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ABSTRACT 

 

STATIC AND DYNAMIC STUDY OF METAL SALT HYDRATES OF WEAKLY-

COORDINATING FLUOROANIONS BY VIBRATIONAL SPECTROSCOPY, 

GRAVIMETRY, AND AN ANALYSIS OF PREVIOUSLY PUBLISHED X-RAY 

STRUCTURES 

 

Eighteen metal salt hydrates (Li(H2O)4(Al(OC(CF3)3)4), Li(H2O)(B(3,5-C6H3(CF3)2)4), 

Li(H2O)n(Ga(C2F5)4), Li(H2O)(PF6), Na(H2O)(PF6), Li2(H2O)4(B12F12), Na2(H2O)2(B12F12), 

K2(H2O)2(B12F12), Rb2(H2O)2(B12F12), Cs2(H2O)(B12F12), Mg(H2O)6(B12F12), Ca(H2O)n(B12F12), 

Sr(H2O)n(B12F12), Ba(H2O)n(B12F12), Co(H2O)6(B12F12), Ni(H2O)6(B12F12), Zn(H2O)6(B12F12), and 

Li2(H2O)2(TiF6)) containing weakly coordinating anions were analyzed using room temperature ATR-FTIR 

spectroscopy. The goal was to investigate the relative strengths of water–anion hydrogen bonds in the solid-

state. In all but one case, these hydrogen bonds take the form of O–H···F hydrogen bonds. The one exception 

is in the salt Li2(H2O)4(B12F12) where there are both O–H···F and O–H···O hydrogen bonds present. Based 

on the magnitude of the redshift of the ν(OH) band(s) a qualitative scale for the comparison of the relative 

hydrogen bond strength is constructed. Included in this scale are additional metal salt hydrates taken from the 

literature. This spectroscopic study has produced some of the only room temperature spectra for water 

participating in hydrogen bonding in the solid-state where the νasym(OH) and νsym(OH) bands are individually 

resolvable. The weak nature of the O–H···F hydrogen bonds allows for resolution of ν(OH) bands only 5 

cm−1 apart in some cases. The two metal salt hydrates (Li(H2O)4(Al(OC(CF3)3)4) and Li(H2O)(B(3,5-

C6H3(CF3)2)4) are shown to possess the weakest O–H···F hydrogen bonds observed in the solid state at room 

temperature. 

The salt Li2(H2O)4(B12F12) contains a cyclic (H2O)4 water cluster, also known as the R4 cluster, is 

presented, and discussed in the context of the FTIR spectrum of water clusters. Due to the nature of the weak 

O–H···F hydrogen bonding between the cluster and the surrounding anions the E and B fundamental 
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vibrations for the cluster were able to be determined. The peak-to-peak separation, and relative intensities of 

these two bands are consistent with computational results from the literature. This is the first time that the R4 

water cluster has been successfully studied via FTIR spectroscopy without the presence of other clusters 

leading to ambiguity in the results.  

Finally, direct observation of the effect of cation acidity on the relative strength of water–anion 

hydrogen bonding has been directly observed for the first time in the metal hexahydrate salts M(H2O)6(B12F12) 

(M = Mg, Co, Ni, Zn). These results, along with the correlation curves constructed in this work, show that it 

is not possible to assign relative hydrogen bond strength based on O–H···X bond length, nor is it possible to 

accurately approximate O–H···X bond length based on degree of ν(OH) redshift. Instead, it is shown that the 

relative basicity of the anion is the primary factor governing the relative hydrogen bond strength, and thus the 

degree of redshifting experienced by the ν(OH) band(s). The cation acidity also is shown to have a lesser, but 

observable, effect on the relative strength of O–H···X hydrogen bond. In addition to broadening our 

fundamental understanding of hydrogen bonding in the solid state, this work also shows that FTIR 

spectroscopy can be a useful tool for rapidly assigning relative basicity of new weakly coordinating anions 

without need the for complex protonation experiments.  
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CHAPTER 1 INTRODUCTION 

1.1 Background and Introduction to the Research 

The earliest work on the hydrogen bond traces back to the beginning of the 1900’s.1 Since then it has 

played an increasingly important role in our understanding of intermolecular interactions. The impact 

hydrogen bonding has on numerous fields cannot be overstated. In biochemistry hydrogen bonding plays a 

significant role in determining protein conformation,2-3 molecular recognition,4-5 and self-assembly of certain 

systems and aggregates.6-8 Formation of water–water hydrogen bonds results in small water clusters, which 

plays a large part in aspects of atmospheric science, such as cloud formation.9 These are only two of the 

numerous topics tied to hydrogen bonding. This is why, especially over the last 30 years,1 scientists have so 

heavily focused on understanding the hydrogen bond, and systems it influences. 

The sheer breadth of topics and systems related to hydrogen bonding is too broad to be summarized 

at once and focusing on a narrow range of systems or conditions is necessary. For this dissertation, the focus 

will be on solid metal salt hydrates. From a material science perspective one of the outstanding questions in 

the field relates to the hydration and dehydration of ionic solids, an interest to many fields.10-24 For construction 

materials, the degree of hydration in cement can affect the microstructure of concrete, which can then effect 

numerous material properties such as strength and porosity.17 In pharmacology, if a drug gains or loses a 

number of H2O molecules from either a dry or humid atmosphere, respectively, then the bioactivity or stability 

of the pharmaceutical can radically change.12 There are even researchers looking to exploit the 

exothermic/endothermic nature of hydration and dehydration reactions in metal salt hydrates for the purpose 

of thermal energy storage.14-16 In surveying all of these fields, and their interest in hydrated ionic solids, one 

thing becomes obvious: a general mechanism for the hydration/dehydration of an ionic solid does not exist. 

The closest thing to mechanistic studies of hydration and dehydration of ionic solids in the literature are the 

numerous reports of mathematical fits to data from non-isothermal dehydration experiments.25 These fits are 

called mechanisms and endeavor to explain the process of nucleation and growth during dehydration, but this 

is a far cry from a general mechanism, or series of mechanisms, for this processes from a chemist’s 

standpoint.26 The benefits of such a mechanism, or series of mechanisms, would be that they would inform 
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on the structural and physical properties that control the stability of different hydrations states and the factors 

governing the rates of hydration or dehydration. This level of understanding of the structure–property 

relationship for the hydration/dehydration of ionic solids would be invaluable to all the above-listed fields for 

the rational design of new materials or to provide insight into why current materials behave the way they do.  

Arriving at a general mechanism, or series of mechanisms, for the hydration or dehydration of ionic 

solids would likely require a significant portion of a researcher’s career to accomplish. As such, it is prudent 

to break it down into smaller portions that can be thoroughly investigated. Then, as these separate components 

are explored, they can be brought together into a single unifying model. One feature shared by many salt 

hydrates is hydrogen bonding between the crystalline H2O molecules and the anions. Due to how influential 

intermolecular interactions, hydrogen bonding included, are to the organization of molecules in the solid state, 

the strength of the water–anion hydrogen bond(s) could be an extremely important aspect controlling the 

temperature range where hydration or dehydration occurs, as well as what hydration state(s) are stable under 

ambient conditions. This is why studying hydrogen bonding in ionic solids is the focus of this work. To do 

so, measuring the relative strengths of the water–anion hydrogen bonds is the best starting point.  

One of the oldest, and well known, methods for studying hydrogen bonding, and the relative strength 

of the hydrogen bonds, is IR spectroscopy. The region of the IR spectrum where the ν(OH) stretching 

vibrations occur (3800–3200 cm−1) is generally devoid of other IR active vibrations. This makes unambiguous 

assignment of bands in this region to ν(OH) stretching vibrations very straightforward. In addition to the ease 

of assigning bands in this region, these bands are also highly susceptible to the presence of O–H···X hydrogen 

bonding. In the most traditional sense of the term hydrogen bond,1 which will be used in this dissertation, 

formation of a hydrogen bond lengthens the equilibrium O–H distance,1 which in turn changes the vibrational 

characteristics of the O–H oscillator. Lengthening of O–H bond causes a redshift in the energy required to 

stimulate a vibration. The magnitude of the redshift is thus related to the strength of the hydrogen bond; with 

a stronger hydrogen bond resulting in a more significant redshift.1 In addition to a redshift in the ν(OH) band 

position, broadening of the band(s), and an increase in the integrated intensity of the band(s) also occurs upon 

hydrogen bond formation.1 Of these three metrics, the magnitude of the redshift is the best suited to studying 

relative hydrogen bond strengths, because measuring center to center distances between band positions is less 
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likely to be affected by band asymmetry or other distortions to bands shape. Further, band widths and 

integrated intensities are susceptible to changes in temperature, and thus more difficult to compare across 

different experiments/materials unless all of the IR spectra are collected at the same temperature, which is 

difficult to control when comparing results from the literature. This does not mean that bandwidths, measured 

using full width at half max (FWHM), or peak fits to determine integrated intensity, are utterly meaningless. 

Both measures of FWHM and Lorentzian peak fitting are utilized to compare and investigate the ν(OH) bands 

in this dissertation, but the claims and assignments of relative hydrogen bond strengths come directly from 

the magnitude of the Δν(OH) band position, compared to an isolated water molecule.  

To utilize Δν(OH) band position to determine the relative hydrogen bond strength, a reference is 

required. The reference used within this work is the ν(OH) band positions coming from isolated H2O 

molecule. This reference makes the most sense as all of the hydrogen bonds studied in this work are between 

H2O molecules, acting as the hydrogen bond donor, and weakly coordinating anion (WCAs), acting as 

hydrogen bond acceptor. Use of an isolated H2O molecule is necessary to accurately capture the ν(OH) band 

positions for the O–H oscillator of an H2O molecule, when no other forces or interactions are perturbing the 

oscillator. This can be accomplished in one of two ways; first one could measure the IR spectrum of a dilute 

sample H2O in the gas phase. Unfortunately, an isolated H2O(g) molecule may not accurately represent an 

H2O molecule inside of a crystalline solid. The second method for measuring a reference value is to encase a 

dilute sample of H2O in a frozen matrix of an inert gas such as He,27 N2,28 or CH4.29 In these experiments the 

nonpolar molecules forming the matrix are treated as minimally interacting with the H2O molecules. This 

approximation assumes induced dipoles are not occurring between the H2O molecules and the matrix. By 

comparing the positions of the vasym(OH) and νsym(OH) bands for an isolated water molecule in the gas phase 

(3756 and 3657, respectively)30 with an isolated water molecule in a frozen He matrix at 0.37 K (3755 and 

3656, respectively),27 a frozen N2 matrix at 11 K (3734 and 3638, respectively),28 or in a frozen CH4 matrix 

at 7 K (3720 and 3630, respectively)29 it can be seen there is a difference. Across these three different scenarios 

the difference between gas phase and solid phase experiments is only ca. 1–36 cm−1 for vasym(OH) and ca. 1–

37 cm−1 for νsym(OH), a small, but noticeable red-shift. This still illustrates that the inert nature of the matrix 

is only an approximation. For the remainder of the dissertation the values 3734 cm−1 and 3638 cm−1, the values 
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for an H2O molecule isolated in an Ar matrix at 11 K,28 will be used for the vasym(OH) and νsym(OH) band 

positions, respectively, for an isolated H2O molecule in the solid state.  

Studying the relative hydrogen bond strengths between crystalline water molecules and the anions 

they hydrogen bond with is further complicated by the symmetry of the H2O molecule. The two O–H 

oscillators are symmetry equivalent, and thus their vibrations are degenerate in energy. When oscillators with 

degenerate, or similar, energies are located on the same molecule, or within close proximity in the solid state 

(factor group splitting),31 it is possible for them to couple.1 In the case of the H2O molecule, the ν(OH) 

stretching vibration for the O–H oscillator becomes the vasym(OH) and νsym(OH) coupled stretching vibrations 

(Figure 1.1). These two stretching vibrations are located at different positions in the IR spectrum than the 

stretching vibration for the uncoupled O–H oscillator. The vasym(OH) blue-shifts to higher wavenumbers and 

νsym(OH) red-shifts to lower wavenumbers. The complication this causes is that any observed Δν(OH) due to 

hydrogen bonding will not be representative of the effect that hydrogen bond has on the O–H oscillator, but 

instead the effect it has on the coupled O–H oscillators. This is not ideal, as any work studying O–H···X 

hydrogen bonding should apply to the uncoupled O–H oscillator, a more widely applicable systems, than the 

specific HO–H···X system. To uncouple the O–H oscillators, while preserving the structure of the system 

being studied, isotopic substitution of an HOD molecule for an H2O molecule can be utilized.32 The energy 

of an O–D oscillator is ca. 1200 cm−1 less than the energy of the corresponding O–H oscillator in the 

undeuterated analog. The disparity between the two is so large that coupling of the oscillators is minimal. 

Replacing one H2O molecule, per formula unit with an HOD molecule will allow for direct observation of 

the band positions for the uncoupled ν(OD) stretching vibration. At most, one molecule of H2O per formula 

unit should be replaced by an HOD molecules. Anymore, and through space coupling of two O–D oscillators 

in the solid state can potentially cause problems.31 Due to the dilute nature of HOD, compared to H2O (or in 

some cases D2O), it is often more convenient to measure Δν(OD), and not Δν(OH). This is due to the 

uncoupled ν(OH) stretching vibration coexisting with the vasym(OH) and νsym(OH) bands from the bulk of the 

sample. As with the isolated H2O molecule, the ν(OD) band positions for an isolated HOD molecule can be 

measured in the gas phase (2720 cm−1)33-35 or in a frozen Ar matrix at 17 K (2709 cm−1),36-37 and used as a 

reference. 
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In addition to the qualitative comparisons that arise from measuring the magnitude of the redshift and 

ordering the relative hydrogen bond strengths of different compounds by this metric, quantitative correlations 

are also possible. Two such correlations are (i) the length of the covalent O–H bond vs. the magnitude of the 

redshift38 and (ii) the length of the O(D)···X bond vs. the ν(OD) band value for a compound with only one 

O–D bond.32,39-43 The first type of correlation plots is much more difficult to construct due to the imprecise 

positions of the H atoms in relation to the O atoms to which they are covalently bonded. Unless a researcher 

is specifically concerned with locating H atoms precisely and uses neutron diffraction to collect data with 

which the structure is determined, H atoms positions in most structures form the literature are not known 

precisely enough to provide meaningful O–H bond lengths. The second type of correlation plot can utilize 

structures with imprecise H atom positions by using O(H)···X distances. All this requires is measuring the 

distance between the O and X atoms along the hydrogen bond vector. In the cases where the O–H···X 

hydrogen bond is presumably linear this is a reasonable approximation, but as will become obvious in later 

chapters this is often not the case. Hydrogen bonds in the solid state are known to not be strictly linear in many 

cases, nor are they only composed of a single acceptor.1 Hydrogen bonds with O–H···X angles (henceforth ∠(OHX)) less than 180° are common, and it is not unreasonable to have O–H···X hydrogen bonds with ∠(OHX) angles that range between 110–180°.1 Further, bifurcated and trifurcated hydrogen bonds, where 

the H atom forms interactions with multiple electronegative atoms at one time, further complicate the 

geometry of the O–H···X hydrogen bond and cause deviations from linearity1 (examples of both linear and 

bifurcated hydrogen bonds are shown in Figure 1.2.). In these cases an O(H)···X bond distance can be 

recorded in place of an H···X bond distance. While less accurate, and not accounting for the effect ∠(OHX) 

bond angle plays, this approximation is regularly used.32,39-43 This approximation is convenient when utilizing 

XRD structures from the literature when the H atoms positions are not precisely located or located at all. The 

correlation between ν(OH) band position and O(H)···X (X = O, F) bond length is discussed in depth in 

Chapters 2 and 4 of this dissertation. 

In theory, studying the relative strength of hydrogen bonding via IR spectroscopy should be 

straightforward based on everything discussed up to this point; in practice that is not the case. Hydrogen bonds 

between water molecules and other molecules in the liquid or solid state are often so strong that the vasym(OH) 
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and νsym(OH) bands broaden and shift so much that they become a single broad band centered around 3400 

cm−1 (with a FWHM > 400 cm−1). The FTIR spectrum of liquid water on a ZnSe ATR crystal is shown in 

Figure 1.3 (a nearly identical spectrum is observed for H2O (s) as well) and is a far cry from the spectrum for 

an isolated water molecule in a frozen matrix shown in Figure 1.1. This is not isolated to just solid and liquid 

water, but also to metal salt hydrates, the focus of this dissertation. Most ionic solids that possess crystalline 

water molecules have IR spectra where the ν(OH) bands are not individually resolvable (Figure 1.4). The 

result is that when new salt hydrates are presented in the literature, if an IR spectrum is even collected, little, 

if anything, is mentioned about the ν(OH) region. When there is mention of the region, minimal comments 

are made, and often are limited to identifying the presence of hydrogen bonding.44 The result is that 

investigation of hydrogen bonding in the solid state is extremely limited, even more so for solid-salt hydrates.  

What little work that exists for the field of studying hydrogen bonding in the solid state via IR 

spectroscopy is almost entirely performed under cryogenic conditions.45-47 Lowering of the temperature often 

results in narrowing of the ν(OH) bands, and in some cases, these bands become individually resolvable. As 

stated, the number of low temperature IR studies of the ν(OH) region of metal salt hydrates are few,48 but they 

demonstrate that this information is accessible with careful experimental design. Further, utilizing cryogenic 

temperatures for experimentation, coupled with more advanced forms of IR spectroscopy, different systems, 

such as cation–water complex ions49 and isolated water clusters9,50-55 can also be experimentally studied via 

the positions, multiplicity, and band shape of the ν(OH) bands in the IR spectrum. While these studies have 

allowed scientists the ability to overcome the issues caused by significant broadening of the ν(OH) bands 

resulting from strong hydrogen bonding, these cryogenic conditions and specialized equipment cannot be the 

only way to study these systems and represent a huge limitation in the advancement of this field.  

If room temperature IR spectroscopy of solid salt hydrates is going to be used to study the relative 

hydrogen bond strength of water–anion hydrogen bonds, then a new approach is required. Strong, or relatively 

strong, hydrogen bonds are responsible for the excessive broadening of the ν(OH) band(s) that prevent 

Δν(OH) comparisons. To avoid this issue, in theory, systems with only relatively weak hydrogen bonding 

between the H2O molecules and the anion(s) should result in narrower ν(OH) bands. If sufficiently narrow, 

then it should be possible to observe the individual bands, or accurately deconvolute and model the individual 
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bands if some overlap is encountered. This hypothesis is the basis for the work in this dissertation. A group of 

anions, colloquially known as WCAs,56-59 will be utilized to test this hypothesis. A WCA is a large polyatomic 

anion with many peripheral electronegative atoms, often F atoms. The basicity of a WCA is minimal as they 

are the conjugate bases of known, or theorized, superacids. The extremely low basicity results in a weak 

cation–anion interaction, causing an increase in the reactivity of the cation.59 These WCAs have been utilized 

by researchers to stabilize and isolate extremely reactive cations,56,60 or improve the catalytic activity of a 

cation.61 The minimal basicity of the WCAs can similarly be used to only generate very weak O–H···F 

hydrogen bonds in metal salt hydrates where the charge of the anion is distributed over many weak O–H···F 

hydrogen bonds, instead of a single strong electrostatic interaction. Like many other ionic solids, the metal 

salts of WCAs are hygroscopic, and when exposed to a humid atmosphere, metal salt hydrates of WCAs can 

be generated for study. In these systems the cation should interact strongly with crystalline H2O molecules, 

based on the acidity of the cation, but the H2O molecules, or more specifically the H atoms of the O–H 

moieties, should only participate in weak hydrogen bonding with the anion.  

The work presented in this dissertation is focused on utilizing room temperature ATR-FTIR 

spectroscopy in tandem with SC-XRD to compare the magnitude of observed redshifts for the ν(OH) bands 

with O(H)···F bond lengths for a series of metal salt hydrates containing WCAs. In doing so, some of the 

weakest known O–H···F hydrogen bonds were observed and reported. In addition, when the redshifts as a 

function of O(H)···X (X = O, F) bond lengths are plotted for the salts presented in this chapters, as well as 

other values from the literature, 32,39-43 significant scatter from curves fit to the data show that O(H)···F bond 

length is not a good enough metric to predict the magnitude of the ν(OH) band redshift, or vice versa. 

Moreover, it is the coordination strength, or basicity, of the anion that plays a dominant role in strength of the 

hydrogen bond, and thus the magnitude of the redshift.  

In Chapter 2 of this dissertation eleven alkali metal salt hydrates are presented and discussed with 

each of the anions used (Al(OC(CF3)3)4
−, B(3,5-C6H3(CF3)2)4

−, Ga(C2F5)4
−, PF6

−, B12F12
2−, TiF6

2−) being a 

WCA. In the ATR-FTIR spectrum of each of these eleven salt hydrates two sharp ν(OH) bands are observed. 

This represent some of the only IR spectra where the νasym(OH) and νsym(OH) bands are resolvable, with 

baseline separation, in the solid state at room temperature. This is due to the extremely weak O–H···F 



8 

hydrogen bonds formed between the ligand water molecules and the anions. The weakest O–H···F hydrogen 

bonds were recorded for Li(H2O)4(Al(OC(CF3)3)4), Li(H2O)(B(3,5-C6H3(CF3)2)4), and Li(H2O)nGa(C2F5)4). 

Based on the magnitude of the ν(OH) redshift, Li(H2O)4(Al(OC(CF3)3)4) and Li(H2O)(B(3,5-C6H3(CF3)2)4) 

both possess O–H···F hydrogen bonds that are weaker than those in PVDF(H2O), a neutral molecule, and the 

previous record holder for the weakest observed O–H···F hydrogen bond in the solid state. 

Chapter 3 focuses on the compound Li2(H2O)4(B12F12) presented in the previous chapter. Special 

attention is paid to this salt for two reasons, (i) of all of the alkali metal sat hydrates discussed in Chapter 2 it 

is the only salt hydrate with both O–H···O and O–H···F hydrogen bonds, and (ii) the structure contains the 

R462 cyclic (H2O)4 water cluster. The presence of both O–H···O and O–H···F hydrogen bonding in the same 

salt hydrate allows for direct comparison of the effect of each type of hydrogen bond on the magnitude of the 

ν(OH) redshift within the same compound. Interestingly, in most solids where O–H···O hydrogen bonding is 

observed, the individual ν(OH) bands are too broad to be individually resolved, as discussed above, but that 

is not the case in Li2(H2O)4(B12F12
2−). Two bands, one for each O–H moiety participating in O–H···O and O–

H···F hydrogen bonding, are observed. From these two bands stark differences in the effect of the relative 

strengths of the different types of hydrogen bonding is apparent. Each band can further be deconvoluted into 

two overlapping bands representative of the B and E fundamental vibrations for the cyclic (H2O)4 cluster 

which has S4 symmetry. Direct observation of the B and E fundamentals, the ratio of the integrated intensities, 

and the peak separation are consistent with published values calculated by theorists and represent the first time 

these values have been experimentally observed unambiguously. Finally, evidence for the intramolecular 

coupling between the O–H···O and O–H···F hydrogen bonded O–H moieties in Li2(H2O)4(B12F12
2−) is 

presented and discussed.  

Chapter 4 is an extension of the work presented in Chapter 2. In this chapter seven additional salt 

hydrates (Mg(H2O)6(B12F12), Ca(H2O)n(B12F12), Sr(H2O)n(B12F12), Ba(H2O)n(B12F12), Co(H2O)6(B12F12), 

Ni(H2O)6(B12F12), and Zn(H2O)6(B12F12)) are discussed. The four isomorphous hexahydrate salts all possess 

two sets of unique fac-(H2O)3 ligands. The difference between these two types of H2O positions results in two 

sets of νasym(OH) and νsym(OH) bands, for a total of 4 ν(OH) bands in the IR spectrum. Use of isotopically 

dilute solutions containing a small amount of M(HOD)(H2O)5(B12F12) (M = Mg, Co, Ni, Zn) allowed for 
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these two positions to be differentiated spectroscopically. Relative to each other, the redshift for the bands in 

each spectrum followed the trend Mg < Co ~ Ni < Zn. This trend is consistent with the pKa of the solvated 

cations. This is one of the first times where the acidity of a series of metal cation is shown to directly impact 

the hydrogen bond strength of the water–anion hydrogen bond experimentally. Three additional n-hydrates, 

Ca(H2O)n(B12F12), Sr(H2O)n(B12F12), Ba(H2O)n(B12F12), are presented and discussed. The IR spectra for these 

three salt hydrates are the most complex of all the spectra examined in this dissertation. Coupled with the 

hexahydrates, all of the salt hydrates with divalent cations possess red-shift magnitudes greater than the 

monovalent cation salt hydrates discussed in Chapter 2, except for the ν(OH) band assigned to the O–H···O 

hydrogen bond in Li2(H2O)4(B12F12
2−). This further illustrates the effect of the cation’s charge and acidity on 

the strength of the water–anion hydrogen bond. 

This work shows that room temperature IR spectroscopy can be used to study weak O–H···F 

hydrogen bonding in metal salt hydrates if the hydrogen bond is sufficiently weak. Not only is it possible, but 

the weakest known O–H···F hydrogen bonds in the solid state have been observed. Additionally, direct 

observation of the effect of cation pKa on the strength of water–anion hydrogen bond strength has been 

presented for the first time experimentally. In addition to water–anion hydrogen bonding, identification and 

characterization of discreet water clusters occurring withing metal salt hydrates can be scrutinized by IR 

spectroscopy for the first time with no ambiguity. Finally, these results are not restricted only to the study of 

the different types of interactions occurring within a metal salt hydrate. They reveal a new technique for 

rapidly screening new WCAs to establish a relative basicity scale for all known WCA that does not require 

complex protonation experiments. 
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Figure 1.1. ATR-FTIR spectrum of H2O in a frozen N2 matrix at 11 K (ref. 28). The bands labelled 
as νasym(OH) and νsym(OH) are due to monomeric H2O molecules. The other bands are due to 
dimers and higher oligomers. This figure was adapted from a figure in ref. 28.  
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Figure 1.2 An example of a linear O–H···F hydrogen bond in K(H2O)2F (top, ref 63) and a bifurcated pair 
of O–H···O hydrogen bonds in Na(H2O)ClO4 (bottom, ref 64). Only the relevant portions of the structures, 
which were determined by neutron diffraction, are shown. Interatomic distances (Å) and angles (deg) in the 
structure of K(H2O)2F are: O–H1, 0.971(4); O···F, 2.734(3); H1···F, 1.764(3); O–H1···F, 177.9(2). 
Interatomic distances (Å) and angles (deg) in the structure of Na(H2O)ClO4 are: O5–H1, 0.905(6); O5···O1, 
3.141(3); O5···O2, 3.087(3); H1···O1, 2.389(7); H1···O2, 2.378(10); O5–H1···O1, 140.4(9); O5–H1···O2, 
135.2(9). The two figures were adapted from figures in the respective references.   
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Figure 1.3. ATR-FTIR spectrum of H2O(l) deposited on a ZnSe ATR crystal collected at room 
temperature. The band is centered ca. 3300 cm−1 with a fwhm > 400 cm−1. 
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Figure 1.4. FTIR spectra of Mg(H2O)6(BrO3)2 (ref. 65), the Tutton salt K2Zn(H2O)6(SO4)2 (ref. 
66), and (NH4)2M(H2O)6(SO4)2 (ref. 67; M = 50:50 Co:Ni). The ν(OH) bands at 3000–3300 cm−1 
are significantly redshifted relative to νasym(OH) and νsym(OH) for H2O(g) (3756 and 3655 cm−1, 
respectively68). The first two figures were adapted from figures in the respective references. The 
author thanks Prof. Santunu Ghosh for kindly supplying a digital data file with which the spectrum 
of (NH4)2M(H2O)6(SO4)2 was prepared.

K2Zn(H2O)6(SO4)2 FTIR

Manonmoni, Amutha et al., 

Spectrochim. Acta Part A 2014

ν(OH)
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CHAPTER 2 UNUSUALLY SHARP FTIR ν(OH) BANDS AND WEAK HYDROGEN 

BONDING IN ALKALI METAL SALT HYDRATES OF WEAKLY-COORDINATING 

FLUOROANIONS  

2.1 Introduction and Relevant Literature  

It is well known that O–H···X hydrogen bonding weakens and lengthens O–H bonds, red-shifts and 

broadens vibrational ν(OH) bands, and significantly increases the integrated intensities of those bands 1-14 Two 

ν(OH) bands are present in the IR spectrum of an isolated, gas-phase H2O molecule. These bands result from 

the coupling of the two symmetry equivalent O–H oscillators resulting in a νasym(OH) band and a νsym(OH) 

band, and appear at 3756 and 3657 cm−1, respectively.15 When measured at room-temperature, the IR 

spectrum of H2O(l) only has one extremely broad band at ca. 3300 cm−1 as can be seen in Figure 2.1. A similar 

result is seen in the case of H2O(s), though depending on the temperature of the sample there may be some 

narrowing of the broad ν(OH) band.16 In both of these scenarios the formation of H2O···HOH hydrogen bonds 

causes the νasym(OH) and a νsym(OH) bands to broaden and redshift until they coalesce into the single broad 

peak shown in Figure 2.1. Individual νasym(OH) and a νsym(OH) bands in the liquid or solid state can be 

resolved by measuring the spectrum of an isolated H2O molecule contained in an inert matrix, such as in liquid 

helium at 0.37 K (3755 and 3656 cm−1),17 in an N2 matrix at 11 K (3734 and 3638 cm−1),18 or in a frozen CH4 

matrix at 7 K (3720 and 2630 cm−1).19 The inert matrices effectively screens the H2O molecules from each 

other, preventing the formation of hydrogen bonds. Compared to the values measured for an isolated H2O 

molecule in the gas phase, the values measured for isolated H2O molecules in an inert matrix are only 

redshifted between  1–36 cm−1. These small redshifts indicate virtually no interaction between the O–H 

oscillator and the matrix in the case of H2O in a liquid He drop at 0.37 K (Δν(OH)  = 1 cm−1) and only 

extremely weak interactions with the CH4 matrix at 7 K (Δνasym(OH)  = 36 cm−1 and Δνasym(OH)  = 27 cm−1). 

This methodology, of using Δν(OH) to assign relative hydrogen bond strength based on the magnitude of 

Δν(OH), is the primary way relative hydrogen bond strengths will be assessed in this chapter. To a lesser 

extent, the difference in peak widths (FWHM) can also be used to discuss relative hydrogen bond strength, 

but additional factors, such as temperature, can affect peak widths so it is not an ideal metric to use. A larger 
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red shift (Δν(OH)) indicates a stronger hydrogen bond, while a smaller red shift indicates a weaker hydrogen 

bond. This allows for the creation of a qualitative scale of relative hydrogen bond strengths. This methodology 

has been applied to the study of ν(NH) bands by Reed and coworkers20 and Jenne and coworkers21 to show 

the hydrogen bond acceptor strength order for a series of different salts with the NHOc3
+ cation. The order 

being: NO3
− ≫ ClO4

− ≫ BF4
− > SbF6

- >AsF6
− ~ PF6

− ~ B12F12
2− > 1-Me-CB11F11

−.22 While this is only a 

qualitative scale, it is the best way of experimentally studying the relative strength of hydrogen bonding, short 

of determination of hydrogen bond enthalpies, which except for some trivial cases is not possible. 

Coalescence of the νasym(OH) and a νsym(OH) bands into a single broad peak makes such analysis 

impossible, due to the loss of the individual νasym(OH) and a νsym(OH) bands. The loss of the individual 

νasym(OH) and a νsym(OH) bands also happens with solid metal salt hydrates.16,23-27 Formation of water–anion 

hydrogen bonds results in similar broad ν(OH) bands at ca. 3300 cm−1 for many salt hydrates. Figure 2.2 

shows a number of solid metal salt hydrates, and in all cases there is a single broad ν(OH) band at ca. 3300 

cm−1. This feature is so well known, that when observed, it is all the evidence required for the assignment of 

hydrogen bonds.1-2 Unfortunately, other than identifying the presence of hydrogen bonding there is not much 

worthwhile information to be gained by this peak, and researchers largely gloss over this region of the FTIR 

spectrum, if it is mentioned at all.28-29 This results in a large gap in the understanding of the effects of the 

presence of water in ionic solids. Occasionally, as in the top spectrum of Figure 2.3, the individual ν(OH) 

bands that are obscured by the broadening due to hydrogen bonding can be approximated. These positions 

are reported, but like with other spectra, not much else is said. Some studies attempt to overcome this limitation 

by studying metal salt hydrates at cryogenic conditions where narrowing of the broad band occurs16,30 (i.e., 

see Figures 2.4 and 2.5), but even these studies are few and only begin to approach studying the system in any 

depth. Some attention, and success, studying the effect of Mn+···OH2 interactions via studying the ν(OH) band 

positions have been published.31-32 Again, these studies employ cryogenic conditions and an inert matrix, 

typically a noble gas, to generate and measure these species in situ.31-32 As a result these experiments are highly 

specialized and ultimately only appear to look at the effects of cation–water interactions by way of 

perturbations to the O–H oscillator, but not at hydrogen bonding or water–anion interactions.  
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In theory, it should be possible to study the water–anion interactions in metal salt hydrates with FTIR 

at room-temperature, provided that the water–anion interactions are sufficiently weak enough that the 

νasym(OH) and a νsym(OH) bands have not coalesced and can be individually resolved. To do this, selection of 

an anion, or series of anions, that only weakly interact with their cation, or ligands coordinated to the cation, 

becomes the critical component. The family of anions known as WCAs33-34 make the ideal candidates for 

study. In salts with WCAs the interactions between the cation and the anion are minimized by delocalizing 

the charge of the anion over a large polyatomic structure with electronegative atoms, such as F atoms, on the 

periphery. With the charge localized on the F atoms the formation of multiple M–F coordination bonds results 

in the anion being able to ion pair with the cation, but each individual interaction is as week as possible.35 This 

results in a highly reactive cation that is only weakly associated with the anion.34 In theory this can be 

translated to the M(H2O)n
m+ cation complexes in salt hydrates. The O–H···F hydrogen bonds between ligand 

water molecules and F atoms on the anion should be weak as well, potentially to the point where the νasym(OH) 

and a νsym(OH) bands are resolvable.   

 In this chapter the FTIR spectra and the chemical structure, determined by X-ray diffraction, of 11 

different alkali metal salt hydrates of WCAs will be discussed. The 11 salts are made using 5 different alkali 

metal cations (Li+, Na+, K+, Rb+, Cs+) and 6 different WCAs (PF6
−, Ga(C2F5)4

−, B(3,5-C6H3(CF3)2)4
−, 

Al(OC(CF3)3)4
−, B12F12

2−, TiF6
2−). In the ATR-FTIR spectra of all 11 salt hydrates the νasym(OH) and a 

νsym(OH) bands are resolvable at room temperature. Furthermore, determination of the ν(OD) stretching 

frequency for a single HOD molecule per formula unit allowed for comparison of ν(OD) band positions vs 

O(H)···F bond distance. The resulting correlation curves displayed a large amount of scatter, making 

determination of ν(OD) based on the vs O(H)···F bond distance, or vice versa, highly unreliable without more 

accurate H atom positions in the X-ray structure. In the case of the salt hydrates 

Li(HOD)(H2O)3(Al(OC(CF3)3)4), Li(HOD)( B(3,5-C6H3(CF3)2)4), and Li(HOD)(H2O)n−1(Ga(C2F5)4) the 

FTIR spectrum of a single HOD molecule per formula unit revealed ν(OD) values less red-shifted from the 

ideal position for an HOD in an inert matrix. Prior to this, PVDF(HOD) and CH3F(HOD) were the weakest 

hydrogen bonds experimentally observed by FTIR between an HOD molecule and a F atom and reported in 

the literature.  
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All of the work presented in this chapter has been published in the form of two academic papers.36-37 

One in Inorganic Chemistry titled Hydrated Metal Ion Salts of the Weakly Coordinating Fluoroanions PF6
−, 

TiF6
2−, B12F12

2−, Ga(C2F5)4
−, B(3,5-C6H3(CF3)2)4

−, and Al(OC(CF3)3)4
−. In Search of the Weakest HOH...F 

Hydrogen Bonds. The author of this dissertation was the first author and the only graduate student or postdoc 

author. The second publication was a communication in the Journal of Fluorine Chemistry titled Unusually 

sharp FTIR ν(OH) bands and very weak O–H⋯F hydrogen bonds in M2(H2O)1,2B12F12 hydrates (M=Na–

Cs). The author of this dissertation was the first author and one of two graduate student or postdoc authors 

along with Xiaoyan Gao, a visiting graduate student researcher in the lab of Dr. Yong Liu of the University 

of Colorado, Denver. The structures presented in this chapter were collected and determined by previous 

Strauss group members.  

2.2  Experimental  

2.2.1 Reagents and Solvents  

Solid K2(B12H12) (Air Products) was dissolved in H2O and brought to dryness with a rotary 

evaporator a minimum of three times before being dried under dynamic vacuum overnight to remove any 

residual methanol contained within the solid. The following reagents and solvents were obtained from the 

indicated supplier: deuterium oxide (D2O, Cambridge Isotopes 99.9% D); LiCl (Mallinckrodt, ACS reagent 

grade); RbCl (K&K, 99%); Acetonitrile (CH3CN), NaOH, NaCl, (Sigma-Aldrich); Li2CO3, (Fisher 

Scientific); LiPF6 (Oakwood Chemicals, 99.99%); NaPF6 (Strem Chemicals, 99%); TiO2 (JT Baker); 

hydrofluoric acid (GFS Chemicals, 48%). The mixed N2/F2 gas (Matheson, 80:20 N2:F2) was used as 

received. Purolite UCW 9126 cation exchange resin was used as received. Samples of the compounds 

Li(H2O)4Al(OC(CF3)3)4) (Prof. Ingo Krossing, Univ. of Freiburg), Li(H2O)n(Ga(C2F5)4) (Prof. Berthold 

Hoge, Bielefeld Univ.), and Li(H2O)(B(3,5-C6H3(CF3)2)4) (Prof. Andrew Weller, Univ. of Oxford) were gifts 

from the indicated colleagues and were used as received.  

2.2.2 General Procedures  

Anhydrous compounds were prepared using standard airless-ware glassware and a Schlenk-style 

vacuum line and store in a dinitrogen filled glovebox. Distilled water was deionized with a Barnstead 
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Nanopure system. The deionized distilled water (dd-H2O) had a resistivity greater than 18 MΩ (all samples 

of H2O used in this work correspond to dd-H2O prepared in this way).  

2.2.3 Synthesis of K2(H2O)2(B12F12) 

Potassium dodecafluoro-closo-dodecaborate (K2B12F12) was synthesized by direct 

fluorination of K2B12H12 with 80:20 N2/F2 in CH3CN at 0 °C and purified as previously 

described.38-40 [Caution! The original purification procedure, involving H2O2 is not recommended 

because of the potential isolation of explosive K2(H2O2)2−x(H2O)x(B12F12). An alternate, safer 

procedure is recommended.38] The substitution of F atoms for H atoms was monitored periodically 

using negative-ion electrospray-ionization mass spectrometry (NI-ESI-MS), as previously 

described. The final degree of F/H metathesis, determined by NI-ESI-MS and 19F{11B} and 

11B{19F} NMR spectroscopy as previously described, was found to be 99.5+%. Recrystallization 

from water removed trace amounts of BF4
− that was present. Removal of any brown-yellow 

colored impurity was accomplished by passing a solution of the as synthesized K2(B12F12) over an 

alumina column as described previously.41 

2.2.4 Preparation of (H3O)2(B12F12) 

Hydronium dodecafluoro-closo-dodecaborate ((H3O)2(B12F12)) was prepared by passing a 

10 wt% aqueous solution of K2(B12F12) over the acid form of a cation-exchange column (Purolite 

UCW 9126 resin) that had been previously treated with a 10 vol% solution of aqueous HCl. After 

passing the solution of K2(B12F12) through the column, continuous washes of dd-H2O were passed 

through the column until the run-off read a neutral pH. The initial solution, and dd-H2O washes, 

were collected and concentrated with rotary evaporation. The concentrated solution was 

standardized via NaOH titration prior to use.   

2.2.5 Synthesis of Rb2(H2O)2(B12F12) 

An aqueous mixture of RbCl and Ag2(CH3CH)4(B12F12)42 was filtered to remove AgCl. Slow 

evaporation of the filtrate resulted in single crystals suitable for XRD and TGA. Optimization of crystalline 

Rb2(H2O)2(B12F12) isolated was not attempted, and therefore a yield was not determined.  
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2.2.6 Synthesis of Cs2(H2O)(B12F12)  

An aqueous solution of (H3O)2(B12F12) was titrated with a standardized solution of CsOH. Slow 

evaporation of the resulting solution yielded colorless crystals of Cs2(H2O)(B12F12) suitable for XRD. 

Optimization of crystalline Cs2(H2O)(B12F12) isolated was not attempted, and therefore a yield was not 

determined.  

2.2.7 Synthesis of Na2(H2O)2(B12F12) 

An aqueous solution of K2(B12F12) was converted to Na2(B12F12) using Purolite UCW 9126 cation-

exchange resin. The cation-exchange resin was prepared using a 10 wt % solution of ACS Reagent grade 

NaCl. Passing the K2(B12F12) solution through the ion-exchange column twice (passing a 10 wt % solution of 

ACS Reagent grade NaCl through the column between passes of the K2(B12F12) solution to regenerate the 

column) resulted in a solution of Na2(B12F12) with an amount of K+ ions measuring less than 0.007 mol% as 

measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Solid Na2(H2O)2(B12F12) 

was isolated by drying the solution of Na2(B12F12) by rotary evaporation and transferring the resulting solid to 

a desiccator containing solid NaOH, as a desiccant, overnight.  

2.2.8 Synthesis of Li2(H2O)4(B12F12) 

An aqueous solution of K2(B12F12) was converted to Li2(B12F12) using Purolite UCW 9126 cation-

exchange resin. The cation-exchange resin was prepared using a 10 wt % solution of ACS Reagent grade 

LiCl. Passing the K2(B12F12) solution through the ion-exchange column twice (passing a 10 wt % solution of 

ACS Reagent grade LiCl through the column between passes of the K2(B12F12) solution to regenerate the 

column) resulted in a solution of Li2(B12F12) with an amount of K+ ions measuring less than 0.01 mol% as 

measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Solid Li2(H2O)4(B12F12) 

was isolated by drying the solution of Li2(B12F12) by rotary evaporation and transferring the resulting solid to 

a desiccator containing solid NaOH, as a desiccant, overnight. 

2.2.9 Synthesis of Li2(H2O)2(TiF6)  

Solid LiCO3 and TiO2 in a molar ratio of 2:1 was dissolved in a solution of 48% HF (aq) inside of a 

Teflon container. The mixture was heated to 60 °C and allowed to stir vigorously for 1 hour before being 

allowed to cool to room temperature. Slow evaporation of the solution produced colorless crystals of 
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Li2(H2O)2(TiF6). No attempt was made to optimize the isolation of the crystalline materials, therefore a yield 

was not determined.  

2.2.10 ATR-FTIR Spectroscopy 

Variable-humidity ATR-FTIR spectra were recorded with a Nicolet 6700 FTIR spectrometer 

equipped with a stainless-steel Harrick HorizonTM ATR variable-temperature/variable-humidity flow 

reactor described in detail in previous publications43-45 (schematic shown in Figure 2.6) or a Nicolet IS-50 

FTIR spectrometer. The Nicolet 6700 FTIR spectrometer had a custom stainless steel reactor with a ZnSe 

crystal for in situ measurement of heterogeneous reactions between liquid/solid and gases on the crystal’s 

surface.43 The choice of ZnSe was based on the large penetration depth, estimated to be 1.1 μm at 1700 cm−1.43 

Aliquots of dilute solutions of the compounds in H2O, D2O, 90:10 (v:v) H2O:D2O, or a 90:10 (v:v) D2O:H2O 

mixture were allowed to evaporate to incipient dryness on a 5 cm × 1 cm × 0.2 cm ZnSe ATR crystal (New 

Era Enterprise) after it was placed in the flow reactor of the Nicolet 6700 instrument. No attempt was made 

to control the size or distribution of the microcrystalline particles that formed. The IR beam was directed into 

the ATR crystal at an incident angle of 45° by mirrors after leaving the interferometer, and the reflected light 

was returned to a liquid N2 cooled MCT detector. The vapor pressure of the H2O over the sample was 

controlled in real time as spectra were recorded with a purge of dry N2 gas, or N2 passed through either a V-

Gen M1-120 dew point generator, or a bubbler containing a saturated aqueous salt solution. The rate of gas 

flow through the 5 cm3 stainless steel reactor was controlled using an Alicat Scientific flowmeter. The flow 

rate was 1 L min−1 for dry N2 passed through the dew point generator, and 0.060 L min−1 for dry N2 passed 

through the solution in the bubbler. Spectra were recorded at specific intervals of time depending on the 

experiment (typically 128 scans at 1 cm−1 resolution, unless otherwise indicated).  

Samples of Mn(HOD)m(H2O)m−1X and Mn(HOD)m(D2O)m−1X (M = Li+, Na+, K+, Rb+, Cs+; X = PF6
−, 

Al(OC(CF3)3)4
−, B(3,5-C6H3(CF3)2)4

−, Ga(C2F5)4
−, B12F12

2−, TiF6
2−) were prepared by dissolving the 

appropriate salt in either a 90:10 (v:v) mixture of H2O:D2O or a 90:10 (v:v) mixture of D2O:H2O. Aliquots of 

the solution were allowed to dry on the ZnSe ATR crystal until insipient dryness under a purge of N2.  
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2.3 Results and Discussion  

2.3.1 A Note on Methodology 

The primary tool used to study the relative strength of O–H···X hydrogen bonding is with IR 

spectroscopy.2,6,8,46-49 Unfortunately, even though the values of ν(OH) and ν(OD) are quantitative, and precise 

to ± 1 cm−1 in most of the presented spectra, interpretation of said spectra is restricted to qualitative 

comparisons. When comparing the O–H···F (or O–D···F) hydrogen bonds for two different compounds, 

compound A vs. compound B, if compound A has its ν(OH) (or ν(OD)) bands at higher wavenumbers 

compared to compound B it means that the hydrogen bond in compound A is weaker than the one in 

compound B. Furthermore, although O–H and O–D distances can be slightly different for a given hydrogen 

bond, for the purpose of this work it is assumed that O(H)···F = O(D)···F. This assumption is believed to be 

valid because (i) the maximum geometric isotope effect (GIE) on O(H/D)···F distances, 0.03 Å, is only 

observed for strong hydrogen bonds (i.e., for O(H)···F = 2.4–2.6 Å),50-51 (ii) the hydrogen bonds in the 

compounds studied are weak, and (iii) the O(H/D)···F GIE should be negligible for a lattice with only a small 

percentage of D/H substitution.  

Due to the C2v symmetry of the H2O molecule, the two O–H oscillators are symmetry equivalent, and 

thus degenerate in energy leading to coupling and the appearance of two ν(OH) signals as seen in Figure 2.7. 

The band at 3734 cm−1 corresponds to the asymmetric coupled stretching vibration, labeled νasym(OH), and 

the band at 3638 cm−1 corresponds to the symmetric coupled stretching vibration, labeled νsym(OH). 

Additionally, in the solid state when multiple H2O ligands are present, the possibility for intermolecular 

coupling of O–H oscillators also exists and can further complicate a spectrum. This can be avoided by 

preparing samples with a low percentage of deuterium substitution.6 For metal hydrates, this results in a small 

percentage of M(HOD)(H2O)n–1
m+ complexes, and sometimes a small amount of M(D2O)(H2O)n–1

m+ 

complexes, among the predominant M(H2O) n
m+ complexes in the sample. This will give rise, in principle, to 

a ν(OD) band for each HOD···F environment in the formula unit. To observe separate ν(OD) bands in the 

room temperature FTIR spectrum of a sample with slightly different HOD···F environments in a single 

compound, it is necessary that the bands have narrow bandwidths (i.e., small FWHM). This necessity is 

exemplified in Figure 2.8, which depicts the ν(OD) region of the FTIR spectrum of a sample of 
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Cs2(H2O)(B12F12) containing a small amount of Cs2(HOD)(B12F12). Two ν(OD) bands, at 2669 and 2664 

cm−1, were observed. These two bands correspond to two different HOD···F environments with O(D)···F 

distances of 3.103(3) and 2.997(3) Å, respectively. This spectrum is discussed further in section 2.3.3, but 

highlights how essential narrow bandwidths are to resolving small environmental differences 

spectroscopically. The data listed in Table 2.1 show that the FTIR bands for the metal salt hydrates of all of 

the WCAs presented in this chapter were sufficiently sharp in room temperature FTIR spectra to allow ν(OD) 

bands with frequencies that differ by 5 cm−1 or more to be resolved. This example, and others discussed in 

this chapter, are the first examples of room temperature FTIR spectra where O–H···X hydrogen bonds are 

sufficiently weak enough to be individually resolved.  

In rare cases, complete deuterium substitution can change the solid-state structure of a compound 

(i.e., isotope polymorphism52-53). Examples are P21/c (COOH)·2H2O54 vs P21/a (COOD)·2D2O55 (different 

herringbone packing patterns) and trifluoroacetic acid tetrahydrate (ionic (H5O2)[(CF3COO)2H]·6H2O vs 

molecular CF3COOD·4D2O).56 However, this is not expected to be a problem for metal salt hydrates with ca. 

5−10% D/H exchange.  

It has long been known that hydrogen bonds involving D are stronger than those involving H, all 

other things being equal, because of the difference in zero point energies. For example, the energy difference 

between the two isotopomers DOH···OH2 and HOD···OH2 has been estimated to be 60 cm−1 (0.72 kJ 

mol−1).57-59 Experimentally, the isotopomer HOD···FCH3 was observed in a frozen Ar matrix, but 

DOH···FCH3 was not (the difference in zero point energies was calculated to be 0.69 kJ mol−1;60 the 

HOH···FCH3 complex has also been studied by other theorists61-62). Similarly, the isotopomer 

HOD···FCH2F, with a rotational temperature of ca. 10 K, was observed in the gas phase, but DOH···FCH2F 

was not.63 (The DOH···FCH2F complex was also studied theoretically.63-64) Nevertheless, at room 

temperature the small zero point energy differences will have a negligible effect on the relative populations of 

DOH···F vs HOD···F species in the samples studied in this chapter.  

In many of the structures discussed in this chapter one or more of the O–H (or O−D) moieties of the 

crystalline water molecule are hypothesized to form bifurcated hydrogen bonds. A bifurcated hydrogen bond 

is when there are two hydrogen bond donors per one hydrogen bond acceptor. A bifurcated hydrogen bond 
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is assigned when, in a crystal structure, the O–H moiety of interest lays between two F atoms instead of 

pointing at a single F atom. In the case of a bifurcated hydrogen bond both O(H)···F distances are reported.  

2.3.2 Isomorphous M2(H2O)2(B12F12) (M = K, Rb) 

The salts K2(H2O)2(B12F12)65 and Rb2(H2O)2(B12F12)66 both crystalize in the P21/c space group and 

are isomorphous with each other. Drawings of a portion of each structure is shown in Figure 2.9. The two 

symmetry related metal cations and two symmetry related H2O molecules form a [M2(H2O)2]2+ (M = K, Rb) 

quadrilateral with 2.770(6) and 2.772(6) Å O–K distances and a K–O–K  ́ angle of 100.3° for the 

K2(H2O)2(B12F12) compound and 2.857(1) and 2.915(1) Å O–Rb distances and a Rb–O–Rb  ́angle of 112.4° 

for the Rb2(H2O)2(B12F12) compound. For the K2(H2O)2(B12F12) compound there are three O(H)···F bonds 

that could reasonably form O–H···F hydrogen bonds. One of the O–H moieties forms an O–H···F hydrogen 

bond with an O(H)···F distance of 2.978(1) Å. The other O–H moiety lays between two O(H)···F vectors, 

indicating a bifurcated hydrogen bond with O(H)···F distances of 2.972(1) and 2.978(1) Å, and a F···O···F  ́

angle of 57.1°. In the Rb2(H2O)2(B12F12) compound the O(H)···F distance is 2.857(2) Å for the O–H moiety 

laying along a single O(H)···F vector. The other O–H moiety lays between two O(H)···F vectors, indicating 

a bifurcated hydrogen bond with O(H)···F distances of 2.859(2) and 2.931(2) Å, and a F···O···F  ́angle of 

60.7°. 

The ν(OH) region of FTIR spectra of K2(H2O)2(B12F12) and Rb2(H2O)2(B12F12) are shown in Figure 

2.10 and 2.11, respectively. The two spectra are directly compared in Figure 2.12 where they are plotted with 

the same x-axis range. In the FTIR spectrum of the ν(OH) region of K2(H2O)2(B12F12) the bands at 3637 and 

3576 cm−1 are assigned to the νasym(OH) and the νsym(OH) coupled stretching vibrations, respectively. A two 

peak Lorentzian least squares fit of the spectrum is shown in Figure 2.10. In the FTIR spectrum of the ν(OH) 

region of Rb2(H2O)2(B12F12) the bands at 3653 and 3585 cm−1 are assigned to the νasym(OH) and the νsym(OH) 

coupled stretching vibrations, respectively. A two peak Lorentzian least squares fit of the spectrum is shown 

in Figure 2.11. The FTIR spectrum of the ν(OH) region of the FTIR spectrum of a mixture of 

Rb2(HOD)(H2O)(B12F12) and Rb2(H2O)2(B12F12) is shown in Figure 2.13. The bands at 3625 and 3614 cm−1 

are assigned to the ν(OH) stretching vibration for the HOD molecule in Rb2(HOD)(H2O)(B12F12). The 

presence of two bands for this single O−H moiety likely arises from the two significantly different O–H···F 
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hydrogen bonding environments that the H atom can occupy. Figure 2.13 also contains a four peak Lorentzian 

least squares fit of the four bands in this spectrum. The FTIR spectrum of the ν(OD) region for a mixture of 

K2(HOD)(H2O)(B12F12) and K2(D2O)(H2O)(B12F12) is shown in Figure 2.14. The two bands at 2700 and 2615 

cm−1 1 are assigned to the νasym(OD) and the νsym(OD) coupled stretching vibrations, respectively, for the D2O 

molecule in K2(D2O)(H2O)(B12F12). The band at 2652 cm−1 is assigned to the ν(OD) stretching vibration of 

the HOD molecule in K2(HOD)(H2O)(B12F12). There is a prominent shoulder on the higher wavenumber side 

of the band at 2652 cm−1 indicating a possible second ν(OD) stretching vibration of the HOD molecule in 

K2(HOD)(H2O)(B12F12) arising from the different O–D···F hydrogen bonding environments that the D atom 

can occupy. The ν(OD) region of the FTIR spectrum of a mixture of Rb2(HOD)(H2O)(B12F12) and 

Rb2(D2O)(H2O)(B12F12) is shown in Figure 2.15. The bands at 2711 and 2623 cm−1 are assigned to the 

νasym(OD) and νsym(OD) coupled stretching vibrations, respectively, for the D2O molecule in 

Rb2(D2O)(H2O)(B12F12). The bands at 2668 and 2660 cm−1 are assigned to the ν(OD) stretching vibration for 

the HOD molecule in Rb2(HOD)(H2O)(B12F12). The presence of two bands for this single O−D moiety likely 

arises from the two significantly different O–D···F hydrogen bonding environments that the D atom can 

occupy. Figure 2.15 also contains a four peak Lorentzian least squares fit of the four bands in this spectrum. 

2.3.3 Cs2(H2O)(B12F12) 

The orthorhombic structure of Cs2(H2O)(B12F12), which crystalizes in the space group P212121 was 

originally published in ref. 67. There is only one crystallographically unique water molecule. The bonding 

environment around this water molecule is depicted in Figure 2.16 and contains two Cs–O coordination bonds 

and the nine nearest neighbor O(H)···F bonds. The water molecule is coordinated to two symmetry equivalent 

Cs atoms, with Cs–O and Csʹ–O distances of 3.137(2) and 3.310(2) Å and a Cs–O–Cs  ́angle of 116.9°. This 

results in the formation of infinite [–Cs–μ-H2O–Cs–μ-H2O–]∞
 chains along the crystallographic C-axis. The 

crystallographically unique Cs atom that is not part of this chain has no Cs–OH2 coordination bonds, only 

Cs···F interactions. The nine O(H)···F bonds in the drawing shown in Figure 2.16 have O(H)···F distances 

that range from 2.997(3) and 4.050(3) Å. The two most relevant of these are the two O(H)···F bonds lying 

closest along the O–H bonds. These O(H)···F bonds are the most likely to represent O–H···F hydrogen bonds 
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with O(H)···F distances of 2.997(3) and 3.103(3) Å. The O–H1···F9 bond angle is 157° and for O–H2···F4 

the angle is 148°.  

The FTIR spectrum of the ν(OH) region of Cs2(H2O)(B12F12) is shown in Figure 2.17. The band at 

3658 cm−1 corresponds to the νasym(OH) coupled stretching vibration, and the band at 3588 cm−1 corresponds 

to the νsym(OH) coupled stretching vibration. The broad feature at ca. 3400 cm−1 is hypothesized to be a thin 

layer of adsorbed water on the surface of the ATR crystal arising from holding the sample under a pressure 

of H2O (g) to collect the spectrum. The δ(HOH) region of the FTIR spectrum of Cs2(H2O)(B12F12) is shown 

in Figure 2.18. The ν(OD) region of a mixture of Cs2(D2O)(B12F12) and Cs2(HOD)(B12F12) is shown in Figure 

2.8. The band at 2715 cm−1 corresponds to the νasym(OD) coupled stretching vibration, and the band at 2624 

cm−1 corresponds to the νaym(OD) coupled stretching vibration. The ν(OH) and ν(OD) regions of the FTIR 

spectrum of a sample of Cs2(H2O)(B12F12) containing a small amount of Cs2(HOD)(B12F12) are shown in 

Figure 2.19 and 2.8, respectively. The two bands at 3626 and 3621 cm−1 in Figure 2.19 represent the DO–

H···F hydrogen bonds, with the 3626 cm−1 band assigned to the DO–H2···F4 hydrogen bond and the 3621 

cm−1 band assigned to the DO–H1···F9 hydrogen bond. The two bands at 2669 and 2664 cm−1 in Figure 2.8 

represent the HO–D···F hydrogen bonds, with the 2669 cm−1 band assigned to the HO–D2···F4 hydrogen 

bond and the 2664 cm−1 band assigned to the HO–D1···F9 hydrogen bond. Lorentzian least square fits of the 

ν(OH) region of Cs2(H2O)(B12F12) is shown in Figure 2.17. A four peak Lorentzian least square fit of the 

ν(OD) region of Cs2(D2O)(B12F12) and Cs2(HOD)(B12F12) is show in Figure 2.20. Finally, a Lorentzian least 

squares fit of the δ(HOH) region of the FTIR spectrum of Cs2(H2O)(B12F12) is shown in Figure 2.18. 

2.3.4 Na2(H2O)2(B12F12) 

The ν(OH) region of the FTIR spectrum of Na2(H2O)2(B12F12) is shown in Figure 2.21. The band at 

3651 cm−1 is assigned to the νasym(OH) coupled stretching vibration, and the band at 3556 cm−1 is assigned to 

the νsym(OH) coupled stretching vibration. The ν(OD) region of the FTIR spectrum of a sample of 

Na2(H2O)2(B12F12) containing a small amount of Na2(HOD)(D2O)(B12F12) is shown in Figure 2.22. The band 

at 2706 cm−1 is assigned to the νasym(OD) coupled stretching vibration, and the band at 2608 cm−1 is assigned 

to the νsym(OD) coupled stretching vibration. The remaining two bands in this region, at 2680 and 2628 cm−1, 

respectively, are assigned to the ν(OD) stretching vibration of the HOD molecule. The presence of two distinct 
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bands with this assignment it would indicate that there are two different HO–D···F environments the D atom 

can occupy. Due to the lack of a crystal structure for the Na2(H2O)2(B12F12) salt this is only a tentative 

assignment at this time. Lorentzian least squares peak fits of the ν(OH) region is shown in Figure 2.21.  

2.3.5 Li(H2O)4(Al(OC(CF3)3)4) 

The X-ray crystal structure of Li(H2O)4(Al(OC(CF3)3)4) was originally published in 2009.68 

Drawings of two portions of the structure are shown in Figure 2.23. The four coordinated H2O molecules of 

the Li(H2O)4
+ complex are all symmetry-related. The two O(H)···F distances for the symmetry-related 

coordinated water molecules are 3.102(2) and 3.157(2) Å, with O–H···F bond angles of 130° and 148°, 

respectively. There are two longer additional O–H···F bonds with O(H)···F distances of 3.296(2) and 

3.297(2) Å and O–H···F angles of 134° and 146°. The four O–H···F bonds can be thought of as two O–H 

moieties each participating in a bifurcated hydrogen bond with different bonding environments. The two 

F···O···F  ́bond angles for the different environments are 62.4° and 53.2°, respectively.  

The ν(OH) region of the FTIR spectrum of Li(H2O)4(Al(OC(CF3)3)4) is shown in Figure 2.24. The 

bands at 3719 and 3644 cm−1 are assigned to the νasym(OH) and the νsym(OH) coupled stretching vibrations, 

respectively. The ν(OH) region of the FTIR spectrum of a mixture of Li(H2O)(D2O)3(Al(OC(CF3)3)4) and 

Li(HOD)(D2O)3(Al(OC(CF3)3)4) is shown in Figure 2.25. The bands at 3711 and 3640 cm−1 are assigned to 

the νasym(OH) and the νsym(OH) coupled stretching vibrations, respectively, for the H2O molecule in 

Li(H2O)(D2O)3(Al(OC(CF3)3)4), and the band at 3676 cm−1 is assigned to the ν(OH) stretching vibration for 

an HOD molecule in Li(HOD)(D2O)3(Al(OC(CF3)3)4). The δ(HOH) region of the FTIR spectrum of 

Li(H2O)4(Al(OC(CF3)3)4) is shown in Figure 2.26. The band at 1626 cm−1 is assigned to the δ(HOH) bending 

vibration for Li(H2O)4(Al(OC(CF3)3)4). The ν(OD) region of the FTIR spectrum of a mixture of 

Li(HOD)(H2O)3(Al(OC(CF3)3)4) and Li(D2O)(H2O)3(Al(OC(CF3)3)4) is shown in Figure 2.27. The two 

bands at 2755 and 2660 cm−1 are assigned to the νasym(OD) and the νsym(OD) coupled stretching vibrations, 

respectively, of Li(D2O)(H2O)3(Al(OC(CF3)3)4). The band at 2706 is assigned to the ν(OD) stretching 

vibration for HOD molecule in Li(HOD)(H2O)3(Al(OC(CF3)3)4). The δ(HOH) region of the FTIR spectrum 

of Li(HOD)(D2O)3(Al(OC(CF3)3)4) and Li (H2O)(D2O)3(Al(OC(CF3)3)4) is shown in Figure 2.26. The bands 

at 1632 and 1438 cm−1 are assigned to δ(HOH) and δ(HOD), respectively, for a mixture of 
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Li(H2O)(D2O)3(Al(OC(CF3)3)4) and Li(HOD)(D2O)3(Al(OC(CF3)3)4). Lorentzian least squares fits of the 

ν(OH) region of the FTIR spectrum of Li(H2O)4(Al(OC(CF3)3)4) and a mixture of 

Li(HOD)(D2O)3(Al(OC(CF3)3)4) and Li(H2O)(D2O)3(Al(OC(CF3)3)4) is shown in Figure 2.28 and 2.25, 

respectively. Lorentzian least squares fits of the ν(OD) region of the FTIR spectrum of a mixture of 

Li(HOD)(H2O)3(Al(OC(CF3)3)4) and Li(D2O)(H2O)3(Al(OC(CF3)3)4) is shown in Figure 2.27.  

2.3.6 Li(H2O)(B(3,5-C6H3(CF3)2)4) 

A drawing of a portion of the X-ray structure of Li(H2O)(B(3,5-C6H3(CF3)2)4), using data published 

in 2019,69 is shown in Figure 2.29. In the figure only the three O(H)···F bonds relevant to O–H···F hydrogen 

bonding are included. One of the O–H moieties, lies along the O(H)···F1 interaction, likely forming a single 

O–H···F hydrogen bond. The O(H)···F bond distance is 2.995(6) Å with an O–H···F bond angle of 167°. 

The H atom of the other O–H moiety lies between two F atoms, indicating that it is likely that this is a 

bifurcated hydrogen bond. The two O(H)···F distances are 2.995(6) and 3.077(6) Å, with O–H···F angles of 

140° and 157°, respectively.  

 The ν(OH) region of the FTIR spectrum of Li(H2O)(B(3,5-C6H3(CF3)2)4) is shown in Figure 2.24. 

The bands at 3718 and 3639cm−1 are assigned to the νasym(OH) and νsym(OH) coupled stretching vibrations, 

respectively. The FTIR spectrum of ν(OH) region for a mixture of Li(HOD)(B(3,5-C6H3(CF3)2)4) and 

Li(H2O)(B(3,5-C6H3(CF3)2)4) is shown in Figure 2.30. The bands at 3718 and 3639 cm−1 are assigned to the 

νasym(OH) and νsym(OH) coupled stretching vibrations, respectively, for the H2O molecule in Li(H2O)(B(3,5-

C6H3(CF3)2)4), while the band at 3679 is assigned to the ν(OH) stretching vibration of the HOD molecule in 

Li(HOD)(B(3,5-C6H3(CF3)2)4). Figure 2.30 also contains the three peak Lorentzian least squares fit of the 

bands within this region. The ν(OD) region of the FTIR spectrum of a mixture of Li(HOD)(B(3,5-

C6H3(CF3)2)4) and Li(D2O)(B(3,5-C6H3(CF3)2)4) is shown in Figure 2.30. The bands at 2760 and 2659 cm−1 

are assigned to the νasym(OD) and νsym(OD) coupled stretching vibrations for the D2O molecule in 

Li(D2O)(B(3,5-C6H3(CF3)2)4), respectively and the band at 2705 cm−1 is assigned to the ν(OD) stretching 

vibration of the HOD molecule in Li(HOD)(B(3,5-C6H3(CF3)2)4). The three peak Lorentzian least squares fit 

of these bands is also shown in Figure 2.30.  
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2.3.7 Li(H2O)n(Ga(C2F5)4)  

The ν(OH) region of the FTIR spectrum of Li(H2O)n(Ga(C2F5)4) is shown in Figure 2.24. The bands 

at 3702 and 3630 cm−1 are assigned to the νasym(OH) and the νsym(OH) coupled stretching vibrations, 

respectively. A two peak Lorentzian least squares fit of this spectrum is shown in Figure 2.31. The FTIR 

spectrum of the ν(OD) region of a mixture of Li(HOD)(H2O)n−1(Ga(C2F5)4) and Li(D2O)(H2O)n−1(Ga(C2F5)4) 

is shown in Figure 2.32. A three peak Lorentzian least squares fit of this spectrum is shown in Figure 2.32. 

The bands at 2749 and 2654 cm−1 are assigned to the νasym(OD) and the νsym(OD) coupled stretching vibrations 

of the D2O molecule in Li(D2O)(H2O)n−1(Ga(C2F5)4), respectively. The band at 2697 cm−1 is assigned to the 

ν(OD) stretching vibration of the HOD molecule in Li(HOD)(H2O)n−1(Ga(C2F5)4). A three peak Lorentzian 

least squares fit of this spectrum is shown in Figure 2.32.  

2.3.8 Li2(H2O)2(TiF6) 

The X-ray structure of Li2(H2O)2(TiF6) was originally published in 1973.70 A drawing of a portion of 

the structure is shown in Figure 2.33. In the structure there is only one crystallographically unique H2O 

molecule. The H atom positions in the structure were not determined or modeled as part of the solution. As a 

result it is not easy to predict which of the O(H)···F bonds are most probable to participate in O–H···F 

hydrogen bonding. Based on the position of the O atom, with respect to the two Li+ cations it is coordinated 

to, there are four potential O(H)···F bonds that could participate in O–H···F hydrogen bonding. Of these 4 

bonds there are two sets of two symmetry equivalent O(H)···F bonds. The two different O(H)···F distances 

are 3.007(6) and 3.048(6) Å, respectively. While it is not unreasonable to hypothesize that the O–H···F 

hydrogen bond is formed between the O–H moiety and a single F atom, with both of the O–H···F hydrogen 

bonds being identical, either with O(H)···F distances of 3.007(6) or 3.048(6) Å, based on the position of the 

Li···O···Li ́  coordination bonds it is more likely that the O–H moieties lay between two F atoms with different 

O(H)···F interaction distances. This would create a local Td bonding environment around the O atom. This 

arraignment will result in a pair of bifurcated hydrogen bonds with an F··O···F  ́bond angle of 67.0°.  

The ν(OH) region of the FTIR spectrum of Li2(H2O)2(TiF6) is shown in Figure 2.34. The band at 

3583 cm−1 is assigned to the νasym(OH) coupled stretching vibration, and the band at 3541 cm−1 is assigned to 

the νsym(OH) coupled stretching vibration. The ν(OD) region of the FTIR spectrum of a mixture of 
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Li2(HOD)(H2O)(TiF6) and Li2(D2O)(H2O)(TiF6) is shown in Figure 2.34. The band at 2663 cm−1 is assigned 

to the νasym(OD) coupled stretching vibration and the band at 2592 cm−1 is assigned to the νsym(OD) coupled 

stretching vibration for the D2O molecule in Li2(D2O)(H2O)(TiF6). The band at 2623 cm−1 is assigned to the 

ν(OD) stretching vibration for the HOD molecule in Li2(HOD)(H2O)(TiF6).  

2.3.9 Li(H2O)(PF6) 

The ν(OH) region of the FTIR spectrum of a mixture of Li(H2O)(PF6) and Li(HOD)(PF6) is shown 

in Figure 2.35. The bands at 3602 and 3549 cm−1 are assigned to the the νasym(OH) and νsym(OH) coupled 

stretching vibrations for the H2O molecule in Li(H2O)(PF6), respectively, and the band at 3579 cm−1 is 

assigned to the ν(OH) stretching vibration of HOD in Li(HOD)(PF6). Figure 2.35 also contains a three peak 

Lorentzian least squares fit of the three bands in this region of the spectrum. The ν(OD) region of the FTIR 

spectrum of a mixture of of Li(D2O)(PF6) and Li(HOD)(PF6) is shown in Figure 2.36. The bands at 2680 and 

2597 cm−1 are assigned to the νasym(OD) and νsym(OD) coupled stretching vibrations for the D2O molecule in 

Li(D2O)(PF6), respectively, and the band at 2636 cm−1 is assigned to the ν(OD) stretching vibration of HOD 

in Li(HOD)(PF6). Figure 2.36 also contains a four peak Lorentzian least squares fit of the three bands in this 

region of the spectrum. The fourth modeled peak was used to account for an impurity peak, labeled with an 

asterisk, that appears a few wavenumbers higher than the band assigned to the HOD vibration. 

2.3.10 Na(H2O)(PF6) 

A drawing of the X-ray structure of Na(H2O)(PF6), which was generated using data published in 

2003,71 is shown in Figure 2.37. The only symmetry unique H2O molecule is coordinated to a pair of Na+ 

cations forming infinite [–Na–μ-H2O–Na–μ-H2O–]∞
 chain. The Na–O–Na bond angle is 111°. The two O–H 

moieties of the water molecule form symmetry identical O–H···F hydrogen bonds with an O(H)···F bond 

distance of 3.064(2) Å.  

The ν(OH) region of the FTIR spectrum of Na(H2O)(PF6) is shown in Figure 2.38. The bands at 3639 

and 3570 cm−1 are assigned to the νasym(OH) and νsym(OH) coupled stretching vibrations, respectively. The 

ν(OH) region of the FTIR spectrum of a mixture of Na(H2O)(PF6) and Na(HOD)(PF6) is shown in Figure 

2.39. As in Figure 2.38 the bands at 3639 and 3570 cm−1 are assigned to the νasym(OH) and νsym(OH) coupled 

stretching vibrations for the H2O molecule in Na(H2O)(PF6), respectively, and the band at 3606 cm−1 is 
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assigned to the ν(OH) stretching vibration of HOD in Na(HOD)(PF6). Figure 2.39 also contains a three peak 

Lorentzian least squares fit of the three bands in this region of the spectrum. The ν(OD) region of the FTIR 

spectrum of a mixture of of Na(D2O)(PF6) and Na(HOD)(PF6) is shown in Figure 2.39. The bands at 2704 

and 2612 cm−1 are assigned to the νasym(OD) and νsym(OD) coupled stretching vibrations for the D2O molecule 

in Na(D2O)(PF6), respectively, and the band at 2654 cm−1 is assigned to the ν(OD) stretching vibration of 

HOD in Na(HOD)(PF6). Figure 2.39 also contains a three peak Lorentzian least squares fit of the three bands 

in this region of the spectrum. Finally the δ(HOH) region of a mixture of Na(H2O)(PF6) and Na(HOD)(PF6) 

is shown in Figure 2.40. The band at 1628 cm−1 is assigned to the δ(HOH) bending vibration and the band at 

1433 cm−1 is assigned to the δ(HOD) bending vibration.  

2.3.11 The Weakest O(H)·· ·F Hydrogen Bonds 

With respect to the ν(OH) criterion (section 2.3.1), focusing on the H2O molecules in which 

both O–H bonds form hydrogen bonds to F atoms (i.e., compounds with F·· ·HOH···F moieties), 

before this work the weakest hydrogen bonds determined by this qualitative criterion were in 

PVDF(H2O) (ν(OH) = 3707 and 3623 cm−1; see Figure 2.41) and [NEt4]2[Hg(H2O)(CB11F11)] 

(3681 and 3587 cm−1; the spectrum is shown in Figure 2.42 and its structure is shown in Figure 

2.42).37,72 The author now reports that the F·· ·HOH···F hydrogen bonds in 

Li(H2O)4(Al(OC(CF3)3)4 (ν(OH) = 3719 and 3644 cm−1), Li(H2O)(B(3,5-C6H3(CF3)2)4) (ν(OH) = 

3718 and 3639 cm−1), and Li(H2O)nGa(C2F5)4 (3702 and 3630 cm−1; see Figure 2.24) are 

significantly weaker than [NEt4]2[Hg(H2O)(CB11F11)]. In fact, by the ν(OH) criterion, the 

HOH···F hydrogen bonds in Li(H2O)4(Al(OC(CF3)3)4 and Li(H2O)(B(3,5-C6H3(CF3)2)4) are even 

weaker than PVDF(H2O). They are the weakest HOH···F hydrogen bonds reported to date.  

The complex formed between H2O and CH3F in an Ar matrix has only has one O–H···F 

hydrogen bond.60 The νasym(OH) streatching frequency for this matrix isolated complex, 3722 

cm−1, is red-shifted by 12 cm−1 from the 3734 cm−1 νasym(OH) value for an Ar-matrix isolated H2O 

monomer.18 One might anticipate that an O–H···F hydrogen bond between H2O and CF4would be 

even weaker than the HOH···F hydrogen bond, and indeed νasym(OH) is 3730 cm−1 for the H2O–

CF4 complex in an Ar matrix.73 However, unlike the DFT60 or MP2-aug-cc-pVQZ74 optimized 
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structure of H2O···FCH3, both of which are shown in Figure 2.44, the MP2-aug-cc-pVQZ 

optimized structure of the H2O–CF4 complex, also shown in Figure 2.44, does not have an O–

H···F hydrogen bond.73 Therefore, comparison of ν(OH) frequencies for the HOH···FCH3 

hydrogen bond complex and the H2O–CF4 van der Waals complex is not meaningful.  

As discussed above in section 2.3.1, the ν(OD) criterion provides a more meaningful 

measure of relative hydrogen bonds strength. According to this criterion, the weakest HOD···F 

hydrogen bonds reported before this work were in PVDF(HOD) (ν(OH) = 2696 cm−1)75 and 

CH3F···DOH complex in an Ar matrix at 15 K (ν(OD) = 2685 cm−1).60 The ν(OD) band for the 

HO–D···F hydrogen bond between absorbed HOD and a PVDF C–F bond was the closest 

approach to the presumed ν(OD) upper limit for HOD with no hydrogen bonding, which is either 

an isolated HOD molecule in an Ar matrix at 17 K for a solid-state upper limit (2709 cm−1)76-78 or 

an isolated HOD molecule in the gas phase (2720 cm−1).79-81  

The 17 compounds with ν(OD) > 2600 cm−1, including 12 for which spectra are presented 

in this Chapter, and 1 who’s spectrum is presented in Chapter 4, are shown in a progression 

approaching the 2709 and 2720 cm−1 upper limits in Figure 2.45. It is clear that the weakest 

HOD···F hydrogen bonds ever reported are in the lithium salts of the three fluoroanions with 

multiple CF3 or C2F5 substituents. The ν(OD) values for Li(HOD)(H2O)3(Al(OC(CF3)3)4) and 

Li(HOD)(B(3,5-C6H3(CF3)2)4) are only 3 and 4 cm−1, respectively, below the solid-state 2709 cm−1 

limit for HOD surrounded by only Ar atoms at 15 K, and the ν(OD) value for 

Li(HOD)(H2O)n−1(Ga(C2F5)4) is only 12 cm−1 below 2709 cm−1. It is not surprising that the 

HOD···F hydrogen bonds in the other lithium hydrates, Li2(HOD)(H2O)3(B12F12) (ν(OD) = 2642 

cm−1), Li(HOD)(PF6) (ν(OD) = 2636 cm−1), and Li2(HOD)(H2O)(TiF6) (ν(OD) = 2632 cm−1) are 

significantly stronger than the HOD···F hydrogen bonds in Li(HOD)(H2O)3(Al(OC(CF3)3)4), 

Li(HOD)(B(3,5-C6H3(CF3)2)4), and Li(HOD)(H2O)n−1(Ga(C2F5)4) because B–F, P–F, and Ti–F 

bonds are undoubtedly more polar than C–F bonds. However, it come as a surprise that the 

HOD···F hydrogen bonds in Li(HOD)(H2O)3(Al(OC(CF3)3)4), Li(HOD)(B(3,5-C6H3(CF3)2)4), 

and Li(HOD)(H2O)n−1(Ga(C2F5)4) appear to be as weak as, or weaker than, the HOD···F hydrogen 
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bonds involving neutral fluorocarbon compounds, namely, PVDF(HOD) and HOD···FCH3 in an 

Ar matrix. This is especially surprising since coordination to Li+ makes HOD more acidic, with a 

tendency to form stronger O−D···F hydrogen bonds, than HOD molecules that are not coordinated 

to a metal ion.  

The structures of Li(H2O)4(Al(OC(CF3)3)4)68 and Li(H2O)(B(C6H3(CF3)2)4)69 were 

reported previously, and the FTIR spectra of the Li salt hydrates of the Li(H2O)4(Al(OC(CF3)3)4)−, 

Li(H2O)(B(C6H3(CF3)2)4)−, and Ga(C2H5)− anions were first published by the author in ref. 36. 

These superweak33,82 anions, with a single negative charge and 36, 24, or 20 aliphatic C–F bonds 

for Li(HOD)(H2O)3(Al(OC(CF3)3)4), Li(HOD)(B(3,5-C6H3(CF3)2)4), and 

Li(HOD)(H2O)n−1(Ga(C2F5)4), respectively, are significantly weaker hydrogen bond acceptors 

than fluoroanions with fewer F atoms and more polar M–F or E–F bonds (E = B, P, Si), including 

PF6
−, SiF6

2−, TiF6
2−, SnF6

2−, B12F12
2−, MnF6

3−, and Mn(H2O)2F4
2−. For Li(H2O)1–4 salts, the 

O−H···F hydrogen-bond acceptor strength decreases in the order TiF6
2− > B12F12

2− > PF6
– ≫ 

Ga(C2F5)4
− > B(3,5-C6H3(CF3)2)4

− ~ Al(OC(CF3)3)4
−. For the two new Na(H2O)1,2

+ salts that were 

studied, it was found that B12F12
2− and PF6

– have the same hydrogen-bond acceptor strength.  

The polyfluoroalkoxyaluminate Al(OC(CF3)3)4
− anion was first reported in 2001.83-87 This 

anion is so weakly basic that Krossing and co-workers successfully used it to isolate and study 

many unique and interesting cations,34,82,87-91 including Ag(η2-P4)2
+,82 Ag(P4S3)2

+,88 and 

Li(H2O)4(Al(OC(CF3)3)4).68 The B(3,5-C6H3(CF3)2)4
− anion was first reported by Sonoda and 

Kobayashi in 1984,92 and has been used extensively for phase transfer catalysis,93-94 

organometallic electrochemistry,95 olefin and alkyne polymerization,96-97 and, most recently, 

nonoxidative catalytic dehydrogenation of alkanes98 and the isolation and structural 

characterization of Li(H2O)B(3,5-C6H3(CF3)2)4.69 The Ga(C2F5)4
− anion was recently reported by 

Hoge and co-workers and used to isolate and structurally characterize hydronium hydrate 

(H5O2)2(H2O)2(Ga(C2H5)4), which contains a cyclic, nearly planar [(H3O)2(H2O)2]2+ cluster.99 It 

promises to be another superweak anion with which other interesting cations, perhaps including 

other metal salt hydrates, can be isolated and structurally characterized.  
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2.3.12 Asymmetric Hydrogen Bonding Environments in Hydrates  

Figure 2.45, and the ν(OD) frequencies listed in Tables 2.1 and 2.2, show that several salt 

hydrates of fluoroanions with a small percentage of HOD (i.e., with a single, uncoupled HOD 

molecule) have two or more ν(OD) bands, indicating either different HOD orientations for the 

crystallographically unique HOD molecule (i.e., the HOD molecule is in an asymmetric hydrogen 

bonding environment), or more than one HOD positions in the M(HOD)(H2O)n−1
m+ coordination 

sphere, or both. The case of Cs2(HOD)(B12F12), was mentioned above in section 2.3.3. The 

structure of Cs2(H2O)(B12F12) has a single unique H2O molecule.67 The two H atoms are in 

different hydrogen bonding environments, with O(H)·· ·F distances that differ by 0.106(6) Å 

(3.103(3) and 2.997(3) Å).67 The spectrum in Figure 2.8 shows unequivocally that 

Cs2(HOD)(B12F12) has separate bands at 2669 and 2664 cm−1, which result from the two 

orientations of the unique HOD molecule.  

The two H2O molecules in crystalline Rb2(H2O)(B12F12) are symmetry related.66 The two 

O(H)·· ·F distances for the two crystallographically unique O–H bonds are 2.931(2) and 2.857(2) 

Å,66 a difference of only 0.074(4) Å. The FTIR spectrum of a sample of Rb2(H2O)2(B12F12) containing 

a small amount of Rb2(HOD)(H2O)(B12F12) has two ν(OD) bands at 2668 and 2660 cm−1 and ν(OH) 

bands at 3625 and 3614 cm−1, as shown in Figure 2.15, which result from the two orientations of 

the crystallographically unique and uncoupled HOD molecule in the asymmetric hydrogen 

bonding environment.  

FTIR spectra of a sample of Li2(H2O)4(B12F12) containing a small amount of 

Li2(HOD)(H2O)3(B12F12), which is discussed in depth in Chapter 3 of this dissertation, (Figure 

2.46) and a sample of Na2(H2O)2(B12F12) containing a small amount of Na2(HOD)(H2O)(B12F12) (Figure 

2.22) also have two ν(OD) bands, but with much larger separations than in the compounds 

discussed above (the four H2O molecules in Li2(H2O)4(B12F12) are symmetry related so there is 

only one type of position in the formula unit;66 see Figure 2.46). The two bands in the spectrum of 

a sample of Li2(H2O)4(B12F12) containing a small amount of Li2(HOD)(H2O)3(B12F12) are at 2642 and 

2518 cm−1, a difference of 124 cm−1. The large difference is because the two orientations of the 
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HOD ligand have different hydrogen bonding environments, with O(D)·· ·F = 2.951(3) Å for one 

orientation and O(D)···O = 2.778(2) or 2.785(2) Å for the other orientation.66 Note that the more 

red-shifted, lower wavenumber band, assigned to the O–D···O hydrogen bond, is significantly 

broader that the higher wavenumber band (FWHM = 34 vs 6 cm−1, respectively) and has a 

significantly higher integrated intensity (by more than a factor of 2) than the higher wavenumber 

band. A greater redshift, increased FWHM, and increased integrated intensity are all indicative of 

stronger hydrogen bonding for the O–D···O hydrogen bond relative to the O–D···F hydrogen bond 

in Li(HOD)(H2O)3(B12F12).  

The FTIR spectra of Na2(H2O)2(B12F12) and Na(H2O)(PF6), shown in Figure 2.47, are in 

sharp contrast to the spectra of a sample of Na2(H2O)2(B12F12) containing a small amount of 

Na2(HOD)(H2O)(B12F12) and a sample of Na(H2O)2(PF6) containing a small amount of Na(HOD)(PF6), 

shown in Figure 2.48. Instead of the similar pairs of νasym(OH) and νsym(OH) in the spectra of 

Na2(H2O)2(B12F12) and Na(H2O)(PF6) (i.e., similar peak positions and FWHM values), the spectra 

of Na2(HOD)(H2O)(B12F12) and Na(HOD)(PF6) are fundamentally different. The spectrum of 

Na(HOD)(PF6) has a single sharp ν(OD) band at 2654 cm−1 (FWHM = 6 cm−1), approximately 

halfway between the 2704 νasym(OD) and the 2612 νsym(OD) bands for Na(HOD)(PF6), which is 

consistent with the symmetric H2O hydrogen bonding environment shown in the Na(H2O)(PF6) 

X-ray crystal structure shown in Figure 2.37. In contrast, the spectrum of Na2(HOD)(H2O)(B12F12) 

has two sharp ν(OD) bands, at 2680 (FWHM = 5 cm−1) and 2628 cm−1 (FWHM = 8 cm−1), which 

are only 20–26 cm−1 from the 2706 νasym(OD) and 2608 νsym(OD) values for Na2(D2O)(B12F12). 

The structure of Na2(H2O)2(B12F12) is currently unknown. However, the spectrum of 

Na2(H2O)2(B12F12) suggests that there is one crystallographically unique H2O molecule, and the 

spectrum of Na2(HOD)(H2O)(B12F12) suggests that the unique H2O is in an asymmetric hydrogen 

bonding environment, either with significantly different O(H)·· ·F distances of with one O–H···F 

hydrogen bond and one O–H···O hydrogen bond. Repeated attempts to grow crystals of 

Na2(H2O)2(B12F12) suitable for single-crystal X-ray diffraction have produced either 

Na2(H2O)4(B12F12),100 Na2(H2O)3(B12F12),66 or microcrystalline powders of Na2(H2O)2(B12F12). 
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Attempt to measure powder X-ray diffraction patterns for the microcrystalline powders of 

Na2(H2O)2(B12F12) have also proved unsuccessful. (Meaningful ATR-FTIR spectra of either 

Na2(H2O)4(B12F12) or Na2(H2O)3(B12F12) could not be obtained at room temperature because they 

rapidly undergo dehydration to Na2(H2O)2(B12F12), which is stable indefinitely to dehydration in 

air containing water vapor.) 

The literature data listed in Table 2.2 show that FTIR spectra of some compounds with an 

isolated, uncoupled HOD ligand are significantly different O–D···F hydrogen bonds (depending 

on the position and/or orientation o the HOD ligand) can exhibit multiple ν(OD) bands separated 

by 29 (K(HOD)2F), 55 (K(HOD)(MnF4)), 126 (Sr(HOD)(H2O)(TiF6)), or even 136 cm−1 

(Zn(H2O)4F2). Portions of the structure and selected distances and angles for K(HOD)2F, 

K(HOD)(MnF4), and Zn(H2O)4F2 are shown or listed in Figures 2.49–2.52 and Tables 2.3 and 2.4, 

respectively.  

2.3.13 Correlations of ν(OD) or ν(OH) with O···X for HOH···X and HOD···X Hydrogen 

Bonds (X = F, O) 

There have been many attempts to correlate ν(OH) frequencies with O(H)···O distances 

for compounds with intra- and intermolecular O–H···O hydrogen bonds. Some of the earliest and 

best known are by Nakamoto, Morgoshes, and Rundle,46 Pimentel and Sederholm,47 and Novak.2 

A graph made for ref. 36 with the data set in Novak’s paper is shown in Figure 2.53. The average 

deviation of data points from the exponential regression curve is 158 cm−1. A more recent paper 

by Libowitzky contained a ν(OH) vs O(H)·· ·O graph with 124 data points for 65 materials.8 A 

graph made for ref. 36 from Libowitzky’s data, to match the one made from the Novak data, is 

also shown in Figure 2.53. The average deviation of the data points from the exponential regression 

curve is 82 cm−1.  

Two papers, one by Berglund, Lindgrenm, and Tegenfeldt in 19785 and one by Mikenda 

in 1986,49 reported ν(OD) vs O(H)·· ·O correlation curves for compounds with a single, uncoupled 

HOD molecule. A graph made for ref. 36 from the Berglund et al. data set is shown in Figure 2.54. 

The data was fit to an exponential regression curve with a fixed limit of 2720 cm−1, and the R2 
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value of the curve is 0.90. The average deviation of the 37 blue data points from the regression 

curve is 30 cm−1. 

An uncoupled ν(OD) vs O(D)···F correlation curve, the only one of its kind before the 

updated one published by the author in ref 36, was published by Mikenda and Steinböck in 1994.6 

The 28 data points were for salt hydrates of the fluoroanions trans-Mn(H2O)2F4
−, MnF6

3−, FeF6
3−, 

TiF6
2−, SnF6

2−, and F−. The O(D)···F values where O(H)···F distances from the literature crystal 

structures. The ν(OD) frequencies were from FITR spectra recorded at 75 K by Mikenda and 

Steinböck. All of the ν(OD) frequencies were less than 2600 cm−1. As a result of the work presented 

in this chapter, and published in ref. 36, the author has added 25 data points for the 13 numbered 

compounds (one of the compounds, Co(HOD)(H2O)5(B12F12), is discussed in Chapter 4 of this 

dissertation) in Figure 2.53 to the Mikenda/Steinböck correlation, all but two of which have ν(OD) 

> 2600 cm−1. The data for this plot is listed in Table 2.2. The data was fitted to an exponential 

regression curve with a fixed limit of 2720 cm−1, and the R2 value of the curve is 0.88. This ν(OD) 

vs O(D)·· ·F graph is shown in Figure 2.53. The average deviation of the 53 red data points from 

the regression curve is 27 cm−1. The 53 points represents hydrates of 12 cations (Li+, Na+, K+, Rb+, 

Cs+, Mg2+, Sr2+, Mn2+, Fe2+, Co2+, Ni2+, and Zn2+) and 12 fluoroanions (Al(OC(CF3)3)4
−, B(3,5-

C6H3(CF3)2)4
−, Ga(C2F5)4

−, PF6
−, trans-Mn(H2O)2F4

−, MnF6
3−, FeF6

3−,SiF6
−, TiF6

2−, SnF6
2−, 

B12F12
2−, and F−). 

The 28 Mikenda/Stienböck ν(OD) values are from FTIR spectra recorded at 75 K6 and the 

six ν(OD) values for Mg(HOD)(H2O)(SiF6) are from a spectrum recorded at 93 K.101 The spectrum 

of HOD···FCH3 was recorded at 15 K in an Ar matrix. All of the ν(OD) values from this chapter, 

and from Chapter 4, are from spectra recorded at room temperature. The temperature difference 

may affect ν(OD) by ca. 5 cm−1, which is the difference between the room temperature 2654 cm−1 

ν(OD) for Na(HOD)(PF6) and Mikenda and Stienböck’s 75 K 2649 cm−1 ν(OD) for this compound. 

(The difference between the room temperature 2623 cm−1 ν(OD) for Li2(HOD)(H2O)(TiF6) and 

Mikenda and Stienböck’s 75 K 2620 cm−1 value is even less.) Mikenda and Stienböck reported the 

75 K ν(OD) for Na(HOD)(PF6) in their paper6 but did not use it in their correlation because the 
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only structure of this compounds at the time was of poor quality. The author has chosen to use it 

in their correlation in Figure 2.54 because a good structure is now available.71 

There is considerable scatter in all ν(OD) or ν(OH) vs O···X correlation plots (X = O, F). 

There are several possible causes. First, the O or F atoms in different molecules or anions do not 

necessarily have the same basicity or hydrogen-bond acceptor strength. Secondly, the O–H···X 

hydrogen bonds are generally not linear, and an O···X distance may not be as good an indication 

of hydrogen bond strength as a precise H·· ·X distance, but very few precise H·· ·X distances are 

available. Moreover, many hydrogen bonds are bifurcated, and there is no straightforward and 

standardized way to treat these when making a correlation curve.102 Finally, in some cases when 

an HOD molecule is in an asymmetric environment, only one ν(OD) band was observed. The 

compound Li(H2O)4(Al(OC(CF3)3)4) is an example of the last point. There is only one ν(OD) band 

for Li(HOD)(H2O)3(Al(OC(CF3)3)4) (Figure 2.27) and only one ν(OH) band for 

Li(HOD)(D2O)3(Al(OC(CF3)3)4) (Figure 2.25). Each of these bands is symmetric and can be fit 

with a single Lorentzian function. Nevertheless, the HOD molecule is in an asymmetric hydrogen 

bonding environment, with an O(H)·· ·F distance of 3.012(2) or 3.157(2) Å, and with and O–H···F 

angle of 134° or 146°, respectively.68 Does the 3.157(2) Å O(H)···F distance have the same effect 

on the O–D oscillator in one orientation as the 3.012(2) O(H)···F distance has on the O–D 

oscillator in the other orientation because the O–H···F angles compensate for the difference in 

O(H)·· ·F distance? Any interpretation must be tempered by the fact that the H atoms positions are 

not precisely known as they would be in a neutron diffraction crystal structure, even though this is 

a very good X-ray crystal structure (R = 0.0269, wR2 = 0.0539). The two O–H distances are 0.68(5) 

and 0.70(5) Å and the H–O–H angle is 102(5)°. What distance should be used for the ν(OD) vs 

O(H)·· ·F correlation? The decisions was to use the average value, 3.130 Å, as a compromise when 

making Figure 2.54. 

Whatever the cause(s) of the scatter, it is sufficiently large that the correlation regression 

curves cannot be used to reliably predict a ν(OD) frequency with even moderate accuracy. For 

example, in Figure 2.54 an O(D)·· ·F distance of 2.723 ± 0.001 Å is correlated with a ν(OD) 
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frequency as low as 2491 cm−1 (for Zn(HOD)(H2O)3F2) or as high as 2633 cm−1 (for 

Mg(HOD)(H2O)5(B12F12)). For ν(OD) = 2657 ± 3 cm−1, O(D)···F can be as short as 2.857(2) Å 

(for Rb2(HOD)(H2O)(B12F12)) or as long as 3.170(6) Å (for Sr(HOD)(H2O)(TiF6)). Nevertheless, 

the scatter in the two correlation plots in Figure 2.54 notwithstanding, there is a clear difference 

between them. For a given ν(OD) stretching frequency, the regression curves show that O(D)···R 

is in general, 0.1–0.2 Å shorter than O(D)·· ·O, or for similar O(D)·· ·X distances, ν(OD) for X = F 

is significantly higher than ν(OD) for X = O. This is in harmony with the lower basicity of F atoms 

vs O atoms in general and the smaller size of an F atom vs an O atom. Two examples are ν(OD) = 

2636 cm−1 for Li(HOD)(PF6) and 2619 cm−1 for Li(HOD)(H2O)2(ClO4)103 (O(D)·· ·O = 2.989(2) 

Å;104 see Figure 2.55), and ν(OD) = 2654 cm−1 for Na(HOD)(PF6) (O(D)·· ·F = 3.604(2) Å71) and 

2641 cm−1 for Na(HOD)(ClO4) (O(D)·· ·O = 3.087(3) and 3.141(3) Å;105 see Figure 2.56).  

2.4 Conclusions and Future Work 

2.4.1 Conclusion  

It has been shown that hydrogen bonds between metal-coordinated H2O, or HOD, and one, 

or more, aliphatic C–F bonds in three superweak anions, namely, Al(OC(CF3)3)4
−, B(3,5-

C6H3(CF3)2)4
−, and Ga(C2F5)4

−, gives rise to higher FTIR ν(OH) and ν(OD) frequencies, and are 

arguably weaker, than hydrogen bonds between H2O or HOD and aliphatic C–F bonds in neutral 

molecules, namely polyvinylidene difluoride and CH3F. The hydrogen bonds in 

Li(H2O)4(Al(OC(CF3)3)4), Li(H2O)( B(3,5-C6H3(CF3)2)4), and Li(H2O)n(Ga(C2F5)4) are among the 

weakest, if not the weakest, hydrogen bonds between an H2O molecule and an F atom reported to 

date. However, as weak as they are, differences in O−H···F hydrogen bond strength within a given 

fluoroanion salt can be distinguished spectroscopically. Uncoupled HOD molecules in asymmetric 

F·· ·HOD···Fʹ hydrogen bonding environments in four hydrates of B12F12
2− gave rise to two 

observable ν(OD) bands even if the two O(D)···F distances differed by as little as 0.010(4) Å. 

Finally, for solid hydrates, a ν(OD) vs O(D)·· ·F graph with 53 data points, including 23 new data 

points with ν(OD) > 2600 cm−1, is displaced ca. 0.1–0.2 Å to shorter distances relative to the ν(OD) 
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vs O(D)···O graph of Berglund, Lindgren, and Tegenfeldt,5 in harmony with the lower basicity 

and smaller size of F atoms vs O atoms.  

2.4.2 Future Work 

The logical next step would be to perform an in-depth neutron diffraction study of all the compounds 

studied in this chapter. A more accurate location of the H atom positions means that correlation of ν(OD) vs 

H···F distance, and potentially O–H···F bond angle, will better inform on this relationship than current 

correlation curves, and likely greatly reduce scatter. Secondly, the salts studied in this chapter represent only 

a small fraction of the number of metal salt hydrates with WCAs. The family of Li(Al(ORf)4) salts, to which 

Li(H2O)4(Al(OC(CF3)3)4) belongs, contains numerous Li salts of WCAs that have yet to be explored 

spectroscopically, with the Na analogues further expanding the number of potential candidate materials worth 

studying. Thirdly, as will be discussed in Chapter 4 of this dissertation, this study is not limited to salts of 

monovalent cations. In the limit of this dissertation only monovalent cations and divalent cations (Chapter 4) 

have been explored. Synthesis of new salt hydrates of WCAs with M3+ cations will provide new materials 

that can be studied in this manner, and potentially reveal trends about the effect of Mm+–OH2 coordination on 

the O–H···X hydrogen bonding. Additionally, this work is not restricted solely to fluoroanions. Preliminary 

investigation into the FTIR spectrum of Na2(H2O)6(B12Cl12) revealed that, like the fluoroanions discussed in 

this chapter, there are sharp, and resolvable, ν(OH) peaks in the range of 3500–3650 cm−1 (Figure 2.57).37 

Looking at perchlorinated analogues, or new chlorinated WCAs, will allow for investigation into O–H···X 

hydrogen bonding as a function of the halogen participating in the bonding. Finally, looking at hydrogen 

bonding in the limit of the weakest hydrogen bonds is important, but it is only part of a greater effort to 

understand water–anion interactions in the solid state. Identification and study of materials with progressively 

stronger hydrogen bonding, up to the limit of coalescence of the νasym(OH) and νsym(OH) bands, will be 

important to achieve a more complete understanding of water–anion interactions.  
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Figure 2.1. ATR-FTIR spectrum of H2O(l) deposited on a ZnSe ATR crystal collected at room 
temperature. The band is centered ca. 3300 cm−1 with a FWHM > 400 cm−1. 
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Figure 2.2. FTIR spectra of Mg(H2O)6(BrO3)2 (ref. 23), the Tutton salt K2Zn(H2O)6(SO4)2 (ref. 
24), and (NH4)2M(H2O)6(SO4)2 (ref. 25; M = 50:50 Co:Ni). The ν(OH) bands at 3000–3300 cm−1 
are significantly redshifted relative to νasym(OH) and νsym(OH) for H2O(g) (3756 and 3655 cm−1, 
respectively26). The first two figures were adapted from figures in the respective references. The 
author thanks Prof. Santunu Ghosh for kindly supplying a digital data file with which the spectrum 
of (NH4)2M(H2O)6(SO4)2 was prepared.  

K2Zn(H2O)6(SO4)2 FTIR

Manonmoni, Amutha et al., 

Spectrochim. Acta Part A 2014

ν(OH)



58 

 

 

 
Figure 2.3. FTIR spectra of Rb6(H2O)4(Mo7O24) (top; ref. 27; Nujol mull) and Rb2(H2O)2(B12F12) 
(bottom; originally published in ref. 37) at 22 °C. The broad band centered at ca. 3400 cm−1 in the 
spectrum of Rb2(H2O)2(Z) is due to H2O on the surface of the microcrystalline particles. The sharp 
bands at 3653 and 3585 cm−1 are assigned to νasym(OH) and νsym(OH) for the symmetry-related 
coordinated H2O molecules and have FWHMs of 9 and 8 cm−1, respectively. The top figure was 
adapted from a figure in ref. 27.  
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Figure 2.4. The ν(OH) regions in the FTIR spectra of K(H2O)(SnCl3) (top; ref. 30; −160 °C) and 
K2(H2O)2(B12F12) (bottom; this work). The ν(OH) peaks for K(H2O)(SnCl3) at 30 °C are 3618 and 
3538 cm−1, and it is not known how much broader they are relative to the −160 °C spectrum shown 
here. The top figure was adapted from a figure in ref. 30.    
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Figure 2.5. The ν(OH) regions of FTIR spectra of Mg(H2O)6(BF4)2 at 295 K (top) and 8.5 K 
(bottom). Peak positions in cm−1 and their assignments are shown. Different versions of these 
spectra were first published in ref. 16. The author thanks Dr. Joanna Hetmańczyk for providing 
digital copies from which the spectra shown in this figure were made. 
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Figure 2.6. Schematic diagram of the instrumental set up adapted from Figure 1 in ref. 43. The 
three primary differences in this set up for the work discussed in this dissertation are (i) an Alicat 
Scientific flowmeter (flow controller) replaces the ozone generator, and allows for control of the 
dry gas (N2) flow at rates between 1–1000 mL min−1; (ii) the ozone monitor has been remove as 
no ozone was added in any of the work in this dissertation ; and (iii) the temperature controller 
was not utilized in any of the room temperature work.   
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Figure 2.7. ATR-FTIR spectrum of H2O in a frozen N2 matrix at 11 K (ref. 18). The bands labelled 
as νasym(OH) and νsym(OH) are due to monomeric H2O molecules. The other bands are due to 
dimers and higher oligomers. This figure was adapted from a figure in ref. 18.  
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Figure 2.8. ATR-FTIR spectrum of a microcrystalline sample containing a small amount of 
Cs2(HOD)(B12F12) and Cs2(D2O)(B12F12) evaporated on a ZnSe crystal from aqueous solution 
originally containing ca. 10% D2O. Peak positions in cm−1 and their assignments are shown. The 
two bands at 2669 and 2664 cm−1 in the spectrum are due to the different O(D)·· ·F environments 
(the O(D)·· ·F distances are 2.997(3) and 3.103(3) Å (ref. 67)). The peaks at 2715 and 2624 cm−1 
are assigned to the νasym(OD) and νasym(OD) stretching vibrations, respectively, for the small 
amount of Cs2(D2O)(B12F12) present in the sample.  
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M–O 2.7698(6), 2.7726(6) Å 2.857(1), 2.915(1) Å 

M–F 6 @ 2.598(1)−3.159(1) Å (ave. 2.857 Å) 8 @ 2.909(1)–3.237(1) Å (ave. 3.100 Å) 

O(H)···F 2.978(1); 2.972(1), 2.978(1) 2.857(2); 2.859(2), 2.931(2) 

· · · 7.276 × 2, 7.295 Å 7.166 × 2, 7.851 Å 

acute · · ·· · · 78.7, 81.3° 77.0, 88.4° 

 

 

 

 
Figure 2.9. Comparison of the isomorphous P21/c, Z = 2, X-ray crystals structures of 
K2(H2O)2(B12F12) (T = 110(2) K; formula unit volume = 367.9 Å3) and Rb2(H2O)2(B12F12) (T = 
120(2) K; formula unit volume = 381.6 Å3). The symbol  represents a B12 centroid. The structure 
of K2(H2O)2(B12F12) was reported in ref. 65. The structure of Rb2(H2O)2(B12F12) was reported in  
ref. 66.  
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Figure 2.10. Lorentzian least-squares fit to the ν(OH) bands in the ATR-FTIR spectrum of 
K2(H2O)2(B12F12)(s) evaporated on the ZnSe ATR crystal from an aqueous solution and then held 
under 14 torr H2O(g). Only the two sharp peaks were fit to Lorentzian peaks, not the broad surface 
H2O band at ca. 3400 cm−1. The blue trace is the sum of the two peak fit.  
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Figure 2.11. Lorentzian least-squares fit to the ν(OH) bands in the FTIR spectrum of 
Rb2(H2O)2(B12F12)(s) evaporated on the ZnSe ATR crystal from an aqueous solution and then held 
under 18 torr H2O(g) for 18 h. Only the two sharp peaks were fit to Lorentzian peaks, not the broad 
surface H2O band at ca. 3400 cm−1. The blue trace is the sum of the two peak fit. 
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Figure 2.12. ATR-FTIR spectra (ν(OH) regions) of thin films of microcrystalline 
K2(H2O)2(B12F12) and Rb2(H2O)2(B12F12) evaporated on a ZnSe crystal from aqueous solutions. 
Peak positions in cm−1 are shown. The higher wavenumber and more narrow ν(OH) bands for the 
coordinated H2O molecules in Rb2(H2O)(B12F12) indicate weaker hydrogen bonding to the B12F12

2− 
anion than in K2(H2O)(B12F12). This is probably due to the weaker Brønsted acidity of H2O–Rb+ 
moieties relative to H2O–K+ moieties. This comparison is valid because the two compounds have 
nearly identical solid-state structures, as shown in Figure 2.9. These spectra were first published 
in ref. 37.  
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Figure 2.13. The ν(OH) ATR-FTIR region of a spectrum for a microcrystalline sample containing 
Rb2(H2O)2(B12F12) and Rb2(HOD)(H2O)(B12F12) evaporated on the ZnSe ATR crystal from a 
90:10 H2O:D2O solution. Peak positions in cm−1 and their assignments are shown. The black trace 
is the experimental spectrum. The red trace is the sum of the Lorentzian fitted blue traces for the 
spectrum.   



69 

 

 

 

 

  

 

 

 

 

 

Figure 2.14. ATR-FTIR spectra of microcrystalline samples containing K2(HOD)(H2O)(B12F12) 
evaporated on a ZnSe crystal from aqueous solutions containing ca. 10% D2O. Peak positions in 
cm−1 and their assignments are shown. The samples also contain smaller amounts of 
K2(D2O)(H2O)(B12F12). The shoulder on the 2652 cm−1 band in the spectrum of 
K2(HOD)(H2O)(B12F12) indicates that there may be two narrow peaks that are not resolved.  
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Figure 2.15. The ν(OD) ATR-FTIR region of a spectrum for a microcrystalline sample containing 
Rb2(HOD)(H2O)(B12F12) and Rb2(D2O)(H2O)(B12F12) evaporated on the ZnSe ATR crystal from 
a 90:10 H2O:D2O solution. Peak positions in cm−1 and their assignments are shown The black trace 
is the experimental spectrum. The red trace is the sum of the Lorentzian fitted blue traces for the 
spectrum.   
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Figure 2.16. A portion of the X-ray crystal structure of Cs2(H2O)(B12F12), reported in ref. 67. 
Selected distances (Å) and angles: Cs–O, 3.137(2) Å; Cs'–O, 3.310(2) Å; O–F4, 3.103(3) Å; O–
F9, 2.997(3) Å; O–H2···F4, 148°; O–H1···F9, 157°.  
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Figure 2.17. Lorentzian least-squares fit to the ν(OH) bands in the ATR-FTIR spectrum of 
Cs2(H2O)(B12F12). Peak positions in cm−1 and their assignments are shown. The spectrum was 
collected during drying of an aqueous solution under a flow N2(g) . Only the two sharp peaks were 
fit to Lorentzian peaks, not the broad surface H2O band at ca. 3400 cm−1. The blue trace is the sum 
of the two peak fit.  
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Figure 2.18. Lorentzian least-squares fit to the δ(HOH) band in the FTIR spectrum of 
Cs2(H2O)(Z)(s) while it was evaporating on the ZnSe ATR crystal from an aqueous solution. The 
blue trace is the fit of the single peak.  
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Figure 2.19. ATR-FTIR spectra of a microscrystalline sample containing Cs2(HOD)(B12F12) and 
Cs2(H2O)(B12F12) evaporated on the ZnSe crystal. Peak positions in cm−1 and their assignments 
are shown. The two bands at 3626 and 3621 cm−1 assigned to Cs2(HOD)(B12F12) are due to the 
different O(H)·· ·F environments (the O(H)·· ·F distances are 2.997(3) and 3.103(3) Å (ref. 67; see 
Figure 2.16)). 
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Figure 2.20. Lorentzian least-squares fit to the four ν(OD) peaks in the FTIR spectrum of 
Cs2(D2O)(Z)(s) evaporated on the ZnSe ATR crystal from a D2O solution and then held under 8 
torr H2O(g). Some coordinated HOD appeared during the H2O/D2O exchange, leading to the two 
weak ν(OD) peaks at 2669 and 2664 cm−1. The blue trace is the sum of the four peak fit.  
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Figure 2.21. Lorentzian least- 
 
squares fit to the ν(OH) bands in the ATR-FTIR spectrum of Na2(H2O)2(Z)(s) evaporated on the 
ZnSe ATR crystal from an aqueous solution and then held under dry N2. The blue trace is the sum 
of the two peak fit.   
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Figure 2.22. ATR-FTIR spectrum (black trace) of a sample containing Na2(HOD)(H2O)(B12F12) 
and Na2(D2O)(H2O)(B12F12) evaporated on a ZnSe ATR crystal (the predominant species in the 
sample was Na2(H2O)2(B12F12)). Peak positions in cm−1 and their assignments (HOD or D2O) are 
shown. The red traces are the sums of the four  blue Lorentzian fitted peaks.   
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Figure 2.23. Two portions of the X-ray crystal structure of Li(H2O)4(Al(OC(CF3)3)4), which was 
published in 2009 in ref. 68. The two O(H)···F distances for each of the four symmetry-related 
coordinated H2O molecules are 3.102(2) and 3.157(2) Å (O–H···F = 130 and 148°, respectively). 
The left drawing shows that each H2O molecule has two additional, very weak, O(H)·· ·F bonds 
with distances of 3.296(2) and 3.297(2) Å (O–H···F = 134 and 146°, respectively). Therefore, each 
O–H moiety can be though of as participating in pairs of bifurcated O(H)·· ·F hydrogen bonds. By 
several criteria, including the ν(OD) value of 2706 cm−1 for Li(HOD)(H2O)3(Al(OC(CF3)3)4), 
these appear to be the weakest O(H)·· ·F hydrogen bonds between an H2O molecule and an F atom. 
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Figure 2.24. ATR-FTIR spectra of microcrystalline samples of Li(H2O)4(Al(OC(CF3)3)4), 
Li(H2O)(B(3,5-C6H3(CF3)2)4), and Li(H2O)n(Ga(C2F5)4). Peak positions in cm−1 and their 
assignments are shown (FWHM values are listed in Table 2.1). The wavenumber (cm−1) ranges 
are the same and the wavenumber scales are aligned.   
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Figure 2.25. The ν(OH) region of the ATR-FTIR spectrum of a microcrystalline sample containing 
Li(HOD)(D2O)3(Al(PFTB)4 and Li(H2O)(D2O)3(Al(PFTB)4. Peak positions in cm−1 and their 
assignments are shown. The black trace is the experimental spectrum. The red trace is the sum of 
the Lorentzian fitted blue traces for the spectrum. The FWHM value for the central band at 3676 
cm−1 is 20 cm−1.  
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Figure 2.26. The δ(HOH)/δ(HOD) regions of ATR-FTIR spectra of microcrystalline samples of a 
mixture of Li(HOD)(D2O)3(Al(PFTB)4 and Li(H2O)(D2O)3(Al(PFTB)4 (top) and 
Li(H2O)4(Al(PFTB)4) (bottom). Peak positions in cm−1 and their assignments are shown. 
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Figure 2.27. ATR-FTIR spectra (black traces) of a sample containing 
Li(HOD)(H2O)3(Al(OC(CF3)3)4) and Li(D2O)(H2O)3(Al(OC(CF3)3)4) . Peak positions in cm−1 and 
their assignments (HOD or D2O) are shown (FWHM values are listed in Table 2.1). The red traces 
are the sums of three blue Lorentzian fitted bands.   
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Figure 2.28. The ν(OH) regions of ATR-FTIR spectra for microcrystalline samples of 
Li(H2O)4(Al(PFTB)4) on the ZnSe ATR crystal. The black traces are the experimental spectra. The 
red traces are the sums of the two Lorentzian fitted bands. The band positions and FWHM values 
(↔) in cm−1 are shown.   
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Figure 2.29. A portion of the single-crystal X-ray structure of Li(H2O)(B(3,5-C6H3(CF3)2)4), 
published in 2019 in ref. 69. The O(H)···F distances for the bifurcated hydrogen bond are 2.995(6) 
and 3.077(6) Å (O–H···F = 140 and 157°, respectively). The other O(H)·· ·F distance is 2.995(6) 
Å (O–H···F = 167°). 
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Figure 2.30. ATR-FTIR spectra (black traces; 2 cm−1 resolution) of the ν(OH) region of a 
microcrystalline sample containing Li(HOD)(B(3,5-C6H3(CF3)2)4) and Li(H2O)(B(3,5-
C6H3(CF3)2)4) pressed onto the ZnSe ATR crystal (top) and the ν(OD) region of a microcrystalline 
sample containing Li(HOD)(B(3,5-C6H3(CF3)2)4) and Li(D2O)(B(3,5-C6H3(CF3)2)4) pressed onto 
the ZnSe ATR crystal (bottom). Peak positions in cm−1 and their assignments (HOD, H2O, or D2O) 
are shown (FWHM values are listed in Table 2.1). The red traces are the sums of the three blue 
Lorentzian fitted peaks. Full-widths at half-maximum absorbance are listed in Table 2.1. 



86 

 

 

 

 

 

 

 

 

 

Figure 2.31. The ν(OH) regions of ATR-FTIR spectra for microcrystalline sample of 
Li(H2O)n(Ga(C2F5)4) (bottom) on the ZnSe ATR crystal. The black traces are the experimental 
spectra. The red traces are the sums of the two Lorentzian fitted bands. The band positions and 
FWHM values (↔) in cm−1 are shown.   
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Figure 2.32. ATR-FTIR spectrum of the ν(OD) region of a microcrystalline sample containing 
Li(HOD)(H2O)n−1(Ga(C2F5)4) and Li(D2O)(H2O)n−1(Ga(C2F5)4) that was evaporated on the ZnSe 
ATR crystal from an 90:10 H2O:D2O solution (the majority species was Li(H2O)n(Ga(C2F5)4)). 
Peak positions in cm−1 and their assignments are shown. The black trace is the experimental 
spectrum. The red trace is the sum of the three Gaussian fitted bands (for this spectrum the 
Gaussian fit was significantly better than the Lorentzian fit). The FWHM for the central 2697 cm−1 
band is 24 cm−1.  
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Figure 2.33. A portion of the X-ray crystal structure of Li2(H2O)2(TiF6) (ref. 70; the H atoms were 
not located). The O(H)···F distances for each of the symmetry related H2O molecules are 3.007(6) 
× 2 and 3.048(6) Å × 2 (presumably both O–H bonds participate in bifurcated hydrogen bonds). 
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Figure 2.34. FTIR ν(OH) region for a sample of Li2(H2O)2(TiF6) (top) and FTIR ν(OD) region for 
a sample containing Li2(HOD)(H2O)(TiF6) and Li2(D2O)(H2O)(TiF6) (bottom; the predominant 
species in the sample was Li2(H2O)2(TiF6)). Peak positions in cm−1 and their assignments are 
shown.  
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Figure 2.35. The ν(OH) regions for two samples containing different amounts of Li(HOD)(PF6) 
and Li(H2O)(PF6). Peak positions in cm−1 and their assignments are shown. The wavenumber 
ranges are not equal and the spectra are not aligned. 
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Figure 2.36. FTIR ν(OD) regions for two samples containing different amounts of Li(HOD)(PF6) 
and Li(H2O)(PF6). Peak positions in cm−1 and their assignments are shown. The wavenumber 
ranges are equal, and the spectra are aligned. The small band at ca. 2645 cm−1 in the bottom 
spectrum is due to an impurity. The FWHM (↔) for the central 2636 cm−1 band is 4 cm−1. 
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Figure 2.37. Portions of the single-crystal X-ray structure of Na(H2O)(PF6), published in 2003 in 
ref. 71. The Na+ ions and H2O molecules are arranged on infinite [–Na–μ-H2O–Na–μ-H2O–]∞ 
chains. The symmetry related O(H)·· ·F distances are 3.064(2) Å.  



93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.38. ATR-FTIR spectra of microcrystalline sample of Na(H2O)(PF6) on the ZnSe ATR 
crystal. Peak positions and FWHM values (in square brackets) in cm−1 are shown.   
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Figure 2.39. The ν(OH) and ν(OD) regions of the ATR-FTIR spectrum of a microcrystalline 
sample containing Na(HOD)(PF6), Na(D2O)(PF6), and Na(H2O)(PF6). The sample was prepared 
by exposing anhydrous NaPF6 to the H2O/HOD/D2O vapor above a 50:50 H2O:D2O mixture and 
pressing the resulting solid on the ZnSe ATR crystal of the ATR-FTIR spectrometer. Note that the 
spectra are not aligned and have different wavenumber ranges. Peak positions and FWHM values 
(↔) in cm−1 are shown. Exchange with atmospheric H2O(g) between the time the sample was 
removed from the H2O/HOD/D2O affected the relative intensities of the bands for the 
Na(HOD)(PF6), Na(D2O)(PF6), and Na(H2O)(PF6) isotopologs.  
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Figure 2.40. The δ(HOH) and δ(HOD) region of the ATR-FTIR spectrum of a microcrystalline 
sample containing Na(HOD)(PF6) and Na(H2O)(PF6). The sample was prepared by exposing 
anhydrous NaPF6 to the H2O/HOD/D2O vapor above a 50:50 H2O:D2O mixture and pressing the 
resulting solid on the ZnSe ATR crystal of the ATR-FTIR spectrometer. Peak positions in cm−1 
and their assignments are shown. The position of the δ(DOD) band, at ca. 1200 cm−1, could not be 
determined precisely because of the overlap of other bands in the spectrum.  
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Figure 2.41. FTIR spectra, reported by Kusanagi in ref. 75, of monomeric H2O, HOD, and D2O 
absorbed in polyvinylidene difluoride. Peak positions in cm−1 and their assignments are shown. 
This figure is adapted from a figure in the cited reference.  
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Figure 2.42. The FTIR spectrum of [NEt4]4[Hg(CB11F11)2]2∙H2O (top; supporting information in 
ref. 72) and a Lorentzian least-squares fit to the two ν(OH) bands (bottom; this work). The author 
thanks Prof. Maik Finze for alerting Professor Steve Strauss to the existence of this spectrum and 
for providing a digital copy so it could be plotted in absorbance rather than %transmittance.  
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Figure 2.43. Portion of the X-ray crystal structure of [NEt4]2[Hg(H2O)(CB11F11)2], published in 
2011 in ref. 72. This figure is adapted from a figure in the cited reference.    
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Figure 2.44. The calculated structures of HOH···FCH3 and the H2O–CF4 van der Waals complex. 
The top drawing is the DFT optimized structure of HOH···FCH3 published in ref. 60, with 
R(O·· ·F) = 2.89 Å, R(H·· ·F) = 2.00 Å, and O–H···F = 153°. We thank Prof. Yoshisuke Futami for 
the DFT optimized coordinates for HOH···FCH3. The middle drawing is the MP2/aug-cc-pVQZ 
optimized structure of HOH···FCH3 published in ref. 74, with R(O(···F) = 2.58 Å, R(H···F) = 1.99 
Å, and O–H···F = 146°. The bottom drawing is the MP2/aug-cc-pVTZ optimized structure of the 
lowest energy conformation of the H2O–CF4 van der Waals complex published in ref. 73. This 
complex does not have an O–H···F hydrogen bond. The author thanks Prof. Krzysztof Mierzwicki 
for the MP2 optimized coordinates for the H2O–CF4 complex.  
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Figure 2.45. Plot of ν(OD) values in ascending order from left to right for compounds with one 
HOD molecule per formula unit and ν(OD) > 2600 cm−1 (Z2− = B12F12

2−). The dashed lines are 
ν(OD) values for HOD(g) (2720 cm−1, refs. 54–56) and for HOD in an Ar matrix at 17 K (2709 
cm−1, refs. 76 and 78) ). See Table 2.1 for references.  
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Figure 2.46. The FTIR ν(OH) region for Li2(HOD)(D2O)3(B12F12) (top; this work and ref. 106; 
peak positions in cm−1 and their assignments are shown) and a portion of the X-ray crystal structure 
of Li2(H2O)4(B12F12) (bottom; ref. 66; 50% probability ellipsoids except for H atoms). The 
O(H)·· ·F distance for the O–H···F hydrogen bonds is 2.951(3) Å. The two O(H)·· ·O distances for 
the O–H···O hydrogen bonds are 2.778(2) and 2.785(2) Å.   
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Figure 2.47. ATR-FTIR spectra of microcrystalline samples of Na2(H2O)2(B12F12) (top) and 
Na(H2O)(PF6) (bottom) on the ZnSe ATR crystal. Peak positions and FWHM values (↔) in cm−1 
are shown. The spectrum of Na2(H2O)2(B12F12) was first reported in ref. 37.  
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Figure 2.48. The ν(OH) and ν(OD) regions of the ATR-FTIR spectrum of a microcrystalline 
sample containing Na(HOD)(PF6), Na(D2O)(PF6), and Na(H2O)(PF6). The sample was prepared 
by exposing anhydrous NaPF6 to the H2O/HOD/D2O vapor above a 50:50 H2O:D2O mixture and 
pressing the resulting solid on the ZnSe ATR crystal of the ATR-FTIR spectrometer. Note that the 
spectra are not aligned and have different wavenumber ranges. Peak positions and FWHM values 
(↔) in cm−1 are shown. Exchange with atmospheric H2O(g) between the time the sample was 
removed from the H2O/HOD/D2O affected the relative intensities of the bands for the 
Na(HOD)(PF6), Na(D2O)(PF6), and Na(H2O)(PF6) isotopologs.  
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M–O 2.7698(6), 2.7726(6) Å 2.714(1), 2.794(1) Å (O1);  

   2.762(1) Å × 2 (O2) 

M–F 6 @ 2.598(1)−3.159(1) Å (ave. 2.857 Å) 2.703(1) Å × 2 

O(H)···F 2.978(1); 2.972(1), 2.978(1) 2.711 (1) Å × 2 (O1); 

   2.720(1), 2.741(1) Å (O2) 

 

 

 

 

Figure 2.49. Comparison of portions of the single-crystal X-ray structures of K2(H2O)2(B12F12) 
(data collection at 110(2) K, ref. 65) and K(H2O)2F (data collection at 120 K, ref. 107). The two 
H2O molecules in K2(H2O)2(B12F12) are symmetry related. There are two types of H2O molecules 
in K(H2O)2F, those that are trans to H2O (O1) and those that are trans to F (O2).  



105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.50. A portion of the neutron diffraction structure of K(H2O)2F (ref. 107). The dashed 
lines connect O with either O or F atoms. Selected distances and angles, including those involving 
the H atoms in the neutron diffraction structure, are listed in Table 2.3, below. 
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Figure 2.51. A portion of the X-ray crystal structure of K(H2O)(MnF4) (ref. 108). Selected 
distances and angles: O·· ·F3, 2.682(3) Å; O···F4, 2.820(2) Å; O–H1···F3, 168°; O–H2·· ·F4, 154°. 
Only one of the two unique Mn atoms is shown (the other Mn atom is not coordinated to H2O 
molecules).  
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Figure 2.52. A portion of the neutron diffraction crystal structure of Zn(H2O)4F2 (ref. 109). 
Selected The dashed lines connect O with either O or F atoms. Distances and angles involving H 
atoms are listed in Table 2.4, below.  
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Figure 2.53. Two ν(OH) vs. R(O(H)·· ·O) hydrogen-bond correlation curves. The Novak curve on 
the left was prepared from data in ref. 2. The Libowitzky curve on the right, for 65 minerals, was 
prepared from data discussed but not listed explicitly in ref. 8. The author thanks Prof. Eugen 
Libowitzky for a copy of the data sheet from which the curve on the right was made. As of August 
2019, ref. 8 has been cited more than 780 times since 1999, including 25 times during the first half 
of 2019.  
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Figure 2.54. Plots of (i) ν(OD) vs. O(H)···F distance for fluoroanion salt hydrates containing a 
single HOD ligand coordinated to a metal cation (red circles) and (ii) ν(OD) vs. O(D)·· ·O distance 
for oxoanion salt hydrates containing a single HOD ligand coordinated to a metal cation (blue 
circles). The red data points are from this work and refs. 6 and 22. These data are listed in Table 
2.2. The blue data points are from ref. 5. The dashed line indicates the 2720 cm−1 ν(OD) value for 
HOD(g). The numbers 1–13 next to some red data points refer to the numbered compounds in 
Figure 2.45.   
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Figure 2.55. A portion of the neutron diffraction crystal structure of Li(H2O)3(ClO4) (ref. 104) and 
variable temperature FTIR spectra of Li(HOD)(H2O)2(ClO4) (ref. 110; the temperatures shown are 
in °C). The sharp ν(OD) stretching frequency at −165 °C is 2619 cm−1. All of the H2O molecules 
are symmetry related and are in symmetric hydrogen bonding environments. The unique O(H)·· ·O 
distance and O–H···O angle are 2.889(2) Å and 162°, respectively. This figure is adapted from 
figures in the referenced citation.  
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Figure 2.56. A portion of the neutron diffraction crystal structure of Na(H2O)(ClO4) (ref. 105) and 
variable temperature FTIR spectra of Na(HOD)(ClO4) (ref. 110; the temperatures shown are in 
°C). The ν(OD) stretching frequencies in the −165 °C spectrum are at 2641 and 2610 cm−1. The 
O(H)·· ·O distances for the bifurcated hydrogen bond involving the H2O molecule are 3.087(3) and 
3.141(3) Å, and the O–H···O angles are 140 and 135°, respectively. The other O(H)·· ·O distance 
and O–H···O angle are 3.028(3) Å and 156°, respectively. This figure is adapted from figures in 
the referenced citation.  
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Figure 2.57. FTIR spectrum of Na2(H2O)6(B12Cl12) at 22 °C. The sample of was prepared by 
allowing an aqueous solution of Na2(B12Cl12) to evaporate on the ATR crystal. It is possible that 
some H2O may have evaporated from the sample while the spectrum was recorded.



113 
 

 

Table 2.1. FTIR ν(OH) and ν(OD) frequencies with full-widths at half-maximum absorbance (FWHM) and X-ray diffraction 
O(H/D)·· ·F distancesa 

 

compound νasym(OH) or νasym(OD) 

[FWHM], cm−1 

νsym(OH) or νsym(OD) 

[FWHM], cm−1 

ν(OD) for unique  

HOD [FWHM], 

cm−1 

O(H/D)·· ·F distance(s),  

Å 

Li(H2O)4(Al(OC(CF3)3)4) 3719 [50]b 3644 [12]b — — 

Li(D2O)4(Al(OC(CF3)3)4) 2755 [24]c 2660 [9]c — — 

Li(HOD)(H2O)3(Al(OC(CF3)3)4) — — 2706 [15]c 3.102(2), 3.157(2)d 

Li(H2O)(B(3,5-C6H3(CF3)2)4) 3718 [41]e 3639 [7]e — — 

Li(D2O)(B(3,5-C6H3(CF3)2)4) 2760 [30]e 2659 [5]e — — 

Li(HOD)(B(3,5-C6H3(CF3)2)4) — — 2705 [9]e 2.995(6) × 2f 

Li(H2O)n(Ga(C2F5)4) 3702 [46]b 3630 [30]b — — 

Li(D2O)(H2O)n−1(Ga(C2F5)4) 2749g 2654g — — 

Li(HOD)(H2O)n−1(Ga(C2F5)4) — — 2697 [24]g — 

Li(H2O)(PF6) 3602 [20]h 3549 [14]h — — 

Li(D2O)(PF6) 2680h ca. 2590h — — 

Li(HOD)(PF6)   2636 [4]h,i  — 

Li2(H2O)2(TiF6) 3583 [33]j 3541 [< 33]j — — 
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Li2(D2O)2(TiF6) 2663 [20]j 2592 [12]j — — 

Li2(HOD)(H2O)(TiF6)   2623 [10]j,k 3.007(8), 3.048(9)l 

Li2(H2O)4(B12F12) 3596 [7], 3583 [26]m,n 3441 [44], 3401 [67]m,n — — 

Li2(D2O)4(B12F12) 2651 [25]m 2511 [48]m — — 

Li2(HOD)(H2O)3(B12F12) — — 2642 [6]n 2.951(3)o  

Na(H2O)(PF6) 3639 [14]p,q 3570 [11]p,q — — 

Na(D2O)(PF6) 2704 [6]q 2612 [8]q — — 

Na(HOD)(PF6) — — 2654 [6]q 3.064(2) × 2r 

Na2(H2O)2(B12F12) 3651 [11]p 3556 [16]p — — 

Na2(D2O)2(B12F12) 2706 [7]q 2608 [4]q — — 

Na2(HOD)(H2O)(B12F12) — — 2680 [5], 2628 [8]q — 

K2(H2O)2(B12F12) 3637 [14]s,t 3576 [12]s,t — — 

K2(D2O)2(B12F12) 2700 [7]u 2615 [6]u — — 

K2(HOD)(H2O)(B12F12) — — 2652 [16]u 2.978(1); 2.972(1), 2.978(1)v,w 

Rb2(H2O)2(B12F12) 3653 [9]s 3585 [8]s — — 

Rb2(D2O)2(B12F12) 2711 [5]x 2623 [4]x — — 

Rb2(HOD)(H2O)(B12F12) — — 2667 [6]; 2660 [9]x 2.857(2); 2.859(2), 2.931(2)o,w  

Cs2(H2O)(B12F12) 3658 [6]s 3588 [7]s — — 

Cs2(D2O)(B12F12) 2715 [5]u 2624 [4]u — — 
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Cs2(HOD)(B12F12) — — 2669 [3]; 2664 [6]u 3.103(3); 2.997(3)y 

[NEt4]2[Hg(H2O)(CB11F11)2] 3681 [10]z 3587 [15]z — — 
a All results from this work unless otherwise indicated. All FTIR spectra recorded at room temperature. Abbreviation: B(C6H3(CF3)2)4 = B(3,5-
C6H3(CF3)2)4. b See Figures 2.23, 2.24, and 2.31. c See Figure 2.26. d ref. 68; identical bifurcated O(D)···F hydrogen bonds in either orientation of 
the HOD ligand, with two additional O(D)···F distances of 3.296(2) and 3.297(2) Å not listed in this table; see Figure 2.28.  
e See Figures 2.23 and 2.29. f ref. 69. g See Figure 2.31. h See Figures 2.34 and 2.35. i ν(OH) = 3579 cm−1 (FWHM = 4 cm−1); see Figure 2.35. j 
See Figure 2.33; ν(OH) for Li2(HOD)(D2O)(TiF6) is 3558 cm−1. k 75 K literature value = 2620 cm−1; ref. 6. l ref. 70; see Figure 2.32. m ref. 106. n 
The ν(OD) frequency for the O–D···O hydrogen bond in Li2(HOD)(H2O)3(Z) is 2518 cm−1; see Figure 2.45. o ref. 66; see Figure 2.45. p ref. 37; 
see Figure 2.46. q See Figures 2.38 and 2.47. r ref. 71; see Figure 2.36. s ref. 37; see Figure 2.12. t The ν(OH) values for K2(H2

18O)2(B12F12), 3624 
and 3569 cm−1, were reported in ref. 65. u See Figure 2.19. v ref. 65. w See Figure 2.9. x See Figures 2.8 and 2.14. y ref. 67. z ref. 37 (see also ref. 
72).  
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Table 2.2. ν(OD) frequencies and R(O···F) distances for structurally-characterized compounds 
with an uncoupled HOD molecule coordinated to the metal ion that makes one or more O–D···F 
hydrogen bondsa 
        
compound data point on ν(OD), ν(OD) R(O···F) R(O···F) 
  Figures 2.52 and 2.53  cm−1 ref. distance, Å ref. 
        
Li(HOD)(H2O)3(Al(OC(CF3)3)4) 1 2706 this work 3.102(3) 68 

Li(HOD)(B(3,5-C6H3(CF3)2)4) 2 2705 this work 2.995(6); 69 

Li2(HOD)(H2O)3(B12F12) 10 2642 this work 2.951(3) 66 

Li2(H2O)2(TiF6) 12 2623b this work 3.007(8), 3.048(9) 70 

Na(HOD)(PF6) 7 2654c 6 3.064(3) 71 

K2(HOD)(H2O)(B12F12) 8 2653, 2652 this work 2.978(1), 2.972(1) 65 

K(HOD)(MnF4)  2551; 2496 6 2.820(4); 2.682(4) 108 

K2(HOD)(MnF5)  2551 6 2.735(6) 111 

K(H2O)2F  2491; 2478; 6 2.741(1); 2.720(1); 107 
   2462  2.711(1) × 2 

Rb2(HOD)(H2O)(B12F12) 5 2667; 2660 this work 2.931(2); 2.857(2) 66 

Cs2(HOD)(B12F12) 4 2669; 2664 this work; 37 3.103(3); 2.997(3) 67 

Cs(HOD)(H2O)(MnF4)  2479; 2454; 6 2.686(4); 2.683(4); 112 

   2422; 2388  2.635(4); 2.577(4) 

Mg(HOD)(H2O)5(B12F12) 9 2652; 2644; this workd 2.914(2); 2.904(2); 22 
   2633 22 2.749(2), 2.723(2)  

Mg(HOD)(H2O)5(SiF6) 13 2611; 2607; 101 2.899(3); 2.832(3) 113 
   2605; 2601   2.822(3); 2.815(3) 
   2599; 2594  2.808(3); 2.792(3) 

Sr(HOD)(MnF5)  2552 6 2.82(2) 114 

Sr(HOD)(H2O)(TiF6) 6 2655; 2547; 6 3.170(6); 2.781(6);  109 
   2529  2.754(6) 

Ba(HOD)(MnF5)  2541 6 2.794(9) 114 

Mn(HOD)(H2O)(FeF5)  2579 6 2.86(2) 115 

Fe(HOD)(H2O)5(SnF6)  2572; 2561 6 2.742(6); 2.731(6)  116 

Co(HOD)(H2O)5(SnF6)  2569; 2555 6 2.755(9); 2.727(9) 117 

Co(HOD)(H2O)5(B12F12) 11 2639; 2634 this workd 2.919(1); 2.886(1) 22 

   2618 22 2.739(1); 2.734(1) 

Ni(HOD)(H2O)5(SnF6)  2568; 2552 6 2.750(9); 2.730(9) 117 

Cu(H2O)2F2  2428 6 2.643(3) 118 
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Table 2.2. ν(OD) frequencies and R(O···F) distances for structurally-characterized compounds with an 
uncoupled HOD molecule coordinated to the metal ion that makes one or more O–D···F hydrogen bondsa 

(continued) 
        
Zn(H2O)4F2  2441; 2427; 6 2.711(14); 2.668(14); 119 
   2363; 2363;  2.627(14); 2.614(14); 
   2363; 2305  2.610(14); 2.563(14) 

HOD···FCH3 3 2685 60 2.89 —e 
        
a All ν(OD) values from spectra recorded at 295 K except ν(OD) values from refs. 6 and 101, which are from 

spectra recorded at 75 and 93 K, respectively. These 53 ν(OD), R(O(D)···F) data sets are represented by 

the red data points in Figure 2.53. b A ν(OD) value of 2620 cm−1 at 75 K was reported for this compound 

in ref. 6. c A ν(OD) value of 2649 cm−1 at 75 K was reported for this compound in ref. 6. d The deconvolution 

of these peaks into two ν(OD) values is reported here for the first time. Only a combined peak was reported 

in ref. 22. e DFT calculated distance; Prof. Yoshisuke Futami, personal communication, 2019.  
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Table 2.3. Selected distances and angles for the three structures of K(H2O)2F in ref. 107a 
              

bond neutron diffraction X-ray diffraction X-ray diffraction ν(OD) of K(HOD)(H2O)F, 

 at 295 K, Å at 298 K, Å at 120 K, Åb cm−1 (ref. 6) 
              
K–F 2.716(2) × 2c 2.716(1) × 2 2.703(1) × 2 
K–O1 2.726(2) 2.727(1) 2.714(1) 

K–O1' 2.822(2) 2.817(1) 2.794(1) 
K–O2 2.784(2) × 2 2.781(1) × 2 2.762(1) × 2 
O1(H)·· ·F 2.719(2) 2.722(1) 2.711(1) × 2 2462 

O2(H)·· ·F 2.734(2) 2.733 (1) 2.720(1) 2478 
O2'(H)···F 2.753(2) 2.758(1) 2.741(1) 2491 
O1–H 0.97 × 2 

O2–H 0.97; 0.97 
(O1)H···F 1.75 × 2 
O1–H···F (angle) 174° 

(O2)H···F 1.76; 1.80 
O2–H···F (angle) 178°; 170° 
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.                

Table 2.4. Selected distances and angles for the neutron diffraction structure of Zn(H2O)4F2
a 

               

moiety R(O(H)·· ·F/O), Å ν(OD), cm−1 R(O–H), Å R(H···O)/F, Å R(O–H···O/F), deg 
               
O1–H···F1' 2.610(14) 2363 0.96 1.69 160 
O1–H···F2' 2.563(14) 2305 0.95 1.61 175 
 
O2–H···F1' 2.668(14) 2427 0.93 1.74 173 
O2–H···O4' 2.921(14) — 0.99 1.93 178 
 
O3–H···F2' 2.711(14) 2441 0.98 1.75 169 
O3–H···O1' 2.813(14) — 0.92 1.90 176 
 
O4–H···F1' 2.614(14) 2363 0.99 1.66 165 
O4–H···F2' 2.627(14) 2363 0.99 1.62 175 
      

a Distances and angles from ref. 119. ν(OD) frequencies from ref. 6.
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CHAPTER 3 OBSEVATION OF B AND E ν(OH) FTIR BANDS AND COUPLING OF 

STRONG O–H···O AND WEAK O–H···F VIBRATIONS IN THE CYCLIC S4 (H2O)4 

CLUSTERS IN CRYSTALLINE Li2(H2O)4(B12F12) 

3.1 Introduction and Relevant Literature 

Chemists and physicists have studied small water clusters for decades.1-5 This includes calculations 

of their structures, stabilities, and vibrational spectra by theorists and experimental vibrational spectroscopic 

studies of (H2O)n clusters in low-temperature matrices, generated by cold jet expansion, or confined in metal–

organic frameworks or crystalline organic or inorganic compounds.2-33 Reasons for studying (H2O)n clusters 

range from understanding cloud and ice formation as well as other atmospheric phenomena (including the 

radiation balance of the earth),14 a variety of biochemical processes, as a bridge from the gas phase to 

condensed phases, as a bridge from single-molecule adsorption to monolayer and bilayer adsorption of H2O 

to solid surfaces,34-35 as models for bulk phenomena such as proton transport and solvation,36 and as an easily 

accessible experimental platform for studying isotope effects.4 

The most important physiochemical methods for studying (H2O)n and M(H2O)n
m+ clusters are 

vibrational spectroscopies, including Fourier transform infrared (FTIR), Raman, infrared molecular beam 

depletion, infrared sum frequency generation, infrared cavity ringdown, and terahertz laser vibration–rotation 

spectroscopies.11,22,32,37-42 The number of ν(OH) bands, their red shifts from H2O(g), and their relative 

intensities, bandshapes, and bandwidths can suggest the value of n and provide information about the network 

of O–H···O hydrogen bonds in the cluster. Even when an unambiguous assignment is not possible, FTIR 

spectra can generally rule out some compositions and/or structures.31 

Low-temperature matrix and cold jet expansion experiments cannot produce neutral (H2O)n clusters 

with a single value of n, so typical FTIR spectra in these experiments contain ν(OH) bands due to a mixture 

of neutral (H2O)n clusters with, for example, n = 3–6. Five examples of spectra from the literature are shown 

in Figures 3.1–3.4.14,28,31-32,43 The assignment of bands to particular (H2O)n clusters is generally based on 

experimental vs. calculated ν(OH) band positions, relative intensities as a function of H2O content, 

bandshapes, and bandwidths (many of the experimental papers include calculated fundamental vibrational 
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frequencies).11,14,17-18,22-23,28,31-32 It is also possible that more than one water cluster isomer is present for some 

values of n (see, for example, Figure 3.1)  

When a (H2O)n cluster is observed in a crystalline hydrate, it is generally not possible to obtain 

meaningful vibrational spectra of it, and in many cases vibrational spectra of the ν(OH) region are not reported 

for new solid state compounds containing water clusters when their X-ray/neutron diffraction data are 

published. Consider the cyclic (H2O)4 tetramer, also known as the R4 cluster.5,8,44 The X-ray structure of 

[Na2(H2O@TMEQ[6])]·2(C6H5NO3)Cl2(H2O)10 contains an R4 cluster, but there are so many other H2O 

molecules in the lattice that the vibrational spectra were not reported (TMEq[6] = α,α ,́δ,δʹ-

tetramethylcucurbit[6]uril).16 Copper(II) pyridine-2,3-dicarboxylates crystalized with the R4 clusters 

hydrogen bonded to other H2O molecules.21 The analysis of the ν(OH) region of the FTIR spectra consisted 

of one sentence: “The IR spectra of complexes show strong bands between 3386 and 3142 cm−1 due to the 

O–H stretching vibrations of the H2O molecules.”21 The X-ray structure of Cu(abit)(NO3)·5H2O contains a 

“water tape” of R4 tetramers and R6 hexamers (Habit = 4-amino-3,5-bis(imidazole-1-ylmethyl)-1,2,4-

triazol).13 No vibrational spectra were reported. The X-ray structure of Cu(3-amino-methylpyridine)-

(H2O)(oxalate)·2H2O contains an R4 cluster, but also contains H2O coordinated to Cu2+.15,26 The FTIR 

spectrum has a broad and uninformative ν(OH) region, as shown in Figure 3.5.15 Some of the ν(OH) bands in 

the Raman spectrum were also broad, as shown in Figure 3.6.26 The compound [Fe3(μ3-O)(μ2-

CH3COO)6(C5H5NO)2(H2O)]ClO4·4H2O is another example of a complex containing an R4 cluster. The 

FTIR spectrum also has a broad and uninformative ν(OH) region, as shown in Figure 3.7.45 There are other 

examples of R4 clusters in crystalline compounds,8 including several in which the H2O molecules are 

coordinated to alkali metals.46-48 However none of these papers reported vibrational spectra that can be 

interpreted unambiguously.  

The Stauss–Boltalina research group previously reported the synthesis and X-ray structure of the 

lithium salt hydrate Li2(H2O)4(B12F12) in 2017.49 The four H2O molecules form a cyclic (H2O)4 cluster with 

four O–H···O hydrogen bonds with an effective (not crystallographic) S4 symmetry, as show in Figure 3.8. 

This cyclic (H2O)4 cluster of waters makes Li2(H2O)4(B12F12) distinct from the other stable room-temperature 

salt hydrates of B12F12
2− discussed in the previous chapter. Previously all deviations in the ν(OH) band 
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positions from H2O(g) were due to the formation of weak O–H···F hydrogen bonds, but the H2O molecules 

in Li2(H2O)4(B12F12) participate in both O–H···F and O–H···O hydrogen bonds, which adds a new layer of 

complexity when studying the spectra of Li2(H2O)4(B12F12) and its deuterated isotopologs. The four so-called 

“dangling” or “free” O–H bonds not participating in the O–H···O hydrogen bonding responsible for holding 

the cluster together each form the previously mentioned O–H···F hydrogen bonds with the weakly 

coordinating50 B12F12
2− anion. The O(H)···F distance is 2.951(2) Å. As shown in the previous chapter, the 

weak O–H···F hydrogen bonds between water and the weakly coordinating B12F12
2− anion allow for 

resolution of ν(OH) bands not normally resolvable when crystallographic waters form stronger hydrogen 

bonds with nonfluorinated anions. This, combined with the fact that Li2(H2O)4(B12F12) has no IR bands above 

1500 cm−1 other than bands associated with H2O molecules [viz. ν(OH) and δ(HOH) vibrations], makes it an 

ideal structural and spectroscopic model for the putative cyclic S4 (H2O)4 cluster that is, in part, the subject of 

many research papers.2-4,11-12,14,17,19-20,22-25,27-28,31,33,40-41,43,51-53 

All of the work presented in this chapter has been published as a paper in the Journal of Physical 

Chemistry A titled Room-Temperature FTIR Spectra of the Cyclic S4 (H2O)4 Cluster in Crystalline 

Li2(H2O)4(B12F12): Observation of B and E ν(OH)Bands and Coupling of Strong O–H···O and Weak O–H···F 

Vibrations. The author of this dissertation is the first author and only graduate student or postdoc author of 

this paper. The structures presented in this chapter were collected and determined by previous Strauss group 

members. 

3.2 Experimental 

3.2.1 Reagents and General Procedures  

Deuterium oxide (D2O, Cambridge Isotopes, 99.9%) was used as received. Distilled H2O was 

deionized with a Barstead Nanopure system. The deionized distilled water (dd-H2O) had a resistivity greater 

than or equal to 18 MΩ. All references to H2O used in this chapter correspond to dd-H2O. The compounds 

K2(H2O)2(B12F12)54 and Li2(H2O)4(B12F12)49 were prepared as previously described in sections 2.2.2 and 2.2.6, 

respectively, in Chapter 2 of this dissertation.  
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3.2.2  FTIR Spectroscopy  

All ATR-FTIR spectra were collected by the author with a Nicolet 6700 FTIR spectrometer equipped 

with a stainless-steel Harrick Horizon ATR flow reactor described in detail in previous publications55-57 (and 

discussed in section 2.2.10).In a typical experiment, an aliquot of dilute aqueous solution of Li2(H2O)4(B12F12) 

was deposited on a 5 cam × 1 cm × 0.2 cm ZnSe ATR crystal (New Era Enterprise) and sealed in the flow 

reactor, where it was allowed to evaporate to insipient dryness with a purge of N2 (typically 1 L min−1). No 

attempt was made to control the size or distribution of the microcrystalline particles formed on the crystal. 

The IR beam was directed into the ATR crystal at an incident angle of 45° by mirrors after leaving the 

interferometer, and the reflected light was returned to a liquid N2 cooled mercury cadmium telluride detector. 

All spectra were collected using 128 scans and 1 cm−1 resolution unless otherwise indicated. 

Samples of microcrystalline Li2(D2O)4(B12F12) were prepared by first dissolving a sample of 

Li2(H2O)4(B12F12) in 99.9% D2O and evaporated to dryness three times. The resulting solid of 

Li2(D2O)4(B12F12) was dissolved in 99.9% D2O a fourth time, and an aliquot was deposited on the ATR crystal 

(after the crystal, and chamber, had been seasoned with D2O) and allowed to evaporate to dryness as described 

above. 

Samples containing microcrystalline Li2(HOD)(H2O)3(B12F12) and Li2(HOD)(D2O)3(B12F12) were 

prepared by dissolving Li2(H2O)4(B12F12) in either 95:5 (v:v) H2O:D2O or 5:95 (v:v) H2O:D2O, respectively, 

and depositing and drying aliquots on the ATR crystal as described above. As a result, the sample referred to 

as “Li2(HOD)(H2O)3(B12F12)” in fact only contains a small amount of Li2(HOD)(H2O)3(B12F12), with most 

of the sample being Li2(H2O)4(B12F12). The sample contained only a negligible amount of 

Li2(D2O)(H2O)3(B12F12) or Li2(HOD)2(H2O)2(B12F12). Therefore, as far as the ν(OD) region of the FTIR 

spectrum is concerned, this sample was Li2(HOD)(H2O)3(B12F12) and will be referred to as such.  

3.3 Results and Discussion 

3.3.1 Spectroscopic data 

The ν(OH) regions of the ATR-FTIR spectra of microcrystalline samples of Li2(H2O)4(B12F12) and 

Li2(HOD)(D2O)3(B12F12) evaporated on the ZnSe ATR crystal are shown in Figure 3.9. A complete IR 

spectrum for a sample of Li2(H2O)4(B12F12), from 650 to 4000 cm−1, is show in Figure 3.10. The inset drawing 
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is of the Li4(H2O)4
4+ cluster taken from the X-ray structure. All bands in the 1500–4000 cm−1 region of the 

spectrum are due only to vibrations of the H2O molecules. The small feature at 3200 cm−1 is due to the 

2δ(HOH) overtone.58 The two ν(OH) peaks in spectrum of Li2(HOD)(D2O)3(B12F12) are due to the H in the 

HOD molecule existing in one of two different hydrogen bonding environments based on the orientation of 

the HOD molecule. In the [(HOD)(D2O)3] cluster the HOD molecule can form an O–H···F and O–D···O 

pair of hydrogen bonds, or it can form a O–H···O and O–D···F pair of hydrogen bonds. The broader band, at 

3401 cm−1 in the Li2(H2O)4(B12F12) spectrum and 3411 cm−1 in the Li2(HOD)(D2O)3(B12F12) spectrum, is 

assigned to the O–H oscillator participating in O–H···O hydrogen bonding. The broader peak, at 3583 cm−1 

in the Li2(H2O)4(B12F12) spectrum and 3587 cm−1 in the Li2(HOD)(D2O)3(B12F12) spectrum, is assigned to the 

O–H oscillator participating in O–H···F hydrogen bonding. Note that in this sample is ca. 5–10% 

Li2(HOD)(D2O)3(B12F12) and 90–95% Li2(D2O)4(B12F12).  

The ATR-FTIR spectra of the ν(OD) region (2400–2750 cm−1) for microcrystalline samples of 

Li2(D2O)4(B12F12) and Li2(HOD)(H2O)3(B12F12) evaporated on the ZnSe ATR crystal are shown in Figure 

3.11. The spectrum of Li2(D2O)4(B12F12) contained a larger amount of an impurity than was present in the 

batch of Li2(H2O)4(B12F12) used to prepare the aqueous solutions of Li2(D2O)4(B12F12) and ca. 5–10% 

Li2(HOD)(H2O)3(B12F12) in 90–95% Li2(H2O)4(B12F12). These impurity peaks are indicated with asterisks in 

Figure 3.11. The two ν(OD) peaks present in this region are due to the two possible environments the O–D 

oscillator can occupy, with the broader peak at lower wavenumbers assigned to the O–D···O hydrogen 

bonding environment and the narrow peak at higher wavenumbers assigned to the a O–D···F hydrogen 

bonding environment.  

Lorentzian fits of the ν(OH) peak assigned to the O–H···O environment and the ν(OD) peak assigned 

to the O–D···O environment for the spectra of Li2(H2O)4(B12F12), Li2(HOD)(D2O)3(B12F12), 

Li2(D2O)4(B12F12), and Li2(HOD)(H2O)3(B12F12) are shown in Figure 3.12. A four-peak Lorentzian fit of the 

entire ν(OH) region of the spectrum of Li2(H2O)4(B12F12) is shown in Figure 3.13.  

The δ(HOH) bending region of the ATR-FTIR spectrum for samples of Li2(H2O)4(B12F12) or 

K2(H2O)2(B12F12) evaporated on the ZnSe ATR crystal are shown in Figure 3.14. Lorentzian fits of the 

δ(HOH) band(s) for both of the Li2(H2O)4(B12F12) and K2(H2O)2(B12F12) samples are shown in Figure 3.15 
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along with portions of the X-ray crystal structure for each compound depicting the cation–water interaction 

environment. The δ(DOD) band is clearly visible in the spectrum of Li2(D2O)4(B12F12), but it was not analyzed 

by peak fitting due to overlap with the ν(BF) band (Figure 3.16).  

3.3.2 Structure of Li2(H2O)4(B12F12)  

Drawings of the Li2(H2O)4(B12F12) structure, which were first published in 2017,49  are shown in 

Figure 3.8 and 3.13. The B12F12
2− anions form a tetragonal polyhedron with ⊙···⊙ distances of 6.767, 7.287, 

and 7.287 Å and ⊙···⊙···⊙ angles of 90° (⊙ = B12 centroid). There is only one unique H2O molecule. The 

four symmetry-related H2O molecules form a skew quadrilateral (H2O)4 cluster with S4 symmetry held 

together by four O–H···O hydrogen bonds. The two O(H)···O distances for each H2O molecule in the cluster, 

at 2.778(2) and 2.785(2) Å, are the same to within ±3σ. The four H atoms in the O–H···O hydrogen bonds 

are disordered, producing two equivalent sets of hydrogen bonds that undoubtedly interconvert, as suggested 

by the mirror-image drawings in Figure 3.17.  

The (H2O)4 cluster is held in the center of the [B12F12
2−]8 polyhedron by coordination to four Li+ ions 

centered on four of the six [B12F12
2−]8 faces [Li–O = 1.995(1) Å] and by four relatively weak O–H···F 

hydrogen bonds [O(H)···F = 2.951(2) Å]. The calculated most stable structure for an isolated (H2O)4 cluster 

is cyclic and has S4 symmetry,14,25,32 but the four O atoms in the calculated structure are coplanar. In contrast, 

the calculated structure of the cyclic (H2O)4 cluster adsorbed to the NaCl(001) surface only has C2 symmetry, 

as shown in Figure 3.18.59 The cluster is distorted from S4 symmetry because two of the four H2O molecules 

are coordinated to surface Na+ ions and the other two form O–H···Cl hydrogen bonds to surface Cl− ions. The 

CCSD(T)/aVQZ calculated cyclic structure of S4 (H2O)4
25 and the M4(H2O)4 clusters in 

Rb2[Pt2(POP)4I]·4H2O (pop2− = HOOPOPOOH2−),48 Na4[Mo12O46(AsC6H4-4-OH-3-NO2)4]·8H2O,47 and 

Li2(H2O)4(B12F12) are compared in Figure 3.19. The structural parameters of these cyclic (H2O)4 clusters and 

several others are listed in Table 3.1.  

The terminology used for the cyclic (H2O)n clusters is that there are “bound” and free (or dangling) 

O–Hb and O–Hf bonds, respectively. The bound O–Hb bonds are the ones that form the O–H···O hydrogen 

bonds that hold the cluster together. The O–Hf bonds in the crystalline compounds with (H2O)n clusters are 

rarely free. The ones listed in Table 3.1 engage in weak O–H···F hydrogen bonds in Li2(H2O)4(B12F12) or O–
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H···N and/or O–H···O hydrogen bonds in the other compounds, in some cases forming shorter hydrogen 

bonds than those formed by the O–Hb bonds.  

With one exception, the structural parameters of the R4 (H2O)4 clusters, shown in Figure 3.19 and 

listed in Table 3.1, are similar. The major difference is the perpendicular displacement of the O atoms from 

their least-squares plane. The planar calculated clusters, and the three hydrates of copper and zinc coordination 

compounds all have the smallest displacement, 0 Å, from their respective least-squares plane. The largest 

displacements are for Li2(H2O)4(B12F12) (±0.633 Å)49 and for (H2O)4 on NaCl(001) (±0.374 Å).59 The 

symmetry of a cyclic (H2O)4 cluster can only be S4 if the four H2O molecules are identical crystallographically 

and the O–Hf bonds are arranged up-down-up-down around the cluster, as in Na4[Mo12O46(AsC6H4-4-OH-

3-NO2)4]·8H2O,47 and (NMe4)MnCo(CN)6·8H2O,60 even when there are two different O(H)···O distances 

for the symmetry-related H2O molecules, as in Li2(H2O)4(B12F12). If there are two pairs of unique H2O 

molecules in the cluster, the highest possible symmetries are C2, as in Rb2[Pt2(POP)4I]·4H2O,48 and (H2O)4 

on NaCl(001),59 or Ci, as in Zn[(bdc)(bim)]·2H2O,61 Cu(3-amp)(C2O4)·3H2O,15 and Cu2(pyrdc)2(1,2-

Me2Im)4·6H2O21 (see Table 3.1 for abbreviation definitions). 

3.3.3  Structure and FTIR Spectrum of the K2(H2O)2(B12F12) 

To appreciate the significance of the FTIR spectra of Li2(H2O)4(B12F12) and its deuterated 

isotopologs, it is important to compare them to the structures and FTIR spectra of the alkali metal B12F12
2− salt 

hydrates, presented and discussed in Chapter 2 of this dissertation. Specifically Li2(H2O)4(B12F12) will be 

compared to K2(H2O)2(B12F12), whose structure and FTIR spectrum are shown in Figure 3.20. This particular 

salt hydrate is representative of, and the most well studied of, the family of alkali metal salt hydrates of the 

B12F12
2− anion. Unlike Li2(H2O)4(B12F12), K2(H2O)2(B12F12) does not have any O(H)···O hydrogen bonds. 

The O(H)···F distance for K2(H2O)2(B12F12) is 2.972(2) Å, and is comparable to the 2.951(3) Å O(H)···F 

distance for Li2(H2O)4(B12F12). The O–H bonds for the one unique water molecule in K2(H2O)2(B12F12) have 

nearly identical O–H ···F hydrogen bonding environments, and the O–H oscillators of the H2O molecule are 

strongly coupled (as in H2O(g)) to produce two ν(OH) bands at 3636 and 3576.38 (The corresponding bands 

for H2O(g) are 3756 and 3576 cm−1.62) Significantly, the O–H oscillator of the two H2O molecules in the 

K2(H2O)2 quadrilateral are not coupled. Finally, the isotopolog K2(HOD)(D2O)(B12F12) exhibits a single 
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ν(OH) band at 3604 cm−1, halfway between 3636 and 3576 cm−1. This is indicative of a single unique O–H 

···F hydrogen bonding environment, in K2(H2O)2(B12F12)  

3.3.4 ATR-FTIR Spectra of Li2(H2O)4(B12F12) and Its Deuterated Isotopologs 

The spectrum of Li2(H2O)4(B12F12), shown in Figure 3.9 and 3.10, is fundamentally different than the 

spectrum of K2(H2O)2(B12F12) and the other alkali metal B12F12
2− salt hydrates. In the spectrum of 

Li2(H2O)4(B12F12) the two ν(OH) bands, at 3583 and 3401 cm−1, are much broader and significantly more 

red-shifted than the K2(H2O)2(B12F12) ν(OH) bands at 3636 and 3576 cm−1. Furthermore, the 

Li2(H2O)4(B12F12) ν(OH) bands are separated by 183 cm−1, three times greater than the separation of the 

K2(H2O)2(B12F12) ν(OH) bands (60 cm−1). This is because the O–H bonds on each H2O molecule in 

Li2(H2O)4(B12F12) are in substantially different environments.  

The spectrum of Li2(HOD)(D2O)3(B12F12) is also shown in Figure 3.9. There are two ν(OH) bands 

only slightly shifted from the ν(OH) band position for Li2(H2O)4(B12F12). Significantly, the ν(OH) bands for 

Li2(HOD)(D2O)3(B12F12) are narrower and more symmetric than the ν(OH) bands for Li2(H2O)4(B12F12). 

Several conclusions can be drawn from these observations. First, the coupling of the O–Hf and O–Hb 

oscillators on each H2O molecule in Li2(H2O)4(B12F12) is not as strong as in K2(H2O)2(B12F12), undoubtedly 

because the O–H···F and O–H···O stretching vibrations in Li2(H2O)4(B12F12) have significantly different 

energies. When only one O–H bond per water cluster is present in either type of Li2(HOD)(D2O)3(B12F12) 

formula unit, independent ν(O–H···F) and ν(O–H···O) bands are observed at 3587 and 3411 cm−1, 

respectively. Therefore, coupling of the O–H···F and O–H···O stretches in each Li2(H2O)4(B12F12) formula 

unit, albeit weak, may have resulted in shifts of the ν(OH) bands from 3587 and 3411 cm−1 in 

Li2(HOD)(D2O)3(B12F12) to 3583 and 3401 cm−1 respectively, in Li2(H2O)4(B12F12). If true, these observations 

represent the first experimental evidence that the bond-stretching normal modes for O–Hb and O–Hf bonds in 

a cyclic (H2O)n cluster are not independent. They may be weakly coupled. An alternative explanation, 

suggested by a reviewer of the author’s paper Room-Temperature FTIR Spectra of the Cyclic S4 (H2O)4 

Cluster in Crystalline Li2(H2O)4(B12F12): Observation of B and E ν(OH)Bands and Coupling of Strong O–

H···O and Weak O–H···F Vibrations,63 which the work in this chapter is based on, is that the shifts may be due 
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to “the loss of E mode opposite-side OH coupling rather than the loss of O–Hf to O–Hb coupling.” However, 

my tentative conclusion is that the first explanation is the more likely explanation.  

The FTIR spectra of Li2(D2O)4(B12F12) and Li2(HOD)(H2O)3(B12F12) tell the same story. The 

independent ν(O–D···F) and ν(O–D···O) bands for different Li2(HOD)(H2O)3(B12F12) formula units are at 

2642 and 2518 cm−1 respectively [Δν(OD) = 124 cm−1]. For Li2(D2O)4(B12F12), weak coupling of the O–

D···F and O–D···O stretching vibrations results in ν(OD) bands that are broader, not as symmetric, and 

shifted, in opposite directions, by only 9 and 5 cm−1, respectively, to 2651 and 2513 cm−1.  

The weak coupling notwithstanding, the bands at 3401 and 2513 cm−1 in the spectra of 

Li2(H2O)4(B12F12) and Li2(D2O)4(B12F12), respectively, are primarily due to the O–H···O bond stretching in 

Li2(H2O)4(B12F12) and O–D···O bond stretching in Li2(D2O)4(B12F12). The shoulders on these bands suggest 

the presence of an additional unresolved band. The 3401 and 2513 cm−1 bands could not be fit by with a single 

Lorentzian function, but were successfully fit by a pair of Lorentzian functions, as shown in Figure 3.12. In 

contrast, the ν(OH) band at 3411 cm−1 in the spectrum of Li2(HOD)(D2O)3(B12F12) and the ν(OD) band at 

2518 cm−1 in the spectrum of Li2(HOD)(H2O)3(B12F12) were successfully fit with a single Lorentzian function, 

as also shown in Figure 3.12.  

The ν(OH) and ν(OD) stretching frequencies for Li2(H2O)4(B12F12) and isotopomers of its deuterated 

isotopologs are listed in Table 3.2, which also includes experimental ν(OH) and ν(OD) values assigned to 

cyclic (H2O)4 and (D2O)4 clusters in the gas phase, in liquid He droplets, and in noble gas matrices; these 

values come from spectra presented in Figure 3.1–3.4.9,11,14,31-32,41,43 It appears that the coordination of the 

(H2O)4 tetramers to the Li+ ions in Li2(H2O)4(B12F12) and Li2(D2O)4(B12F12) does not significantly affect 

ν(OHb) and ν(ODb), respectively, relative to the gas phase or matrix isolated (H2O)4 clusters. The main 3401 

cm−1 ν(OHb) band for Li2(H2O)4(B12F12) (FWHM 67 cm−1) is between the 3416 ν(OHb) band for gas phase 

(H2O)4 (FWHM 58 cm−1) and the 3383 ν(OHb) band for (H2O)4 in a Ne matrix at 9 K. The main 2513 cm−1 

ν(ODb) band for Li2(D2O)4(B12F12) is within 12 cm−1 of the 2501 ν(ODb) band for gas phase (D2O)4 and 21 

cm−1 of the 2492 ν(ODb) band for (D2O)4 in a Ne matrix at 7K. There has been only one mixed-isotope cyclic 

water tetramer studied by IR spectroscopy prior to this work.14 The 3374 ν(OHb) band for [(HOD)(H2O)3] in 

a Ne matrix at 9 K is red-shifted 9 cm−1 from the 3383 ν(OHb) band for (H2O)4 under the same conditions. 
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For comparison, the 3411 ν(OHb) band for Li2(HOD)(D2O)3(B12F12) is blue-shifted by 10 cm−1 from the 3401 

ν(OHb) band for Li2(H2O)4(B12F12).  

On the other hand, the main 3583 cm−1 ν(OHf) band for Li2(H2O)4(B12F12) is more than 100 cm−1 

lower than the 3714 ν(OHf) band for gas phase (H2O)4 or the 3695 ν(OHf) band for (H2O)4 in an Ar matrix at 

30 K. The corresponding ν(ODf) differences for Li2(D2O)4(B12F12) vs. (D2O)4 in a Ne matrix at 9 K is also 

more than 100 cm−1. These differences are undoubtedly due to the O–H···F and O–D···F hydrogen bonds in 

the lithium compounds. Similarly, the 3658 and 3588 cm−1 ν(OH) values for crystalline Cs2(H2O)(B12F12), in 

which the coordinated monomeric H2O molecule participates in two O–H···F hydrogen bonds, are 98 and 67 

cm−1 lower than the 3756 and 3657 ν(OH) values for monomeric H2O(g), respectively.38 

Therefore, even weak O–H···F hydrogen bonding has a significantly larger effect on the H2O ν(OH) 

values than does coordination of H2O to Li+ in Li2(H2O)4(B12F12). However, coordination of a single H2O 

molecule to Li+ in the gas phase, in the absence of any hydrogen binding, is predicted to lower νasym(OH) by 

85 cm−1 and νsym(OH) by 27 cm−1.64 Experimentally, the IR spectrum of the evaporatively cooled gas-phase 

[Ar–Na–OH2]+ cation exhibited νasym(OH) and νsym(OH) bands that were 49 and 23 cm−1 lower, respectively, 

than the corresponding values for H2O(g).65 The reason why the ν(OHb) shift is so small for Li2(H2O)4(B12F12) 

is probably because of the coordination of Li+ to two H2O molecules and four F atoms in Li2(H2O)4(B12F12) 

significantly lowers its Lewis acidity and/or polarizing ability relative to a bare Li+ ion.  

The spectra in Figure 3.14, 3.15, and 3.16 show the 1637 and 1656 cm−1 δ(HOH) bands for 

Li2(H2O)4(B12F12) and the 1202 cm−1 δ(DOD) band for Li2(D2O)4(B12F12). These values are compared with 

the corresponding values for H2O(g) and both calculated and matrix isolated (H2O)4 clusters in Table 3.3. In 

all but one of the reports of experimental FTIR result, two δ(HOH) bands were observed, one at 1608–1637 

cm−1 and one at 1624–1660 cm−1, with separations of the two band positions of 12–21 cm–1 (the separation in 

the spectrum of Li2(H2O)4(B12F12) is 19 cm−1 (1656–1637 cm−1 = 19 cm−1)). The two broad, overlapped 

δ(HOH) bands observed at 1629 and 1641 cm−1 for the presumed S4 (H2O)4 cluster in liquid He droplets are 

shown in Figure 3.21.  

It has long been known that hydrogen bonds involving D are more stable than those involving H, all 

other things being equal.4,66-70 A consequence of the ca. 60 cm−1 (ca. 0.72 kJ mol−1) energy difference between 
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the HO–D···OH2 and DO–H···OH2 water dimer isotopomers is that only the former deuterium-bonded 

structure (which will be abbreviated [(HfODb)(H2O)]) was observed in an Ar matrix below 10 K.67-69 Anick 

calculated virtually the same energy difference for the S4 water tetramer isotopomers [(HfODb)(H2O)3]) and 

[(DfOHb)(H2O)3]).4 With such a small energy difference, it is not surprising that there are two ν(OH) bands in 

the room temperature spectrum of Li2(HOD)(D2O)3(B12F12) and two ν(OD) bands in the room temperature 

spectrum of Li2(HOD)(H2O)3(B12F12).  

3.3.5 Assignment of O−H Stretching and H−O−H Bending Normal Modes to Bands in 

Vibrational Sectra of Cyclic S4 (H2O)4 Clusters.  

The 12 O–Hf, O–Hb, and Hf–O–Hb normal modes for S4 (H2O)4 cluster are shown in Figure 3.22. The 

letter designation are the symmetries (the irreducible representation) for each mode. The individual drawings 

are simplifications of the relative motions of the atoms during the indicated vibration. This is justified because 

the mixing of modes of the same symmetry will be small if the vibrations are separated by hundreds of 

wavenumbers (e.g., for gas phase S4 (H2O)4,41 δ(HOH) = 1629 cm−1, ν(OHb) = 3416 cm−1, and ν(OHf) = 3714 

cm−1). Even when ν(OHb) and ν(OHf) are only separated by 182 cm−1, as in Li2(H2O)4(B12F12), the mixing of 

these modes only resulted in band position shifts of 5–10 cm−1. Additionally, The A normal modes can be 

ignored because they are not infrared active.  

DFT calculations by Ceponkus, Uvdal, and Nelander in 2012 predicted B and E fundamental ν(OHb) 

frequencies for an isolated S4 (H2O)4 cluster to be 3484 and 3445 cm−1, respectively.14 DFT calculations by 

Vasylieva, Doroshenko, et al. in 2019 predicted the B and E ν(OHb) frequencies to be 3331 and 3288 cm−1, 

respectively.32 CCSD(T)/aug-cc-pVDZ calculations by Miliordos, Aprà, and Xantheas in 2013 predicted B 

and E ν(OHb) frequencies to be 3385 and 3357 cm−1, respectively.19 In these three studies, the separation of 

the E ν(OHb) band from the higher wavenumber B band was 28-43 cm−1. In all three cases, the higher 

wavenumber B normal mode is predicted to give rise to a less intense band than the band for the combined E 

normal modes. Ceponkus, Uvdal, and Nelander hypothesize that the doubly degenerate E band, with be 

significantly more intense than the B band.14 Vasylieva, Doroshenko, et al. calculated the integrated intensity 

of the 3331 (B) and 3288 (E) cm−1 bands as 29.1 and 1467 arb. units, respectively, for vacuum and 29.7 and 

1549.5 arb. units, respectively, for an argon matrix. The ratio of these two bands (E/B) are 50.4 and 52.2, 
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respectively. The integrated intensities for the proposed B and E bands at 3596 and 3583 cm−1, respectively, 

in Figure 3.13 are 0.2417 and 8.4753 arb. units resulting in a E/B ration of 35.07. This ratio is consistent with 

the hypothesis by Ceponkus, Uvdal, and Nelander that the E band will be significantly more intense than the 

B band, and while the observed ratio is not a large as the calculated ratios by Vasylieva, Doroshenko, et al., 

deviations between experimental and computational models are not uncommon, coupled with fact that the 

environments are significantly different (O–H···F hydrogen bond vs O–H···Ar induced dipole) can 

potentially account for this difference.  

The author’s interpretation of the lower intensity band at 3441 and 2538 cm−1 in the two-peak 

Lorentzian fitted spectra in Figure 3.12 is that they represent the B normal mode for the four coupled O–H···O 

hydrogen bonds in Li2(H2O)4(B12F12) and the four coupled O–D···O hydrogen bonds in Li2(D2O)4(B12F12), 

respectively, while the much more intense bands at 3401 and 2513 cm−1 represent the corresponding E normal 

modes. Figure 3.13 shows that the ν(O–H···O) and ν(O–H···F) bands in the spectrum of Li2(H2O)4(B12F12) 

may both have an unresolved, lower-intensity B symmetry band at higher wavenumbers. The shoulder on the 

higher-wavenumber side of the 3583 cm−1 ν(OHf) band is not as pronounced as the shoulder on the higher-

wavenumber side of the 3401 cm−1 ν(OHb) band. Nevertheless, fitting the 3583 cm−1 band with two 

Lorentzian functions resulted in a better fit than with a single Lorentzian function. In some studies, higher-

wavenumber shoulders can be seen on ν(OHb) or ν(ODb) bands assigned to S4 (H2O)4 or (D2O)4 clusters in 

noble gas matrices or in the gas phase. Some examples are shown in Figure 3.1, 3.3, and 3.4.14,31,43 Only in 

the cases of the gas phase IR cavity ringdown spectra of (D2O)4 (Figure 3.4) and (H2O)4 (Figure 3.23) were 

the shoulders explicitly attributed to ν(ODb) or ν(OHb) band splitting.43 However, the shoulder in the spectrum 

of (D2O)4 was estimated to represent a band only 4 cm−1 higher than the main ν(ODb) band, not ca. 25 cm−1 

as in the spectrum of Li2(D2O)4(B12F12). In contrast, the shoulder was estimated to be 26 cm−1 higher in energy 

in the IR cavity ringdown spectrum of (H2O)4, as shown in Figure 3.23.43 The ν(ODb) band in the spectrum 

of (D2O)4 in a Ne matrix at 9 K was split into three bands with very small separations, at 2489, 2492, and 

2494 cm−1, although only “a smooth symmetric band at 3383 cm−1” was observed in the spectrum of (H2O)4 

under the same conditions (this was the verbatim description of the 3383 cm−1 band in the spectrum shown in 

Figure 3.1).14  
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Figure 3.14 and 3.12 show that a higher-wavenumber shoulder on the δ(HOH) band at 1637 cm−1 in 

the spectrum of Li2(H2O)4(B12F12) can be resolved to reveal a low-intensity band at 1656 cm−1. I tentatively 

attribute this band to the δ(HOH) B vibration. However, that assignment must remain tentative because the 

δ(HOH) B vibration is predicted to be lower in energy than the δ(HOH) E vibration in all of the theoretical 

papers cited in Table 3.3. It is possible that the lower-intensity, lower-wavenumber band is the E band and the 

higher-energy, higher-wavenumber band is the B band.  

3.4 Conclusions and Future Work 

3.4.1 Conclusions 

ATR-FTIR spectra of crystalline samples that contain only one structurally well-characterized water 

cluster, either S4 (H2O)4 or S4 (D2O)4, or a mixture of S4 (H2O)4 and a small percentage of [(HOD)(D2O)3], or 

a mixture of S4 (D2O)4 and a small percentage of [(HOD)(H2O)3], suggest that (i) B and E normal modes gave 

rise to distinguishable ν(OHb), ν(OHf), and δ(HOH) bands separated by 42, 13, and 19 cm−1, respectively, in 

the room-temperature FTIR spectrum of Li2(H2O)4(B12F12); (ii) B and E normal modes gave rise to 

distinguishable ν(ODb) bands separated by 20 cm−1 in the room-temperature FTIR spectrum of 

Li2(D2O)4(B12F12); (iii) coupling between the ν(ODb) and ν(ODf) normal modes, albeit weak, may be 

responsible for the observed shifts of 4–10 cm−1 for the respective bands in the spectra of Li2(H2O)4(B12F12) 

vs Li2(HOD)(D2O)3(B12F12) or the spectra of Li2(D2O)4(B12F12) vs Li2(HOD)(H2O)3(B12F12); and (iv) a 

δ(DOD) band for an S4 (D2O)4 cluster was observed for the first time at ca. 1202 cm−1. In addition, the FTIR 

spectra of samples containing [(HOD)(H2O)3] or [(HOD)(D2O)3] clusters are the first examples in which 

bands that can be unambiguously assigned to both HO–D···O and DO–H···O hydrogen bonds in the same 

sample have been observed for R4 water tetramers.  

3.4.2 Future Work 

Based on the results presented in this chapter there are multiple avenues for continuation of this work. 

With access to an ATR-FTIR instrument with a sample chamber capable of reaching cryogenic temperatures 

investigation of the intensity ratios of the ν(OH) and ν(OD) bands corresponding to the [(HfODb)(H2O)3]) and 

[(DfOHb)(H2O)3]) structures discussed in Section 3.3.5 can be performed. The hypothesis to be tested would 

be that “at cryogenic temperatures, the integrated intensity of the 3587 cm−1 band should increase relative to 
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the lower-wavenumber 3411 cm−1 band in the spectrum of Li2(HOD)(D2O)3(B12F12), and the integrated 

intensity of the 2642 cm−1 band should decrease relative to the lower-wavenumber 2518 cm−1 band in the 

spectrum of Li2(HOD)(H2O)3(B12F12).”63 This would represent the disappearance of the DO–H···O hydrogen 

bonds as the temperature decreased in favor of the more stable HO–D···O hydrogen bonds, allowing 

connection of the observed results in my room-temperature spectra of Li2(HOD)(H2O)3(B12F12) and 

Li2(HOD)(D2O)3(B12F12) to the cryogenic temperature results showing only the presence of HO–D···O 

hydrogen bonds.  

Computational simulations of the IR spectra of Li2(H2O)4(B12F12), and the deuterated isotopologs 

covered in this chapter, by a theorist would complement the experimental work performed and allow for 

further testing of the conclusions drawn from the experimental data; specifically the apparent intramolecular 

coupling of the O–Hb and O–Hf oscillators in Li2(H2O)4(B12F12). By simulating the spectrum with and without 

coupling, the band position of ν(O–Hf) and ν(O–Hb) for both scenarios can be compared to the respective 

band position in Li2(H2O)4(B12F12) and Li2(HOD)(D2O)3(B12F12). A similar study can also be performed for 

the O–Db and O–Df oscillators as well. Simulations may also help address the alternative explanation 

presented by the reviewer of the paper based on the work presented in this chapter.63 By simulating the IR 

spectrum of the system after removing “E mode opposite-side OH coupling” their explanation can be tested 

as well.  

Finally, as new compounds containing (H2O)n clusters are published, an effort to study those that also 

posses fluoroanions via similar experiments should be undertaken. Much of the ambiguity in the widely 

accepted low temperature matrix experiments has to do with the fact that multiple values of n are generated 

and studied simultaneously. Thus, while theory may assist in assignment of ν(OH) and ν(OD) bands, 

definitive assignment and determination of environmental effects on the ν(OH) and ν(OD) bands will have to 

come from compounds like Li2(H2O)4(B12F12) and its deuterated isotopologs. In part due to the very weak O–

H···F hydrogen bonding allowing for resolution of the ν(OH) bands at room temperature as discussed in the 

previous chapter of this dissertation.  
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Figure 3.1. The ν(OHb) region of a neon matrix with (H2O)n clusters (n = 3–6) (ν(OHb) is an 
abbreviation for ν(O–H···O). This figure was modified from Figure 1 in ref 14. Abbreviations: Tr, 
trimer; Te, tetramer; P, pentamer; c-H, cyclic hexamer; H, hexamer. The dotted line spectrum was 
recorded first at 2.8 K. The solid red line spectrum was recorded at 2.8 K after warming to 8 K. 
The arrow, which has been added to the modified figure, points to a shoulder on the higher-
wavenumber side of the peak assigned to the cyclic (H2O)4 tetramer. 
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Figure 3.2. FTIR spectra of the ν(OH) regions of argon matrices containing (H2O)n clusters  
(n = 2–5). The upper set of spectra was modified from Figure 4 in ref 28. The lower spectrum was 
adapted from Figure 4 in ref 32 (abbreviations: D, dimer; Tr, trimer; Te, tetramer; P, pentamer). 
In the 29 K spectrum in the upper set of spectra, the peaks marked with asterisks were assigned to 
a (H2O)4 tetramer in Table 1 of ref 28 (the asterisks have been added to the modified figure for this 
work). In the lower spectrum, the peak marked with P, for pentamer, in the published spectrum, is 
now believed to belong to the tetramer (Prof. Iryna Doroshenko, personal communication to 
Professor Steve Strauss, July 2019). The label (Te) was added to the modified figure to represent 
the change in the assignment.  
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Figure 3.3. FTIR spectrum of (D2O)n clusters in a frozen Ar matrix at 5.3 K (Ar/D2O = 400). This 
figure was modified from Figure 1 in ref 3. The arrow, which has been added to the modified 
figure, points to a shoulder on the higher-wavenumber side of the peak assigned to the cyclic 
(H2O)4 tetramer.  
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Figure 3.4. IR cavity ringdown spectrum in the ν(OD) region of fully deuterated water clusters 
taken under expansion conditions favoring small clusters (n ≤ 6). This figure was modified from 
Figure 1 in ref 43. The arrow, which has been added to the modified figure, points to a shoulder 
on the higher-wavenumber side of the peak assigned to the cyclic (H2O)4 tetramer. The 
significance of this shoulder was discussed in ref 43.  
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Figure 3.5. FTIR spectrum of ν(OH) region of Cu(3-aminomethylpyridine)(H2O)(oxalate)·2H2O, 
which contains a cyclic (H2O)4 tetramer as well as H2O molecules coordinated to the Cu2+ ion. 
This figure was modified for this work from Figure 7 in ref 15.   
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Figure 3.6. Raman spectrum of ν(OH) region of Cu(3-aminomethylpyridine)(OH2oxalate)·2H2O, 
which contains a cyclic (H2O)4 tetramer as well as H2O molecules coordinated to the Cu2+ ion. 
This figure was modified for this work from Figure 3 in ref 26. The author listed ν(OH) bands at 
3388 and 3227 cm−1 as belonging to the (H2O)4 tetramer and bands at 3306 and 3149 cm−1 as 
belonging to the coordinated H2O molecule. Given the quality of the spectrum, these band 
positions must be considered approximate at best.  
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Figure 3.7. FTIR spectrum of [Fe3(μ3-O)(μ2-CH3COO)6(C5H5NO)2(H2O)]ClO4·4H2O. This figure 
was modified from Figure 5 in ref 45.  
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Figure 3.8. The X-ray crystal structure of Li2(H2O)4(B12F12) (50% probability ellipsoids except 
for H atoms; ref 49). The H2O molecules are symmetry related. Ignoring the disorder of the H 
atoms that form the O–H···O hydrogen bonds (lower right), the (H2O)4 cluster has S4 point 
symmetry (the crystallographic symmetry is D2). Each H2O molecule participates in two O–H···O 
hydrogen bonds with O(H)·· ·O distances of 2.778(2) and 2.785(2) Å. The perpendicular 
displacements of the O atoms from the O4 least-squares plane are ±0.633 Å.   
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Figure 3.9. The ATR-FTIR ν(OH) stretching region of microcrystalline samples of 
Li2(H2O)4(B12F12) (top) and Li2(HOD)(D2O)3(B12F12) (bottom). The samples were prepared by 
evaporating aqueous solutions on the ZnSe ATR crystal. The solution for the sample of 
Li2(HOD)(D2O)3(B12F12) was ca. 5–10% HOD and 90–95% D2O. The majority species in that 
sample was Li2(D2O)4(B12F12). The arrows in the top spectrum point to shoulders that indicate an 
additional unresolved band under both of the main bands.  
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Figure 3.10. The entire ATR-FTIR spectrum of a microcrystalline sample of Li2(H2O)4(B12F12). 
The sample was prepared by evaporating an aqueous solution (100% H2O) on the ZnSe ATR 
crystal. The inset shows the (H2O)4 cluster with effective S4 symmetry coordinated to four 
equivalent Li+ ions. The least-squares plane of the four O atoms is in the plane of the page, and 
pairs of O atoms on opposite corners of the tetramer are displaced ±0.663 Å from that plane. 
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Figure 3.11. The ATR-FTIR ν(OD) stretching region of microcrystalline samples of 
Li2(D2O)4(B12F12) (top) and Li2(HOD)(D2O)3(B12F12) (bottom). The bands marked with asterisks 
are due to an impurity. The samples were prepared by evaporating aqueous solutions on the ZnSe 
ATR crystal. The solution for the sample of Li2(HOD)(H2O)3(B12F12) was ca. 5–10% HOD and 
90–95% H2O. The majority species in that sample was Li2(H2O)4(B12F12). The arrow in the top 
spectrum point to a shoulder that indicates an additional unresolved band is present under the main 
band.   
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Figure 3.12. Lorentzian fits to the ν(OH) bands for the O–H···O hydrogen bonds in ATR-FTIR 
spectra of Li2(H2O)4(B12F12) (upper left) and Li2(HOD)(D2O)3(B12F12) (lower left) and Lorentzian 
fits to the ν(OD) bands for the O–D···O hydrogen bonds in ATR-FTIR spectra of 
Li2(D2O)4(B12F12) (upper right) and Li2(HOD)(H2O)3(B12F12) (lower right). The fitted band 
positions are shown above the FWHM values (↔ = FWHM) in parentheses. The ratio of integrated 
intensities of the 3441 and 3401 cm−1 bands in the upper left spectrum is 0.14. The ratio of 
integrated intensities of the 2537 and 2513 cm−1 bands in the upper right spectrum is 0.04. 
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Figure 3.13. Four-peak Lorentzian fit to the entire ν(OH) region of the ATR-FTIR spectrum of 
microcrystalline Li2(H2O)4(B12F12). The Lorentzian fit peak positions in cm−1 are shown above the 
FWHM values in cm−1 in parentheses (↔ = FWHM). The fit parameters are slightly different than 
the fit parameters for just the ν(OH) envelope at ca. 3401 cm−1 in Figure 3.12 (3441 (↔ 44); 3401 
(↔ 67)). The ratio of integrated intensities of the 3596 and 3583 cm−1 bands is 0.03. The ratio of 
integrated intensities of the 3442 and 3400 cm−1 bands is 0.14.  
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Figure 3.14. ATR-FTIR spectra in the δ(HOH) bending region of microcrystalline samples of 
Li2(H2O)4(B12F12) (above) and K2(H2O)4(B12F12) (below). The samples were prepared by 
evaporating aqueous solutions (100% H2O) on the ZnSe crystal. The arrow in the top spectrum 
points to a shoulder that indicates an additional unresolved band is present.   
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Figure 3.15. Lorentzian fits to δ(HOH) peaks in the ATR-FTIR spectra of Li2(H2O)4(B12F12) and 
K2(H2O)2(B12F12). The samples were prepared by evaporating aqueous solutions (100% H2O) on 
the ZnSe crystal. The Lorentzian fit peak positions are shown above the FWHM in parentheses 
(cm−1). The ratio of integrated intensities of the 1656 and 1637 cm−1 bands in the spectrum on the 
left is 0.05. Underneath each spectrum is the structure of the Li2(H2O)4

4+ (ref 49) or K2(H2O)2
2+ 

(ref 50) cores in the crystal structures of these compounds (50% probability ellipsoids except for 
H atoms).  
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Figure 3.16. The δ(HOH)/ν(BF)/δ(DOD) region of FTIR spectra of Li2(D2O)4(B12F12) (top) and 
Li2(H2O)4(B12F12) (bottom).  
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Figure 3.17. The proposed interconversion of disordered hydrogen-bonded H atoms in the X-ray 
crystal structure of Li2(H2O)4(B12F12) (ref 49).  
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Figure 3.18. The predicted C2 (H2O)4 cluster adsorbed to the NaCl(001) surface (ref 60). This 
figure was modified from Figure 6 in ref 60. The author thanks Prof. Yong Yang for a high-
resolution image of that figure from which this modified figure was prepared.  
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Figure 3.19. Calculated and experimental (H2O)4 clusters. Top-to-bottom: CCSD(T)/aVQZ (ref 
25, S4 symmetry), Rb2[Pt2(pop)4I]·4H2O (ref 48, C2 symmetry, pop2− = HOOPOPOOH2−; the H 
atoms on the H2O molecules were not located in this structure), Na4[Mo12O46(AsC6H4-4-OH-3-
NO2)4]·8H2O (ref 47, S4 symmetry), and Li2(H2O)4(B12F12) (ref 49, effective S4 symmetry 
(crystallographic D2 symmetry)).  
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Figure 3.20. The ATR-FTIR spectrum of an evaporated microcrystalline film of 
K2(H2O)2(B12F12). A version of this spectrum was first published in ref 38, and was discueesed at 
length in Chapter 2. The K2(H2O)2

2+ core of the structure is shown as an inset (the crystal structure 
was published in ref 49). The O–H bonds only interact with F atoms of the anions, with O–H···F 
distances of 2.972(1) and 2.978(1) Å. The broad ν(OH) band at ca. 3400 cm−1 is due to non-
crystalline H2O on the surface of the particles of K2(H2O)2(B12F12) (the sample had to be recorded 
under a partial pressure of H2O(g) to avoid the rapid dehydration of the sample in a dry atmosphere 
(see ref 49)).  
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Figure 3.21. Mass-selective depletion IR spectra for (H2O)n clusters in liquid He droplets. This 
figure was modified for this work from Figure 1 in ref 52. The peaks marked with # were assigned 
to the H2O monomer.  
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Figure 3.22. Simplified representations of the A, B, and E O–H stretching and H–O–H bending 
vibrations of a cyclic (H2O)4 cluster with S4 symmetry. The ν(OHf) normal modes are for the four 
O–H bonds that do not form the four O–H···O hydrogen bonds. The ν(OHb) normal modes are for 
the four O–H bonds that do form the four O–H···O hydrogen bonds. For the δ(HOH) normal 
modes, the + and − signs designate an increase and decrease, respectively, in the H–O–H angle. 
This figure was adapted from a similar figure in ref 57.  
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Figure 3.23. IR-CRLAS spectrum of (H2O)n clusters. This figure was modified from Figure 4 in 
ref 43. The peaks marked Tr were assigned to the cyclic (H2O)3 trimer and the bands marked Te 
were assigned to the cyclic (H2O)4 tetramer.  
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Table 3.1. Structural parameters for calculated and experimental cyclic (H2O)4 clustersa                    
cluster compound O(H)···O, Å O–H···O, deg O oop, Å O···O·· ·O, deg O–Hb O–Hf 
or method of calculation                    
S4 (H2O)4 2.746 167.3 0 90 0.977 0.958 
CCSD(T)/aVQZb 
S4 (H2O)4 (Doroshenko) 2.727 168.5 0 90 0.985 0.961 
DFTc   
C2 (H2O)4 on NaCl(001) 2.683, 137.4, ±0.374 82.6, 0.891, 0.988, 
DFTd 2.955 172.1  89.3 1.004 0.973 
S4 Li4(H2O)4 2.778(2), 152.6, ±0.633 78.1 0.90(2), 0.81(2) 
Li2(H2O)4(B12F12)e 2.785(2) 169.1   0.85(2)  
S4 Na4(H2O)4 2.935(9) 142 ±0.299 88 0.85l 0.85f 

Na4[POM]·8H2Of 
C2 Rb4(H2O)4 2.803(3), — ±0.265 99.4(2), —g —g 

Rb2[Pt2(pop)4I]·4H2Og  3.000(3)   76.7(2)   
S4 (H2O)4   2.809(3) 156 ±0.160w 89.3(3) 0.901) 0.90(1) 
(NMe4)MnCo(CN)6·8H2Oh  
Ci (H2O)4    2.733(4), 160(6), 0 100(1), 0.85(2), 0.85(2), 
Zn[(bdc)(bim)]·2H2Oi 2.972(6) 164(5)  80(1) 0.86(2) 0.85(2) 
Ci (H2O)4     2.739(4), 167, 0 88.8(3), 0.79, 0.79, 
Cu(3-amp)(C2O4)·3H2Oj 2.946(4) 173  91.2(3) 0.81 0.80 
Ci (H2O)4   2.791(5), 159(5), 0 85.6, 0.83(3), 0.83(3), 
Cu2(pydc)2(1,2-Me2Im)4·6H2Ok 2.804(5) 157(5)  94.4 0.82(2) 0.82(3)                    
a The abbreviation "oop O" refers to the perpendicular displacement of the O atoms from the mean plane of the four O atoms. O–Hb = the O–H bonds involved in 
the O–H···O hydrogen bonds that form the cluster. O–Hf = the O–H bonds that are not involved in the O–H···O hydrogen bonds that  
form the cluster. The O–Hf bonds do form hydrogen bonds to O, N, or F atoms in the various structures. b Ref 25. c Ref 32. d Ref 60. e This work; Li–O = 1.995(1) 
Å. f Ref 47; POM = Mo12O46(AsC6H4-4-OH-3-NO2)4; Na–O = 2.386(7) Å; OH distances were fixed at 0.85 Å. g Ref 48; H atoms on H2O molecules were not 
included in the structure; Rb–O = 2.927(2), 3.149(1) Å; pop2− = HOOPOPOOH2−. h Ref 61; four H atoms are ±0.03 Å from the O4 mean plane, and the other four 
H atoms are ±1.00 Å from that plane. i Ref 62; H2bdc = 5-hydroxylisophthalic acid, bim = bis(N-imidazolyl)methane. j Ref 15; 3-amp = 3-aminomethlpyridine.  
k Ref 21; pydc2− = pyridine-2,3-dicarboxylate(2−). 
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Table 3.2. Infrared ν(OH) stretching frequencies for (H2O)4, (D2O)4, [HOD(D2O)3], and [HOD(H2O)3] clustersa         
sample (H2O)4 (D2O)4 [HOD(D2O)3] [HOD(H2O)3] ref          
 ν(OHb)  ν(OHf) ν(ODb) ν(ODf) ν(OHb) ν(OHf) ν(ODb) ν(ODf)        
Li2(water)4(Z)b 3401 [67], 3583 [26],c 2513 [33] 2651 [25]c 3411 [59] 3587 [10]c 2518 [29] 2642 [6]c TW 
 3441 [44] 3596 [7]c 2538 [13]    

(H2O)n/liquid He 3394        9 

(water)n/Ne, 9K 3383 3719 2489, 2492, 2745 3374    14 
   2494 

(water)n/Ar, 30 K 3372 3695 2487, 2488 2733     14 

(H2O)n (gas) 3416 [58] 3714 [< 20]       41 

(H2O)n (gas) ca. 3400, ca. 3425d        43 

(D2O)n (gas)   2501, 2505(sh)      43 

(D2O)n/Ne, 7 K   2492e      31 

(H2O)n/Ar, 29 K 3327, 3371        32 

(H2O)n/Ar, 25 K 3373        11 

(H2O)n/Kr, 25 K 3370        11 
          
a All values in cm−1, including FWHM values in square brackets. Abbreviations: Z2− = B12F12

2−; TW = this work. b For Li2(H2O)4(Z), δ(HOH) = 
1637 cm−1 (FWHM = 30 cm−1) and 1656 cm−1 (FWHM = 11 cm−1). For Li2(D2O)4(Z), δ(DOD) = ca. 1202 cm−1 (the overlap with the strong ν(BF) 
band prevents a more precise value for δ(DOD)). c These are not "free" O–H or O–D bonds; they form weak O–H···F or O–D···F hydrogen bonds 

(see text and ref 49). d These values are approximate because the authors of ref 43 did not list the band positions; they stated "our observed 
splitting is ~26 cm−1"; see Figure 3.23). e This is the value listed in Table 3 of ref 31, but the published spectrum shows that the band maximum 
was closer to 2488 cm−1 with a shoulder at 2492 cm−1 (see Figure 3.3).  
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Table 3.3. Experimental and calculated δ(HOH) or δ(DOD) values for (H2O)4 or (D2O)4 clustersa 
              
cluster compound δ(HOH) δ(DOD) ref  
or method of calculation 
              

Li2(H2O)4(B12F12) (solid) 1637, 1656  this work 
 
Li2(D2O)4(B12F12) (solid)  ca. 1202 this work 
 
S4 (H2O)4/Ar, 19 K 1637, 1660  28 
 
S4 (H2O)4/Ar, 15 K 1608, 1624  32 
 
S4 (H2O)4/liquid He 1629, 1641  52 
 
S4 (H2O)4/gas phase71 1629  71 
 
S4 (H2O)4/CCSD(T)/aug-cc-pVDZ 1612, 1632 × 2, 1671  19 
 
S4 (H2O)4/CCSD(T)/haTZ 1666, 1678 × 2, 1703b  24 
 
S4 (H2O)4/LCCSD(T)/aVDZ72 1676, 1688 × 2,   72 
 
S4 (H2O)4/CCSD(T)/SCF 6-31G* 1651 × 3, 1666  2 
 
S4 (H2O)4/CCSD(T)/VSCF/VCIc 1629, 1634 × 2, 1654  27 
 
S4 (H2O)4/B3LYP/6-311++G(3df,3pd) 1643, 1656 × 2, 1684  14 
 
S4 (H2O)4/B3LYP/cc-pVTZd 1614, 1623 × 2, 1649  32 
 
S4 (H2O)4/B3LYP/cc-pVTZe 1612, 1621× 2, 1645  32 
              
a All values in cm−1. Calculated anharmonic frequencies unless otherwise indicated. b Harmonic 
frequencies. c Anharmonic coupled-mode calculations. d Vacuum. e In argon. 
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CHAPTER 4 WEAK O–H···F HYDROGEN BONDING IN M(H2O)n(B12F12) SALT 

HYDRATES (M = Mg, Ca, Sr, Ba, Co, Ni, Zn) 

4.1 Introduction and Relevant Literature  

The second chapter of this dissertation is focused on the alkali metal salt hydrates of WCAs. 

In the section discussing future work (section 2.4.2), studying the FTIR spectra of salt hydrates 

with M2+ ions was proposed. One reason that the charge/oxidation state of the cation is relevant 

relates to the strength of the H2O–Mm+ bond. It is known that the acidity of a cation increases with 

oxidation number,1 and the more acidic a cation is, the stronger the cation–water coordination 

bond. A stronger (and shorter) M–O bond will result in a lengthening and weakening of the O–H 

bond. By weakening the O–H bond the H atom becomes more Brønsted acidic, and that increased 

acidity translates into forming stronger hydrogen bonds.1 As a result, it is unlikely that the 

hydrogen bonds in metal salt hydrates composed of divalent metal cations and WCAs will rival 

the salt hydrates discussed in Chapter 2 in terms of weakness. What can be learned from the 

relatively stronger hydrogen bonds formed in divalent metal salt hydrates of WCAs is the effect 

of cation acidity on hydrogen bond strength. 

In this chapter the structures and FTIR spectra of four divalent metal salt hydrates of the 

WCA B12F12
2− (M = Mg, Co, Ni, Zn) are discussed. In the FTIR spectra of these four salts, two 

pairs of relatively narrow νasym(OH) and νsym(OH) bands were observed, for a total of four bands 

in the ν(OH) region. These two sets of bands result from two different sets of three symmetry 

related H2O ligands in the M(H2O)6
2+ cation complex. Use of isotopically dilute solutions 

containing a small percentage of the M(HOD)(H2O)5
2+ cation complex will be used to show that 

these two unique H2O positions cause the multiplicity of the ν(OH) bands observed in the FTIR 

spectrum, and not intermolecular coupling of the O–H oscillators in the octahedrally coordinated 

M(H2O)6
2+

 cation complex (factor group splitting).2 Comparison of the Δν(OH) of the νasym1(OH), 

νasym2(OH), νsym1(OH), and νsym2(OH) bands for the four M(H2O)6(B12F12) salts (M = Mg, Co, Ni, 

Zn) salts will show the effect of cation pKa on the strength of the hydrogen bond formed between 
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the water ligands and the B12F12
2− anions. As expected the most acidic cation (Zn2+) possessed the 

largest red-shift from the idealized band positions for an isolated, uncoupled, H2O molecule (3756 

and 3657 cm−1; ref. 3), as seen in Figure 4.1.  

The FTIR spectra of the salt hydrates Ca(H2O)n(B12F12), Sr(H2O)n(B12F12), and 

Ba(H2O)n(B12F12) are presented and discussed in this chapter as well. The values of n for the 

samples in some of these spectra are not explicitly known. Where available, the spectra are 

compared to data from TGA experiments to hypothesize the value of n. In most cases, the stable 

hydration states observed in the TGA and FTIR experiments differ from the known SC-XRD 

structures for these compounds. As a result, comparison of the ν(OD) stretching frequency as a 

function of O(D)·· ·F bond length cannot be made for these compounds. What these spectra do 

show is that the salt hydrates formed with divalent cations generally have a greater red-shift than 

the salt hydrates with monovalent cations. This observation shows that, as expected, the more 

acidic divalent cations induce stronger water−anion hydrogen bonds, but those hydrogen bonds 

are still relatively weak to the point where the ν(OH) bands can be individually resolved at room 

temperature.  

All of the work presented in this chapter was published in two papers in Inorganic Chemistry.4-5 The 

first publication was titled Manifestations of Weak O–H···F Hydrogen Bonding in M(H2O)n(B12F12) Salt 

Hydrates: Unusually Sharp Fourier Transform Infrared ν(OH) Bands and Latent Porosity (M = Mg–Ba, Co, 

Ni, Zn). The author of this dissertation is the first author. All the FTIR work presented in this chapter, and in 

the publication, was performed by the author of this dissertation. The second publication is Hydrated Metal 

Ion Salts of the Weakly Coordinating Fluoroanions PF6
−, TiF6

2−, B12F12
2−, Ga(C2F5)4

−, B(3,5-C6H3(CF3)2)4
−, 

and Al(OC(CF3)3)4
−. In Search of the Weakest HOH...F Hydrogen Bonds. The author of this dissertation was 

the first author, and the only graduate student or postdoc author. The structures presented in this chapter were 

collected and determined by previous Strauss group members. 
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4.2 Experimental 

4.2.1 Reagents and Solvents 

Solid K2(B12H12) (Air Products) was dissolved in dd-H2O and brought to dryness with a rotary 

evaporator a minimum of three times before being dried under dynamic vacuum overnight to remove any 

residual methanol contained within the solid. The following reagents and solvents were obtained from the 

indicated supplier: deuterium oxide (D2O, Cambridge Isotopes 99.9% D); Acetonitrile (CH3CN), 

MgCl2·6H2O, CaCO3, SrCO3, BaCO3, CoCl2·6H2O, NiCl2·6H2O, ZnCl2·6H2O (Sigma-Aldrich); CoCO3, 

thionyl chloride (SOCl2, Fisher Scientific); NiCO3 (Baker and Adamson); ZnCO3 (Alfa Aesar 99.5%). The 

mixed N2/F2 gas (Matheson, 80:20 N2:F2) was used as received.  

4.2.2 General Procedures  

Anhydrous compounds were prepared using standard airless-ware glassware and a Schlenk-style 

vacuum line and were stored in a dinitrogen filled glovebox. Preparation of anhydrous MCl2 (M = Co, Ni, 

Zn) was performed by stirring the appropriate MCl2·6H2O with a large excess of SOCl2 and heated until 

reflux for several hours. Filtration followed by vacuum drying afforded anhydrous CoCl2, NiCl2, and ZnCl2. 

Distilled water was deionized with a Barnstead Nanopure system. The deionized distilled water (dd-H2O) had 

a resistivity greater than 18 MΩ (all samples of H2O used in this work correspond to dd-H2O prepared in this 

way).  

4.2.3 Synthesis of M(H2O)6(B12F12) (M = Mg, Co, Ni, Zn)  

Equivalent amounts of Ag2(CH3CH)4(B12F12) dissolved in CH3CN and anhydrous MCl2 (M = Co, 

Ni, Zn), or MgCl2·6H2O, dissolved H2O were quickly mixed and allowed to stir vigorously for 10 minutes. 

The solutions were filtered to remove AgCl. Slow evaporation of the filtrate resulted in colorless crystals of 

Mg(H2O)6(B12F12) (85% yield), pink crystals of Co(H2O)6(B12F12) (70% yield), pale green crystals of 

Ni(H2O)6(B12F12) (60% yield), or colorless crystals of Zn(H2O)6(B12F12) (50% yield) all of which were 

suitable for SC-XRD. Photographs of crystals of Co(H2O)6(B12F12) and Ni(H2O)6(B12F12) are shown in Figure 

4.2.  

In alternate syntheses, equivalent amounts of (H3O)2(H2O)6(B12F12) and the corresponding anhydrous 

MCO3 salt were mixed in H2O. The solution was stirred vigorously and boiled for 10 minutes before the 
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solution was cooled to room temperature. Slow evaporation yielded crystals of M(H2O)6(B12F12). 

Optimization of crystalline M(H2O)6(B12F12) isolation was not attempted for this procedure, and therefore 

yields were not determined. 

4.2.4 Synthesis of Ca(H2O)7(B12F12), Sr(H2O)7(B12F12), Ba(H2O)5(B12F12) 

Equivalent amounts of (H3O)2(H2O)6(B12F12) and the corresponding anhydrous MCO3 salt were 

mixed in H2O. The solution was stirred vigorously and boiled for 10 minutes before the solution was cooled 

to room temperature. Slow evaporation of the filtrate yielded colorless crystals of Ca(H2O)7(B12F12), 

Sr(H2O)7(B12F12), and Ba(H2O)5(B12F12) suitable for diffraction (these were kept in the mother liquor: for this 

reason a meaningful yield was not recorded).  

4.2.5 FTIR Spectroscopy  

Variable-humidity ATR-FTIR spectra were recorded with a Nicolet 6700 FTIR spectrometer 

equipped with a stainless-steel Harrick HorizonTM ATR variable-temperature/variable-humidity flow 

reactor described in detail in previous publications6-8 (and discussed in section 2.2.10 of Chapter 2) or a Nicolet 

IS-50 FTIR spectrometer. Aliquots of dilute solutions of the compounds in H2O, D2O, 90:10 (v:v) H2O:D2O, 

or a 90:10 (v:v) D2O:H2O mixture were allowed to evaporate to insipient dryness on a 5 cm × 1 cm × 0.2 cm 

ZnSe ATR crystal (New Era Enterprise) after it was placed in the flow reactor of the Nicolet 6700 instrument. 

No attempt was made to control the size or distribution of the microcrystalline particles that formed. The IR 

beam was directed into the ATR crystal at an incident angle of 45° by mirrors after leaving the interferometer, 

and the reflected light was returned to a liquid N2 cooled MCT detector. The vapor pressure of the H2O over 

the sample was controlled in real time as spectra were recorded with a purge of dry N2 gas, or N2 passed 

through either a V-Gen M1-120 dew point generator, or a bubbler containing a saturated aqueous salt solution. 

The rate of gas flow through the 5 cm3 stainless steel reactor was controlled using an Alicat Scientific 

flowmeter. The flow rate was 1 L min−1 for dry N2 passed through the dew point generator, and 0.060 L min−1 

for dry N2 passed through the solutions in the bubblers. Spectra were recorded at specific intervals of time 

depending on the experiment (typically 128 scans at 1 cm−1 resolution, unless otherwise indicated).  

Samples of M(HOD)n(H2O)n−1(B12F12) and M(HOD)n(D2O)n−1(B12F12) (M = Mg2+, Co2+) were 

prepared by dissolving the appropriate salt in either a 90:10 (v:v) mixture of H2O:D2O or a 90:10 (v:v) mixture 
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of D2O:H2O. Aliquots of the solution were allowed to dry on the ZnSe ATR crystal until incipient dryness 

under a purge of N2.  

4.2.6 Thermogravimetric Analysis  

Samples for TGA (Pt sample pans; 4–15 mg of finely ground microcrystalline powders) were 

analyzed using TA Instruments series 2950 or TGA Q500 instrumentation. The temperatures for isothermal 

TGA experiments, which ranged from 18–100 °C, were held to within 0.01 °C for several minutes before a 

change in the carrier gas was made. Dry He, dry N2 or either bubbled through H2O, D2O, or a saturated salt 

solution (Table 4.1), the vapor pressure of H2O, or D2O, in the sample chamber was 18(1) torr of H2O (g), 

16(1) torr of D2O (g), or between 6 and 15.0 torr of H2O (g), respectively. Whenever the carrier gas was 

switched (e.g., from dry gas to a gas containing H2O (g) or from a gas containing H2O (g) to a gas containing 

D2O (g) or vice versa), ca. 0.5 minutes elapsed before the composition of the carrier gas in the sample chamber 

became constant, as monitored in several control experiments by recording the mass spectrum of the carrier 

gas exiting the sample chamber (see Figure 4.3, which was reproduced from ref. 9). The carrier gas flow rate 

was 60 mL min−1. 

4.3 Results and Discussion 

4.3.1 Isomorphous M(H2O)6(B12F12) (M = Mg, Co, Ni, Zn) 

The four isomorphous SC-XRD structures of the salts of M(H2O)6(B12F12) (M = Mg, Co, Ni, Zn) 

were originally published in 2018.4 All four salts crystalize in the R
–3 space group (Table 4.2). There are six 

H2O ligands octahedrally coordinated around the metal cation. Of the six H2O ligands, only two are 

crystallographically unique resulting in two sets of fac-(H2O)3 ligands per cation. Each M(H2O)6
2+ complex 

is surrounded by eight B12F12
2− anions at the corners of a [(B12F12)2−]8 pseudo-cubic array. Each set of fac-

(H2O)3 ligands has different M–O bond distances. For each unique H2O molecule there are two different 

O(H)···F bond distances. The set of fac-(H2O)3 ligands with the shorter M–O distance also have shorter 

O(H)···F distances. For Mg(H2O)6(B12F12) (Figure 4.4) the two M–O bond distances are 2.0390(11) and 

2.0659(11) Å (Table 4.3). The two O(H)···F bond distances for the H2O with the 2.0390(11) Å M–O bond 

distance are 2.723(3) and 2.749(2) Å. The two O(H)···F bond distances for the H2O with the 2.0659(11) Å 

M–O bond distance are 2.904(2) and 2.914(2) Å. For Co(H2O)6(B12F12) the two M–O bond distances are 
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2.0663(4) and 2.0907(4) Å (Table 4.4). The two O(H)···F bond distances for the H2O with the 2.0663(4) Å 

M–O bond distance are 2.734(1) and 2.739(1) Å. The two O(H)···F bond distances for the H2O with the 

2.0907(4) Å M–O bond distance are 2.886(1) and 2.919(1) Å. For Ni(H2O)6(B12F12) (Figure 4.5) the two M–

O bond distances are 2.0290(7) and 2.0515(7) Å (Table 4.5). The two O(H)···F bond distances for the H2O 

with the 2.0290(7) Å M–O bond distance are 2.732(1) and 2.735(1) Å. The two O(H)···F bond distances for 

the H2O with the 2.0515(7) Å M–O bond distance are 2.859(1) and 2.919(1) Å. For Zn(H2O)6(B12F12) (Figure 

4.6) the two M–O bond distances are 2.0611(4) and 2.0926(4) Å (Table 4.6). The two O(H)···F bond 

distances for the H2O with the 2.0611(4) Å M–O bond distance are 2.733(1) and 2.734(1) Å. The two 

O(H)···F bond distances for the H2O with the 2.0926(4) Å M–O bond distance are 2.869(1) and 2.894(1) Å. 

All of these distances are summarized in Table 4.7.  

The ν(OH) region for all four M(H2O)6(B12F12) salts are shown in Figure 4.7. In each spectrum there 

are four ν(OH) bands. For Mg(H2O)6(B12F12) these four bands appear at 3628, 3596, 3561, and 3544 cm−1. 

For Co(H2O)6(B12F12) these four bands appear at 3617, 3581, 3544, and 3524 cm−1. For Ni(H2O)6(B12F12) 

these four bands appear at 3615, 3579, 3540, and 3523 cm−1. For Zn(H2O)6(B12F12) these four bands appear 

at 3613, 3573, 3541, and 3518 cm−1. These values are summarized in Table 4.8.  

In many of the spectra discussed in Chapters 2 and 3 of this dissertation only two ν(OH) bands are 

observed in the ν(OH) region of the spectra. In these spectra there was an increase in the number of peaks 

observed when an H2O molecule was substituted by an HOD molecule where the D (or H) atom can exist in 

one of two orientations, and the O(H/D)···F distances are significantly different from each other. The two 

different positions thus resulted in additional ν(OD) bands being observed. Thus, for these four ν(OH) bands 

it was hypothesized that they may actually be two sets of νasym(OH) and νsym(OH) bands, one set of bands for 

each of the unique set of fac-(H2O)3 ligands. This is not the only potential hypothesis for the observed 

multiplicity; the other is splitting of the νasym(OH) and νsym(OH) bands due to intermolecular coupling of 

adjacent O–H oscillators in a process known as factor group splitting.2 Due to the close proximity of O–H 

oscillators around the M2+ cation it is possible that their vibrations can couple in the solid state. Thus the ν(OH) 

band splits into νasym(OH) and νsym(OH) bands due to intramolecular coupling of the O–H oscillators on the 

same H2O molecule, and these bands each split again due to intermolecular coupling between two adjacent 
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H2O molecules resulting in four bands. To determine which of these hypotheses is the most likely correct 

cause of the multiplicity, removal of both the inter- and intramolecular coupling by substituting one H2O 

ligand in the M(H2O)6
2+ complex with a single HOD molecule is all that is required. If the cause of the 

multiplicity is due to two sets of unique H2O positions each giving rise to a set of νasym(OH) and νsym(OH) 

bands, then the ν(OD) region of the spectrum of M(HOD)(H2O)5(B12F12) will have two bands; one for each 

different HOD position. If intermolecular coupling is what is splitting the two νasym(OH) and νsym(OH) bands 

into four bands, the ν(OD) region of the spectrum for M(HOD)(H2O)5(B12F12) will only have one band since 

the O–D oscillator cannot couple intra- or intermolecularly to any of the O–H oscillators, as the difference in 

energy is too great. 

Figure 4.8 shows the ν(OD) region of the FTIR spectrum for Mg(HOD)(H2O)5(B12F12) and 

Co(HOD)(H2O)5(B12F12). In both spectra a total of 6 bands are observed. The four smaller bands correspond 

to ν(OD) vibrations for the trace amount of M(D2O)(H2O)5(B12F12) present (M = Mg, Co). The remaining 

two bands are assigned to the ν(OD) vibrations of HOD in M(HOD)(H2O)5(B12F12). The presence of two 

HOD bands supports the first hypothesis, that the four ν(OH) bands are in fact two sets of νasym(OH) and 

νsym(OH) bands, being the causes of the observed multiplicity. Assignment of FTIR bands to the different 

H2O positions was based on two criteria, the relative intensity of each band, as well as the band-to-band 

separation. First it is required to assign temporary labels to the four bands in the spectrum. By labeling the 

bands from left to right ν(OH)A, ν(OH)B, ν(OH)C, ν(OH)D (see Figure 4.9) two pairing schemes are possible. 

In the first scheme, bands ν(OH)A and ν(OH)B are grouped as one possible set of νasym(OH) and νsym(OH) 

bands due being the two highest energy bands, and bands ν(OH)C and ν(OH)D are grouped as the other 

possible set of νasym(OH) and νsym(OH) bands due being the two lowest energy bands. The second pairing 

scheme groups ν(OH)A and ν(OH)C together due to their similar band intensities, and the bands ν(OH)B and 

ν(OH)D are grouped together due to their similar peak intensities. Additionally, it should be noted that the 

bands ν(OH)B and ν(OH)D are significantly more intense than the bands ν(OH)A and ν(OH)C.  

In the spectra presented in Chapter 2 the νasym(OH) band appears at higher wavenumbers than the 

νsym(OH) band. The νasym(OH) band is also generally more intense than the νsym(OH) band. This general trend 

would indicate that the pairing of ν(OH)A with ν(OH)B as νasym1(OH) and νsym1(OH), respectively, is not 
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correct due to ν(OH)B being centered at lower wavenumbers and more intense than ν(OH)A. Alternatively, 

the pairing of ν(OH)A with ν(OH)C as νasym1(OH) and νsym1(OH), respectively, does follow this trend with 

ν(OH)A being both more intense, and at higher wavenumbers than ν(OH)C. In addition to this, comparing the 

peak-to-peak distances between bands further supports the second pairing. The difference in band positions 

for the νasym(OH) and νsym(OH) bands in Chapter 2 range from 53–95 cm−1 (ave. 70 cm−1). The difference in 

band position for the ν(OH)A and ν(OH)B bands in the four compounds range from 32–41 cm−1 with an 

average of 37 cm−1. The difference in band position for the ν(OH)C and ν(OH)D bands in the four compounds 

range from 17–23 cm−1 with an average of 19 cm−1. These differences are half, or even a third, of the 

differences see in Chapter 2, which would mean that the asymmetric and symmetric coupled vibrations are 

much closer in energy in this subset of hydrates, than for all of the other hydrates studied. Instead, in the second 

pairing schemes the difference in band position for the ν(OH)A and ν(OH)C bands in the four compounds 

range from 67–75 cm−1 with an average of 72 cm−1, the difference in band position for the ν(OH)B and ν(OH)D 

bands in the four compounds range from 52–57 cm−1 with an average of 55 cm−1. These values are much 

closer to the values for the compounds in Chapter 2, and when coupled with the relative intensity argument, 

indicate that the ν(OH)A and ν(OH)C bands correspond to νasym1(OH) and νsym1(OH), respectively, for the H2O 

molecule with longer O(H)···F distances and ν(OH)B and ν(OH)D bands correspond to νasym2(OH) and 

νsym2(OH), respectively, for the H2O molecule with shorter O(H)···F distances. The assignment of νasym1(OH) 

and νsym1(OH) to the H2O position with the longer O(H)···F distances is consistent with all other assignments 

in this dissertation because the νasym2(OH) and νsym2(OH) bands are more red shifted than the νasym1(OH) and 

νsym1(OH) bands.  

For the FTIR spectra of the ν(OD) region of M(HOD)(H2O)5(B12F12) salts (M = Mg, Co) the ν(OD) 

band at 2645 cm−1 is assigned to the HOD molecule in Mg(HOD)(H2O)5(B12F12) occupying the H2O position 

with a 2.0659(11) Å M–O bond distance, and the ν(OD) band at 2633 cm−1 representing the HOD molecule 

in the H2O position with the 2.0390(11) Å M–O bond distance. For Co(HOD)(H2O)5(B12F12) the ν(OD) band 

at 2635 cm−1 representing the HOD molecule in the H2O position with the 2.0907(4) Å M–O bond distance 

and the ν(OD) band at 2618 cm−1 representing the HOD molecule in the H2O position with the 2.0663(4) M–

O bond distance. A Four peak Lorentzian least squares fits of the ν(OH) and ν(OD) regions of the FTIR 
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spectrum of Mg(H2O)6(B12F12) and Mg(D2O)6(B12F12), respectively, are shown in Figure 4.9. A Four peak 

Lorentzian least squares fit of the ν(OH) region of the FTIR spectrum of Co(H2O)6(B12F12) is shown in Figure 

4.10. For these two compounds different orientations of the HOD molecule, in a single H2O site, could not be 

resolved. The difference in O(H)···F distances are very small (0.026(4) and 0.010(4) Å for 

Mg(HOD)(H2O)5(B12F12); and 0.033(2) Å for Co(HOD)(H2O)5(B12F12)) or virtually identical (0.005(2) for 

Co(HOD)(H2O)5(B12F12)). Of these four different HOD positions, only the H2O position in 

Co(HOD)(H2O)5(B12F12) with a M–O bond distance of 2.0907(4) Å and O(H)···F distances of 2.886(1) and 

2.919(1) Å is close to having separate resolvable bands for the different O(H)···F distances as evidenced by 

the plateauing of the 2635 cm−1 band in Figure 4.8. The difference of 0.033(2) Å in the O(H)···F distances is 

still not sufficient to resolve, or model, the two different bands, but it is close and informs on the potential 

lower limit of resolvable difference in O(H)···F distances by FTIR spectroscopy.  

4.3.2 Direct Spectroscopic Observation of the Effect of Cation Acidity on Water–Anion 

Hydrogen Bond Strength 

There is a small, but unambiguous and therefore meaningful, progression of ν(OH) values 

from higher to lower wavenumbers in the M(H2O)6(B12F12) spectra in the order Mg > Co > Ni > 

Zn, as shown in Figure 4.1. This is essentially the same order as the pKa values for aqueous Mg2+ 

(11.3(1)), Co2+ (9.7), Ni2+ (9.86), and Zn2+ (9.0),10-11 which is a sensible result because the more 

acidic M(H2O)6
2+ ions should form stronger hydrogen bonds to a common anion, resulting a 

greater ν(OH) red-shift. This observation, which was also unprecedented when first published,4 

was only possible because of the ν(OH) bands were sufficiently narrow to allow such small 

differences to be unambiguously determined.  

 Returning to Figure 2.43 (reproduced as Figure 4.11 in this chapter for convenience), the 

ν(OD) band positions for an HOD molecule in both Mg(HOD)(H2O)5(B12F12) and 

Co(HOD)(H2O)5(B12F12) are plotted along with many of the other salt hydrates discussed in 

Chapter 2. Except for Li(HOD)(H2O)3(B12F12), all of the alkali metal salt hydrates of the B12F12
2− 

anion are less red shifted than the divalent salt hydrates of the B12F12
2− anion. It is likely that the 

reason that the ν(OD) band for Li(HOD)(H2O)3(B12F12) is more red shifted than 
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Mg(HOD)(H2O)5(B12F12) (but not Co(HOD)(H2O)5(B12F12)) is a result of the O–H···O hydrogen 

bond having some intramolecular effect on the O–H···F hydrogen bond. The salt hydrates with 

alkali metal cations that are more red shifted than Co(HOD)(H2O)5(B12F12) all have anions with 

stronger coordination strengths (more basic) than B12F12
2−, reinforcing the idea that the 

coordination strength (basicity) of the anion is more important to the relative strength of the water–

anion hydrogen bond than the oxidation state (acidity) of the cation, but that the acidity of the 

cation can still have an observable effect on the strength of the relative hydrogen bonds strength. 

Though to date, the later has only been observed when comparing isomorphous M(H2O)6(B12F12) 

salts with cations of similar size and identical oxidation state.  

The fact that coordination strength of the anion has a greater effect on the hydrogen bond 

strength is also seen by comparing Co(HOD)(H2O)5(B12F12) and Co(HOD)(H2O)5(SnF6) in Figure 

4.12 both compounds, Co is octahedrally coordinated by six H2O ligands, and centered in a CsCl-

like lattice with the anions at the corners of the pseudo-cubic array. Their O(D)··F hydrogen bond 

distances differ by < 0.1 Å, but the difference in ν(OD) band position is between 80–100 cm−1. 

This highlights the significance that anion coordination strength, the only significantly different 

component between the two, has on the relative hydrogen bond strength. A similar comparison 

can be made between Mg(HOD)(H2O)5(B12F12) and Mg(HOD)(H2O)5(SiF6) which have at least 

one virtually identical O(D)··F hydrogen bond distance, but a 50 cm−1 difference in ν(OD) band 

position. By comparison, a difference in pKa of 2.3(1) for isomorphous Mg(H2O)6(B12F12) and 

Zn(H2O)6(B12F12) only results in a red shift of ca. 15–26 cm−1 (Figure 4.1). 

4.3.3 SC-XRD Structures and TGA of M(H2O)n(B12F12) salts (M = Ca2+, Sr2+, Ba2+; n = 1, 4, 

5, 7)  

The Ca2+ and Sr2+ salts of the B12F12
2− anion crystallize from aqueous solutions as heptahydrates. 

Drawings of the structures of Sr(H2O)7(B12F12) and Ca(H2O)7(B12F12) are shown in Figure 4.13 and 4.14, 

respectively. Both structures contain one unique M(H2O)7
2+ cation and one unique B12F12

2− anion that forms 

a distorted CsCl-like packing arrangement. Tables 4.9 and 4.10 list the individual M–O bond distances and 

band valences for these two structures. Drawings of the SrO7F2 and CaO7 coordination spheres are shown in 
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Figures 4.13 and 4.14, respectively. The O–H···F hydrogen bonding in Ca(H2O)7(B12F12) is shown in Figure 

4.13. Unlike the Sr(H2O)7(B12F12) structure, which has two Sr–F bonds, there are no Ca–F distances shorter 

than 3.97 Å. This corresponds to a Ca–F bond valence of 0.004.  

The structures of Ba(H2O)5(B12F12) and Ba(H2O)4(B12F12) were originally published in 20184 and  are 

shown in Figure 4.15 and 4.16, respectively. The structure of Ba(H2O)5(B12F12) consists of a unique 

Ba(H2O)5
2+ cation and a unique B12F12

2− anion, forming a CsCl-like lattice with ··· distances of 6.943, 

7.530, and 7.720 Å and 90° ······ angles, but with the Ba(H2O)5
2+ cation (i.e., the Ba atom) displaced 

2.077 Å from the center of the parallelepiped formed by the eight B12F12
2− anions. Drawings of the BaO5F6 

coordination sphere in Ba(H2O)5(B12F12) and the BaO4F5 coordination sphere in Ba(H2O)4(B12F12) are shown 

in Figure 4.15 and 4.16, respectively. Table 4.11 and 4.12 list individual M–O bond distances and bond 

valences for these two structures. The Ba atoms in both structures are on the general positions. In spite of the 

difference in the number of H2O molecules per Ba atom, the difference in the formula unit volume (FUVs) 

for Ba(H2O)5(B12F12) (403.6 Å3) and Ba(H2O)4(B12F12) (399.7 Å3) is less than 4 Å3. Interestingly, this is 

comparable to the DFT predicted 5 Å3 differences in FUVs for Cs2(H2O)(B12F12) and anhydrous Cs2(B12F12).x 

The Structure of Ba(H2O)5(B12F12) is one of only four B12F12
2− salt hydrates in which coordinated H2O 

molecules are hydrogen bonded to other coordinated H2O molecules in neighboring M(H2O)n
m+ cations (m 

= 1, 2; the other examples are K2(H2O)4(B12F12),12 Li2(H2O)4(B12F12),13 and Sr2(H2O)7(B12F12)4).  

The assignments of the hydration states for all of the FTIR spectra in this, and previous, chapters have 

been confirmed by TGA. Until this point, the crystal structures and stable hydrations states observed in TGA 

experiments have agreed with each other, hence the lack of discussion of the thermograms. Assignment of 

the hydration state from the crystal structure alone has been sufficient. Agreement between the two allows for 

correlations between ν(OH/D) band position and O(H/D)···F bond distances. Unfortunately, this agreement 

between TGA data and SC-XRD structures does not exist for the B12F12
2− salt hydrates of the Ca2+, Sr2+, and 

Ba2+ cations. The thermogram in Figure 4.17 shows the rapid complete hydration of Ca(H2O)4(B12F12) → 

Ca(H2O)6(B12F12) under an atmosphere with Pwater = 18 torr followed by the rapid isothermal dehydration 

Ca(H2O)6(B12F12) → Ca(H2O)4(B12F12) at 50 °C under a dry atmosphere. This figure, and the assignments of 

the phases of the end members of the transitions, as first published in 2018.4 This is at odds with the known 
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structure of Ca(H2O)7(B12F12). To reconcile this discrepancy the crystal structure needs to be set aside, and the 

hydration state observed in the FTIR spectra for Ca(H2O)n(B12F12) need to be assigned based on the TGA. 

Dehydrating a sample of Ca(H2O)n(B12F12) to Ca(H2O)4(B12F12) under a dry atmosphere (where 6 > n > 4) in 

the TGA is similar enough to the drying of an aqueous solution of Ca(B12F12) to a polycrystalline solid on the 

ATR crystal. Since the Ca(H2O)4(B12F12) species is the stable species under the dry atmosphere in the TGA, 

that would imply the solid on the ATR crystal is most likely Ca(H2O)4(B12F12). Similarly, hydrating a sample 

of Ca(H2O)4(B12F12) on the ATR crystal under an atmosphere with Pwater = 18 torr should result in the 

conversion Ca(H2O)4(B12F12) → Ca(H2O)6(B12F12) as is observed in the TGA. To bridge the gap between the 

room temperature ATR-FTIR spectra and the 50 °C TGA data an additional series of spectra collected at 50 

°C is required. If the room temperature and 50 °C spectra are identical, then the TGA assignments can be 

assigned to the room temperature spectra.   

The top thermogram in Figure 4.18 shows a series of rapid hydration–dehydration cycles for the 

reaction Ba(H2O)5(B12F12) ↔ Ba(H2O)8(B12F12) at 25 °C. The lower thermogram in Figure 4.18 shows that 

Ba(H2O)5(B12F12) appears to be metastable. Holding the sample under a dry atmosphere at 25 °C causes a 

slow loss of mass over time. A SC-XRD structure of both Ba(H2O)4(B12F12) and Ba(H2O)4(B12F12) are 

known, and it is not unreasonable to assume with sufficient time that the dehydration reaction 

Ba(H2O)5(B12F12) → Ba(H2O)4(B12F12) would occur at 25 °C based on the trend in Figure 4.18. 

Unfortunately, the member of the group who performed the TGA experiment in 2010 originally did not allow 

for this to transformation to complete before increasing the temperature to observe the dehydration 

Ba(H2O)n(B12F12) (5 > n > 4) → Ba(H2O)(B12F12). Due to the ambiguity of the hydration state that is stable 

under a dry atmosphere at room temperature the assignment of the FTIR spectra under these conditions is not 

possible, though as discussed below, a hypothesis is proposed. Holding the polycrystalline sample on the ATR 

crystal under a humid atmosphere at room temperature, or a dry atmosphere at 80 °C should yield spectra 

assigned to Ba(H2O)8(B12F12) and Ba(H2O)(B12F12), respectively.  

Finally, at the time the Ba(H2O)n(B12F12) and Ca(H2O)n(B12F12) were collected, the TGA of 

Sr(H2O)n(B12F12) was not. The TGA has become inaccessible making the assignment of the solid 

Sr(H2O)n(B12F12) species on an ATR crystal not possible at this time. In lieu of making definitive correlations 
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between H2O environments, O(H)···F bond lengths, and ν(OH) band multiplicity and positions, hypothesis 

to the change in symmetry, potential assignments, and general position of ν(OH) bands will be made for these 

three materials.  

4.3.4 FTIR Spectra of M(H2O)n(B12F12) salts (M = Ca2+, Sr2+, Ba2+; n = 1, 4, 5, 7)  

The FTIR spectrum of Ca(H2O)4(B12F12) is shown in Figure 4.19. There are four distinct bands 

observed in the ν(OH) region of this spectrum. These bands are centered at 3664, 3641, 3595, and 3582 cm−1. 

While Ca(H2O)4(B12F12) has four ν(OH) bands, like the M(H2O)6(B12F12) discussed earlier in the chapter, they 

differ greatly in terms of integrated intensity, with only the two bands at 3595 and 3582 cm−1 being similar in 

terms of the integrated intensity. Thus, the spectrum does not have the same obvious relationship between 

ν(OH) bands that the M(H2O)6(B12F12) salts did. This likely indicates a Ca(H2O)4
2+ complex with a lower 

symmetry than in the M(H2O)6
2+ complex. If the solid sample on the ATR crystal is then exposed to a wet 

atmosphere with a Pwater  = 6 torr at 22 °C, or 17 torr at 50°C, the sample will rapidly convert to the hexahydrate 

salt Ca(H2O)6(B12F12). The spectrum of Ca(H2O)6(B12F12) is shown in Figure 4.19. Spectra showing the 

reaction Ca(H2O)4(B12F12) ↔ Ca(H2O)6(B12F12) is also shown in Figure 4.19. The spectrum in Figure 4.19 

only contains two ν(OH) bands centered at 3627 and 3586 cm−1. The band at 3627 cm−1 is broader than the 

other bands in the Ca(H2O)4(B12F12) spectrum. This band is also the only one which is asymmetrical, 

indicating a shoulder on the higher energy side of the band. The band at 3586 cm−1 also possesses a shoulder 

on the higher energy side of the band, though this shoulder is much sharper and indicates that a second band 

is sitting very close to the 3586 cm−1 band. The shoulder on the 3627 cm−1 band is thus also likely due to a 

second band laying under the 3627 cm−1 band. Based on the number of bands, during the conversion of the 

tetrahydrate into the hexahydrate there appears be an increase in the symmetry of the M(H2O)n
2+ complex. 

This may not be entirely true since, as mentioned, there appears to be additionally bands hiding under the two 

prominent bands in the spectrum of the hexahydrate. Without SC-XRD structure of either the tetrahydrate or 

the hexahydrate it is difficult to probe this, or the O–H···F bonding environments further.  

The FTIR analysis of the Sr salt hydrates of the B12F12
2− is limited similarly to the Ca salts discussed 

above, in that only the Sr(H2O)7(B12F12) structure is known. What further complicates the analysis of this salt 

hydrate is that TGA of the Sr(H2O)n(B12F12) was not previously collected, and the instrument has since 
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become indefinitely inaccessible, so determining the hydration states of the species observed by FTIR is not 

currently possible. Two different hydration states were explored for the Sr2+ salt hydrate, Sr(H2O)n(B12F12) 

and Sr(H2O)m(B12F12), where n < m. For the n-hydrate there appears to be as many as five ν(OH) bands at 

3651, 3625, 3587, 3572, and 3562 cm−1 (Figure 4.20). The m-hydrate only has two sharp, symmetrical, bands 

at 3648 and 3587 cm−1 (Figure 4.20). As with the Ca2+ salt hydrate FTIR spectra, the n-hydrate is converted 

to the m-hydrate by exposing the solid sample on the ATR crystal to a humid environment. The m-hydrate, 

like the Ca(H2O)6(B12F12) species, remains stable indefinitely under this humid atmosphere. Unlike the 

Ca(H2O)6(B12F12) spectra the two bands in the m-hydrate do not appear to be hiding any additional bands, so 

conversion to a higher symmetry Sr(H2O)m
2+ appears to be much more likely for this salt species. Due to the 

number of unique H2O environments in the SC-XRD structure of Sr(H2O)7(B12F12) it is unlikely that m = 7. 

The possibility exists that n = 7, but this will need to be confirmed with TGA before more can be said about 

the relationship between Sr(H2O)n(B12F12) and Sr(H2O)7(B12F12). 

The first spectrum in Figure 4.21 is assigned to Ba(H2O)8(B12F12), and contains four ν(OH) bands at 

3626, 3590, 3570, and 3553 cm−1. The second two spectra in Figure 4.21 show the dehydration of 

Ba(H2O)8(B12F12) → Ba(H2O)n(B12F12) after 10 and 25 minutes under a dry atmosphere. Importantly, the 

ν(OH) bands appear to change between the two spectra. The hypothesis is that this change represents 

conversion of one intermediate hydration state to another; quite possible the conversion Ba(H2O)5(B12F12) → 

Ba(H2O)4(B12F12) that is hinted at in the TGA and SC-XRD results. The final spectrum in Figure 4.21 is the 

complete dehydration of Ba(H2O)n(B12F12) to Ba(H2O)(B12F12) at 80 °C. The spectrum for the 

Ba(H2O)(B12F12) species contains only two bands at 3651 and 3557 cm−1, as expected for a structure with a 

single crystallographically unique H2O molecule. Originally it was believed that the mass after 60 minutes in 

Figure 4.18 corresponded to Ba(B12F12), not Ba(H2O)(B12F12). The presence of stable ν(OH) bands at 80 °C 

after a significant length of time lead to reevaluation of the original TGA experimental results. This was further 

confirmed by comparing the ratio of the molar mass for the two possible dehydration pathways 

(Ba(H2O)8(B12F12) → Ba(H2O)(B12F12) vs Ba(H2O)7(B12F12) → Ba(B12F12)) to the ratio of the molar masses 

from the TGA experiment (Table 4.13). 
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4.4 Conclusions and Future Work 

4.4.1 Conclusions 

The FTIR spectra of the ν(OH) region for the four isomorphous M(H2O)6(B12F12) salt 

hydrates (M = Mg, Co, Ni, Zn) has four ν(OH) bands. These bands have been shown to be two 

sets of νasym(OH) and νsym(OH) bands, one for each of the two unique fac-(H2O)3 sets of ligands in 

the M(H2O)6
2+ complexes. Comparison of the band positions for all four of the different cations 

revealed that the degree of red shifting is consistent with the pKa of the cations, with Mg2+ being 

the most basic cation (least red shifted) and Zn2+ being the most acidic (most red shifted). This is 

direct spectroscopic evidence of the effect of cation acidity on ligand water–anion hydrogen bond 

strength, when all other environmental and structural considerations are taken equal. Additionally, 

reevaluation of the correlation curves from Chapter 2, through the lens of cation oxidation number, 

shows that within a family of salts, with the same anion, the acidity of the cation has an observable 

effect on the O–D···F hydrogen bond strength  with larger oxidation numbers resulting in stronger 

hydrogen bonds, and thus, a larger red shift. When salt hydrates of different anions are compared 

in this manner, the anion coordination strength appears to have a stronger influence on the relative 

strength of the hydrogen bonds than the cation acidity. Finally, further evidence that using only 

the O(D)·· ·F bond distance as a measure of hydrogen bond strength is fundamentally flawed when 

M(H2O)6(X) salts (M = Mg, Co; X = SiF6, SnF6) with nearly identical O(D)···F bond distances 

and pseudo-cubic CsCl-like crystallographic environments, have ν(OD) values differing by 50–

100 cm−1. This further reinforces that the anion coordination strength heavily influences the 

strength of the hydrogen bond (magnitude of the red-shift) even in cases where differences in 

O(D)·· ·F bond distances are virtually indistinguishable.  

The metal salt hydrates formed using the anions Ca2+, Sr2+, Ba2+ with the B12F12
2− have 

some of the most complex ν(OH) regions of all the salt hydrates explored in this dissertation. 

Discrepancies between TGA and known SC-XRD structures make only general evaluations 

possible at this time. From these general evaluations the three material are consistent with the 
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observations made for the M(H2O)6(B12F12) salts in terms of the effects of cation acidity on the 

degree of red-shift, and thus hydrogen bond strength.  

4.4.2 Future Work 

The future work driven by the results presented in this chapter are similar to the ones present in section 

2.4.2 of Chapter 2 of this dissertation. Determination of more precise H atom positions for the studied divalent 

salt hydrates is as critical to improving the correlation curves discussed in chapter 2 as it is to the monovalent 

salts that are the focus of that chapter. Synthesis, and experimental evaluation, of new divalent salt hydrates 

will increase the number of data points on the correlation curves, further improving the modeled fit of the 

data. Attempting to reconcile the discrepancy between TGA and SC-XRD data for the Ca2+, Sr2+, and Ba2+ 

salts will be extremely important for being able to fit them into the larger picture of the work discussed in this 

dissertation. Finally, trivalent (or higher oxidation state) cations represent an untapped class of metal salt 

hydrates that have yet to be explored in great depth, compared to the monovalent and divalent cations 

discussed in Chapters 2 and 4.  
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Figure 4.1. Expansions of the ν(OH) regions of ATR-FTIR spectra of M(H2O)6(Z) (M = Mg, Co, 
Ni, Zn). The samples were evaporated on the ZnSe ATR crystal from aqueous solutions. 
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Figure 4.2. Photographs of crystals of Co(H2O)6(B12F12) (left) and Ni(H2O)6(B12F12) (right). 



189 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 4.3. TGA-MS plot for two cycles of hydration/dehydration of K2(B12F12) at 25 °C. The 
black plot shows the relative mass of the sample; the red plot shows the mass-spectrometer 
response to H2O(g). The carrier gas was dry He during dehydration and He containing 21(1) torr 
H2O(g) during hydration, both at 60 mL min−1. The horizontal blue lines represent the relative 
molar masses of K2(H2O)2(B12F12) (1.000 ≡ 471.940 g mol−1) and K2(B12F12) (0.9237 ≡ 435.909  
g mol−1). Reproduced with permission from Ref. 9.  
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Figure 4.4. The low-temperature structure of Mg(H2O)6(SiF6) (left; ref. 14; space group P21/c). 
The Mg–O1, Mg–O2, and Mg–O3 distances are 2.0571(8), 2.0550(7), and 2.0480(8) Å, 
respectively. The Si∙∙∙Si distances are 6.354 × 2 and 6.790 Å, and the acute Si∙∙∙Si∙∙∙Si angles are 
83.5 × 2 and 83.3°. The six unique O(H)∙∙∙F distances are 2.792(1), 2.808(1), 2.815(1), 2.822(1), 
2.832(1), and 2.899(1) Å. (Note: these are the correct O(H)∙∙∙F distances in this structure, generated 
using the CIF deposited with the ICSD, but they are different than the values listed in ref. 14, 
which range from 2.763(1) to 2.798(1) Å). For comparison, in Mg(H2O)6(B12F12) (right) the Mg–
O distances are 2.0390(11) and 2.0659(11) Å and the O(H)∙∙∙F hydrogen bond distances are 
2.723(2), 2.749(2), 2.904(2), and 2.914(2) Å (the crystallographic 3-fold axis is indicated with 
triangles, and only 4 of the anions that make up the (B12F12

2−)8 parallelpiped in which the 
Mg(H2O)6

2+ cation is centered are shown for clarity).  
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Figure 4.5. The structure of Ni(H2O)6(TiF6) (left; the H atoms were not located; ref. 15). This is 

an example of the Co(H2O)6(SiF6) structure type (space group R–3). The unique Ni–O and Ti–F 
distances are 2.044(5) and 1.791(5) Å, respectively. The unique Ti∙∙∙Ti distance is 6.372 Å and the 
unique acute Ti∙∙∙Ti∙∙∙Ti angle is 83.8°. The two O(H)∙∙∙F hydrogen bond distances for each of the 
six coordinated H2O molecules are 2.709(7) and 2.760(7) Å, and the F∙∙∙O∙∙∙F angle is 115.0°. For 
comparison, in Ni(H2O)6(B12F12) (right) the Ni–O distances are 2.0290(7) and 2.0515(7) Å and the 
O(H)∙∙∙F hydrogen bond distances are 2.732(1), 2.735(1), 2.859(1), and 2.910(1) Å. 
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Figure 4.6. Part of the structures of (Zn(H2O)6)2(ZrF8), showing the network of O–H∙∙∙F and  
O–H∙∙∙O hydrogen bonds (top: ref. 16) and Zn(H2O)6(B12F12) (bottom; ref. 4). The Zn–O distances 
in (Zn(H2O)6)2(ZrF8) range from 2.0367(6) to 2.1638(6) Å (cf. Zn(H2O)6(B12F12), 2.0611(4) and 
2.0926(4) Å). Some of the O(H)∙∙∙F hydrogen bond distances in (Zn(H2O)6)2(ZrF8), which range 
from 2.580(1) to 2.973(1) Å, are bifurcated (cf. Zn(H2O)6(B12F12), 2.733(1)–2.894(1) Å, none of 
which are bifurcated). The O(H)∙∙∙O distances in (Zn(H2O)6)2(ZrF8) range from 2.852(1) to 
2.889(1) Å. There are no O–H∙∙∙O hydrogen bonds in Zn(H2O)6(B12F12).  
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Figure 4.7. The ν(OH) regions of ATR-FTIR spectra of microcrystalline M(H2O)6(B12F12) (M = 
Mg, Co, Ni, Zn). The samples were evaporated from aqueous solutions on the ZnSe ATR crystal. 
The small peaks at ca. 3250 cm−1 are assigned to 2δ(HOH).  
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Figure 4.8. The ν(OD) regions of ATR-FTIR spectra of Mg(HOD)(H2O)5(B12F12) (top) and 
Co(HOD)(H2O)5(B12F12) (bottom). Both samples were prepared by evaporation to dryness of 
90:10 (v:v) H2O:D2O solutions on the ZnSe ATR crystal. On average, ca. 15% of all of the 
hexaaqua 2+ complex cations will have one HOD ligand and five H2O ligands, ca. 2% will have 
two HOD ligands and four H2O ligands, and ca. 1% will have one D2O ligand and five H2O ligands. 
A negligible percentage will have more than two HOD ligands, an HOD and a D2O ligand 
simultaneously, or more than one D2O ligand. However, since H2O evaporates faster than D2O,17-

18 the actual percentages in the dried samples may be higher than the above-mentioned values. 
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Figure 4.9. Experimental ATR-FTIR spectra (black traces) of Mg(H2O)6(B12F12) (top) and 
Mg(D2O)6(B12F12) (bottom) and their deconvolution into four Lorentzian peaks (blue). The fitted 
peak positions and full-widths at half-max are shown. The resultants of the four fitted peaks are 
the red traces. Note that the wavenumber axes both span 200 cm−1. Both samples were evaporated 
on the ZnSe ATR crystal from H2O or D2O solutions.  

A C 

D B 
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Figure 4.10. Top: Experimental ATR-FTIR spectrum of Co(H2O)6(B12F12) (sample evaporated on 
the ZnSe ATR crystal from aqueous solution). Bottom: Deconvolution of a portion of the 
experimental spectrum (black trace) into four Lorentzian peaks. The positions of the four blue 
fitted peaks are (left to right) 3617, 3580, 3546, and 3524 cm−1. The full-widths at half-max 
(FWHM) are (left to right) 19.4(2), 26.6(2), 13.8(3), and 16.0(2) cm−1. The relative areas are (left 
to right) 2.0, 3.7, 1.0, 2.1. The resultant of the four fitted peaks is the red trace. Note that the 
wavenumber axes are scaled equally and are aligned.  
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Figure 4.11. Plot of ν(OD) values in ascending order from left to right for compounds with one 
HOD molecule per formula unit and ν(OD) > 2600 cm−1 (Z2− = B12F12

2−). The dashed lines are 
ν(OD) values for HOD(g) (2720 cm−1, refs. 19-21) and for HOD in an Ar matrix at 17 K (2709 cm−1, 
refs. 22 and 23) ). See Table 2.1 for references. The numbers 1–13 refer to the 25 numbered red data 
points in the ν(OD) vs. O(D)···F correlation in Figure 2.52, only two of which (for 
Mg(HOD)(H2O)5(SiF6)) are < 2600 cm−1.   
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Figure 4.12. Plot of ν(OD) vs. O(D)∙∙∙F distance for metal salt hydrates containing one, and only 
one, HOD molecule (for brevity, the formulas for the compounds do not show this). Except for the 
points numbered 1, 2, and 3, for Co(HOD)(H2O)5(B12F12), Mg(HOD)(H2O)5(B12F12) (ref. 4), and 
Mg(HOD)(H2O)5(SiF6) (refs. 14 and 24), the data for this plot were taken from ref. 24. The points 
that are not numbered are for the following compounds (all with one HOD molecule): 
KMnF4∙2H2O, K2MnF5∙H2O, SrMnF5∙H2O, and MnFeF5∙2H2O. The dashed line shows the 2719 
cm−1 value for HOD(g). The curved line is an exponential fit to the data and is included only as a 
visual aid.   
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Figure 4.13. (Top) The offset stacks of corrugated pseudo-close-packed layers of Z2− anion 
centroids in the structure of Ca(H2O)7(B12F12). (Bottom) Two perpendicular views of the 
monocapped triangular antiprism (monocapped octahedral) CaO7 coordination sphere in 
Ca(H2O)7(B12F12) (50% probability ellipsoids except for H atoms in the drawing on the left). The 
Ca–OH2 distances are listed in Table 4.9.   
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Figure 4.14. (Top) The O(H)∙∙∙F (2.880(6)–2.902(6) Å) and O(H)∙∙∙O (3.016(6) Å) hydrogen 
bonding distances in the structure of Sr(H2O)7(B12F12). Note that one of the H2O molecules is 
hidden from view behind the Sr atom. (Bottom) Two perpendicular views of the distorted 
monocapped square antiprism SrO7F2 coordination sphere in Sr(H2O)7(B12F12) (50% probability 
ellipsoids except for H atoms in the drawing on the left). The orientation of the drawing on the 
right is looking down the [010] direction (the crystallographic C2 axis). The Sr–OH2 and Sr–F 
distances are listed in Table 4.10.  



201 

 
 
 

 
 

 

 

 

 

 

 

 

 

 
Figure 4.15. The structure of Ba(H2O)5(Z). The drawing on the left includes 50% probability 
ellipsoids except for H atoms and includes the two weak O–H∙∙∙O hydrogen bonds, with O(H)∙∙∙O 
distances of 2.940(3) and 3.072(3) Å. The drawing on the right shows the CsCl-like anion-cation 
packing of one Ba(H2O)5

2+ contained in a cube-like array of Z2− anions, with ∙∙∙ distances of 
6.94, 7.53, and 7.72 Å and ∙∙∙∙∙∙ angles of 90° ( = B12 centroid). Some of the weak O–H∙∙∙F 
hydrogen bonds are shown.   
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Figure 4.16. The structure of Ba(H2O)4(Z). The drawing on the left includes 50% probability 
ellipsoids except for H atoms and highlights one of the monocapped square antiprism BaO4F5 
coordination spheres.   
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Figure 4.17. Top: Thermogravimetric behavior of Ca(H2O)n(Z)(s) under 0 or 18 torr H2O(g) in He 
at 50 °C (0–145 min) and under 0 torr H2O(g) in He (dry He) as the temperature increased from 
50 to 300 °C (145–207 min; Z2− = B12F12

2−). At 50 °C, the dehydration Ca(H2O)6(Z)(s) → 
Ca(H2O)4(Z)(s) + 2H2O(g) was 90% complete in ca. 25 min (99% complete in ca. 35 min) and the 
rehydration Ca(H2O)4(Z)(s) + 2H2O(g) → Ca(H2O)6(Z)(s) was >90% complete in 10 min (99% 
complete in ca. 15 min). Dehydration of Ca(H2O)4(Z)(s) to anhydrous Ca(Z)(s) in dry He was ca. 
90% complete at ca. 250 °C and 99+% complete after 1 h at 300 °C. Bottom: Constant-temperature 
(50 °C) gravimetric behavior of Ca(H2O)6(Z)(s) under 16 torr D2O(g) in He (0–58 min) and under 
18 torr H2O(g) in He (58–105 min). The H2O/D2O exchange was complete in ca. 1 h. 
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Figure 4.18. Top: Thermogravimetric behavior of Ba(H2O)n(Z)(s) under 0 or 18 torr H2O(g) in He 
at 25 °C (0–425 min), under 0 torr H2O(g) in He (dry He) as the temperature was increased from 
25 to 150 °C and decreased from 150 to 50 °C (425–510 min), and under 18 torr H2O(g) in He as 
the temperature was held constant at 50 °C (510–525 min); Z2− = B12F12

2−). At 25 °C, each 
repeatable dehydration Ba(H2O)8(Z)(s) → Ba(H2O)5(Z)(s) + 3H2O(g) under 0 torr H2O(g) was 
99% complete in 5 min and each repeatable rehydration Ba(H2O)5(Z)(s) + 3H2O(g) → 
Ba(H2O)8(Z)(s) was >90% complete in ca. 40 min. Dehydration of Ba(H2O)5(Z)(s) in dry He 
occurred slowly at 25 °C but was 99% complete to Ba(H2O)(Z) in 22 min as the temperature was 
raised from 25 to 90 °C at the rate of 3 °C min−1. Further heating to 150 °C did not result in the 
dehydration of the monohydrate. Finally, when Ba(H2O)(Z) was cooled to 50 °C, it was quickly 
(15 min) rehydrated to Ba(H2O)5(Z) under 18 torr H2O(g) in He. Bottom: Thermogravimetric 
behavior of Ba(H2O)5(Z)(s) under 6 torr H2O(g) in He at 25 °C (0–3 min) and under dry He at 25 
°C (3–35 min) and as the temperature was increased from 25 to 100 °C at the rate of 3 °C min−1. 
The dehydration of Ba(H2O)5(Z)(s) to the monohydrate Ba(H2O)(Z)(s) became rapid when the 
temperature reached ca. 60 °C.  
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Figure 4.19. ATR-FTIR spectra of a microcrystalline Ca(H2O)n(B12F12) dried from aqueous 
solution on the ATR crystal under various conditions of temperature and humidity. The 
compositions indicated for the sample in spectrum 8 (Ca(H2O)4(B12F12)) and in spectrum 9 
(Ca(H2O)6(B12F12)) are commensurate with the 50 °C gravimetric experiment shown in Figure 
4.17. The compositions indicated for the samples in spectra 1, 2, 3, and 7 are based on the similarity 
of those spectra with either spectrum 8 or 9. These spectra show that Ca(H2O)4(B12F12) is hydrated 
to Ca(H2O)6(B12F12) at 22 °C under 6 torr H2O(g) in only 7 min, and is dehydrated back to 
Ca(H2O)4(B12F12) at 22 °C under dry N2 in about 1 h.   
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Figure 4.20. Room-temperature ATR-FTIR spectra showing the reaction Sr(H2O)n(B12F12) ↔ 
Sr(H2O)m(B12F12). Spectrum 2 did not change at longer times under N2/10(1) torr H2O(g). The 
values of n and m for the two sets of hydration-state spectra (dry N2 purge vs. N2/10(1) torr H2O(g) 
purge) are not known, nor is it known if the samples for the two sets of spectra contain a mixture 
of compounds with more than one value of n and/or m.  
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Figure 4.21. Comparison of the FTIR spectra of microcrystalline Ba(H2O)8(B12F12) at 25 °C in 
N2/15(1) torr H2O(g) (top; spectrum 1), Ba(H2O)n(B12F12) at 25 °C in dry N2 (top right and middle 
left; spectra 2 and 3; n = 4–5), and Ba(H2O)(B12F12) at 80 °C in dry N2 (middle right; spectrum 4. 
The composition Ba(H2O)8(B12F12) in spectrum 1 is based on the 25 °C gravimetric experiment 
shown in Figure 4.18. The four relatively sharp peaks in spectrum 1 are at (left to right) 3626, 
3590, 3570, and 3553 cm−1.   
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Table 4.1 Calculated vapor pressure above saturated salt solutionsa  

 
aRef. 25. bRH = A*exp(B/T).   

              
 

  

Saturated Salt A B Temp Temp RHb H2O Pressure at Temp Cc 

C K % Torr

MgCl2 29.26 34 20 293.15 32.86 5.73

NaBr 20.49 308 20 293.15 58.59 10.22

KCl 49.38 159 20 293.15 84.94 14.81
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Table 4.2 Crystal Data and Final Refinement Parameters for the X-ray Diffraction Structuresa 
                    

compound Mg(H2O)6(Z) Ca(H2O)7(Z) Sr(H2O)7(Z) Ba(H2O)5(Z) Ba(H2O)4(Z) Co(H2O)6(Z) Ni(H2O)6(Z) Zn(H2O)6(Z) 

                    

formula B12F12H12MgO6 B12CaF12H14O7 B12F12H14O7Sr B12BaF12H10O5 B12BaF12H8O4 B12F12H12CoO6 B12F12H12NiO6 B12F12H12ZnO6 

formula wt., g mol−1 490.13 523.91 571.45 585.14 567.12 527.75 524.53 531.19 

crystal system trigonal monoclinic orthorhombic monoclinic monoclinic trigonal trigonal trigonal 

space group, Z R
–
3, 6 P21/c, 4 Pbcn, 4 P21/c, 4 P21/n, 8 R

–
3, 6 R

–
3, 6 R

–
3, 6 

a, Å 10.4993(6) 8.3922(11) 11.5062(9) 7.7197(2) 13.8368(10) 10.4562(3) 10.4289(4) 10.4575(9) 

b, Å 10.4993(6) 11.2270(13) 8.9992(7) 13.8865(4) 11.0796(7) 10.4562(3) 10.4289(4) 10.4575(9) 

c, Å 26.8485(17) 19.812(3) 17.6796(13) 15.0598(5) 20.8572(14) 27.0213(15) 26.930(2) 27.040(2) 

α, deg 90 90 90 90 90 90 90 90 

β, deg 90 90.101(4) 90 90 (twinned) 90.049(3) 90 90 90 

γ, deg 120 90 90 90 90 120 120 120 

V, Å3 2563.1(3) 1866.6(4) 1830.7(2) 1614.40(8) 3197.5(4) 2558.5(2) 2536.6(3) 2560.9(5) 

ρcalc g cm−3 1.905 1.864 2.073 2.407 2.356 2.043 2.060 2.067 

T, K 100(2) 120(2) 100(2) 100(2) 100(2) 120(2) 80(2) 100(2) 

R(F) (I > 2σ(I))b 0.0316 0.0283 0.0380 0.0185 0.0693 0.0186 0.0197 0.0141 

wR(F2) [all data]b 0.0837 0.0772 0.1027 0.0376 0.1314 0.0521 0.0539 0.0398 

GOF 1.068 1.050 1.036 0.982 1.067 1.056 1.190 1.135 

                    

a Z2− = B12F12
2−. b R(F) = Σ||Fo| – |Fc|| / Σ|Fo|; wR(F2) = (Σ[w(Fo

2 – Fc
2)2] / Σ[w(Fo

2)2])1/2. 
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Table 4.3. Bond distances and bond valences for the SC-XRD structure of Mg(H2O)6(B12F12) 

 

              

 

Table 4.4. Bond distances and bond valences for the SC-XRD structure of Co(H2O)6(B12F12) 

 

              

 

  

Mg(H2O)6(B12F12) bond distance, Å bv  param. bv

This work Mg-O 2.0390 1.693 0.393

Mg-O 2.0390 1.693 0.393

Mg-O 2.0390 1.693 0.393

Mg-O 2.0659 1.693 0.365

Mg-O 2.0659 1.693 0.365

Mg-O 2.0659 1.693 0.365

Σ (Mg-O(bv ) = 2.273

ave. Mg-O = 2.052

Co(H2O)6(B12F12) bond distance, Å bv  param. bv bond distance, Å bv  param. bv

This work Co-O 2.0663 1.692 0.364 Co-O 2.0663 1.661 0.334

Co-O 2.0663 1.692 0.364 Co-O 2.0663 1.661 0.334

Co-O 2.0663 1.692 0.364 Co-O 2.0663 1.661 0.334

Co-O 2.0907 1.692 0.340 Co-O 2.0907 1.661 0.313

Co-O 2.0907 1.692 0.340 Co-O 2.0907 1.661 0.313

Co-O 2.0907 1.692 0.340 Co-O 2.0907 1.661 0.313

Σ (Co-O(bv ) = 2.112 Σ (Co-O(bv ) = 1.942

ave. Co-O = 2.079
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Table 4.5. Bond distances and bond valences for the SC-XRD structure of Ni(H2O)6(B12F12) 

 

              

 

Table 4.6. Bond distances and bond valences for the SC-XRD structure of Zn(H2O)6(B12F12) 

 

              

 

 

Ni(H2O)6(B12F12) bond distance, Å bv  param. bv

This work Ni-O 2.0290 1.654 0.363

Ni-O 2.0290 1.654 0.363

Ni-O 2.0290 1.654 0.363

Ni-O 2.0515 1.654 0.342

Ni-O 2.0515 1.654 0.342

Ni-O 2.0515 1.654 0.342

Σ (Ni-O(bv ) = 2.113

ave. Ni-O = 2.040

Zn(H2O)6(B12F12) bond distance, Å bv  param. bv

This work Zn-O 2.0611 1.704 0.381

Zn-O 2.0611 1.704 0.381

Zn-O 2.0611 1.704 0.381

Zn-O 2.0926 1.704 0.350

Zn-O 2.0926 1.704 0.350

Zn-O 2.0926 1.704 0.350

Σ (Zn-O(bv ) = 2.192

ave. Zn-O = 2.077
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Table 4.7. Comparisons of M–O and O(H)∙∙∙X distances in some metal salt hexahydratesa 

      
compound M–O, Å O(H)∙∙∙X, Å reference 
      
Mg(H2O)6(B12F12)b 2.0390(11) × 3, 2.0659(11) × 3; 2.723(2), 2.749(2), this work 

 ave. 2.053 2.904(2), 2.914(2)c 

      
Mg(H2O)6(SiF6)b 2.0480(8), 2.0550(7), 2.0571(8); ave. 2.053 2.792(1)–2.899(1)c 14 
      
Co(H2O)6(B12F12)b 2.0663(4) × 3, 2.0907(4) × 3; 2.734(1), 2.739(1), this work 

 ave. 2.079 2.886(1), 2.919(1)c 
      
Co(H2O)6(SnF6)b 2.077(5) × 6 2.727(5), 2. 755(4)c 26 
      
Ni(H2O)6(B12F12)b 2.0290(7) × 3, 2.0515(7) × 3; 2.732(1), 2.735(1), this work 

 ave. 2.040 2.859(1), 2.919(1)c 
      
Ni(H2O)6(SnF6)b 2.045(3) × 6 2.730(3), 2.750(3)c 26 
      
Ni(H2O)6(TiF6)b 2.044(5) × 6 2.709(7), 2.760(7)c 15 
      
Zn(H2O)6(B12F12)b 2.0611(4) × 3, 2.0926(4) × 3; 2.733(1), 2.734(1), this work 

 ave. 2.077 2.869(1), 2.894(1) c 
      
(Zn(H2O)6)2(ZrF8)b 2.0367(6)–2.1638(6); 2.580(1)–2.973(1);c 16 

 ave. 2.093 2.852(1)–2.889(1)d 
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Table 4.7. (continued) Comparisons of M–O and O(H)∙∙∙X distances in some metal salt hexahydrates  

      
a All structures at low temperature (≤ 150 K) unless otherwise indicated. b Single-crystal X-ray diffraction c X = F. d X = O.  
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Table 4.8. FTIR Stretching and Bending Vibration Frequencies for M(H2O)6
2+ Salt Hydratesa  

              

compound νasym(OH) νsym(OH) δ(HOH) 
              

Mg(H2O)6(B12F12) 3628, 3596 3561, 3544 1640, 1624 

Mg(D2O)6(B12F12) 2699, 2674b 2604, 2593b 1206, 1196b 

Mg(HOD)(H2O)5(B12F12)   2645, 2633b,c  —c 

Mg(H2O)6(SiF6)d 3569, 3551, 3536 3513, 3503, 3493d nr/no 

Mg(D2O)6(SiF6)d 2640, 2633, 2625b 2566, 2560b nr/no 

Mg(HOD)(H2O)5(SiF6)d 2611, 2607, 2605, 2601, 2599, 2594b — 

Mg(H2O)6(SO4)2∙C5H14N2
e ca. 3242 (very broad  1628 

Mg(H2O)6(BF4)2 (T = 295 K)f 3500 (sh, vb) 3406 (vb) 1630, 1606g 

Mg(H2O)6(BF4)2 (T = 8.5 K)f 3498, 3475 3435, 3405 1630, 1602, 1595g 

Mg(H2O)6(UO2(EtCO2)3)2
h 3395 (bd) ca. 3300 (sh) nr/no 

Mg(H2O)6(B(CN)4)2
i 3529, 3450 (sh), 3387 3370 (sh), 3248 nr/no 

Mg(H2O)6(B12H12)j ca. 3550 (vb) ca. 1610 

Mg(H2O)6(ArSO3)2
k ca. 3280 (vb)  nr/no 

Co(H2O)6(B12F12) 3617, 3581 3544, 3524 1635, 1617 

Co(D2O)6(B12F12) 2690, 2663b 2593, 2580b —c 

Co(HOD)(H2O)5(B12F12)   2635, 2618b,c  —c 

Co(HOD)(H2O)5(SnF6)l 2569, 2555b  1456b 

Co(H2O)6(SeO4)2∙(C6H14N2)m ca. 3200 (vb)  1674m 

Ni(H2O)6(B12F12) 3615, 3579 3540, 3523 1637, 1616 

Ni(H2O)6(B12H12)n 3520 (bd) 3461 (bd) 1606 

Ni(H2O)6(TiF6)o 3408 (vb) ca. 3350 (vb sh) nr/no 

Ni(H2O)6(VOF4(H2O))p 3345 (vb)  1634 

Zn(H2O)6(B12F12) 3613, 3573 3541, 3518 1631, 1613 

Zn(H2O)6(SnF6)q 3477 (bd) 3431 (bd) 1647 

Cs2Zn(H2O)6(SeO4)2
r 3202 (vb)  1634 
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Table 4.8. (continued) FTIR Stretching and Bending Vibration Frequencies for M(H2O)6
2+ Salt Hydratesa  

              
a Microcrystalline samples at room temperature unless otherwise indicated. All data from this work unless 
otherwise indicated. Abbreviations: T = temperature; sh = shoulder; bd = broad; vb = very broad; nr/no = 
not reported or not observed. b ν(OD) and δ(DOD) values. c These ν(OD) values are for the two types of 
HOD ligands in the M(HOD)(H2O)5

2+ cation. The δ(HOD) band(s) is(are) masked by other bands.  
d ref. 27; spectra recorded at 77 K. e ref. 28; KBr pellet; C5H14N2

2+ = 2-methyl-piperazinium(2+). f ref. 29. 
g Bands at 3236 cm−1 in the 295 K spectrum and at 3238 cm−1 in the 8.5 K spectrum were assigned to 
2δ(HOH). h ref. 30. i Spectrum provided by E. Bernhardt (personal communication). The compound was 
originally reported in ref. 31 but the FTIR spectrum was not. j ref. 32. k Ref. 33; KBr pellet; ArSO3

− =  
4-amino-3-methylbenzenesulfonate(1−). l refs. 24 and 26. m ref. 34; C6H14N2

2+ = 1,4-H2(1,4-diaza-bicyclo-
[2.2.2]octane)2+; the band at 1674 cm−1 may be due to another vibration and may be masking the true 
δ(HOH) band, which is probably at ca. 1600 cm−1. n ref. 35; from Raman spectrum. o This work; sample 
provided by L. Liu and Prof. P. S. Halasyamani. p ref. 36. q ref. 37. r ref. 38; KBr disc. 
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Table 4.9. Bond distances and bond valences for the SC-XRD structure of Ca(H2O)7(B12F12) 
 

 
              
Table 4.10. Bond distances and bond valences for the SC-XRD structure of Sr(H2O)7(B12F12) 
 

 
              

Ca(H2O)7(B12F12) bond distance, Å bv  param. bv

This work Ca-O 2.347 1.967 0.358

Ca-O 2.360 1.967 0.346

Ca-O 2.367 1.967 0.339

Ca-O 2.389 1.967 0.319

Ca-O 2.394 1.967 0.315

Ca-O 2.403 1.967 0.308

Ca-O 2.489 1.967 0.244

Σ (Ca-O(bv ) = 2.230

ave. Ca-O = 2.393

Sr(H2O)7(B12F12) bond distance, Å bv  param. bv

This work Sr-O 2.560 2.118 0.303

Sr-O 2.650 2.118 0.237

Sr-O 2.617 2.118 0.260

Sr-O 2.674 2.118 0.223

Sr-O 2.560 2.118 0.303

Sr-O 2.617 2.118 0.260

Sr-O 2.674 2.118 0.223

Sr-F 2.665 2.019 0.174

Sr-F 2.665 2.019 0.174

Σ(bv ) = 2.156

Σ(Sr-O bv) = 1.807

83.8%
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Table 4.11. Bond distances and bond valences for the SC-XRD structure of Ba(H2O)4(B12F12)  

 
              
 
Table 4.12. Bond distances and bond valences for the SC-XRD structure of Ba(H2O)5(B12F12) 
 

 
             

Ba(H2O)4(B12F12) bond distance, Å bv  param. bv bond distance, Å bv  param. bv

This work Ba1-O 2.698 2.29 0.332 Ba2-O 2.685 2.29 0.344

Ba1-O 2.783 2.29 0.264 Ba2-O 2.703 2.29 0.328

Ba1-O 2.785 2.29 0.262 Ba2-O 2.750 2.29 0.288

Ba1-O 2.786 2.29 0.262 Ba2-O 2.851 2.29 0.220

Ba1-F 2.652 2.19 0.287 Ba2-F 2.741 2.19 0.226

Ba1-F 2.657 2.19 0.283 Ba2-F 2.743 2.19 0.224

Ba1-F 2.754 2.19 0.218 Ba2-F 2.757 2.19 0.216

Ba1-F 2.767 2.19 0.210 Ba2-F 2.778 2.19 0.204

Ba1-F 3.243 2.19 0.058 Ba2-F 3.116 2.19 0.082

Σ(bv ) = 2.176 Σ(bv ) = 2.131

Σ(Ba-O bv) = 1.120 Σ(Ba-O bv) = 1.179

51.5% 55.3%

Ba(H2O)5(B12F12) bond distance, Å bv  param. bv

This work Ba-O 2.7440 2.29 0.293

Ba-O 2.7158 2.29 0.316

Ba-O 2.8202 2.29 0.239

Ba-O 2.8232 2.29 0.237

Ba-O 2.8702 2.29 0.208

Ba-F 2.7927 2.19 0.196

Ba-F 3.2670 2.19 0.054

Ba-F 2.9305 2.19 0.135

Ba-F 3.0620 2.19 0.095

Ba-F 3.1934 2.19 0.066

Ba-F 2.8220 2.19 0.181

Σ(bv ) = 2.021

Σ(Ba-O bv) = 1.293

51.5%
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LIST OF ABBREVIATIONS ⊙   Centroid of a B12 cage  ∠(OHX) O–H···X bond angle 

ν(OH)  O–H stretching vibration 

ν(BF)  B–F stretching vibration 

νasym(OH) Asymmetric O–H stretching vibration of an H2O molecule 

νsym(OH)  Symmetric O–H stretching vibration of an H2O molecule 

Δν(OH)  Difference in band position of a O–H stretching vibration band compared to a reference  

δ(HOH) H–O–H bending vibration  

11B{19F} 11B NMR with 19F decoupling  

19F{11B} 19F NMR with 11B decoupling 

ATR  Attenuated Total Reflectance  

ATR-FTIR Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy  

BVS  Bond Valence Sums 

bv  Bond Valence 

dd-H2O  Distilled Deionized Water  

DFT   Density Functional Theory  

FTIR   Fourier Transform Infrared Spectroscopy  

FWHM Full Width at Half Max 

H/D  Hydrogen or Deuterium  

IR  Infrared  

NEt4  Tetraethyl ammonium  

NI-ESI-MS  Negative Ion Electrospray Mass Spectrometry  

NMR   Nuclear Magnetic Resonance  

P-XRD Powder X-ray Diffraction 

PTFB  Perfluoro-tert-butyl  

PVDF  Polyvinylidene fluoride  
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R(O···X) O···X distance along the O···X vector 

R(O(H)·· ·O) O···O distance along the O–H···O vector 

RH  Relative Humidity  

RT  Room Temperature  

SC-XRD  Single Crystal X-ray Diffraction  

TGA   Thermogravimetric Analysis  

v:v  Volume to Volume 

WCA  Weakly-Coordinating Anion 

wt%  Weight percent  

Z2−  B12F12
2− 

 
 


