid bilayer membranes in

the context of lipid-protein interactions. We extend the electrostatic potential energy of a

protein-solvent system in [62] to include charged lipids in a protein-membrane-solvent system.

Here, we model the bilayer membrane as a continuum with general continuous distributions
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of lipids charges on membrane surfaces. Key geometrical properties of the membrane surfaces

under a smooth velocity field allow us to apply the Hadamard-Zolésio structure theorem of

shape calculus, and we compute the electrostatic force on membrane surfaces as the shape

derivative of the electrostatic energy functional.

Third and finally, we develop the mathematical theory and the computational tools for

curvature-driven flow of proteins within lipid membranes. Recently, much attention has been

devoted to understanding curvature generating and curvature sensing properties of proteins

in vesicle membranes. That is, certain proteins prefer regions of specific curvature and natu-

rally flow to these regions. We develop the mathematical theory for curvature-driven diffusion

along these membranes, which involves a variable diffusion coefficient. Finite element and

finite difference methods have been used to solve diffusion equations on surfaces, but these

methods require costly spatial resolution and adaptive mesh refinements for dynamic mem-

brane surfaces. Instead, we use a phase field model with Fourier spectral methods so that

no explicit tracking of the surface is required. Furthermore, the spectral accuracy allows for

uniform mesh with no refinement near the boundary. The numerical solution of the diffu-

sion equation and the numerical solution of the membrane shape equation is performed in a

consistent framework to allow for the coupling of membrane shape with the curvature-driven

surface diffusion. Results which capture the curvature preference are presented.
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CHAPTER 1

Introduction

1.1. Mathematics Preliminaries

Before reading this thesis, the reader should be familiar with some basic calculus formulas.

Recall the formula for integration by parts:

(1)

∫
Ω

∇u · v dX =

∫
∂Ω

(uv) · n dS −
∫

Ω

u∇ · v dX.

The divergence theorem is a realization of integration by parts with u = 1,

(2)

∫
∂Ω

v · n dS =

∫
Ω

∇ · v dX.

For a scalar-valued function f : Rn → R and a vector valued function V : Rn → Rn, the

divergence operator satisfies the product rule,

(3) ∇ · (fV ) = f(∇ · V ) + V · (∇f).

On a two dimensional surface, the surface gradient and surface divergence can be defined

by subtracting off the normal components from the usual gradient and divergence. For a

scalar valued function g : R2 → R, the surface gradient is

(4) ∇sg = ∇g − (∇g · n)n.

Also, for any vector-valued function W : R2 → R2, the surface divergence is defined as

(5) ∇s ·W = ∇ ·W − n · (∇W )n.

The reader should also be familiar with the calculus of variations. As a refresher, we

provide a simple computational formula. Given a functional F [φ] : M → R, where M is a
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manifold, the functional derivative of F [φ] with respect to φ is defined by

δF =

∫
δF

δφ
ψ dx(6)

= lim
τ→0

F [φ+ τψ]− F [φ]

τ

=
d

dτ
F [φ+ τψ]

∣∣∣∣
τ=0

.

The functional derivative is the quantity
δF

δφ
and it can be computed by the formula (6).

The quantity δF is called the first variation of F .

Now we are ready to begin.

1.2. What are lipid vesicles?

Lipid bilayers play a crucial role in sustaining life. They serve as boundaries of cells

and cell organelles such as the endoplasmic reticulum, Golgi apparatus, mitochondria, and

transport vesicles. Primarily, lipid bilayers act as interfaces between the enclosed structure

and the surrounding aqueous environment and serve as smart controls for the transport of

specific ions, sugars, amino acids, and vitamins in and out of the enclosed structures [66].

The membrane is flexible and permits the flow of these metabolic products by stretching,

bending, merging and separating in specific locations. The control of flow through the

membrane is precisely regulated by different proteins and other macromolecules, each with

its own specific function.

Lipids are amphiphilic molecules. They are composed of two structured groups, a hy-

drophilic “head” and a hydrophobic “tail.” Therefore, when placed in aqueous solution, the

head groups of the lipids aggregate in such a way to protect the tail groups from the wa-

ter, forming a bilayer membrane automatically, as shown in Figure 1.1. Each layer of the

membrane is called a leaflet. A cell vesicle is an example of an organelle formed by a lipid bi-

layer structure. Vesicles primarily serve as transport vehicles, carrying cellular products and

wastes to specific locations. Like any organelle, the membrane includes more than just the

lipid bilayer. Numerous proteins and cholesterols may be attached or embedded in the lipid

2



membrane. A cell vesicle with its numerous attachments is shown in Figure 1.1, alongside a

depiction of a vesicle without any attachments.

Hydrophobic tail

Hydrophilic head

Figure 1.1: Left: Self assembly of lipid bilayer. Middle: Lipid bilayer forming a liposome
vesicle with no protein attachments [77]. Right: Cell vesicle with attachments [99].

In principle, the flow through the lipid bilayer membrane is regulated by two major types

of membrane deformations. One type of deformation occurs directly at the location of trans-

port. Two examples are endocytosis and exocytosis. In endocytosis, the membrane bubbles

inwardly, creating a vesicle that engulfs certain substances. In exocytosis, the membrane

bubbles outwardly, creating a vesicle that excretes certain substances. Another type of flow

is caused by indirect membrane deformations through mechanosensitive channels. A stim-

ulus away from the transport site may induce membrane deformations, signaling proteins

embedded in the membrane to open or close, in turn allowing or disallowing certain products

to pass through. Both of these major types of transport are illustrated in Figure 1.2.

Figure 1.2: Left: Illustration of transport through endocytosis [40]. Middle: Transport
through of exocytosis [70]. Right: Transport through a mechanosensitive ion channel opening
in response to membrane tension.
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Investigating the forces on lipid membranes is essential to study membrane deformations

and flows, and ultimately understand the complex activities of cells and organelles. In

addition, the mechanics of lipid membranes is critically important for drug encapsulation

and delivery [84].

1.3. Mathematical models: an overview

The underlying theme for these problems in mathematical biology is energy minimization.

The geometric structure to which a molecule, ion, phase, membrane, etc. assumes often

corresponds to a configuration with minimum energy. This is due to a fundamental concept

in physics, chemistry, and biology: the second law of thermodynamics. That is, the entropy

of a closed system always decreases and is maximized at equilibrium. As a simple example,

a ball placed on the side of a hill will roll to the bottom without being pushed, minimizing

its gravitational potential energy.

In relation to lipid membranes, the bending, stretching, merging, and separating of the

lipid membrane incurs some associated energy cost. The equilibrium membrane shapes

should appear in configurations which minimize these energies. Defining the energy of a

membrane with no external forces is discussed in Chapter 2. Later, in Chapter 5, we inves-

tigate the total energy when the the lipid membrane is placed under an external field, e.g.,

electrostatic field generated by protein-membrane interactions.

1.3.1. Atomistic models. There are many methods one can choose to model the dy-

namics and equilibrium configurations of lipid membranes. Probably the most straightfor-

ward is molecular dynamics simulations (MD). In MD, each atom is explicitly defined in

space, and all the bonded and nonbonded interactions are calculated at each time step.

These interactions produce forces, causing the atoms to move, and new forces for the new

positions must be computed on each atom. The process continues, simulating the dynamics

until equilibrium. While this method is conceptually precise, it certainly has its setbacks.

If a large deformation is sought, in either length or time, MD simulation is too computa-

tionally expensive. Moreover, we’re really only interested in the movement of the lipids, but
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MD requires computations on every atom in the simulation, including the water molecules

in the solvent. Much computation time is spent on simulating the movement of the water

molecules, which isn’t really the problem of interest. Other methods of membrane simula-

tion include Monte Carlo (MC) and Brownian dynamics (BD), but these methods also have

similar drawbacks.

1.3.2. Continuum models. In this thesis, a continuum model describing large and

meso-scale deformations of lipid bilayer membranes is established, specifically for vesicle

membranes. Lipid vesicles are typically 50nm in diameter, while other membranes (e.g.

cell membranes) can be 100µm in diameter. The lipid constituents have heads that are

0.8-0.9nm in diameter with tails that are 2-2.5nm long [76, Ch. 2]. The size discrepancy

between the vesicle configuration and the individual lipids justifies the continuum assump-

tion. Continuum mechanical properties of the membrane, including the bending modulus,

have been measured under sufficiently long time scales (for example 10-60ns for a system

with 1024 lipids) and agree nicely with experiment [65]. Moreover, lipid membranes modeled

in continuum electrostatic contexts are in agreement with atomic simulation [16]. However,

this treatment cannot capture some short time and specific local interactions, and in some

applications hybrid implicit-explicit approaches may be necessary [64].

1.4. Outline and contribution of thesis

The rest of the thesis is organized in three major sections. The specific contributions are

highlighted for each section.

We begin in the next chapter by defining the mechanical forces on a vesicle. In fact,

a very common vesicle serves as a good test against a model with only mechanical forces:

red blood cells. We review the derivation for the total mechanical energy of vesicles with

its rich history. This mechanical energy includes curvature terms, and some differential

geometry will be discussed. In Chapter 3, we propose a variational problem to minimize

the mechanical energy over membrane configurations which are physically relevant. We use

surface harmonic functions to parameterize the membrane and solve the variational problem
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in an efficient way. This is novel work and is a simplification from the use of spherical

harmonic functions as in [52]. Chapter 4 gives the numerical results of the parameterized

problem, comparing the results against analytical solutions.

In Chapter 5, we define the electrostatic forces on a vesicle, induced by a charged protein

located outside of the membrane. The chapter culminates in an expression for the electro-

static potential energy for the protein-membrane-solvent system. The novelty of this chapter

is the introduction of charged lipids on the membrane, extending the functional in [62] for

protein-solvent systems. Chapter 6 defines the dielectric boundary force on the vesicle mem-

brane using the electrostatic potential energy from Chapter 5. The calculation is rigorously

justified through techniques of shape calculus and is physically verified by the use of the

Maxwell Stress Tensor.

The third and final section models topological vesicle deformations. In Chapter 7, the

mechanical energy defined in Chapter 2 is cast in an Eulerian framework. Rather than track-

ing the position of the membrane explicitly, we track the membrane implicitly as a level set of

a 3D function called a phase field function. A new energy minimizing procedure is proposed

and solved, which minimizes the curvature energy (mechanical energy) of the membrane(s).

Chapter 8 uses this framework to model curvature-driven protein localization within a mul-

ticomponent vesicle membrane, which is novel work. Proteins, this time embedded in the

membrane itself, may diffuse laterally along the membrane, just as the lipids do. However,

the protein may prefer a region of specific curvature. Numerical results of this model are

presented in Chapter 9.

A concluding chapter summarizing the results and proposing extensions from these works

is presented in Chapter 10.

6



CHAPTER 2

Biomolecular Mechanics

Red blood cells (RBCs) are highly deformable in flow conditions, but at rest, they are

biconcave discocytes. Understanding why RBCs take their biconcave shape has been a

very active problem in the last century. Since RBCs have no nucleus, their shape must

be regulated by a balance of forces on the cell membrane. Figure 2.1 shows a photograph

of a red blood cell using an electron microscope. We wish to model the membrane of a

Figure 2.1: Red blood cells have biconcave discoidal shape in the absence of external force.

red blood cell in a physically justifiable way. Some clues to this model are attained from

experiment. In blood flow, the RBC passes through narrow blood vessels and can deform

into long finger-like cylinders, all the while maintaining constant thickness. For example,

an 8 µm diameter RBC has been observed to squeeze through inter-endothelia slits that are

0.2-0.5 µm in width [8]. Yet, after these deformations, the RBC can return to its original

discoidal shape. Therefore, the RBC membrane possesses elastic deformation properties.

Some attempts have been made in the 1900s to attribute an accurate model to the RBC

shape. In 1965, Murphy suggested that the RBC shape was related to variations in the dis-

tribution of cholesterol in the membrane [74]. However, this is not supported by experiment

[89]. In 1968, Fung and Tong treated the RBC as a fluid-like shell, where the thickness of

the membrane varied to regulate the biconcave shape [39]. This contradicts the experiments

mentioned above. In the same year, Loepz et. al. suggested the charge distribution on the

membrane could influence the shape [67]. But a uniform charge distribution was shown on
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the surface of RBCs by Greer and Baker [44]. By and large, the failure of these theories is

that they did not recognize the liquid crystal state of the membrane.

In 1970, Canham suggested that the RBC shape was determined completely by the

bending elasticity of the membrane [13]. This was a major breakthrough in the research.

However, the model leads to other shapes not observed in RBCs. Refining this model, in

1973, Helfrich proposed that the lipid membrane acts like a homeotropic nematic liquid

crystal, where the normal to the surface is the preferred orientation [47]. He based the

expression of the energy density of a lipid membrane on the derivation for uniaxial liquid

crystals developed by Frank in 1958 [38]. A heuristic derivation for the total mechanical

energy of a lipid membrane is given in the following sections, culminating in Section 2.3. A

more in depth approach, following the work of Frank [38] is given in Section 2.5.

2.1. Stretching and shearing

The energy cost due to stretching/compressing the membrane from area A0 to a new

area A is given by

(7) Estretch =
1

2
Kstretch

(A− A0)2

A0

,

where Kstretch is the stretching/compression modulus of elasticity. The lateral stress (or

tensile stress, or tension), i.e. force per unit area, is calculated by the derivative of the

energy,

(8) σ =
∂Estretch

∂A
= Kstretch

A− A0

A0

= Kstretch ε,

where ε is the normalized displacement, or the strain,

(9) ε =
A− A0

A0

.

This formula (8) is well known as Hooke’s Law. The value of Kstretch can be calculated for

large unilamellar vesicles (e.g. soap bubbles), and the value is approximately 250 erg/cm2

[86]. Under experiments, the membrane ruptures at only a few millinewtons per meter. Since
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Kstretch is so large, this means the change in area A−A0 must be small to avoid rupture. In

other words, the membrane cannot sustain much stretching force.

To understand why this is the case, let’s consider the molecular nature of the lipids,

specifically the hydrophobicity of the lipid tail (hydrocarbon chain). The concentration of

free lipid molecules in aqueous solution is typically 1-100 molecules per cubic micron [69].

In other words, for bilayers, the solubility of lipids is low. Therefore, the total number of

lipids in the membrane is by-and-large constant. The flip-flop of lipids from one leaflet to

another is rare compared to lateral diffusion, since the polar head group must pass through

the inner hydrophobic region. Since the number of molecules within the membrane leaflets

are fixed, the area must also be fixed. Therefore, it is the constant composition of lipids in

the bilayer which provides the area constraint.

The energy due to the area stretching and compression is on the order of KstretchA0.

Using the typical values for large vesicles, where A0 = 1000 µm2, the energy is of the order

Estretch ' KstretchA0 = 250
erg

cm2

(
100 cm

1m

)2

· 1000µm2

(
m

106 µm

)2

' 10−3 erg = 10−10J.

The energy from bending the membrane (to be discussed in Section 2.3) is on the order of

the bending modulus KC , which takes values KC ' 10−12 erg = 10−19 J [33]. Comparing

the bending energy to the stretching energy above, we see that the energy from stretching

is on the order of ' 109KC . The stretching energy is nine orders of magnitude larger, and

therefore we can treat the surface area of the membrane as constant, effectively keeping the

area difference of equation (9) fixed. Following equation (7), we use the tensile stress σ as a

Lagrange multiplier to write an effective area constraint,

(10) Earea = σ

∫
Γ

dS,

where Γ is the membrane surface and dS is a differential surface area element.

While the membrane cannot withstand large stretching force, it cannot sustain any shear-

ing force. The lipids are free to diffuse laterally throughout the membrane, and therefore

any shear will be absorbed by the fluidity of the membrane.
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2.2. Osmotic pressure

Another constraint comes from the fact that lipid membranes are relatively impermeable

by ions. This means that the volume of a vesicle is relatively constant, regulated by osmotic

pressure. Osmotic pressure is the pressure required to resist osmosis and maintain equilib-

rium volume. Osmosis is the flow of solvent molecules through semi-permeable membranes

to a region of higher solute concentration in efforts to equalize the concentrations on either

side of the membrane. The low permeability of the membrane (and corresponding high resis-

tance to osmosis) serves as a volume constraint. If we let Rg be the gas constant, Rg ≈8.31

J/(mol·K), and assume an ideal solution, then the pressure difference of the inside to outside

volume p = pin − pout is given by

p = RgT (n/V − c),

where the quantity n/V − c represents the concentration of impermeable molecules inside

the vesicle (n/V ) minus the concentration of impermeable molecules (e.g. sugar) outside the

vesicle (c) in moles per unit volume. A typical value for the sugar concentration is 10−4

mol/m3. The energy corresponding to this pressure is found by integrating the pressure over

the volume from the initial volume V0 to the final volume after the pressure is exerted V ,

Eo =

∫ V

V0

p(v) dv =

∫ V

V0

RgT (n/v − c) dv

= RgT (n ln(V/V0)− c(V − V0)) .

Since we assume the volume difference is small, V ≈ V0, we have V/V0−1� 1, which allows

for the Taylor approximation to ln(x) ≈ (x− 1). This gives

Eo ≈ RgT (n(V/V0 − 1)− c(V − V0)

= RgT (n− cV0)(V/V0 − 1)

≈ RgTcV0/2,
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where the last equality was obtained by using the number of molecules as an average of the

number of molecules of the initial volume and the final volume, n ≈ cV/2 + cV0/2, which

is valid since V ≈ V0. The energy here is calculated using typical values for a sphere-like

vesicle of radius 10 µm, at room temperature 295 K,

RgTcV0

2
' 4

3
π(10× 10−6m)3(295 K)(10−4 mol

m3
)(8.31

J

mol ·K)/2 ' 10−16J.

Compared to the bending energy, this energy is three orders of magnitude larger. That

is, using the same bending modulus of KC ' 10−19J , the osmotic energy is of the order

' 103KC . This means that the bending energy cannot account for the osmotic pressure

from the presence of insoluble sugar molecules in the exterior solution. Because of this, the

enclosed volume of the vesicle is controlled by the condition that no osmotic pressure builds

up. We use the pressure difference as a Lagrange multiplier to write an effective volume

constraint,

(11) Evolume = p

∫
dV,

where the integral is computed over the 3D domain of the enclosed membrane. Note that

since a surface can be parameterized in two variables, this integral can be reduced to two

dimensions after a proper parameterization.

2.3. Bending

In this section, we provide a formula for the energy due to bending the membrane. Since

the energy of membranes does not depend on the frame of reference, it must arise from

the invariants of the shape operator only. These invariants are the mean and Gaussian

curvatures. We must express these quantities as dimensionless strains to be consistent with

the elasticity theory. The bending energy of the membrane up to quadratic order is given

by

(12) Ebend[Γ] =
KC

2

∫
Γ

(2H)2 dS +
KG

2

∫
Γ

K dS,

11



where KC is the bending modulus (or bending/flexural rigidity) and KG is the Gaussian

saddle-splay modulus (or Gaussian rigidity). A derivation of this equation is provided in

Section 2.5. Notice that the integral of the square mean curvature and the Gaussian curvature

with respect to the surface area are dimensionless quantities ([H] = 1/L, [K] = 1/L2, [dS] =

L2), so we can think of the curvatures as a measure of strain due to bending.

The bending energy equation (12) holds for membranes with symmetric lipid distributions

on each leaflet. However, in most bilayer membranes, this is not the case. A modification

needs to be made to account for naturally arising asymmetry. Based on the chemical bonds in

the hydrocarbon chains, lipids have an intrinsic curvature, illustrated in Figure 2.2 [83]. If the

Figure 2.2: Different lipid species have different intrinsic curvature. Photo from [83].

lipid composition in each leaflet is symmetric, the overall curvature of the membrane will not

be affected by the lipids themselves, since the curvatures will cancel each other out. However,

if the lipid composition in each leaflet is different, the membrane might be spontaneously

curved in one direction. Equation (12) is modified to account for this spontaneous curvature

resulting from asymmetric lipid compositions, which occurs often in real biological systems.

The spontaneous curvature C0 depends on the lipid species present, but it is difficult to

measure. Note that the spontaneous curvature may be different at different positions along

the membrane. The result is the spontaneous curvature model, developed by Canham [13],

Helfrich [47], and Evans [31]:

(13) E[Γ] =
KC

2

∫
Γ

(2H − C0)2 dS +
KG

2

∫
Γ

K dS.

We now have a minimization problem subject to area and volume constraints. Note that

the second term in (13) is constant for surfaces with the same topology according to the

12



Gauss-Bonet formula, so the variation is zero and it has no effect on the minimization of the

mechanical energy (see [25] for the Gauss-Bonet theorem).

2.4. Lipids: material for nanotechnology

Before deriving the bending energy formula, we pause to examine the relationship between

the bending modulus and the stretching modulus for a single elastic sheet, given by

(14) KC =
Y h3

12(1− ν2)
(single elastic sheet),

where Y is the (3D) Young’s modulus, h is the thickness of the membrane, and ν is Poisson’s

ratio. The Young’s modulus can be expressed in terms of the stretch modulus by

(15) Y = Kstretch/h.

If you stretch an elastic material in one direction, the other two directions will experience

some compression. Poisson’s ratio is used to transfer the axial strain in one dimension to the

other two dimensions. We assume the vesicle structure is incompressible, and so we simplify

by setting ν = 0.5. Therefore, in terms of the stretching modulus, the bending modulus is

(16) KC =
Kstretchh

2

9
(single elastic sheet).

It should be emphasized that the equation for the bending modulus (14) is valid for a single

elastic sheet only. However, we have a lipid bilayer, so there are really two elastic sheets

involved. Assuming the thickness of the full bilayer is the same (h), we should modify

(14) by considering two sheets of thickness h/2 each. Since we are bending two sheets, we

multiply the right-hand side by 2. Furthermore, we replace h with h/2 and use (15) with

the assumption that ν = 0.5 to get

(17) KC = 2
Y (h/2)3

12(1− ν2)
=

Y h3

48(1− (0.5)2)
=

Kstretchh
2

36
(bilayer).

One important question in deriving the model is which value of h we should use to calculate

KC in (17). Is it the distance between headgroups of lipids, or just the hydrophobic core?
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This difference may be small, but since h is squared, it may be important. Therefore, (17)

should not be taken to be absolutely reliable in this context, but it does serve as a reasonable

estimate. Using a stretching modulus of 0.25 N/m as before and a bilayer thickness of

h = 5nm, we obtain

KC ≈ 1

36
0.25

N

m
· (5× 10−9m)2 ≈ 1.7× 10−19J ≈ 42 kBT,

where kB ≈ 1.38× 10−23J/K is the Boltzmann constant and T is the temperature in Kelvin

(experiments taken at normal room temperature, ≈ 295K). The product kBT is called the

thermal energy and is used as a standard scaling factor for energies on the molecular scale.

This estimate is quite accurate compared to experimental values (see for instance, Table 7.3

in [9]), including the estimate we have been using since Section 2.1 from [33]. This energy is

large enough to withstand thermal fluctuations without rupturing the membrane, but is not

too much bigger than the thermal energy, so it is small enough to be deformed by nanoscopic

sources of energy. Therefore, lipid bilayers are ideal material for nanotechnology [24].

2.5. Derivation of mechanical energy

In this section, we derive the bending energy (12) using elasticity theory. The math-

ematical elasticity of solids is based on the analysis of a differential element of the solid.

The element is deformed, and restoring forces, including forces that oppose displacement

of neighboring points in the material, are considered. Constitutive relations between stress

and strain, such as Hooke’s law, are applied to determine the strain. Assuming a linear

stress-strain relation, the energy is a quadratic function of the strain.

We begin by following Frank’s seminal work [38]. In the elasticity theory of liquid crystals,

there are no forces that oppose the displacement of neighboring points in the material. There-

fore, for a differential element of the liquid crystal, restoring torques are considered, which

oppose changes in the curvature. An analog of Hooke’s law is applied to these curvature-

strains using a linear constitutive relation, resulting in an energy that is quadratic in the

curvature-strain. The elastic moduli are the linear constants of proportionality.
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Take a differential (surface) element of the lipid membrane, considered as a liquid crystal

with orientation in the normal direction. We define a local coordinate system on the surface

patch, where the z-axis is parallel to the normal at the center of the patch. Of course,

away from the center, the normal direction may change, but if the size of the patch is small

enough, this discrepancy becomes negligible. We define six components of curvature-strain,

based on this local coordinate system: two splays, two twists, and two bends.

Splays : s1 =
∂nx
∂x

, s2 =
∂ny
∂y

,(18)

Twists : t1 = −∂ny
∂x

, t2 =
∂nx
∂y

,(19)

Bends : b1 =
∂nx
∂z

, b2 =
∂ny
∂z

.(20)

From the equations, a splay (short for the word “display”) is a deformation parallel to

the axis; a twist is an deformation orthogonal to the axis on the surface, and a bend is a

deformation orthogonal to the surface. These deformations are illustrated in Figure 2.3.

1. Splays 2. Twists 3. Bends

Figure 2.3: The three curvature-strain deformations from [38].

The expression for the (unit) normal vector to the surface at any point on the patch is

given as a linear expansion of the curvature strains in each coordinate direction,

(21)


nx = a1x+ a2y + a3z +O(r2),

ny = a4x+ a5y + a6z +O(r2),

nz = 1 +O(r2).
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This approximation is on the order of r2 = x2 + y2 + z2 for points within some radius r of

the center of the patch. Notice that the director n is still a unit vector, since we assume

that the patch size is very small, so that the normal does not change very much under the

deformation and hence n ≈ 〈0, 0, 1〉. The coefficients ai are just the splays, twists, and bends.

By (18), (19), and (20), we can see that

a1 =
∂nx
∂x

= s1, a2 =
∂nx
∂y

= t2,

a3 =
∂nx
∂z

= b1, a4 =
∂ny
∂x

= −t1,

a5 =
∂ny
∂y

= s2, a6 =
∂ny
∂z

= b2.

(22)

Next, assume an analog of Hooke’s Law, that the “torque-stress” is linearly proportional to

the curvature-strain, yielding an energy which is a quadratic function of the curvature-strain.

We will take this as our assumption, that the energy density e is a quadratic function of the

curvature coefficients ai, i = 1, · · · , 6.

(23) e = kiai +
1

2
kijaiaj,

where summation is implied over matching indicies (Einstein summation convention). This

gives a system of 6 linear coefficients ai and 36 quadratic coefficients aij. However, not all of

these coefficients are nonzero, and not all of them are unique. Next, we make simplifications

to the system based on symmetry requirements.

The first simplification comes from expanding the quadratic terms. In the expansion,

there will be two terms corresponding to aiaj when i 6= j. The coefficients kij and kji must

be equal, since aiaj is the same term as ajai physically. This simplification is known as minor

symmetry.

The next simplifications are made based on the fact that different coordinate systems

should give the same energy, provided the normal axis (preferred orientation of the bilayer)

is maintained. Any rotation of the coordinate system about the z-axis should give the

same energy. Furthermore, since the normal vector to a bilayer of lipids can point in either
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direction, it is permissible to transform n′ = −n. Following Frank [38], we choose x′ = x

and y′ = −y, and z′ = −z in addition to n′ = −n to maintain a right-handed coordinate

system. Then, the linear expansion for (21), keeping the coefficients ai the same, is

(24)


n′x′ = −nx′ = −nx = − (a1x+ a2y + a3z) = − (a1x

′ − a2y
′ − a3z

′) = −a1x
′ + a2y

′ + a3z
′,

n′y′ = −ny′ = ny = a4x+ a5y + a6z = a4x
′ − a5y

′ − a6z
′.

The new expression for the energy (23) will have different coefficients, but must be equivalent

to the original expression due to the invariance of the energy under this transformation.

Looking at the linear terms, the old and new linear parts of the energy are

elin = k1a1 + k2a2 + k3a3 + k4a4 + k5a5 + k6a6,(25)

e′lin = −k1a1 + k2a2 + k3a3 + k4a4 − k5a5 − k6a6.(26)

Equating
∂elin

∂ai
with

∂e′lin
∂ai

gives the following relations,

k1 = ±k1,

k5 = ±k5,

k6 = ±k6.

(27)

From these relations, we can see that

(28) k1 = k5 = k6 = 0.

For the quadratic part of the energy, one can expand all 36 terms of gnlin and g′nlin and

take
∂2elin

∂ai∂aj
for each i, j = 1, . . . , 6, but since the quadratic coefficients are just the linear

coefficients multiplied, we can just multiply the linear equations (28) to find the quadratic

relations. For example, k12 is the coefficient of a1a2. The coefficient of a1 is k1, which must

satisfy the sign change according to (27), but the coefficient of a2 does not have a sign change;

therefore, we have k12 = k1k2 = −k1k2 = 0 (as is k21 = 0 by minor symmetry). On the other

hand, the coefficient of a11 is not zero, since k11 = k1k1 = (−k1)(−k1) = k1k1. In the end,
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we have the following zero terms,

(29) k12 = k13 = k14 = k25 = k26 = k35 = k36 = k45 = k46 = 0

After these simplifications, the system is characterized by 3 independent linear components

and 12 independent quadratic components,

(30) ki =



0

k2

k3

k4

0

0


, kij =



k11 0 0 0 k15 k16

0 k22 k23 k24 0 0

0 k23 k33 k34 0 0

0 k24 k34 k44 0 0

k15 0 0 0 k55 k56

k16 0 0 0 k56 k66


.

The system can further be simplified by assuming the absence of enantiomorphy. That is,

the lipids themselves possess reflection symmetry, so our choice of a right-handed coordinate

system was not necessary. If we transform the coordinates to x′ = x, y′ = −y, z′ = z, and

keep the normal vector the same, the curvature-strains are now

(31)


nx′ = nx = a1x+ a2y + a3z = a1x

′ − a2y
′ + a3z

′,

ny′ = −ny = − (a4x+ a5y + a6z) = −a4x
′ + a5y

′ − a6z
′.

Following the energy invariance argument as before, the linear coefficients which change sign

must be zero, Removing the redundant constraints, we have additionally that

(32) k2 = k4 = 0.

In the quadratic terms, we have

(33) k16 = k23 = k34 = k56 = 0.
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Now, there is only 1 linear coefficient and 8 quadratic coefficients.

(34) ki =



0

0

k3

0

0

0


, kij =



k11 0 0 0 k15 0

0 k22 0 k24 0 0

0 0 k33 0 0 0

0 k24 0 k44 0 0

k15 0 0 0 k55 0

0 0 0 0 0 k66


.

Next, we rotate the coordinates about the z-axis by 90◦ clockwise, giving x′ = y, y′ =

−x, z′ = z. Then, the curvature-strain relations are

(35)


nx′ = ny = a4x+ a5y + a6z = a5x

′ − a4y
′ + a6z

′,

ny′ = −nx = − (a1x+ a2y + a3z) = −a2x
′ + a1y

′ − a3z
′.

Again, by the energy invariance, we have

k1 = k5,

k2 = −k4,

k3 = ±k6.

(36)

From the last relation in (36) and (28), we can conclude that

(37) k3 = k6 = 0.

For the quadratic terms, we have the additional constraints

(38) k11 = k55, k22 = k44, k33 = k66.
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At this point, we have removed all the linear coefficients, and have only 5 remaining quadratic

coefficients,

(39) ki =



0

0

0

0

0

0


, kij =



k11 0 0 0 k15 0

0 k22 0 k24 0 0

0 0 k33 0 0 0

0 k24 0 k22 0 0

k15 0 0 0 k11 0

0 0 0 0 0 k33


.

Finally, we rotate the coordinates about the z-axis by 45◦ clockwise so that x′ = (
√

2/2)x+

(
√

2/2)y, y′ = −(
√

2/2)x+ (
√

2/2)y, z′ = z, or equivalently, x = (
√

2/2)x′ − (
√

2/2)y′, y =

(
√

2/2)x′ + (
√

2/2)y′, z = z′. The work is a bit more tedious in this case. The curvature-

strain relations are

(40)



nx′ =

√
2

2
(a1x+ a2y + a3z) +

√
2

2
(a4x+ a5y + a6z)

=

√
2

2

(
a1

(√
2

2
x′ −

√
2

2
y′

)
+ a2

(√
2

2
x′ +

√
2

2
y′

)
+ a3z

′

)

+

√
2

2

(
a4

(√
2

2
x′ −

√
2

2
y′

)
+ a5

(√
2

2
x′ +

√
2

2
y′

)
+ a6z

′

)

=
1

2
(a1 + a2 + a4 + a5)x′ +

1

2
(−a1 + a2 − a4 + a5)y′ +

√
2

2
(a3 + a6)z′,

ny′ = −
√

2

2
(a1x+ a2y + a3z) +

√
2

2
(a4x+ a5y + a6z)

= −
√

2

2

(
a1

(√
2

2
x′ −

√
2

2
y′

)
+ a2

(√
2

2
x′ +

√
2

2
y′

)
+ a3z

′

)

+

√
2

2

(
a4

(√
2

2
x′ −

√
2

2
y′

)
+ a5

(√
2

2
x′ +

√
2

2
y′

)
+ a6z

′

)

=
1

2
(−a1 − a2 + a4 + a5)x′ +

1

2
(a1 − a2 − a4 + a5)y′ +

√
2

2
(−a3 + a6)z′.
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The linear part of the energy is expanded by

g′lin =
1

2
(a1 + a2 + a4 + a5)k1 +

1

2
(−a1 + a2 − a4 + a5)k2 +

√
2

2
(a3 + a6)k3

+
1

2
(−a1 − a2 + a4 + a5)k4 +

1

2
(a1 − a2 − a4 + a5)k5 +

√
2

2
(−a3 + a6)k6.

(41)

Differentiating (41) with respect to certain ai gives

1

2
(k1 − k2 − k4 + k5) = k1,

1

2
(k1 + k2 − k4 − k5) = k2,

1

2
(k1 − k2 + k4 − k5) = k4,

1

2
(k1 + k2 + k4 + k5) = k5.

Using this, we have

4(k11 − k15 − k22 − k24)

= (k1 − k2 − k4 + k5)(k1 − k2 − k4 + k5)− (k1 − k2 − k4 + k5)(k1 + k2 + k4 + k5)

− (k1 + k2 − k4 − k5)(k1 + k2 − k4 − k5)− (k1 + k2 − k4 − k5)(k1 − k2 + k4 − k5)

= −2(k1 − k2 − k4 + k5)(k2 + k4)− 2(k1 + k2 − k4 − k5)(k1 − k5)

= −2k11 − 4k12 + 4k15 + 2k22 + 4k24 + 2k44 − 4k45 − 2k55.

But, from (38), we have k11 = k55, k12 = 0, k22 = k44, and k45 = 0. So the equality above

simplifies to

4(k11 − k15 − k22 − k24) = −4(k11 − k15 − k22 − k24) = 0.

The final relation we have follows immediately:

(42) k15 = k11 − k22 − k24.
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After all these simplifications, we have 0 linear terms, and only 4 independent quadratic

terms.

(43) ki =



0

0

0

0

0

0


, kij =



k11 0 0 0 k11 − k22 − k24 0

0 k22 0 k24 0 0

0 0 k33 0 0 0

0 k24 0 k22 0 0

k11 − k22 − k24 0 0 0 k11 0

0 0 0 0 0 k33


.

Now, the matrix notation is superfluous, so we write the energy density term-by-term using

(23) and (43),

(44) e =
1

2

[
k11(a2

1 + a2
5) + k22(a2

2 + a2
4) + k33(a2

3 + a2
6)
]

+ (k11 − k22 − k24)a1a5 + k24a2a4.

In terms of the splays, twists, and bends in (22), the energy density (44) becomes

e =
1

2

[
k11(s2

1 + s2
2) + k22(t22 + t21) + k33(b2

1 + b2
2)
]

+ (k11 − k22 − k24)s1s2 − k24t2t1(45)

=
1

2
k11(s1 + s2)2 +

1

2
k22(t1 + t2)2 +

1

2
k33(b2

1 + b2
2)− (k22 + k24)(s1s2 + t1t2).

The total energy is given by

(46) E[Γ] =

∫
Γ

1

2
k11(s1 + s2)2 +

1

2
k22(t1 + t2)2 +

1

2
k33(b2

1 + b2
2)− (k22 + k24)(s1s2 + t1t2) dS.

We proceed from here following Helfrich’s work in [47]. Since n is the unit normal vector,

the quantities s1, s2, t1, and t2 are related to the principle curvatures c1 and c2. Specifically,

s1 + s2 =
∂nx
∂x

+
∂ny
∂y

= c1 + c2

s1s2 + t1t2 =
∂nx
∂x

∂ny
∂y
− ∂nx

∂y

∂ny
∂x

= c1c2

(47)

Now consider the surface of the vesicle membrane z = f(x, y) as the zero-level set of

h(x, y, z) = z− f(x, y). Then the normal vector to the surface is given by n = ∇h. The curl
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of the gradient is always zero, hence,

(48) ∇× n = 0.

The above equation (48) in component form is

(49)
∂nz
∂y
− ∂ny

∂z
= 0,

∂nx
∂z
− ∂nz

∂x
= 0,

∂ny
∂x
− ∂nx

∂y
= 0.

The z-component of (49) can be written in terms of the twists,

(50) t2 + t1 = 0.

The x and y-components of (49) can be simplified, since z = 1 is constant in both nx and

ny. Hence,

(51)
∂ny
∂z

= 0,
∂nx
∂z

= 0.

But these are the exact expression for the bends, so we have

(52) b1 = b2 = 0.

Using (47), (50), (52), the total energy (46) is simplified to

(53) E[Γ] =

∫
Γ

1

2
KC(c1 + c2)2 +

1

2
KG(c1c2) dS,

where KC = k11 and KG = −2(k22 +k24). This matches the form of the bending energy (12)

exactly, since the mean curvature H = 1
2
(c1 + c2) and the Gaussian curvature K = c1c2.

2.5.1. Note on the term bending energy. The energy given by equations (12) and

(53) is called the bending energy, and in the derivation, it was discovered that the bends

b1 = b2 = 0 per equation (52). When we say in English bending energy, we mean that it is

the energy caused by any change in the curvature of the shape. It is not equivalent to the

mathematically defined bends b1 and b2 used in the derivation.
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2.6. Total mechanical energy

Now we have all of the pieces of the total mechanical energy of the membrane. The total

energy includes bending energy modified by the spontaneous curvature (13) with added

energy constraints for the surface area (10) and volume (11),

(54) E[Γ] =
KC

2

∫
Γ

(2H − C0)2 dS +
KG

2

∫
Γ

K dS + p

∫
Ω

dV + σ

∫
Γ

dS.

To determine how the membrane takes its shape, we minimize the energy by setting to zero

the variation with respect to any membrane position. The form of this equation, known

as the shape equation, depends upon the parameterization of the membrane surface. For

surface parameterizations, we will need to establish some basic concepts from differential

geometry.

2.7. Some differential geometry

In its most general form, the membrane is treated as a 2D sheet in a Monge parameteri-

zation, x(u, v) = (u, v, f(u, v)). Using this parameterization, one can obtain formulas for the

mean and Gaussian curvatures and express the mechanical energy (54) in terms of f(u, v).

To compute the total area of this surface, we consider breaking the surface into infinitesimal

parallelograms with lengths of the tangent vectors xu du and xv dv, where the subscripts

denote partial differentiation. The area of a parallelogram is given by the length of the cross

product of the vectors, ‖xu×xv‖ du dv. Conveniently, in a Monge parameterization, a lot of

simplification occurs:

xu = (1, 0, fu), xv = (0, 1, fv),

so the cross product is xu×xv = (−fu,−fv, 1) and hence ‖xu×xv‖ = (1 + f 2
u + f 2

v )1/2. The

differential area element is then

(55) dS =
√

1 + (∇f)2 du dv.
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Integrating over the entire surface gives the total surface area,

(56) A(f) =

∫
Γ

√
1 + f 2

u + f 2
v du dv.

Before going too far with a Monge parameterization, what we really want to do is con-

struct an equation for the mean curvature H in terms of any parameterization. We begin

with two vectors xu and xv that lie on the tangent plane to the surface. Since the cross

product of two vectors is always perpendicular to the vectors themselves, the unit normal to

the surface is given by

(57) U =
xu × xv
||xu × xv|| .

Define E, F , G, by

E = xu · xu, F = xu · xv, G = xv · xv.

We note that this E should not be confused with the energy functional E[Γ] in (54). It

should be clear from context whether we are using E for geometry purposes or the total

mechanical energy E[Γ], but to remove any doubt, when we refer to the total mechanical

energy, we will always write it as E[Γ] rather than just E. Let α(t) = xu(t) + xv(t) be a

curve parameterized by t such that α is has unit speed. That is, if α′ is the vector tangent

to the curve, it has magnitude 1. Then,

1 = |α′|(58)

= (xuu
′ + xvv

′) · (xuu′ + xvv
′)

= xu · xuu′ 2 + (xv · xu + xu · xv)u′v′ + xv · xvv′ 2

= Eu′ 2 + 2Fu′v′ +Gv′ 2,

and so E, F , and G are named the coefficients of the first fundamental form. (The first

fundamental form is the inner product of two vectors in the tangent space of a surface.) The
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first fundamental form is the following linear operator with these coefficients,

(59) I =

E F

F G

 .

Because of (58), we can define an arc length element ds to be

(60) ds2 = E du2 + 2F du dv +Gdv2.

As the equation (60) shows, the first fundamental form describes how a surface distorts

the length of a vector in R3. One can write equations (55) and (56) in terms of the first

fundamental form as well,

(61) dS =
√
EG− F 2 du dv.

Often, the elements of the first fundamental form is given in tensor notation. Let the matrix

I = Iij in (59) be defined by

(62) I11 = E, I12 = I21 = F, I22 = G.

Denote the determinant of the 2 by 2 matrix I by ω,

(63) ω = det

I11 I12

I21 I22

 = det(I ) =
√

EG − F 2 .

One may also rewrite the unit normal vector (57) in terms of ω, by

(64) U =
xu × xv

ω
.

Similarly, we can define the coefficients of the second fundamental form by

L = −xu · Uu, 2M = −(xv · Uu + xu · Uv), N = −xv · Uv.
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The second fundamental form is

(65) II =

L M

M N

 .

Now let α be a curve parameterized by t (of any speed). Since α′ is tangent to the surface,

it is perpendicular to the normal U . Thus, (α′ · U) = 0. But,

0 = (α′ · U)′

= α′′ · U + α′ · U ′.

Therefore, the component of the acceleration α′′ that is normal to the surface, α′′ · U =

−α′ ·U ′. Since this is true for any curve with velocity α′, the normal curvature is determined

completely by the bending of the surface. This gives a natural definition for the normal

curvature in the w direction,

k(w) = α′′ · U.

Using this definition and taking a curve α with unit speed,

k(w) = α′′ · U

= −α′ · U ′

= −(xuu
′ + xvv

′) · (Uuu′ + Uvv
′)

= −xu · Uuu′ 2 − (xv · Uu + xu · Uv)u′v′ − xv · Uvv′ 2

= Lu′ 2 + 2Mu′v′ +Nv′ 2.

In tensor notation, we can write define II = IIij in equation (65) by

(66) II11 = L, II12 = II21 = M, II22 = N.

Again, let w1 and w2 be any two perpendicular unit vectors with normal curvatures k1 =

k(w1) and k2 = k(w2), respectively. The local mean curvature of the surface is defined by
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to be the average of these normal curvatures k1 and k2. The local mean curvature can be

expressed in terms of the coefficients of the fundamental forms as follows:

(67) H =
1

2
(k1 + k2) =

EN +GL− 2FM

2(EG− F 2)
.

The derivation of (67) is straightforward but very standard, so we refer the reader to find

it in any (good) differential geometry text (see [25, 80, 57] for example). An important fact

about (67) is that it shows that the mean curvature does not depend on the choices of the

vectors w1 and w2, and therefore does not depend on the choice of normal curvatures k1 and

k2. This means we can take the curvatures k1 and k2 to be the principal curvatures of the

surface, which are defined to be the maximum normal curvature and the minimum normal

curvature. The principal curvatures are also the eigenvalues of the second fundamental form

(65). The Gaussian curvature is defined as the product of the principle curvatures,

(68) K = k1 k2 =
LN −M2

EG− F 2
.

For completeness, we note that one can obtain the two curvatures as the trace and determi-

nant of the two fundamental forms,

H =
Tr(I · adj(II))

2 det(I)
,(69)

K =
det(II)

det(I)
,(70)

where the adjoint of II is defined as the transpose of the cofactor matrix,

adj(II) =

 N −M
−M L

 .

We now have the tools necessary to compute the shape equation for the mechanical energy

(54).
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2.8. The shape equation

Recall that the shape equation is δΓE[Γ] = 0. The second term in (54) is constant for

surfaces with the same topology according to the Gauss-Bonet formula, so the variation is

zero and it has no effect on the minimization (see [25] for the Gauss-Bonet theorem). How-

ever, we must ensure invariant topology to avoid any discontinuities in the energy equation.

The variation will include the first term of (54) and the constraint terms. The form of the

variation depends on the parameterization used for Γ. Zhong-can and Helfrich have done

this using a Monge parameterization Γ = x(u, v) = (u, v, f(u, v)) and expressed δΓE[Γ] back

in terms of the curvatures in [107]. They obtained the following equation:

(71) p− 2σH + KC(2H + C0)(2H2 − 2K − C0H) + 2KC∆H = 0.

The derivation is complicated and will not be repeated here; a full treatment is found in

[107].

Even after obtaining the shape equations, solving it for the general shape Γ is an ex-

tremely challenging problem. To attack it, various approaches have been made. One ap-

proach, requiring a simplification which may be assumed in certain applications, is to require

the surface have symmetry about an axis [90, 91]. This reduces the complexity of the shape

equation to a system of ordinary differential equations. The analysis is done by Seifert et. al.

in [91]. Another approach that does not restrict to axisymmetric surfaces is to minimize the

energy over a smaller subspace of membrane configurations. For example, the vesicle surface

can be approximated by a linear combination of basis functions, and the coefficients are ad-

justed to minimize the energy. This can be accomplished either by Rayleigh-Ritz procedures

[13, 45, 46], or finite element methods [37, 68], for example. These methods also have their

restrictions. If the curvature is large in a given area of the surface, mesh refinement may

result in a large number of basis functions, increasing the computational cost.

The approach we will take in the next chapter follows the subspace idea. However,

instead of a Cartesian triangulation or Monge parameterization of the surface, we exploit

the vesicle structure by using surface harmonic functions as the choice of basis functions.
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These functions are a special case of spherical harmonic functions, and provide a natural

basis for vesicle-like shapes, which can greatly reduce the number of degrees of freedom

required to solve the shape equation. For this approach, we will recast the energy functional

(54) by treating the surface area and volume terms as fixed quantities. This is justified by the

separable energy scales, as explained in Section 2.3. Therefore, our goal is to minimize the

total mechanical energy (13) over membrane configurations which have continuous curvature

and preserve the total surface area and volume. In the next chapter, we state this variational

problem precisely.
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CHAPTER 3

Surface harmonic parameterization

In this chapter, we introduce the surface harmonic parameterization for vesicles, and

provide formulas for the total mechanical energy (54) according to this parameterization.

This is done in efforts to solve the following variational problem motivated by the previous

chapter.

3.1. Variational problem

Our goal is to minimize the bending energy of a membrane (13) over membrane config-

urations which have continuous curvature and preserve the total surface area and volume.

The space of admissible membrane configurations is therefore

(72) H2
SAV

(Γ) = {x : x ∈ H2(Γ), SA(x) = S̄, V [x] = V̄ },

where H2 = W 2,2 is the standard Sobolev space of square integrable functions with square

integrable partial derivatives through second order. The functionals SA[x] and V [x] are the

surface area and volume of the membrane, respectively, and S̄ and V̄ are the prescribed

surface area and volume, respectively. The variational problem to be solved is

(73) min
x∈H2

SAV
(Γ)
E[Γ].

To be clear, the membrane position is denoted Γ = Γ(x). To compute the total energy and

account for the area expansion/contraction and osmotic pressure, the constraints for the

conservation of the surface area of the membrane and the total volume enclosed are enforced

as penalty terms. The minimization problem (neglecting any other sources of energy for

now) with the penalty functions is given by

min
x∈H2(Γ)

I[Γ],(74)

I[Γ] = E[Γ] +
kS
2

(SA − S̄)2 +
kV
2

(V − V̄ )2,(75)
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where kS and kV are large constants to enforce the constraints to a chosen degree of precision.

3.2. Choice of parameterization

The computation of the terms in the total energy (75) and the terms in its variation de-

pends on the choice of parameterization of the membrane surface. A convenient consequence

of the bending energy of lipid bilayers is that the energy functionals are independent of the

surface parameterization [14]. Therefore, we choose to parameterize the surface not by brute

force using local Cartesian coordinates, but rather by using a global basis of surface harmonic

functions. Since lipid vesicles are sphere-like structures, the choice of surface harmonics to

represent the surface is natural, and this choice reduces the number of terms necessary for

the computation.

We find an approximate solution to the original problem (74) by minimizing the total

energy over membrane configurations determined by a linear combination of surface har-

monic functions. That is, the exact membrane Γ(~x) is approximated by Γ(~a), where the

real-valued coefficients ~a are chosen such that the bending energy I[Γ] is minimized. The

surface harmonics functions are an infinite dimensional basis; however, for the numerical

implementation, we only use a finite number (N + 1)2 of surface harmonic functions. Stated

mathematically, the new minimization problem is

min
~a∈R(N+1)2

I[Γ(~a)],(76)

I[Γ(~a)] = E[Γ(~a)] +
kS
2

(SA[~a]− S̄)2 +
kV
2

(V [~a]− V̄ )2.(77)

Equation (76) is the problem we solve here. The minimization of (77) leads to the shape

equation,

(78) δΓI[Γ] = δΓE[Γ] + kS(SA − S̄)δSA + kV (V − V̄ )δV = 0.

Next, we introduce the surface harmonic parameterization, and provide formulas for the

terms in (77). Surface harmonic functions are a real-valued version of spherical harmonic

functions. In the following section, we briefly review spherical harmonics first.
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3.3. Spherical harmonic functions

Spherical harmonics are solutions to Laplace’s Equation in spherical coordinates. The

solution can be obtained through separation of the variables θ and φ; however, a more

convenient way to construct spherical harmonics is to use a generalization of Legendre poly-

nomials. Legendre polynomials, also called Legendre functions of the first kind, Legendre

coefficients, or zonal harmonics, are solutions to the Legendre differential equation. The

Legendre polynomial can be defined by the contour integral

(79) Pn(z) =
1

2πi

∮
(1− 2tz + t2)−1/2t−n−1 dt.

Another useful representation utilizes Rodrigues respresentation,

(80) Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

The associated Legendre polynomials generalize Legendre polynomials, provided m 6= 0, are

defined by

(81) Pm
n (x) = (−1)m(1− x2)m/2

dm

dxm
Pn(x), m 6= 0.

If m = 0, the associated Legendre polynomial is just the Legendre polynomial. By Rodrigues’

formula,

(82) Pm
n (x) = (−1)m(1− x2)m/2

dm

dxm

(
1

2nn!

dn

dxn
(x2 − 1)n

)
, m 6= 0.

It is convenient to introduce the change of variables µ = cos(θ). In this way, the partial

derivatives with respect to the polar angle θ ∈ [0, π] may be computed. Here, we use the

physics notation for the angles, where θ ∈ [0, π] is the polar or zenith angle extending from

the positive z axis, and φ ∈ [0, 2π] is the azimuthal angle in the xy-plane extending from the

positive x-axis. Using this notation, normalized spherical harmonic functions are defined by

(83) Y m
n (θ, φ) =

√(
(2n+ 1)(n−m)!

4π(n+m)!

)
Pm
n (µ)eimφ,
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where Pm
n (µ) is the associated Legendre polynomial evaluated at µ = cos(θ).

Since spherical harmonics form an orthonormal basis for L2(R2), we can use linear combi-

nations to parameterize vesicle surfaces. We parameterize the surface in spherical coordinates

(θ, φ, r(θ, φ)), where the radius r is expressed in terms of spherical harmonics,

(84) r(θ, φ) =
∞∑
n=0

n∑
m=−n

amn Y
m
n (θ, φ).

The amn are the coefficients of the linear representation. These coefficients can be determined

by the following formula:

(85) amn =

∫ 2π

0

∫ π

0

r(θ, φ)Y m
n (θ, φ) sin(θ) dθ dφ

where Y m
n (θ, φ) is the complex conjugate of Y m

n (θ, φ). Since a real surface is desired, r must

be a real number. Clearly the spherical harmonic function Y m
n (θ, φ) at fixed θ and φ is

complex, thus every coefficient anm must also be complex, provided m 6= 0. In fact, since

anm is defined through the complex conjugate of Y m
n in formula (85), the complex part of

anm will cancel with the complex part of Y m
n , yielding r ∈ R if m 6= 0. When m = 0, both

Y 0
n and an0 are real, so r ∈ R for every n and m.

3.4. Surface harmonic functions

The coefficients defined by (85) guarantee a real-valued surface. However, if the coeffi-

cients amn are poorly chosen so that the complex parts of amn and Y m
n do not cancel, the radius

parameterizing the object (84) will be complex. In an optimization routine, the coefficients

are perturbed numerically, so any nonzero perturbation in the complex part will result in

a complex surface. Since we seek a real-valued surface that minimizes the potential energy

(77), we use only the real parts of the spherical harmonics to ensure that the surface under

the energy minimization is real. These are surface harmonics.

Since spherical harmonics are just the angular portion of the solution to Laplace’s equa-

tion, the real and complex parts of the spherical harmonics are also solutions to Laplace’s

equation. We will state this as a lemma.
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Lemma 3.4.1. Let z = x+ iy be a solution to Laplace’s equation in spherical coordinates

(∇2f = 0). Then, x and y are also solutions.

Proof. Write Laplace’s equation in spherical coordinates as

∇2f(θ, φ) =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
= 0.

Since ∇2(z̄) = ∇2(z)) = 0̄ = 0, the complex conjugate z̄ is also a solution. The real part of

z is x = (z + z̄)/2 and the imaginary part is y = (z + z̄)/(2i). Each are linear combinations

of solutions z and z̄, and hence are also solutions by the linearity of ∇2(·). �

By Euler’s formula, each spherical harmonic function can be rewritten as

(86) Y m
n (θ, φ) = fmn P

m
n (µ)(cos(mφ) + i sin(mφ)).

where fmn is the normalization factor

(87) fmn =

√(
(2n+ 1)(n−m)!

4π(n+m)!

)
.

By Lemma 3.4.1, we define the surface harmonics as

(88) Smn (θ, φ) =


fmn P

m
n (µ) cos(mφ), if m ≥ 0,

f |m|n P |m|n (µ) sin(|m|φ), if m < 0.

We now parameterize the radius of a smooth surface by a linear combination of the surface

harmonics Smn (θ, φ),

(89) r(amn ; θ, φ) =
∞∑
n=0

n∑
m=−n

amn S
m
n (θ, φ).

The current form matches the form of (84). Another representation of the radius of a surface

that avoids the sign changes in m is

r(Amn , B
m
n ; θ, φ) =

∞∑
n=0

n∑
m=0

(
Amn cos(mφ) +Bm

n sin(mφ)
)
fmn P

m
n (µ),
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where

amn =


Amn , if m ≥ 0,

Bm
n , if m < 0.

Now the radius r(θ, φ) may be defined by summing m over nonnegative values. If the

series is truncated at some N , there are up to

(
N∑
n=0

n∑
m=0

1

)
nonzero coefficients of Amn . By

straightforward calculations,

N∑
n=0

n∑
m=0

1 =
N∑
n=0

(n+ 1) = 1 +
N∑
n=1

(n+ 1) = N + 1 +
N∑
n=1

n = N + 1 +
N(N + 1)

2

=
(N + 2)(N + 1)

2
.

For the Bm
n coefficients, notice that if m = 0, sin(mφ) = 0 for any angle φ. Therefore, the

coefficients B0
n are irrelevant. Then, the maximum number of nonzero coefficients Bm

n is

given by

N∑
n=0

n∑
m=1

1 =
N∑
n=0

n =
N(N + 1)

2
.

The total number of coefficients in a truncation is therefore
(N + 2)(N + 1)

2
+
N(N + 1)

2
=

(N + 1)2.

3.5. Discretizing the surface

We now need to discretize the surface. Each surface point ~x = (x, y, z) ∈ R3 is expressed

in terms of spherical coordinates ~x = (r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)). The value of

r is determined by the surface harmonic coefficients amn . Thus, for fixed values of θ and

φ on the surface mesh, a surface point ~x is uniquely determined by the surface harmonic

coefficients.

We begin with nt values of θ and np values of φ for a total of N = nt ·np points. Since N
can be a very large number, performing pointwise calculations on the mesh can be computa-

tionally costly. Under the surface harmonics parameterization, the surface is approximated

by truncating the infinite sum in (89) at some number N . This reduces the computation
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cost since there are far fewer surface harmonic functions required to approximate a surface

than a curvilinear Cartesian grid of mesh points due to the uniform convergence property of

surface harmonic approximations. Our numerical results confirm that (N + 1)2 << N . This

truncation also allows us to represent the radius (89) through a single index i, rather than

two indicies n and m.

Let ~a be a vector of all of the surface harmonic coefficients,

(90) ~a = [A0
0, A

0
1, A

1
1, B

1
1 , A

0
2, A

1
2, A

2
2, B

1
2 , B

2
2 , · · · , A0

N , · · · , ANN , B1
N , · · · , BN

N ]T .

The size of ~a is (N +1)2×1, as discovered in the previous section. There is a convenient way

to convert between the index i and the indicies n and m. For the surface harmonic mode

ai ∈ ~a, i = 0, 1, 2, · · · (N + 1)2 − 1, the corresponding n and m is given by

(91) n(i) = b
√
ic

(92) m(i) =


i− n2, if (i− n2) ≤ n,

n2 + n− i, otherwise.

With this organization, we can write

(93) r(ai; θ, φ) =

(N+1)2−1∑
i=0

aiSi(θ, φ).

In terms of the surface harmonic coefficients, a fixed point on the surface can be expressed

in Cartesian coordinates by

(94) ~xkl = ~x(θk, φl) =


rkl(ai; θk, φl) sin(θk) cos(φl)

rkl(ai) sin(θk) sin(φl)

rkl(ai) cos(θk)

 .
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Let ~X be the vector of all of N points on the surface mesh, each expressed as a Cartesian

triple. The size of ~X is 3N × 1.

(95) ~X = [~xT00, ~x
T
01, · · · , ~xT0,np−1, ~x

T
10, · · · , ~xT1,np−1, · · · , ~xTnt−1,0, · · · , ~xTnt−1,np−1]T .

3.6. Energy formulation in terms of surface harmonic parameterization

In this section, we will finish the parameterization of the mechanical energy (77). To

accomplish this, we will need expressions for dS, SA, V , H, K, and their variations in terms

of the surface harmonic mode coefficients through r(ai). We will do this in several steps.

3.6.1. Derivatives of r(ai; θ, φ). First, we need to compute the derivatives of r(ai; θ, φ)

with respect to the independent variables θ and φ. The derivatives with respect to φ are

straightforward, since the dependence of the surface harmonic function Smn (θ, φ) appears

directly. The subscripts in the following formulas denote partial derivatives and should not

be confused with mesh positions k and l.

rφ =
N∑
n=0

n∑
m=0

(
−mAmn sin(mφ) +mBm

n cos(mφ)
)
fmn P

m
n (µ)(96)

=
N∑
n=0

n∑
m=−n

−mamn S
−m
n ,

rφφ =
N∑
n=0

n∑
m=0

(
−m2Amn cos(mφ) +−m2Bm

n sin(mφ)
)
fmn P

m
n (µ)(97)

= −m2r.

The derivatives with respect to θ are

(98) rθ =
N∑
n=0

n∑
m=0

(
Amn cos(mφ) +Bm

n sin(mφ)
)
fmn ∂θP

m
n (µ),

(99) rθθ =
N∑
n=0

n∑
m=0

(
Amn cos(mφ) +Bm

n sin(mφ)
)
fmn ∂

2
θP

m
n (µ),
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rφθ = rθφ =
N∑
n=0

n∑
m=0

(
−mAmn sin(mφ) +mBm

n cos(mφ)
)
fmn ∂θP

m
n (µ)(100)

=
N∑
n=0

n∑
m=−n

−mamn
∂S−mn
∂θ

,

where ∂θP
m
n (µ) is given by the recurrence relation for the derivative of the associated Le-

gendre polynomial Pm
n (µ),

(101) ∂θP
m
n (µ) =

−1

sin(θ)

(
(n+ 1) cos(θ)Pm

n (µ)− (n−m+ 1)Pm
n+1(µ)

)
,

and ∂2
θP

m
n (µ) is computed directly from (101) as

∂2
θP

m
n (µ) =

(
(n+ 1 + (n+ 1)2 cos2 θ)Pm

n (µ)− 2 cos θ(n−m+ 1)(n+ 2)Pm
n+1(µ)(102)

+ (n−m+ 1)(n−m+ 2)Pm
n+2(µ)

) 1

sin2 θ
.

3.6.2. Fundamental form coefficients. Now we compute the coefficients of the

first fundamental form in terms of the surface harmonic parameterization.

E = r2
θ + r2,(103)

F = rθrφ,(104)

G = r2
φ + r2 sin2(θ),(105)

L = −~xθ · Uθ,(106)

M =
1

2
(~xθ · Uφ + ~xφ · Uθ) ,(107)

N = −~xφ · Uφ,(108)

where ~x is a surface vector in spherical coordinates, and U is the unit normal to the surface

at ~x, given by (57) with independent variables u = θ and v = φ. We define

(109) R = |~xθ × ~xφ|

for notational convenience.
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The derivatives of the surface vector ~x are

~xφ = [rφ sin θ cosφ− r sin θ sinφ, rφ sin θ sinφ+ r sin θ cosφ, rφ cos θ],(110)

~xθ = [r cos θ cosφ+ rθ sin θ cosφ, r cos(θ) sin(φ) + rθ sin(θ) sin(φ), rθ cos θ − r sin θ].(111)

The components of the unit normal vector are given by

(112)


Ux = R−1

[
rrφ sinφ− rrθ sin θ cos θ cosφ+ r2 sin2 θ cosφ

]
,

Uy = R−1
[−rrφ cosφ− rrθ sin θ cos θ sinφ+ r2 sin2 θ sinφ

]
,

Uz = R−1
[
rrθ sin2 θ + r2 cos θ sin θ

]
.

(Note that the subscripts in (112) represent coordinate components and not partial deriva-

tives!) The coefficients (106), (107), and (108) can be expressed in terms of r through (110)

and (111) and through differentiating (112). The derivatives of (112) are given in components

by

(113)



∂Ux
∂θ

= R−1
(−r2

θ cos(θ) sin(θ) cos(φ) + rθrφ sin(φ) + 3rθr cos(φ)− 4rθr cos(φ) cos2(θ)

−rrθθ cos(θ) sin(θ) cos(φ) + rrθφ sin(φ) + 2 cos(θ)r2 sin(θ) cos(φ)
)
,

∂Uy
∂θ

= R−1
(−r2

θ cos(θ) sin(θ) sin(φ)− rθrφ cos(φ) + 3rθr sin(φ)− 4rθr sin(φ) cos2(θ)

−rrθθ cos(θ) sin(θ) sin(φ)− rrθφ cos(φ) + 2 cos(θ)r2 sin(θ) sin(φ)
)
,

∂Uz
∂θ

= R−1
(
4rθr sin(θ) cos(θ) + 2r2 cos2(θ) + r2

θ sin2(θ)− rrθθ sin2(θ)− r2
)
,
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and

(114)



∂Ux
∂φ

= R−1
(−rθrφ cos(θ) sin(θ) cos(φ) + r2

φ sin(φ) + 3rrφ cos(φ)

− 2rφr cos2(θ) cos(φ)− rrθφ cos(θ) sin(θ) cos(φ) + rθr cos(θ) sin(θ) sin(φ)

+rrφφ sin(φ)− r2 sin(φ) sin2(θ)
)
,

∂Uy
∂φ

= R−1
(−rθrφ cos(θ) sin(θ) sin(φ)− r2

φ cos(φ) + 3rrφ sin(φ)

− 2rφr cos2(θ) sin(φ)− rrθφ cos(θ) sin(θ) sin(φ)− rθr cos(θ) sin(θ) cos(φ)

−rrφφ cos(φ) + r2 cos(φ) sin2(θ)
)
,

∂Uz
∂φ

= R−1
(
rθrφ sin2(θ) + 2rφr sin(θ) cos(θ) + rrθφ sin2(θ)

)
.

Remarkably, despite the complexity of the normal derivatives in (113) and (114), the expres-

sions simplify nicely to

L = R−1(−2rr2
θ sin(θ) + r2rθθ sin(θ)− r3 sin(θ)),(115)

M = R−1(2rrφrθ sin(θ)− r2rθφ sin(θ) + r2rφ cos(θ)),(116)

N = R−1(−r3 sin3(θ) + r2rφφ sin(θ) + r2rθ cos(θ) sin2(θ)− 2rr2
φ sin(θ)).(117)

3.6.3. Surface area, volume, and mean curvature. We can now easily obtain a

formula for the differential surface area element (61) using (103), (104), and (105):

dS =
√
EG− F 2 dθ dφ

=
√

(r2
θ + r2)(r2

φ + r2 sin2(θ)− rθr2
φ dθ dφ

= r[r2
φ + r2

θ sin2(θ) + r2 sin2(θ)]1/2 dθ dφ.

(118)

From this, the surface area of Γ is

SA =

∫ 2π

0

∫ π

0

r[r2
φ + r2

θ sin2(θ) + r2 sin2(θ)]1/2dθdφ.
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For simplicity in later calculations, we define the determinant of the covariant metric tensor

as in (63) to be

(119) ω = r[r2
φ + r2

θ sin2(θ) + r2 sin2(θ)]1/2,

so that dS = ω dθdφ, and

(120) SA =

∫ 2π

0

∫ π

0

ω dθdφ.

The volume enclosed by the membrane is given by

V =

∫ 2π

0

∫ π

0

∫ r(θ,φ)

0

dV =

∫ 2π

0

∫ π

0

∫ r(θ,φ)

0

ρ2 sin(θ) dρ dθ dφ,

which can be evaluated in its first integral to obtain

(121) V =
1

3

∫ 2π

0

∫ π

0

r3 sin(θ) dθ dφ.

Next, we obtain the local mean curvature and the Gaussian curvature from (67). In terms

of r,

H(θ, φ) =
1

2
R−1

[
3r2

θr
2 sin3(θ)− r2

θrrφφ sin(θ)− r3
θr cos(θ) sin2(θ) + 8r2

θr
2
φ sin(θ)(122)

+ 2r4 sin3(θ)− r3rφφ sin(θ)− r3rθ cos(θ) sin2(θ) + 3r2r2
φ sin(θ)

−r2
φrrθθ sin(θ)− r3rθθ sin3(θ)− 2rφrθrrθφ sin(θ) + 2r2

φrθr cos(θ)
]

/
[−r3 sin2(θ)− rr2

θ sin2(θ)− rr2
φ

]
.

The Gaussian curvature is equally messy, but equally straightforward, so its computation is

left out.

3.6.4. Variation of the derivatives of r(ai; θ, φ). Now we need to compute the

variations of the surface area, volume, and curvature. We will first need the variations of
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r(ai; θ, φ) and all of its partial derivatives. The variation of r is given by

(123)
δr

δai
= Si.

From (96) and (97), we obtain

(124)
δrφ
δai

= −mS−mn ,

(125)
δrφφ
δai

= −m2 δS

δai
.

The variations of rθ, rθθ, and rθφ are

(126)
δrθ
δai

=


δrθ
δAmn

= cos(mφ)fmn ∂θP
m
n (µ), m ≥ 0,

δrθ
δBm

n

= sin(|m|φ)f |m|n ∂θP
|m|
n (µ), m < 0,

(127)
δrθθ
δai

=


δrθθ
δAmn

= cos(mφ)fmn ∂
2
θP

m
n (µ), m ≥ 0,

δrθθ
δBm

n

= sin(|m|φ)f |m|n ∂2
θP
|m|
n (µ), m < 0,

(128)
δrθφ
δai

=


δrθφ
δAmn

=
δrφθ
δAmn

= −m sin(mφ)fmn ∂θP
m
n (µ), m ≥ 0,

δrθφ
δBm

n

=
δrφθ
δBm

n

= −m cos(|m|φ)f |m|n ∂θP
|m|
n (µ), m < 0.

3.6.5. Variation of the fundamental form coefficients. Now we compute the

variation of the coefficients of the first and second fundamental forms. The first set are seen
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directly from the variations of r and its derivatives,

δE

δai
= 2rθ

δrθ
δai

+ 2r
δr

δai
,(129)

δF

δai
= rθ

δrφ
δai

+
δrθ
δai

rφ,(130)

δG

δai
= 2rφ

δrφ
δai

+ 2r
δr

δai
sin2(θ).(131)

Next we compute the variations of L, M , and N . To perform these calculations, we will

need the variation of R as defined in (109). Since R is defined in terms of a norm, we first

compute the derivative of a norm in general.

d|~f |
d~x

=
d

d~x

√
f 2
i + f 2

j + f 2
k

=
1

2

(
f 2
i + f 2

j + f 2
k

)−1/2
(

2fi
dfi
d~x

+ 2fj
dfj
d~x

+ 2fk
dfk
d~x

)

=
1

|~f |

(
~f · d

~f

d~x

)
.

Using this result and the derivative of a cross product,

δR

δai
=

δ

δai
|~xθ × ~xφ|(132)

=
1

|~xθ × ~xφ| (~xθ × ~xφ) · δ
δai

(~xθ × ~xφ)

=
1

R
(~xθ × ~xφ) ·

(
δ~xθ
δai
× ~xφ + ~xθ × δ~xφ

δai

)
.

If one prefers, we may write (132) in terms of dot products using the Cauchy-Binet identity,

which states that (~a×~b) · (~c× ~d) = (~a ·~c)(~b · ~d)− (~a · ~d)(~b ·~c). Applying this, (132) becomes

δR

δai
=

1

R

((
~xθ · δ~xθ

δai

)
(~xφ · ~xφ)− (~xθ · ~xφ)

(
~xφ · δ~xθ

δai

)
(133)

+ (~xθ · ~xθ)
(
~xφ · δ~xφ

δai

)
−
(
~xθ · δ~xφ

δai

)
(~xφ · ~xθ)

)
.
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The variations of ~xφ and ~xθ are computed directly from (110) and (111).

(134)
δxφ
δai

=

[
δrφ
δai

sin θ cosφ− δr

δai
sin θ sinφ,

δrφ
δai

sin θ sinφ+
δr

δai
sin θ cosφ,

δrφ
δai

cos θ

]
.

δxθ
δai

=

[
δr

δai
cos θ cosφ+

δrθ
δai

sin θ cosφ,
δr

δai
cos(θ) sin(φ) +

δrθ
δai

sin(θ) sin(φ),(135)

δrθ
δai

cos θ − δr

δai
sin θ

]
.

Finally, we compute the variations of L, M , and N . From (115),

δL

δai
=
−1

R2

δR

δai

(−2rr2
θ sin(θ) + r2rθθ sin(θ)− r3 sin(θ)

)
+

1

R

(
− 2

δr

δai
r2
θ sin(θ)− 4rrθ

δrθ
δai

sin(θ)

+ 2r
δr

δai
rθθ sin(θ) + r2 δrθθ

δai
sin(θ)− 3r2 δr

δai
sin(θ)

)
.

Notice that the first line contains a term of L and we obtain a simplified expression

δL

δai
=
−1

R

δR

δai
L+

1

R
sin(θ)

(
− 2

δr

δai
r2
θ − 4rrθ

δrθ
δai

+ 2r
δr

δai
rθθ + r2 δrθθ

δai
− 3r2 δr

δai

)
.(136)

Similar simplifications can be done to obtain δM and δN . From (116) and (117),

δM

δai
=
−1

R

δR

δai
M +

1

R

(
sin(θ)

(
2
δr

δai
rφrθ + 2r

δrφ
δai

rθ + 2rrφ
δrθ
δai

(137)

− 2r
δr

δai
rθφ − r2 δrθφ

δai

)
+ cos(θ)

(
2r
δr

δai
rφ + r2 δrφ

δai

))
,

δN

δai
=
−1

R

δR

δai
N +

1

R
sin(θ)

(
− 3r2 δr

δai
sin2(θ) + 2r

δr

δai
rφφ + r2 δrφφ

δai
(138)

+ 2r
δr

δai
rθ cos(θ) sin(θ) + r2 δrθ

δai
cos(θ) sin(θ)− 2

δr

δai
r2
φ − 4rrφ

δrφ
δai

)
.
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3.6.6. Variation of surface area, volume, and curvature. The variation of the

surface area with respect to a surface harmonic mode ai can be computed directly from (120)

as

(139) δSA =

∫ 2π

0

∫ π

0

δω

δai
dθ dφ,

where the variation of ω is computed from (119),

δω

δai
=

δr

δai
[r2
φ + r2

θ sin2(θ) + r2 sin2(θ)]1/2(140)

+
r

2

2rφ
δrφ
δai

+ 2rθ
δrθ
δai

sin2(θ) + 2r
δr

δai
sin2(θ)√

r2
φ + r2

θ sin2(θ) + r2 sin2(θ)

 .

Similarly, the variation of the volume can be computed directly from (121),

(141) δV =

∫ 2π

0

∫ π

0

r2 δr

δai
sin(θ) dθ dφ.

The expression for the mean curvature H is given by (122). There are many products and

quotients of r in (122), so the variation δH will involve using the product and quotient rules

multiple times. This direct computation is straightforward but exceedingly messy, and hence

is not given here. Instead, and in practice, we compute the variation of the mean curvature

H via (67) using the variations of the fundamental form coefficients. The variation is given

by

δH

δai
=

δE

δai
N + E

δN

δai
+
δG

δai
L+G

δL

δai
− 2

(
δF

δai
M + F

δM

δai

)
2(EG− F 2)

(142)

−
(EN +GL− 2FM)

(
2
δE

δai
G+ 2E

δG

δai
− 4F

δF

δai

)
4(EG− F 2)2

.

3.6.7. Variation of mechanical energy. Finally, we are ready to numerically solve

the shape equation. To do this, we assume that the Gaussian modulus KG is uniform over

the membrane surface, and so the Gaussian curvature integrates to a constant
∫

Γ
KdS =
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4π(1 − g), where g is the genus of the membrane topology, according to the Gauss-Bonet

Theorem [95]. Thus, the variation of the total mechanical energy with respect to a surface

harmonic mode ai is

δΓE[Γ(~a); θ, φ] =

∫
Γ

[
KC2(2H − C0)(δH)ω + KC

1

2
(2H − C0)2(δω)

]
dθdφ(143)

+ kS(SA − S̄)δSA + kV (V − V̄ )δV.

With the surface Γ expressed in terms of the surface harmonic coefficients ~a, the new shape

equation is completed by setting (143) to zero.
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CHAPTER 4

Biomolecular mechanics: numerical results

In this chapter, we numerically solve the variational problem (76) parameterized by

surface harmonics and present results. We emphasize that this algorithm for solving the

equilibrium shapes of vesicle membranes is fast, due to the reduced number of degrees of

freedom compared to other methods, and the choice of nonlinear conjugate gradient method,

which requires only the first derivative (no computation of the Hessian matrix is required).

4.1. Nonlinear conjugate gradient (NCG)

We employ a Fletcher-Reeves type nonlinear conjugate gradient (NCG) method to min-

imize the total energy functional (76). For the parameter β, we chose the Hestenes-Stiefel

formula. For a description of the method, please refer to [78]. Psuedocode is provided below.

We found that K = 14 in line 18 of Algorithm 4.1 and αm = 0 and αM = 0.15 on line 1 of

Algorithm 4.2 provide optimal results.

48



Algorithm 4.1 Nonlinear conjugate gradient (NCG)

1: Define initial SHF modes ~a0

2: Define tolerances εg, εa, εE, M
3: Compute E0 ← I(~a0), ~g0 ← δΓI(~a0)

4: Define direction ~d0 ← −~g0

5: k ← 0
6: for k from 1 to M do:
7: Compute step size αk ← LineSearch(~ak, ~dk)

8: Step in direction ~ak+1 ← ~ak + αk ~dk
9: Update energy and gradient Ek+1 ← I(~ak+1), ~gk+1 ← δΓI(~ak+1)

10: if ||~gk+1 − ~gk|| < εg then:
11: break for
12: end if
13: Compute βk ← (~gTk+1(~gk+1 − ~gk))/((~gk+1 − ~gk)T ~dk)
14: Update direction ~dk+1 ← −~gk+1 + βk ~dk
15: if ||~ak+1 − ~ak|| < εa then:
16: break for
17: end if
18: if |Ek+1 − Ek|/Ek+1 < εE and k > K then
19: break for
20: end if
21: k ← k + 1
22: end for
23: return ~ak
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Algorithm 4.2 Line Search (~a, ~d)

1: Define αm, αM ,M, ε

2: Compute Em ← I(~a+ αm · ~d), EM ← I(~a+ αM · ~d)
3: if Em < EM then:
4: αl ← αm; αu ← αM
5: El ← Em; Eu ← EM
6: else
7: αl ← αM ; αu ← αm
8: El ← EM ; Eu ← Em
9: end if

10: for i from 1 to M do:
11: αt ← (αl + αu)/2

12: Et ← I(~a+ αt · ~d)
13: if Et > El then:
14: αu ← αt
15: else
16: ~g ← δΓI(~a+ αt · ~d)

17: (Dφ)← ~gT ~d
18: if (Dφ) · (αl − αt) > 0 then:
19: αl ← αt
20: else
21: αu ← αl; αl ← αt
22: end if
23: El ← Et
24: end if
25: if |αu − αl| < ε then
26: break for
27: end if
28: end for
29: return αt
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4.2. Expansion modes and quadrature

Numerically, the surface is approximated by truncating the surface harmonic expansion

at some appropriate value N , as in equation (93). The uniform convergence properties of

spherical harmonics are shared by surface harmonics, and so we expect the result to become

more accurate as N gets large. Too large of a value will result in a slow numerical procedure,

so we want to choose N small enough for computation time, but large enough for accuracy.

To determine an appropriate truncation value N , we reconstructed three surfaces and

examined the root mean square error in the surface reconstruction pointwise, and the relative

error in the volume, surface area, and energy. For many vesicle structures, increasing N

achieves higher accuracy in the energy as well as in the pointwise error. However, for some

vesicle structures, increasing N transiently actually gives a worse approximation for the

energy, which is the problem of interest. Choosing N is not quite as simple as it looks.

The first surface we reconstructed was an energy minimizing axisymmetric prolate from

Seifert et. al., [91]. Instructions for reconstructing this surface can be found in Appendix B

of [91], with choice of parameters P̄ = 0.1, Σ̄ = −1.1P̄ 2/3, C0 = 0, and U(0) = 0.56. Next,

we reconstructed statistically fitted parameterizations of a red blood cell (RBC) from [32].

The height of the profile of the surface is given by

(144) h(x) =
±0.5

R0

(1− x2)(C0 + C2x
2 + C4x

4) x ∈ [−1, 1].

Table 4 in [32] includes values for R0, C0, C2, and C4 for producing RBC shapes with tonic-

ities 300 and 217 mO. The values are reproduced here in Table 4.1. We chose two linear

Table 4.1: Shape coefficients for average RBC

Tonicity (mO) R0 (µm) C0 (µm) C2 (µm) C4 (µm)
300 3.91 0.81 7.83 -4.39
217 3.80 2.10 7.58 -5.59

combinations of the parameters given for averaged shapes from the ones in [32]. The profiles
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for the three sample surfaces and their reconstructed surfaces with N = 4 are included in

Figure 4.1.

Figure 4.1: Profile of various test surfaces (black) and their reconstructions using surface
harmonics with N = 4 (green). The full surfaces are generated by rotation about the y-axis.
Left: prolate from [91], middle and right: RBC from [32] with 50% and 90% weight on
tonicity 217 mO coefficients, respectively.

The coefficients of the surface harmonic parameterizations of these three surfaces are

computed using the formula

(145) amn =

∫ 2π

0

∫ π

0

r(θ, φ)Smn (θ, φ) dθ dφ.

For the reconstruction, the integration was computed numerically over 230 cubature points.

Using the coefficients from (145), the reconstructed radius r̃ was determined by (93). The

root mean square distance error in the reconstruction is defined over the cubature points by

Ermsd =
230∑
i=1

1

230
[r(θi, φi)− r̃(θi, φi)]2.

The pointwise error and the relative error in the volume, surface area, and energy are provided

in Tables 4.2-4.4 for various N .

For the prolate surface, the reconstruction accuracy increases in all categories as N

increases. The most relevant observation to this work is that the error in the energy is less

than 1% using N = 2 and greater. For a simple prolate structure, only (N + 1)2 = 9 modes

are necessary to achieve 99% accuracy.

For the RBC structures, initially the errors decrease as N increases, but increasing the

number of modes beyond a certain threshold actually increases the error in the energy com-

putation. For RBC 1, the best possible error in the energy is 5.34%, with N = 4 or N = 5
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Table 4.2: Error from truncation in surface harmonic expansion for prolate sample surface.

N Erms EV ol ESA EEng
1 2.06× 10−1 2.57× 10−2 2.22× 10−2 3.73× 10−2

2 8.59× 10−4 2.22× 10−4 1.08× 10−2 8.37× 10−3

3 8.59× 10−4 2.22× 10−4 1.08× 10−2 8.37× 10−3

4 5.02× 10−7 2.56× 10−6 1.11× 10−2 7.19× 10−3

5 5.06× 10−7 2.56× 10−6 1.11× 10−2 7.19× 10−3

6 1.46× 10−7 2.76× 10−6 1.11× 10−2 7.18× 10−3

7 1.53× 10−7 2.76× 10−6 1.11× 10−2 7.18× 10−3

8 3.35× 10−8 2.76× 10−6 1.11× 10−2 7.18× 10−3

Table 4.3: Error from truncation in surface harmonic expansion for RBC 1 (50% weight)
sample surface.

N Erms EV ol ESA EEng
1 9.80× 10−2 4.00× 10−1 4.20× 10−1 4.21× 10−1

2 6.65× 10−3 4.80× 10−2 4.99× 10−2 8.36× 10−1

3 6.65× 10−3 4.80× 10−2 4.99× 10−2 8.36× 10−1

4 2.29× 10−3 1.93× 10−3 1.72× 10−2 5.34× 10−2

5 2.29× 10−3 1.93× 10−3 1.72× 10−2 5.34× 10−2

6 1.39× 10−3 4.94× 10−3 8.35× 10−3 1.62
7 1.39× 10−3 4.94× 10−3 8.35× 10−3 1.62
8 4.13× 10−4 3.29× 10−5 1.44× 10−2 7.97× 10−1

Table 4.4: Error from truncation in surface harmonic expansion for RBC 2 (90% weight)
sample surface.

N Erms EV ol ESA EEng
1 7.13× 10−2 2.82× 10−1 3.12× 10−1 3.82× 10−1

2 2.06× 10−3 1.35× 10−2 9.60× 10−3 3.96× 10−1

3 2.06× 10−3 1.35× 10−2 9.60× 10−3 3.96× 10−1

4 1.26× 10−3 3.36× 10−3 5.71× 10−3 7.75× 10−2

5 1.26× 10−3 3.36× 10−3 5.71× 10−3 7.75× 10−2

6 3.07× 10−4 1.92× 10−3 5.79× 10−3 4.24× 10−1

7 3.07× 10−4 1.92× 10−3 5.79× 10−3 4.24× 10−1

8 2.15× 10−4 1.21× 10−3 7.14× 10−3 9.97× 10−2

modes. For RBC 2, the best error is 7.75% with the same N . We suggest the reason for

this is because higher modes contain more bulges than the lower modes, akin to Runge’s

phenomenon in high order polynomials. In the reconstruction, the coefficients are chosen to
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minimize Erms. While transiently increasing N does improve the accuracy of Erms, it may

introduce local oscillations, near θ = 0 (which presents a singularity in (140) when rφ = 0,

for example). Since the energy is a function of the square mean curvature, these oscillations

contribute significantly to the curvature energy. In Figure 4.2, RBC 1 is reconstructed with

N = 4 and N = 12, for comparison.

Figure 4.2: Effect of large N for RBC 1. The analytical surface is in black, the reconstructed
surfaces for N = 4 and N = 12 are in green and red, respectively. Increasing N from 4
improves the pointwise accuracy especially near the edges, but also introduces small oscilla-
tions near the center with high energy cost. For N = 12, the pointwise error in the surface
is improved at 1.18× 10−4, but the error in the energy is 258%.

4.3. Examples: reduced volume

In this section, we provide numerical examples to test our method. First, observe that

the integration of the square local mean curvature (2H − C0)2 is a dimensionless quantity.

The mechanical bending energy (76) is completely governed by this dimensionless quantity

and is therefore scale-invariant. Thus, for vesicle shapes with C0 = 0, the minimum energy

is completely determined by a single dimensionless quantity called the reduced volume v.

If we denote the current vesicle volume and surface area V and SA, respectively, then the

reduced volume scales the current volume V by the volume of a sphere with surface area SA.

Since spheres maximize volume for a given surface area, the reduced volume satisfies v ≤ 1.

The reduced volume is given by the formula

(146) v =
V

4π/3R3
0

,
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where R0 =
√
SA/4π. In terms of the surface area, the reduced volume is

(147) v =
6
√
πV

(SA)3/2
.

Seifert et. al. have compiled a library of reduced volumes and their corresponding mini-

mum energies for axisymmetric shapes in [91] by solving the Euler-Lagrange equations using

a parameterization of the vesicle shape with an axis of symmetry. For verification purposes,

we compare our axisymmetric results for various reduced volumes to theirs. We set the con-

straint volume V̄ to be proportional to V by the (projected) reduced volume v. The volume

constraint is in violation and NCG begins to change the shape to relax this configuration.

If we begin with a perfectly spherical vesicle, NCG will simply scale the sphere to a sphere

with a smaller volume, and the final reduced volume will be 1. Therefore, we take a slightly

perturbed sphere to be our initial configuration. After NCG has converged, we calculate the

final reduced volume v and the final energy E scaled by the energy of a spherical vesicle

E0 = 8πKC .

From the reconstruction examples, N = 4 is a reasonable truncation for the surface

harmonic expansion. During the iterations of NCG, 20 quadrature points are used in each

dimension, for a total of 400 points. We have three criteria for convergence. We say that

NCG converges if (i) the L2 norm of the change in gradient is less than εg = 10−10, (ii) the

change in the modes is less than εa = 10−6, or (iii) the relative change in the energy is less

than εE = 10−4 provided a minimum number of iterations is reached (K = 15). When the

final configuration is achieved, the total energy is evaluated with 64 quadrature points in each

dimension to provide a more accurate computation and to ensure that enough quadrature

points are used.

4.3.1. Oblates. We present examples for the case when C0 = 0. In the line search

(Algorithm 4.2), we chose αm = 0 to ensure that the step size is positive. If the step is

negative, then the algorithm may step in a direction toward the gradient, rather than away

from the gradient (recall the gradient direction is the direction of greatest increase). With

this choice, our algorithm gives strictly oblate shapes. An oblate is a spheroid where the
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polar axis is shorter than the equatorial diameter. A familiar oblate spheroid is a football.

A prolate is a spheroid where the polar axis is greater than the equatorial diameter. The

two shapes are contrasted in Figure 4.3.

Figure 4.3: Oblate (left), sphere (middle), and prolate (right) shapes.

RBCs are biological examples of oblates which exhibit zero spontaneous curvature, and

thus serve as great model verification. For reduced volumes above approximately v = 0.75,

the numerical energy is within 10% of the analytical values calculated by Seifert et. al. (see

Table 4.5). However, for reduced volumes less than this, the error exceeds 10%. If the

number of modes is increased to N = 6 (since N = 5 gives the same numerical results as

N = 4 as demonstrated in Tables 4.2-4.4), the relative error is reduced. However, there

is a significant difference between the energy evaluated at 20 quadrature points than at 64

quadrature points at the final iteration. This is because the added oscillation from the higher

order modes is not absorbed by NCG with only 20 quadrature points. Using 30 quadrature

points when N = 6, the relative error is less than 1% when compared to 64 points. For

surfaces with reduced volume 0.65 ≤ v ≤ 0.75, using N = 6 and 30 quadrature points per

dimension, the relative error in the final energy is less than 10%. For surfaces with reduced

volume 0.5 ≤ v < 0.65, we determined that 40 quadrature points are needed with N = 8;

however, the error is still above 10%, and the use of N = 8 fared no better than N = 6.

Our method could not reconstruct surfaces with these reduced volumes well. These data are

plotted in Figure 4.4, overlayed by the analytic solution from Seifert [91].

In summary, for surfaces with 0.75 ≤ v ≤ 1, we used N = 4 and 20 quadrature points in

each dimension, for surfaces with 0.65 ≤ v < 0.75, we used N = 6 and 30 quadrature points
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Figure 4.4: Vesicle energy vs. reduced volume for oblate vesicles in comparison with [91].
Left: All data points used to determine cutoff values for N given a reduced volume v.
Right: Kept data according to the cutoff values. All data points are within 10% error of the
appropriate analytical curve.

in each dimension. The results using this cutoff are overlayed by Seifert’s data in Figure 4.4.

Finally, the surfaces corresponding to the data in Table 4.5 are shown in Figure 4.5.

Table 4.5: Oblate vesicle energy vs. reduced volume.

v 1.0 0.91 0.82 0.75 0.72 0.65
E/E0, [91] 1.0 1.19 1.43 1.62 1.72 1.98
E/E0, SHF 1.0 1.19 1.41 1.56 1.65 1.83
Rel. error 0.00% 0.14% 1.60% 4.24% 4.41% 8.79%
Iterations 1 48 30 40 46 64

Figure 4.6 shows an actual RBC photographed with a scanning electron microscope in

comparison to the model energy minimizing shape.

We note that the results of the numerical procedure may be only local minima and

therefore only locally stable. With enough perturbation through some external force, another

configuration with a lower energy may be achieved. In the range of 0.64 ≤ v ≤ 1, oblate

shapes are local energy minimizers, but prolates are global minimizers for axisymmetric

shapes. However, it may be possible to obtain a non-axisymmetric shape with lower energy

than a prolate.
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Figure 4.5: Oblate vesicles with various reduced volumes. Organized by row, v =
1.00, 0.90; 0.81, 0.76; 0.70, 0.65. The shapes here correspond to the data in Table 4.5. The
full volumes are angled slightly down, while the profiles are not angled.

Figure 4.6: Real RBC (left) compared to model RBC (right).

4.3.2. Prolates. Our model is capable of producing prolate shapes as well (see Figure

4.3 (c)). Interestingly, this is accomplished by allowing the step size αm to be negative.

This means that the algorithm can step in a direction that increases the energy. We offer

the following explanation: since the algorithm produces local extrema, it may be possible to

obtain a different local extrema, but a transient increase of energy is required to overcome

the energy barriers. Furthermore, in the regime 0.58 ≤ v ≤ 1, prolate shapes are better

minimizers of the energy than oblate shapes. Table 4.6 shows the results for prolate shapes

with similar reduced volumes as obtained in the algorithm for oblate shapes. Sometimes,

more iterations are required to produce these shapes. If the algorithm is moving in the

direction of an increase in energy to overcome an energy barrier, this makes sense. The

shapes corresponding to the data in Table 4.6 are shown in Figure 4.7. The reduced volume

vs. energy plot is shown in Figure 4.8.
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Table 4.6: Prolate vesicle energy vs. reduced volume.

v 1.0 0.90 0.79 0.76 0.71 0.65
E/E0, [91] 1.0 1.20 1.40 1.49 1.61 1.81
E/E0, SHF 1.0 1.20 1.42 1.52 1.63 1.91
Rel. error 0.00% 0.20% 1.40% 2.46% 1.49% 5.42%
Iterations 1 56 44 60 124 168

Figure 4.7: Prolate vesicles with various reduced volumes. Organized by row, v =
1.00, 0.90; 0.79, 0.76; 0.71, 0.65. The shapes here correspond to the data in Table 4.6.

In summary, our model is able to reproduce both prolate and oblate shapes. The data

from Tables 4.5 and 4.6 (also Figures 4.5 and 4.7) are combined in Figure 4.9.
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Figure 4.8: Vesicle energy vs. reduced volume for prolate vesicles in comparison with [91].
The SHF results correspond to the data in Table 4.6.
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Figure 4.9: Vesicle energy vs. reduced volume for both oblate and prolate shaped in compar-
ison with [91]. The SHF results correspond to the data in Tables 4.5 and 4.6 (also Figures
4.5 and 4.7).
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CHAPTER 5

Biomolecular electrostatics

The classical theory of bilayer mechanics, introduced in Chapter 2 has been notably

successful in modeling very large deformations of the membrane under external mechanical

forces or constraints [37, 68]. We have further demonstrated the success of this model with

the results in Chapter 4 [72]. In this chapter, we wish to introduce electrostatic interactions to

the classical mechanical model. Consider a system with a vesicle and an external protein. The

lipids on the vesicle membrane are charged, and the protein is also charged. Both the vesicle

and the protein are placed in an ionic solvent. The mechanical energy given by equation

(13) is on the same order of magnitude as the electrostatic potential energy, therefore the

electrostatic interactions between the lipids, ions, and protein will play a significant role to

the total energy of the system. Therefore, we wish to extend the mechanical model developed

in Chapter 2 to an electromechanical model.

Suppose a protein and a lipid vesicle are placed in solvent. Denote the volume of the

solvent by the open set Ωs ⊂ R3. This region appears outside of the protein and the vesicle

as well as in the interior of the vesicle. The enclosed a volume of the vesicle is denoted

Ωm ⊂ R3. The volume the protein occupies is denoted by the open set Ωp ⊂ R3. The entire

containment region will be denoted by Ω. The interior boundary of the vesicle is called the

cytosolic face and the exterior boundary is the exoplasmic face. Let the boundary of any

domain be denoted Γ ⊂ R2 with appropriate subscripts, and let ∂Ω be the exterior boundary

of Ω. Let n be the unit outward normal vector to any interface Γ. See Figure 5.1 for a picture

of the domains.

In keeping with the theme of this thesis, we want to investigate the flow of the lipid

membrane. As before, the flow is determined by the forces on the membrane, which includes

the electrostatic force. To determine the electrostatic force, we need an expression for the

electrostatic potential energy, which will be derived in this chapter. To compute the elec-

trostatic potential energy in a continuum framework, dielectric permittivities are assigned
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Figure 5.1: A mathematical description of the described solvation system. The volume of
the membrane is Ωm, contained by Γe and Γc representing the headgroups of each leaflet.
The solvent both inside and outside of the vesicle is Ωs. The protein is Ωp with boundary
Γp. The unit outward normal to any surface Γ is n.

to the interior of the membrane and the exterior, hence the membrane acts as a dielectric

interface. The position of the membrane determines the electrostatic field, and this field

determines the electrostatic potential energy. We first review some preliminary theory in

electrostatics, covered in the following sections.

5.1. Dielectrics

To begin, we treat the protein, lipid membrane, and the solvent as dielectrics. A dielectric

is an insulating material that can be polarized by an electric field ~E. The atoms within a

dielectric material have a net neutral charge and their electrons are positioned randomly.

But, when an electric field is applied, the electrons rearrange according to the direction of

the applied field, as in Figure 5.2. This rearrangement, or polarization, creates an internal

electric field which reduces the applied field. There are different degrees to which a material

is polarizable. This is quantified by the relative permittivity, which will be denoted by εr.

(This term may sometimes be referred to as the “dielectric constant,” but this terminology is

deprecated in the physics and engineering communities, since εr is often not a constant in the

mathematical sense.) Every non-conducting medium has an associated relative permittivity.
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Figure 5.2: Polarization of a dielectric in an electric field ~E [106].

For instance, a vacuum has εr = 1, air has εr = 1.00059, and water has εr = 80.4 (values

taken at 20◦C) [106]. The higher the relative permittivity, the greater the material’s ability

to be polarized, which reduces the effective strength of the electric field in the material.

Within the framework of the problem at hand, depicted in Figure 5.1, the lipids, protein,

and solvent have different relative permittivities. This creates a discontinuity in the relative

permittivity εr at each interface Γc, Γe, and Γp. The relative permittivities of the protein and

membrane are denoted εp and εm, respectively, and usually range between 1 ≤ εp, εm ≤ 10.

On the other hand, the relative permittivity of the solvent, εs, is much greater, around 80,

approximately the relative permittivity of water in normal conditions.

The dielectric is assumed to be isotropic and homogeneous in each distinct domain (e.g.,

the protein, membrane, and solvent). While the dielectric ε is often a three dimensional

tensor, it is reduced to a (piecewise) scalar under these assumptions. We use the following

definition for ε:

(148) ε(x) =


εs if x ∈ Ωs,

εp if x ∈ Ωp,

εm if x ∈ Ωm,

where εs ≈ 80 and εm ≈ εp ≈ 2.
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5.2. Electrostatics in homogeneous dielectric media

In this section, we derive Gauss’ Law to describe electrostatics in dielectric media. We

start with something simple. Coulomb’s Law gives a physical description of the electrostatic

interaction between two electrically charged particles. In a continuum model, it is more

useful to consider the electric field generated by each point charge (from Coulomb’s law)

and then integrating over the whole space. The electric field ~E generated by a particle with

charge q located at the origin is given by

(149) ~E(~r) =
q~er

4πεr2
,

where ~r is the displacement vector from the point charge, ~er = ~r/|~r| is the unit vector

in the direction of ~r, r = |~r| is the distance from the point charge, and ε is the absolute

dielectric permittivity, ε = ε0εr, where ε0 is the permittivity of free space and εr is the

relative permittivity of the material. For materials that do not have constant dielectric ε,

like ours with the discontinuities on each interface Γ, it is more convenient to derive Gauss’

Law using a linear constitutive relation for the displacement field,

~D(~r) = ε ~E.

If the point charge is located at some other point ~s ∈ Ω, then Coulomb’s Law is merely

a shift of (149),

~D(~r) = ε ~E(~r) =
q

4π|~r − ~s|2
~r − ~s
|~r − ~s| =

q(~r − ~s)
4π|~r − ~s|3 .

Notice that ~D(~r) points in the direction of ~r− ~s appropriately. The total displacement field

at position ~r is obtained by integrating the individual electric fields from each point ~s ∈ Ω.

Replacing the charge q by the charge density ρ(~s),

~D(~r) =
1

4π

∫
Ω

ρ(~s)(~r − ~s)
|~r − ~s|3 d3~s.
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Taking the divergence of both sides gives,

∇ · ~D(~r) =
1

4π

∫
Ω

ρ(~s)∇ ·
(

~r − ~s
|~r − ~s|3

)
d3~s

=

∫
Ω

ρ(~s)δ(~r − ~s) d3~s

= ρ(~r).

This is the differential form of Gauss’ Law,

(150) ∇ · ~D(~r) = ρ(~r),

or alternatively,

(151) ∇ · ε ~E(~r) = ρ(~r).

Thus, from Coulomb’s Law, Gauss’ Law is derived. To obtain the integral form, integrate

the above result over any volume Ω and apply the divergence theorem,∫
Ω

ρ(~r) d3~r =

∫
Ω

∇ · ~D(~r) d3~r

=

∫
Γ

~D(~r) · ~n d2~r,

where Γ is any closed surface in Ω and ~n is the unit normal to the surface Γ. The integral

form of Gauss’ Law states that for a surface Γ that encloses a region Ω ⊂ R3, the total flux

of electric field is proportional to the total enclosed charge. That is,

(152)

∫
Γ

ε ~E(~r) · ~n dS =

∫
Ω

ρ(~r) dV.

Gauss’ Law concerns the flux of an electric field, ( ~E · n) dS through some surface element

dS. Suppose that a charge lies outside of the enclosed surface. The electric field from this

charge will pass through one end of the surface dS1 and then through the other dS2. The

net outward flux is zero due to the cancellation in the flux through dS1 and dS2. Now

suppose that some distribution of charges lie inside the enclosed surface. No matter how the
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charges which create the electric field are distributed, they may be treated as a single change

emanating from a point enclosed in a (Gaussian) sphere. The electric field due to this point

charge is given by (152). The left side of the equation reduces to∫
Γ

ε ~Eq(~r) · ~n dS =
q

4πr2

∫
Γ

~er · ~n dS = q,

since ~er and ~n are parallel unit vectors, and the surface area of a sphere is 4πr2. By super-

position, the total flux is a sum of all of the charges inside the surface,∫
Γ

ε ~E(~r) · ~n dS =
N∑
i=1

qi, qi ∈ S.

It is also convenient to write the electric field as the gradient of the electrostatic potential,

~E = −∇φ. If the field is emanating from a point charge, the potential is given by

(153) φ(r) =
q

4πεr
.

This can be seen by taking the gradient of (153) with respect to ~r and obtaining (149). It is

usually simpler to work in terms of φ rather than ~E, since the potential is a scalar quantity.

Using the differential form of Gauss’ Law, Poisson’s Equation is obtained. From (150),

(154) ∇ · (∇φ) = ∆φ = −ρ(~r)

ε
.

If ε is discontinuous, then Poisson’s equation must follow (151),

(155) ∇ · (ε∇φ) = −ρ(~r).

The derivation of Poisson’s equation (155) can be found in any good book on electrostatics,

e.g. [98, 51].

5.2.1. Interface conditions. Suppose a surface Γ separates two regions with different

dielectrics, as our model does. Let the relative permittivity of the interior be ε1 and that of

the exterior be ε2. Now consider a cylindrical Gaussian surface Ω intersecting the boundary.

The height of the cylinder is taken to be small so that the only contributions to the outward
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flux from the cylinder come from the top and bottom faces. The displacement field on the

top face is denoted ~D2 and the displacement field on the bottom face is ~D1. Suppose for now

that the boundary carries no charge, so that ρ = 0 inside the Gaussian cylinder. By (150),∫
Ω

∇ · ~D dV = 0.

By the divergence theorem (2),∫
Γ

~D · ~n dV = ~D1 · ~n1 + ~D2 · ~n2 = 0.

Since the normal vectors point in opposite directions, the above equation reduces to

(156) ~D1 · ~n = ~D2 · ~n.

This is our first boundary condition, which may be applied to the protein-solvent boundary

Γp, since this boundary is uncharged. In terms of the electrostatic potential, (156) becomes

ε1∇φ1 · ~n = ε2∇φ2 · ~n.(157)

The condition (156) states that the displacement field is continuous across the interface Γ.

However, the electric field is clearly discontinuous since the dielectric is discontinuous.

For the second boundary condition, consider a rectangular contour γ, denoted ABCD

that spans the interface, where the edge AB is in the exterior (with dielectric ε2) parallel

to Γ, and the edge DC is in the interior (with dielectric ε1) perpendicular to Γ. Define dl

to be the length of the rectangle so that dl = |AB| = |DC|, and define dw to be the width

of the rectangle so that dw = |AD| = |BC|. The electric field is conservative, so no work is

done along the contour γ traversing the rectangle. Let E
(1)
|| be the electric field parallel to

the surface along DC and E
(2)
|| be the electric field parallel to the surface along AB. Then

consider the contour integral∮
γ

~E · d~l = E
(1)
|| dl − E(2)

|| dl + Edw + Edw = 0.
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If we take dw → 0, the electric field contributions from sides BC and DA are negligible, and

hence

(158) E
(1)
|| = E

(2)
|| ,

which implies that the tangential component of the electric field is continuous across the

boundary. This condition (158) applies to all boundaries Γ in our setup, for it remains

unchanged with charged interfaces. In terms of the electrostatic potential, (158) becomes

φ1 = φ2.(159)

If the boundary Γ is itself charged (such as the boundaries where the charged lipid heads

lie, Γc and Γe), the first boundary condition must be modified. The continuity of E|| and φ

remains the same. However, the displacement field condition must be modified to include

the surface charge density σ,

(160) ~D1 · ~n− ~D2 · ~n = σ.

In terms of the electrostatic potential, the boundary condition modified from (157) is

−ε1∇φ1 · ~n = −ε2∇φ2 · ~n+ σ.(161)

We use the notation ρ for a distribution of lipids on the surface Γe and Γc, and hence ρ has

dimensions 1/Length2. The charge per lipid ql has units of charge, C. Then, σ, the charge

density per unit area is defined as σ = ρql, hence the boundary condition

ε1∇φ1 · ~n = ε2∇φ2 · ~n− ρql.(162)

This condition applies to the membrane boundaries Γc and Γe. Our final interface conditions

in terms of the electrostatic potential are (157), (159), and (162).
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5.2.2. Molecular interfaces. There are several different ways to determine the po-

sition of the interface of a molecule upon which the boundary conditions discussed in Section

5.2.1 are imposed. Three common methods are discussed here.

The simplest way to model the interface of a molecule is by its van der Waals surface.

This idea is to consider each atom of the molecule and its van der Waals radius, which are

often determined by the atomic spacing between unbounded atoms in crystals. This radius

is of course a hypothetical value. Each atom in the molecule is given a van der Waals radius

and pieced together to create a van der Waals surface. The green line in Figure 5.3 shows

the van der Waals surface, and Figure 5.4(a) illustrates an example of the van der Waals

surface for a particular molecule.

Figure 5.3: The van der Waals, solvent excluded, and solvent accessible surfaces [58].

Figure 5.4: Illustration of van der Waals, solvent excluded, and solvent accessible surfaces
for a sample molecule [58].
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The solvent excluded surface is obtained by smoothing out the van der Waals surface.

This smoothing is calculated in a specific way. A sphere of solvent with a particular radius,

called the probe sphere, is rolled across the van der Waals surface of the molecule. If the

probe sphere touches the van der Waals surface, then the solvent excluded surface is the

same as the van der Waals surface at that point. When the probe sphere gets caught in

between two or more atoms from the molecule, it traces a smooth connecting line in between

the atoms. Therefore, the solvent excluded surface always encompasses more volume than

the van der Waals surface. The solvent excluded surface is sometimes simply called the

molecular surface. The red line in Figure 5.3 shows the solvent excluded surface, and Figure

5.4(c) illustrates an example of the solvent excluded surface for a particular molecule.

A third way to describe the molecular interface is by the solvent accessible surface. Like

the solvent excluded surface, the solvent accessible surfaces traces a smooth connection be-

tween the van der Waals spheres by using a probe sphere of solvent. The point of connection

is not the point of contact, but rather the center of the probe sphere. That is, the solvent

accessible surface is just the solvent excluded surface increased by the radius of the probe

sphere, and again, the solvent accessible surface always encompasses more volume than the

solvent excluded surface. The blue line in Figure 5.3 shows the solvent accessible surface,

and Figure 5.4(b) illustrates an example of the solvent accessible surface for a particular

molecule.

We prefer the solvent excluded or solvent accessible surface for our model so that the

surfaces are smooth.

5.3. Poisson Equation

Now we piece together the electrostatic theory for our particular problem. We developed

the partial differential equation for the electrostatic potential φ in (155), namely, the Poisson

equation. We also developed the boundary conditions (159) for every boundary Γ, (157) for

the protein boundary Γp, and (162) for the lipid boundaries Γc and Γe. We define a function

g ∈ W 2,∞(Ω) for the electrostatic potential on the containment boundary ∂Ω, where W 2,∞
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is the Sobolev space of twice differentiable functions whose derivatives up to second order

are essentially bounded (i.e. bounded up to a set of measure zero). Assembling all of these

equations together, we obtain the Poisson equation with boundary conditions for our system,

(163)



∇ · (ε∇φ) = −ρΩ, in Ω,

[φ] = 0, on Γc,Γe,Γp,

εs
∂φs

∂n
= εm

∂φm

∂n
− ρ[Γ]ql, on Γc,Γe,

εs
∂φs

∂n
= εp

∂φp

∂n
, on Γp,

φ = g, on ∂Ω.

The notation [φ] denotes the jump in φ, i.e. [φ] = φ1 − φ2, where φi, i = 1, 2 is the value

of φ on each side of the boundary. This boundary condition in (163) is equivalent to saying

that φ is continuous across the boundary as in (159).

We still need to describe the distribution of charges ρΩ in the first equation of (163).

This term accounts for the distribution of charges in the volumes Ωs,Ωp,Ωm ⊂ Ω ⊂ R3.

This includes the charges from the ions in the solvent Ωs as well as the charges from the

atoms in the protein Ωp. Since the charges from the lipids are modeled on the headgroups

Γc and Γe, there is no charge distribution arising from Ωm. Therefore, we have

(164) ρΩ = ρp + ρi,

where ρp describes the distribution of charge in the protein, and ρi describes the distribution

of charge in the solvent. In the next section, we discuss the distribution of charge in the

protein ρp. In the following section, we define a Boltzmann distribution for ρi. With these

two results, we finish the first equation of (163) to describe the term ρΩ.
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5.4. Protein structure and charge distribution

In this section, we model the distribution of charge in a protein, ρp. Proteins are rigid

structures, meaning that the position of the atoms and hence the charges associated are

fixed. For review, we briefly discuss protein structure next.

When atoms bond with other atoms, they form a primary structure of amino acids.

While there are hundreds of different amino acids, there are only 20 that play a role in

the formation of proteins. Amino acids can bend and fold into regular patterns known

as secondary structures such as α-helices and β-sheets (these two structures are the most

common in protein formation). When several of these secondary structures are assembled

together, a tertiary structure, or polypeptide chain is made. These can look quite complex,

but are essentially just the folds of secondary structures that place them into an energy

minimizing position. These tertiary structures are subunits of a quaternary structure, which

is the full protein complex. An illustration of the protein structure is found in Figure 5.5. Of

Figure 5.5: The structure of proteins. From left to right: Primary structure of amino
acid residues, secondary structure of an α-helix, tertiary structure of a polypeptide chain,
quaternary structure of assembled subunits [75].

course, all of the linking, bending, and merging will move the charges to different positions in

space. Most proteins are overall weakly charged, however, even if the net charge of a protein

is balanced to zero, a protein may still be polar, and charges from one side of a protein may

be relevant.

We model a protein composed of N atoms located at the points x1, x2, . . . xN with charges

Q1, Q2, . . . , QN , respectively. The charge of each atom is located in the atom’s center. We
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assume the protein will not make any conformational changes, and therefore the charge

distribution will remain fixed at the atoms’ centers. Such a description is found in [4, 5],

(165) ρp(x) =
4πe2

c

kBT

N∑
i=1

qiδ(x− xi),

where ec is the charge of an electron, kB is the Boltzmann constant, and T the temperature

so that the product kBT is the thermal energy of the system. The delta function ensures

that the charge is located at the atom’s center xi for each i.

The form of equation (165) assumes that the charges arise from the centers of each

atom in the protein. This function ρp ∈ L1(Ω), since the distribution δ(x) ∈ L1(Ω), but

ρp /∈ H1(Ω), a condition that will be needed in the computation of the dielectric boundary

force. Therefore, the model given by (165) is not used in our definition of the electrostatic

potential energy, but instead, a smooth approximation of the delta function is used, such as

those in [60, 94, 85]. In this way, the analysis of the energy functional is easier to treat [62].

We assume the charge follows some nonzero distribution across the entire van der Waals

surface. This way, ρp ∈ H1(Ω), as desired. To further satisfy some distance requirements to

be made later in equation (210), the boundary Γ should be defined by the solvent accessible

surface, rather than the van der Waals surface. (See Figures 5.3 and 5.4 for a depiction of

the van der Waals and solvent accessible surfaces.)

5.5. Boltzmann distribution

In this section, we describe the charge distribution of ions in the solvent, ρi in (164) to

complete the Poisson equation (163). Recall that the membrane-protein system is placed in

an ion-concentrated solution (solvent). Ions are atoms with an unbalanced number of protons

and electrons, and therefore possess electric charge. We model the distribution of ions as a

Boltzmann distribution, assuming that (i) all particles are equivalent, (ii) the particles are

indistinguishable, (iii) there are no particle-particle interactions except to transfer energy in

brief collisions, and (iv) the particles are in thermal equilibrium.
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Consider a system with N equivalent, indistinguishable particles (ions) with no inter-

actions between them except for very brief collisions in which they exchange energy and

momentum. We seek the distribution of particles in thermal equilibrium. We will compute

the entropy of this system and assume that the distribution of particles maximizes entropy,

in accordance with the second law of thermodynamics. (Entropy is a measure of the number

of ways a system can be arranged, or equivalently, a measure of disorder.)

The particles can assume K distinct energy levels, and assume N is large. Denote the

energy of each energy level by ei. We take the fundamental assumption of statistical ther-

modynamics (also called the fundamental postulate of statistical mechanics), which states

that the probability of a particle occupying any microstate is equally likely. To expand on

this assumption, suppose that the distribution of the particles in the K energy levels is ran-

dom. The particles are moving around, each with some speed. When two particles collide,

they transfer energy to each other, resulting in a change of energy level. The probability

of increasing the energy of a given particle is equally likely as the probability of decreasing

in energy, and since there are so many particles (N is large), the particles are continuously

changing energy levels. Next, suppose there are ni particles in each energy level i so that∑K
i=1 ni = N . The ni is called the occupation number of the energy level i. The total energy

of the system is

(166) E =
K∑
i=1

eini.

The number of ways of selecting n objects from a set of N is
(
N
n

)
= N !/(n!(N − n)!). Here,

we have K distinct “energy sets” from which to pick. Select n1 objects from N and place

them in set 1 (energy level e1), then from the remaining N−n1 objects, select n2 objects and

place them into set 2 (energy level e2), and so on. The remaining N − n1 − n2 − · · · − nK−1

objects are placed into set K (energy level eK). The total number of ways this can be done
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is

W =
N !

n1!(N − n1)!
× (N − n1)!

n2!(N − n1 − n2)!
× · · · × (N − n1 − n2 − · · · − nK−1)!

nK !(N − n1 − n2 − · · · − nK)!
(167)

=
N !

n1!n2!n3! · · ·nK !
.

The equation simplifies by telescoping terms on the denominator with the corresponding

term on the subsequent numerator, and knowing that the term in the final denominator

(N − n1 − n2 − · · · − nK)! = 1 since
∑K

i=1 ni = N .

Before we continue, we need to make a correction to (167) concerning the degeneracy of

energy levels. In quantum mechanics, an energy level is said to be degenerate if it corresponds

to two or more different measurable states or distributions. Denote the degeneracy of the ith

energy level by gi. This means there are really gi ways to express the energy ei, rather than

just one. This will affect our probability calculation, since the number of ways of placing

elements into the set i must be increased by the number of ways ni can be distributed into

the degenerate levels gi. If the particles on each sublevel are indistinguishable, this number

is gnii , where the superscript denotes exponentiation. If the energy of level i can be expressed

in gi different ways, and ni particles belong in level i, then there are gi choices for particle

1, gi choices for particle 2, and so on, and gi choices for particle ni, for a total of gnii choices.

Therefore, the total number of ways N particles can be distributed into their energy levels,

including degenerate states, is

(168) W = N !
K∏
i=1

gnii
ni!

.

We can use (168) to compute the entropy of the system.

Entropy is a fundamental concept in thermodynamics, and is a measure of the number

of ways a thermodynamic system can be arranged. Entropy is an additive measure, meaning

that if we have two systems of with corresponding entropies S1 and S2, then the entropy

of the two systems should be S1 + S2. But, the number of ways the full system is not the

number of ways system 1 can be arranged plus the number of ways system 2 can be arranged.
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Instead, the number of ways a system can be arranged grows combinatorially. In the 1870s,

Ludwig Boltzmann showed that the entropy S of a system is logarithmically related to the

number of ways the system could be arranged (168) in his fundamental equation,

(169) S = kB lnW.

Logarithms exchange multiplicative problems (such as counting the number of ways two

systems can be arranged) into additive problems, making entropy an additive quantity, as

desired. Using this feature of natural logarithms, the entropy of the system is

(170) S = kB ln

(
N !

K∏
i=1

gnii
ni!

)
= kB

(
ln(N !) +

K∑
i=1

[ni ln(gi)− ln(ni!)]

)
.

SinceN is large, we assume that each ni is also large, so we can apply Stirling’s approximation

to both N and each ni. Stirling’s approximation says

(171) ln(n!) = n ln(n)− n+O(ln(n)).

This gives

(172) S ≈ kB

(
N ln(N)−N +

K∑
i=1

[ni ln(gi)− ni ln(ni) + ni]

)
.

Gibbs noticed that (172) does not give the correct entropy, known as Gibbs’ paradox. The

problem is that the particles considered are distinguishable, but in the calculation, we as-

sumed they were indistinguishable. For instance, two particles may have different momenta,

but the same energy. Hence, they are distinguishable. With this correction, we carry out

the counting problem again. This is called Bose-Einstein statistics. Then, if w(ni, gi) is the

number of ways of distributing ni distinguishable particles in gi sublevels, it is given as a

number of permutations,

(173) w(ni, gi) =

((
gi
ni

))
=

(
gi + ni − 1

ni

)
=

(gi + ni − 1)!

ni!(gi − 1)!
.
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Then, the number of ways of arranging the entire system is the produce of the w(ni, gi) for

each i,

(174) W =
K∏
i=1

(ni + gi − 1)!

ni!(gi − 1)!
.

This distribution requires a temperature above 0K and low density, so we have the approx-

imations 1 � ni � gi, and hence we can still apply Stirling’s approximation, but this time

we will use the form,

(175) n! ≈
√

2πn nne−n.

Using this approximation on (ni + gi)!, ni!, and gi!, Equation (174) becomes

W =
K∏
i=1

(ni + gi)!gi
ni!gi!ni

=
K∏
i=1

√
2π(ni + gi) (ni + gi)

ni+gie−ni−gigi√
2πni n

ni
i e
−ni
√

2πgi g
gi
i e
−gi(ni + gi)

=
K∏
i=1

(ni + gi)
ni+gi

nnii g
gi
i

gi
ni + gi

.

The latter fraction gi/(ni + gi) ≈ 1 since ni � gi. Then, divide both the numerator and the

denominator by g
(ni+gi)
i to get

W ≈
K∏
i=1

(ni + gi)
ni+gi

nnii g
gi
i

=
K∏
i=1

gnii (ni/gi + 1)ni+gi

nnii
.

Recall the limit definition for the exponential function

(176) ex = lim
n→∞

(
1 +

x

n

)n
.

This form appears in the numerator of W above, eni ≈ (1 + ni/gi)
gi since gi � ni. Using

this, and using Stirling’s approximation (175) in reverse, we have

(177) W ≈
K∏
i=1

gnii e
ni

nnii
≈

K∏
i=1

gnii
ni!

.
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With this, so-called correct Boltzmann counting, the entropy is (using Stirling’s approxima-

tion (171) yet again)

S = kB ln

(
K∏
i=1

gnii
ni!

)
= kB

(
K∑
i=1

ni ln(gi)− ln(ni!)

)
(178)

≈ kB

(
K∑
i=1

ni ln(gi)− ni ln(ni) + ni

)
.

The distribution of particles maximizes entropy, and so we look for values of ni which

maximize equation (178), while keeping the total number of particles and the total energy

(166) fixed. For clarity, we use N̄ and Ē to denote the respective fixed values. Using the

method of Lagrange multipliers for the constraints, we maximize the following function,

f(n1, · · · , nK) =

(
K∑
i=1

ni ln(gi)− ni ln(ni) + ni

)
+ α

(
N̄ −

K∑
i=1

ni

)
+ β

(
Ē −

K∑
i=1

eini

)

=

(
K∑
i=1

ni ln(gi)− ni ln(ni) + ni − αni − βeini
)

+ αN̄ + βĒ.(179)

Taking partial derivatives with respect to ni, we require

(180)
∂f

∂ni
= ln(gi)− ln(ni)− (α + βei)

set

= 0.

Solve (180) for each ni to get

(181) ni = gie
−(α+βei).
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Now, using (181), we have

ln(W ) =

(
K∑
i=1

ni ln(gi)− ni ln(ni) + ni

)

=

(
K∑
i=1

gie
−(α+βei) ln(gi)− gie−(α+βei) ln(gie

−(α+βei)) + gie
−(α+βei)

)

=

(
K∑
i=1

gie
−(α+βei)(α + βei) + gie

−(α+βei)

)

=

(
K∑
i=1

ni(α + βei + 1)

)

= (α + 1)N + βE.

If we rearrange this and differentiate, we get

E =
1

β
ln(W )− α + 1

β
N,(182)

dE =
1

β
d ln(W )− α + 1

β
dN.(183)

But (183) is just the second law of thermodynamics,

(184) dE = T dS + µ dN = T d(kB ln(W )) + µ dN,

so by matching terms in (183) and (184), we have kBT = 1/β and µ = −(α+ 1)/β. Solving

for β = 1/(kBT ) and α = −µ/(kBT )− 1 allows us to rewrite (181) explicitly,

(185) ni = gi exp

(
µ− ei
kBT

+ 1

)
.

This equation (185) defines the form of a Boltzmann distribution. A Boltzmann distribution

is defined to be a distribution that takes the form,

(186) ρ(x) = c∞e
−U/(kBT ),
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where c∞ is some constant of proportionality called the bulk number density, U is the free

energy usually written as the product of the electrostatic potential φ with the charge q, and

the constant β = 1/(kBT ) is the inverse thermal energy.

For our purposes, we assume that the solvent contains M distinct ionic species. These

counterions (so-called because they produce electric neutrality to the membrane-protein-

solvent system in Figure 5.1) are modeled by a Boltzmann distribution as in [2, 20],

(187) ρi(x) =
M∑
j=1

c∞j qje
−βqjφ(x),

where φ is the electrostatic potential, c∞j is the bulk concentration, qj the charge, and the

subscript j represents the jth particular ionic species. We assume the condition of charge

neutrality in the bulk, which is a reasonable assumption away from any charged surfaces,

(188)
M∑
j=1

c∞j qj = 0.

One may generalize (187) as in [10, 5, 56] by enforcing ion-excluded volume effects, or

steric effects. Steric effects occur when atoms come so close together that their electron

clouds overlap. The steric potential, scaled by the inverse thermal energy, is added to the

exponential of (187) is to ensure that the atoms from the protein, lipids, and the counterions

do not overlap.

The results of this section can be found in any good textbook on statistical mechanics,

e.g. [71].

5.6. Poisson-Boltzmann Equation

We use a Boltzmann distribution (187) for ρi to complete the Poisson equation (163).

This leads the the Poisson-Boltzmann equation, which is equation governing the system. We

restrict the distribution (187) to the solvent domain Ωs by the characteristic function χs
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which is 1 on Ωs and 0 elsewhere and define (as in [62])

(189) B(φ) = β−1

M∑
j=1

c∞j (e−βqjφ − 1).

Then, ρi(x) = −B′(φ). Using this notation, the Poisson equation (163) becomes the Poisson-

Boltzmann equation,

(190)



∇ · (ε∇φ)− χsB′(φ) = −ρp, in Ω,

[φ] = 0, on Γc,Γe,Γp,

εs
∂φs

∂n
= εm

∂φm

∂n
− ρ[Γ]ql, on Γc,Γe,

εs
∂φs

∂n
= εp

∂φp

∂n
, on Γp,

φ = g, on ∂Ω,

where again, ε is the dielectric permittivity for each region defined by (148), φ is the electro-

static potential, ρp is the distribution of charges in the rigid protein which shall be assumed

to be a sufficiently smooth and compactly supported approximation to (165), n is the out-

ward unit normal vector to any interface Γ, ρ[Γ] is the distribution of lipids on the vesicle

membrane (to be defined later), ql is the charge of a lipid, and g ∈ W 2,∞(Ω) is the value of

φ at the containment domain’s boundary.

We remark that the Poisson-Boltzmann equation (190) is equivalent to the following

elliptic interface problem.
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(191)



εp∆φ = −ρp in Ωp,

εm∆φ = 0 in Ωm,

εs∆φ−B′(ψ) = 0 in Ωs,

[φ] = 0 on Γc,Γe,Γp,

εs∇φs · n = εp∇φp · n on Γp,

εs∇φs · n = εm∇φm · n− ρ[Γ]ql on Γc,Γe,

φ = g on ∂Ω.

A proof of the equivalence can be checked in [61] with appropriate inclusions for the lipids.

The Poisson-Boltzmann equation (190) is the standard equation for describing electro-

static forces on boundaries. The only term that does not have a formula is the distribution

of lipids on the membrane surfaces Γc and Γe. In the following section, we define this distri-

bution ρ[Γ] and complete (190).

5.7. Lipid distribution

The drift-diffusion equation, also called the electrodiffusion equation, is used to model the

movement of particles that are transferred due to the processes of diffusion and convection.

Both processes are relevant in our system, since the lipids experience “drift” due to the

electric field ~E = −∇φ and may freely diffuse on the surface of the membrane. When an

electric field is present, the lipids drift according to the direction of the field and the sign of

their charge. Positively charged lipids drift in the opposite direction as negatively charged

lipids. The drift-diffusion equation is

(192)
∂ρ

∂t
= ∇ · (D∇ρ+Dβqρ∇φ),

where ρ is the concentration of lipids, D is the diffusion coefficient, q is the charge of a lipid,

and φ is the (electrostatic) potential.
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The distribution of lipids should satisfy the drift-diffusion equation in its steady state.

That is, the concentration of lipids is determined once the processes of drift and diffusion

have settled into equilibrium. Therefore, ρ satisfies

(193) 0 = ∇ · (D∇ρ+Dβqρ∇φ).

To solve (193), it is convenient to represent ion concentration ρ using a “Slotboom variable”

[93],

(194) u = ρeβqφ.

This variable transforms (193) to an equivalent, symmetric form,

(195) 0 = ∇ · (De−βqφ∇u),

since the term inside the divergence operator matches,

De−βqφ∇u = De−βqφ∇(ρeβqφ)

= De−βqφ
(
(∇ρ)eβqφ + βqρeβqφ(∇φ)

)
= D∇ρ+Dβqρ∇φ.

One solution to the drift diffusion equation given by (195) is u = c for some constant c. It

is quick to check this is a solution, since ∇u = 0. Then, by (194), we have

(196) c = ρeβqφ.

Solving (196) for ρ gives us

(197) ρ = ce−βqφ.

If we let c = c∞q, then (197) matches the Boltzmann distribution (187) for a single species.

Indeed, lipids are often arranged as a Boltzmann distribution on membranes [15]. We now
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wish to determine an appropriate c for the lipid distribution if the lipids do not satisfy the

ideal Boltzmann distribution.

The practical distribution of lipids is subject to other constraints such as finite sizes and

entropy conditions and may not follow the ideal Boltzmann distribution [53, 55, 108]. We

generalize the distribution of lipids given by (200) in the following way.

The integration of the lipid concentration over the membrane Γ gives the total number

of lipids on a leaflet. By the discussion in Section 2.1, this quantity is conserved. Using a

Boltzmann distribution, we have

(198) T =

∫
Γ

ρ dS =

∫
Γ

ce−qβφ dS.

We can factor the constant c and solve

(199) c =
T∫

Γ

e−qβφ dS

.

Plugging (199) back into (197), we have the distribution of lipids with an ideal Boltzmann

distribution,

(200) ρ[Γ] =
Te−qβφ∫

Γ

e−qβφ dS

.

For the generalization, define

(201) ρ[Γ] =
−Cγ′(φ)

βql

∫
Γ

γ(φ) dS
,

where C is a dimensionless quantity related to T (the total number of lipids), and γ : Ω→ R

captures the generalization. Notice that if

(202) γ(φ) = e−qlβφ,

and if C = T , then the general lipid distribution (201) follows the Boltzmann distribution

(200).
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With (201), we have a formula for every term in the Poisson-Boltzmann equation (190).

In the next section, we use (190) to define the electrostatic potential energy for the protein-

membrane system.

5.8. Electrostatic potential energy

In the calculus of variations, the stationary functions of a functional are the solutions

to the Euler-Lagrange equation corresponding to that functional. In our context, we seek

an energy functional whose Euler-Lagrange equation is the Poisson-Boltzmann equation. In

this way, the electrostatic potential energy φ that satisfies the Poisson-Boltzmann equation

(190) will be a stationary solution to the energy functional. In this section, we define an

energy functional for the electrostatic potential energy and prove that the stationary solution

to the functional is also a weak solution to the Poisson-Boltzmann equation.

Consider the following electrostatic potential energy,

(203) G[Γ;φ] =

∫
Ω

[
−ε

2
|∇φ|2 + ρpφ− χsB(φ)

]
dΩ− C

β
ln

(∫
Γc,e

γ(φ) dS

/∫
Γc,e

dS

)
,

where the notation Γc,e = Γc ∪ Γe emphasizes that the integration of the lipid distribution

only occurs in the lipid membranes (and not on Γp).

We remark that this energy functional is concave down, and so a stationary function

of this electrostatic potential energy will be the maximizer of the energy functional. This

may seem confusing, since we try to perform energy minimizing computations. However it

is conventional to define the electrostatic potential energy in this way. It is easy to find the

energy minimizing solution by simply negating (203) above. E.g.,

(204) G[Γ;φ]∗ =

∫
Ω

[ε
2
|∇φ|2 − ρpφ+ χsB(φ)

]
dΩ +

C

β
ln

(∫
Γc,e

γ(φ) dS

/∫
Γc,e

dS

)
.

This energy formulation is concave up, so a stationary function will be the energy minimizer

of G∗. This form is in accordance with Dirichlet’s principle for energy minimization (e.g.,

see Section 2.5.5 of [34]). We proceed with the conventional electrostatic energy in (203).
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The reader should keep in mind that energy maximization can be easily replaced with energy

minimization with the use of (204).

We also remark that if γ(φ) = 1, then γ′(φ) = 0, and so by (201), there are no lipids on

the membrane surface. In terms of the energy, the second term will be zero, since ln(1) = 0.

Note that if γ = c for c 6= 1, there will be no lipids, yet there will be an energy cost of

C/β ln(c). Therefore, we require that γ(φ) be a non-constant function of φ.

In addition, consider the notation for the Hilbert space with boundary,

(205) H1
g (Ω) = {φ ∈ H1(Ω)

∣∣ φ = g on ∂Ω},

where H1 = W 1,2 is the usual Hilbert space whose functions are square integrable and have

square integrable partial derivatives up to first order.

We justify our choice of the energy function (203) by the following theorem.

Theorem 5.8.1. Let the electrostatic potential energy G be given by (203), where Γ is

any smooth boundary in Ω. Then there exists a critical point ψ0 ∈ H1
g (Ω) of G[Γ; ·] which is

also the weak solution of the nonlinear Poisson-Boltzmann equation (190).

Proof. Let ψ ∈ H1
0 (Ω). Consider the variation of the electrostatic potential energy:

dG[Γ;φ+ tψ]

dt

∣∣∣∣
t=0

=
d

dt

(∫
Ω

[
−ε

2
|∇(φ+ tψ)|2 − χsB(φ+ tψ) + ρp(φ+ tψ)

]
dΩ

−C
β

ln

(∫
Γ

γ(φ+ tψ) dS

/∫
Γ

dS

))∣∣∣∣∣
t=0

=

∫
Ω

−ε∇(φ+ tψ) · (∇ψ)− χsB′(φ+ tψ)ψ + ρp(φ+ tψ) dΩ− C

β


∫

Γ

γ′(φ+ tψ)ψ dS∫
Γ

γ(φ+ tψ) dS


∣∣∣∣∣∣∣∣
t=0

=

∫
Ω

−ε(∇φ) · (∇ψ)− χsB′(φ)ψ + ρpψ dΩ−
∫

Γ

Cγ′(φ)ψ

β
∫

Γ
γ(φ) dS

=

∫
Ω

−ε(∇φ) · (∇ψ)− χsB′(φ)ψ + ρpψ dΩ +

∫
Γ

ρ[Γ]qlψ dS.
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In the computation above, the notation Γ is used to indicate any boundary on which the

integrand is defined (i.e., both Γe and Γc). Critical points of the electrostatic potential energy

are obtained by setting the result above to 0,(∫
Ω

−ε(∇φ) · (∇ψ) dΩ−
∫

Ωs

B′(φ)ψ dΩ +

∫
Ω

ρpψ dΩ

)
+

∫
Γc

ρ[Γc]qlψ dS +

∫
Γe

ρ[Γe]qlψ dS = 0.

(206)

Standard calculations show (206) has a solution φ = ψ0 and that this critical point ψ0 is the

unique maximizer of G[Γ; ·]. The ideas follow the proof in [62], which proves the result for

uncharged surfaces.

Next, we will show that (206) is equivalent to the weak form of the Poisson-Boltzmann

equation (190). The weak form of the Poisson-Boltzmann equation for a smooth test function

ψ : Ω→ R is

(207)

∫
Ω

∇ · (ε∇φ)ψ dΩ−
∫

Ω

χsB
′(φ)ψ dΩ =

∫
Ω

−ρpψ dΩ.

Splitting the first integral in the domains Ωs, Ωm, and Ωp, and using the product rule gives∫
Ωs

∇ · (εs∇φsψ) dΩ−
∫

Ωs

εs(∇φs) · (∇ψ) dΩ +

∫
Ωm

∇ · (εm∇φmψ) dΩ

−
∫

Ωm

εm(∇φm) · (∇ψ) dΩ +

∫
Ωp

∇ · (εp∇φpψ) dΩ−
∫

Ωp

εp(∇φp) · (∇ψ) dΩ

−
∫

Ωs

B′(φ)ψ dΩ =

∫
Ω

−ρpψ dΩ.

Now combine the second, fourth, and sixth integrals and use the divergence theorem on the

first, third, and fifth integrals to get

−
∫

Ω

ε(∇φ) · (∇ψ) dΩ +

∫
∂Ω

εsψ(∇φs) · n dS −
∫

Γc

εsψ(∇φs) · n dS

−
∫

Γe

εsψ(∇φs) · n dS −
∫

Γp

εsψ(∇φs) · n dS +

∫
Γe

εmψ(∇φm) · n dS

+

∫
Γc

εmψ(∇φm) · n dS +

∫
Γp

εpψ(∇φp) · n dS −
∫

Ωs

B′(φ)ψ dΩ = −
∫

Ω

ρpψ dΩ.
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Since the test function ψ is compactly supported on Ω, the boundary integrals over ∂Ω are

zero. Combine the boundary integrals over Γ and obtain(
−
∫

Ω

ε(∇φ) · (∇ψ) dΩ−
∫

Ωs

B′(φ)ψ dΩ +

∫
Ω

ρpψ dΩ

)
+

(∫
Γc

ψ(εm∇φm − εs∇φs) · n dS
)

+

(∫
Γe

ψ(εm∇φm − εs∇φs) · n dS
)

+

(∫
Γp

ψ(εp∇φp − εs∇φs) · n dS
)

= 0.

Next, apply the boundary conditions to the last three integrals to obtain (206), the variational

form of the electrostatic potential energy. Therefore, the maximizer ψ0 of G[Γ; ·] is also the

weak solution to the nonlinear Poisson-Boltzmann equation. �

As a consequence of Theorem 5.8.1, the Euler Lagrange equation for the energy functional

(203) is the Poisson-Boltzmann equation (190).

We define the maximization of the electrostatic potential energy to be

(208) G[Γ] = max
φ∈H1

g (Ω)
G[Γ;φ] = G[Γ;ψ0].

Finally, we give a brief summary of the terms in the potential energy (203). The first

term, |∇φ|2 describes the energy from the electric field potential, since ~E = −∇φ. The

second term, ρpφ describes the energy from the charges in the protein. The third term,

B(φ) describes the energy from the mobile ions in the solvent. The final term involving γ(φ)

describes the energy from the charged lipids on each leaflet Γc and Γe.

We have now established the electrostatic energy functional for the protein-membrane

system. In the next chapter, we compute the dielectric boundary force on the boundaries of

the vesicle membrane Γe and Γc. This force governs the flow of the membrane.
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CHAPTER 6

Dielectric Boundary Force

In this chapter, we compute the dielectric boundary force on the vesicle membrane. The

results of this chapter are published in [73]. Recall the physical set up of the system depicted

in Figure 5.1. The dielectric boundary force describes the movement of the membrane based

on the electrostatic potential energy (203). In order to compute this force, we use techniques

from shape calculus as in [62]. To compute the shape derivative, we define a diffeomorphism

that perturbs the boundaries of the membrane. This perturbation is in the normal direction

of the membrane. Then, important properties of this diffeomorphism are established in terms

of its effect on volume elements of Ω and on surface area elements of Γ. Equipped with these

properties, we establish the dielectric boundary force.

6.1. Transformation and velocity of the surface

The deformation of the vesicle membrane is governed by a smooth velocity field that

vanishes at distances away from the membrane surfaces. We define the velocity function

V ∈ C∞(R3,R3) by the following dynamical system,

(209)


dx

dt
= V (x), ∀t > 0,

x(0) = X,

where X is the original position of the membrane and x is the transformed position. We

require V to be compactly supported near the bilayer membrane surfaces. In other words,

V (x) = 0 if dist(x,Γ) > d for some d > 0 where Γ is either Γc or Γe and

(210) d <
1

2
min

{
dist (Γe, ∂Ω), dist (Γc, supp (ρp)), dist (Γc, supp (ρp))

}
.

The condition (210) prevents the exterior membrane surface from stretching beyond the

containment domain Ω and also prevents either membrane leaflet from overlapping the atoms

within the protein.
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The solution to (209) defines a diffeomorphism Tt : R3 → R3 which sends the old co-

ordinates X to the new coordinates x in the time t. We denote this transformation by

Tt(X) = x(t,X). We get an approximation for the transformation by computing a Taylor

expansion of the velocity field centered at t = 0,

Tt(X) = x(t,X)(211)

= x(0, X) + t∂tx(0, X) +O(t2)

= X + tV (x(0, X)) +O(t2)

= X + tV (X) +O(t2).

In this way, the map Tt(X) agrees with the perturbation of the identity up to the leading

term.

The membrane configuration under the transformation Tt(X) results in a new electro-

static potential energy,

(212) G[Γt;φ] =

∫
Ωt

[
−ε

2
|∇φ|2 + ρpφ− χsB(φ)

]
dx+

C

β
ln

(∫
Γt

γ(φ) dS

/∫
Γt

dS

)
,

where each of the functions are computed over the transformed regions Ωt = Tt(Ω), Γt =

Tt(Γ). As in (203), the integration on the membrane is not performed on the protein Γp,

since no lipids are distributed here. Similar to the proof in Theorem 5.8.1, there is a unique

maximizer ψt ∈ H1
g (Ω) ∩ L∞(Ω) that maximizes (212) over H1

g (Ω). The maximum is

(213) G[Γt] = max
φ∈H1

g (Ω)
G[Γt;φ] = G[Γt;ψt].
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The same ψt is also the unique weak solution to the transformed boundary value problem of

the Poisson-Boltzmann equation, given by

(214)



∇ · (ε∇φ)− χsB′(φ) = −ρp, in Ωt,

[φ] = 0, on Γct ,Γet ,Γpt ,

εs
∂φs

∂n
,= εm

∂φm

∂n
− ρ[Γt]ql, on Γct ,Γet ,

εs
∂φs

∂n
= εp

∂φp

∂n
, on Γpt ,

φ = g, on ∂Ω.

Notice that equation (214) is identical to the Poisson-Boltzmann equation (190), except that

the domains are transformed by Tt. The transformation Tt(X) defined by (211) acts on

volumes and surfaces within Ω. Some useful properties of the transformation are outlined

next.

6.1.1. Properties of the transformation on volumes. The following are prop-

erties of the transformation Tt(X) given by (211) on a volume element dX ∈ R3. These

properties will be used in the computation of the shape derivative and their justifications

are found in [22], among other sources.

(T1) Let X ∈ R3 and t ≥ 0. Let ∇Tt(X) be the Jacobian matrix of Tt at X defined by

(∇Tt(X))ij = ∂jT
i
t (X), where T it is the ith component of Tt (i = 1, 2, 3). Let

(215) Jt(X) = det∇Tt(X).

Then, for each X, the function t 7→ Jt(X) is in C∞ and at X,

(216)
dJt
dt

= Jt(∇ · V ) ◦ Tt.

At t = 0, since no time has passed, ∇T0 = I for any x and so J0(X) = 1. The

continuity of Jt at t = 0 implies Jt > 0 for t > 0 small enough.
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(T2) Define A(t) : Ω→ R for t ≥ 0 small enough by

(217) A(t) = Jt(∇Tt)−1(∇Tt)−T ,

where the notation (·)−T denotes the inverse transpose. At each point in Ω,

A′(t) =
[
((∇ · V ) ◦ Tt)− (∇Tt)−1 ((∇V ) ◦ Tt)∇Tt(218)

− (∇Tt)−1 ((∇V ) ◦ Tt)T (∇Tt)
]
A(t).

(T3) For any u ∈ L2(Ω) and t ≥ 0, u ◦ T−1
t ∈ L2(Ω). Moreover,

(219) lim
t→0

u ◦ Tt = u and lim
t→0

u ◦ T−1
t = u in L2(Ω).

(T4) Let t ≥ 0 and u ∈ H1(Ω). Then both u 7→ u ◦ Tt and u 7→ u ◦ T−1
t are one-to-one

and onto maps from H1(Ω) to H1(Ωt) = H1(Ω) and H1
g (Ω) to H1

g (Ω), respectively.

Moreover, for any u ∈ H1(Ω),

(220) ∇(u ◦ T−1
t ) = (∇T−1

t )T (∇u ◦ T−1
t ) and ∇(u ◦ Tt) = (∇Tt)T (∇u ◦ Tt).

(T5) For any u ∈ H1(Ω) and t ≥ 0,

(221)
d

dt
(u ◦ Tt) = (∇u · V ) ◦ Tt.

The properties are proved in Chapter 9.4 of [22].

6.1.2. Properties of the transformation on areas. In Section 6.1.1, the proper-

ties of the transformation of a volume element were derived. Because our energy functional

(203) contains an integral over a 2D surface Γ, an analogous transformation of a surface el-

ement must be derived. In this section, we compute a useful property of the transformation

Tt on a surface element dS ∈ R2. Define the Jacobian of the surface transformation by

(222) Js(X, t) = (det∇Tt(X))
∣∣∇T−Tt n(X)

∣∣,
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as in [17], where n(X) is the normal unit normal vector at X. Note that at time t = 0,

Js(X, 0) = (det I)|In0| = |n0(X)| = 1, since n(X) is a unit vector. Analogous to the

transformation on a volume element, the differential surface element is transformed by ds =

Js dS. The surface transformation property we wish to establish is stated as the following

theorem.

Theorem 6.1.1. The time derivative of the Jacobian of the surface transformation Js at

t = 0 is given by the surface divergence of the velocity,

(223)
dJs
dt

∣∣∣∣
t=0

= ∇s · V.

Proof. Recall the formula for the Jacobian of the surface transformation given by (222).

The derivative of (222) is given by

(224)
dJs
dt

= (Jt(∇ · V ) ◦ Tt)
∣∣∇T−Tt n

∣∣+
det∇Tt∣∣∇T−Tt n

∣∣(∇T−Tt n) · d
dt

(∇T−Tt n).

The derivative in (224) was computed using the product rule, (216), and the fact that the

derivative of |~x| for any vector ~x(t) ∈ R3 is given by

d|~x|
dt

=
d

dt

√
x2

1 + x2
2 + x2

3(225)

=
1

2
(x2

1 + x2
2 + x2

3)−1/2(2x1
dx1

dt
+ 2x2

dx2

dt
+ 2x3

dx3

dt
)

=
1

|~x|(~x ·
d~x

dt
),

so that
d

dt

∣∣∇T−Tt n
∣∣ =

1∣∣∇T−Tt n
∣∣(∇T−Tt n) · d

dt
(∇T−Tt n).

We proceed by simplifying (224). The derivative with respect to t of (∇T−Tt n) is

(226)
d

dt
(∇T−Tt n) =

d(∇T−Tt )

dt
n+∇T−Tt

dn

dt
.
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There is another way to express (226) that will prove easier for further calculations. Let

~a = ∇T−Tt n so that n = ∇T Tt ~a. Then, computing the derivative of n,

dn

dt
=
d(∇T Tt ~a)

dt
=
d(∇T Tt )

dt
~a+∇T Tt

d~a

dt
.

Therefore,

d~a

dt
= (∇T−Tt )

(
dn

dt
− d(∇T Tt )

dt
~a

)
.

Replacing ~a gives the alternative form of (226),

(227)
d

dt
(∇T−Tt n) = (∇T−Tt )

(
dn

dt
− d(∇T Tt )

dt
(∇T−Tt )n

)
.

This equation is more advantageous than (226) because (226) involves computing the deriva-

tive of ∇T−Tt whereas (227) only requires the derivative of ∇T Tt . We compute the derivative

of ∇T Tt with respect to time t next.

First note that the velocity V (x) (209) is V (x) = dx/dt. The transformation is defined

through the velocity as Tt(X) = x. Then,

V ◦ Tt = V (Tt(X)) =
d(Tt(X))

dt
.

We want to keep track of which variable, x or X, is the variable of differentiation when

writing ∇(·). Write Tt(X) = T (t,X) to emphasize T is a function of X and t (but not x).

This allows for the subscript notation of partial derivatives. We adopt the notation ∇x(·)
or ∇X(·) to denote the variable of spatial differentiation x or X when computing ∇T (t, ·).
Computing the derivative with respect to time of ∇XT (t,X) yields

d

dt
∇XT (t,X) =

d

dt

(
∂XjTi

)
1≤i,j≤3

=

(
∂Xj

dTi
dt

)
1≤i,j≤3

=
(
∂XjVi(X)

)
1≤i,j≤3

= ∇XV (X).
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Then,

∇XV (X) =


∂V1

∂X1

∂V1

∂X2

∂V1

∂X3
...

. . .
...

∂V3

∂X1

. . .
∂V3

∂X3

 =


∂V1

∂x1

∂V1

∂x2

∂V1

∂x3
...

. . .
...

∂V3

∂x1

. . .
∂V3

∂x3



∂x1

∂X1

∂x1

∂X2

∂x1

∂X3
...

. . .
...

∂x3

∂X1

. . .
∂x3

∂X3



= (∇xV (x))(∇XT (t,X)).

This establishes

(228)
d

dt
∇XT (t,X) = (∇xV (x))(∇XT (t,X)).

From (228) and the fact that the derivative of the transpose of a matrix is the transpose of

the derivative,

(229)
d

dt
∇T Tt = ((∇V )(∇Tt))T .

The equation (229) may be substituted in (227), which may in turn be substituted into (224),

but we choose to substitute everything at the end of the section for neatness.

Next, we establish a formula for the normal derivative dn/dt at time t = 0. Let u and v

parametrize a surface in R3 and define the surface by

(230) ~r(u, v) = (x(u, v), y(u, v), z(u, v)).

With this parameterization of the surface, the transformation Tt acting on the surface can

be defined as

(231)

Tt(x(u, v), y(u, v), z(u, v)) = (x(u, v) + α(u, v, t), y(u, v) + β(u, v, t), z(u, v) + γ(u, v, t))

= ~r(u, v) + ~s(u, v, t),
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where ~s(u, v, t) = (α(u, v, t), β(u, v, t), γ(u, v, t)). Note that ~s depends in t but ~r is indepen-

dent of t. Next, define the (initial) normal vector to the surface by the identity

(232) n(X, 0) =
ru × rv
|ru × rv| ,

where the subscripts denote partial derivatives. Then, at any time t > 0, the transformed

normal vector is calculated by applying (231) to the initial normal vector (232),

(233) n(X, t) =
(ru + su)× (rv + sv)

|(ru + su)× (rv + sv)| .

For simplicity, let ζ = (ru + su)× (rv + sv). Next, the initial time rate of change of (233) is

computed,

dn(X, 0)

dt
=

d

dt

(
ζ

|ζ|
)∣∣∣∣

t=0

(234)

=

(
1

|ζ|
dζ

dt
+ ζ

d

dt

(
1

|ζ|
))∣∣∣∣

t=0

.

Define

P =
1

|ζ|
dζ

dt
and Q = ζ

d

dt

(
1

|ζ|
)
.

The time derivative
dP

dt
can be computed using the product rule for cross products,

(235)
d

dt
(A×B) =

(
dA

dt
×B

)
+

(
A× dB

dt

)
.

Then the derivative of P at t = 0 is

dP

dt

∣∣∣∣
t=0

=
1

|ζ|
d

dt
((ru + su)× (rv + sv))

∣∣∣∣
t=0

=
1

|ζ|
[(

d

dt
(ru + su)

)
× (rv + sv) + (ru + su)×

(
d

dt
(rv + sv)

)]∣∣∣∣
t=0

=
1

|(ru + su)× (rv + sv)|
(
dsu
dt
× (rv + sv) + (ru + su)× dsv

dt

)∣∣∣∣
t=0

=
1

|ru × rv|
(
dsu
dt
× rv + ru × dsv

dt

)
.
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To compute the initial time derivative of Q, first notice that by using (225) and the chain

rule, we have

d

dt

(
1

|~x|
)

=
−1

|~x|3
(
~x · d~x

dt

)
.

Using this result for 1/|ζ|, the initial derivative of Q is

dQ

dt

∣∣∣∣
t=0

= ((ru + su)× (rv + sv))
d

dt

(
1

|ζ|
)∣∣∣∣

t=0

= ((ru + su)× (rv + sv))
−1

|ζ|3 (ζ · dζ
dt

)

∣∣∣∣
t=0

= (ru × rv) −1

|ru × rv|3
(

(ru × rv) ·
(
dsu
dt
× rv + ru × dsv

dt

))
.

Now we have a formula for dn/dt,

(236)

dn(X, 0)

dt
=

1

|ru × rv|
(
dsu
dt
× rv + ru × dsv

dt

)
+

+ (ru × rv) −1

|ru × rv|3
(

(ru × rv) ·
(
dsu
dt
× rv + ru × dsv

dt

))
.

To simplify, we define

R =
dsu
dt
× rv + ru × dsv

dt
.

Then
dn(X, 0)

dt
=

1

|ru × rv|R + (ru × rv) −1

|ru × rv|3 ((ru × rv) ·R)

=
1

|ru × rv|
[
R− ru × rv

|ru × rv|
(
ru × rv
|ru × rv| ·R

)]
=

1

|ru × rv| [R− n(X, 0) (n(X, 0) ·R)] .

That is,

(237)
dn(X, 0)

dt
=

1

|ru × rv| [R− n(X, 0) (n(X, 0) ·R)] .

To finish simplifying the formula (224) requires substituting (229) and an expression

lengthier than (236) into (227) and substituting the result into (224). The final expression

for
dJs
dt

for arbitrary t > 0 would be exceedingly long, and the expression is unnecessary for

the calculations of the shape derivative of G2. In fact, only the derivative of Js evaluated at

97



t = 0 is useful. To compute this quantity, we notice that by (229) it follows

(238)
d

dt
∇T Tt

∣∣∣∣
t=0

= ((∇V )(∇T0))T = (∇V )T ,

where the ∇ operator acting on T Tt (X) is with respect to X and the one acting on V (x) is

with respect to x. Now, substituting (227), (238), and (237) into (224) when t = 0 gives the

result,
dJs
dt

∣∣∣∣
t=0

= (J0(∇ · V ) ◦ T0)
∣∣∇T−T0 n

∣∣
+ (det∇T0)

(
1∣∣∇T−T0 n

∣∣(∇T−T0 n) · d
dt

(∇T−Tt n)

∣∣∣∣
t=0

)

= ∇ · V +

(
n · d

dt
(∇T−Tt n)

)∣∣∣∣
t=0

= ∇ · V +

(
n ·
(
dn

dt

∣∣∣∣
t=0

−
(
d(∇T Tt )

dt
(∇T−Tt )n

)∣∣∣∣
t=0

)
= ∇ · V + n ·

(
dn(X, 0)

dt
− (∇V )Tn

)
= ∇ · V + n · 1

|ru × rv| (R− n (n ·R))− n · (∇V )Tn,

where n = n(X, 0) is the initial unit normal. Notice that n(n · R) is the component of R

in the direction of n. Then, R − n(n · R) is the component of R perpendicular to n. Thus,

n · (R− n(n ·R)) = 0. This leads to

(239)
dJs
dt

∣∣∣∣
t=0

= ∇ · V − n · (∇V )Tn.

Next, notice that for any matrix A and vector ~x, x · ATx = x · Ax. This formula can be

verified by expanding the matrix-vector product in component form and rearranging the

terms. This reduces (239) to

(240)
dJs
dt

∣∣∣∣
t=0

= ∇ · V − n · (∇V )n.
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Finally, notice that this is the formula for surface divergence, as in (5). This leads to the

final form of the initial time derivative of Js,

(241)
dJs
dt

∣∣∣∣
t=0

= ∇s · V.

�

We conclude this section with a useful property for closed surfaces.

Lemma 6.1.1. The surface divergence of any continuous function F on a closed surface

is 0,

(242)

∫∫
Γ

(∇s · F ) dS = 0.

Proof. The proof follows directly from the 2D divergence theorem,

(243)

∫∫
Γ

(∇ · F ) dS =

∮
∂Γ

F · n dσ =

∫
∂Γ

F · n1 dσ +

∫
∂Γ

F · n2 dσ,

Since Γ is a closed surface, the outward normal directions to the boundary ∂Γ are opposite

in sign. Therefore, the two integrals in (243) cancel, giving the desired result. �

6.2. Shape derivative computation

In this section, we compute the shape derivative of the electrostatic potential energy with

respect to the boundary. This computation provides a convenient way to extract Fn, the

normal component of the dielectric boundary force, through the Hadamard-Zolésio structure

theorem of Shape Calculus:

Theorem 6.2.1. Consider the functional G with sufficiently smooth domain Γ. Then,

for Fn ∈ L1(Γ), the shape derivative of G with respect to Γ in the direction of V is

(244) δΓG[Γ] =

∫
Γ

−Fn(V · n) dS,

where n is the unit normal to the surface.
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Proof. A proof of this theorem can be found in [23, 98]. �

We point out that under these conditions, the shape derivative is in the direction normal

to the velocity of the deformation; therefore, only the normal component of the dielectric

boundary force determines the motion on the boundary. We will prove that the force is given

by

Fn = −εs
2
|∇ψs0|2 +

εm
2
|∇ψm0 |2 − εm|∇ψm0 · n|2 + εm(∇ψs0 · n)(∇ψm0 · n)(245)

−B(ψ0)− qlρ[Γ](∇ψs0 · n),

which is the main result of this chapter.

To set up the theorem, let V ∈ C∞(R3,R3) be a smooth map that vanishes outside a

small neighborhood of the membrane surface Γ. That is, V (X) = 0 if dist(X,Γ) > d for

some d > 0 satisfying (210). Let the transformations Tt(t ≥ 0) be defined by (209). For

t > 0 the electrostatic free energy is given by (213), where the functional G[Γt; ·] is given in

(212) and ψt is the weak solution to (214). For t = 0, the electrostatic free energy is given

by (208), where the functional G[Γ; ·] is given in (203) and ψ0 is the weak solution to (190).

Theorem 6.2.2. Let ρp ∈ H1(Ω). Then the shape derivative of the electrostatic free

energy G[Γ] given by (203) in the direction of V is given by

δΓG[Γ] =

∫
Γ

(
εs
2
|∇ψs0|2 −

εm
2
|∇ψm0 |2 + εm|∇ψm0 · n|2 − εm(∇ψs0 · n)(∇ψm0 · n)(246)

+B(ψ0) + qlρ[Γ](∇ψs0 · n)

)
(V · n) dS.

Proof. The proof is divided into four steps:

i First, the energy functional is computed in the transformed coordinates through a new

function z(t, φ). A change of variables brings z back to the reference coordinates, and

then z is differentiated with respect to time.

ii Second, the difference quotient corresponding to the shape derivative is squeezed between

two realizations of ∂tz.
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iii Third, the inequality is passed to the limit as t → 0 and it is shown that the two

realizations of ∂tz are identical in the limit, and hence equal to the shape derivative.

iv Fourth and finally, the result is simplified to match the final form.

The computations to determine the shape derivative of (203) is completed in two calcu-

lations by splitting (203) into two components,

(247) G1[Γ;φ] =

∫
Ω

[
−ε

2
|∇φ|2 + ρpφ− χsB(φ)

]
dX,

and

(248) G2[Γ;φ] = −C
β

ln

(∫
Γc,e

γ(φ) dS(X)

/∫
Γc,e

dS(X)

)
,

where G[Γ;φ] = G1[Γ;φ] +G2[Γ;φ]. We have the analagous splitting for (212),

(249) G1[Γt;φ] =

∫
Ωt

[
−ε

2
|∇φ|2 + ρpφ− χsB(φ)

]
dx,

and

(250) G2[Γt;φ] = −C
β

ln

(∫
Γt

γ(φ) dS(x)

/∫
Γt

dS(x)

)
.

Step 1. The energy functional is computed in the transformed coordinates through a new

function z(t, φ). A change of variables brings z back to the reference coordinates, and then

z is differentiated with respect to time.

Let t ≥ 0 be sufficiently small. Since each φ ∈ H1
g (Ω) corresponds uniquely to φ ◦ T−1

t ∈
H1
g (Ω), i.e., the map φ ∈ H1

g (Ω) → φ ◦ T−1
t ∈ H1

g (Ω) is an isomorphism, then by (213), we

have

G[Γt] = max
φ∈H1

g (Ω)
G[Γt, φ ◦ T−1

t ].
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This takes the transformed coordinates x = Tt(X) back into the original coordinates, for

which information is known. Let φ ∈ H1(Ω) ∩ L∞(Ω) and t ≥ 0 and denote

(251) z(t, φ) = G[Γt, φ ◦ T−1
t ].

The function z is split into two components, z1, corresponding the functional G1 (247), and

z2 corresponding to the functional G2 (248).

z1(t, φ) = G1[Γt, φ ◦ T−1
t ],(252)

z2(t, φ) = G2[Γt, φ ◦ T−1
t ],(253)

z(t, φ) = z1(t, φ) + z2(t, φ).(254)

The function z1(t, φ) is considered first.

Remember that Jt =det(∇Tt(X)) by equation (215). Since t 7→ Jt(X) is continuous and

J0(X) = 1 at each X ∈ Ω, ∃ τ > 0 such that Jt(X) > 0 ∀t ∈ [0, τ ] and ∀X ∈ Ω. Let t ∈ [0, τ ]

and φ ∈ H1(Ω) ∩ L∞(Ω). Consider

z1(t, φ) = G1[Γt, φ ◦ T−1
t ], by (252),

=

∫
Ω

[
−ε

2
|∇(φ ◦ T−1

t )|2 + ρp(φ ◦ T−1
t )− χs(B(φ) ◦ T−1

t )
]
dx, by (249),

=

∫
Ω

[
−ε

2
|∇(φ ◦ T−1

t )|2 + ρp(φ ◦ T−1
t )− χs(B(φ) ◦ T−1

t )
]
dx, by (220),

=

∫
Ω

[
−ε

2
A(t)∇φ · ∇φ+ (ρp ◦ Tt)φJt − χsB(φ)Jt

]
dX, by x = Tt(X),

where A(t) is given by (217). The details of the transformation are not obvious. Note that

the functions are transformed according to φ ◦ T−1
t (x) = φ(X) and ρp(x) = ρp(Tt(X)) =

ρp ◦ Tt(X). Remember that the gradient operators also need to be transformed. The details
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of the transformation of the first term is shown below.∫
Ω

|∇x(φ ◦ T−1
t )(x)|2 dx =

∫
Ω

|∇xφ(X)|2 det(∇Tt) dX

=

∫
Ω

∣∣∣∣∣∣∣∣∣


∂X1

∂x1

∂X2

∂x1

∂X3

∂x1

...
. . .

...

∂X1

∂x3
. . . ∂X3

∂x3




∂φ
∂X1

∂φ
∂X2

∂φ
∂X3


∣∣∣∣∣∣∣∣∣

2

det(∇Tt) dX

=

∫
Ω

∣∣(∇XTt)
−T (∇Xφ)

∣∣2 det(∇Tt) dX

=

∫
Ω

(
(∇Tt)−T∇φ

)T · ((∇Tt)−T∇φ) det(∇Tt) dX

=

∫
Ω

(∇φ)T (∇Tt)−1(∇Tt)−T (∇φ) det(∇Tt) dX.

Now, since (∇Tt)−1(∇Tt)−T is symmetric, we can move it to the end and use A(t) as in (217)

to get the desired result,∫
Ω

(∇φ)T (∇Tt)−1(∇Tt)−T (∇φ)∇Tt dX =

∫
Ω

(∇φ)T (∇φ) det(∇Tt)(∇Tt)−1(∇Tt)−T dX

=

∫
Ω

(∇φ)T (∇φ)A(t) dX

=

∫
Ω

A(t)∇φ · ∇φ dX.

This shows the details of the first term in the change of coordinates. The other terms in

z1(t, φ) above are found in a similar fashion.

By properties (T1), (T2), and (T5), each term in the integrand of z1(t, φ) is differentiable

with respect to t. Note that φ(X) does not depend on t. The following derivative is later

proven to be the shape derivative at t = 0,

∂tz1(t, φ) =

∫
Ω

[
−ε

2
A′(t)∇φ · ∇φ+ (∂t(ρp ◦ Tt))φJt + (ρp ◦ Tt)φ∂tJt − χsB(φ)∂tJt

]
dX

=

∫
Ω

[
−ε

2
A′(t)∇φ · ∇φ+ ((∇ρp · V ) ◦ Tt))φJt + (ρp ◦ Tt)φ((∇ · V ) ◦ Tt)Jt

− χsB(φ)((∇ · V ) ◦ Tt)Jt
]
dX,
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where A′(t) is given by (218). The second term follows from (221) and the third and fourth

from (216). Continuing the calculation,

∂tz1(t, φ) =

∫
Ω

[
−ε

2
A′(t)∇φ · ∇φ+ ((∇ · (ρpV )) ◦ Tt)φJt(255)

− χsB(φ)((∇ · V ) ◦ Tt)Jt
]
dX.

The middle terms reduced due to the product rule of the del operator (3), and for arbitrary

functions f, g, h, (fg) ◦ h = (f ◦ h)(g ◦ h).

Next, the form of z2(t, φ) is established. Using (253), (248), and a transformation of

coordinates x = Tt(X),

z2(t, φ) = G2[Γt;φ ◦ T−1
t ](256)

= −C
β

ln

(∫
Γt

γ(φ ◦ T−1
t )(x) dS(x)

/∫
Γt

dS(x)

)

= −C
β

ln

(∫
Γ0

γ(φ(X))Js(X, t) dS(X)

/∫
Γ0

Js(X, t) dS(X)

)
,

where the formula for Js is given by (222). Differentiating with respect to t,

∂tz2(t, φ) = −C
β


∫

Γ0

γ(φ)
dJs(X, t)

dt
dS(X)∫

Γ0

γ(φ)Js(X, t) dS(X)
−

∫
Γ0

dJs(X, t)

dt
dS(X)∫

Γ0

Js(X, t) dS(X)

 .(257)

Then, the full form of ∂tz(t, φ) is given by combining (255) and (257),

∂tz(t, φ)(258)

=

∫
Ω

[
−ε

2
A′(t)∇φ · ∇φ+ ((∇ · (ρpV )) ◦ Tt)φJt − χsB(φ)((∇ · V ) ◦ Tt)Jt

]
dX

− C

β


∫

Γ0

γ(φ)
dJs(X, t)

dt
dS(X)∫

Γ0

γ(φ)Js(X, t) dS(X)
−

∫
Γ0

dJs(X, t)

dt
dS(X)∫

Γ0

Js(X, t) dS(X)

 .
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Step 2. The difference quotient corresponding to the shape derivative is squeezed between

two realizations of ∂tz (258).

Let t ∈ (0, τ ]. Since ψt ∈ H1
g (Ω) ∩ L∞(Ω) and ψ0 ∈ H1

g (Ω) ∩ L∞(Ω) maximize G[Γt, ·]
and G[Γ, ·], respectively, over H1

g (Ω) we have

G[Γt, ψ0 ◦ T−1
t ] ≤ G[Γt, ψt] = G[Γt],(259)

G[Γ, ψt] ≤ G[Γ, ψ0] = G[Γ],(260)

G[Γ, ψt ◦ Tt] ≤ G[Γ, ψ0] = G[Γ].(261)

By (259),

G[Γt, ψ0 ◦ T−1
t ]−G[Γ, ψ0]

t
≤ G[Γt]−G[Γ]

t
.

By (261),

G[Γt]−G[Γ]

t
≤ G[Γt, ψt]−G[Γ, ψt ◦ Tt]

t
.

Putting the two inequalities together with the definition in (251) gives

(262)
z(t, ψ0)− z(0, ψ0)

t
≤ G[Γt]−G[Γ]

t
≤ z(t, ψt ◦ Tt)− z(0, ψt ◦ Tt)

t
.

Notice that the far left expression of the inequality (262) is the secant line of z(·, ψ0)

from 0 to t ≤ τ , and the far right expression is the secant line of z(·, ψt ◦Tt) from 0 to t ≤ τ .

Since z is differentiable on t ≥ 0, we can apply the Mean Value Theorem to each expression.

That is, there exists ξ(t), η(t) ∈ [0, t] for each t ∈ (0, τ ] such that

(263) ∂tz(ξ(t), ψ0) ≤ G[Γt]−G[Γ]

t
≤ ∂tz(η(t), ψt ◦ Tt), ∀t ∈ (0, τ ].

Step 3. The inequality (263) is passed to the limit as t → 0, and it is shown that the

two realizations of ∂tz are identical in the limit and hence equal to the shape derivative.
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We claim

lim
t→0

∂tz(ξ(t), ψ0) = ∂tz(0, ψ0),(264)

lim
t→0

∂tz(η(t), ψt ◦ Tt) = ∂tz(0, ψ0).(265)

As in Step 1, the the proofs of (264) and (265) are split into the corresponding z1 and

z2 components,

lim
t→0

∂tz1(ξ(t), ψ0) = ∂tz1(0, ψ0),(266)

lim
t→0

∂tz1(η(t), ψt ◦ Tt) = ∂tz1(0, ψ0),(267)

lim
t→0

∂tz2(ξ(t), ψ0) = ∂tz2(0, ψ0),(268)

lim
t→0

∂tz2(η(t), ψt ◦ Tt) = ∂tz2(0, ψ0).(269)

We will prove (269) here. The proofs for (266) and (267) are proved in [62] and the proof of

(268) is similar and easier than (269). Let η(t) ∈ [0, t] and consider passing ∂tz2(η(t), ψt ◦Tt)
to the limit as t→ 0,

∂tz2(η(t), ψt ◦ Tt) = −C
β


∫

Γ0

γ(ψt ◦ Tt)dJs(X, η(t))

dt
dS(X)∫

Γ0

γ(ψt ◦ Tt)Js(X, η(t)) dS(X)
−

∫
Γ0

dJs(X, η(t))

dt
dS(X)∫

Γ0

Js(X, η(t)) dS(X)



→ −C
β


∫

Γ0

γ(ψ0)
dJs(X, 0)

dt
dS(X)∫

Γ0

γ(ψ0)Js(X, 0) dS(X)
−

∫
Γ0

dJs(X, 0)

dt
dS(X)∫

Γ0

Js(X, 0) dS(X)


= ∂tz2(0, ψ0).
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This establishes (269). Now take the limit of the inequality (263) as t → 0 and use (264)

and (265), with the computation (258) to get the shape derivative of G,

δΓG[Γ] = lim
t→0

G[Γt]−G[Γ]

t
= ∂tz(0, ψ0)(270)

=

∫
Ω

[
−ε

2
A′(0)∇ψ0 · ∇ψ0 + (∇ · (ρpV ))ψ0 − χsB(ψ0)(∇ · V )

]
dX

− C

β


∫

Γ0

γ(ψ0)
dJs(X, 0)

dt
dS(X)∫

Γ0

γ(ψ0)Js(X, 0) dS(X)
−

∫
Γ0

dJs(X, 0)

dt
dS(X)∫

Γ0

Js(X, 0) dS(X)

 .

Step 4. The final step is to simplify (270) to match the final form (246).

As in the previous steps, we begin the simplifications with z1 and then move to those for

z2. The combined results will give the shape derivative. The first part of (270) is

∂tz1(0, ψ0) =

∫
Ω

[
−ε

2
A′(0)∇ψ0 · ∇ψ0 + (∇ · (ρpV ))ψ0 − χsB(ψ0)(∇ · V )

]
dX.

Since A′(0) = (∇ · V − 2∇V )A(0), and A(0) = I, the above equation can be reduced to

∂tz1(0, ψ0) =

∫
Ω

−ε
2

(∇ · V )∇ψ0 · ∇ψ0 dX +

∫
Ω

ε(∇V )∇ψ0 · ∇ψ0 dX(271)

+

∫
Ω

(∇ · (ρpV ))ψ0 dX −
∫

Ωs

B(ψ0)(∇ · V ) dX.
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Consider the third term of (271). By applying the product rule for the divergence operator

(3) successively,∫
Ω

(∇ · (ρpV ))ψ0 dX

=

∫
Ω

ρp(∇ · V )ψ0 dX +

∫
Ω

V · (∇ρp)ψ0 dX

=

∫
Ω

ρp(∇ · (V ψ0)) dX −
∫

Ω

ρp(V · ∇ψ0) dX +

∫
Ω

V · (∇ρp)ψ0 dX

=

∫
Ω

∇ · (ρpV ψ0) dX −
∫

Ω

V ψ0 · ∇ρp dX

−
∫

Ω

ρp(V · ∇ψ0) dX +

∫
Ω

V · (∇ρp)ψ0 dX.

Notice that the second and fourth terms on the right-hand side cancel. Finally, use the

divergence theorem (2) to see∫
Ω

(∇ · (ρpV ))ψ0 dX =

∫
Ω

∇ · (ρpV ψ0) dX −
∫

Ω

ρp(V · ∇ψ0) dX

=

∫
∂Ω

(ρpV ψ0) · n dS −
∫

Ω

ρp(V · ∇ψ0) dX.

But since V = 0 on ∂Ω, and since ρp is only defined on Ωp, the third term of (271) reduces

to

(272)

∫
Ω

(∇ · (ρpV ))ψ0 dX = −
∫

Ωp

ρp(V · ∇ψ0) dX.

Next, consider the final term of (271) disregarding the sign in front. Again by applying the

product rule of the divergence operator (3),∫
Ωs

B(ψ0)(∇ · V ) dX =

∫
Ωs

∇ · (B(ψ0)V ) dX −
∫

Ωs

V · (∇B(ψ0)) dX
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Now use the divergence theorem (2) again, noting that Ωs has more than one boundary,

namely ∂Ω and Γ (where Γ includes Γc, Γe, and Γp).∫
Ωs

B(ψ0)(∇ · V ) dX =

∫
Ωs

∇ · (B(ψ0)V ) dX −
∫

Ωs

V · (∇B(ψ0)) dX

=

∫
∂Ω

B(ψ0)V · n dS −
∫

Γ

B(ψ0)V · n dS −
∫

Ωs

V · (∇B(ψ0)) dX

Notice that the second integral above is negative. This is because each n on Γ is defined to

be the outward normal to Ωm and Ωp, but n is directed inwardly as observed from Ωs (see

Figure 5.1). Now, since V = 0 on ∂Ω, the first integral above is 0. Furthermore, we can

apply the chain rule to B and rearrange the order of the dot product in the third integral

above to see

(273)

∫
Ωs

B(ψ0)(∇ · V ) dX = −
∫

Γ

B(ψ0)V · n dS −
∫

Ωs

B′(ψ0)(∇ψ0 · V ) dX.

Next, consider the first term of (271) restricted to Ωs disregarding the sign in front. Using

the same technique of applying (3) and (2), and keeping in mind the normal outward normal

to Ωs is actually −n,∫
Ωs

εs
2

(∇ · V )∇ψs0 · ∇ψs0 dX =

∫
Ωs

εs
2

(∇ · V )|∇ψs0|2 dX

=

∫
Ωs

εs
2
∇ · (V |∇ψs0|2) dX − ∫

Ωs

εs
2
V · ∇ (|∇ψs0|2) dX

=

∫
∂Ω

εs
2

(
V |∇ψs0|2

) · n dS − ∫
Γ

εs
2

(
V |∇ψs0|2

) · n dS − ∫
Ωs

εs
2
V · ∇ (|∇ψs0|2) dX.

Again, the first integral above is 0 since V = 0 on ∂Ω. Write the final integral above in

component form. Let V i and ni be the ith components of V and n, respectively. Using the

Einstein summation convention, consider∫
Ωs

εs
2
V · ∇ (|∇ψs0|2) dX =

∫
Ωs

εs
2
V i
(

2 ∂Xjψ
s
0(∂2

XjXi
ψs0)
)
dX

=

∫
Ωs

εsV
i∂Xjψ

s
0∂

2
XjXi

ψs0 dX.
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Then, the first term of (271) restricted to Ωs is∫
Ωs

−εs
2

(∇ · V )∇ψs0 · ∇ψs0 dX =

∫
Γ

εs
2
|∇ψs0|2(V · n) dS +

∫
Ωs

εsV
i∂Xjψ

s
0∂

2
XjXi

ψs0 dX.

By similar constructions, the first term of (271) in full is∫
Ω

−ε
2

(∇ · V )∇ψ0 · ∇ψ0 dX(274)

= −
∫

Γp

εp
2
|∇ψp0|2(V · n) dS +

∫
Ωp

εpV
i∂Xjψ

p
0∂

2
XjXi

ψp0 dX

+

∫
Γc,e,p

εs
2
|∇ψs0|2(V · n) dS +

∫
Ωs

εsV
i∂Xjψ

s
0∂

2
XjXi

ψs0 dX

−
∫

Γc,e

εm
2
|∇ψm0 |2(V · n) dS +

∫
Ωm

εmV
i∂Xjψ

m
0 ∂

2
XjXi

ψm0 dX,

where the notation Γc,e,p = Γc ∪ Γe ∪ Γp emphasizes all three boundaries contribute to the

solvent potential, and Γc,e = Γc ∪ Γe emphasizes that only the boundaries of the membrane

contribute to the membrane potential. The reason why the first and fifth integrals in (274)

is negative is because from the domain Ωp and Ωm, the normal n is already the outward

normal.

Finally, we reduce the second term of (271). As with the first term of (271), consider

the second term restricted to Ωs,∫
Ωs

εs(∇V )∇ψs0 · ∇ψs0 dX

=

∫
Ωs

εs(∂XjV
i)(∂Xjψ

s
0)(∂Xiψ

s
0) dX

=

∫
Ωs

εs∂Xj(V
i∂Xjψ

s
0∂Xiψ

s
0) dX −

∫
Ωs

εsV
i∂Xj(∂Xjψ

s
0∂Xiψ

s
0) dX

=

∫
Ωs

εs∂Xj(∂Xjψ
s
0V

i∂Xiψ
s
0) dX −

∫
Ωs

εsV
i(∂2

XjXj
ψs0∂Xiψ

s
0 + ∂Xjψ

s
0∂

2
XjXj

ψs0) dX

=

∫
Ωs

εs∇ · (∇ψs0V i∂Xiψ
s
0) dX −

∫
Ωs

εsV
i(∂2

XjXj
ψs0∂Xiψ

s
0 + ∂Xjψ

s
0∂

2
XjXj

ψs0) dX.
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Leave the second integral in the above equation as it is and work on the first by applying

the divergence theorem (2), remembering that there are multiple boundaries for Ωs,∫
Ωs

εs∇ · (∇ψs0V i∂Xiψ
s
0) dX =

∫
∂Ω

εs∇ψs0(V i∂Xiψ
s
0) · n dS +

∫
Γ

εs∇ψs0(V i∂Xiψ
s
0) · (−n) dS

Notice that the normal to Γ is the opposite direction of the normal to ∂Ω, so it is negative.

We have ∫
Ωs

εs∇ · (∇ψs0V i∂Xiψ
s
0) dX = −

∫
Γc,e,p

εs∇ψs0(V i∂Xiψ
s
0) · n dS

= −
∫

Γc,e,p

εs(V
i∂Xiψ

s
0)(∇ψs0 · n) dS

= −
∫

Γc,e,p

εs(V · ∇ψs0)(∇ψs0 · n) dS.

Therefore, the second term of (271) restricted to Ωs reduces to∫
Ωs

εs(∇V )∇ψs0 · ∇ψs0 dX

= −
∫

Γc,e,p

εs(∇ψs0 · n)(V · ∇ψs0) dS −
∫

Ωs

εsV
i(∂2

XjXj
ψs0∂Xiψ

s
0 + ∂Xjψ

s
0∂

2
XjXj

ψs0) dX.

Following the same logic, we reduce the second term of (271) in full form to∫
Ω

ε(∇V )∇ψ0 · ∇ψ0 dX(275)

=

∫
Γp

εp(∇ψp0 · n)(V · ∇ψp0) dS −
∫

Ωp

εpV
i(∂2

XjXj
ψp0∂Xiψ

p
0 + ∂Xjψ

p
0∂

2
XiXj

ψp0 dX

−
∫

Γc,e,p

εs(∇ψs0 · n)(V · ∇ψs0) dS −
∫

Ωs

εsV
i(∂2

XjXj
ψs0∂Xiψ

s
0 + ∂Xjψ

s
0∂

2
XiXj

ψs0) dX

+

∫
Γc,e

εm(∇ψm0 · n)(V · ∇ψm0 ) dS −
∫

Ωm

εmV
i(∂2

XjXj
ψm0 ∂Xiψ

m
0 + ∂Xjψ

m
0 ∂

2
XiXj

ψm0 dX.
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Now we have simplified each term of (271). Combining the reduced terms from (274),

(275), (272) and (273), we have

∂tz1(0, ψ0)

= −
∫

Γp

εp
2
|∇ψp0|2(V · n) dS +

∫
Ωp

εpV
i∂Xjψ

p
0∂

2
XjXi

ψp0 dX

+

∫
Γc,e,p

εs
2
|∇ψs0|2(V · n) dS +

∫
Ωs

εsV
i∂Xjψ

s
0∂

2
XjXi

ψs0 dX

−
∫

Γc,e

εm
2
|∇ψm0 |2(V · n) dS +

∫
Ωm

εmV
i∂Xjψ

m
0 ∂

2
XjXi

ψm0 dX

+

∫
Γp

εp(∇ψp0 · n)(V · ∇ψp0) dS −
∫

Ωp

εpV
i(∂2

XjXj
ψp0∂Xiψ

p
0 + ∂Xjψ

p
0∂

2
XiXj

ψp0) dX

−
∫

Γc,e,p

εs(∇ψs0 · n)(V · ∇ψs0) dS −
∫

Ωs

εsV
i(∂2

XjXj
ψs0∂Xiψ

s
0 + ∂Xjψ

s
0∂

2
XiXj

ψs0) dX

+

∫
Γc,e

εm(∇ψm0 · n)(V · ∇ψm0 ) dS −
∫

Ωm

εmV
i(∂2

XjXj
ψm0 ∂Xiψ

m
0 + ∂Xjψ

m
0 ∂

2
XiXj

ψm0 dX

−
∫

Ωp

ρp(V · ∇ψ0) dX +

∫
Γc,e,p

B(ψ0)(V · n) dS +

∫
Ωs

B′(ψ0)(∇ψ0 · V ) dX.

Thankfully, this simplifies as well. The second term cancels with the latter part of the eighth

term, and the fourth term cancels with the latter part of the tenth term, and the sixth term

with the latter part of the twelfth term. So we have

∂tz1(0, ψ0)

= −
∫

Γp

εp
2
|∇ψp0|2(V · n) dS +

∫
Γc,e,p

εs
2
|∇ψs0|2(V · n) dS −

∫
Γc,e

εm
2
|∇ψm0 |2(V · n) dS

+

∫
Γp

εp(∇ψp0 · n)(V · ∇ψp0) dS −
∫

Ωp

εpV
i∂2
XjXj

ψp0∂Xiψ
p
0 dX

−
∫

Γc,e,p

εs(∇ψs0 · n)(V · ∇ψs0) dS −
∫

Ωs

εsV
i∂2
XjXj

ψs0∂Xiψ
s
0 dX

+

∫
Γc,e

εm(∇ψm0 · n)(V · ∇ψm0 ) dS −
∫

Ωm

εmV
i∂2
XjXj

ψm0 ∂Xiψ
m
0 dX

−
∫

Ωp

ρp(V · ∇ψ0) dX +

∫
Γc,e,p

B(ψ0)(V · n) dS +

∫
Ωs

B′(ψ0)(∇ψ0 · V ) dX.
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Putting everything back into vector form and combining terms gives

∂tz1(0, ψ0)

= −
∫

Γp

εp
2
|∇ψp0|2(V · n) dS +

∫
Γc,e,p

εs
2
|∇ψs0|2(V · n) dS −

∫
Γc,e

εm
2
|∇ψm0 |2(V · n) dS

+

∫
Γp

εp(∇ψp0 · n)(V · ∇ψp0)dS −
∫

Ωp

εp∆ψ0(∇ψ0 · V ) dX

−
∫

Γc,e,p

εs(∇ψs0 · n)(V · ∇ψs0) dS −
∫

Ωs

εs∆ψ0(∇ψ0 · V ) dX

+

∫
Γc,e

εm(∇ψm0 · n)(V · ∇ψm0 )dS −
∫

Ωm

εm∆ψ0(∇ψ0 · V ) dX

−
∫

Ωp

ρp(V · ∇ψ0) dX +

∫
Γc,e,p

B(ψ0)(V · n) dS +

∫
Ωs

B′(ψ0)(∇ψ0 · V ) dX

= −
∫

Γp

εp
2
|∇ψp0|2(V · n) dS +

∫
Γc,e,p

εs
2
|∇ψs0|2(V · n) dS −

∫
Γc,e

εm
2
|∇ψm0 |2(V · n) dS

+

∫
Γp

εp(∇ψp0 · n)(V · ∇ψp0) dS −
∫

Γc,e,p

εs(∇ψs0 · n)(V · ∇ψs0) dS

+

∫
Γc,e

εm(∇ψm0 · n)(V · ∇ψm0 )dS −
∫

Ωp

(εp∆ψ0 + ρp)(∇ψ0 · V ) dX

−
∫

Ωs

(εs∆ψ0 −B′(ψ0))(∇ψ0 · V ) dX −
∫

Ωm

(εm∆ψ0)(∇ψ0 · V ) dX

+

∫
Γc,e,p

B(ψ0)(V · n) dS.
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By the elliptic interface conditions in (191), we have εs∆ψ0 = B′(ψ0) in Ωs, εp∆ψ0 = −ρp
in Ωp, and εm∆ψ0 = 0 in Ωm which leaves us with

∂tz1(0, ψ0)(276)

= −
∫

Γp

εp
2
|∇ψp0|2(V · n) dS +

∫
Γc,e,p

εs
2
|∇ψs0|2(V · n) dS −

∫
Γc,e

εm
2
|∇ψm0 |2(V · n) dS

+

∫
Γp

εp(∇ψp0 · n)(V · ∇ψp0) dS −
∫

Γp

εs(∇ψs0 · n)(V · ∇ψs0) dS

+

∫
Γc,e

εm(∇ψm0 · n)(V · ∇ψm0 ) dS −
∫

Γc,e

εs(∇ψs0 · n)(V · ∇ψs0) dS

+

∫
Γc,e,p

B(ψ0)(V · n) dS.

By the boundary conditions in the Poisson-Boltzmann equation (190), there is continuity

of ψ0 across Γc,e,p. That is, the tangential components are equal, but the normal components

are not equal. Any difference occurs only in the direction of n. In terms of the jump across

the membrane interfaces,

(277) ∇(ψm0 − ψs0) = (∇ψm0 · n−∇ψs0 · n)n on Γc,e.

Similarly, across the protein interface,

(278) ∇(ψp0 − ψs0) = (∇ψp0 · n−∇ψs0 · n)n on Γp.

There are two equally correct approaches from here. Consider the second line of (276)

(where the integrals are on Γp). Substituting the boundary condition in (191) on Γp and
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using (277) gives∫
Γp

εp(∇ψp0 · n)(V · ∇ψp0) dS −
∫

Γp

εs(∇ψs0 · n)(V · ∇ψs0) dS

=

∫
Γp

εp(∇ψp0 · n)(V · ∇ψp0) dS −
∫

Γp

εp(∇ψp0 · n)(V · ∇ψs0) dS

=

∫
Γp

εp(∇ψp0 · n)(V · ∇(ψp0 − ψs0)) dS

=

∫
Γp

εp(∇ψp0 · n)(V · (∇ψp0 · n−∇ψs0 · n)n) dS

=

∫
Γp

εp |∇ψp0 · n|2 (V · n)− εp(∇ψp0 · n)(∇ψs0 · n)(V · n) dS.

Similarly, consider the the third line in (276) (where the integrals are on Γc,e ). Substituting

the boundary condition in (191) on Γc,e and using (278) gives,∫
Γc,e

εm(∇ψm0 · n)(V · ∇ψm0 ) dS −
∫

Γc,e

εs(∇ψs0 · n)(V · ∇ψs0) dS

=

∫
Γc,e

εm(∇ψm0 · n)(V · ∇ψm0 ) dS −
∫

Γc,e

(εm∇ψm0 · n− ρ[Γ]ql)(V · ∇ψs0) dS

=

∫
Γc,e

εm(∇ψm0 · n)(V · ∇(ψm0 − ψs0)) + ρ[Γ]ql(V · ∇ψs0) dS

=

∫
Γc,e

εm(∇ψm0 · n)(V · (∇ψm0 · n−∇ψs0 · n)n) + ρ[Γ]ql(V · ∇ψs0) dS

=

∫
Γc,e

εm |∇ψm0 · n|2 (V · n)− εm(∇ψm0 · n)(∇ψs0 · n)(V · n) + ρ[Γ]ql(V · ∇ψs0) dS.
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Substituting these term back into (276) and combining terms will lead to the final result for

∂tz1,

∂tz1(0, ψ0)

= −
∫

Γp

εp
2
|∇ψp0|2(V · n) dS +

∫
Γc,e,p

εs
2
|∇ψs0|2(V · n) dS −

∫
Γc,e

εm
2
|∇ψm0 |2(V · n) dS

+

∫
Γp

εp |∇ψp0 · n|2 (V · n)− εp(∇ψp0 · n)(∇ψs0 · n)(V · n) dS

+

∫
Γc,e

εm |∇ψm0 · n|2 (V · n)− εm(∇ψm0 · n)(∇ψs0 · n)(V · n) + ρ[Γ]ql(V · ∇ψs0) dS

+

∫
Γc,e,p

B(ψ0)(V · n) dS.

Since we are interested in the dielectric boundary force of the membrane and not the protein

boundary, we restrict our attention to Γc,e. Then the final result for ∂tz1 is

∂tz1(0, ψ0)
∣∣∣
Γc,e

(279)

=

∫
Γc,e

[(εs
2
|∇ψs0|2 −

εm
2
|∇ψm0 |2 + εm|∇ψm0 · n|2

− εm(∇ψm0 · n)(∇ψs0 · n) +B(ψ0)
)

(V · n) + ρ[Γ]ql(V · ∇ψs0)
]
dS.

An alternative form of (279) can be obtained by substituting the boundary conditions of

(191) and keeping the solvent term (εs∇ψs0 · n) rather than the term corresponding to the

membrane.

Next, the shape derivative from ∂tz2 will be simplified. Evaluating (257) at t = 0 and

φ = ψ0 gives

∂tz2(0, ψ0) = −C
β


∫

Γ0

γ(ψ0)
dJs(X, 0)

dt
dS(X)∫

Γ0

γ(ψ0)Js(X, 0) dS(X)
−

∫
Γ0

dJs(X, 0)

dt
dS(X)∫

Γ0

Js(X, 0) dS(X)

 .

We emphasize again that Γ0 corresponds to the non-transformed boundaries of Γc,e. The

time derivative of Js at t = 0 is the surface divergence of the velocity, as calculated in (241).

Recall from Section 6.1.2 that Js(X, 0) = 1. Using these two facts, the above equation is
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equivalent to

∂tz2(0, ψ0) = −C
β


∫

Γ0

γ(ψ0)(∇s · V ) dS(X)∫
Γ0

γ(ψ0) dS(X)
−

∫
Γ0

(∇s · V ) dS(X)∫
Γ0

dS(X)

 .(280)

By Lemma 6.1.1, since the velocity V is a continuous function, the second term of (280) is

zero. Applying the product rule (3) to the remaining term,

∂tz2(0, ψ0) = −C
β


∫

Γ0

∇s · (V γ(ψ0))− V · (∇sγ(ψ0)) dS(X)∫
Γ0

γ(ψ0) dS(X)

 .(281)

By applying Lemma 6.1.1 again to (281) to remove the surface divergence of the continuous

function V γ(ψ0), and by expanding the surface gradient in the remaining term, we have

∂tz2(0, ψ0) = −C
β


∫

Γ0

−V · (γ′(ψ0)∇sψ0) dS(X)∫
Γ0

γ(ψ0) dS(X)

(282)

= −
∫

Γ0

ρ[Γ]ql(V · ∇sψ0) dS(X),

where the last step uses the definition of ρ[Γ] in (201) at φ = ψ0.

Finally, combine (279) and (282) for the full form of the shape derivative,

δΓG[Γ] = ∂tz1(0, ψ0) + ∂tz2(0, ψ0)

=

∫
Γ0

[(εs
2
|∇ψs0|2 −

εm
2
|∇ψm0 |2 + εm|∇ψm0 · n|2 − εm(∇ψm0 · n)(∇ψs0 · n)

+B(ψ0)
)

(V · n) + ρ[Γ]ql(V · ∇ψs0)
]
dS −

∫
Γ0

ρ[Γ]ql(V · ∇sψ0) dS.
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By continuity of ψ0, we have ψs0 = ψm0 = ψ0 on Γ0, and hence the last two terms reduce,

using the definition of surface divergence in (5),∫
Γ0

ρ[Γ]ql(V · ∇ψs0) dS −
∫

Γ0

ρ[Γ]ql(V · ∇sψ0) dS

=

∫
Γ0

ρ[Γ]qlV · (∇ψs0 −∇sψ
s
0) dS

=

∫
Γ0

ρ[Γ]qlV · (∇ψs0 − [∇ψs0 − (∇ψs0 · n)n]) dS

=

∫
Γ0

ρ[Γ]ql(∇ψs0 · n)(V · n) dS.

Using this result, the shape derivative is simplified to the final result,

δΓG[Γ] =

∫
Γ0

(
εs
2
|∇ψs0|2 −

εm
2
|∇ψm0 |2 + εm|∇ψm0 · n|2 − εm(∇ψs0 · n)(∇ψm0 · n)(283)

+B(ψ0) + qlρ[Γ](∇ψs0 · n)

)
(V · n) dS.

The alternative form of δΓG[Γ] based on the alternative form of (279) is given by

δ
(alt)
Γ G[Γ] =

∫
Γ0

(
εs
2
|∇ψs0|2 −

εm
2
|∇ψm0 |2 − εs|∇ψs0 · n|2 + εs(∇ψs0 · n)(∇ψm0 · n)(284)

+B(ψ0) + qlρ[Γ](∇ψm0 · n)

)
(V · n) dS.
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Notice that the two forms are equivalent, since subtracting (283) from (284) using the inter-

face condition over Γc,e in (190) results in zero.

δ
(alt)
Γ G[Γ]− δΓG[Γ] =

=

((
− εs|∇ψs0 · n|2 + εs(∇ψs0 · n)(∇ψm0 · n) + qlρ[Γ](∇ψm0 · n)

)

−
(
εm|∇ψm0 · n|2 − εm(∇ψs0 · n)(∇ψm0 · n) + qlρ[Γ](∇ψs0 · n)

))(
V · n

)

=

(
− εs|∇ψs0 · n|2 + εs(∇ψs0 · n)(∇ψm0 · n) +

(
εm(∇ψm0 · n)− εs(∇ψs0 · n)

)(
∇ψm0 · n

)

− εm|∇ψm0 · n|2 + εm(∇ψs0 · n)(∇ψm0 · n)−
(
εm(∇ψm0 · n)− εs(∇ψs0 · n)

)(
∇ψs0 · n

))(
V · n

)
= 0.

�

Using the result of Theorem 6.2.2, we can extract the dielectric boundary force as (245)

by Theorem 6.2.1.

6.3. Equivalence to the Maxwell stress tensor

In classical electromechanics, the force on charged interfaces is given by the jump in the

divergence of the Maxwell stress tensor [41, 59, 92, 98]. The Maxwell stress tensor is defined

by

(285) M = εE ⊗ E − ε

2
|E|2I − χsB(ψ)I,

where E = −∇ψ is the electric field, not to be confused with the bending energy. Since ε

and ∇ψ are discontinuous across the membrane interfaces Γc,e, the Maxwell stress tensor M

is also discontinuous. In the domains Ωm and Ωs, we refer to the Maxwell stress tensor as

Mm and M s, respectively. We verify that the force Fn computed by the shape derivative

(246) as in Theorem 6.2.2 can also be expressed as the jump in the divergence of the Maxwell
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stress tensor [11],

Fn = n ·M sn− n ·Mmn(286)

=
(
εs|∇ψs · n|2 − εs

2
|∇ψs|2 − χsB(ψs)

)
−
(
εm|∇ψm · n|2 − εm

2
|∇ψm|2

)
= −εs

2
|∇ψs|2 +

εm
2
|∇ψm|2 + εs|∇ψs · n|2 − εm|∇ψm · n|2 −B(ψ)

= −εs
2
|∇ψs|2 +

εm
2
|∇ψm|2 + εs(∇ψs · n)(∇ψs · n)− εm(∇ψm · n)(∇ψs · n)

+ εm(∇ψs · n)(∇ψm · n)− εm(∇ψm · n)(∇ψm · n)−B(ψ)

= −εs
2
|∇ψs|2 +

εm
2
|∇ψm|2 − εm|∇ψm · n|2 + εm(∇ψs · n)(∇ψm · n)

−B(ψ) +
(
εs(∇ψs · n)− εm(∇ψm · n)

)
(∇ψs · n)

= −εs
2
|∇ψs|2 +

εm
2
|∇ψm|2 − εm|∇ψm · n|2 + εm(∇ψs · n)(∇ψm · n)

−B(ψ)− qlρ[Γ](∇ψs · n).

This matches (245) exactly, suggesting that our definition of the electrostatic forces on

charged dielectric interfaces is physical.
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CHAPTER 7

Topological vesicle deformation

7.1. Introduction

When a protein induces a force that produces a topological change to the membrane

surface, such as the merging or separating of membranes, the sharp-interface model fails.

Recall that the integration of the Gaussian curvature over a closed surface is a topological

constant. Changing the topology creates a discontinuity in the energy functional (12). More-

over, a change in topology requires the surface to be discontinuous for a moment, which is

impossible to model using an explicit parameterization. An effective way to treat topological

changes is to increase the dimensionality of the problem and track the surface as a level set

of a 3D function. This method is called the phase field method or diffuse-interface method

[27, 28, 100]. The membrane is defined by a level set of a phase field function, φ, and the

motion of the membrane is governed by the motion of the phase field function. In this way,

the membrane is never explicitly tracked, and topological changes can occur. This approach

has the obvious advantage over sharp interface models since it provides a way to describe

topological changes to the membrane. However, a disadvantage of this method is that it is

difficult for this method to describe local forces on the membrane. If local forces need to

be modeled, one should use the sharp-interface method. Furthermore, this method requires

solving a higher dimensional system, since the energy functional is computed over the entire

space Ω ⊂ R3 rather than just a manifold Γ ⊂ R2. This is the price we must pay to describe

membrane merging and separating.

7.2. Lagrangian and Eulerian formulation

A simple version of the mechanical bending energy (13) is given by the Lagrangian

formulation,

(287) EL =

∫
Γ

k(H − C0)2 dS,
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where H is the mean curvature of the membrane Γ, C0 is the spontaneous curvature of

the membrane, and k is the bending modulus. The above equation neglects surface tension

and stretching rigidity. The surface tension is constant in vesicles with fixed surface area

giving justification of our simplification [28]. We refer the reader to [27] for adding stretching

rigidity to (287). The Lagrangian formulation above is derived from basic physical principles

in Chapter 2. For the phase field model, we recast the energy functional in an Eulerian

formulation through a function φ which separates the interior of the membrane from the

exterior in the following way. Let Ω be a domain containing a membrane Γ. Let Ωi represent

the region interior to Γ and Ωe be the region exterior to Γ. We require a phase function

with following properties: the set {x : φ(x) = 0} represents the membrane Γ, the set

{x : φ(x) > 0} represents points inside the membrane, x ∈ Ωi, and the set {x : φ(x) ≤ 0}
represents points outside the membrane, x ∈ Ωe. These properties are illustrated in Figure

7.1.

Ω

Γ

φ > 0

φ ≤ 0

φ = 0

Figure 7.1: Properties of phase function φ within the domain Ω.

Define the phase field function by

(288) φ(x) = q

(
d(x)

ε

)
,

where q is some nonlinear function. The function d(x) is a signed distance for any point

x ∈ Ω to the surface Γ. It satisfies the properties that d(x) = 0 for x ∈ Γ, d(x) > 0 for

x ∈ Ωe and d(x) < 0 for x ∈ Ωi. The parameter 0 < ε � 1 is a parameter adjusting the

transition of φ across the membrane. The dilation 1/ε gives φ a steep sigmoid shape.
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Define the Eulerian formulation of the bending energy by

(289) EE =

∫
Ω

kε

2

∣∣∣∣∆φ− 1

ε2
(φ2 − 1)(φ+ Cε)

∣∣∣∣2 dx
where C =

√
2C0. If we substitute (288) into (289) and take the limit ε → 0, the La-

grangian formulation (287) is recovered [26]. Thus, the minimization of the Lagrangian

formulation is equivalent to the minimization of the Eulerian formulation. The details of

the substitution are shown below. Notice that ∇q(d(x)/ε) = q′(d(x)/ε)1
ε
∇d and ∆q =

q′′(d(x)/ε) 1
ε2

+ q′(d(x)/ε)1
ε
∆d since |∇d(x)| = 1 for signed distance functions1. Note that in

the next equation, when we write q, we mean q(d(x)
ε

).

EE =

∫
Ω

kε

2

∣∣∣∣∆q − 1

ε2
(
q2 − 1

)
(q + Cε)

∣∣∣∣2 dx
=

∫
Ω

kε

2

∣∣∣∣q′′ 1ε2 + q′
1

ε
∆d− 1

ε2
(q2 − 1)(q + Cε)

∣∣∣∣2 dx
=

∫
Ω

kε

2

∣∣∣∣1ε
(
q′′

1

ε
+ q′∆d− 1

ε

(
(q2 − 1)q + (q2 − 1)Cε

))∣∣∣∣2 dx
=

∫
Ω

k

2ε

∣∣∣∣q′∆d+
1

ε

(
q′′ − (q2 − 1)q

)
− C(q2 − 1)

∣∣∣∣2 dx.
The leading order term of the Eulerian formulation for small ε is |(q′′ − (q2 − 1)q)|2. If EE

is to be minimized, this term must vanish as ε → 0. Solving the second order differential

equation

(290) q′′ − (q2 − 1)q = 0

yields q(x) = tanh(x/
√

2). Therefore in the minimization of EE as ε→ 0, q(·)→ tanh(·/√2).

Plots of tanh(x/(
√

2ε)) are shown in Figure 7.2 for different ε. Numerically, we use the phase

1To justify |∇d(x)| = 1, consider the path from a point x ∈ Ω to its nearest point xΓ ∈ Γ. The shortest
path connecting these two points is a vector that points from x to xΓ. This is the path of steepest descent,
so −∇d is the direction of the vector from x to xΓ. The length of the vector is the shortest distance, |d(x)|.
Using this, the decomposed vector from x to xΓ is given by ~r = d|∇d|. The length of ~r can also be expressed
as |~r| = |d||∇d|, but we already know the length of ~r is |d|. Solving this equality, we see that |∇d| = 1. We
must be careful in that this only holds when x has a unique point closest to the interface, xΓ. However,
|∇d(x)| ≈ 1 for these points, [81].
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field function

(291) φ = tanh

(
d(x)√

2ε

)
,

which approaches the Heaviside step function for a sharp interface as ε→ 0.

H−1(x) =


1, if x > 0,

−1, it x < 0.

(292)

That is, as ε → 0, φ(x) = 1 if x ∈ Ωi and φ(x) = −1 if x ∈ Ωe. This is a sharp interface

from Ωi to Ωe. Next we show the convergence of the Eulerian form of the bending energy

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Phase function with ε = 0.1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Phase function with ε = 0.01

Figure 7.2: Plots of a phase function φ as ε→ 0. Notice that φ→ H−1(x) as ε→ 0, giving
a sharp interface.

(289) to the Lagrangian form of the bending energy (287). Consider,

∇φ =
1

ε
q′∇d, ∆φ =

1

2ε2
q′′∇id∇jd+

1

ε
q′∆d,

q′(x) =
d

dx
tanh(x/

√
2) = sech2(x/

√
2)/
√

2 = (1− tanh2(x/
√

2))/
√

2 = (1− q2(x))/
√

2,

q′′(x) = −2 tanh(x/
√

2) sech2(x/
√

2) = −2q(x)(1− q2(x)).

By the above relations, we find that

∆d =

(
∆φ− 1

2ε2
q′′∇id∇jd

)
ε

q′
.
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Replace ∇d with (∇φ)ε/q′ and q′′ with −2q(1− q2) to get

∆d =

(
∆φ− 1

2ε2
2q(1− q2)∇iφ

ε

q′
∇jφ

ε

q′

)
ε

q′

=
ε

q′

(
∆φ− q(1− q2)

(q′)2
∇iφ∇jφ

)
.

Now replace q′ with (1− q2)/
√

2 and factor to get

∆d =

√
2ε

1− q2

(
∆φ+

q(1− q2)

(1− q2)2/2
∇iφ∇jφ

)
=

√
2ε

1− q2

(
∆φ− 2q

q2 − 1
∇iφ∇jφ

)
.

Finally, replace q with φ to get

(293) ∆d =

√
2ε

1− φ2

(
∆φ+

2φ

φ2 − 1
|∇φ|2

)
.

The unit normal vector to the interface is given by n = ∇d and the mean curvature is

defined as H = −1/2 ∇ · n; therefore, the above quantity (293) is proportional to the mean

curvature. Using this, and the fact that |∇φ|2 = 1
2ε2

(1− q2)2 = 1
2ε2

(1− φ2)2, we have

H = −1

2
∆d

= −
√

2ε

2(1− φ2)

(
∆φ− 2φ

φ2 − 1
|∇φ|2

)
=

√
2ε

2(φ2 − 1)

(
∆φ− 1

ε2
φ(φ2 − 1)

)
.(294)
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Consider the integral∫ ∞
−∞

(
1− q2

(
x√
2ε

))2

dx = 2

∫ ∞
0

sech4

(
x√
2ε

)
dx

=

√
2ε

3

(
3 sinh

(
x√
2ε

)
+ sinh

(
3x√
2ε

))
sech3

(
x√
2ε

)∣∣∣∣∞
x=0

=

√
2ε

3
lim
x→∞

(
3 sinh

(
x√
2ε

)
+ sinh

(
3x√
2ε

))
sech3

(
x√
2ε

)
=

√
2ε

3
lim
x→∞

(
3

2

(
e

x√
2ε − e x√

2ε

)
+

1

2
e

3x√
2ε − e−3x√

2ε

)(
2

e
x√
2ε + e

−x√
2ε

)3

=

√
2ε

3
lim
x→∞

(
4e

3x√
2ε + Lower order terms

e
3x√
2ε + Lower order terms

)
=

4
√

2ε

3
.

By the above computation, the two forms for the bending energy are equivalent up to

constant multiple:

EL =

∫
Γ

k(H − C0)2 dx =
3

4
√

2ε

∫ ∞
−∞

(
1− q2

(
x√
2ε

))2

dx

∫
Γ

k(H − C0)2 dx

=
3

4
√

2ε

∫ ∞
−∞

(1− φ2(x))2 dx

∫
Γ

k

( √
2ε

2(φ2 − 1)

(
∆φ− 1

ε2
φ(φ2 − 1)

)
− C0

)2

dx

∼ 3k

4
√

2ε

∫
Ω

(φ2(x)− 1)2

(
ε√

2(φ2 − 1)

(
∆φ− 1

ε2
φ(φ2 − 1)

)
− C0

)2

dx

=
3k

8
√

2ε

∫
Ω

(
ε∆φ− 1

ε
φ(φ2 − 1)−

√
2(φ2 − 1)C0

)2

dx

=
3k

8
√

2ε

∫
Ω

(
ε∆φ−

(
1

ε
φ+ C0

√
2

)
(φ2 − 1)

)2

dx

=
3

4
√

2

∫
Ω

kε

2

(
∆φ− 1

ε2
(φ+ Cε)(φ2 − 1)

)2

dx =
3

4
√

2
EE.

To justify the combination of integrals in line 3 above, note that the surface Γ can be

continuously dilated and contracted in Ω. Therefore the combination of integrals can be

thought of as integrating over the surface infinitely many times until it fills the domain. The

approximation to the integral over Ω is justified since the integrand (1−φ2)2 essentially has

compact support, i.e., the integral from −∞ to ∞ is essentially the same as the integral

from one end of the boundary of Ω to another, provided Ω is sufficiently large.
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In addition to the Eulerian formulation for the bending energy, we define the following

area and volume constraints. The volume constraint is given by

(295) A(φ) =

∫
Ω

φ(x) dx.

Notice that the integral defined by (295) gives

∫
Ω

φ dx =

∫
Ωi

φ dx+

∫
Ωe

φ dx
ε→0

−→
∫

Ωi

1 dx+

∫
Ωe

−1 dx,

That is, A(φ) approaches the difference between the interior and exterior volumes. The

surface area constraint is defined by

(296) B(φ) =

∫
Ω

(
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

)
dx.

For small ε, the integrand of (296) is significant only near the interface Γ, and as ε → 0,

φ(x) = q(d(x)/ε) → tanh(d(x)/(
√

2ε)), so that B(φ) → 2
√

2/3 · area(Γ). This computation

can be done by decomposing the integral over Ω into an integral over Γ and a 1D integral,

the latter of which will have two terms that each integrate to
√

2/3,

B(φ) =

∫
Ω

(
ε

2
|∇φ|2 +

1

4ε
(1− φ2)2

)
dx.

→
∫ ∞
−∞

ε

2

(
q′(

x√
2ε

)

)2

+
1

4ε

(
1− q2(

x√
2ε

)

)2

dx

∫
Γ

dS

=

∫ ∞
−∞

ε

2

((
1− q2(

x√
2ε

)

)
1√
2ε

)2

+
1

4ε

(
1− q2(

x√
2ε

)

)2

dx · area(Γ)

=

(
ε

2

4
√

2ε

3

1

2ε2
+

1

4ε

4
√

2ε

3

)
· area(Γ) =

2
√

2

3
· area(Γ).(297)

7.3. Gradient flow

To ensure a decrease in the energy while keeping the surface area and volume enclosed

fixed, we require that the motion of φ in time is governed by gradient flow,

(298) φt = −γ δE
δφ

= −γ δEE
δφ

+ λ1
δA

δφ
− λ2

δB

δφ
,
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where λ1 and λ2 are Lagrange multipliers for the volume and area constraints. Next, we

compute the functional derivatives. For simplicity, define

h = ∆(φ+ τψ) +
1

ε2
(φ+ τψ + Cε)(1− (φ+ τψ)2),

fc(φ) = ε∆φ− 1

ε
(φ2 − 1)(φ+ Cε),(299)

f(φ) = ε∆φ− 1

ε
(φ2 − 1)φ,(300)

g(φ) = k

(
∆fc − 1

ε2
(3φ2 + 2Cεφ− 1)fc

)
.(301)

Then, using (6), we compute the functional derivative of EE with respect to φ,

d

dτ
EE(φ+ τψ) =

d

dτ

∫
Ω

kε

2
|h|2 dx

∣∣∣∣
τ=0

=

∫
Ω

kε

2
2|h| h|h|

(
dh

dτ

)
dx

∣∣∣∣
τ=0

=

∫
Ω

kεh ·
(

∆ψ +
1

ε2

[
ψ(1− (φ+ τψ)2) + (φ+ τψ + Cε)(−2(φ+ τψ)ψ)

])
dx

∣∣∣∣
τ=0

=

∫
Ω

k

(
ε∆φ− 1

ε
(φ+ Cε)(φ2 − 1)

)(
∆ψ +

1

ε2
ψ
[
1− φ2 + (φ+ Cε)(−2φ)

])
dx

=

∫
Ω

kfc

(
∆ψ − 1

ε2
ψ
[
3φ2 + 2Cεφ− 1

])
dx

=

∫
Ω

−k∇fc · ∇ψ dx−
∫

Ω

k
1

ε2
ψ
[
3φ2 + 2Cεφ− 1

]
fc dx

=

∫
Ω

k∆fcψ dx−
∫

Ω

k
1

ε2
ψ
[
3φ2 + 2Cεφ− 1

]
fc dx,

where the last two lines are obtained using integration by parts (1), assuming the test function

ψ is compactly supported in Ω. (Note that the test function need not be zero on Γ, since

the interface is not a boundary for the phase function φ, ∂Ω is the boundary.) Therefore,

the functional derivative is

(302)
δEE
δφ

= k

(
∆fc − 1

ε2
(3φ2 + 2Cεφ− 1)fc

)
= g.
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Similarly, the functional derivatives for the boundary conditions are

δA

δφ
= 1,

δB

δφ
= −ε∆φ+

1

ε
(φ2 − 1)φ = −f.

Therefore, the equation for gradient flow is simplified to

(303) φt = −γg + λ1 + λ2f.

To derive expressions for the Lagrange multipliers, we integrate (303) over the contain-

ment domain Ω. Since the integral of φ over Ω is the volume constraint A(φ), which is

constant,
∫

Ω
φt dx = 0. Therefore, integrating (303) over Ω gives

(304) λ1|Ω|+ λ2

∫
Ω

f dx = γ

∫
Ω

g dx.

Similarly, since B(φ) is proportional to the surface area, which is also constant, the time

derivative is also zero,

0 =
d

dt
B(φ) =

∫
Ω

ε∇φ · ∇φt +
1

ε
(φ2 − 1)φφt dx

=

∫
∂Ω

εφt(∇φ · n) dx−
∫

Ω

εφt∆φ dx+

∫
Ω

1

ε
(φ2 − 1)φφt dx

=

∫
Ω

−
(
ε∆φ− 1

ε
(φ2 − 1)φ

)
φt dx

=

∫
Ω

−fφt dx

=

∫
Ω

fφt dx,

since ∇φ · n = 0 on the boundary of Ω. Now, substituting in (303) above gives

(305) γ

∫
Ω

fg dx = λ1

∫
Ω

f dx+ λ2

∫
Ω

f 2 dx.
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Equations (303), (304), and (305) give the system

(306)



φt + γg − λ1 − λ2f = 0,

λ1|Ω|+ λ2

∫
Ω

f dx− γ
∫

Ω

g dx = 0,

λ1

∫
Ω

f dx+ λ2

∫
Ω

f 2 dx− γ
∫

Ω

fg dx = 0.

Recall that f and g are given by (300), and (301), respectively.

Given some initial value φ(x, 0) = φ0(x) and boundary conditions for ∂Ω, the system

(306) defines the deformation of vesicles under curvature-driven membrane flow. As in [28],

we apply periodic boundary conditions so that the Fourier transform is easier to apply.

Figures 7.1 and 7.2 show why this is an acceptable boundary condition. The computation

domain Ω is large enough so that the phase function φ is always close to -1 on the boundary

∂Ω. Therefore, although a Dirichlet boundary condition of φ|∂Ω = −1 is perhaps a more nat-

ural condition, periodic boundary conditions are justifiable when Ω is large enough, allowing

us to use Fourier transforms.

As a verification of the numerical procedure, we derive the energy dissipation law as

follows. By taking the time derivative of (289),

dEE
dt

=

∫
Ω

δEE
δφ

dφ

dt
dx =

∫
Ω

gφt dx.

The last equality was obtained using the fact that the functional derivative of EE is g. Then,

by using the first two equations of (306), the energy dissipation law is

dEE
dt

=

∫
Ω

1

γ
(−φt + λ1 + λ2f)φt dx(307)

= −1

γ

∫
Ω

φ2
t dx+

1

γ

∫
Ω

(λ1 + λ2f)φt dx

= −1

γ

∫
Ω

(
γg − λ1 − λ2f

)2

dx.
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The first line is obtained by substituting g using the first equation of (306), and the third line

is obtained by substituting φt using the first equation then and employing the second equation

on the second integral. This result will serve as a numerical check in the implementation.

7.4. Numerical implementation

For the numerical solution to the system (306), we follow the procedure of [28] and use

the Crank-Nicholson method for the time discretization coupled with the Fourier spectral

method for the spatial discretization. Since nonlinear systems are introduced with the time

discretization, interior iterations are introduced to use an implicit method on the linear terms

and an explicit method on the nonlinear terms.

7.4.1. The Fourier transform. The Fourier Transform of a multivariable scalar-

valued function f(~x) ∈ L1(Ω), ~x ∈ Ω ⊂ R3 is defined in this context as

(308) F
(
f(~x)

)(
ξ
)

=

∫
Ω

f(~x)e−2πi~x·ξ d~x.

Using the definition (308), integration by parts and the fact that f ∈ L1, the familiar

property on derivatives holds

(309) F
(
∂f(~x)

∂x

)
= (2πiu)F(f(~x)

)
,

where u is the frequency in the x-component, i.e., if ~x ∈ R3, ξ = [u, v, w].

For the second derivatives,

(310) F
(
∂2f(~x)

∂x2

)
= −4π2u2F(f(~x)

)
.
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We can use these properties to derive properties for vector calculus. Let f : Ω ⊂ R3 → R be

a multivariate real-valued absolutely integrable function. Then,

F(∆φ) = F
(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
(311)

= (2πiu)2F(φ) + (2πiv)2F(φ) + (2πiw)2F(φ)

= −4π2(u2 + v2 + w2)F(φ).

Similarly, ∆2φ can be computed from

F(∆2φ) = F
(
∂4φ

∂x4
+
∂4φ

∂y4
+
∂4φ

∂z4
+ 2

∂4φ

∂x2y2
+ 2

∂4φ

∂x2z2
+ 2

∂4φ

∂y2z2

)
(312)

= (2πiu)4F(φ) + (2πiv)4F(φ) + (2πiw)4F(φ)

+ 2
(
(2πi)4u2v2 + (2πi)4u2w2 + (2πi)4v2w2

)F(φ)

= 16π4
(
u4 + v4 + w4 + 2u2v2 + 2u2w2 + 2v2w2

)F(φ)

= 16π4(u2 + v2 + w2)2F(φ).

We chose these properties out of convenience for our application, but other properties that

may be derived are similar.

7.4.2. Time discretization. To begin, we average the functions in the first equation

in (306) over the current and next step φn and φn+1, and use a linear approximation on the

derivative to obtain,

(313)
φn+1 − φn

∆t
+ γg(φn+1, φn)− λ1 − λ2f(φn+1, φn) = 0,

where the averaged functions are defined using the Crank-Nicholson method

f(φn+1, φn) =
ε

2
∆(φn+1 + φn)− 1

4ε
(φ2

n+1 + φ2
n − 2)(φn+1 + φn),(314)

g(φn+1, φn) =
k

2
∆ (fc(φn+1) + fc(φn))(315)

− k

2ε2
(
φ2
n+1 + φn+1φn + φ2

n + Cε(φn+1 + φn)− 1
)

(fc(φn+1) + fc(φn)) ,
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and the function fc(·) is defined in (299), unchanged. We want to solve this system for φn+1,

but note that the functions (314) and (315) are nonlinear in φn+1. To treat the nonlinearities,

we define an interior iteration ψm, where ψm → φn+1 as m→∞. Then, replacing φn+1 with

ψm in the nonlinear parts and ψm+1 in the linear parts, we have the predictor-corrector

scheme:

(316)
ψm+1 − φn

∆t
+ γg(ψm+1, ψm, φn)− λ1 − λ2f(ψm+1, ψm, φn) = 0,

where the new averaged functions are defined by

f(ψm+1, ψm, φn) =
ε

2
∆(ψm+1 + φn)− 1

4ε
(ψ2

m + φ2
n − 2)(ψm + φn),(317)

f ′c(ψm+1, ψm, φn) =
ε

2
∆(ψm+1 + φn)− 1

4ε
(ψ2

m + φ2
n − 2)(ψm + φn + 2Cε),(318)

g(ψm+1, ψm, φn) = ∆ (f ′c(ψm+1, ψm, φn))(319)

− 1

2ε2
(
ψ2
m + ψmψn + φ2

n − 1 + Cε(ψm + φn)
)

(fc(ψm) + fc(φn)).

The single variable function fc(·) appearing at the end of (319) is still defined in (299). We

first iterate over the interior index m. Numerically, once ‖ψm+1 − ψm‖ is less than some

tolerance, we say that ψm has converged and update φn+1 = ψm. Then, we advance over the

index n and repeat the process until convergence.

7.4.3. Spectral methods. To solve the system (316) for ψm+1, we define intermediate

functions to separate out the terms involving ψm+1,

flin(ψm+1) =
ε

2
∆ψm+1,(320)

fnlin(ψm, φn) =
ε

2
∆φn − 1

4ε
(ψ2

m + φ2
n − 2)(ψm + φn),(321)

f ′clin(ψm+1) =
ε

2
∆ψm+1,(322)

f ′cnlin(ψm, φn) =
ε

2
∆φn − 1

4ε
(ψ2

m + φ2
n − 2)(ψm + φn + 2Cε),(323)
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glin = ∆f ′clin(ψm+1),(324)

gnlin = ∆f ′cnlin(ψm, φn)(325)

− 1

2ε2
(
ψ2
m + ψmψn + φ2

n − 1 + Cε(ψm + φn)
)

(fc(ψm) + fc(φn)).

The implicit scheme for (316) is now given by

(326)
ψm+1 − φn

∆t
= λ1 + λ2 (flin + fnlin)− γ (glin + gnlin) .

Now, gathering all the terms with ψm+1, using the formulas for flin and glin, we have

ψm+1 − λ2∆tflin + γ∆tglin = (λ1 + λ2fnlin − γgnlin) ∆t+ φn,(
1− λ2∆t

ε

2
∆ + γ∆t

ε

2
∆2
)
ψm+1 = (λ1 + λ2fnlin − γgnlin) ∆t+ φn.(327)

Since the left-hand side of (327) is linear in ψm+1, we can use Fourier transforms to solve the

equation. Take the Fourier transform of both sides of (327) and use (311) and (312) to get

(
1− λ2∆t

ε

2

(−4π2(u2 + v2 + w2)
)

+ γ∆t
ε

2

(
16π4(u2 + v2 + w2)2

))F(ψm+1)

= F((λ1 + λ2fnlin − γgnlin) ∆t+ φn).

Finally, divide and take an inverse Fourier transform to obtain the iterative method,

(328) ψm+1 = F−1

( F ((λ1 + λ2fnlin − γgnlin) ∆t+ φn)

1 + 2π2ελ2∆t (u2 + v2 + w2) + 8π4εγ∆t (u2 + v2 + w2)2

)
.

7.4.4. Lagrange multipliers. For the computation of the Lagrange multipliers in

(306), we use the implicit scheme analogous to (313). The conditions for the Lagrange

multipliers are modified from the second and third equations in (306) to

(329)


λ1|Ω|+ λ2

∫
Ω

f(ψm, φn) dx− γ
∫

Ω

g(ψm, φn) dx = 0,

λ1

∫
Ω

f(ψm, φn) dx+ λ2

∫
Ω

f 2(ψm, φn) dx− γ
∫

Ω

f(ψm, φn)g(ψm, φn) dx = 0,
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where the functions f and g follow

f(ψm, φn) =
ε

2
∆(ψm + φn) +

1

4ε
(ψ2

m + φ2
n − 2)(ψm + φn),(330)

g(ψm, φn) =
k

2
∆ (fc(ψm) + fc(φn))

− k

2ε2
(
ψ2
m + ψmφn + φ2

n + Cε(ψm + φn)− 1
)

(fc(ψm) + fc(φn)) ,

(331)

We can solve (329) for λ1 and λ2 easily as a system of two equations. Define intermediate

variables

a = |Ω|,(332)

b =

∫
Ω

f(ψm, φn) dx,(333)

d =

∫
Ω

f 2(φn+1, φn) dx,(334)

v1 = γ

∫
Ω

g(ψm, φn) dx,(335)

v2 = γ

∫
Ω

f(ψm, φn)g(ψm, φn) dx.(336)

The variables that are integrals can all be computed quickly by using the zero-frequency

component of the Fourier transform of the respective integrands. Then, (329) is equivalent

to the linear system,

(337)

a b

b d

λ1

λ2

 =

v1

v2

 ,

whose solution is given by

λ1 =
v2 − dv1/b

b− ad/b ,

λ2 =
v2 − bv1/a

d− b2/a
.

(338)
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7.4.5. Conservation and dissipation laws. We can write the expression δA/δφ = 1

in discrete form

A(φn+1)− A(φn) =

∫
Ω

(φn+1 − φn) dx

= −∆t

∫
Ω

(
γg(φn+1, φn)− λ1 − λ2f(φn+1, φn)

)
dx

= 0.

The second equality is from (313), and the result is zero by the first equation of (329), since

ψm → φn+1. The equality guarantees that the total volume is conserved. In a similar way,

the surface area is conserved, since δB/δφ = −f ,

B(φn+1)−B(φn) = −
∫

Ω

(φn+1 − φn)f(φn+1, φn) dx

= −∆t

∫
Ω

(
γg(φn+1, φn)− λ1 − λ2f(φn+1, φn)

)
f(φn+1, φn) dx

= 0,

where the minus sign is added to match the form of the conservation law for the volume

constraint. Here, the second equality is from (313) as before, and the result is zero by the

second equation of (329), since ψm → φn+1. Finally, we can apply the same procedure to

derive the discrete form of the energy dissipation law (307):

EE(φn+1)− EE(φn) =

∫
Ω

(φn+1 − φn)g(φn+1, φn) dx

= −∆t

∫
Ω

(
γg(φn+1, φn)− λ1 − λ2f(φn+1, φn)

)
g(φn+1, φn) dx

= −∆t

γ

∫
Ω

(
γg(φn+1, φn)− λ1 − λ2f(φn+1, φn)

)2

dx.
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7.4.6. Full algorithm for phase field method and results. The complete al-

gorithm is given by

(339)



ψm+1 − φn
∆t

+ γg(ψm+1, ψm, φn)− λ1 − λ2f(ψm+1, ψm, φn) = 0,

λ1|Ω|+ λ2

∫
Ω

f(ψm, φn) dx− γ
∫

Ω

g(ψm, φn) dx = 0,

λ1

∫
Ω

f(ψm, φn) dx+ λ2

∫
Ω

f 2(ψm, φn) dx− γ
∫

Ω

f(ψm, φn)g(ψm, φn) dx = 0,

φn+1 = ψm.

The algorithm is summarized as follows:

Algorithm 7.1 Computing phase field function φn+1

1: Define initial phase field function φ0 via (291)
2: Compute constraints (295) and (296) using zero frequency component of FFT
3: Compute initial energy E(φ0) by (289)
4: for n from 0 to N do:
5: m← 0
6: Initialize ψm ← φn
7: while ||ψm+1 − ψm||2 ≥ 10−7 do:
8: Compute f(ψm, φn) and g(ψm, φn) using (330) and (331)
9: Compute λ1 and λ2 by (338)

10: Compute fnlin and gnlin using (321) and (325)
11: Update ψm+1 using (328)
12: Update m← m+ 1
13: end while
14: Update φn+1 ← ψm
15: end for

We run a few numerical tests to illustrate the method. In each of the tests, we use a

64 × 64 × 64 grid over the domain Ω = [−π, π]3. We chose ε = 0.1 and used a timestep of

∆t = 2.5× 10−5. We matched the choice in [103] with the Lagrange multiplier γ = 3.

First, we begin with two spheres of equal radius, separated by a small distance. Note that

there is no force that brings the vesicles closer together in this model (yet). Electrostatic

forces may drive the vesicles closer together until they touch, and then our model can simulate

the curvature energy minimization from this point. After running Algorithm 7.1, the spheres

merged together to minimize the curvature cost. The results are show in Figure 7.3. The
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interior iterations converged in 7 steps initially, but then quickly converged in 3 steps as time

elapsed.

Figure 7.3: Two spheres merging according to Algorithm 7.1.

Next, of course, what’s more interesting than two spheres... three! Figure 7.4 illustrates

the merging of three spheres under Algorithm 7.1. The interior iterations converged in 7

steps initially, but then quickly converged in 3 steps as time elapsed.

Figure 7.4: Three spheres merging according to Algorithm 7.1.

Finally, perhaps more biologically interesting is the merging of a smaller vesicle into a

larger one, similar to the process of endocytosis. This is demonstrated in Figure 7.5. The

interior iterations converged in 6 steps initially, but then quickly converged in 3 steps as time

elapsed. Of course, this description is an oversimplification of endocytosis, since it neglects
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Figure 7.5: “Endocytosis” according to Algorithm 7.1.

the inversion of the membranes. The merging process, however, is well-captured.

We note that there are many other interesting configurations that can be described under

this method, as well as a variety of other applications for phase field models. We extend the

model in the following section.
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CHAPTER 8

Curvature-driven protein localization

In practice, vesicles are not strictly composed of a single species of lipids. Experiments

suggest that multiple species of lipids arrange themselves into distinct domains called rafts,

which play an important role in protein activity [48, 101, 102]. Modeling multiple species

on the vesicle membrane requires an extension of the single phase-field function model of

Chapter 7. Du, et. al., have modeled two lipid species by using two phase functions [103].

The phase functions are orthogonal and their intersections define the separation of the two

lipid species. They have been able to reproduce numerous vesicle shapes, such as the ones

shown in Figure 8.1. While this approach has produced results matching experiments [7],

Figure 8.1: Various shapes of two-component membranes [103]. The different colors corre-
spond to the two components.

the model is limiting in the following way. Lipid species may arrange themselves into distinct

phases; however, proteins do not necessarily form phases [54]. Therefore, a dual phase field

model may account for multiple lipid species, but it cannot account for the effect of diffusive

proteins in lipid membranes.

8.1. Proteins and membrane curvature

Experiments suggest that diffusive proteins within lipid membranes play a significant

role in membrane curvature [6, 109, 3, 19, 82, 96, 50]. A fraction between 30% and 90% of

all membrane proteins can freely diffuse along the membrane [35, 54]. A few mechanisms

of protein induced curvature are presented in Figure 8.2. In Figure 8.2 (a), rigid proteins
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Figure 8.2: Mechanisms of protein-induced membrane curvature [6].

such as those in the BAR (Bin/Amphiphysin/Rvs) domain family can act as a scaffold to the

membrane. These proteins have an intrinsic curvature and, upon attachment, the membrane

bends to match the protein curvature. Similarly, in Figure 8.2 (c), several proteins can

oligomerize to create a rigid shape and bend the membrane. Protein coats such as clathrin,

COPI (COat Protein I) and COPII (COat Protein II) are examples of this type. Other

proteins may insert themselves into the membrane as shown in Figure 8.2 (b). There may

be a difference between the length of the hydrophobic region of a membrane protein and

the thickness of the hydrophobic core of the lipid bilayer in which it is embedded, thereby

inducing curvature in the membrane [82]. Epsin proteins do this by forming an α-helix

known as H0 upon binding to the membrane, and this helix inserts itself into the membrane

[6]. Finally, local protein crowding of peripheral proteins can cause membrane bending by

creating an asymmetry of the monolayer areas and thereby curling the membrane away from

the side which the crowding occurred, as shown in Figure 8.2 (d). This effect is experimentally

demonstrated in [96].

Further illustrating the importance of proteins in membranes, Schmidt et. al. showed

that the M2 protein plays an essential role in generating regions of high curvature in the
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influenza A virus membrane [88]. This specific protein accumulates in regions of negative

Gaussian curvature and can generate curvature in the membrane itself, allowing the virus to

replicate. The process is depicted in Figure 8.3.

Figure 8.3: (A) Structure of M2 protein, (B) The neck of a bud, (C) M2 protein in membrane.
Figure from [88].

While these examples should provide sufficient motivation to include proteins to the

model, we note that all endocytosis and exocytosis processes are promoted in one way or

another by proteins. Therefore, any viral replication process requires proteins. Antagonizing

the curvature effects of proteins is a viable antiviral strategy [88]. Mathematically modeling

these processes is beneficial toward this end.

8.2. Surface diffusion model

As stated previously, a phase field method simulates topological changes successfully,

but a more physically relevant model for vesicle budding and scission must include proteins

which diffuse along the surface of the membrane but do not form separate phases. Dual

phase field models always produces phase separation, so we must use a different approach

to model the diffusive proteins on the membrane.

To describe effect of the proteins in a continuum framework, we treat the proteins as

diffusive particles on the membrane surface. Both the proteins and lipids follow some mass
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conservation law incorporating the effects of diffusion and advection on the membrane. A

continuum model is physically justifiable by the relative length scales of the proteins em-

bedded in the membrane, which are typically 4-5nm. thick, to the cell, which can be up to

100 µm in diameter. (In the aforementioned virus replication example, the spherical virions

produced from the budding are typically 100nm in diameter [87].) At such length scales, we

may consider the proteins as diffusive particles that are attracted toward necking regions.

Notice that in Figure 8.3 (C), the protein is embedded in the membrane and induces

some curvature to the membrane. We call this induced curvature the spontaneous curvature

of the diffusive protein species, just as we have defined separate spontaneous curvatures for

the lipids. This can be calculated by measuring the curvature difference in the membrane

when the protein is embedded to that of the membrane without the protein, as depicted in

Figure 8.4.

Figure 8.4: Left: Depiction of lipid spontaneous curvature [105]. Right: Depiction of protein
spontaneous curvature in the sense that the membrane bends after protein insertion [12].

We wish to solve the advection-diffusion equation on a surface. Various techniques have

been established for this purpose. Dziuk used finite element methods to solve elliptic partial

differential equations on stationary surfaces [29]. This work was expanded with Elliott for

parabolic equations on moving surfaces [30]. This work was extended even further with

Deckelnick and Heine by solving the equation using a narrow band around the surface [21].

Other approaches for PDEs on surfaces include [100, 43, 1, 104, 79] and references therein. In

all of the aforementioned approaches, mesh refinement is required to accurately resolve the

numerical solution. These methods work well for stationary surfaces, but mesh refinement
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for dynamic surfaces can be a significant computational challenge, since the mesh must be

changed with each movement of the membrane.

For this reason, we use the Fourier spectral method as we did for the solution of the

shape equation of the membrane in Chapter 7. Fourier methods have so-called exponential

convergence, meaning that the error decreases faster than any power of the grid size [97].

Therefore, mesh refinement near the interface is not necessary in Fourier (global) approaches

as it is in finite element and finite difference (local) approaches. Since the surface is given

as a level set of the phase function φ, no explicit tracking of the surface is necessary, and

no parameterization of the surface is required. Finally, since the framework is consistent,

we may solve the diffusion equation on surfaces given by Algorithm 7.1. That is, we may

simultaneously solve for the shape of the membrane and the concentration of diffusive species

on the membrane. The results of this coupled procedure should produce effects that are not

easily observable in experiments.

Our model is summarized as follows. The total energy for the system is defined and

minimized using the phase field approach formulated in Chapter 7. Multiple lipid and

protein species are allowed to diffuse and advect on the surface of the membrane, governed by

a curvature-driven diffusion equation similar to (192). The difference between this diffusion

equation and (192) is that the flux should be proportional to a diffusion potential which is

governed by the curvature energy (287). The movement of the diffusive species will induce

a curvature on the membrane through the spatially variable and concentration dependent

spontaneous curvature.

8.3. Energy formulation

The total energy of the system is now composed of the membrane bending energy in

Eulerian form (289), modified to include the effects of the multiple lipid and protein species

on the spontaneous curvature and the entropic energy from the sizes of the lipids and proteins.

Eventually, we should include the electrostatic potential energy arising from the charges on

the proteins, lipids, and ions. This will be a future project. We remove the electrostatic
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contribution of the energy for now so that the Poisson equation does not need to be solved.

Consider the following energy,

(340) Etot = Emem + Eent.

The membrane energy (289) is modified through a density dependent spontaneous cur-

vature C as follows,

(341) Emem =

∫
Ω

ε

2

∣∣∣∣∆φ− 1

ε2
(φ2 − 1)(φ+ C(ρlip

l , ρ
pro)ε)

∣∣∣∣2 dx,
where ρlip

l is the concentration of lipid species l, l = 1, . . . ,m, and ρpro is the concentration of

the single protein species. Throughout our notation, we use subscripts to denote the species

number and superscripts to denote the species type, i.e., the concentration of lipid species l

is ρlip
l , the concentration of the proteins is ρpro, and the concentration of ion species i is ρion

i .

We consider only one species of protein; however, the model can easily be extended with the

use of subscripts. The explicit function for C(ρlip
l , ρ

pro) is defined by the weighted average of

the spontaneous curvatures of the contributing species,

(342) C0 =


m∑
l=0

C l
0(alip

l )2ρlip
l + Cpro

0 (apro)2ρpro

m∑
l=0

(alip
l )2ρlip

l + (apro)2ρpro

 , ∀~x ∈ Ω,

where C l
0 is the spontaneous curvature of lipid species l and Cpro

0 is the spontaneous curvature

of the protein at each point ~x in the domain Ω [6]. The scaling C =
√

2C0 is maintained to

include the spontaneous curvature (342) into the curvature energy (341) with the equivalence

to the 2D energy (287) in the sharp interface limit. The alip
l are the effective sizes for the

charged lipids l = 1, . . . ,m; m is the total number of charged lipids in the bilayer; and alip
0 is

the effective size of the neutral lipids. Each lipid is modeled as a hard disk occupying some

surface area in the membrane, hence we take (alip
l )2 for an effective surface area. Similarly,

the apro is the effective size of the protein embedded in the membrane, occupying some

surface area (apro)2. The concentration of particles on the membrane cannot exceed the
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available space, so the concentrations must satisfy the equation

(343)
m∑
l=0

(alip
l )2ρlip

l + (apro)2ρpro = 1.

This equation (343) simplifies the spontaneous curvature (342) to

C0 =
m∑
l=0

C l
0(alip

l )2ρlip
l + Cpro

0 (apro)2ρpro, ∀~x ∈ Ω,(344)

C =
√

2C0.(345)

In the spirit of (169), the entropic energy for the membrane with embedded proteins is

defined by

Eent =
1

β

∫
Ω

(
r∑
i=0

ρion
i

[
ln
(
ρion
i (aion

i )3
)− 1

])
dx(346)

+
1

β

∫
Ω

(
m∑
l=0

ρlip
l

[
ln
(
ρlip
l (alip

l )2
)
− 1
])

dx

+
1

β

∫
Ω

(
ρpro

[
ln
(
ρpro(apro)2

)− 1
])
dx,

where β is still the inverse thermal energy β = 1/(kBT ) [108]. The aion
i are the effective

ion sizes for i = 1, . . . , r, r is the total number of ionic species in the solvent, and aion
0 is

the effective size of the solvent molecules. Each ion is modeled as a sphere occupying some

volume in the solvent, hence we take (aion
i )3 for an effective volume. The concnetration of

the ions in the solvent cannot exceed the available space, therefore the effective ion sizes

must satisfy

(347) ρion
0 (aion

0 )3 +
r∑
i=1

ρion
i (aion

i )3 = 1.

Note that there are no functions which depend explicitly upon the phase field function

φ in the entropic energy (346). Therefore the gradient flow equations given by (328) remain

the same, since δEent

δφ
= 0. The entropic energy is defined without the use of any surface

delta functions, as the domain restrictions are imposed by the initial conditions and the

146



differential equation. We require the initial distribution of ions to be localized in the bulk,

away from the membrane, and the flux shall only occur in the bulk. This restricts the ions

to the bulk, away from the membrane. Similarly, we require the initial distribution of lipids

and proteins to be localized to the membrane, away from the bulk, and the flux shall only

occur on the membrane. In this way, no delta functions are required in the entropic energy

equation. This is consistent with the framework of the curvature energy (341).

8.4. Mass conservation law

We begin with a mathematical treatment for the diffusive lipids and proteins. Different

species are allowed to advect and diffuse across the membrane. The concentrations of lipids

and proteins satisfy a general mass conservation law for a general concentration ρ,

(348)
∂ρ

∂t
+ v · ∇ρ = −∇ · J, x ∈ Ω,

where v is the velocity of the surface Γ, and J is the surface flux. A constitutive relation for

the flux is given by the Nernst-Planck formula as an extension of Fick’s first law,

(349) J = −DδΓβρ∇µ,

where µ is the diffusion potential and D is the diffusion coefficient [108]. Note that this

diffusion potential is based on the curvature energy; therefore the flux is curvature-driven.

The flux is restricted by the surface delta function δΓ so that diffusion is nonzero only on the

the membrane Γ, rather than the entire domain Ω. The surface delta function δΓ is defined

by the property

(350)

∫
Γ

f(x) dΓ =

∫
Ω

f(x)δΓ dx.

There are many choices to use for the surface delta function. A good catalog can be found

in [60]. A good choice must maintain the property that
∫

Ω
δΓ dx ∝ area(Γ), as in (297). It

may be convenient to choose a function without a |∇φ| term for the sake of the simplicity

147



of the variation computations with respect to φ, (e.g., in equation (302)). We present our

choice later in equation (441).

Finally, note that there is a corresponding mass conservation equation (348) and a corre-

sponding Nernst-Planck flux (349) for each lipid species, ion species, and the proteins, using

the appropriate subscripts and superscripts. For the ion species, however, the flux is given

by

(351) J ion = −D(1− δΓ)βρ∇µ,

since the flux of ions should only occur outside of the membrane.

8.4.1. Velocity computation. The fact that the surface deformation is driven by

energy minimization requires the smallest possible velocity for any deformation. That is,

any component of the velocity that is tangential to the surface will cost unnecessary energy

for the deformation. Therefore, v must be normal to the surface. The velocity of the

deformation is nonzero only in a small neighborhood of the surface Γ.

The velocity in the diffusion equation (348) can be computed by considering two realiza-

tions of the surface φ = 0, one at time t and position x, and another at a later time t + dt

and at the deformed position x + dx. Consider a first order Taylor expansion for φ about

(t, x),

(352) φ(x+ dx, t+ dt) = φ(x, t) + φt(x, t) dt+∇φ(x, t) dx+O(dt2, dx2).

We are only interested in the surface, where φ = 0, so (352) up to first order becomes

(353) 0 = φt dt+∇φ dx.

From (353), we can see that

(354) ∇φdx
dt

= −φt.
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Then we can define the normal component of the velocity using the fact that the surface

normal is given by n = ∇φ/|∇φ|,

(355) vn = n · dx
dt

=
∇φ
|∇φ|

dx

dt
=
−φt
|∇φ| .

The formula for the normal velocity (355) is the formula for the velocity under our assumption

that the tangential velocity is zero. In fact, there are no computational techniques to our

knowledge for the computation of the tangential velocity using phase field methods, but we

do not require one for our model.

8.4.2. Surface flux and diffusion potential. The diffusion potentials are defined

as the functional derivatives of the total energy (340) with respect to the appropriate con-

centrations,

µion
i =

δEtot

δρion
i

=
δEmem

δρion
i

+
δEent

δρion
i

, i = 1, . . . , r;(356)

µlip
l =

δEtot

δρlip
l

=
δEmem

δρlip
l

+
δEent

δρlip
l

, l = 1, . . . ,m;(357)

µpro =
δEtot

δρpro
=
δEmem

δρpro
+
δEent

δρpro
.(358)

For the computation of the diffusion potentials, we can solve (347) and (343) for ρion
0 (aion

0 )3

and ρlip
0 (alip

0 )2 respectively and substitute these quantities in the entropic energy (346) to

obtain an easier form for differentiating. For convenience, we also split the entropic energy

into two components: one for the ion contribution to the volume, and the other for the lipid

and protein contribution to the surface area. Define

Eion
ent =

1

β

∫
Ω

(
1

(aion
0 )

3

(
1−

r∑
i=1

ρion
i (aion

i )3

)[
ln

(
1−

r∑
i=1

ρion
i (aion

i )3

)
− 1

]
(359)

+
r∑
i=1

ρion
i

[
ln
(
ρion
i (aion

i )3
)− 1

])
dx,
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Elip
ent =

1

β

∫
Ω

(
1(
alip

0

)2

(
1− ρpro(apro

0 )2 −
m∑
l=1

ρlip
l (alip

l )2

)
(360)

×
[

ln

(
1− ρpro(apro

0 )2 −
m∑
l=1

ρlip
l (alip

l )2

)
− 1

]

+
m∑
l=1

ρlip
l

[
ln
(
ρlip
l (alip

l )2
)
− 1
]

+ ρpro
[
ln
(
ρpro(apro)2

)− 1
])

dx,

where Eent = Eion
ent + Elip

ent. We emphasize that the notation Elip
ent includes both the entropic

energy from the lipids and the proteins, since both reside on the membrane. First, it should

be clear that δEmem/δρ
ion
i = 0 and δE lip

ent/δρ
ion
i = 0, and so µion

i depends only upon the

ionic entropic energy. The diffusion potential for the ions is the same as in [108]. The

computations are

δE ion
ent

δρion
i

=
1

β

(
1

(aion
0 )3

(−(aion
i )3

) [
ln

(
1−

r∑
j=1

ρion
j (aion

j )3

)
− 1

]

+
1

(aion
0 )3

(
1−

r∑
j=1

ρion
j (aion

j )3)

)[
−(aion

i )3

1−∑r
j=1 ρ

ion
j (aion

j )3

]

+
[
ln(ρion

i (aion
i )3)− 1

]
+ ρion

i

(aion
i )3

ρion
i (aion

i )3

)

=
1

β

(
−(aion

i )3

(aion
0 )3

ln

(
1−

r∑
j=1

ρion
j (aion

j )3

)
+ ln(ρion

i (aion
i )3)

)
, ∀i = 1, . . . , r.

Therefore,

(361) µion
i =

(
kBT

[
ln
(
ρion
i (aion

i )3
)− (aion

i )3

(aion
0 )3

ln

(
1−

n∑
j=1

ρion
j (aion

j )3

)])
, i = 1, . . . , r.

The diffusion potential for the ions should be nonzero only where the ions are present,

i.e. only on Ω/Γ. We do not add any restriction to the function to accomplish this (e.g.

multiplying the equation by (1 − δΓ)). This restriction is enforced by the initial condition

and the diffusion equation. The initial concentration of ions is to be distributed only along

the domain without the membrane, and the ion flux (351) is restricted to the bulk by a

(1− δΓ) term.
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For the lipid diffusion potential, δE ion
ent/δρ

lip
l = 0. The nonzero contribution includes the

entropic energy and the membrane energy. The first is

δE lip
ent

δρlip
l

=
1

β

(
1

(alip
0 )2

(
−(alip

l )2
)[

ln

(
1− ρpro(apro

0 )2 −
m∑
j=1

ρlip
j (alip

j )2

)
− 1

]

+
1

(alip
0 )2

(
1− ρpro(apro

0 )2 −
m∑
j=1

ρlip
j (alip

j )2)

)[
−(alip

l )2

1− ρpro(apro
0 )2 −∑m

j=1 ρ
lip
j (alip

j )2

]

+
[
ln(ρlip

l (alip
l )2)− 1

]
+ ρlip

l

(alip
l )2

ρlip
l (alip

l )2

)

=
1

β

(
−(alip

l )2

(alip
0 )2

ln

(
1− ρpro(apro

0 )2 −
m∑
j=1

ρlip
j (alip

j )2

)
+ ln(ρlip

l (alip
l )2)

)
, ∀i = 1, . . . , r.

The variation of the membrane energy with respect to the concentration requires a bit more

thought. Recall that the membrane energy Emem, given in 3D by Equation (341) is an

approximation to the two-dimensional curvature energy penalty in Lagrangian formulation

EL, given by Equation (287), i.e. Emem → EL as ε → 0. We really only want to track the

curvature of the zero level set of the phase field function, yet the 3D energy (341) is defined

everywhere. Rather than computing the diffusion potential from the 3D energy functional

which is only an approximation, we will compute the variation from the 2D energy functional

and then approximate. The variation of EL is given by

(362)
δEL

δρlip
l

= 2(C0 −H)
δC0

δρlip
l

.

As for the 3D analog, we have an expression for the mean curvature H given by (294);

however, this expression is only valid near the φ = 0 level set. Therefore, we really want

to restrict the mean curvature with a surface delta function so that it is only computed

on (a narrow band around) the surface. The mean curvature at other level sets of φ could

be extremely temperamental and give numerical troubles (and they do!). Using this idea

with the phase field approximation to the mean curvature in (294) and the variation of the
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spontaneous curvature (344), we have

(363)
δEmem

δρlip
l

∼ 2C l
0(alip

l )2

(
C0 − ε√

2(φ2 − 1)

(
∆φ− 1

ε2
φ(φ2 − 1)

)
δΓ

)
.

Therefore,

µlip
l = kBT

[
−(alip

l )2

(alip
0 )2

ln

(
1− ρpro(apro

0 )2 −
m∑
j=1

ρlip
j (alip

j )2

)
+ ln(ρlip

l (alip
l )2)

]
(364)

+ 2C l
0(alip

l )2

(
C0 − ε√

2(φ2 − 1)

(
∆φ− 1

ε2
φ(φ2 − 1)

)
δΓ

)
.

Similar to the diffusion potential for the ions, the diffusion potential for the lipids is defined

over all of Ω, but should be nonzero only near the membrane Γ. We do not introduce any δΓ

term multiplying all of (364) to enforce this condition; however, there is a δΓ term acting on

the mean curvature as motivated above. The concentrations are initially distributed on the

membrane only, and it is clear in (349) that the flux is restricted to the membrane only so

these terms will remain zero away from Γ. This is also the case for the spontaneous curvature

C0, since it depends upon the concentrations. However, the mean curvature may be nonzero

away from Γ, since this computation depends only upon φ, but we are interested only in the

φ = 0 level set. Therefore, we introduce a surface delta function to this term only to avoid

large and nonphysical mean curvatures away from the φ = 0 level set.

Finally, for the protein diffusion potential, δE ion
ent/δρ

pro = 0, and the nonzero contributions

are

δE lip
ent

δρpro
=

1

β

(
1

(alip
0 )2

(−(apro)2
) [

ln

(
1− ρpro(apro

0 )2 −
m∑
j=1

ρlip
j (alip

j )2

)
− 1

]

+
1

(alip
0 )2

(
1− ρpro(apro

0 )2 −
m∑
j=1

ρlip
j (alip

j )2)

)[
−(apro)2

1− ρpro(apro
0 )2 −∑m

j=1 ρ
lip
j (alip

j )2

]

+
[
ln(ρpro(apro)2)− 1

]
+ ρpro (apro)2

ρpro(apro)2

)

=
1

β

(
−(apro)2

(alip
0 )2

ln

(
1− ρpro(apro

0 )2 −
m∑
j=1

ρlip
j (alip

j )2

)
+ ln(ρpro(apro)2)

)
,
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δEmem

δρpro
l

∼ 2Cpro
0 (apro)2

(
C0 − ε√

2(φ2 − 1)

(
∆φ− 1

ε2
φ(φ2 − 1)

)
δΓ

)
Therefore,

µpro = kBT

[
−(apro)2

(alip
0 )2

ln

(
1− ρpro(apro

0 )2 −
m∑
j=1

ρlip
j (alip

j )2

)
+ ln(ρpro(apro)2)

]
(365)

+ 2Cpro
0 (apro)2

(
C0 − ε√

2(φ2 − 1)

(
∆φ− 1

ε2
φ(φ2 − 1)

)
δΓ

)
.

The appearance of δΓ in (365) is for the same reason as cited for that on (364). We have

now described the terms in the conservation equations (348).

8.5. Curvature-driven protein localization

In this section, we give a simple formulation for protein localization. Rather than cou-

pling the phase field function with the protein localization and allowing the membrane to

deform with the mass conservation equations simultaneously, we simplify our model by fixing

the boundary and solving the curvature-driven diffusion equation on a fixed membrane. The

membrane is still defined as a level set of the phase function. Solving the curvature-driven

diffusion equation using Fourier spectral methods is novel work even with this simplification

of a fixed boundary. Eventually, we should solve the concentration equations on a moving

boundary (with electrostatics!). For now, we wish to solve the curvature-driven surface dif-

fusion equation (348) for ρlip
l and ρpro with fixed φ (neglecting the bulk). First, we introduce

a few temporary variables to stay organized. Define

Llip(ρlip
l ) = ln(ρlip

l (alip
l )2),(366)

Rlip(ρlip
l , ρ

pro) =
−(alip

l )2

(alip
0 )2

ln

(
1− ρpro(apro

0 )2 −
m∑
j=1

ρlip
j (alip

j )2

)
,(367)

Lpro(ρpro) = ln(ρpro(apro)2),(368)

Rpro(ρlip
l , ρ

pro) =
−(apro)2

(alip
0 )2

ln

(
1− ρpro(apro

0 )2 −
m∑
j=1

ρlip
j (alip

j )2

)
,(369)
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P (φ, ρlip
l , ρ

pro) =

(
C0(ρlip

l , ρ
pro)− ε√

2(φ2 − 1)

(
∆φ− 1

ε2
φ(φ2 − 1)

)
δΓ

)
.(370)

The notation is indicative of leading order terms for the lipids and proteins (L), remaining

terms corresponding to the size restrictions (R), and a term corresponding to the curvature

determined by the phase field function (P ). Using (366)-(370) and suppressing the notation

describing each function’s independent variables, the diffusion potential (364) becomes

µlip
l =

1

β
(Llip +Rlip) + 2C l

0(alip
l )2P,(371)

and (365) becomes

µpro =
1

β
(Lpro +Rpro) + 2Cpro

0 (apro)2P.(372)

Then we have

∇µlip
l =

1

β
(∇Llip +∇Rlip) + 2C l

0(alip
l )2∇P,(373)

∇µpro =
1

β
(∇Lpro +∇Rpro) + 2Cpro

0 (apro)2∇P,(374)

where

∇Llip =
∇ρlip

l

ρlip
l

,(375)

∇Rlip =
−(alip

l )2

(alip
0 )2


−(apro

0 )2∇ρpro −
m∑
j=1

(alip
j )2∇ρlip

j

1− ρpro(apro
0 )2 −

m∑
j=1

ρlip
j (alip

j )2

 ,(376)

∇Lpro =
∇ρpro

ρpro
,(377)

∇Rpro =
−(apro)2

(alip
0 )2


−(apro

0 )2∇ρpro −
m∑
j=1

(alip
j )2∇ρlip

j

1− ρpro(apro
0 )2 −

m∑
j=1

ρlip
j (alip

j )2

 ,(378)
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∇P = ∇C0 −∇(HδΓ),(379)

∇C0 =
m∑
l=0

C l
0(alip

l )2∇ρlip
l + Cpro

0 (apro)2∇ρpro.(380)

To make our final equation simpler, define the constants

M lip
l = 2βC l

0(alip
l )2,(381)

Mpro = 2βCpro
0 (apro)2.(382)

Substituting (373) into the diffusion equation (348) for the lipids with the assumption of a

fixed phase field φ gives

(383)
∂ρlip

l

∂t
= Dlip

l ∇ ·
{
δΓρ

lip
l (∇Llip +∇Rlip) +M lip

l δΓρ
lip
l ∇P

}
.

Now substitute the derivative of the leading order term (375) directly into (383) to get

(384)
∂ρlip

l

∂t
= Dlip

l ∇ ·
{
δΓ∇ρlip

l + δΓρ
lip
l ∇Rlip +M lip

l δΓρ
lip
l ∇P

}
.

The derivation for the protein conservation equation is similar and results in

(385)
∂ρpro

∂t
= Dpro∇ ·

{
δΓ∇ρpro + δΓρ

pro∇Rpro +MproδΓρ
pro∇P

}
.

8.5.1. Variable diffusion coefficient. The equation (384) is organized such that

the leading order term appears first. For simplicity, define

(386) H lip
l (ρlip

l , ρ
pro, φ) = δΓρ

lip
l ∇Rlip +M lip

l δΓρ
lip
l ∇P

so that (384) may be written as

(387)
∂ρlip

l

∂t
= Dlip

l ∇ ·
{
δΓ∇ρlip

l +H lip
l

}
.
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Expanding the divergence operator in (387) gives

(388)
∂ρlip

l

∂t
= Dlip

l ∇ ·
{
δΓ∇ρlip

l +H lip
l

}
= Dlip

l

{
δΓ∆ρlip

l +∇δΓ · ∇ρlip
l +∇ ·H lip

l

}
.

The first term in (388) is the leading order term in the variable for we wish to solve (ρlip
l ),

and it involves a product with the surface delta function δΓ. We cannot directly employ the

same procedures as in Section 7.4 on this equation, since the Fourier transform of a product

of two spatially variable functions is the convolution of the Fourier transforms. Therefore

we cannot perform a simple division to obtain a formula akin to (328).

To perform numerical computations on (387), we use the technique developed in [18],

where a treatment of elliptic equations with variable coefficients is provided. There are two

modifications we make to this scheme as we have two characteristically different features in

our equation (387) to that in [18]. In [18], the equation solved is

(389) f = ∇ · (a∇u),

where f , a, and u are multidimensional functions. In their treatment of (389), division by

the coefficient a is necessary. But applying this step to our problem (387) is troublesome,

since our variable coefficient, δΓ, is zero almost everywhere in Ω. Therefore, we first modify

our equation to

∂ρlip
l

∂t
= Dlip

l ∇ ·
{

(δ∗Γ − 1)∇ρlip
l +H lip

l

}
(390)

= Dlip
l ∇ ·

{
δ∗Γ∇ρlip

l

}
−Dlip

l ∆ρlip
l +Dlip

l ∇ ·H lip
l ,

where

(391) δ∗Γ = δΓ + 1.

In this way, the delta function in shifted up by one, so that it is never close to zero, making

division by δ∗Γ possible.
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The second difference is that equation (389) is an elliptic equation, and our equation

(390) is parabolic. Therefore, we treat the time derivative using Crank-Nicholson methods

to transform (390) into an elliptic equation before applying the technique. If this is not

done, the problem of convolutions remains. For simplicity, use the notation ρln = ρlip
l (t) and

ρln+1 = ρlip
l (t+ ∆t). Similarly, let H l

n+ 1
2

be the average of (386) at times t and t+ ∆t. Using

Crank-Nicholson in time gives

ρln+1 − ρln
∆t

= Dlip
l ∇ ·

(
δ∗Γ∇ρln+ 1

2

)
−Dlip

l ∆ρl
n+ 1

2
+Dlip

l ∇ ·H l
n+ 1

2

=
Dlip
l

2

(
δ∗Γ∆ρln+1 + δ∗Γ∆ρln +∇δ∗Γ · ∇ρln+1 +∇δ∗Γ · ∇ρln

)
− Dlip

l

2

(
∆ρln + ∆ρln+1

)
+Dlip

l ∇ ·H l
n+ 1

2
.

Next, we isolate the terms for ρn+1 on the left-hand side, except for the terms within H l
n+ 1

2

(we will treat these with extra care later). This gives us

ρln+1 −
Dlip
l ∆t

2

(
δ∗Γ∆ρln+1 +∇δ∗Γ · ∇ρln+1 −∆ρln+1

)
= ρln +

Dlip
l ∆t

2

(
δ∗Γ∆ρln +∇δ∗Γ · ∇ρln −∆ρln

)
+Dlip

l ∆t ∇ ·H l
n+ 1

2
.

Divide the entire equation by
√
δ∗Γ and obtain

ρln+1√
δ∗Γ
− Dlip

l ∆t

2

√
δ∗Γ∆ρln+1 −

Dlip
l ∆t

2

∇δ∗Γ√
δ∗Γ
· ∇ρln+1 +

Dlip
l ∆t

2
√
δ∗Γ

∆ρln+1(392)

=
ρln√
δ∗Γ

+
Dlip
l ∆t

2

√
δ∗Γ∆ρln +

Dlip
l ∆t

2

∇δ∗Γ√
δ∗Γ
· ∇ρln −

Dlip
l ∆t

2
√
δ∗Γ

∆ρln +
Dlip
l ∆t√
δ∗Γ
∇ ·H l

n+ 1
2
.

Now use the fact that

√
δ∗Γ∆ρ = ∆(

√
δ∗Γρ)− 2∇√δ∗Γ · ∇ρ−∆

√
δ∗Γρ
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for the second term of (392) on both the left-hand and right-hand sides to obtain

ρln+1√
δ∗Γ
− Dlip

l ∆t

2

(
∆(
√
δ∗Γρ

l
n+1)− 2∇√δ∗Γ · ∇ρln+1 −∆

√
δ∗Γρ

l
n+1

)
(393)

− Dlip
l ∆t

2

∇δ∗Γ√
δ∗Γ
· ∇ρln+1 +

Dlip
l ∆t

2
√
δ∗Γ

∆ρln+1

=
ρln√
δ∗Γ

+
Dlip
l ∆t

2

(
∆(
√
δ∗Γρ

l
n)− 2∇√δ∗Γ · ∇ρln −∆

√
δ∗Γρ

l
n

)
+
Dlip
l ∆t

2

∇δ∗Γ√
δ∗Γ
· ∇ρln −

Dlip
l ∆t

2
√
δ∗Γ

∆ρln +
Dlip
l ∆t√
δ∗Γ
∇ ·H l

n+ 1
2
.

Finally, notice that two terms cancel on each side of (393) since

∇√δ∗Γ =
1

2
√
δ∗Γ
∇δ∗Γ.

This gives us

ρln+1√
δ∗Γ
− Dlip

l ∆t

2

(
∆(
√
δ∗Γρ

l
n+1)−∆

√
δ∗Γρ

l
n+1

)
+
Dlip
l ∆t

2
√
δ∗Γ

∆ρln+1(394)

=
ρln√
δ∗Γ

+
Dlip
l ∆t

2

(
∆(
√
δ∗Γρ

l
n)−∆

√
δ∗Γρ

l
n

)
− Dlip

l ∆t

2
√
δ∗Γ

∆ρln +
Dlip
l ∆t√
δ∗Γ
∇ ·H l

n+ 1
2
.

Now define ωl =
√
δ∗Γρ

l with appropriate subscripts for the time step to obtain the following

iterative procedure, based on (394),

ωln+1

δ∗Γ
− Dlip

l ∆t

2

(
∆ωln+1 −

∆
√
δ∗Γ√
δ∗Γ

ωln+1 −
1√
δ∗Γ

∆

(
ωln+1√
δ∗Γ

))
(395)

=
ωln
δ∗Γ

+
Dlip
l ∆t

2

(
∆ωln −

∆
√
δ∗Γ√
δ∗Γ

ωln −
1√
δ∗Γ

∆

(
ωln√
δ∗Γ

))
+
Dlip
l ∆t√
δ∗Γ
∇ ·H l

n+ 1
2
.

Rearranging the left-hand side according to the order of derivative, we have

− Dlip
l ∆t

2
∆ωln+1 +

Dlip
l ∆t

2
√
δ∗Γ

∆

(
ωln+1√
δ∗Γ

)
+

(
1

δ∗Γ
+
Dlip
l ∆t

2

∆
√
δ∗Γ√
δ∗Γ

)
ωln+1(396)

=
ωln
δ∗Γ

+
Dlip
l ∆t

2

(
∆ωln −

∆
√
δ∗Γ√
δ∗Γ

ωln −
1√
δ∗Γ

∆

(
ωln√
δ∗Γ

))
+
Dlip
l ∆t√
δ∗Γ
∇ ·H l

n+ 1
2
.
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In (396), notice that the product on the leading order term with a spatially varying function

is now removed, so that we can treat ∆ωln+1 with Fourier transforms. However, there is a

nonlinear product with δ∗Γ on the second and third terms that we must handle. To take care

of this, we use the interior iteration in m for ωl with the notation νlm where νlm → ωln+1 as

m → ∞. In our scheme (396), we treat the nonlinear terms using only previous interior

step νlm and the linear terms using the current interior step νlm+1. (Of course, we are not

replacing any appearances of ωln.) Note that since the higher order term H l
n+ 1

2

given by

(386) is entirely nonlinear, it will only depend upon ωln and νlm, and not on νlm+1; therefore,

it remains entirely on the right-hand side. The iteration scheme for finding ωln+1 is

− Dlip
l ∆t

2
∆νlm+1 +

Dlip
l ∆t

2
√
δ∗Γ

∆

(
νlm√
δ∗Γ

)
+

(
1

δ∗Γ
+
Dlip
l ∆t

2

∆
√
δ∗Γ√
δ∗Γ

)
νlm(397)

=
ωln
δ∗Γ

+
Dlip
l ∆t

2

(
∆ωln −

∆
√
δ∗Γ√
δ∗Γ

ωln −
1√
δ∗Γ

∆

(
ωln√
δ∗Γ

))
+
Dlip
l ∆t√
δ∗Γ
∇ ·H l

n+ 1
2
(ωn, νm).

Now isolating (397) for νlm+1 on the left-hand side, with all other terms on the right-hand

side, and applying the scheme developed in [18], we have

− Dlip
l ∆t

2
∆νlm+1 +Kνlm+1 = −

(
1

δ∗Γ
+
Dlip
l ∆t

2

∆
√
δ∗Γ√
δ∗Γ
−K

)
νlm −

Dlip
l ∆t

2
√
δ∗Γ

∆

(
νlm√
δ∗Γ

)
(398)

+
ωln
δ∗Γ

+
Dlip
l ∆t

2

(
∆ωln −

∆
√
δ∗Γ√
δ∗Γ

ωln −
1√
δ∗Γ

∆

(
ωln√
δ∗Γ

))
+
Dlip
l ∆t√
δ∗Γ
∇ ·H l

n+ 1
2
(ωn, νm),

where K is added so that the form of the iterative scheme matches the form of (396). That

is, in both equations there is a second order term and a zero-order term on νm+1. This

parameter K is optimally defined as in [18] as

(399) K =
1

2

(
min

{
1

δ∗Γ
+
Dlip
l ∆t

2

∆
√
δ∗Γ√
δ∗Γ

}
+ max

{
1

δ∗Γ
+
Dlip
l ∆t

2

∆
√
δ∗Γ√
δ∗Γ

})
.

For an efficient numerical implementation of the scheme in (398), we wish to solve for the

terms that do not include the interior iteration νlm outside of the iteration in m. Therefore,
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the practical scheme is given by

− Dlip
l ∆t

2
∆νlm+1 +Kνlm+1 = −

(
1

δ∗Γ
+
Dlip
l ∆t

2

∆
√
δ∗Γ√
δ∗Γ
−K

)
νlm(400)

− Dlip
l ∆t

2
√
δ∗Γ

∆

(
νlm√
δ∗Γ

)
+
Dlip
l ∆t√
δ∗Γ
∇ ·H l

m(ωn, νm) +Gl(ωn),

where Gl(ωn) is defined by

Gl(ωn) =
ωln
δ∗Γ

+
Dlip
l ∆t

2

(
∆ωln −

∆
√
δ∗Γ√
δ∗Γ

ωln −
1√
δ∗Γ

∆

(
ωln√
δ∗Γ

))
(401)

+
Dlip
l ∆t√
δ∗Γ
∇ ·H l

n(ωn).

As promised, we now handle H lip

n+ 1
2

appearing in the scheme (398) with special care. This

term was split in (400) and (401). The term H l
n(ωn) is the portion of H l

n+ 1
2

that only includes

terms with ωn, and the term H l
m(ωn, νm) is the portion of H l

n+ 1
2

that includes terms with νm

(and may also include terms with ωn). A complete separation of terms cannot be performed

due to the nonlinearity of (366) and (367) appearing in H lip

n+ 1
2

. Instead, we isolate as many

terms involving νm as we can, and define the splitting

(402) H lip

n+ 1
2

(ωn, νm) = H l
n(ωn) +H l

m(νm, ωn).

Now we derive the splitting (402) above. To match the iteration scheme, we must apply

the scaling ωl =
√
δ∗Γρ

l to the definition of H l in (386). This scaling involves the new delta

function given in (391), whereas the definition involves the original delta function without

the additional factor to allow division. Therefore, we first rewrite (386) in terms of the new

delta, δ∗Γ, and then perform the scaling.

H l
n+ 1

2
= δ∗Γρ

l
n+ 1

2
∇Rl

n+ 1
2
− ρl

n+ 1
2
∇Rl

n+ 1
2

+M lip
l δ∗Γρ

l
n+ 1

2
∇Pn+ 1

2
−M lip

l ρl
n+ 1

2
∇Pn+ 1

2
(403)

=
√
δ∗Γω

l
n+ 1

2
∇Rl

n+ 1
2
−
ωl
n+ 1

2√
δ∗Γ
∇Rl

n+ 1
2

+M lip
l

√
δ∗Γω

l
n+ 1

2
∇Pn+ 1

2
−M lip

l

ωl
n+ 1

2√
δ∗Γ
∇Pn+ 1

2
.
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The terms of (403) are given below:

ωn+ 1
2

=
1

2
(ωn + νm) ,(404)

∇ωl
n+ 1

2
=

1

2

(∇ωln +∇νlm
)
,(405)

∇Rl
n+ 1

2
=
−(alip

l )2

(alip
0 )2


−(apro

0 )2∇
(
ωpro

n+ 1
2√
δ∗Γ

)
−

m∑
j=1

(alip
j )2∇

ωjn+ 1
2√
δ∗Γ


1− (apro

0 )2√
δ∗Γ

ωpro

n+ 1
2

−
m∑
j=1

(alip
j )2√
δ∗Γ

ωj
n+ 1

2

 ,(406)

∇Pn+ 1
2

= ∇Cn+ 1
2
−∇(HδΓ),(407)

Cn+ 1
2

=
m∑
l=0

C l
0(alip

l )2ρl
n+ 1

2
+ Cpro

0 (apro)2ρpro

n+ 1
2

,(408)

∇Cn+ 1
2

=
m∑
l=0

C l
0(alip

l )2∇ρl
n+ 1

2
+ Cpro

0 (apro)2∇ρpro

n+ 1
2

.(409)

Note that ∇Rl
n+ 1

2

is a nonlinear function of ωn and νm, and therefore cannot be separated.

However, ∇Pn+ 1
2

is a linear functions of ωn and νm, and can be separated. The separation

is allowable through the spontaneous curvature, so we begin here,

Cn+ 1
2

=
1

2

(
Cn(ωn) + Cm(νm)

)
,(410)

Cn(ωn) =
m∑
l=0

C l
0(alip

l )2ρln + Cpro
0 (apro)2ρpro

n ,(411)

Cm(νm) =
m∑
l=0

C l
0(alip

l )2ρln+1 + Cpro
0 (apro)2ρpro

n+1.(412)

It is simpler in the implementation to retain the original coordinates ρ rather than ω and

ν. In (412) above, ρn+1 = νm/
√
δ∗Γ for each species. Next, we split the gradient of the
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spontaneous curvature.

∇Cn+ 1
2

=
1

2

(
∇Cn(ωn) +∇Cm(νm)

)
,(413)

∇Cn(ωn) =
m∑
l=0

C l
0(alip

l )2∇ρln + Cpro
0 (apro)2∇ρpro

n ,(414)

∇Cm(νm) =
m∑
l=0

C l
0(alip

l )2∇ρln+1 + Cpro
0 (apro)2∇ρpro

n+1.(415)

As before, in (415) above, ρn+1 = νm/
√
δ∗Γ for each species, and similar transformations are

made for (414). Define the separation by

∇Pn+ 1
2

= ∇Pn(ωn) +∇Pm(νm),(416)

where

∇Pn(ωn) =
1

2
∇Cn −∇(HδΓ),(417)

∇Pm(νm) =
1

2
∇Cm.(418)

Now we can finally split H l
n+ 1

2

. The part that does not include any interior iterations is

defined by

H l
n(ωn) =

M lip
l

2

(
δ∗Γρ

l
n∇Pn − ρln∇Pn

)
,(419)

where ∇Pn is defined in (417). Similarly, the part involving the interior iteration in m is

H l
m(νm, ωn) =

√
δ∗Γω

l
n+ 1

2
∇Rl

n+ 1
2
−
ωl
n+ 1

2√
δ∗Γ
∇Rl

n+ 1
2

(420)

+
M lip

l

2

(
δ∗Γρ

l
n∇Pm + δ∗Γρ

l
n+1∇Pn+ 1

2
− ρln∇Pm − ρln+1∇Pn+ 1

2

)
.

These equations define the split in (402).
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This completes the terms required to solve the iterative scheme in (400). The iterative

scheme corresponding to the concentrations of the proteins are defined in a similar fashion.

We can solve (400) using Fourier transforms as before using the property (311).

The derivation of the protein concentration equations is similar, with appropriate changes

in subscripts and superscripts. The governing equation is given by

− Dpro∆t

2
∆νpro

m+1 +Kνpro
m+1 = −

(
1

δ∗Γ
+
Dpro∆t

2

∆
√
δ∗Γ√
δ∗Γ
−K

)
νpro
m(421)

− Dpro∆t

2
√
δ∗Γ

∆

(
νpro
m√
δ∗Γ

)
+
Dpro∆t√

δ∗Γ
∇ ·Hpro

m (ωn, νm) +Gpro(ωn),

where G(ωn) is defined by

Gpro(ωn) =
ωpro
n

δ∗Γ
+
Dpro∆t

2

(
∆ωpro

n −
∆
√
δ∗Γ√
δ∗Γ

ωpro
n −

1√
δ∗Γ

∆

(
ωpro
n√
δ∗Γ

))
(422)

+
Dpro∆t√

δ∗Γ
∇ ·Hpro

n (ωn).

The parameter K in (421) is given by

(423) K =
1

2

(
min

{
1

δ∗Γ
+
Dpro∆t

2

∆
√
δ∗Γ√
δ∗Γ

}
+ max

{
1

δ∗Γ
+
Dpro∆t

2

∆
√
δ∗Γ√
δ∗Γ

})
.

The higher order term for the proteins is defined similarly as well and results in

Hpro
n (ωn) =

Mpro

2

(
δ∗Γρ

pro
n ∇Pn − ρpro

n+1∇Pn
)
,(424)

where ∇Pn is the same as defined in (417). Therefore, the only differences between (424)

for the proteins and (419) for the lipids are the concentrations and spontaneous curvatures.

The interior iteration remainder term is given by

Hpro
m (νm, ωn) =

√
δ∗Γω

pro

n+ 1
2

∇Rpro

n+ 1
2

−
ωpro

n+ 1
2√
δ∗Γ
∇Rpro

n+ 1
2

(425)

+
Mpro

2

(
δ∗Γρ

pro
n ∇Pm + δ∗Γρ

pro
n+1∇Pn+ 1

2
− ρpro

n ∇Pm − ρpro
n+1∇Pn+ 1

2

)
.
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The equation for ∇Rpro

n+ 1
2

previously given by (406) needs to be updated with appropriate

changes to match the protein equation to finish the formula in (425). Finally, in the formulas

(421)-(425), the concentrations are given by

ωpro
n =

√
δ∗Γρ

pro
n ,(426)

νpro
m → ωpro

n+1 =
√
δ∗Γρ

pro
n+1.(427)

8.6. Two species model

In the numerical simulations, we solve the concentration equations for two competing

species, one diffusive, the other background. To simplify the notation, let the diffusive

species have concentration ρdif with spontaneous curvature Cdif
0 , and the background species

have concentration ρbak with spontaneous curvature Cbak
0 . Other terms are notated simi-

larly. By using a two species model, we only need to solve one governing equation, since

the concentration of the second (background) species can be computed directly from the

concentration of the diffusive species, ρbak = (1 − (adif)2ρdif)/(abak)2 according to equation

(343).

To further simplify things, we also consider only the leading order diffusive term (L,

(366)) without the correction term accounting for the size effect (R (367)); however, we

do consider the correction term accounting for the curvature effect (P (370)). With these

assumptions, the overall spontaneous curvature is now given by

C0 = Cdif
0 (adif)2ρdif + Cbak

0 (1− (adif)2ρdif)(428)

=
(
Cdif

0 − Cbak
0

)
(adif)2ρdif + Cbak

0(429)

= C frac
0 ρdif + Cbak

0 , ∀~x ∈ Ω,(430)

where

C frac
0 =

(
Cdif

0 − Cbak
0

)
(adif)2.(431)
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Note that if Cdif
0 = Cbak

0 , then (430) reduces to the constant C0 = Cdif
0 = Cbak

0 , otherwise the

spontaneous curvature is spatially dependent. The splitting of C is given by (410), where

Cn(ωn) = C frac
0 ρdif

n + Cbak
0 ,(432)

Cm(νm) = C frac
0 ρdif

n+1 + Cbak
0 .(433)

The splitting of ∇C is given by (413), where

∇Cn(ωn) = C frac
0 ∇ρdif

n ,(434)

∇Cm(νm) = C frac
0 ∇ρdif

n+1.(435)

The splitting of ∇P is still given by (416) with terms matching the forms of (417) and (418).

This leads to the splitting of the correction term, which takes the same form as (419). One

important note is that the constants defined in (381) and (382) will be different, due to the

change in (430). There is only one, and it is defined by

(436) Mdif = 2β(adif)2(Cdif
0 − Cbak

0 ).

This will affect the conservation equation in (419). The splitting of the correction term

involving the interior iteration in m is different, since the R terms are removed:

Hdif
m (νm, ωn) =

Mdif

2

(
δ∗Γρ

dif
n ∇Pm + δ∗Γρ

dif
n+1∇Pn+ 1

2
− ρdif

n ∇Pm − ρdif
n+1∇Pn+ 1

2

)
.(437)

8.7. Mass conservation

In the scheme as stated so far, there is no guarantee that the solution ρn+1 will converge

to ρ∗ for each time step t. This is because ρ̃ = ρ∗ + C for any constant C is also a solution

to (390). Therefore, the method may converge to ρn+1 = ρ∗ +C, where C is some unknown

constant. To get the desired result, we impose the conservation of the total mass on Ω. For

each time t,

(438)

∫
Ω

ρ∗(~x, t) dΩ =

∫
Ω

ρ0(~x, 0) +Dlip
l ∇ ·H l(~x, t) dΩ = M,
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where M is the total mass of the initial concentration plus the added mass due to the

source term. In other words, the mass at is conserved. This condition (438) can be enforced

using Fourier transforms, since the zero-frequency component of the Fourier transform is the

integral of a function. This fact can be seen from the definition (308) when ξ = 0.

To enforce (438), we can perform the following procedure:

(439) ρn+1(~x, t) = ρn+1(~x, t)−

∫
Ω

ρn+1(~x, t) dΩ∫
Ω

dΩ
+

M∫
Ω

dΩ
, ∀t

The final procedure is stated in Algorithm 8.1.

Algorithm 8.1 Solve equation (390) with mass conservation

1: Define initial phase field function φ0 via (291)
2: Define initial concentrations ρdif , ρbak

3: Initialize n← 0
4: for n = 0 to T do:
5: Update current time t← (n+ 1) · dt
6: Define stationary curvature term H l

n by (419)
7: Define parameter K using (399)
8: Define G(ωn) using (401)
9: Initialize m← 0

10: Initialize νm ← ωn
11: while ||νm+1 − νm||2 ≥ 10−7 do:
12: Define variable curvature term H l

m by (437)
13: Update νm+1 using (400)
14: Update m← m+ 1
15: end while
16: Update ωn+1 ← νm
17: Scale back ρdif

n+1 ← ωn+1/
√
a

18: Enforce mass conservation by (439)
19: Update n← n+ 1
20: end for

166



CHAPTER 9

Curvature-driven protein localization: numerical

results

9.1. Choosing initial conditions and delta function

In order to use the Fourier spectral method, we must use an initial condition which is

smoothly distributed along the surface. Fourier methods exhibit Gibbs phenomenon when

applied to discontinuous functions [49]. There should be no discontinuities in the distribution

of the concentration, otherwise the spectral method fails. Furthermore, in order to capture

the derivatives numerically, we need to define the surface in a narrow 3D band around the

surface, rather than a 2D sheet. If the concentration is only defined on the 2D surface, there

would be a sharp transition from outside the surface, where the concentration is zero, to on

the surface, where the concentration is nonzero. We also want this transition to be smooth.

That is, the concentration should be near zero on the outer edges of the surface band, and

positive in the center of the band, where the surface is located. We define the narrow band

as the set of points at which

(440) δ∗Γ ≥ 1 + b,

where b > 0 and δ∗Γ is given in (391). Recall that δ∗Γ is 1 outside the surface and 2 on the

surface, with a smooth but sharp transition. We propose a new delta function in addition

to those sampled in [60], defined by

(441) δΓ =


tanh(D(φ+ 1)), −1 ≤ φ ≤ 0,

− tanh(D(φ− 1)), 0 ≤ φ ≤ 1.

The parameter D is chosen to be sufficiently large. Note that this function is continuous

at φ = 0; however, it does not have a continuous derivative. But, if D is large enough, the
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effect is negligible, since sech2(D) → − sech2(−D) as D → ∞. A plot of (441) is given in

Figure 9.1 for various D.
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Figure 9.1: Plot of delta function defined by (441). Black: D = 10, Green: D = 5, Red:
D = 2, Blue: D = 1.

Throughout the results, we consistently choose D = 10 for the definition of the delta

function (441) and used a bandwidth of b = 0.5 for the surface band (440). Additionally, we

choose ε = 0.1 throughout the results as we did before, and we use a timestep of ∆t = 10−3

in each example.

9.2. Pure diffusion

We being testing our algorithm using the simplest possible case: pure diffusion without

any curvature effects. In this case, we neglect any curvature effects and follow Algorithm 8.1

with Hdif
n = Hdif

m = 0 for equations (419) and (437). Recall that there are no corresponding

Hbak
n,m terms since the concentration of the background species follows immediately from the

concentration of the diffusive species.

9.2.1. Diffusion on a sphere. For the simplest case of diffusion, we use the surface

of a sphere of radius 1 centered at the origin. We conduct our first computation over a

uniform grid of 64 × 64 × 64 points on a domain of [−π, π]3. Various cross sections of the
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delta function for this surface are plotted in Figure 9.2. Notice that there are approximately

4-5 grid points in one dimension in the narrow band of the surface with b = 0.5.
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Figure 9.2: Profile of delta function for a sphere with 64 × 64 × 64 mesh. Left: 1D profile
across the x grid points. Right: 2D profile across x and y grid points.

To create a smooth initial concentration which may be transformed accurately using

Fourier spectral methods, we define the initial concentration as follows,

(442) ρ(x, y, z, 0) = S · exp
(
−
√

x2 + y2 + (z− 1)2
)

(δΓ − b),

where δΓ is given by (441) and b = 0.5, and S is chosen so that the maximum concentration

is exactly 1. In this way, the maximum concentration is given at the north pole of the sphere,

but is smoothly distributed along the surface according to the distance away from the north

pole. Also, at the edge of the band defining the surface, δΓ = b; therefore, the concentration

smoothly transitions to 0 from the inside of the band to the outside.

We ran Algorithm 8.1 (neglecting curvature effects) using the initial condition (447).

The algorithm showed good convergence, using approximately m = 12 interior iterations at

each time step (n). Furthermore, the concentration behaves as expected, diffusing along the

narrow band around the sphere’s surface. Figure 9.3 shows these results. It is important to

note that due to the mass conservation in the narrow band, the concentration is always zero

outside of the surface band, and mass is conserved within the surface band. The bottom
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Figure 9.3: Concentration of diffusive species on surface and on a 2D cross section of sphere
governed by pure diffusion with 64× 64× 64 mesh. Times shown are t = 0, 0.1, 0.25, 0.5, 1.0,
and 5.0. Bottom two rows: the color scale changes with each picture and does not correspond
to the colorbar for the top two rows.

two rows of Figure 9.3 shows the same results along a cross section, so that the transition

through the surface can be seen.

9.2.2. Diffusion on Torus. Next, we choose a more interesting (but still analytically

defined) surface: a torus. We choose a torus because it has regions of positive Gaussian

curvature and regions of negative Gaussian curvature so that we can eventually test the
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curvature effects. The surface is defined by

(443)
(
R−

√
x2 + y2

)2

+ z2 = r2,

where R and r are the major and minor radii, respectively. The major radius R is the

distance from the center of the tube to the center of the torus, and the minor radius r is the

radius of the tube. The torus may be parameterized by θ and φ,

(444) ~x =


(R + r cos θ) cosφ

(R + r cos θ) sinφ

r sinφ

 ,

where the parameters 0 ≤ θ, φ ≤ 2π. The angle φ is the angle made from the surface to

the positive x-axis (projected on the xy-plane), and the angle θ is the angle made from the

surface the the center of the tube. We consider a ring torus, where R > r.

We need to choose the radii carefully so that enough resolution is provided for the deriva-

tives to be computed. We selected the torus with major radius R = 2.0 and minor radius

r = 1.1, solved over a grid of [−4, 4]3, beginning with a 64× 64× 64 mesh.

The initial condition is chosen to be localized at the highest point of the positive y-axis,

smoothly distributed along the surface, and smoothly distributed from the surface to the

domain. We chose for the initial condition

ρ(x, y, z, 0) = S · exp

(
−
√

x2 + (y − R)2 + z2

)
· exp

(
−2

(
r−

√
(x− cx)2 + (y − cy)2 + z2

))
.

(445)

The first exponential in (445) controls the smoothness of the concentration along the surface

of the torus, and the second controls the smoothness of the concentration from the torus to

the domain, akin to the term (δΓ − b) for a sphere. The point (cx, cy, 0) is the center of the

torus tube at a given angle φ. Finally, S is chosen so that the maximum of the concentration

is 1 on the torus surface.

The profile of the delta function for the torus is shown in Figure 9.4. The 1D cross section
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Figure 9.4: Profile of delta function for the torus with radii R = 2.0 and r = 1.1 with
64× 64× 64 mesh. Left: 1D profile across the x grid points. Right: 2D profile across x and
y grid points.

of the delta function as seen in Figure 9.4 shows that the surface is well resolved over the

y = z = 0 cross section. That is, there is a clear transition from the outside to the inside of

each ring, and the delta function settles to zero in the empty space.

The results of pure diffusion according to Algorithm 8.1 neglecting curvature effects are

presented in Figure 9.5. It is clear from Figure 9.5 that the concentration is not distributed

uniformly across the surface as expected, but seems to be stuck toward the inner ring of the

torus. This is more evident in the 2D plots along the x = 0 cross-section in the bottom

two rows of Figure 9.5. We attribute the unexpected result to numerical error due to a very

coarse mesh. The grid spacing in each dimension is ∆x = 8/64 = 0.125, which is not very

small indeed. The radius of the torus tube is r = 1.1, giving only 8-9 points from one end of

the tube to the other.
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Figure 9.5: Concentration of diffusive species on surface and on a 2D cross section of the
torus, governed by pure diffusion with 64×64×64 mesh. Times shown are t = 0, 0.25, 1.0, 2.5,
5.0, and 10.0. Bottom two rows: the color scale changes with each picture and does not
correspond to the colorbar for the top two rows.

9.2.2.1. Diffusion on torus with refined mesh. Moving to a finer mesh of 128×128×128,

we can double the number of points in the torus tube. The grid spacing is now ∆x = 8/128 =

0.0625. This is still not very small, but since the 3D computation can be very expensive

for a finer mesh, we did not increase the mesh past 128 grid points in each dimension. The

profile of the delta function for the torus with the “fine” mesh is shown in Figure 9.6.
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Figure 9.6: Profile of delta function for the torus with radii R = 2.0 and r = 1.1 under a
128× 128× 128 mesh. Left: 1D profile across the x grid points. Right: 2D profile across x
and y grid points.

The results of pure diffusion according to Algorithm 8.1 neglecting curvature effects with

the new mesh are presented in Figure 9.7. Figure 9.8 shows that the undesirable effect of

getting “stuck” in the middle of the torus is better resolved with this finer mesh.
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Figure 9.7: Concentration of diffusive species on surface and on a 2D cross section of
the torus, governed by pure diffusion with 128 × 128 × 128 mesh. Times shown are
t = 0, 0.25, 1.0, 2.5, 5.0, and 10.0. Bottom two rows: the color scale changes with each
picture and does not correspond to the colorbar for the top two rows.

Figure 9.8: Comparison of diffusion on a torus with 64×64×64 mesh (top) and 128×128×128
mesh (bottom). Time shown is t = 10.0. Notice that the effect of getting “stuck” in the
middle is reduced with the finer mesh (even though it is still not completely resolved).
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9.2.3. Diffusion on two spheres merged. Finally, we test pure diffusion on a more

interesting and more practical surface. This example illustrates the feasibility of eventually

solving the phase equation that defines the surface simultaneously with the concentration

equation. We take as a test surface the result from Algorithm 7.1 with a phase field initialized

by two spheres of radius π/4. The merging of the spheres was illustrated in Figure 7.3. We

stopped the Algorithm after t = 0.02 and used the result as the surface to test Algorithm

8.1 with pure diffusion. Using the coarse mesh of 64× 64× 64, the merged surface requires

a reinitialization of the phase function, since after advancing Algorithm 7.1, the inside of

the surface does not satisfy φ = 1 very well (see Figure 9.9). This can have detrimental
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Figure 9.9: Left: Surface given by Algorithm 7.1 from two spheres merging, stopped at
t = 0.02 with 64 × 64 × 64 mesh. Right: 1D profile of surface. Notice the dip in φ near
x = 0. While this point is clearly inside of the surface (it is the center point), 0 < φ � 1,
rendering reinitialization necessary for the mesh of 64× 64× 64.

effects when evaluating the delta function with this φ. Any input to the delta function that

is not sufficiently close to 1 or -1 is regarded as the surface band. Therefore, it is critically

important that the inside of the surface satisfy φ ≈ 1 sufficiently close, and the outside

of the surface satisfy φ ≈ −1 sufficiently close, so that none of these positions are treated

as surface points. A reinitialization of the tanh(·) profile of the phase field φ is performed

before running Algorithm 8.1. There are many methods of reinitialization, most employ a
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reinitialization to a signed distance function by solving the equation

(446)
∂d

∂t
= sign(d0)(1− |∇d|).

This equation penalizes any deviation of the signed distance function d from satisfying the

Eikonal equation |∇d| = 1, while preserving the original sign convention of d0. The function

sign(d) is the sign function that is positive 1 when d > 0, negative 1 when d < 0 and

zero when d = 0. There are other methods that preserve the profile by coupling the phase

equations with an energy penalty for the deviation of |∇d| from 1 [63, 103]. These methods

do not require reinitialization.

In efforts for something simpler, the reinitialization we chose is briefly described as follows.

We define a temporary function ψ to be 1 if φ ≥ 0 and 0 otherwise. This may be thought

of as a heat source that is located on and inside of the surface. Then, we solve the heat

equation ∂ψ/∂t = Dh∆ψ for a few time steps, where Dh > 0 is the diffusion coefficient.

There will be some level set of ψ close to but less than 1 that will define the new surface.

There may still be a slight dip in ψ in the center, since less “heat” is diffusing from the

center. Therefore, we scale the result by ψ1 = tanh(ψ+ 3). This also makes the profile more

like the original tanh(·) profile. Then we perform a linear scaling so that −1 ≤ ψ1 ≤ 1.

This ψ1 defines the new phase field function. Note that the longer time the heat equation is

solved, the smoother the profile, however a profile that is too diffusive may be very different

from the original phase field function. We want a profile smooth enough to include points in

the transition from inside to outside, yet we want it to maintain the tanh(·) shape. Figure

9.10 shows the profile after reinitialization, using spectral methods to solve the heat equation

with Dh = 1 and ∆t = 10−3, for a total of 7 time steps.

With the reinitialized phase field function, we ran Algorithm 8.1. We used the initial

concentration similar to (447), but modified so that the concentration would be localized

toward the north pole of the leftmost sphere. The two phase field function was created from

two spheres of radius r = π/4, each initially displaced by π/4 + 0.025 from the origin on

either side. Therefore, the new initial condition is given by (neglecting the 0.025 separation
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Figure 9.10: Left: Reinitialized surface with 64×64×64 mesh. Right: 1D profile of reinitial-
ized surface. In comparison with Figure 9.9, the profile is certainly better maintained, but
the resolution along the transition region is sacrificed. This is intuitive since the transition
region is sharper.

and any slight variations due to the merging process),

(447) ρ(x, y, z, 0) = S · exp

(
−
√(

x +
π

4

)2

+ y2 +
(

z− π

4

)2
)

(δΓ − b).

Again, S is chosen so that the maximum concentration is 1. The profile of the delta function

for the reinitialized surface is shown in Figure 9.11.

The results of the pure diffusion algorithm on the reinitialized surface and the z = 0 cross

section are shown in Figure 9.12. One may notice some small patches of higher concentrations

in the final figure, making the final distribution not perfectly uniform. This is a numerical

artifact and can be resolved with a finer mesh, or better reinitialized surface φ. It is important

to keep in mind that the mesh size using 64 grid points over 1 dimension on [−π, π] results

in a spacing of ∆x = 2π/64 ≈ 0.1.
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Figure 9.11: Profile of delta function across x with y = z = 0 for two spheres surface
(reinitialized) with 64× 64× 64 mesh. Left: 1D profile across the x grid points. Right: 2D
profile across x and y grid points at z = 0.

Figure 9.12: Concentration of diffusive species on reinitialized surface and on a 2D cross
section of two spheres merged, governed by pure diffusion with 64 × 64 × 64 mesh. Times
shown are t = 0, 0.1, 0.25, 1.0, 2.5, and 5.0. Bottom two rows: the color scale changes with
each picture and does not correspond to the colorbar for the top two rows.
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9.2.3.1. Diffusion on two spheres with refined mesh. We now move to results on a finer

mesh, using 128× 128× 128 grid points. We find that the merged spheres surface does not

exceed the domain [−2, 2]3, therefore we restrict Ω = [−2, 2]3 to reduce the grid spacing even

further. The spacing between nodes is now ∆x = 4/128 = 0.03125 in each dimension. We

find that after advancing the phase field on this new domain with the new mesh, reinitializa-

tion of the profile was not as essential as before, and possibly unnecessary, as seen in Figure

9.13. With even further resolution of the mesh, reinitialization should be unnecessary.
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Figure 9.13: Left: Surface given by Algorithm 7.1 from two spheres merging on Ω = [−2, 2]3

with 128 × 128 × 128 mesh, stopped at t = 0.02. Middle: 1D profile of surface. Right:
Reinitialized profile of surface. Note that reinitialization is not as dramatic as in the 64 ×
64× 64 mesh.

The profile of the delta function for the surface under the “fine” mesh is shown in Figure

9.14. Upon inspection of the delta function profile in Figure 9.14, it seems that a better

choice for the domain is slightly greater than [−2, 2]3, so that the tails of the delta profile are

flat, giving no contribution to ∆
√
δ∗Γ in the algorithm, a term that appears in the diffusion

equation (400). Unfortunately, time did not permit such a numerical test, but this should

be done in the future.
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Figure 9.14: Profile of delta function (441) for the (reinitialized) two spheres surface with
128× 128× 128 mesh. Left: 1D profile across the x grid points. Right: 2D profile across x
and y grid points.

We use a consistent initial condition as (447), delta function (441), and bandwidth b = 0.5

for the 128×128×128 mesh. The results of pure diffusion on the surface and along the z = 0

cross section are presented in Figure 9.15. In spite of the restrictive domain, the pure diffusion

algorithm performed quite well. We note, however, that a careful choice of parameters was

made to find such good results as those in Figure 9.15, and slight perturbations from these

parameters results in unexpected behavior. In many cases, the concentration seems to be

“stuck” in the center of the two spheres merged, much like what occurred in Figure 9.5.

Again, this should be resolved with either (i) a larger domain than [−2, 2]3 giving the delta

function space to settle to zero, or (ii) a finer mesh.
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Figure 9.15: Concentration of diffusive species on surface and on a 2D cross section of two
spheres merged, governed by pure diffusion with 128 × 128 × 128 mesh. Times shown are
t = 0, 0.1, 0.25, 1.0, 2.5, and 5.0. Bottom two rows: the color scale changes with each picture
and does not correspond to the colorbar for the top two rows.

9.3. Curvature effects

Now we test our full algorithm by including the curvature effects. That is, we give the

full version of Algorithm 8.1, and the correction terms Hdif
n and Hdif

m are given by (419) and

(437). We choose the same delta as defined in (441) with D = 10 and b = 0.5 consistently.

9.3.1. Curvature effects on a sphere. We begin with the simple test case of cur-

vature effects on a sphere of radius 1 centered at the origin. We solve this consistently on a

grid of [−π, π]3 and a mesh of 64× 64× 64 for comparison. Analytically, a sphere has mean

curvature H = 1/r everywhere, where r is the radius of the sphere. This is exactly what we

find when we plot the mean curvature given by the formula (294). A plot of the numerical

mean curvature is given in Figure 9.25.

Since the mean curvature is constant everywhere along the sphere, we should expect a

uniform distribution of the concentration for the equilibrium solution. Actually, the final
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Figure 9.16: Mean curvature of a sphere with 64 × 64× 64 mesh. Top: 1D cross section of
delta function used to scale mean curvature. Bottom: 1D cross section of mean curvature of
a sphere, scaled by the delta function.

result should be even better than regular diffusion: since the mean curvature is smoothed

out by the delta function, the concentration will prefer positions where the curvature is

closest to 1/r = 1, which occurs in the center of the surface band. By setting the diffusive

species to have spontaneous curvature Cdif
0 = 1 and the background species to have curvature

Cbak
0 = 0, we see exactly this. The plots of a 2D cross section are more revealing than the

surface visualization, since they show the preference of the diffusive species to the center of

the band, where the curvature is 1. These plots are shown in Figure 9.17. Compared to the

bottom two rows of Figure 9.3, the concentration of the diffusive species aggregates to the

center of the band, which is desirable for the narrow band method. Pure diffusion should

push the concentration away from the source, which causes leakage into the domain. This

curvature preference actually resists this numerical artifact, keeping the concentration near

the center of the narrow band.

On the other hand, if we set the diffusive species to prefer curvatures away from 1, the

concentration will try to escape the center of the band, rather than be attracted to it. Let

Cdif
0 = 0 and Cbak

0 = 1. On a sphere, the diffusive species has nowhere to travel to satisfy the
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Figure 9.17: Concentration of diffusive species along the surface of sphere under diffusion
with curvature effects using 64 × 64 × 64 mesh. The diffusive species prefers the curvature
Cdif

0 = 1.0 and the background species prefers the curvature Cbak
0 = 0. The curvature is

exactly 1 in the center of the band. Times shown are t = 0, 0.01, 0.1, 0.25, 0.5, and 1.0. The
color is scaled by the maximum concentration in each plot.

curvature penalty except toward the domain, where H = 0. But, due to the conservation of

mass, the diffusive species must stay inside the band. Figure 9.18 shows the results.

Figure 9.18: Concentration of diffusive species along surface of sphere under diffusion with
curvature effects using 64×64×64 mesh. The diffusive species prefers the curvature Cdif

0 = 0
and the background species prefers the curvature Cbak

0 = 1. The curvature is exactly 1 in
the center of the band. Times shown are t = 0, 0.01, 0.1, 0.25, 0.5, and 1.0. The color is
scaled by the maximum concentration in each plot.
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9.3.2. Curvature effects on a torus. Now we move to a more interesting example

of the torus, where the surface has variable curvature. We choose the same parameters

consistently for the torus as with the diffusive case. Analytically, the mean curvature of a

torus is given by

(448) Htorus =
R + 2r cos θ

2r(R + r cos θ)
,

where R, r, and θ are given in the parameterization (444). At the outer ring of the torus

(with φ = 0), θ = 0. Therefore the mean curvature is Htorus ≈ 0.6158. (On the other end

when φ = π, the outer ring has angle θ = −π, and the signs cancel to give the same mean

curvature, as expected by symmetry.) The outer ring is also a region of positive Gaussian

curvature, since both principle curvatures are directed toward the center of the torus (in the

same direction). At the inner ring of the torus, θ = π (with φ = 0), and Htorus ≈ −0.1010.

The inner ring is also a region of negative Gaussian curvature, since one principle curvature

is directed toward the center of the torus and the other is directed away from the center of

the torus. Numerically, a 1D cross section of the mean curvature is shown in Figure 9.19.
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Figure 9.19: Mean curvature of a torus with 64 × 64 × 64 mesh. Top: 1D cross section of
delta function used to scale mean curvature. Bottom: 1D cross section of mean curvature of
a sphere, scaled by the delta function.
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The plot matches the analytical values at the positions of the inner and outer rings well;

however, some oscillation of the mean curvature is observed elsewhere in Figure 9.19. This

is because the mean curvature H is approximated by equation (294), which depends on the

phase field function φ at all level sets, and not just on the surface φ = 0. The nonphysical

values of H are supposed to be scaled away by the delta function, but with this coarse of a

mesh, the delta function is not exactly zero in these regions. With a refined mesh, the mean

curvature should be better resolved.

To drive the diffusive species to the outer ring and the background to the inner ring, we

set the spontaneous curvatures Cdif
0 = 0.5 and Cbak

0 = −0.1, shown in Figure 9.20. Recall

Figure 9.20: Concentration of diffusive species on the torus governed by diffusion with cur-
vature effects using 64× 64× 64 mesh. The diffusive species prefers the curvature Cdif

0 = 0.5
(located on the outer ring) and the background species prefers the curvature Cbak

0 = −0.1
(located on the inner ring). Times shown are t = 0, 0.1, 0.25, 0.5, 1.0, and 5.0. The color is
scaled by the maximum concentration in each plot.
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that under pure diffusion, the diffusive concentration tended toward the inner ring due to

numerical error (see Figure 9.5). The curvature effect has this numerical error working

against it. The curvature preference overcomes this. It is easy to see in Figure 9.20 the

preference of the diffusive species toward the outer band.

Reversing the curvature preference, we now solve the equation with the diffusive species

C0 = −0.1 and the background species Cbak
0 = −0.1. This is more like the motivating

application of the M2 protein, preferring regions of negative Gaussian curvature (see Figure

8.3). The plots of the concentration with these curvature preferences together with the

corresponding cross sections are shown in Figure 9.21.

Figure 9.21: Concentration of diffusive species on the torus governed by diffusion with curva-
ture effects using 64× 64× 64 mesh. The diffusive species prefers the curvature Cdif

0 = −0.1
(located on the inner ring) and the background species prefers the curvature Cbak

0 = 0.5
(located on the outer ring). Times shown are t = 0, 0.1, 0.25, 0.5, 1.0, and 5.0.

187



9.3.2.1. Curvature effects on torus with refined mesh. Next, we move to the 128×128×128

mesh. The plot of the mean curvature is resolved better when compared to that for the

64× 64× 64 mesh (recall Figure 9.19). The mean curvature with the new mesh is given in

Figure 9.22.
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Figure 9.22: Mean curvature of a torus with 128× 128× 128 mesh. Top: 1D cross section of
delta function used to scale mean curvature. Bottom: 1D cross section of mean curvature of
a sphere, scaled by the delta function above as in (370). Note the better resolution compare
to Figure 9.19.

Figure 9.23 shows both the concentration on the surface and the corresponding x = 0

cross section. The diffusive species prefer the outer ring of the torus.
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Figure 9.23: Concentration of diffusive species on the torus governed by diffusion with curva-
ture effects using 128×128×128 mesh. The diffusive species prefers the curvature Cdif

0 = 0.5
(located on the outer ring) and the background species prefers the curvature Cbak

0 = −0.1
(located on the inner ring). Times shown are t = 0, 0.1, 0.25, 0.5, 1.0, and 5.0. The color is
scaled by the maximum concentration in each plot.

Reversing the curvature preferences, Figure 9.24 shows the concentration on the surface

and the corresponding x = 0 cross section if the diffusive species prefers curvature toward

the inner ring.
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Figure 9.24: Concentration of diffusive species on the torus governed by diffusion with curva-
ture effects with 128×128×128 mesh. The diffusive species prefers the curvature Cdif

0 = −0.1
(located on the inner ring) and the background species prefers the curvature Cbak

0 = 0.5 (lo-
cated on the outer ring). Times shown are t = 0, 0.1, 0.25, 0.5, 1.0, and 5.0.

9.3.3. Curvature effects on two spheres merged. Finally, we run diffusion with

curvature effects on the surface given by two spheres merged as the finale of the thesis. Since

the 64× 64× 64 mesh required reinitialization, we skip this choice and move straight to the

128× 128× 128 case (without reinitialization).

The plots of the mean curvature for the two spheres merged are given for two 1D cross

sections in Figure 9.25. The first plot is the cross section across x, with y = z = 0, traversing

the length of both spheres. The second plot is the cross section across z, with x = y = 0,

traversing the location of the merge. The mean curvature across the x-direction appears

to be very well controlled, with a maximum mean curvature of H = 1.27, and the mean
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Figure 9.25: Mean curvature of two spheres surface with 128×128×128 mesh. Left: 1D profile
across x-dimension. Right: 1D profile across z− or y− dimension (they are symmetric).

curvature is smoothly distributed across this dimension. However, the mean curvature does

rise to H = 0.05 in the center of the sphere (where there is no surface). Because we did

not reinitialize the surface, the delta function is greater than zero even in the very center of

the surface. This can be seen in both plots, but it is more noticeable in the second mean

curvature plot, since the maximum mean curvature across z is H = 0.128. The nonzero mean

curvature along the interior of the surface is due to numerical error in the phase function,

as seen in Figure 9.13. Even though there is only a slight “dip” in φ in the interior of the

surface, this error is propagated when the delta function is computed in equation (441).

Nevertheless, this is the surface we have to work with under the current resources.

We first set the diffusive species to prefer the curvature Cdif
0 = 1.25 and the background

species to prefer the curvature Cbak
0 = 0.1. This should drive the concentration toward the

outer edges of the surface. The results are seen in Figure 9.26.
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Figure 9.26: Concentration of diffusive species on two spheres merged governed by diffusion
with curvature effects using 128×128×128 mesh. The diffusive species prefers the curvature
Cdif

0 = 1.25 (located on the outer edges) and the background species prefers the curvature
Cbak

0 = 0.1 (located at the point of merging). Times shown are t = 0, 0.01, 0.1, 0.2, 0.4, and
0.5.

Finally, we reverse the curvature preferences and set Cdif
0 = 0.1 and Cbak

0 = 1.2. The

diffusive species will prefer the region of the neck of the two spheres under these parameters.

We note that in this region, the Gaussian curvature is negative, since the surface is a saddle

here. This is exactly the feature we hope to capture with this model, matching the observa-

tion of the M2 protein [88]. The results are presented in Figure 9.27. Eventually, the model

should be extended so that the shape may change along with the concentrations. Under

the last set of parameters corresponding to Figure 9.27, the diffusive species aggregated in a

necking region of the surface. This model successfully reproduced curvature-driven protein

localization and is a promising start to many other applications.
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Figure 9.27: Concentration of diffusive species on two spheres merged governed by diffusion
with curvature effects using 128×128×128 mesh. The diffusive species prefers the curvature
Cdif

0 = 0.1 (located at the point of merging) and the background species prefers the curvature
Cbak

0 = 1.25 (located at the outer edges). Times shown are t = 0, 0.001, 0.005, 0.01, 0.02,
and 0.1.
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CHAPTER 10

Conclusions and future work

In this thesis, we have presented the mathematical theory and computational models for

electromechanical and curvature-driven flows in lipid bilyaer membranes. In Chapter 1, we

reviewed the biophysical background of lipid vesicles and motivated a need for continuum

models. The rest of the thesis was organized into three sections: mechanical flows for lipid

membranes, electrostatic flows for lipid membranes, and curvature-driven flows for lipid

membranes.

In Chapters 2-4, we model mechanical flows for lipid membranes by numerically solving

the shape equation using a surface harmonic parameterization [72]. Our method drastically

reduced the degrees of freedom compared to alternative approaches and produces results

which are physically relevant.

In Chapters 5 and 6, we model electrostatic flows for lipid membranes by computing

the electrostatic force on the membrane with techniques from shape calculus [73]. We ex-

tended the computation for protein-solvent systems to include electrostatic contributions

from charged lipids in a membrane-protein-solvent system. This work has a natural ex-

tension and coupling to the first project. It would be convenient to minimize the total

electromechanical energy, expressed as a sum of equations (54) and (203), using the efficient

surface harmonics parameterization and algorithm from Chapter 3. The variation of the

electrostatic force is computed in local Cartesian coordinates in Chapter 6, rendering the

numerical computation of the membrane shape from this force less efficient than the compu-

tation of the shape from the mechanical force. Furthermore, the electrostatic force is defined

on each leaflet of a bilayer membrane, whereas the mechanical force in Chapters 2-4 is com-

puted on a sharp-interface surface. To account for these differences, we first assemble the

electrostatic potential energy on a mid-plane of the membrane. This mid-plane corresponds

to surface Γ on which the mechanical energy is computed. Then, we perform a change of
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coordinates on the electrostatic force given by equation (245) by a transfer matrix,

(449)
δG

δ~a
=
δG

δ ~X

δ ~X

δ~a
.

In the equation above, the variation of the electrostatic potential energy (245) is expressed

as δG/δ ~X, emphasizing that the computation is performed locally. With the variation in

terms of the surface harmonic coordinate system, Algorithm 4.1 can be extended to include

the electrostatic force.

In Chapters 7-9, we model curvature-driven flows for lipid membranes by solving a phase

field equation for the membrane shape and a diffusion equation for the flow of membrane con-

stituents. Chapter 7 reviews and reproduces existing phase field models of vesicle membranes

[28]. Then, Chapters 8 and 9 extend this framework to solve a curvature-driven diffusion

equation on vesicle membranes in a novel way. The results are presented for curvature-driven

diffusion on a fixed boundary; however, the mathematical framework is provided to compute

curvature-driven diffusion on a moving boundary. Since the numerical methods for the mem-

brane shape in Algorithm 7.1 and the numerical methods for the curvature-driven diffusion

equations in Algorithm 8.1 consistently use Fourier spectral methods, the two models can be

coupled using the techniques developed in Section 8.4.1. This will be our next project, and

we expect very exciting results. We hope to capture the dynamic effects of curvature-driven

diffusion on a moving interface, where the protein location contributes to the movement of

the vesicle shape.

Other extensions to the curvature-driven model of Chapters 8 and 9 may also be made.

We presented results for a single diffusive species, but the model allows for multiple diffusive

species. The additional computational cost is linear with each additional species, since each

additional diffusive species requires solving one additional diffusion equation. In addition,

a spatially variable diffusion coefficient D may be introduced to our model. This addition

should not pose a significant challenge, since the spatially dependent delta function is already

handled. Finally, the electrostatic energy may be added to this model. To accomplish this,

the dielectric permittivity should be defined as a continuous function of φ. We suggest the
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function

(450) ε(φ) =


39 ·

(
1− tanh

(
φ+ 0.5

ε

))
+ 2, φ ∈ [−1, 0],

39 ·
(

1 + tanh

(
φ− 0.5

ε

))
+ 2, φ ∈ [0, 1].

This function has the following properties. In the solvent, when φ ≈ ±1, ε(φ) = 80, but in

the membrane, ε(φ) sharply drops as −1 < φ < 1 so that in the middle of the membrane,

ε(0) = 2. The head groups of the lipids are assumed to be positioned at φ = ±0.5. Since

tanh(−x) = − tanh(x), the function is also continuous at the interface. A plot of (450) is

shown in Figure 10.1 with ε = 0.01. The electrostatic potential energy may be defined as
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Figure 10.1: A plot of the dielectric permittivity as a function of φ, (450), with ε = 0.01.

Eelec =

∫
Ω

(
− 1

2
ε|∇Ψ|2 +

r∑
i=1

zion
i eρion

i Ψ +

(
zproρpro +

m∑
l=1

zlip
l ρ

lip
l

)
eΨ

)
dx,(451)

where ε is the dielectric permittivity, Ψ is the electrostatic potential, zion
i and zlip

l are the

valences of the ions and lipids respectively, and e is the elementary charge. The inclusion of

the electrostatic potential energy will require the numerical solution of the Poisson equation

for Ψ,

(452) −∇ · (ε∇Ψ) =
r∑
i=1

ρion
i qion

i +
m∑
l=1

ρlip
l q

lip
l + ρproqpro.
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The diffusion (electrochemical) potentials should be updated as well with the additional

energy. With these additions, electrostatic forces may be included to the diffuse-interface

model.
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