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Abstract-How accurately can deterministic modes be iden­
tified from a finite record of noisy data? In this paper we
answer this question by computing the Cramer-Rae bound on
the error covariance matrix of any unbiased estimator of mode
parameters. The bound is computed for many of the standard
parametric descriptions of a mode, including autoregressive and
moving average parameters, poles and residues, and poles and
zeros. Asymptotic, frequency domain versions of the Cramer­
Rao bound bring insight into the role played by poles and zeros.
Application of the bound to second- and fourth-order systems
illustrates the coupling between estimator errors and illumi­
nates the influence of mode locations on our ability to identify
them. Application of the bound to the estimation of an energy
spectrum illuminates the accuracy of estimators that presume
to resolve spectral peaks.

I. INTRODUCTiON

DETERMINISTIC modal analysis techniques are used
to identify the mode parameters 9 in the model

y = x(9) + n (1.1)

wherey = [Yo Yl ... YN-lf, x(9) = [xo Xl •••

XN-lf, and n = [no nl ... nN_d T are the measure­
ment data, modal signal, and noise, respectively, The
modal signal x(9), parameterized by 9, can be modeled
as a sum of damped sinusoids (modes), or equivalently,
as the deterministic impulse response of an ARMA sys­
tem of the appropriate order. The ARMA system can, in
tum, be parameterized by its AR and MA coefficients,
poles and zeros, poles and residues etc. The Cramer-Rao
(CR) bound, regardless of the representation utilized,
provides an effective measure for evaluating estimators of
modal parameters. The purpose of this paper is to derive
the CR bounds for this model and to provide general al­
gorithms for their computation.

There is now a comprehensive literature that is ad­
dressed to the problem of identifying modes and the pa­
rameters that describe them. The literature begins in 1795
with the work of Prony [1] and proceeds to the reduced­
rank linear prediction techniques of Tufts and Kumaresan
[2]-[4]; the least squares (or maximum likelihood) tech­
niques of Evans and Fischl [5], Kumaresan, Scharf, and
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Shaw [6], and Bresler and Macovski [7]; the MUSIC
methods of Bienvenu and Kopp [8] and Schmidt [9]; and
the matrix approximation methods of Kung [10] and Roy
and Kailath [11]. But, in spite of the bounds computed in
[2], [12]-[14], and the widespread use of the CR bound
in the literature, no comprehensive study of performance
bounds for deterministic modal analysis, with an ARMA
model, has been published.

Our purpose in this paper is to compute Cramer-Rao
bounds on the accuracy with which mode parameters may
be identified, regardless of the technique used to identify
them. The bounds depend only on the information that the
data itself carries about the parameters. This information
is quantified by the Fisher information matrix. Thus our
program is to compute the Fisher information matrix for
the AR and MA coefficients of an ARMA (p, P - 1) unit
pulse response that is observed in additive white Gaussian
noise over a finite interval of time. Then, using a trans­
formation formula, we derive the Fisher information ma­
trix for any other equivalent description of the impulse
response. When the description is given in terms of poles
and residues, then the corresponding parameters are the
amplitude, damping coefficient, frequency, and phase for
each mode of the unit pulse response. When the obser­
vation time is infinite, then the Fisher matrix has a fre­
quency domain interpretation in which spectra and cross­
spectra playa role. All these formulas may be generalized
to account for shaped inputs and colored noise.

In the last few sections of this paper we apply our for­
mulas to second- and fourth-order systems in order to ana­

'Iyze the effect of closely spaced modes on our ability to
identify them. We find, for example, that identification
errors are correlated so that the high-frequency modula­
tion associated with the average frequency of two closely
space modes is well approximated at the expense of poor
estimation accuracy for the low-frequency difference (or
beat) frequency between the modes.

II. STATiSTiCAL PRELIMINARIES

In this section we intend to provide some background
material related to CR bounds and their application to lin­
ear models. The first section is used to state the CR bound
for a general estimation problem and shows how sensitiv­
ity matrices are incorporated in this result. Next we dis­
cuss concentration ellipses and their properties and show
how they can be used to investigate estimator perfor­
mance. The remaining sections are used to introduce some
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tributed as N[O, C]:

A 1
fdO) = (2'lIy/2(det C)1/2

. exp [-~ (0 - O)TC-I(O - O)} (2.5)

The random variable r~ = (0 - 0) T C -I (0 - 0) is dis­
tributed as a chi-squared random variable with p degrees
of freedom. The probability that r~ < r 2 would be deter­
mined by integrating the X~ density from 0 to r 2. The
volume of Euclidean p-space for which r~ ~ r 2 is defined
as the volume of the ellipsoid described by

r~ = (0 - O)TC- I (0 - 0) ~ r2• (2.6)

For p even, the volume of the ellipsoid is

(7r)p/2
Vc = Vp(det C)I/2 r P; Vp = (p/2)!' (2.7)

The diagonal elements of the covariance matrix Care
(2.2) just the variances for the estimators of the parameters {}i'

By Hadamard's inequality

ag T(O)

aoT = T(O)

where

general forms of the Fisher information matrix when a
linear data model is assumed.

The Cramer-Rao bound is used to lower bound the sec­
ond order moments of any parametric estimator. A gen­
eral form of the CR bound can be derived by considering
the following estimation problem. Given a data record y,
we wish to build an estimator g(y) to estimate the vector
function y = g (0). Let the Fisher information matrix for
the parameter set 0 be 1(0) and assume that it is invert­
ible. Assume that the estimator g(y) is unbiased and de­
note the estimator covariance matrix as Cg = E[ (g( y) ­
g(O))(g(y) - g(O))T). The CR bound for the estimator
g( y) is given by [14] .

A. Cramer-Rao Bounds

where e and C are the following (2 XI) error vector and
(2 x 2) covariance matrix

e = [el e2]T

This formula indicates that we want the volume of the
ellipsoid to be small, since this volume in some sense
measures estimator quality. The CR bound for unbiased
estimators states that C ;::= J - 1 and this relation implies

Vj~1 = Vp(det J-I)I/2 r P -s Vc, (2.9)

In other words, the Fisher information matrix for an es­
timator 0 generates the smallest achievable concentration
ellipsoid [14]. Not only is the volume Vj-I less than the
volume Vc, but the ellipsoid rj-I = (0 - olJ(O - 0) -s
r 2 is entirely contained by the ellipsoid rc.

Concentration ellipses can also be used to investigate
the interaction of estimator errors. The interaction be­
tween any two errors e. = (0· - (}.) and e, = (0· - (}.)

I I I J J J
may be observed by taking a two-dimensional slice of the
concentration ellipsoid as depicted in Fig. 1. The solid
ellipse in this figure is the ellipse rc and the dotted ellipse
is rj~ I. The boundaries of the ellipse rc are described by

(2.8)

(2.10)

P

c« = II var (Oi)
i=1

p

V~ -s V~ II var (Oi)'
i= 1

p

det (C) -s II
i= 1

which implies that for r =

where

a[g-I(o)]T
S(y) = a'Y T- 1(0 = «' (y)) (2.4)

and g - 1 ( y) denotes the inverse map from the parameter
set y to the ARMA parameters O. We use (2.3) and (2.4)
to compute the Fisher information matrix for the pole­
residue and pole-zero parameterizations. Equations (2.1)
and (2.2) are used to compute the CR bound for unbiased
estimates of the energy spectrum.

B. Error Ellipses

J(y) = S(y)J(O = g-I (y))ST(y) (2.3)

The transformation T merely measures the effects that
variations in 0 have on the function g (0). Accordingly,
we shall refer to matrices of the form in (2.2) as sensitiv­
ity matrices. This result states that we can compute the
Fisher information matrix for any function of the param­
eter set 0, from the "base" Fisher information matrix
J (0). In this paper we consider the ARMA parameter­
ization to be the' 'base" parameter set for modal analysis
problems because, as we will show in Sections III, the
finite and asymptotic forms of the ARMA Fisher infor­
mation matrix are computationally tractable and intuitive.

The Fisher information matrix for any equivalent pa­
rameter set y can be obtained by letting y = g(O) where
ocontains the ARMA parameters, and g(O) is the invert­
ible map from the ARMA coefficients to the alternate pa­
rameters. In this instance the sensitivity matrix T is in­
vertible and the Fisher information matrix for the equiv­
alent parameters y is [14]

To provide an introduction to error ellipses, consider a
p-dimensional unbiased estimator 0 that is normally dis-

(2.11)
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e(1)

Fig, I, Concentration ellipses.

The Fisher matrix for the linear separable model, assum­
ing R = (J2 I, is [14]

1 [HTJ 1 [HTH HTKJ
l(b, a) = 2" T [H KJ = 2" T KTK(J K (J KH

[

T T' J= ~ {hi hj } {hi kj }

(J2 {kThj } {kTkj } . (2.16)

In this formula, hTkj is the (i, j) element of the northeast
block, and so on. The matrix inversion lemma for parti­
tioned matrices may be used to invert Lib, a) and obtain

r: (b, a)

= (J2 [[HT(l- PK)Hr
1

F J
F T [KT(I - PH)Kr l

(2.17)
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H = [h;];

K = [k;];

ax
hi = abo

I

ax sn
k, = -a = -a b.

a, a,
(2.15)

(2.18)

(2.19)

F = -H#K[KT(I - PH)Kr l

= -[HT(I - PK)Hr l (K#H{

where

and K# and H# are the Moore-Penrose pseudoinverses of
K and H. The matrices PKand PH are projections and are
constructed as PK = KK# and PH = HH#. This result
shows that the error covariance matrix for unbiased esti­
mators of the parameters a and b in the separable linear
model is bounded as follows:

C(b) = E[b - b][b - bIT

;::= (J2[H T(I - PK)Hr l ;::= (J2[H THr 1

C(a) = E[a - a] [a - af
;::= (J2[KT(I - PH)Kr 1 ;::= (J2[KTKr 1

•

and we have let e, = el and ej = e2 for convenience. In
the figure, the northeast coordinate of the rectangle that
encloses the ellipses is «(JI, (J2)' These coordinates are just
the prior (or marginal) variances of 01 and O2, The inter­
cepts with the eland e2 axes are (J 1(l - P 2) 1/2 and (J2 (l
- P2)1/2. These intercepts are just the posterior (or con­
ditional) variances of 01 given O2 and vice versa. If the
estimator errors el and e2 are uncorrelated then the axes
of the ellipse are just the el and e2 axes. Of course the
orientation of the bounding ellipse rJ-1 may be different
than the ellipse rc unless the estimator is efficient. In Sec­
tion V we use concentration ellipses to observe the effects
of mode spacing on the variance of any efficient estimator
of mode parameters. The ellipses exhibit properties which
provide additional insight into the interaction of estima­
tion errors. We will defer the discussion of these proper­
ties until Section V.

(2.12)

C. Linear Model

When the measurements y = x + n consist of a deter­
ministic signal x observed in additive Gaussian noise n:
N[O, R], then the Fisher information matrix is [14]

(
ax T) (ax T)TleO) = aa R- 1 aa .

The rightmost lower bound g is the CR bound when the
subspaces (H) and (K) are orthogonal. The formulas of
(2.19) generate a wealth of geometrical insights into CR
bounds. For example, the variance of bi depends on the
angle that the rank 1 subspace (hi) makes with the sub­
space (H\h i , K). The geometry of the CR bound is ex­
plored in detail in [18].

This formula forms the basis for the derivation of the
Fisher information matrix for data with structured means.
When the signal x obeys the linear, separable model

where a and b are components of the parameter vector OT
= [bTaT], then the matrix ax Tj ao is

aaxo
T

_ [axTjabJ _ [HTJ (2.14)
ax Tjaa KT

x = Hb; H = H(a) (2.13)

III. FISHER INFORMATION'MATRIX FOR ARMA

PARAMETERIZATION

In this section we calculate the Fisher information ma­
trix for the ARMA parameterization of the deterministic
modal signal in (1. 1). The majority of the literature on
CR bounds for modal analysis uses the pole-residue char­
acterization for the modal signal. We advocate the ARMA
parameterization because the finite and asymptotic forms
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(3.7)

(3.6)

ho

hi ho 0

H=
. hp _

1 ho

G=

(synthesis)

[

a ... ap 1

ap ••• al

o

B. The Fisher Matrix: Finite and Asymptotic Formulas

The synthesis model x = Hb corresponds to the linear
separable model discussed in Section II. Consequently,
the Fisher information matrix for the ARMA parameter­
ization has the forin established in (2.16), which is re­
iterated here for convenience:

hN - 1 hN - p

We now have a representation for the modal signal x in
terms of the ARMA parameters OT = [bTaT].

(3.2)

(3.1)

[hT

; :: b] ]
[
bT aHT ~H bJ .

Ba, aaj

(3.8)

It is apparent that the vectors k, are k, = (aH/aa;)b. An
alternate expression for the columns k, can be developed
that will simultaneously reduce the required computations
in forming J (b, a) and provide a foundation for investi­
gating the asymptotic behavior of J (b, a).

(3.5) To begin, use the synthesis model to express the col-
-umns of K as

(aO = 1).

p-I

2: b;z-;
;=0

(analysis)

B(z)

A(z)

of the Fisher information matrix are computationally
tractable and intuitive. In addition, using the transfor­
mation formula of Section IV, we can easily obtain the
CR bounds for the pole-residue and pole-zero parameter­
izations.

A. The ARMA Model

The modal signal x(O) in the signal-plus-noise model
of (1.1) contains the samples x = [xo XI ••• XN-If.

The signal {XI} is generated by forcing the linear system
B (z) / A (z) with the unit pulse sequence {Ol}:

B(z)
{XI} = A(z) {oIl

We have assumed that the degree of B(z) is strictly less
than the degree of A (z) to maintain the correspondence
between the ARMA model and the pole-residue model.
This transfer function model for { YI} may be rewritten in
its analysis and synthesis forms:

(analysis) A(z) {XI} = B(z) {oIl = {b l } (3.3)

{b l } = B(z) {oIl: unit pulse response of MA filter B(z),

(synthesis) {XI} = B(z) [A~Z) {oIl J= B(z) {hI}

(3.4)

{hI} = _1_ {oIl: unit pulse response of AR filter _1_.
A~ A~

The AR impulse response {hI} will be fundamental to our
study of the Fisher information matrix and we want to
emphasize that it is the impulse response of the AR sys­
tem 1/A (z) and not the ARMA system B (z) / A (z). The
sequence {kl } is equally important and is generated by
exciting the ARMA system - B (z) / A (z) with the AR se­
quence {hI}'

The analysis and synthesis models for {XI} can be used
to generate the equivalent matrix relations:

o k. = aH b = aG [b]
I Ba, Ba, 0 .

(3.9)

Then use the following matrix identity

sa aG- 1

-G--G
Ba, Ba,

(3.10)
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(3.11)

The partial derivative oG -I /oai is easy to compute, and
the resultant matrix is a shift operator of the form

0 0

0
oG- 1

1
Ba,

0

0 ... 0 1 0 0

= Z-;; Z' ~ [ ] = I. (3.12)

J00 (b, a) is significant because its inverse represents the
"best achievable" bound on the error covariance matrix
for unbiased estimates of the parameters, regardless of the
duration of the time series.

The asymptotic form for the Fisher information matrix
is readily obtained by allowing N ~ 00 in (3.8) and using
the representation for h, and k, just derived. The resulting
matrix has partitions with (m, n) elements described by

i: (b, a)

_I (z-(m-I)h, z-(n-I)h) (z-(m-Ilh, z-nk)]

- L (z-mk,z-(n-Ilh) (z-mk,z-"k)

= I (h, z-(n-mlh) (h, z-(n-m+\lk)]

L (h,z(n m+llk) (k,z-(n-mlk)

I.I; k, + n _ m k;](,=0
(3.14)

I.I; h;+n-m+lk;](,=0

I.I; h;+m-n+lk;](,=0

oG- 1

-G--Hb.
Ba,

so-I [bJ-G--G
Ba, 0

to obtain [14]

k, = :~ [:J

(3.15)

The terms 'Eihi+n-mhi are deterministic autocorrelations.
If it is assumed that the AR system 1/A (z) is stable .and
causal, then Parseval's rule can be applied to yield a
z-transform expression for the asymptotic Fisher matrix:

[

I~ J, H(z)H(z-l)z(n-ml dZ] I~ J, H(z)K(z-l)z(n-m+ I) dZ] ]
1 (21r) 'Y Z (21r) 'Y z

Joo(b, a) = 2 .

(J [2~j ~ H(z)K(z-l)z-(n-m+ll ~z] [2~j ~ K(z)K(z-l)z(n-ml ~z]

Since the matrix G is a Toeplitz convolution matrix and
the corresponding system 1/A (z) is shift invariant, the
matrices G and z:' commute, and (3.11) reduces to

(3.16)

k, = -Z-iGHb = Z-;k

= [0 ... 0 ko k, ... kN - 1-if;

i = 1,2, ... ,p (3.13)

where k = [ko, kr, ... ,kN _ If contains a snapshot of
the signal {k;} = [- B(z) / A (z)] {hr} . In order to compute
J(b, a}, it is only necessary to compute the sequences
{hr } and {kr} , and form the matrices Hand K by appro­
priate shifts and inner products of {hr } and {kr} .

In summary, the Fisher matrix is described by (3.8)
with hi [0 ... 0 ho •.• hN-;f, {hr }

(l / A (z)) { or}, and k, = [0 . . . 0 ko • • • kN - I -r i f,
{kr} = [-B(z)/A(z)]{ht } for i = 1,2, ... ,p. This
completes our characterization. of the Fisher matrix
Ltb, a) forthe ARMA model {xr} = [B(z)/A(z)]{or} for
finite samples.

It is apparent in the preceding development that the
Fisher information matrix Jtb, a) is a function of the
modal parameters .V = [bTaT] and the duration N of the
time series {x.}. In the following paragraphs we will de­
rive the asymptotic form of the ARMA Fisher information
matrix by assuming that an infinite record of data is avail­
able (N ~ 00). The asymptotic Fisher information matrix

This means that the asymptotic Fisher matrix may be writ­
ten as

Joo(b, a) = ~ [Rhh R
hk]

(J Rkh Rkk

where the correlation matrices Rhh, Rhk> and Rkk are com­
posed of the elements Rhh = {rhh (n - m)}, Rhk = {rhk (n
- m + I)}, and Rkk = {rkk(n - m)}. Fig. 2 illustrates
how to construct the sequence {hr} and {kr} that have the
deterministic auto- and cross-correlation sequences rhh (n),
rhk(n), and rkk(n) that build the Fisher matrix. In this
characterization, {hr } is the response of 1/A (z) to an im­
pulse. Similarly, {k r } is the response of - B (z)/ A (z) to
the sequence {hr} .

C. Algorithm for Generating the Asymptotic Fisher
Matrix

The terms in the northwest and southeast partitions of
the asymptotic Fisher information matrix Joo (b, a) are ele­
ments of deterministic autocorrelation sequences. Simi­
larly, the terms in the northeast and southwest partitions
of J 00 (b, a) are components of deterministic cross-corre­
lation sequences. A technique for computing autocorre-
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t--,.------ {h t }

Fig. 2. Sequences associated with the asymptotic Fisher matrix.

From equation (3.19) we can derive the following expres­
sion for the coefficients of C (z):

i = 0
(3.20)

1:'5 l s: m.

(3.18) (3.23)

(3.21)

(3.22)

IJl
1•./i*

i =

[

CO]

},:,

go gl g2 gill

[YO]g, go + g2 gl + g3 gill-I

g2 g3 go + g4 glll-2

;",
0gill 0 go

where the matrix G is

Recall that!, = 0, for F(z) = I and j, = -b, for F(z) =
- B (z). Equation (3.18) can now be written as

Y(z) G(Z-I) + Y(Z-I) G(z) = C(z) + C(Z-I);

This is Jury's equation which must be solved for the poly­
nomial Y(z). Existence of the solution is guaranteed if
G(z) is minimum phase. In our case the condition is sat­
isfied since we stipulated that A (z) is minimum phase.
Equation (3.21) can be expressed in matrix notation as

(3.17)

lation sequences was introduced by Dugre et al. [15]. This
method was generalized by Demeure and Mullis [16] to
include computation of cross-correlation sequences. In
addition, Demeure and Mullis derived fast algorithms for
performing the required computations. In the remainder
of this section we will summarize some of these tech­
niques within the context of computing J", (b, a).

Autocorrelation sequences can be considered a special
case of the more general class of cross-correlation se­
quences. However, the algorithm for computing autocor­
relation exhibits a symmetry that can be exploited to re­
duce the complexity of the calculation. Accordingly, we
will first present a method for computing the autocorre­
lations that build the diagonal partitions of J",(b, a). The
terms in the diagonal partitions of the asymptotic Fisher
matrix have the general form

where F(z) = I, G(z) = A (z) for the northwest partition
and F(z) = - B (z), G(z) = A2 (z) for the southeast par­
tition. From this equation it is apparent that the sequence
{r,} can be determined by

{rd = F(z)F(z-')/G(Z)G(Z-I) {od.

Since we have constrained the roots of A (z) to lie inside
the unit circle, the system F(z)F(z-I)/G(Z)G(Z-I) can
be easily factored into its causal part Y(z) / G(z) and
anticausal part Y(Z-I)/G(Z-I). That is,

F(z)F(z-') Y(z) Y(Z-I)
-------;- = -- + ---
G(Z)G(Z-I) G(z)' G(Z-I)

or

which is a special case of Euclid's equation. To generate
{rd we need only to determine Y(z) and compute the ele­
ments of the impulse response of the system Y(z) / G (z),
since the correlation sequence {rd is symmetric. To de­
termine Y(z), the first step is to compute the product
F(z)F(z-l) and decompose this square into its causal and
anticausal pieces:

The matrix MT is the transpose of the Jury matrix defined
in [IS] and [16]. The coefficients of Y(z) can be obtained
by solving the linear set of equations in (3.22) using any
standard technique. A fast algorithm for solving (3.22)
can be found in [16]. Let {Oil} denote the impulse re­
sponse of the system Y(z) / G(z) where Y(z) is the poly­
nomial formed from y of (3.22). Then the diagonal par­
titions of J", tb, a) are Toeplitz correlation matrices with
elements

F(z)
t = 0

(3.24)
l:'5t:'5p-1.

C(z) (3.19)
Note that we need to perform the algorithm for each par­
tition individually.
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(4.2)

-ta. ;
i= I

"II (I - 2p// cos (O,Jz-1 + p~Z-2)
//~I

r

A(z) = I + L:

domain as

I rh 1 _I k d;
r, = 27rj J A(z) K(z )z z;

The terms in the northeast and southwest partitions of
the asymptotic Fisher information matrix have the form

Accordingly, the deterministic cross-correlation sequence
{rt } can be determined by A(z) {r,} = K(Z-') {i5 t } . This
sequence does not exhibit the symmetry of the determi­
nistic autocorrelation sequence, and the sign of the index
k is significant. Nonetheless, the approach of the previous
paragraphs can be modified to compute {rt } using the
techniques of [16] and [17].

B(z)

A (z)

r~1

L: b,Z~1
1=0

r
+ L: a,z~i

1= I

±(A// cos (c/>,J - A//p// cos (0// - c/>//)z-')
//= I (I - 2p// cos (O//)Z-I + p~Z-2)

"
Xi = 2: A,P; cos (OJ + c/>d

i= I

is a linear combination of damped, weighted, and phased
sinusoids. The relationship between the pole-residue and
ARMA representations can be expressed in the frequency

(4.6)

(4.7)

r
;:]=

T 0.
aa

aet>

(4.3)

abT aaT b = [bo bl'_ dT
--

aA JA
JbT aaT a = [al al']T
-

ag-T(y) aet> aet> A = [AI A,,]T
5(y)

ay c/> = [c/>I c/>,l
abT JbT
-

p"fap ap p = [PI

abT
aaJ-

o"f.ao ao a = [a,

(4.4)

We can express the relationship between the AR param­
eters and the pole parameters (Pi' 0;) in matrix form

J(y) = 5(y)J(0 = g-l(y))5 T(y). (4.5)

As described in Section II, this sensitivity matrix, in
conjunction with the Fisher information matrix for the
ARMA representation, can be used to generate the Fisher
information matrix for the pole-residue characterization:

It is apparent from the transformation a = g ~ 1 (y) that the
northeast partition of 5(y) is zero:

These equations summarize the transformation a =
g-l(y),whereoT=[bT aT]andyT=[AT et>T pT aT].
If p is odd, (4.2) and (4.3) can be easily extended to in­
clude a pole and residue with 0i = °and C/>, = 0, respec­
tively.

The (2p x 2p) sensitivity matrix for the transformation
0= g-I(y) is

(4.1)

I'

2: C,Z;.
,~ I

(pole) Zi = o.e/",

{Xt}

A
(residue) c, = -:jeiq,,;

A. Sensitivity Matrix for Pole-Residue Parameterization

The pole-residue representation for the modal signal
{x,} is

We have assumed that the time series {xJ has only real
valued elements. Consequently, the poles and residues
appear in conjugate pairs. The multiplicity of the poles is
not an issue in the computation of Lib, a), however pole
multiplicity does affect the form of the sensitivity matrix.
In the computations that follow, we have assumed that all
poles are simple; that is, z, '* zi' for i '* j. If the model
order p = Zq, is even and the constraints just enumerated
are enforced, then

IV. SENSITIVITY MATRICES FOR ALTERNATE
PARAMETERIZATIONS

The Fisher information matrices for the pole-residue and
pole-zero parameterizations can be derived from J (b, a)
by calculating the sensitivity matrix for each representa­
tion and using (2.6). This method is particularly useful
for obtaining the asymptotic forms of the Fisher infor­
mation matrices for these two parameterizations. In this
section we derive explicit formulas for the sensitivity ma­
trices corresponding to the pole-residue and pole-zero pa­
rameterizations. We also derive a sensitivity matrix of the
form specified in (2.3) that enables us to compute the CR
bound for unbiased estimators of the energy spectrum for
a deterministic modal signal.
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where q = p /2 and

L=
[

1 aJ a2 . .. ap ]

al ... ap-l

o 1

(4.8)
[

PI sin 0,

(3, = 2

o

P ~ sin 20i ... pf sin (pOi)

Pi sin Oi •. ·pf-l sin «p -

Pi sin Oi

1)8;)I
(4.14)

The matrix products on the right-hand side of (4.7) are
performing convolution. Since convolution is commuta­
tive for linear systems, we can permute the matrix factors
in (4.7) and preserve the equality. The matrix C, is the
only factor which is a function 'of Pi and we can use the
commutativity property to obtain

Note, from (4.8), that the first row of the matrix L con­
tains the vector aT. We can use this fact, in conjunction
with (4.11) and (4.13), to generate the matrices in the
southeast partition of S(y)

l
P , sin OJ p7 sin 201aaT • •

-=2· .ao . .
Pq sin Oq P~ sin 20q

P '1- I c~s (pO1)l-
. L

P~ - I cos (pOq)

(4.15)

p,! si~ (POI)l-
. L

P~ sin (pOq)

Pq cos 20q

ap l
cos 01

aaT
•= -2 .

cos Oq

(4.9)

o

2
Pi

-2Pi cos Oi

-2Pi cos Oi p~

o

Ci =

where the matrix (Xi is

The matrix C, is a convolution matrix for the FIR system
Ai(z) = 1 - 2Pi cos OiZ- 1 + p~Z-2. This implies that the
matrix C, is composed of terms from the impulse response
sequence for the AR system 1/Ai (z). The kth term of this
sequence, denoted as hi(k), is given by hi(k) = p~ sin
«()i(k + 1»/sin ()i' IfO i = 0, the poles are real and the
matrix factor C, will not correspond to the form shown
previously. The equations that follow must be modified
to account for this difference. If ()i =1= 0, the matrix Bl: / api
has the form "

(4.17)

(4.16)

The matrices in the remaining partitions of S (y) can be
computed from the relation

bT = ATVTl (4.18)

where A and t: have already been defined and V T is the
following row-Vandermonde matrix:

V
T

= [cos: c/>l PI cos (° 1 ~ c/>I) •••

cos c/>q Pq cos (Oq + c/>q) •••

(4.11)

(4.10)

Pi cos 20i ... pf - I cos (pOi)

cosO i • • · pf-2COS«p-

cos ()i

... P'I- 1 cos «p _

• • • P~ - I cos «p _

(4.19)

(4.12)

A similar set of calculations can be performed for the pa­
rameter Oi to obtain

This relation is generated by equating the ARMA repre­
sentation for x with the pole-residue characterization for
x, over time t = 0,1, ... ,p - 1. From (4.18) it is
obvious that

(4.13)

(4.20)

Since the AR parameters are independent of the mode
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phase, we can also obtain

ob
T

= ATOVTt:
Oct>i Oct>i

where bo, W n , and z; correspond to the gain, zeros, and
poles, respectively. As the time series {XI} is constrained
to be strictly real, then the poles z, = PiejO; must appear
in conjugate pairs. The same restriction also applies to the
zeros Wi = r, e i<I>;. Additionally, we stipulate that

z, * Zj i * j

B. Sensitivity Matrix for Pole-Zero Parameterization

The pole-zero representation for the modal signal is
p-I

bo II 0 - wnz- I
)

{XI} ~= 1 {Ol} (4.29)

II 0 - z.z")
n = I

(4,21)

1)01+ ct>1)] _
L.

... AqP~-I sin ((p - I)Oq + ct>q)

~~ = _[A' s~n q"

Aq sin ct>q

(4.22) for all i and j

(4.31)
p q

A(z) = 1 + b a.z?' = II
i= 1 n= 1

Wi * Wj i * j. (4.30)

That is, all poles and zeros are simple and no pole-zero
cancellation is permitted. If, in a particular application,
multiple poles or zeros are present in the system model,
the sensitivity matrix for the parameters can be derived,
but not by using the techniques described in the following
paragraphs. Again we will assume that p = 2q is even.
The relationship between the pole-zero parameterization
and the ARMA representation is given by

p-I q-I
B(z) = b biz-i = boO - roz- I

) II
i=O n=1

(4.23)

pf-2 cos ((p - I)Oi)]

pf-2 cos ((p - 2)Oi)

cos 0i

Pi cos 20i

cos e,

The AR parameters are a function of the mode param­
eters Pi and 0i' This implies that we need to know the
forms of OljOPi and OljOOi' These can be obtained from
(4.11) and (4.13) and are stated below:

et: [0 Cti] _ __
- = L = XL
OPi 0 OT '

The chain rule can be used to derive

(4.24)

These equations summarize the transformation 0 =
g-I (y), where OT [bT aT] and y T
[bo rT ct>T pT OT]. As in the pole-residue character­
ization, these equations can be easily modified if the
model order p is odd.

The sensitivity matrix for the transformation from the
ARMA to the pole-zero characterization is given by

obT oaT
- -
obo obo

'bT oaT

o or
obT oaT

oct> oct>

(4.25)

(4.26)

pf-I sin ((p - I)Oi)]

pf-2 sin ((p - 2)Oi)
. .

Pi sin 0i

P7 sin 20i

Pi sin 0i

ol _ [0 13i] _
~D - T L - YiL
vv, 0 0

[

P' sin 0,

=2

o

13i =

Equations (4.27) and (4.28) characterize the ith rows of
obTj op and obTj 00, respectively.

S(-y) =

obT oaT
-
op op
obT oaT
-
00 00

(4.33)

(4.28)

(4.27)
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The transformation 0 = e" (y) implies that the north­
east and southeast partitions of S (y) are zero. Expressions
for the terms in the southeast partition of S(y) have been
derived in the section on the pole-residue characterization
and can be calculated using (4.15) and (4.16). The terms
in the northwest block are obtained from (4.31) using
techniques similar to those already illustrated and they
are stated here without derivation. We have defined m
= p/2 - 1:

Fig. 3. Measurement model for deterministic modal signals.

. [: 1/2 ro/2 rg -2/2

cos cPl rl cos 2cPI r~ - 2 cos «p - I)~,) ]

cos cPm rmcos 2cPm ... r~-2 cos (~P - l)cPm)

(4.35)

r~ sin 2cPm . . . r~- I sin «p -

(4.38)j9. _. . _ B(z) B(Z-I)/
S(e ,0) - S(z, O)lz=efll - A( ) A( -I) .

Z Z z=efll

is a function of the frequency variable () and, conse­
quently, so is the (2p X 1) sensitivity matrix T(O). Thus
we must compute a new T(O) for every value of the en­
ergy spectrum we wish to bound.

The sensitivity matrix T(O), evaluated at frequency (),
is

sity estimators typically operate on a snapshot y of an in­
finite time series { YI} 00 which has infinite energy. The CR
bounds for the stochastic model have been computed in
[19] and [20] and these results differ from those we derive
for the deterministic model of Fig. 3.

The map from the ARMA parameters to the energy
spectrum is not, in general, invertible. Consequently, we'
will compute sensitivity matrices according to (2.1) and
not from (2.3) which was utilized in the previous two sec­
tions.

The energy spectrum

(4.34)

1)cPm)l

1)cPm)

(4.36)

r~-I sin «p -d sin 2cPI

T(O) [
as (z; 0) ... as(z; 0) as(z; 0) ... as(z; 0)JT

1

.:

Bb, abp _ 1 Ba, aap z=efll
(4.39)

C. Sensitivity Matrix for the Energy Spectrum

In the preceding sections we have derived sensitivity
matrices for the parameters y which characterize the modal
signal x. The purpose of this section is to compute the
sensitivity matrix that allows the CR bound to be com­
puted for unbiased estimators of the energy spectrum. The
term energy spectral density, rather than power spectral
density, is used because the data available to the estimator
are assumed to consist of a deterministic modal signal x
and an additive Gaussian noise signal n as shown in Fig.
3. Since we have modeled {XI} as the impulse response
of a stable ARMA system B (z)/ A (z), the modal signal
{xI}oo has finite energy. In contrast, power spectral den-

(4.41)

(4.40)

1 -iB -I i B
A(z)A(z-l) [z (z) + z (z)]

as(z; 0)

abi

This matrix has components which are invariant to time
reversal, as shown below:

as(z; 0)

Ba,

This result has also been used in [20] to compute asymp­
totic CR bounds for estimators of the power spectrum for
the stochastic ARMA time series. We can simplify the
form of the sensitivity matrix by letting it be partly com­
posed of two Jury matrices (see (3.22)). The Jury matrix
M p for a polynomial P(z) = E7:6PiZ-i can be defined

(4.37)
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A. Single Mode

The first modal signal to be analyzed consists of a sin­
gle damped mode with arbitrary amplitude and phase. The
time domain description of the modal signal

implicitly by

MP['JIn(Z-I) + 'JIn(z)] = p(z-I)'JIn(z-l) + P(z)'JIn(z)

= Mpvn(z) (4.42)

where 'JIn (z) = [1 z . . . Z n - If. Equations (4.40)
through (4.42) indicate that we can write the sensitivity
matrix as

XI = A/ cos (Ot + cf» (5.1)

(4.46)

is characterized by the pole-residue parameters A (ampli­
tude), cf> (phase), p (damping coefficient), and 0 (fre­
quency). The sensitivity matrix for the pole-residue pa­
rameterization is derived by equating, in the transform
domain, the ARMA description and pole-residue descrip­
tion for X(z) = B(z)/A(z):

All the results for this example are generated for the
asymptotic case, using the Fisher matrix of (3.16) and the
sensitivity matrix of Section IV-A, and are presented in
the form of the concentration ellipses in Figs. 4 and 5 and
the CR bound plot in Fig. 6. The concentration ellipses
were generated assumin~ that the noise variance (J2 was
equal to 1. Increasing (J will increase the volume of the
concentration ellipses, but the relative shapes and inter­
actions of the ellipses will remain constant.

The effects of varying the amplitude parameter A can
be observed in Figs. 4(a) and 5(a). Note that in all cases
the volume of the concentration ellipses is reduced as the
amplitude parameter is increased. As stated in Section II,
the concentration ellipse for the estimator. error covari­
ance matrix C encloses (is lower bounded by) the concen­
tration ellipses derived from the Fisher information ma­
trix. Therefore we can state that increasing the mode
amplitude A reduces, except for the error e(A), the bounds
on the error variances for the mode parameters. Figs. 4(a)
and 5(a) exhibit a phenomenon we have designated "pin­
ning." Pinning occurs when the ellipses intersect at com­
mon points along a zero axis. When a set of ellipses are
pinned on the horizontal axis, then the parameter being
varied has no effect on the estimator error for the param­
eter corresponding to the pinned axis if all other param­
eters are known. For example, in Fig. 4(a) the ellipses
are pinned on the e (A) axis. This implies that, if the pa­
rameters cf>, p, and 0 are known, then the estimator error
e(A) is not influenced by the amplitude parameter A. (Of
course, the fractional error e (A) / A decreases with in­
creasing A, and this is what counts!) It is not hard to show
that the bound on the error variance for the amplitude pa­
rameter A is independent of the value of A, meaning that

(5.2)
A cos (cf» - Ap cos (0 - cf»Z-1

I - 2p cos (0)z- 1 + P 2 Z- 2

B(z) bo + boz- I

A(z) + QI Z-l + Q2Z-2

[
Tf]

TT ~ :: .

The sensitivity matrix characterized in equation (4.43) to­
gether with the Fisher matrices Ltb, a) derived in (3.8)
and (3.16) complete our theoretical treatment of CR
bounds on unbiased estimators of the energy spectrum
S(e j8; 0).

V. NUMERICAL RESULTS

Cramer-Rao bounds afford an effective method for
evaluating estimator performance, In the context of modal
analysis, they also provide a way to quantitatively de­
scribe which properties of the modal signal have the
greatest (or least) effect on the ability to estimate the mode
parameters. Concentration ellipses, generated from the
Fisher information matrix, can provide additional insight
into the interactions among estimation errors. In the re­
mainder of this section we will use these tools on a few
illustrative examples to investigate some of the properties
of modal parameter estimation.

l( !H (e j8W )M BVp(e j8) ]

T = (-!K(e j8W) WMAvp+ I (e j8) (4.43)

where W = [0 I] and the transfer functions H (z) =
1/A (z) and K (z) = - B (z) / A 2 (z) correspond to those in
(3.15).

We now have a means of determining T( 0) at any fre­
guency 0, and the CR bound for any unbiased estimator
S (e ]8) is

E{(S(e j8) - Ste'"; 0»2} ~ TT(0)J-1(b, a)T(O).

(4.44)

By sweeping 0 overthe interval [0, 71"], (4.44) can be used
to generate CR bounds for the entire energy spectrum. We
can also investigate the effects of simultaneously estimat­
ing two or more values of the spectrum by making the
following modifications. Let S = [S(ej81)S(ej82) ...
S(e j8m)f be a vector of the spectrum values at m frequen­
cies of interest. The error covariance matrix for this vec­
tor has the CR bound

E{(S - S)(S - S)T} ~ TTJ-1(b, a)T (4.45)

where the (2p X m) sensitivity matrix T is composed of
the (2p X 1) sensitivity matrices T; for each frequency 0;:
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Fig. 4, Concentration ellipses for (A, ,p). (a) A = var, ,p = 0.0, p = 0,9, (J = 11'/4.0. (b) A = 1.0, ,p = var, p = 0.9, (J =

11' /4,0, (c) A = 1.0, ,p = 0.0, p = var, (J = 11'/4.0, (d) A = 1.0,,p = 0.0, p = 0.9, (J = var.

the variance of e (A) / A decreases in proportion to 1/A2
•

The variance bounds on the remaining parameters cP, P,

and () reduce in proportion to 1/A2 as well. The effects of
varying the phase parameter cP can be observed in Figs.
4(b) and 5(b). These ellipses illustrate that the phase off­
set has little influence on the ability to estimate mode pa­
rameters for the single mode case. The pinning phenom­
enon is not observed in Fig. 4(b).

The effects of varying the damping coefficient P can be
seen in Figs. 4(c) and 5(c). Without exception, as P ...... 1
the CR bounds on the modal parameters decrease signif­
icantly as evidenced in the magnitude of the ellipse re­
ductions. The explanation for this property is that, for
larger p, the energy in the modal signal x increases, and
more samples are obtained before XI is damped to a value

low in comparison with the noise. Since the ellipses for
larger p are entirely contained within the ellipses for
smaller p, we can state that J~l < J;Z1 if PI > P2'

The effects of varying the frequency () of a mode can
be observed in Figs. 4(d) and 5(d). These figures indicate
that the value of () has the most significant effect on the
phase error e (cP). The phase estimation error is minimized
in all cases as () ...... 7r /2. The estimation errors for the
remaining parameters are not significantly influenced by
() until () ...... 0 or () ...... 7r. Fig. 6 illustrates in a different
manner the influence of () on the CR bounds for the modal
parameters. The bounds were calculated with A = 1, P =
0.9, cP = 0, and variable (). The noise variance a 2 was
normalized to I. The bounds can be found for any other
noise variance by adding 10 10gIO (a 2

) to these curves.
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Fig. 5. Concentration ellipses for (p, 0). (a) A = var, </> = 0.0, p = 0.9, 0 = 11"/4.0. (b) A = 1.0, ;j, = var, p = 0.9, 0 =

11" /4.0. (c) A = 1.0, </> = 0.0, p = var, 0 = 11" /4.0, (d) A = 1.0, </> = 0.0, p = 0.9, 0 = var.

This figure indicates that as 0 -+ 0 or 0 -+ 7r the CR bounds
for the modal parameters show dramatic increases. We
attribute this phenomenon to the close proximity of the
conjugate poles z = pe j8 and z = pe-j8 as 0 -+ 0 or 0 -+

7r. The pole proximity effects will be discussed in the fol­
lowing section.

B. Dual Modes

In this section a modal signal consisting of two inde­
pendent modes is analyzed. Since the effects of mode am­
plitude are easily determined, the modes in this example
have unit amplitude. The phase offset for each mode is
set to zero for convenience. With these constraints in

force, the modal signal

XI = p~ cos (01 t) + p~ cos (02t) (5.3)

can be characterized by the frequencies 0\ and O2 and the
damping coefficients PI and P2 of the two modes. It will
be convenient for subsequent discussions to also charac­
terize the modal signal in terms of the mean frequency Om
= (0\ + (2) /2 and the difference or beat frequency 0d =

102 - Ot! /2:
XI = p~ cos «Om - 0d)t) + p~ cos «Om + Od)t). (5.4)

The sensitivity matrix 5(y) for the modal parameters yT
= [PI P2 Om 0d] is derived by equating, in the fre­
quency domain, the ARMA characterization and pole-res-
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idue parameterization of the modal signal X,:

B(z) bo + b l Z-I + blz-
l + b3z-

3

A(z) + alZ I + al Z 1 + a3 Z 3 + a4 z- 4

+ I - Pl cos (° 11I + O,,)Z-I (5.5)
I - 2Pl cos (° 11I + O,,)z I + p~Z-l'

The locations of the poles of the modal signal are illus­
trated in Fig. 7 in terms of the mode parameters yT =
[PI P2 011I 0,,].

In this section, we will use this model to investigate the
effects of mode spacing on CR bounds for modal param­
eters. Fig. 8 is generated for infinite data with the mode
parameters PI = Pl = 0.9, 011I = 7f /2, and 0" variable.
As in Fig. 6, the noise variance was normalized to one
and CR bounds for different a l can be found as described
in the latter part of Section V-A. It is evident from Fig. 8
that, as 0" -> 0 (i.e., the mode frequencies 0 1 and 01 ap­
proach each other), the mode parameters become harder
to identify. Note that this pole proximity effect is stronger
for the beat frequency 0" than for the mean frequency 011/ ,

As 0" -> 7f /2, the conjugate poles for mode I, Zl =
PI e j 81 and zf = PI e-j 8 l

, approach each other on the real
axis at P I' The conjugate poles for mode 2 approach each
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Fig. 9. Concentration ellipses for (PI. P2)' (a) P, = var, P2 = 0.90, Om = 1r/2, 0d = 1r/90. (b) P, = 0.90, P2 '"' var, Om =
1r/2, Od = 1r/90. (c) P, = 0.90, P2 = 0.90, Om = var, 0d = 1r/90. (d) P, = 0.90, P2 = 0.90, Om = 1r/2, Od = var.

other on the real axis at -P2' Again we observe the con­
jugate pole proximity effects described in Section V-A.
The concentration ellipses in Figs. 9 and 10 can be used
to examine these proximity effects and also the interaction
of estimation errors. These ellipses, like those in Figs. 4
and 5, were generated with (J2 normalized to one.

The consequences of varying the mode parameters PI
and P2 can be observed in Figs. 9 andIO, subplots (a) and
(b), respectively. These results correspond closely to those
obtained for the single mode case. To reiterate, mode pa­
rameters are easier to identify for larger damping coeffi­
cients p. Fig. 9(a) can be used to determine, for this mode
spacing, that the size of the damping coefficient has a
greater effect on the concentration ellipse volume than
does the proximity of the poles. With P2 = 0.9, the con-

centration ellipse for PI = 0.89 is larger than the concen­
tration ellipse for PI = 0.9, even though the distance be­
tween the poles increases.

The concentration ellipses in Figs. 9(c) and lO(c) in­
dicate that the mean frequency 8m has no effect as long as
01 and O2 are sufficiently far away from 0 or 1r.

The effects of varying the beat frequency 0d can be ob­
served by examining the concentration ellipses of Figs.
9(d) and lO(d). This is equivalent to varying the distance
between the modal frequencies. These ellipses confirm the
observation made about Fig. 8: when two modes are
closely spaced, it is easier to identify the mean frequency
8m than the beat frequency 0d' Note that the ellipses of
Fig. lO(d) have pinning points which lie on ±45° degree
lines. These diagonal axes correspond to the axes for the
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Fig. 10. Concentration ellipses for (Om' 0,,). (a) P, = var, P2 = 0.90, Om = 7r/2, 0" = 7r/90. (b) P, = 0.90, P2 = var, 0", =

7r/2,0" = 7r/90. (c) P, = 0.90, P2 = 0.90, Om = var, 0" = 7r/90. (d) PI = 0.90, P2 = 0.90, 0", = 7r/2,0" = var.

explicit mode frequencies 0I and Oz. The pinning points
indicate that, if the modal parameters Ob Pb and pz are
known, then varying the distance 0d between the frequen­
cies has no effect on the error e(Oz) in estimating O2 ,

To explain the pole proximity effects for 0d --+ 0, con­
sider the case where PI = P2 = p. The modal signal can
now be expressed as

XI = 2/ cos (Odt) cos (Omt). (5.6)

When the beat frequency 0d is small, the beat sinusoid cos
(Odt) does not have a chance to significantly shape the
modal signal XI before the damping term / reduces the
magnitude of XI to a value small in comparison to the noise
variance. The explanation for the conjugate pole prox-

imity effects is similar. Consider a single mode XI = /
cos (Ot) where 0 is small (conjugate poles near real axis
at 0). Again, when 0 is small, the sinusoid cos (Ot) has
little effect on the modal signal before the damping term
has driven the magnitude of XI to an insignificant value
compared to the noise variance. When 0 --+ 71' it is easy to
show that XI = (_p)1 cos (Ost) where Os = 71' - 0 is small,
and the same explanation applies.

C. Energy Spectra

In this section we use the CR bounds for estimating the
energy spectrum to study two types of problems: l) esti­
mation of the energy spectrum from infinite (but noisy)
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Fig. II. CR bounds versus SNR for estimating a dual-mode energy spectrum with (a) SNR = 5 dB. (b) SNR = 10 dB, (c)

SNR = 15 dB, (d) SNR = 20 dB.

data and (2) resolution of closely spaced spectral peaks
from time-limited data. For both problems we choose the
energy spectrum to be the spectrum for the dual mode
signal studied in Section V-B.

The CR bounds of Fig. 11 show the dual mode spec­
trum S (e jll) for a fixed difference frequency of 2()d =

21r/32. The CR bound is used to compute and plot S(e jll)

+ [var [S(e jll)]]I/ 2 for various asymptotic SNR's and
sample sizes N, These plots define a confidence interval
about the actual spectrum S (e jll) if the lower bound of the
confidence interval S(e jll) - [var [S(ejll)]] 1/2 is included.
We have omitted the lower bound to preserve clarity in
the figure. Asymptotic signal to noise ratio is defined to
be SNR = (l / (J 2) EO'x [, Fig. 11 indicates that even at

20-dB SNR and N = 64 samples, any unbiased estimator
cannot, on the average, resolve the spectral peaks present
in this spectrum. The estimated spectrum will fall some­
where in the confidence band just discussed. This band is
not small enough to ensure that the spectral peaks will be
accounted for in the estimated spectrum. The Rayleigh
limit to resolution for this mode spacing is N = 32 sam­
ples. For sample sizes less than the Rayleigh limit, the
size of the confidence interval shows a marked threshold
effect. This threshold effect is perhaps better illustrated in
Fig. 12 where the CR bounds are computed for the spec­
trum at one frequency corresponding to a spectral peak.
The Rayleigh limit of 21r/32 defines the sample size N =
32 where the threshold effect is active.
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that characterize best achievable performance when esti­
mating pairs of parameters, such as amplitude and phase
or damping coefficient and frequency, Our results for
mode resolution from parameter estimates or from spec­
trum estimates illustrate again that the Rayleigh limit to
resolution is difficult to beat, except at very high SNRs.
The Rayleigh limit manifests itself as a threshold effect in
the CR bound when that bound is plotted versus sample
size. The results of this paper are independent of which
technique-linear prediction, subspace identification,
maximum likelihood, etc.-is used. They extend readily
to deterministic modal analysis for direction-of-arrival es­
timation in narrow-band, equispaced, linear arrays, and
to deterministic modal analysis for simultaneous fre­
quency estimation and direction-of-arrival estimation.
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