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d x ,  f)=z Ile(x, 0, 0 1 1 .  

Comrnenrs 

a) A symmetrical control structure for p(x, t )  is implied by (10). This 
more restrictive constraint, in comparing with [7] and [8], arises since 
only some functional properties on +(.) are assumed and utilized. A 
particular example of (10) is 

b) The condition on the uncertainty as shown in (3) is sometimes 
referred to  as a matching condition [8]. Discussions on mismatched 
uncertainty are in [4], [ 131, [ 141. 

c)  The practicality of (A.3) is preempted by the matching condition. 
This is so, since one can always choose an asymptotically stable nominal 
part f1 (x, t )  and then assume 

f(x, t1 -h  (X, t )  E ~ ( B ( x ,  t ) )  (12) 

where U i  @(x, t ) )  denotes the range space of B(x, t). 
d) As an example, if y(llull) = b llull q,  b > 0, q > 1, then $ ( p )  = 

Proof of Theorem: As a consequence of the Carathedory assump- 
tions on the functions on the right-hand side of (3), one  can readily show. 
using elementary results from the theories of continuous and measurable 
functions, that 

( p / b )  m -  11, 

g(x, 0, 1) B f(x,  t)+B(x,  t)b(p(x, f), 0, t)+B(x, t)e(x, 0, r )  
(13) 

is Caratheodory . Hence,  the global existence property is met [IO], [ 1 11. 
For a given d-), the Lyapunov derivative C ( . ) :  R" X R + R for the 

closed loop system is given by 

Furthermore. $ ( p ) p >  0 whenever I(pl(  > E .  We also note that a # 0, 
since 1) > E. and u # 0. since )I u )I = $ ( p )  > 0. If ( 1  p(I 5 E, suppose 
Q # 0 and u # 0. and consider u and a such that u(J a )I = - )I u IIa. Then 
u = - ( II u 1 1 / 1 1  a IDQ and 

Clearly, if u = 0,  (aV/ax)B@J = 0 since Q(0, u, t )  = 0, and if a = 0, 
(aV/ax)Bd (aV/ax)Be = 0. Thus, if llpll > E ,  by (A.3), 

and if 11p)) 5 E ,  u # 0, Q # 0, 

Consequently, for all (x, t )  E R" x R, 

0s -r3(llxll)+f. (21) 

Practicd stability then follows [7], [8] by selecting _aS to be the closed 
ball, centered at x = 0, with radius S = (y ; I  0 y2,)(S), S 2 y;l(~),  e 
to be the closed ball, centered at x 0, with radius r ,  and 

r 

Moreover, if (B is the closed ball around x = 0 with radius s > (y ; I c 

YZ,)(S), then 
, 

This paper shows that the assumption that the uncertain nonlinear 
system should be with linear input for stabilization [7], [SI is not 
necessary. In actual design, the amplitude of the control may be 
constrained. and hence, +(.) is  of saturation type. This will therefore 
bring an amplitude limit on the uncertainty. Otherwise, only local 
performance (e.g.. local uniform boundedness) can be assured [13]. 
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polynomial are  introduced. The relative efficiencies of these methods are 
compared to  that of Faddeeva's method. An efficient method is then 
chosen which can be used to compute  the coefficients of the characteristic 
polynomial with a minimum number of multiplications. 

I. INTRODUCTION 

In solving theoretical and practical problems associated with systems 
described by a 2-D state-space structure [l], one often needs to determine 
the coefficients of the relevant characteristic polynomial. This is 
particularly important in analyzing the performance of a 2-D system by 
determining system's sensitivity to the variations of its parameters [2]. 

In the I-D case: there  are several methods and algorithms available for 
the temporal case [3] that differ in the amount of computations and the 
amount of computer storage required. These methods compute the 
coefficients of the characteristic equation by expanding the secular 
determinant into a polynomial of degree n. 

The  2-D extension of Faddeeva's algorithm [3] is presented by Koo and 
Chen [4]. This algorithm relates Roesser's 2-D state-space model to  the 
corresponding transfer function of the system. As a result, this method 
computes both the denominator and the numerator coefficients of the 
transfer function. In [j] a formula is given which makes use of this 
algorithm to obtain the transfer function of a 2-D system directly in terms 
of the state transition matrix and the characteristic polynomial. Although 
the Faddeeva method serves  as a useful tool for translation from state- 
space structure to transfer function representation, the total number of 
computations grows largely with the  order of the  system. In particular, 
this method becomes very inefficient if only the coefficients of the 
characteristic polynomial are  to be obtained. 

Two different methods have been introduced in this paper that provide 
significant reduction in the amount of computation required. The 2-D 
extension of Krylov's method [3] is the aim of the first method. This 
method, which makes use of the 2-D Cayley-Hamilton theorem, reduces 
the problem of finding the Coefficients of the characteristic polynomial to 
the solution of a system of linear equations that can be performed using 
standard techniques such as the Gaussian elimination method. In the 
second method, the idea is to compute the relevant coefficients by finding 
a sufficiently large number of the numerical values of the secular 
determinant and then solving a number of standard systems of linear 
equations. This method offers significant reduction (particularly for large- 
order systems) in  the total number of multiplications, when compared to 
the Faddeeva and the Krylov extensions. A comparison between the 
aforementioned methods has been made which reveals the effectiveness of 
the proposed methods. 

11. 2-D SYSTEM TRANSFER FUNCTION MATRIX 

Consider a linear time-invariant (LTI) discrete-time 2-D system 
described by Roesser's state-space model [ I ] .  as follows: 

where u E R I and y E R represent the input and output, respectively; 
x h  (i, j )  E R" I and x' (i, j )  E R"2 are  the horizontal and the vertical 
state vectors, respectively: and A I ,  A*, A; ,  All, Bl, B2, C,, and C2 are 
constant matrices of appropriate dimensions. 

Equation (1) can be expressed more compactly: 

X ' ( i ,  j ) = A X ( i ,  j ) + B u ( i ,  j )  (2a) 

where the local state X E R", n e  nl + n2 and 

Taking the (2 ,  w)-transform of (1) yields the  transfer function 

H ( z ,  U J ) = C [ S - A ] - ' B  

where 

75 

S=zI, ,  @ wIn2 

and e denotes the direct sum of matrices; Inl and In* are identity matrices 
of size nl and n2, respectively. To determine H ( z ,  w), let 

where 

D(Z ,  w)=Det [S-AI  

i = O  ,=O 

and 

E(z,  w)=Adj [ S A ]  

where aU's are the coefficients of  the characteristic polynomial, and 6 , ' s  
are n X n constant matrices. Note that = 1 and Fo0 = 0. The 
computation of the coefficients ad's and matrices F,,'s can be carried out 
efficiently using the  2-D extension of Faddeeva's method [4]. The total 
number of multiplications for this algorithm is found to be 

NF= (n1 +n2)'(nl+ I)(nl+ 1). (7) 

For nl = n2 = 1, 2, . . ., 10, the second column of Table I gives the 
total number of multiplications, A$, required to  evaluate.the coefficients 
of the characteristic polynomial. This method is particularly useful for 
translation from a state-space structure to a transfer function representa- 
tion. However, this technique becomes inefficient, if only the characteris- 
tic polynomial should be determined. 

In the sequel, two different methods have been introduced which 
provide more efficient means of computing the coefficients of the 
characteristic polynomial. 

111. 2-D EXTENSION OF KRYLOV'S METHOD 

Using the  2-D Cayley-Hamilton theorem [I], the partitioned matrix A 
satisfies its own characteristic equation, i.e., 

where the state transition matrix A',' is defined as follows: 
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where 

Now, let us take  an  arbitrary nonzero matrix 

where the constituent column vectors y:", (i = 0 ,  1, . . . , n )  has [l + 
n l n 2 / ( n l  + n2)] elements  (the quantity in the  square bracket must be 
rounded up to the next integer above its value). Postmultiplying both sides 
of (8) by Yo." yields 

where 

for p=O, 1 ,  ..., n,, q = O ,  1, ..., n2.  

Using the definition of A'.' in (9), we have 

yP.q=AI.OyP-l.q+AO.I y p . 4 - 1 .  (1 1) 

As a result, matrices YP@s can recursively be computed from (1 1). 
Having determined these matrices from (1 1) and writing (lo) in the form 
of a system of linear equations, we obtain 

$ 2 f f l i Z ( n l - , l . ( n 2 - j )  = - znI .n2 

I=o J - 0  
i + J # o  

where 

Thus, the problem of finding the coefficients CY~.~'s of the 2-D characteris- 
tic polynomial by the Krylov extension reduces to solving the linear 
system of (12): whose coefficients are computed from (1 1). Note that the 
coordinates of the initial vector Zo3O are arbitrarily chosen. Moreover, 
vectors Z'J for (0,  0) 5 (i, j )  5 (n,, n2),  (i, j )  # (n, ,  n2) form  a basis 
for  a complete space, and (12) shows the linear dependency of vector 
Z" I ."2 on all the basis vectors. In this case. the minimum polynomial of 
the matrix coincides with the characteristic polynomial and system (12) 
has a unique solution and its roots cyij can be computed by standard 
methods such as the Gaussian elimination technique. If system (12) does 
not have a unique solution. which occurs because Z'-j's are linearly 
dependent, it  is possible to obtain, in place of the minimum polynomial, 
some divisors of it [3]. It is obvious that in this case some roots will be 
lost. The problem of finding the divisors in the 2-D  case is complicated 
[6]. The degeneracy may be avoided by changing the initial vector. 

The total number of multiplications required to compute YP.4 matrices 
is 

N l = ( n l + n 2 + n l n 2 ) ( n l + n 2 ) 2 [ 1 + n l n 2 / ( n l + n 2 ) l .  (134 

If the Gaussian elimination algorithm is used  to solve (12), forward and 
back substitution require, respectively, 

TABLE 1 
NUMBER OF MULTIPLICATIONS FOR DIFFERENT METHODS 

n1.b NF Y Y 

(1.1)  36 47 38 
(2.2) 585 524 251 
(3.3) 3472 3085 872 
(4,4) 12825 10084 2229 
(5.5) 36036 30  135 4746 
(6.6) 84721 67976 8943 
(7.7) 175680 151053 15436 
(8.8) 33  1857 282680 24937 
(9.9) 583300 530607 38254 

(10,lO) 968121 685620 5629 1 

multiplications and divisions. Therefore,  the total number of multiplica- 
tions and divisions for this method is 

N K = N I + N ~ + N ~ .  (13~)  

This is tabulated, for the same values of n, and n2, in the third column of 
Table I. As can be seen, the 2-D extension of Krylov's method reduces the 
computational effort by 10 percent, when compared to that of Faddeeva's 
algorithm. 

N .  A N  EFFICIENT ALGORITHM 

The secular determinant D(u, u )  can also be expanded by finding a 
sufficiently large number of its numerical values. Setting u = 0 and u = 
0, 1, . * , nz successively, gives 

= D(0, 0 )  

Similarly for u = 1 and u = 0, 1, . . . , n2. we have 

[ Y 0 n 2 + ( Y l n 2 + ( Y 2 n 2 +  ..' +cy"l.2=D(1, 0) 

and 

where 
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and 

p ~ ~ ' = a o , + a l i + ~ . . + f f n l ,  

for i = 0, 1, . . . , n2 - 1. The same  procedure can be repeated for u, 
taking successive integer values up to n,, Le., 

aOnln;I+al.2n;l-1+...+a.1"2=D(n,, 0) 

and 

where 

and 

Having found the set  of vectors P C ] )  . . . P ( n l ) ,  the coefficient a i s  of the 
characteristic polynomial can  then be computed using the following set of 
systems of linear equations. 

r,,e; = qo 

where 

where 

- - 111 

Repeating the same  procedure finally results in 

rn1eL2 = *,, 

, * I =  

Note that anII in is computed via (14). As a consequence, the 
coefficient ail can be computed by first finding (n, + + 1) 
numerical values of D(u,  u )  and then solving systems of linear equations 

Assuming that the Gaussian elimination technique is employed to solve 
(14)-(16)+ a significant saving in the number of multiplications may be 
achieved in the forward substitution step, since matrix rn2 is common to 
all of these systems. In this case,  a total of 

(14)-(19). 

M I  =nz(n2 + 1)(2n2 + 1)/6 + n;(nl + 1) (20a) 

multiplications and divisions is required. Similarly, to solve systems (17)- 
(19),  a total of 

Mz =nl(n l  + 1)(2n1 + 1)/6 + n:(nz+ 1)  (20b) 

multiplications and divisions is required. 

of D(u, u ) .  This requires a total of 
Gaussian elimination can also be used to evaluate the numerical values 

M3 = (n ,  + l)(n2 + I)(n, + n2)(nl + n2 + 2) (20c) 

multiplications and divisions. Thus, the total number of multiplications 
for this method will be 

NE=MI+Mz+M;. (20d) 

The numerical values of NE are reflected in the fourth column of Table 
I. As can be seen, this method offers  great reduction (approx. 90 percent) 
in the total number of multiplications, when compared to Faddeeva's and 
Krylov's extensions. 

V. CONCLUSIONS 

Two different methods for finding the coefficients of the characteristic 
polynomial of 2-D discrete time-systems have been introduced. A 
comparison of the relative effectiveness of these methods is made based 
on the total number of multiplications required. The second method 
proposed in this paper is shown to provide a very efficient means of 
computing the relevant coefficients, for systems with any order. 

REFERENCES 

[ I ]  R. P. Roesser. "A discrete  state-space  model for linear  image  processing," IEEE 

[2] P. N. Paraskevopoulos and B. G. Mertzios.  "Sensitivity  analysis of 2-D 
Trans. Automat.  Contr., vol.  AC-20.  pp. 1-10, Feb. 1975. 

[3] D. K. Faddeev  and V .  N. Faddeeva, Compurarional Methods of Linear 
systems," IEEE Trans. CircuirsSysl.. vol. CAS-28.  pp.  833-838.  Aug. 1981. 

[4] C.  A. Koo and C.  T.  Chen, "Faddeeva's  algorithm  for  spatial  dynamical 
Algebra. San  Francisco,  CA:  Freeman.  1963. 

[5] B. G. Mertzios  and  P. N. Paraskevopoulos.  "Transfer  function  matrix of 2-D 
equations." Proc. I€€E. pp. 975-976,  June  1977. 

[6] N. K. Bose, Applied Mulridimensional Systems  Theory. Princeton,  NJ: Van 
systems," IEEE Trans. Auromar.  Conrr., vol.  AC-26,  pp.  722-724.  June  1981. 

Nostrand  Reinhold.  1983. 

A Control Scheme for a Class of Discrete  Nonlinear 
Stochastic Systems 

ENGIN YAZ 
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discrete-time,  nonlinear stochastic systems  where  the  nonlinearity  in- 
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