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ABSTRACT 

 

FLUX BALANCE ANALYSIS OF METABOLIC MODELS: A REVIEW OF RECENT  
 

ADVANCES AND APPLICATIONS 
 
 
 

Genome-level reconstructions of metabolic networks have provided new insight into the 

cellular functions of many organisms. These metabolic models are massive constructs, often 

including thousands of metabolic and transport reactions and metabolite species for even the 

most basic organisms. Construction of these models has typically involved an initial genomic 

analysis to identify known genes or genes with homologous structures for which the function 

may be inferred, followed by an intensive process of literature searching and experimental 

validation to refine the model. A number of automated algorithms have been developed to assist 

with this process. Once the model has been constructed, optimization techniques are applied to 

predict the distribution of fluxes through the reaction network. The systems then studied by FBA 

are generally static systems, assumed to be operating at a steady state, and thus constrained by 

the stoichiometries of the reactions rather than the kinetics. While these assumptions have shown 

to be valid under select laboratory conditions, evidence indicates that most organisms are not 

always at this steady state. A number of model improvements have been considered to bring 

predicted results more in line with experimental data, including the addition of regulatory 

controls, more detailed incorporation of thermodynamics, and the consideration of metabolite 

pool and flux data from metabolomics and labeled carbon studies, respectively. The improved 

predictive capabilities of these models readily find application in metabolic engineering in the 

custom strain design of organisms. Often this purpose is the production of some valuable 
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bioproduct. This review seeks to give overview the advances made on both the model 

construction and application ends, with particular emphasis on model improvements via more 

complex constraints and the incorporation of experimental data. 
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INTRODUCTION 
 
 
 

The metabolic systems of living organisms are quite complicated, being composed of a 

myriad of enzymes capable of catalyzing a number of different reactions. The increased use of 

bioinformatics to analyze complete genomes is allowing biologists to begin developing full 

system models of many organisms’ metabolic networks. These models seek to include all 

chemical reactions occurring within the organism, their compartmentalized location within the 

cellular organelles, and the transport reactions both between intracellular compartments and 

between the organism and its environment. With over 1,200 metabolic and transport reactions 

occurring in simple unicellular organisms such as E. coli [1] , transient modeling of these 

systems is generally too computationally intensive to be feasible. Further, it is difficult to 

determine the in vivo reaction rates with much confidence, and intracellular metabolites are often 

present at such low concentrations that their accurate measurement is equally questionable. Flux 

Balance Analysis (FBA) is a modeling technique that helps to work around these issues. 
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CHAPTER 1 – WHAT IS FLUX BALANCE ANALYSIS? 

 

 The Basic Assumptions 

A general overview of how a metabolic network is analyzed using FBA is illustrated in 

Figure 1 [2]. A set of ordinary differential equations describing cellular metabolism can be 

formed from the knowledge of the reactions involved. These equations take the following form: 

= ∑ = ∑ �� ∏ �� 

Here, the time dependent concentration of species i is the sum of the n associated reactions’ 

fluxes (aivi), defined as the product of the reaction rate constant kj and the m stoichiometrically 

weighted species also involved in the reaction. These equations involve a number of difficult to 

measure kinetic constants [3], and the complexity of these systems would require a 

computational solution.  

 
Figure 1: Constructing a metabolic model by (a) formulating a representation for the 
metabolic network and (b) converting the network into a set of differential equations 

 
Flux balance analysis simplifies this problem by assuming that nature has over time 

optimized life towards some evolutionary goal. Further, it is assumed that at this optimum an 

organism behaves as if it were at steady state. This leads to the assumption that the internal 

metabolites, when in constant environmental conditions, will be at a pseudo steady state, being 
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produced and consumed at approximately the same rate [2]. The distribution of metabolites in 

this system is then only constrained by the stoichiometries of the reactions.  

This reduces the set of transient ordinary differential equations to a set of linear algebraic 

equations, the solution of which is well studied. This simplified set can be represented in matrix 

form as Sv=0. Here, S is a matrix of the stoichiometric reaction coefficients, and v is a vector of 

the associated reaction fluxes [2]. A “growth equation” is included in this set of reactions to 

represent the final consumption of metabolites necessary for cell replication. Additional 

equations are included to represent the uptake of nutrients and the excretion of certain molecules 

to the extracellular space. These equations together constrain the flux of metabolites through the 

network of reactions [4]. As there are many more reactions than there are metabolites, the system 

of equations is said to be underdetermined. To solve this system for a unique solution requires 

measuring enough of the specific metabolite fluxes to constrain the system [2]. It is difficult to 

accurately measure these low concentration metabolites, so the assumption that life is optimized 

towards some goal is applied again.  

 

Flux Balance Analysis, Model Solution by Optimization 

This correctly implies that the mathematical techniques of optimization can be used to 

determine a unique solution. Optimization seeks to maximize (or minimize) an objective function 

by manipulating certain variables within the bounds of some constraints. The desired 

information is often both the optimum value of the objective function and the values of the 

variables that define the optimum state.  

The metabolic model is easily translated to this framework. Written explicitly in 

optimization terms, the general problem appears as follows: 
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The variables solved for are the fluxes through each metabolic and transport reaction. Constraints 

take the form of both equality and inequality equations. The stoichiometric limitations (S) of the 

reaction network are represented as equality constraints. This includes all metabolic reactions 

and the growth reaction. Inequality constraints can be used to represent feasible upper and lower 

bounds on the system, or to limit specific reaction fluxes. Examples of these constraints include a 

maximum feasible substrate uptake rate or a minimum flux through an energy consumption 

equation representing maintenance energy required for cellular functions other than growth. The 

objective function is generally defined to maximize the growth rate. This assumption is derived 

from the idea that, over time, the fastest growing organisms eventually dominate a population, so 

the model should be directing metabolite flux in such a way to allow the fastest growth. Other 

objective functions such as maximizing production of energy or of some desired product have 

also been used. 

At the base level, the metabolic model used for flux balance analysis is composed of all 

linear equations, so linear programming (LP) techniques can readily be applied to solve for a flux 

distribution. Additional details such as regulatory effects can introduce nonlinearities or on/off 

decisions, requiring nonlinear programing (NLP) or mixed integer programing (MILP/MINLP) 
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to solve. There are a number of useful programs available to aid in performing FBA, including 

the algebraic modeling software GAMS [5] and the COBRA Toolbox for Matlab [6] [7]. 
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CHAPTER 2 – METABOLIC MODEL: CONSTRUSCTION AND REFINEMENT 

 

Initial Model Development 

 Feist et al. have published a thorough review on the construction of metabolic network 

models. For all enzymes involved in metabolism the following information is required [8]: (a) 

what reaction(s) the enzyme catalyzes, (b) the reactants, products, and related stoichiometries for 

each associated reaction, (c) the reversibility of the reaction, and (d) the cellular compartment in 

which the reaction is localized. Transport reactions, both for cellular uptake and excretion as well 

as for transport between the cellular compartments, must also be identified. This includes passive 

transport through membrane diffusion and through pores in addition to active transport by 

membrane proteins [2]. 

Annotated genomic sequences are generally good initial resources for information 

regarding enzymes present in an organism. Though some enzymes identified in the genome 

sequence may be well studied, many will not. Homology searches comparing unknown genes to 

genes coding known enzymes in other organisms can help indicate which are most likely to be 

involved in metabolism [2]. Some useful databases of genomic and metabolic information are 

listed in Table 1 [3], and Tomar et al. give a short description of many of them in their review on 

system construction [9]. 

It is important to note the relationships from genes to enzymes to reactions when 

developing the model. Reaction rules provide the framework for connecting genes to reactions 

based on the enzymes they encode. These rules are defined by Boolean statements that relate the 

expression of individual genes to the presence of the reaction in the network. The basic reaction 

rule is a one to one true/false connection between a gene and the reaction the associated enzyme  
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Table 1. Useful resources for constructing and analyzing a metabolic network. [3] 

 

performs. Therefore, when that gene is expressed in the organism, the reaction is present in the 

model, and when the gene is not active (due to transcription regulation or genetic modifications 

such as a knockout or mutation), then that reaction is absent from the model. When multiple 

enzymes perform the same reaction on the same substrate in the same cellular compartment, they 

are called isozymes. The presence of an isozyme is indicated in that reaction’s rules by an “or”  

statement, so the reaction is included in the model network whenever any single gene is present, 

or multiple of the isozymes’ coding genes are present. The remaining reaction rule deals with 

enzyme complexes. Enzyme complexes are a multimeric construction of individual proteins 

which together perform a specific function. The functional activity of a complex is inhibited 

(completely or significantly) when any of its subunits are absent. This feature of enzyme 
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complexes is captured by an “and” statement in the associated reaction rule. This means that that 

reaction requires all of the associated enzymes to be expressed in order for it to be included in 

the model. More complicated reaction rules can be seen when enzyme complexes are isozymes 

for other proteins. 

The reactions identified in the initial search outline the process of substrate uptake from 

the surroundings, catabolism of that substrate into intermediate metabolites, and the anabolism of 

those metabolites into biologically necessary molecules. An organism cannot simply accumulate 

these end metabolites indefinitely, and once sufficient reserves of the necessary components are 

available to the organism, it will reproduce. This process is represented in the model by a 

biomass reaction equation which consumes a stoichiometric ratio of key end metabolites such as 

proteins, nucleic acids, lipids, and other components [4].  

Developing a biomass equation begins with an analysis of the macromolecular biomass 

components just mentioned to determine the mass fractions of each macromolecule relative to 

the dry weight of the biomass. Next, the macromolecules are broken down into the metabolites 

necessary to synthesize them. For example, DNA is broken into the individual nucleic acids and 

proteins are broken down to their constituent amino acids. These metabolites are represented in 

the growth equation as being consumed from their general pools [8]. This base equation is then 

expanded to include the energy required to synthesize the biologically necessary macromolecules 

as a part of the cellular maintenance energy. Further requirements for various vitamins or 

cofactors necessary for growth can be included [10]. The importance of determining an accurate 

biomass equation cannot be stressed enough, as growth rate is one of the primary phenotypic 

indicators for quantifying the performance of the model. 
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Though genomic data provides a framework for the metabolic model, there will be many 

areas that require manual refinement. Homology searches may match the coded enzyme to its 

function, but many enzymes with the same enzyme commission (EC) number have different 

activities, substrate specificity, or compartmentalization within a specific organism. Other genes 

may have been misidentified, leading to network gaps, where certain pathways are missing key 

components, or synthetic pathways which are not actually present. A thorough literature search 

for enzyme information specific to the organism of interest is a first step towards correcting 

some of these errors [8]. 

 

Model Improvement by Experimental Validation 

The most common indicators that a model contains an error are growth prediction 

inconsistencies. These are cases where, for a specific set of conditions, the model growth 

prediction is contradictory to experimental results. When the model predicts growth but there is 

no growth experimentally (G/NG), there are typically additional reaction(s) included in the 

model that are not actually present. Similarly, NG/G inconsistencies can indicate network gaps 

that must be closed with additional reactions to bring the model more closely in line with reality. 

Records of tested experimental growth results as well as those found in the literature should be 

kept judiciously, and all changes to the model verified against these experimental results. If a 

model modification would cause a NG/NG result to become a G/NG (or a G/G become a NG/G), 

the question must be asked if the modification is not truly reflective of the metabolic mechanism, 

or if the experimental results were due to subpar technique or some other experimental factor. 

The first experimental conditions that are relatively straightforward to verify in the model 

using FBA are growth on different substrates. This is implemented in the model by manipulating 
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the bounds on the various exchange reactions representing substrate uptake. For example, to 

simulate growth on sucrose exclusively, the bounds on the sucrose uptake reaction would be set 

to some physically realistic level (often determined through experimentation) while the bounds 

for all other substrates would be set to zero: 

 �_� ��  − ; �_� �   �_ ��  ;  �_ �   �_ ��  ;  �_ �   

The lower bounds are set to a negative number when representing cellular uptake. This is 

because exchange reactions are represented in most models as a conversion from intracellular to 

extracellular species: �  ↔ � �� 

so allowing the flux through that reaction to fluctuate negatively models the organism having the 

option to utilize that substrate.  

This does not ensure that the simulation will indicate growth, as there must be a path for 

that substrate to be converted into each of the necessary biomass precursors. There must also be 

a path that consumes all additional metabolites produced in those necessary reactions, or the 

model will not predict flux through those paths. This is because these “dead end” metabolites 

would accumulate until reaching a level dangerous for the organism. GapFind and GapFill are 

algorithms available to identify these dead end metabolites and to determine the minimum 

number of model modifications necessary to reconnect that metabolite with the rest of the 

network, respectively [11]. The four modifications considered by the GapFill algorithm are 

reversing the directionality of reactions, adding reactions known to exist in other organisms 

found in various databases, adding additional extracellular uptake reactions, or by adding 
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transport reactions between intracellular compartments. Both algorithms use binary variables, 

GapFind to indentify if a metabolite has reactions leading to and away from it and GapFill to 

indicate whether or not a particular change should be made to the model. This changes the 

problem into a mixed-integer linear program (MILP). When these algorithms were applied to E. 

coli and S. cerevisia models it was found that changing reaction directionality was the primary 

mechanism used to fix model gaps [11]. SMILEY, a similar algorithm that only focuses on 

adding metabolic or transport reactions, was used by Reed et al. to identify two new enzymatic 

activities and four transport functions that were missing in their current E. coli model [12]. 

Zamorrodi et al. outline additional algorithms that attempt to reconcile growth prediction 

inconsistencies in their review [13]. 
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CHAPTER 3 – MODEL EXPANSIONS 

 

Detailed Thermodynamics 

 The thermodynamic consideration of metabolic models has typically been simplified 

down to the reversibility of the reactions. The inclusion of more complex thermodynamic 

constraints has been able to correct model predictions in many cases.  

 Beard et al. made an analogy to Kirchoff’s Laws for electrical circuits to impose 

additional thermodynamic constraints. Here, they considered the chemical potential change of 

each reaction to be analogous to an electrical potential difference across a circuit element. Thus, 

the chemical potential changes along any closed reaction loop in the system must sum to zero for 

the loop to be feasible. This eliminates thermodynamically infeasible cycles from the flux search 

space. The chemical potential constraints are nonlinear, however, and thus do not ensure a 

unique solution [14]. 

 Realistic reversibility constraints were later introduced by Hoppe et al. by relating the 

change in Gibb’s free energy for the reaction to the specific metabolite concentrations. The 

process requires knowledge of the metabolite pool sizes associated with the reaction. From this 

knowledge, the actual reversibility of the reaction could be determined. Variable reversibility 

constraints were able to explain why certain predicted nonessential genes were in fact essential 

[15]. 

 

Regulatory Controls and Dynamic Simulations 

Though regulation plays an important role in cellular operations, it has previously been 

typically neglected in FBA [2]. The absence of regulatory control has in the past limited the 
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predictive capabilities of metabolic models [16]. This trend is changing as we gain more insight 

into cellular metabolism. 

Early regulation constraints introduced to metabolic models took the form of Boolean 

operators to represent flux constraints due to transcriptional regulation associated with specific 

environmental conditions [17] [18]. For a given initial condition, the Boolean rules determining 

the expression of each gene would be evaluated. A standard FBA is then performed under the 

constraints imposed by the regulatory model, and from those results a new set of environmental 

conditions is determined. The process then iterates through the regulatory model using the new 

environmental conditions until a state of agreement between the regulatory and metabolic 

systems is reached. This reduces the feasible space of reaction fluxes by eliminating a large 

number of the extreme pathways from consideration [19]. By cycling between the two models, a 

simulation of a time course of transcriptional events can be produced. This method has been used 

to predict the transcriptional regulation process of E. coli growth on glucose-lactose substrate 

[18], the repression of amino acid and other catabolite pathways [17], and to identify new 

regulatory mechanisms in S. cerevisiae using experimental growth data [20].  

 The diauxic shift in E. coli was also used to compare two methods of dynamic simulation 

when under the control of transcriptional regulation. The static approach divided the time period 

of interest into discreet blocks, performing a FBA for each block and integrating the results 

across the full range, similarly to the method explained above. A dynamic optimization approach 

based on nonlinear optimization of a set of ODEs was shown to be more flexible with respect to 

the introduction of experimental data, and but was much more computationally involved due to 

the nonlinearities [21]. 
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 Covert et al. later introduced ODEs to their regulatory mechanism in the form of a 

carbohydrate uptake control model. This model demonstrated the framework for how available 

kinetic information can be incorporated into a metabolic model. They used this integrated flux 

balance analysis (iFBA) model to better predict the diauxic shift of E. coli in nearly 25% of the 

334 single knockout mutants examined [22]. 

 An automated regulatory-metabolic network generator called probabilistic regulation of 

metabolism (PROM) was developed to integrate high-throughput data available into a genome-

scale, constraint based regulatory network. This process requires a fully reconstructed metabolic 

network, a structure of the regulatory network including transcription factors and their targets, 

and a significant amount of gene expression data under various environmental conditions and 

gene knockouts. Reconstructions of E. coli and M. tuberculosis using the PROM process 

predicted lethal knockout phenotypes with up 95% accuracy [23]. 

 

Alternative Objective Functions 

 Growth rate is often taken as the phenotype for which the organism is optimized [4]. This 

has shown to give predictions consistent with experimental data for both wild type [24] and 

knockout mutants [25] [26] under laboratory conditions. E. coli has also shown to evolve to 

match predicted growth rates when grown on a substrate like glycerol for which it had not 

previously adapted [27]. While this further confirms that life can optimize itself towards some 

goal, it also indicates that any given organism could be operating at a suboptimal level, or could 

be working towards some optimum other than growth rate.  

While evolutionary pressure eventually moves an organism’s metabolism towards an 

optimum, much of the useful work of metabolic engineering alters the network without waiting 
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generations for the organism to readapt. Minimization of metabolic adjustment (MOMA) reflects 

this by using quadratic programming to minimize the variation in flux distribution relative to the 

wild type, growth optimized flux distribution. MOMA has shown to give more accurate 

predictions for knockout strains relative to FBA [28]. 

A number of other alternative objective functions have been used. Maximization of ATP 

production has proven effective for modeling mitochondrial metabolism [29] [30]. Maximizing 

cellular energy efficiency can be accomplished by either minimizing the redox potential or by 

minimizing the production of ATP [31]. The objective function can also be set to maximize the 

production of a metabolite of interest. 

The inclusion of metabolic flux data can also help to improve the accuracy of model 

predictions. As mentioned, optimization is used to identify the flux distribution that maximizes 

the given objective function. This is necessary because there are a large number of feasible 

distributions through the network that satisfy the stoichiometric constraints. Measurement of 

certain fluxes, such as the uptake of substrate from the media or the excretion of various products 

can be readily performed. For the difficult to measure intracellular fluxes, the radioactive carbon 

isotope 13C can be used to elucidate the intracellular flux distribution [32], as shown in Figure 2 

[33]. 

 To this end, the cells are grown on a labeled substrate until they reach a steady growth 

rate. Enough time is allowed to pass for the labeled carbon to be fully integrated through the 

amino acid synthesis pathways and distribute throughout the organisms’ proteins. Mass 

spectroscopy or nuclear magnetic radiation techniques are then used to measure the distribution 

of 13C throughout the proteins. A model of the flux distribution can then be generated from this 

data. The distributions determined by the labeled carbon experiment can then be used to further  
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Figure 2. Overview of estimating a metabolite flux distribution using 13C analysis [33] 

refine the metabolic model. In particular, the flux distribution can be used as input for a MOMA 

objective function, reducing the deviation of predicted fluxes from wild type [28]. A similar 

algorithm, regulatory on/off minimization (ROOM), minimizes the total number of fluxes that 

are changed from the wild type [34].  
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CHAPTER 4 – FLUX BALANCE ANALYSIS APPLICATIONS 

 

Identifying “Essential” and “Synthetic Lethal” Genes 

A common use for FBA is the determination of “essential” genes and “synthetic lethal” 

gene pairs. Essential genes are those that are required for cell growth. To determine essentiality, 

each gene is “knocked out” in turn and a FBA is performed on the new reaction network. If the 

predicted growth rate for the knockout model is low, often taken between 0.1 and 1e-9 of the 

wild type growth rate, that gene which was knocked out is designated an essential gene. 

Synthetic lethal gene pairs are sets of two genes which, when knocked out individually, do not 

stop cellular growth, but do stop growth when both are knocked out. Synthetic lethals are 

determined in a similar manner to essentials. Typically a single gene deletion is first performed 

to determine the full set of essential genes. Then, starting from the set of non-essential genes, 

each pair is sequentially removed and an FBA is performed, using the same criteria for lethality 

as for essentiality. Theoretically, synthetic triples and other higher order gene sets could be 

determined the same way, but for full metabolic networks this process quickly becomes 

computationally prohibitive [13]. 

 

Maximizing Production of Biomolecules 

One of the primary goals of metabolic engineering is to manipulate an organism to begin 

producing or to over produce a product of interest. FBA lends itself to this task readily, giving 

rapid insight into the effect of a wide range of metabolic engineering tools, including reaction 

knockouts and alternative path analysis, the addition of non-native reaction pathways, and up or 

down regulation of certain genes [35]. 
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Gene knockouts are an effective strategy to maximize the production of a molecule of 

interest. They are often implemented to eliminate competing pathways that use the same 

precursor metabolites as the target compound. As chemical accumulation cannot occur in a 

system growing at steady state, increasing those metabolite precursor pools leads to increasing 

the driving force through the desired reaction. It should be evident that when designing knockout 

strategies, prior knowledge of the essential and synthetic lethal genes greatly reduces the number 

of unfruitful attempts which result in no cell growth. 

 The OptKnock algorithm is used to design knockout strategies for the overproduction of 

a metabolite of interest [36]. It operates using a bi-level optimization program which seeks to 

maximize both growth rate and metabolite production simultaneously. When identifying genes 

for deletion, the program seeks ways of fixing the production of the target metabolite to the 

production of biomass precursors. In other words, when the biomass precursor is produced, the 

metabolite must also be produced due to stoichiometric constraints. The OptForce algorithm, 

also developed by Maranas and coworkers, uses a similar bi-level optimization framework to 

identify schemes for product maximization that involve both the up- and down-regulation of 

genes in addition to knockouts [37]. Table 2 presents many similar optimization algorithms 

available for performing metabolic manipulations [13]. For a thorough review of these 

algorithms, see Zomorrodi, 2012. 

One recent application of manipulating the existing metabolic network was the reversal 

of the β-oxidation cycle in E. coli by Gonzalez and coworkers [38]. This cycle is natively the 

process by which long chain fatty acids are broken down into small chain metabolites which the 

cell can use for the construction of other biomolecules. Here, the authors found manipulations 

that allowed the cycle to function in reverse, using two carbon sugars to construct long chain 
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Table 2. Algorithms for the targeted redesign of reconstructed metabolic networks [13] 

 

hydrocarbons. This was done using a combination of targeted gene knockouts of competing 

pathways and some genes involved in metabolite regulation, over and under expression of certain 

enzymes to maximize the short chain carbon precursor pool (to maximize the driving force 

through the reversed cycle), and the introduction of select non-native termination enzymes to 

pull finished products from the cycle. These termination enzymes added a modular dimension to 

the process, giving the ability to generate different functional products of different chain lengths 

dependent upon the specific termination enzyme expressed. This procedure showed both the 

novel ways in which the native components of an organism can be manipulated towards some 

goal, and the introduction of non-native enzymes to a host for additional functionality. 
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CHAPTER 5 – MODEL LIMITATIONS AND FUTURE EXPANSIONS 

 

 There are a number of areas related to the analysis of organisms by FBA that continue to 

be refined. The availability of high-throughput data analysis to analyze genomic information is 

allowing metabolic networks to be constructed for a number of organisms. Due to incomplete 

data or inaccurate annotations, these reconstructions continue to have many errors. Careful 

experimental studies and judicious record keeping are essential to the development of accurate, 

applicable, and distributable metabolic models. 

 Currently, most analysis of these models uses a static picture of the network to gain 

insight into how the organism functions. Some expansions on traditional FBA have been made 

which begin to predict the dynamic functions of some organisms [19] [20] [22], but these are 

largely limited in scope. Many organisms, such as photosynthetic autotrophs, do not operate at a 

constant steady state. Rather, they alternate through a range of operational modes as they 

transition through their light and dark reaction cycles. A better grasp on these dynamics will 

greatly boost the predictive capabilities of the related models. 

 Related to the cyclical nature of some organisms is the need to identify more 

representative objective functions. The maximization of biomass has been shown to apply to 

some organisms, but only for constant laboratory settings after enough generations have been 

exposed to that environmental condition to evolutionarily adapt to it. Work has been ongoing to 

attempt to identify what classes of objective functions best apply given specific circumstances, 

often incorporating experimental data in the search for more applicable objective functions [39] 

[40] [41]. 
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CONCLUSION 

 

 The application of Flux Balance Analysis to stoichiometric metabolic models has shown 

to have useful predictive capabilities for a number of areas. As additional information such as 

regulatory controls and more realistic thermodynamic considerations are included, these 

predictions are becoming more more accurate. The incorporation of experimental data is 

essential to identifying areas for improvement in the model. The rapid increases of computational 

power seen in recent years also lends itself to more complex methods of analysis, and many 

algorithms have been developed to assist in model development, refinement, and analysis. The 

versatility of FBA and related techniques make these constraint based analysis an appealing 

starting point when designing metabolic engineering strategies for organisms used in 

bioprocesses.  
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