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ABSTRACT

LINEAR COMBINATIONS OF GNSS PHASE OBSERVABLES TO IMPROVE AND

ASSESS TEC ESTIMATION PRECISION

One of the principal observations derived from GNSS (Global Navigation Satellite Sys-

tems) signals is ionospheric total electron content (TEC), which is a measure of the density of

free electrons (i.e. ionosphere plasma density) integrated along the signal path. TEC is typi-

cally computed using the difference of dual-frequency signals from a GNSS satellite, thereby

taking advantage of the frequency dispersive effects of ionosphere plasma on microwave-

band propagation. However, it is difficult to distinguish between the ionosphere and other

frequency-dependent effects, such as multipath and satellite antenna phase effects. Newly

available triple-frequency GNSS signals allow computation of geometry-ionosphere-free com-

binations (GIFC) that specifically highlight the impact of residual errors from these effects.

This work aims to: 1) introduce a framework for choosing linear estimator coefficients for

GNSS parameters, 2) use this system to derive triple-frequency TEC estimator and GIFC

coefficients, 3) introduce and summarize typical GIFC signals from real triple-frequency GPS

data, 4) highlight the various frequency-dispersive effects that pervade these signals, and 5)

use statistics from GIFC signals to assess the impact of error residuals on TEC estimates

made using GPS signals.
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CHAPTER 1: BACKGROUND AND MOTIVATION

Ionosphere Total Electron Content (TEC) is an important measurement used to study

and characterize Earth’s ionosphere and the phenomena that affect it. Multi-frequency trans-

missions from Global Navigation Satellite Systems (GNSS) can be used to measure TEC by

taking advantage of the ionosphere’s frequency-dispersive effect on microwave-band electro-

magnetic wave propagation. While traditional GNSS-based TEC estimation uses signals at

two different frequencies, many modern GNSS now transmit signals at three frequencies (and

future GNSS may transmit many more frequencies). These new signals provide better infor-

mation on propagation and instrumentation effects present in GNSS observables, including

that of ionosphere TEC.

This work focuses on multi-frequency GNSS estimates of TEC and using triple-frequency

GPS observations to consider the precision of such estimations. In this first chapter, we

briefly discuss Earth’s ionosphere and GNSS as they relate to TEC estimation. In the sec-

ond chapter, we introduce an underlying physical model and relate it to phase measurements

made by GNSS receivers. Then we introduce a general method for choosing model estima-

tors that are linear combinations of these phase measurements and consider application of

this method to triple-frequency signals from Global Positioning System (GPS) satellites.

Using this method, we derive the geometry-ionosphere-free combination (GIFC) of GNSS

observables, which is an indicator of residual systematic and stochastic errors present in

GNSS observables. In the third chapter, we use real GPS data to examine the GIFC and

consider the systematic errors it exposes. We present a qualitative and statistical assessment

of the GIFC from triple-frequency GPS signals. Lastly, we use GIFC statistics to character-

ize the precision of multi-frequency TEC estimates. In chapter four, we briefly discuss the

implications of the results and consider routes for future work.
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1.1 Earth’s Ionosphere

The ionosphere is a volume of atmosphere surrounding Earth between roughly 60-1000

km altitude. Various ionization sources cause plasma to form in this region, with the primary

among these being photo-ionization from the Sun. Secondary ionizing agents include ener-

getic particle precipitation, meteorites, and lightning. The spatial-temporal distribution of

this plasma is impacted by many factors such as the day-night cycle, solar cycle, geomagnetic

fields, neutral atmospheric winds, space weather events, etc [1].

1.1.1 Radio Propagation in the Ionosphere

The ionosphere is well-known for its frequency-dependent effects on radio wave propaga-

tion. These effects were first demonstrated by Guglielmo Marconi at the premier of trans-

Atlantic radio transmission in 1901 [2]. Since then, radio signals have been used as a tool

to study the ionosphere, while the ionosphere has been used as a tool to aid in global radio

communication. Radiosonde, coherent radar, incoherent scatter radar, and GNSS receivers

are all radio instruments commonly used to measure the ionosphere.

In terms of its effect on microwave-band electromagnetic waves, the ionosphere can be

considered a cold, magnetized, collisionless plasma. This means that its refractive index is

described by the collisionless form of the Appleton-Hartree equation:

n2 = 1−
X

1−
1
2
Y 2 sin2 θB

1−X
± 1

1−X

(

1
4
Y 4 sin4 θB + Y 2 cos2 θB(1−X)2

)
1
2

(1.1)

X =
ω2
p

ω2
Y =

ωH

ω

where ω is the wave angular frequency, ωp is the electron plasma frequency, ωH is the electron

gyro frequency, θB is the angle between the wave vector and the ambient magnetic field, and

the ± is dependent upon wave polarization and orientation relative to the magnetic field.
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The omega terms can be further decomposed as:

ω = 2πf (1.2)

ωp =
√

Nee2

ǫ0m
(1.3)

ωH =
√

B0|e|
m

(1.4)

where f is the wave frequency, Ne is the plasma density (or, equivalently, the free-electron

density), ǫ0 is the permittivity of free space, e is the electron charge, m is the rest mass of

an electron, and B0 is the ambient magnetic field strength.

The expression in Equation 1.1 does not lend itself to direct application. Instead it is

simplified using a Taylor’s series expansion in 1
f
for f near the frequency of propagation. For

L-band frequencies, X and Y are much less than 1. After dropping insignificant terms for

frequencies relevant to this work, the expression becomes:

n = 1−
1

2
X ±

X|Y cos θB|

2
−

1

8
X2 ±O(

1

f 5
) (1.5)

The first-order term −1
2
X is proportional to 1

f2 and accounts for most of the ionosphere range

error. Second and higher-order terms are on the order of a couple centimeters or less [3].

As is the case for plasmas, the magnitude of the refractive index n is always less than unity.

As a result, there is a perceived phase advance for microwave-band signals that traverse the

ionosphere.

1.1.2 Ionosphere Range Error and Total Electron Content

The ionosphere range error for an electromagnetic wave propagating through it is defined

to be the integrated effect of the ionosphere refractive index minus the signal path length.

Considering only the first-order ionosphere effect, its expression is:

I =

∫ tx

rx

(n− 1) ds ≈

∫ tx

rx

−
1

2
X ds (1.6)

Here, rx and tx denote the endpoints of signal propagation and s is the signal path. Using

3



expressions 1.2 and 1.3 to expand X, this becomes:

I = −
κ

f 2

∫ tx

rx

Ne ds (1.7)

where κ = e2

8π2ǫ0me
≈ 40.3.

Total electron content (TEC) is defined to be the integrated quantity of the free-electron

density (i.e. plasma density) Ne along some path. The expression for the first-order iono-

sphere effect in Equation 1.7 contains the expression for TEC, which is:

TEC =

∫ tx

rx

Ne ds (1.8)

It is usually convenient to express TEC in TEC units, where 1TECu = 1 × 1016 electrons
m2 .

As such, we define κu = κ× 1016 and express I as:

I = −
κu

f 2
TECu (1.9)

1.1.3 Geomagnetic Field

Expressions for the phase refractive index in equations 1.1 and 1.5 reveal that an impor-

tant aspect of the ionosphere is that it lies within influence of Earth’s magnetic field. The

so-called geomagnetic field is a magnetic dipole with field lines leaving near the geographic

South pole and entering near the geographic North pole. The orientation of a radio wave

vector relative to these field lines plays a role in determining higher-order terms for iono-

sphere propagation error. This field is also important because it constrains the movement of

ionosphere plasma. The charged plasma particles move more freely parallel to the magnetic

field, so density structures in the plasma tend to spread out along field lines [1].

1.1.4 Plasma Density Features

The various factors that influence the ionosphere will cause structures to form in the

plasma density. Examples of structures that can normally be seen in ionosphere plasma

density are the E and F region peaks, daytime ionization enhancements, and the equatorial

4



ionization crests. The terms D, E, or F layer describe concentrations of plasma that com-

monly occur at specific heights. Figure 1.2 shows a nominal vertical plasma density profile,

revealing typical daytime structure of the E and F layers at low latitudes. Vertical TEC

(vTEC), defined as TEC measured in the zenith direction for a given latitude and longitude,

is often used to study large-scale features. Figure 1.3 shows a nominal global distribution of

vTEC that reveals the equatorial ionization crests.

Figure 1.1: Depicts how the ionosphere is embedded in Earth’s geomagnetic field. Note how
field lines leave Earth from the geographic South pole and enter through the geographic
North pole. The magnetic inclination, which is the angle between the magnetic field vector
and the tangent to Earth’s surface, changes continuously over latitude with values of ±90◦

at the geomagnetic South/North poles and 0◦ at the geomagnetic equator.

The various factors that influence the ionosphere can cause disturbances that manifest as

plasma enhancements and depletions. Incoherent scatter radar measurements are often used

to scan the plasma structure at medium and large scales [6]. Networks of GNSS receivers are

used to map vTEC variations in order to monitor traveling ionosphere disturbances (TIDs)

[7]. These disturbances are known to arise from terrestrial activities such as earthquakes,

volcanic eruptions, and tsunamis, making the ionosphere an important tool for studying

5



these phenomena [8]. At high latitudes, energetic particle precipitation causes polar cap

patches and auroral-specific structures. The effects of solar storms can be seen in plasma

structures at all latitudes. The most robust observations of these medium to large-scale

plasma structures combine radars and GNSS using data assimilation models.

Figure 1.2: Shows typical daytime vertical profiles of plasma density. The profile has a mean
geographic latitude of ≈ 18◦ N. Large-scale vertical structure in the ionosphere is typically
classified as one of D region, E region, F region, or topside ionosphere, all of which the figure
annotates. This profile was generated by the COSMIC Data Analysis and Archive Center
(CDAAC) using GPS radio occultation measurements from the FORMOSAT-1 satellite [4].

6



Figure 1.3: Shows a nominal global distribution of TEC measured in the zenith (vertical)
direction. Higher TEC values indicate more plasma in that region. The map epoch 14:00
UTC is the local time for the central (prime) meridian. As it is only a few hours after
daytime noon, this region experiences large vTEC values. This map was generated by the
International GNSS Service (IGS) using their global network of GNSS receivers [5].

7



1.2 GNSS

Global Navigation Satellite Systems (GNSS) consist of satellite constellations and ground

infrastructure that provide ranging signals whose primary use is for accurate position and

timing estimation by users around the world. These systems transmit signals in the L-band

(1-2 GHz), which is high enough to penetrate the ionosphere but low enough to avoid too

much signal attenuation during their long journey from satellite to ground. This makes

GNSS signals sensitive – and therefore vulnerable – to structures and irregularities in the

ionosphere plasma.

Most GNSS satellites transmit multiple signals at various frequencies in order to aid in

the estimation of ionosphere effects and to provide redundancy in order to improve reliability.

These signals are comprised of sinusoidal carriers modulated by ranging codes. In principle,

GNSS receivers measure phase and amplitude of the carrier and phase of the ranging code.

Carrier and code phases are often expressed as pseudoranges (i.e. in units of length) in order

to reflect the physical range between receiver and satellite for which they are purposed to

measure. The ionosphere range error I is a significant term in pseudorange expressions.

Equation 1.10 describes a carrier phase pseudorange measurement model for a single GNSS

satellite:

Φi = r + c∆t+ T + Ii + λiNi +Hi + Si + ǫi (1.10)

Here, subscripts i denote quantities pertaining to a given signal whose carrier frequency is

fi. Terms without subscripts are the same for all signals from a particular satellite. The

quantities themselves are described as follows:

• r - range between satellite and receiver antenna phase centers

• c∆t - range error due to relative offset ∆t between satellite and receiver clocks, where

c is the speed of light

• T - neutral atmosphere range error

8



• I - ionosphere range error (from equations 1.6 or 1.7)

• λN - range error due to carrier phase ambiguity, which is an unknown integer cycle

offset N multiplied by carrier wavelength λ

• H - satellite and receiver hardware delays

• S - unmodeled systematic effects; multipath, higher-order ionosphere terms, etc.

• ǫ - all stochastic effects, such as thermal noise

Figure 1.4 shows a GNSS satellite as it relates to Earth and the ionosphere. The iono-

spheric volume accounts for between 1-5% of the propagation distance while Earth’s neutral

atmosphere, which is significant between roughly 0 - 60 km, accounts for less than .05 % of

the propagation distance. The rest of the GNSS propagation path can be considered in a

vacuum. Table 1.1 describes nominal ranges for the quantities in the carrier pseudorange

model.

Figure 1.4: Depicts typical Earth-ionosphere-satellite geometry for GNSS constellations.
Most satellites have transmission patterns that provide hemispheric signal coverage.

1.2.1 GPS

The Global Positioning System (GPS) is a GNSS controlled and maintained by the United

States of America. The GPS constellation first became operational in the 1980s with the

launch of eleven Block I satellites. Since then, the GPS satellite has gone through several

9



iterations. As of 2017, the last of the second-generation GPS satellites has been launched,

and a third-generation constellation is in preparation.

Table 1.1: Nominal ranges for GNSS carrier pseudorange observation model parameters [9].

Parameter Description of Parameter Size
r 20,000 - 26,000 km

c∆t receiver-dependent
T 2.5-25 m for receiver on ground
I 1-150 m for receiver on ground
λN receiver-dependent; large, unknown, constant bias
H ± 25 m for satellite and receiver hardware biases [10]
S see Section 1.2.5
ǫ receiver-dependent; less than 4 mm for high-quality receiver

The full active GPS constellation consists of 32 satellites in six orbital planes. Their

orbits are approximately circular with radii of around 26,000 km. The corresponding orbital

periods are approximately one-half mean sidereal day, which is equal to 11 hours, 58 minutes,

2.05 seconds. The period is such that a given location on Earth’s surface will see a particular

GPS satellite at least once every 24 hours, with the satellite’s pass occurring approximately

4 minutes sooner each day.

The last set of second-generation GPS satellites is Block IIF (for “Block 2 Follow-on”).

This set of 12 satellites are of particular interest because they each transmit three signals

at distinct frequencies. These signals are called L1CA, L2C, and L5 (which we hereafter

refer to as L1, L2, and L5) and their carrier frequencies are given in Table 1.2. Figure 1.5

shows the when each triple-frequency satellite started transmitting. Four satellites (G01,

G24, G25, G27) are highlighted in blue; these are the satellites that will be the focus of our

analysis in Chapter 3.

Table 1.2: Carrier frequencies corresponding to each GPS signal.

Signal Carrier Frequency [GHz]
L1CA 1.57542
L2C 1.22760
L5 1.17645

10



2010 2011 2012 2013 2014 2015 2016

GPS IIF-1 G25

GPS IIF-2 G01

GPS IIF-3 G24

GPS IIF-4 G27

GPS IIF-5 G30

GPS IIF-6 G06

GPS IIF-7 G09

GPS IIF-8 G03

GPS IIF-9 G26

GPS IIF-10 G08

GPS IIF-11 G10

GPS IIF-12 G32

Figure 1.5: Shows period of signal availability for GPS Block IIF satellites. Satellite names
followed by universal identifiers (in bold) are shown on the left. Blue bars are used to indicate
satellite whose data we use in this work. Each has been transmitting triple-frequency GPS
signals since 2013.

1.2.2 TEC Estimation Using GNSS

Phase measurements of multi-frequency signals from a GNSS satellite can be used to

estimate TEC. Using the model in Equation 1.10, consider the difference between two carrier

phase pseudorange measurements Φ1 and Φ2 for carriers at two distinct frequencies f1 and

f2, while treating systematic and stochastic errors as negligible. The expression for their

difference is given by:

Φ1 − Φ2 = (I1 − I2) + (λ1N1 − λ2N2) + (H1 −H2) (1.11)

≈ −κu

(

1

f 2
1

−
1

f 2
2

)

TECu + (λ1N1 − λ2N2) + ∆H1,2

Here, we assume only first-order ionosphere effects and use the expression for I from Equation

1.9. The term ∆H1,2 = H1 − H2 contains the so-called inter-frequency hardware biases of

both satellite and receiver.
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It is apparent from Equation 1.11 that if ambiguity and hardware bias terms can be

eliminated then TEC can be estimated as:

TECu =
Φ2 − Φ1

κu

(

1

f2
1

− 1

f2
2

) (1.12)

This is the traditional dual-frequency estimation of TEC. GPS signals L1 and L2 are com-

monly used to estimate TEC in this way.

1.2.3 Carrier Ambiguity and Hardware Bias Resolution in GNSS

There are many techniques to address the ambiguity and bias terms in pseudorange phase

differences. These techniques are often the focus of work on TEC estimation. The carrier

ambiguity terms can be solved using measurement-domain techniques, such as code-carrier

leveling, or using integer-least-squares techniques, such as LAMBDA [11]. Inter-frequency

hardware biases (IFBs), which are stable constants for a given satellite or given receiver, must

be estimated by applying some sort of ionosphere model or constraint. Methods such as the

one in [10] use a priori models of the ionosphere. Others, such as in [12] or [13], use networks

of receivers to estimate an ionosphere model in real time. [14] discusses an algorithm that

uses a simple, linear-gradient ionosphere model and a single receiver to calibrate receiver

IFB.

Multi-frequency adaptations of ambiguity resolution and IFB determination techniques

have also been explored. [15], [16], and [17] discuss ambiguity resolution in the context of

triple-frequency GNSS. [18] characterizes the different IFBs for triple-frequency GPS satel-

lites and signals. [19] applies approaches from both domains, using a code-carrier leveling

technique along with a least-squares estimation of TEC and relative IFBs in the context of

triple-frequency GNSS.

1.2.4 Examples of GPS TEC Estimations

Here, we present examples of dual-frequency TEC estimations using triple-frequency GPS

signals. We do this in order to demonstrate the presence of systematic errors that corrupt
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TEC estimates and thereby motivate the work laid out in this thesis. Using a method similar

to that in [19], we solve for carrier ambiguities and relative receiver IFBs. We then use the

method in [14] to estimate absolute receiver IFBs. Using these carrier ambiguities and IFBs

to correct our carrier pseudorange measurements, we can estimate TEC using Equation 1.12

for the appropriate frequencies. Details on the exact method implementation are given in

Appendix AA. Figure 1.6 shows examples of these TEC estimates using GPS L1/L2 and

L1/L5 signal combinations. Although their overall shapes match, a varying discrepancy

exists between the two estimates. We attribute this discrepancy to the systematic error

terms S from Equation 1.10.

Figure 1.6: Dual-frequency estimates of TEC using GPS L1/L2 and L1/L5 signal combina-
tions. Estimates for satellites G06, G09, and G27 are shown for a receiver in Poker Flat,
Alaska on 2016-01-02. Varying discrepancies between the two estimates indicate the presence
of systematic errors.

1.2.5 Summary of Known Systematic Errors

Having observed the effect of systematic errors in dual-frequency TEC estimation, the

question arises: what are the systematic effects that cause this discrepancy, and how can we

mitigate these effects to achieve optimal TEC estimation precision? The TEC discrepancy
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shows oscillatory patterns towards both ends of the pass where the satellite is at low eleva-

tion. This behavior is indicative of multipath, which refers to the error caused by multiple

signal reflections combining with and distorting the direct signal at the receiver. The carrier

phase multipath effect is dependent upon the antenna environment, e.g. the orientation and

reflectiveness of surrounding surfaces. Multipath simulations in [20] show GPS L1/L2 carrier

differences reaching up to ±4 cm.

Other ionospheric effects may also play a role, though their effect should not show the

oscillatory behavior of multipath. In general, residual error from the higher-order ionosphere

terms for GPS L1/L2 difference ranges from -2 to 2.5 cm. Excess path length due to iono-

sphere refraction effects can also be significant, reaching values of 3 cm or higher in the GPS

L1/L2 difference for low-elevation satellites (< 5◦) [21].

A third plausible culprit is satellite and receiver antenna phase effects. GNSS satellite

antenna phase center variations are modeled by the International GNSS Service (IGS) for

application to precise point positioning [5]. However, their most recent products still only

provide mean phase center variations for the GPS L1/L2 ionosphere-free combination [22].

Work from [23] attempts to characterize the antenna phase center and variations for the GPS

Block IIF-1 satellite. They determined that a full analysis on the phase center variations

involving the L5 signal will be feasible once a sufficient global constellation transmitting

triple-frequency signals is achieved. Another effect related to satellite antenna phase is

antenna phase windup, which occurs due to rotation of the satellite antenna over the duration

of its pass. This results in extra accumulated phase at the receiver, which, for given carrier

pseudorange measurement, can be up to several centimeters [24].

1.3 Motivation for This Work

In this work, we present linear estimators – that is, linear combinations of the GNSS phase

pseudorange observables – for TEC and related model parameters. Linear combinations of

GNSS observables have been widely studied. The coming of next-generation of GNSS and
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triple-frequency signals prompted investigation into optimal triple-frequency combinations

for various applications, including cycle slip estimation, ambiguity resolution, ionosphere-

free combinations, and TEC estimation, some of which we discussed in Section 1.2.3. Much

of the work surrounding the application of multi-frequency GNSS linear combinations aims

to improve ambiguity resolution and IFB estimation. While these objectives are crucial for

accurate retrieval of TEC, they will not be considered in this work. Instead, we choose to

ignore all terms considered as biases in our signal model and to focus on the precision, rather

than overall accuracy, of TEC estimations.

The work most closely related to that which we present here can be found in [25] and [26].

The first author introduces optimal coefficients for ionosphere-free, range-preserving linear

combinations in the context of triple-frequency GPS. These coefficients are essentially estima-

tors of the non-dispersive terms from Equation 1.10 that remove the ionosphere component.

Their results match those that we present in Section 2.5. The second author discusses using

triple-frequency GNSS measurements specifically in the context of TEC estimation. The

first part of their work discusses ambiguity and IFB estimation. In the second part, a linear

system relating TEC and relative carrier ambiguities to the observed carrier pseudorange

differences between L1/L2 and L1/L5 signals is solved. It can be shown that, if carrier

ambiguities are properly resolved, then the TEC estimate from this method should match

the triple-frequency TEC estimate we present in Section 2.4.

One of the main contributions of this work is a general framework, rooted in the funda-

mentals of linear inverse theory, for choosing coefficients for linear estimators of GNSS model

parameters. We derive optimal multi-frequency estimator coefficients for the geometry (non-

dispersive) term and for TEC based on this framework, and provide their closed-form solu-

tions for the case of triple-frequency GNSS. While the triple-frequency geometry-estimator

coefficients are presented in [25], this is, to the best of our knowledge, the first publica-

tion containing the triple-frequency TEC estimator coefficients. Furthermore, we present a

third set of coefficients for the geometry-ionosphere-free combination (GIFC), which provides
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information on the systematic errors that pervade GNSS measurements and corrupt TEC

estimates. The main results of our work are characterization of the GIFC and relation of its

statistical deviation to precision bounds for TEC estimates.

The motivation for the characterization of the GIFC and precision bounds for TEC esti-

mates stems from real-world scientific and engineering applications, which demand increasing

precision in TEC and other parameter estimates. In [27] it is reported that the effect of a

medium-scale TID on GNSS measurements is on the order of tenths of one TEC unit. At

the same time, this level of precision is needed for centimeter-level positioning solutions.

Understanding the precision of TEC estimates and the nature of the systematic errors that

affect them is paramount to pushing the boundaries of these types of applications.

We qualify here that the characterization of TEC estimation errors observed using the

GIFC does not provide a complete assessment of errors impacting TEC estimation. As we

show in Section 2.7, there is a component of TEC error residuals that is “TEC-like” and

therefore unobservable. We make certain assumptions in an attempt to describe the overall

error, but it is possible that other effects, such as diffraction by ionosphere irregularities, can

dominate this component of TEC errors.
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CHAPTER 2: LINEAR ESTIMATION OF GNSS

PARAMETERS

In this chapter, we discuss linear estimation of GNSS model parameters from carrier

phase pseudorange observables. We choose these model parameters to reflect the quantities

in Equation 1.10. By introducing the general linear estimation problem, we will be able

to unify conventional TEC estimation with optimal linear estimation methods involving

multi-frequency GNSS signals.

2.1 Simplified Model of GNSS Phase Observable

Before we introduce the estimation problem, we make the following simplifications. First,

we consider observations only from one satellite transmitting two or more signals at different

frequencies. We also group all non-dispersive terms from Equation 1.10 (i.e. terms indepen-

dent of signal frequency, such as r, c∆t, and T ) into one quantity G, called the geometric

term. Since this work is concerned with the precision rather than accuracy of our observables

and corresponding TEC estimates, we ignore ambiguity N and bias terms H altogether. We

also assume that ǫi are zero-mean and normally-distributed. Applying these assumptions to

Equation 1.10, we obtain the following model for carrier pseudorange measurements:

Φi = G+ Ii + Si + ǫi (2.1)

Let us make an additional simplification to our model by assuming that Ii represents

only the first-order ionosphere effect, while letting Si absorb the other ionospheric terms.

This allows us to express the ionospheric terms Ii as proportional to TECu, as in Equation

1.9.
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2.2 Linear Observation Model and Inverse Problem

Consider Φi for m signals of distinct frequencies from a particular GNSS satellite. Let

our model parameters be G, TECu, and the terms Si corresponding to each signal. Equation

2.1 describes a linear model for each Φi in terms of our model parameters, and the linear

system can be expressed as:

Φ = Am+ ǫ (2.2)

where Φ = [Φ1, · · · ,Φm]
T , ǫ = [ǫ1, · · · , ǫm]

T , m = [G,TECu, S1, · · · , Sm]
T , and

A =



















1 −κu

f2
1

1 0 · · · 0

1 −κu

f2
2

0 1 · · · 0

...
. . .

1 − κu

f2
m

0 · · · 1



















(2.3)

Note that Φ, ǫ ∈ R
m and m ∈ R

m+2 so that A ∈ R
m×m+2.

Solutions to this linear inverse problem provide a set of coefficients for estimating model

parameters m in terms of Φ. That is

m̂ = A
∗
Φ (2.4)

whereA∗ ∈ R
m+2×m is the model estimator. One solution is the left pseudo-inverseAT

(

AA
T
)−1

.

However, this produces a poor model estimate since it treats each parameter with equal

weight. To create a good model estimator, we must apply a priori knowledge about G, Ii,

and Φi. Considering the nominal parameter ranges in Table 1.1, it is reasonable to make the

following coarse assumption:

|G| ≫ |Ii| ≫ |Si| (2.5)

We could apply this knowledge to obtain more suitable estimator A∗ for the whole model

m. Instead, we choose the longer and more insightful route of establishing linear estimators

for each model parameter separately. This allows us to consider our estimates of G and

TECu as they relate to conventional methods for extracting these terms. Estimates of
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individual model parameters are just linear combinations of the phase observables Φi, which

we introduce in the next section.

2.3 Linear Combinations of GNSS Observables

Our goal in constructing linear combinations of Φi is to estimate individual model param-

eters, that is, to construct rows of A∗. Given m phase pseudorange observables Φ1, · · · ,Φm,

we can construct a linear combination using coefficients c1, · · · , cm as:

Φ∗ =
∑

i

ciΦi = 〈C|Φ〉 (2.6)

where C = [c1, · · · , cm]
T is the coefficient vector.

If we can bound systematic errors for each Φi as |Si| ≤ |Si|max then we can bound

systematic error term in the resultant linear combination as:

|S∗| ≤
∑

i

|ci||Si|max (2.7)

For stochastic errors, the law of error propagation gives the stochastic error variance of the

linear combination as:

σ2
ǫ∗ = C

T
ΣǫC (2.8)

where Σǫ is the covariance matrix of stochastic noise terms ǫi. The expressions for linear

combination systematic error bound and stochastic error variance are useful for defining

objectives when choosing optimal linear combination coefficients.

2.3.1 Linear Combination Coefficient Constraints

Keeping in mind that we wish to estimate model parameters G, TECu and Si, we intro-

duce the following useful coefficient constraints.

∑

i

ci = 0 (geometry-free constraint) (2.9)
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∑

i

ci
f 2
i

= 0 (ionosphere-free constraint) (2.10)

∑

i

ci = 1 (geometry-estimator constraint) (2.11)

∑

i

−
κu

f 2
i

ci = 1 (TECu-estimator constraint) (2.12)

The geometry-free and ionosphere-free constraints are named because they effectively

remove the G and Ii terms in the resultant combination. The geometry-estimator and

TECu-estimator constraints are named because they produce the terms G and TECu, re-

spectively, with unity coefficients in the resultant combination. The intention here is to

introduce constraints that can be applied together in order to achieve particular linear es-

timation objectives, so long as they are consistent (e.g. note that simultaneously removing

the geometry and estimating geometry are contradictory objectives).

2.3.2 Homogeneous Versus Non-Homogeneous Constraints

An important distinction between these constraints is that the geometry-free and ionosphere-

free constraints are homogeneous, while the estimator constraints are non-homogeneous.

Applying homogeneous constraints will restrict valid coefficient vectors to lie in an m − 1

dimensional subspace of Rm. This means that successive applications of distinct homoge-

neous constraints will cause a corresponding decrease in the maximum size of a linearly

independent set of coefficient vectors. In contrast, the non-homogeneous constraints restrict

valid coefficient vectors to lie in an affine hyperplane. Figure 2.1 illustrates this concept for

two-dimensional hyperplanes in a three-dimensional linear space.

2.3.3 Linear Combination Error Reduction Criteria

In addition to coefficient constraints that estimate or remove the geometry and TEC

model parameters, we may choose linear combination coefficients to optimally reduce sys-

tematic error or stochastic error variance. Recalling Equation 2.7 for the bound on systematic
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error in the linear combination, we define the following coefficient vector criterion for optimal

reduction of maximum systematic error:

C
∗ = argmin

C

∑

i

|ci| |Si|max (2.13)

For the case that the systematic error bound is the same for each signal, this criterion

simplifies to:

C
∗ = argmin

C

∑

i

|ci| (2.14)

(a) Hyperplane for homogeneous constraint. (b) Hyperplane for non-homogeneous constraint.

Figure 2.1: Geometry-free and ionosphere-free constraints are homogeneous and their valid

coefficients will lie within a linear subspace. Estimator constraints are non-homogeneous

and their valid coefficients lie in a hyperplane that is not a linear subspace.

Similarly, recalling Equation 2.8 for the linear combination stochastic error variance, we

define the following criterion for optimal reduction of stochastic error:

C
∗ = argmin

C

C
TΣǫC (2.15)

For the case that ǫi are uncorrelated and of equal amplitude, this criterion simplifies to:

C
∗ = argmin

C

〈C|C〉 = argmin
C

∑

i

c2i (2.16)
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2.4 TEC Estimators

We now turn our attention to the use of these constraints and criteria in order to estimate

our model parameters. As the focus of our work, we first introduce TEC estimators, which

we define to be a set of coefficients that satisfy the TECu-estimator constraint in Equation

2.12. In the context of multi-frequency GNSS, there is a large set of possible TEC estimator

coefficients, and in general their optimality depends upon a priori information about our

model and observations. With no further information other than that |G| ≫ |Ii| ≫ |Si|, a

good TEC estimator should satisfy the geometry-free constraint in Equation 2.9. We call

such coefficients geometry-free TEC estimators.

2.4.1 TEC Estimators for Triple-Frequency GNSS

In the context of triple-frequency GNSS (m = 3), applying the geometry-free and

ionosphere-estimator constraints yields the following system of coefficients with one degree

of freedom (denoted by x):

c1 =

1
κu

+ x
(

1

f2
3

− 1

f2
2

)

1

f2
2

− 1

f2
1

(2.17)

c2 =
− 1

κu
− x

(

1

f2
3

− 1

f2
1

)

1

f2
2

− 1

f2
1

c3 = x

We can choose C using the criteria to reduce either the maximum systematic error or

the stochastic error variance. First we consider the simple case of the maximum systematic

error reduction criterion given in Equation 2.14. The optimal coefficients must lie at one

of the critical points of the objective function
∑

i |ci|, which occur where any of ci have a

zero-crossing. For triple-frequency GNSS, this occurs at the zero-crossing of the coefficient
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corresponding to the middle-frequency signal, so that the optimal TEC estimator is that

which uses only two observations with the widest possible frequency spacing. E.g. if f1 >

f2 > f3, then c2 = 0 and the remaining coefficients are determined by Equation 2.17.

Figure 2.2: For triple-frequency GPS signals, shows the intersection of the geometry-free
subspace (gray plane) and the TECu-estimator hyperplane (gray plane). Also shows coeffi-
cients for TEC estimates TECL1,L2,L5 (green dot), TECL1,L5 (pink dot), TECL1,L2 (cyan dot),
and TECL2,L5 (yellow dot).

Next we consider the simple case of the stochastic error variance reduction criterion given

in Equation 2.16. The quadratic objective function
∑

i c
2
i can be minimized with respect to

x. The value of x that minimizes this objective function is given by:

x∗ =

1
κu

(

2

f2
3

− 1

f2
2

− 1

f2
1

)

(

1

f2
1

− 1

f2
2

)2

+
(

1

f2
2

− 1

f2
3

)2

+
(

1

f2
3

− 1

f2
1

)2
(2.18)

Substituting x∗ back into Equation 2.17, we obtain triple-frequency geometry-free TEC

estimator with minimum sum-of-squares coefficients, which we denote CTEC1,2,3
(where 1, 2,

and 3 represent the three relevant signals).

2.4.2 Important Properties of Triple-Frequency TEC Estimators

Consider the fact that any triple-frequency geometry-free TEC estimator lies on a line

that is the intersection of the geometry-free and TECu-estimator constraint hyperplanes, as
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shown in Figure 2.2. An important consequence of this fact is that given two different TEC

estimators CTEC1
and CTEC2

, any third TEC estimator can be expressed as:

CTEC = CTEC1
+ α (CTEC2

−CTEC1
) (2.19)

for some constant α.

Also consider the estimator CTEC1,2,3
, which, because it has minimum sum-of-squares

coefficients, is the closest point on the line to the origin. The projection of any geometry-

free TEC estimator onto the span of CTEC1,2,3
will land directly at CTEC1,2,3

. It follows that,

for any triple-frequency geometry-free TEC estimator CTEC, we have:

〈CTEC1,2,3
|CTEC〉

||CTEC1,2,3
||

= ||CTEC1,2,3
|| (2.20)

2.4.3 TEC Estimators for Triple-Frequency GPS

Here we consider the geometry-free TEC estimators for triple-frequency GPS signals. Let

frequencies f1, f2 and f3 correspond to GPS signals L1, L2, and L5 respectively. Figure 2.3

depicts the system in Equation 2.17 (parameterized along the x-axis) for geometry-free TEC

estimators applied to GPS signal frequencies. Along with the coefficient values, the figure

also shows sum-of-squares and sum-of-absolute-value characteristics.

Table 2.1: Notable coefficients for triple-frequency GPS TEC estimators along with their
sum-of-squares and sum-of-absolute-value characteristics.

GPS TEC Estimator Coefficients

Estimate L1CA L2C L5
∑

i c
2
i

∑

i |ci|
TECL1,L2,L5 8.294 -2.883 -5.411 10.314 16.588
TECL1,L5 7.762 0 -7.762 10.977 15.524
TECL1,L2 9.518 -9.518 0 13.460 19.035
TECL2,L5 0 42.080 -42.080 59.510 84.160

There are four notable sets of coefficients that we consider; they are shown along with

their sum-of-squares and sum-of-absolute-values in Table 2.1. The first satisfies the simplified

stochastic error reduction criterion (i.e. it is the minimizer of sum-of-squares). This estimator
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Figure 2.3: The system of possible coefficients for a good TEC estimator, parameterized
along the x-axis. The coefficients’ sum-of-squares is shown in solid black and their sum-of-
absolute-value is shown in dashed black.
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has nonzero coefficients for each signal, and so we denote its corresponding TEC estimate

TECL1,L2,L5. The next set of coefficients are the nominal dual-frequency TEC estimator

coefficients using L1 and L5, whose estimate we denote TECL1,L5. As discussed above,

these coefficients satisfy the simplified maximum systematic error reduction criterion since

f1 and f3 corresponding to signals L1 and L5 have the widest frequency spacing (f1 > f2 >

f3). The remaining estimators are the nominal dual-frequency estimators using signal pairs

L1/L2 and L2/L5. We denote their corresponding TEC estimates as TECL1,L2 and TECL2,L5

respectively.

2.5 Geometry Estimators

A geometry estimator is a set of coefficients that satisfy the geometry-estimator constraint

in Equation 2.11. Similar to our analysis for TEC estimators, applying the knowledge that

|G| ≫ |Ii| ≫ |Si| suggests that good geometry estimator coefficients should satisfy the

ionosphere-free constraint. We call such coefficients ionosphere-free geometry estimators.

Such combinations are widely used in conventional dual-frequency GNSS processing. The

author in [25] presents both dual-frequency and triple-frequency ionosphere-free phase com-

binations that estimate the geometry term. The results we present here match those found

in that work.

2.5.1 Geometry Estimators for Triple-Frequency GNSS

Applying the ionosphere-free and geometry-estimator constraints yields the following

system of coefficients with one degree of freedom (denoted by x):

c1 =
− 1

f2
2

+ x
(

1

f2
2

− 1

f2
3

)

1

f2
1

− 1

f2
2

(2.21)

c2 =

1

f2
1

− x
(

1

f2
1

− 1

f2
3

)

1

f2
1

− 1

f2
2

c3 = x
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Again, we can choose C using the criteria to reduce either the maximum systematic error

or the stochastic error variance. With regards to the simplified maximum systematic error

reduction criterion given in Equation 2.14, we again find that using only two signals with

the widest frequency spacing provides the best estimate.

For the case of the simplified stochastic error variance reduction criterion given in Equa-

tion 2.16, we can again solve for x to minimize the objective function
∑

i c
2
i . The value of x

that minimizes this objective function is given by:

x∗ =

1

f4
1

+ 1

f4
2

− 1

f2
3

(

1

f2
1

− 1

f2
2

)

(

1

f2
1

− 1

f2
2

)2

+
(

1

f2
2

− 1

f2
3

)2

+
(

1

f2
1

− 1

f2
3

)2
(2.22)

Substituting x∗ back into Equation 2.21, we obtain the triple-frequency ionosphere-free ge-

ometry estimator with minimum sum-of-squares coefficients, which we denote CG1,2,3
. The

important properties laid out in Section 2.4.2 are analogous for geometry estimators.

2.5.2 Geometry Estimators for Triple-Frequency GPS

Here we consider the ionosphere-free geometry estimators for triple-frequency GPS sig-

nals. Once again, let frequencies f1, f2 and f3 correspond to GPS signals L1, L2, and

L5. Figure 2.4 depicts the system in Equation 2.21 (parameterized along the x-axis) for

ionosphere-free geometry estimators applied to GPS frequencies. The figure shows the coef-

ficient values along with the sum-of-squares and sum-of-absolute-value characteristics.

It is interesting to note the similarity between figures 2.3 and 2.4. Since the orientations

of the geometry-free with TECu-estimator and the ionosphere-free with geometry-estimator

hyperplanes are identical, their corresponding intersections are parallel lines. As each sys-

tem was parameterized by its third component, their depiction in two dimensions will look

identical except for a difference in scaling of the axes.

Similar to our analysis of triple-frequency GPS TEC estimators, there are four notable

sets of coefficients for triple-frequency GPS geometry estimators. Table 2.1 shows these

coefficients along with their sum-of-squares and sum-of-absolute-values. The first satisfies
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Figure 2.4: The system of possible coefficients for ionosphere-free geometry estimators, pa-
rameterized along the x-axis. The coefficients’ sum-of-squares is shown in solid black and
their sum-of-absolute-value is shown in dashed black.

Table 2.2: Notable coefficients for triple-frequency GPS geometry estimators along with their
sum-of-squares and sum-of-absolute-value characteristics.

GPS Geometry Estimator Coefficients

Estimate L1CA L2C L5
∑

i c
2
i

∑

i |ci|
GL1,L2,L5 2.327 -0.360 -0.967 2.546 3.654
GL1,L5 2.261 0 -1.261 2.588 3.522
GL1,L2 2.546 -1.546 0 2.978 4.091
GL2,L5 0 12.255 -11.255 16.639 23.510
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the simplified stochastic error reduction criterion. This estimator has nonzero coefficients for

each signal, and we denote its corresponding estimate GL1,L2,L5. The next set of coefficients

use only signals L1 and L5, and we denote its estimate as GL1,L5. These coefficients satisfy

the simplified maximum systematic error reduction criterion. The remaining estimators use

signal pairs L1/L2 and L2/L5, and we denote their corresponding estimates GL1,L2 and GL2,L5

respectively.

2.6 Estimation of Systematic Errors

Here we discuss estimation of systematic errors Si. With our only a priori knowledge

being |G| ≫ |Ii| ≫ |Si|, it is apparent that estimators of systematic errors should apply

both the geometry-free and ionosphere-free constraints. If we choose to estimate a particular

systematic error Sj, it also makes sense to apply cj = 1 as a constraint – i.e. apply the

relevant systematic-error estimator constraint. As before, we can then optimize among valid

coefficient vectors to minimize the maximum impact of remaining systematic errors or to

minimize stochastic error variance.

2.6.1 Systematic Error Estimation in Triple-Frequency GNSS

In the context of triple-frequency GNSS signals, applying the geometry-free and ionosphere-

free constraints yields the following system of coefficients with one degree of freedom (denoted

by x):

c1 = x

1

f2
3

− 1

f2
2

1

f2
2

− 1

f2
1

(2.23)

c2 = −x

1

f2
3

− 1

f2
1

1

f2
2

− 1

f2
1

c3 = x

Note that the set of coefficients satisfying Equation 2.23 lie in a one-dimensional linear

subspace of R3. This is expected since we applied two unique linear homogeneous constraints.
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As a result, there is one signal – unique up to some scaling – that contains information about

systematic errors Si. We call this signal the geometry-ionosphere-free combination (GIFC).

The choice of scaling for the triple-frequency GIFC is arbitrary since the systematic error

components will always appear in the same proportion. As such, it does not make sense to

apply the constraint cj = 1 when trying to estimate Sj. Rather, the GIFC must be viewed

as the single available indicator of systematic errors. There is no way to further separate

residuals due to S1 versus S2, etc. using linear estimators.

2.6.2 Important Properties of Triple-Frequency GIFC Coefficients

Here we describe some important properties regarding the triple-frequency GIFC co-

efficients. First, we note that the span of CGIFC has the same orientation as the line of

triple-frequency geometry-free TEC estimators, as shown in Figure 2.5. To see why, consider

the difference between any two TEC estimators CTEC1
−CTEC2

. In their resulting combina-

tion, the term containing TECu goes to zero and is therefore ionosphere-free. It follows that

CTEC1
−CTEC2

must correspond to some scaling of geometry-ionosphere-free coefficients:

CGIFC = α (CTEC1
−CTEC2

) (2.24)

where α depends on the scaling of CGIFC.

Additionally, we note that CGIFC is orthogonal to the triple-frequency geometry-free TEC

estimator coefficients CTEC1,2,3
:

〈CGIFC|CTEC1,2,3
〉 = 0 (2.25)

As a consequence, the GIFC provides no direct information on the residual errors present in

the corresponding estimation TEC1,2,3 whose error signal lies in the null space of the GIFC

estimator.
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Figure 2.5: For triple-frequency GPS signals, shows the GIFC subspace and coefficients
(orange line and dot). Also shows coefficients for TEC estimates TECL1,L2,L5 (green dot),
TECL1,L5 (pink dot), and TECL1,L2 (cyan dot), along with the line corresponding to all
geometry-free TEC estimators (gray line). The green line corresponding to CTECL1,L2,L5

is
orthogonal to the orange line.

2.6.3 Systematic Error Estimation in Triple-Frequency GPS

When dealing with triple-frequency GPS signals, we choose to use a GIFC scaling whose

corresponding coefficients are:

CGIFCL1,L2,L5
= [−1.756, 9.520,−7.764]T (2.26)

This scaling is chosen so that CGIFCL1,L2,L5
= CTECL1,L5

−CTECL1,L2
and thus GIFCL1,L2,L5 =

TECL1,L5 − TECL1,L2. A convenient aspect of this scaling is that its norm is very close to

the norm of TECL1,L2.

2.7 Residual Errors in TEC Estimates

One of our goals in observing the GIFC is to quantify the impact of residual errors (i.e.

the Si and ǫi terms) on TEC estimates. Let us define the error residual vector R with

components Ri corresponding to signals Φi:

Ri = Si + ǫi (2.27)
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Given a set of TEC estimator coefficients CTEC, the residual error impacting the TEC

estimate is:

RTEC = 〈CTEC|R〉 (2.28)

Note that the residual error shown in the GIFC is itself:

GIFC = RGIFC = 〈CGIFC|R〉 (2.29)

We would like to express the residual error for TEC estimates in a convenient basis related

to the GIFC and optimal triple-frequency TEC estimator that we derived earlier. Recalling

from Section 2.6.2 that CTEC1,2,3
is orthogonal to CGIFC, we define the orthonormal basis:

U1 =
CGIFC

||CGIFC||
(2.30)

U2 =
CTEC1,2,3

||CTEC1,2,3
||

U3 = U1 ×U2

We can decompose R into its components R′
i in this new basis:

R′
i = 〈Ui|R〉 for i ∈ {1, 2, 3} (2.31)

Since U1 and U2 span the geometry-free subspace, we can decompose any set of geometry-

free TEC estimator coefficients CTEC with respect to just U1 and U2 to obtain:

CTEC = 〈U1|CTEC〉U1 + 〈U2|CTEC〉U2 (2.32)

The corresponding error residual is then:

RTEC = 〈U1|CTEC〉R
′
1 + 〈U2|CTEC〉R

′
2 (2.33)

Now using the property
〈CTEC1,2,3

|CTEC〉

||CTEC1,2,3
||

= ||CTEC1,2,3
|| from Equation 2.20, we have that

〈U2|CTEC〉 = ||CTEC1,2,3
|| for any TEC estimator CTEC. Expanding the terms for U1 and

U2, the expression for residual error in the TEC estimate can be written:
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RTEC = 〈U1|CTEC〉R
′
1 + ||TEC1,2,3||R

′
2 (2.34)

= 〈CGIFC|CTEC〉
||CGIFC||2

RGIFC +RTEC1,2,3

This shows that, in essence, there are two components to the residual errors that affect

TEC estimations. The first component R′
1 is in the direction of CGIFC and is observable

through the GIFC. The second component R′
2 is in the direction of CTEC1,2,3

and is unob-

servable. R′
2 can be thought of as the residual error that behaves like TEC, while R′

1 is the

component that behaves exactly unlike TEC. The third residual error component R′
3 does

not affect TEC estimates.

By observing diverse measurements of the GIFC, we can construct an overall distribu-

tion RGIFC, which scales by 1
||CGIFC||

to form the distribution of R′
1. Then, the deviations

of the distribution of R′
1 can be related to deviations in the residuals of different TEC es-

timations using the factor 〈CGIFC|CTEC〉/||CGIFC||. It is also useful to consider the factor

〈CGIFC|CTEC〉/||CGIFC||
2, which directly relates deviations in RGIFC to RTEC. Table 2.3

shows both of these quantities for the triple-frequency GPS geometry-free TEC estimators

from Table 2.1, where CGIFC is taken to be CGIFCL1,L2,L5
from Equation 2.26.

Table 2.3: Shows the quantities 〈CGIFC|CTEC〉
||CGIFC||

, 〈CGIFC|CTEC〉
||CGIFC||2

, and ||CTEC||
||CGIFC||

for each of the signif-
icant triple-frequency GPS geometry-free TEC estimators from Table 2.1. CGIFC is taken to
be CGIFCL1,L2,L5

Estimate 〈CGIFC|CTEC〉
||CGIFC||

〈CGIFC|CTEC〉
||CGIFC||2

||CTEC||
||CGIFC||

TECL1,L2,L5 0 0 0.831
TECL1,L5 3.758 0.303 0.885
TECL1,L2 -8.649 -0.697 1.085
TECL2,L5 58.610 4.723 4.796

At this point, we want to make some useful claim about the overall residual error RTEC

impacting TEC estimates, but we only have information on one component R′
1 that affects

them. In order continue, we must start making additional assumptions and claims about

the systematic error components Si. Up until now, we have assumed that they are small
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compared to the G and I terms in our model, but we have not said anything about the

relationship between the individual error components Ri.

Let us consider Ri as random variables whose overall joint distribution is symmetric

about the origin. In a rough sense, this treats the individual error components for each Ri

as independent and of equal amplitude. While this assumption is certainly not accurate

with regards to real triple-frequency GNSS signals, it allows for more insightful analysis and

more useful comparison between TEC estimators. If this is the case, then the distribution in

GIFC can be used to approximate the distribution of residual errors any TEC estimate. In

this case, the scaling factor relating deviations in the GIFC to approximated deviations in

TEC is simply the ratio of their coefficient norms, or ||CTEC||
||CGIFC||

. This quantity is also provided

in Table 2.3 for the relevant GPS TEC estimators.
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CHAPTER 3: APPLICATION AND RESULTS

In this section, we apply the theory on GIFC to real GPS data. We will discuss the

nature of our data and how it was obtained. Then we will discuss the processing steps

used to compute and level the GIFC over many datasets. Finally, we present results and

interpretation of computed GIFC signals.

3.1 Data Collection

For our analysis, we obtain data from a high-rate GNSS data collection network [28].

Figure 3.1 shows the sites that are part of the receiver network. For the work presented here,

we use data from receivers at Jicimarca, Poker Flat, and Hok Tsui. Each site is equipped

with at least one Septentrio PolaRxS scintillation monitoring receiver. These receivers are

configured to record all available GNSS constellations and signals. Recorded measurements

are stored in a proprietary format called Septentrio Binary Format (SBF).

For our work, we are interested in GPS signals L1CA, L2C, and L5. We choose to look

at data from GPS satellites G01, G24, G25, and G27, as each of these satellites has been

transmitting triple-frequency signals since at least 2013 (see Figure 1.5). For our analysis,

we use data ranging from 2013-01-01 through 2016-04-26. However, due to data outages and

processing anomalies, we end up analyzing data from approximately two-thirds of the days

in this time period.

3.2 Data Processing Overview

In Figure 3.2 we depict the data-processing steps taken in order to produce analyzable

results. The first step is to extract the relevant measurements from the SBF files used to

archive the data. These include time series of the phase measurements from each satellite of

interest. Next, we combine extracted phase measurement time series from a given satellite

using the coefficients from Equation 2.26 to form the GIFC signal. Then, we align and level
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Figure 3.1: Map of GNSS data collection sites. Each site is equipped with a Septentrio
PolaRxS scintillation monitoring receiver. The sites whose data we use in this work are
marked in cyan.
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the GIFC signals, run a jump correction algorithm, and perform an integrity check. Finally,

we aggregate and visualize the results. In the remainder of this section, we describe each

processing steps in detail.

GNSS Measurements
Septentrio Binary Format

extract carrier phase outputs

compute GIFC from
carrier phase measurements

detect, estimate, and repair
GIFC jumps

check integrity of GIFC
discard anomalous data

level and align
GIFC signals

analyze GIFC

Figure 3.2: Data processing block diagram that shows the data-processing steps taken to
convert SBF files into analyzable results.

3.2.1 Pass Alignment

Recall from Section 1.2.1 that GPS satellites have orbital periods of roughly one-half

sidereal day. To a static receiver on the ground, the satellite will pass through the same

part of the sky approximately every 23 hours and 58 minutes. As such, the satellite-receiver

geometry is nearly identical each day, and the pattern of systematic errors in the GIFC looks
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very similar. In actuality, the orbital period is slightly different and changes slowly for each

satellite. The mean orbital period must be estimated in order to reasonably align data over

a multi-year period.

In order to align the GIFC signal for consecutive passes, we first choose a reference epoch

(2013-01-01) and define a “pass period” as one sidereal day. Then, we apply a shift according

to the number of pass periods that have elapsed between the reference epoch and the signal

measurement times. We adjust the pass period until the total shift between the first and last

available data appears to be at least less than 5 minutes, based off of day-to-day correlation

in the GIFC shape. For the satellites used in our analysis, the mean pass periods tend to be

around 7 seconds shorter than the mean sidereal day.

Finally, we note that the data we use is archived in 24-hour datasets, and sometimes a

single pass overlaps two datasets. If this is the case, the two datasets are merged so the pass

can be considered as a whole.

3.2.2 Jumps in GIFC Data

For our analysis dealing with 1 Hz measurements, it is often the case that receiver loss-

of-lock and interference/ionosphere-induced rapid phase changes, or “cycle-slips,” can cause

jumps in the carrier ambiguity term λN from Equation 1.10. This causes a corresponding

jump in the GIFC. For interference/ionosphere-induced cycle slips, the underlying cause is

due to deep fades in the signal intensity that allow noise to disrupt receiver phase-lock. These

slips can occur for any satellite at any point during the pass, but are usually associated with

strong ionosphere activity, interference, or multipath at low elevations. We correct for cycle

slips when possible, though some datasets such as in Figure 3.4 are beyond the correction

capabilities of the simple method we present here.

The method for correction of GIFC jumps simultaneously addresses loss-of-lock and cycle-

slip related jumps. First, we take the epoch-to-epoch difference of the GIFC signal and

identify all segments in which we are confident that jumps did not occur, that is, segments
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where the epoch-to-epoch difference remains less than 0.2 for the relevant GIFC scaling. To

each segment we ascribe a bias value. Then, we simultaneously estimate the bias values

with a 5th-order polynomial fit to the GIFC. The implementation of this linear fit and bias

estimation is given in Appendix AB. We use the bias value estimates to correct the GIFC

signal. Figure 3.3 shows an example of the GIFC before and after jump correction.

Figure 3.3: Shows example of GIFC jump correction before (orange) and after (blue) applying
our correction algorithm.

Figure 3.4: Shows example of a pass with many jumps in short succession likely due to
ionosphere-induced cycle slips. Our jump correction algorithm was insufficient to correct the
GIFC for this example.

3.2.3 Anomalous Datasets

Anomalous datasets occur when our jump correction algorithm fails or some other event

causes the GIFC signal to have very large variation in magnitude. To check whether a
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dataset is valid, we level the GIFC to zero using its value at the epoch closest to that of the

satellite’s highest elevation. Then, if the absolute value of the GIFC is larger than 1.5, the

data is considered anomalous. If the satellite elevation is also below 20◦ during the portions

of the signal that are above the threshold, then just those portions are removed from our

analysis. Otherwise the entire dataset is removed. Figure 3.4 shows a case where jump

correction failed and the dataset was removed from analysis.

3.3 Results

In this section, we show results pertaining to the GIFC. The goal is to characterize the

nature of the GIFC for triple-frequency GPS and to analyze the nature of the underlying

systematic errors it exposes. We begin with normal examples of the GIFC signal for single

passes, then move on to exploring patterns in the GIFC signals. Ultimately, we relate devi-

ation percentiles for GIFC signals to estimated deviation percentiles for the error residuals

in TEC estimates, which is the key contribution of this work.

3.3.1 GIFC Examples

For satellites G01, G24, G25, and G27, figures 3.5, 3.6, and 3.7 show nominal examples of

the GIFC during quiet days for receivers in Poker Flat, Hok Tsui, and Jicamarca respectively.

The satellite elevation is also shown. The most prominent features are the large-scale trends

that occur over the entire pass and the multipath fluctuations. Stochastic noise also appears

largest near the ends of the satellite passes. We should note that, because of its high latitude,

the receiver in Poker Flat, Alaska actually observes two passes daily for a given satellite, but

here we only show the longest pass.

3.3.2 Multi-Year GIFC Variations

Figures 3.8, 3.9, and 3.10 show how the GIFC changes over the course of 3 years for

receivers in Poker Flat, Hok Tsui, and Jicamarca respectively. The images reveal that the

large-scale trend in the GIFC is relatively static from day to day but changes slowly over a
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Figure 3.5: Shows nominal GIFC (orange line) of satellites G01, G24, G25, and G27 during
quiet day for a receiver at Poker Flat, Alaska. Satellite elevation is also shown (blue line).
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Figure 3.6: Shows nominal GIFC (orange line) of satellites G01, G24, G25, and G27 during
quiet day for a receiver at Hok Tsui near Hong Kong. Satellite elevation is also shown (blue
line).
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Figure 3.7: Shows nominal GIFC (orange line) of satellites G01, G24, G25, and G27 during
quiet day for a receiver at Jicamarca, Peru. Satellite elevation is also shown (blue line).
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period of weeks or months. Despite frequent data outages, the images appear to indicate an

annual or quasi-annual pattern in the variation of these trends. Data from the receiver at

Hok Tsui shows the clearest example of this pattern. It appears that the pattern may occur

slightly earlier (around 7 days) from one year to the next.

3.3.3 GIFC Distribution

Figures 3.11, 3.12, and 3.13 show heatmaps of the GIFC signal amplitude over many

passes. GIFC signals are leveled to zero-mean over the duration of the pass in order to

emphasize the magnitude of unbiased residual errors. Multipath oscillations towards the

ends of the pass are visible in these heatmaps. The GIFC deviations from zero vary for

different satellites and receiver locations, however they all stay within roughly ± 0.5.

Table 3.1 shows certain percentile deviation values for the combination of all GIFC signals

(for all satellites, receiver locations, and days) used in this study. It relates these percentile

deviations to corresponding deviations of its component in each TEC estimation using scale

factors from the third column of Table 2.3. Table 3.2 is similar to Table 3.1, except that

it relates GIFC percentile deviations to corresponding overall deviations for each TEC es-

timation using scale factors from the fourth column of Table 2.3. This relation assumes

independence and symmetric distributions of Si as discussed in Section 2.7.

Under these assumptions, comparison of the two tables reveals that the unobservable

error component still has a significant impact on TECL1,L2, increasing the error residual

deviations by a factor of around 1.5. A conservative bound would be that residual error

deviations in TECL1,L2 are usually less than 0.25 TECu. Meanwhile, TECL2,L5 likely has

error deviations surpassing 1.0 TECu. The GIFC error component in TECL1,L5 is fairly

small, at less than 0.07 TECu. Under the assumptions made for Table 3.2, its performance

difference versus TECL1,L2,L5 goes down to just over 0.01 TECu. Overall, we can say that the

increase in frequency margin by introducing L5 signals has the biggest impact on improving
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Figure 3.8: Shows how GIFC for satellites G01, G24, G25, and G27 changes over the course
of 3 years for receiver in Poker Flat, Alaska.
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Figure 3.9: Shows how GIFC for satellites G01, G24, G25, and G27 changes over the course
of 3 years for receiver in Hok Tsui, Hong Kong.
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Figure 3.10: Shows how GIFC for satellites G01, G24, G25, and G27 changes over the course
of 3 years for receiver in Jicamarca, Peru.

47



error suppression performance, though using all three frequencies does still improve error

suppression a small amount.

Table 3.1: Shows GIFC deviation corresponding to chosen percentiles computed over the
combined data (satellites G01, G24, G25, G27 at all three sites for all available days dur-
ing 2013-2016). The columns to the right show how these deviations scale for each TEC
estimation.

GIFC Deviation for Given Percentiles and Their Component Scaling to Error Deviations
for TEC Estimates

Deviation Percentile GIFC TECL1,L2,L5 TECL1,L5 TECL1,L2 TECL2,L5

50 0.11 0 0.033 0.077 0.520
75 0.19 0 0.058 0.132 0.897
90 0.21 0 0.064 0.146 0.992

Table 3.2: Shows GIFC deviation similar to Table 3.1. The columns to the right show how
these deviations scale for residuals in each TEC estimation according to the factor ||CTEC||

||CGIFC||

and based on the assumptions/argument at the end of Section 2.7.

GIFC Deviation for Given Percentiles and Their Overall Scaling to Error Deviations for
TEC Estimates

Deviation Percentile GIFC TECL1,L2,L5 TECL1,L5 TECL1,L2 TECL2,L5

50 0.11 0.091 0.097 0.119 0.528
75 0.19 0.158 0.168 0.206 0.911
90 0.21 0.175 0.186 0.228 1.007

3.3.4 TEC Results

For our last section of results, we present visual comparisons of actual TEC estimates

using the triple-frequency GPS coefficients that we have discussed. We estimate TEC and

related ambiguity and inter-frequency bias terms as discussed in Section 1.2.2 and in Ap-

pendix AA. Figures 3.14, 3.15, and 3.16 show a succession of TEC estimates, first showing all

triple-frequency TEC estimates and then showing closeup examples from satellite G08, for a

receiver in Poker Flat, Alaska. As we would expect, the L2/L5 TEC estimates show the most

noise and deviation. Figure 3.15 shows the full pass for satellite G08, revealing the larger

and slowly-changing discrepancy between L1/L5 and L1/L2 TEC estimates corresponding
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Figure 3.11: Shows heatmap of zero-mean GIFC values for satellites G01, G24, G25, and
G27 and all available passes during 2013-1015 for receiver in Poker Flat, Alaska.
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Figure 3.12: Shows heatmap of zero-mean GIFC values for satellites G01, G24, G25, and
G27 and all available passes during 2013-1015 for receiver in Hok Tsui near Hong Kong.
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Figure 3.13: Shows heatmap of zero-mean GIFC values for satellites G01, G24, G25, and
G27 and all available passes during 2013-1015 for receiver in Jicamarca, Peru.
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to the low-frequency trend in the GIFC. We also see that the triple-frequency linear com-

bination and least-squares TEC estimates lie between the dual-frequency L1/L2 and L1/L5

TEC estimates. The closeup example in Figure 3.16 shows that these estimates are almost

identical, with the linear combination estimate showing a slightly stronger preference for the

L1/L5 estimate compared to least-squares. Their similarity should be expected, as both are

optimized geometry-free estimates of TEC using all three signals. Any discrepancies between

the linear combination and least-squares estimate are likely due to the impact of the code-

minus-carrier observations used in the least-squares estimate. Upon close examination of the

L1/L5 and L1/L2 estimates, it appears that the L1/L2 estimate is slightly noisier, as should

be expected based on its larger coefficient norm. Figure 3.16 also reveals the potential for

triple-frequency estimates to reduce the effects of multipath, as certain sections show that

the triple-frequency estimates oscillate noticeably less than the dual-frequency estimates.

Figure 3.14: Shows comparison of TEC estimates for all triple-frequency satellites for re-
ceiver in Poker Flat, Alaska on 2016-01-02. The L2/L5 estimates are by far the noisiest.
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Figure 3.15: Shows comparison of TEC estimates for satellite G08 as a closeup example of
results shown in Figure 3.14. The triple-frequency L1/L2/L5 and least squares estimates are
essentially identical, and they lie between the L1/L2 and L1/L5 TEC estimates. The low-
frequency discrepancy between L1/L5 and L1/L2 estimates can especially be seen between
hours 4.5 to 5.5.

Figure 3.16: Shows closeup comparison of TEC estimates as shown in Figure 3.15. Multi-
path fluctuations can be seen in both dual-frequency and triple-frequency estimates, however,
there are sections (such as between hours 3.6 to 3.7) that the triple-frequency TEC estimates
appear to have less fluctuation than either L1/L2 or L1/L5 estimates. The triple-frequency
linear combination and least-squares estimates are nearly identical, with the linear combina-
tion estimate showing a slight preference for the L1/L5 over the L1/L2 TEC estimate when
compared to the least-squares estimate.
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CHAPTER 4: DISCUSSION AND CONCLUSION

4.1 Summary of Work

In this work, we first introduced a simple model for GNSS phase pseudorange observables.

We then derived linear model estimators that combine the GNSS phase pseudoranges. We

limited our focus to the precision (rather than overall accuracy) of these estimates by not

considering bias terms from our model. The choice of estimator coefficients was motivated

by the assumption that |G| ≫ |Ii| ≫ |Si|. We showed optimal triple-frequency combinations

for geometry-free TEC estimators, ionosphere-free geometry estimators, and the geometry-

ionosphere-free estimator of systematic errors. We discussed how, under certain strong

assumptions, the GIFC can be related to the error residuals in linear TEC estimates.

Our analysis proceeded by computing the GIFC signal for multiple satellites across three

receiver locations over the span of 3.5 years. The results showed that 1) a large, slowly-

varying trend dominates the GIFC signal, followed by multipath and then other systematic

errors, 2) this trend shows quasi-annual pattern, 3) that moderate to high scintillation ac-

tivity corresponds to an increase in GIFC noise levels, and 4) that the zero-mean GIFC

deviations tend to stay well below 0.5, with 50% deviation at 0.11 and 90% deviation at 0.21

across all datasets. Relating the GIFC deviations to triple-frequency GPS TEC estimates

suggests that dual-frequency TEC estimates using GPS L1/L2 signals have residual errors

whose distribution in magnitude is similar to that of the GIFC. A conservative bound based

on the assumptions at the end of Section 2.7 suggests that residual errors in TECL1,L2 are

generally less than 0.25 TECu.

We also compared dual-frequency and triple-frequency TEC estimates for a one-day ex-

ample. The results for these estimates corresponded to our expectations based on our deriva-

tions and the coefficient magnitudes. Namely, the L2/L5 combination is noisiest, followed

by L1/L2 and then L1/L5. The triple-frequency linear combination is shown to lie between

the L1/L5 and L1/L2 TEC estimates and appears to have the potential to reduce the effect
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of multipath in certain scenarios. We also found the triple-frequency linear combination and

least-squares estimates to be nearly identical, which should be expected based on the simi-

larities in their derivations (i.e. geometry-free, identical noise for all three signals). We note

here that the triple-frequency linear combination offers a simpler estimation procedure than

least-squares. When only relative TEC is needed, the linear combination triple-frequency

estimate will be useful.

4.2 Implications

There are several important implications of the results we presented. As for the quasi-

annual variations in the large-scale trend of GIFC, it is plausible that these large-scale

features in the GIFC signals may correspond to satellite antenna phase effects. The fact

that the feature occurs over the course of the entire satellite pass and that it repeats from

day-to-day indicate some effect involving the satellite-receiver geometry. Additionally, the

yearly pattern they seem to follow corresponds to the timescale for changes in the receiver-

satellite-Sun geometry that determines the satellite attitude. Though the mean phase center

of GPS L1/L2 has been investigated for Block IIF satellites, the mean phase centers for

combinations including L5 have yet to be investigated [29].

If the large-scale trend can be modeled and removed, then the GIFC becomes useful

for studying the remaining systematic effects. In particular, it may be a useful metric for

analyzing performance of multipath mitigation and estimation of higher-order ionosphere

terms. This type of performance analysis may prove convenient in the context of precise point

positioning where addressing these effects is critical. More can and should be said about

the nature of the GIFC and its underlying components. Time-frequency and independent

component analysis may be applicable.

The GIFC residual error contribution to TECL1,L2 in Table 3.1 suggests that, in general,

residual errors impacting TECL1,L2 are larger than 0.1 TECu. This would mean that error

residuals impact studies such as [30], which studies plasma bubbles with rate-of-TEC indexes
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and cites observations of TEC fluctuations of over 0.05 TECu /minute to be significant (i.e.

not due to residual errors). However, because most of the GIFC deviation we measured is

due to large-scale trends, these figures seem like a reasonable precision.

4.3 Future Work

There are several paths to continue the work laid out in this thesis. Foremost among

these is investigation into actual causes for the systematic errors present in the GIFC. Inves-

tigating satellite antenna phase center variations is a good starting point. Signal components

corresponding to higher-order ionosphere terms and phase-windup effects, which vary slowly

over the course of the pass, are dominated by the large-scale trend. If the large-scale trend

can be modeled and removed, then adding higher-order ionosphere effects to the model may

be a straightforward next step. Additionally, we plan to perform simulations in order to

investigate the unobservable component of TEC estimation residual error. In particular, we

hope to isolate and further characterize the specific error impact of ionosphere activity. Fi-

nally, the assumptions used to derive TEC estimation precision should be explored further.

In particular, it would be helpful to have better statistics on the noise characteristics of each

signal, as well as a better understanding of the relative size of impact of different systematic

errors.
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[29] R. Schmid, R. Dach, X. Collilieux, A. Jäggi, M. Schmitz, and F. Dilssner, “Absolute IGS

antenna phase center model igs08.atx: status and potential improvements,” Journal of

Geodesy, vol. 90, no. 4, pp. 343–364, 2016.

[30] M. Nishioka, A. Saito, and T. Tsugawa, “Occurrence characteristics of plasma bub-

ble derived from global ground-based GPS receiver networks,” Journal of Geophysical

Research: Space Physics, vol. 113, no. A5, 2008.

60



APPENDIX

AA Multi-Frequency Least-Squares TEC Estimation

This documents our implementation of TEC estimation using triple-frequency measure-

ments, which is similar to that in [19]. However, there are some differences, so here we

document our exact method of implementation.

In order to estimate absolute TEC, carrier ambiguity and inter-frequency hardware bias

terms must be estimated. For this we use a code-carrier leveling method as part of the

linear system used to estimate TEC. To discuss this method, we first introduce two new and

separate equations for code and carrier (P and Φ) pseudorange observations:

Pi = G+ IPi
+Hsi +Hri + SPi

+ ǫPi
(A-1)

Φi = G+ IΦi
+Hsi +Hri + λiNi + SΦi

+ ǫΦi
(A-2)

where i denotes terms corresponding to a particular signal at frequency fi, G contains the sum

of all non-dispersive terms as developed in Section 2.1, IPi
and IΦi

are the ionosphere delays

corresponding to code and carrier measurements respectively, Hsi and Hri are hardware

delays corresponding to the satellite and receiver respectively, and the terms SPi
, SΦi

, ǫPi

and ǫΦi
are the systematic and stochastic error terms corresponding to code and carrier

measurements respectively. It is worth clarifying that in general, hardware delays can be

different for code and carrier measurements, creating a code-carrier bias. For the Septentrio

receiver used in this study, code-carrier bias is effectively zero by design, and so hardware

delays are assumed equal on code and carrier in our model.

Here, unlike in the main text, we distinguish the ionosphere effect on code and carrier.

Their first-order effects, which are sufficient for our analysis and are also assumed in [19] can
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be modeled as:

IPi
=

κu

f 2
i

TECu (A-3)

IΦi
= −

κu

f 2
i

TECu (A-4)

That is, the first-order ionosphere effect on code and carrier measurements are equal in

magnitude and opposite in sign.

Another difference from in the main text is that we introduce hardware delays specific to

satellite and receiver. Estimation of satellite hardware biases generally requires a network of

ground receivers. Here, we apply satellite hardware bias estimated by IGS in their IONEX

files [5]. This allows us to remove the terms Hsi from equations A-3 and A-4.

Given triple-frequency observations, we form two geometry-free measurements called the

carrier-difference and code-minus-carrier observables. By applying the previously estimated

satellite hardware biases and substituting the ionosphere effect expressions in equations A-3

and A-4 we obtain:

Φi − Φj = ∆Φi,j = −κ

(

1

f 2
i

−
1

f 2
j

)

TECu +∆Hi,j + 〈error terms〉 (A-5)

for the carrier-difference expression and:

Pi − Φi = CMCi = 2
κu

f 2
i

TECu− λiNi + 〈error terms〉 (A-6)

for the code-minus-carrier expression. Here, ∆Hi,j = Hri−Hrj is the receiver inter-frequency

hardware bias between signals i and j. Note that the code-minus-carrier expression no longer

has the inter-frequency hardware bias term. However, because it contains code pseudorange

measurements, its noise terms are much larger than those in the carrier-difference.

A linear model for estimating TEC and related inter-frequency and carrier ambiguity

biases can be formed using these carrier-difference and code-minus-carrier expressions for

triple-frequency measurements. The parameters to be estimated are TECu, λ1N1, λ2N2,
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λ3N3, ∆H1,2, and ∆H1,3. The portion of the system corresponding to contiguous (i.e. no

loss-of-lock or cycle slips) observations from a particular satellite can be expressed as:
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(A-7)

where αi,j =
(

1

f2
i

− 1

f2
j

)−1

and where Wt is a weight used to reduce the impact of code noise

on the system’s solution. The inclusion of the CMC terms into the full system model is the

main difference between our implementation and the algorithm provided in [19] and [26],

where carrier ambiguities are estimated separately. The weight Wt could change depending

on other parameters, such as satellite elevation or presence of multipath, or it can be chosen

to be constant. We choose to set Wt = 0.001 in order to bring the noise effects of the code

observations below the level of carrier phase noise effects.

This system is repeated for each contiguous set of observations from each satellite, with

a new set of ambiguity parameters λiNi being estimated for each segment and the receiver

hardware biases ∆H1,2 and ∆H1,3 being shared across all satellites and data segments. A

sparse iterative linear-least-squares solver is then used to find parameters TECut, λiNi and

∆Hi,j. We refer to this TECu signal as the triple-frequency least-squares TEC estimate.

The estimates of λiNi and ∆Hi,j can be used to correct dual-frequency TEC estimates for

any signal pair.
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After solving the system above, ∆H1,2 and ∆H1,3 will have correct offsets relative to one

another, but will still be off by some constant. That is, ∆H1,2 and ∆H1,3 are relative inter-

frequency hardware biases that do not reflect the overall inter-frequency hardware bias.

In turn, all TEC estimates will also be offset by some constant. To estimate the overall

inter-frequency hardware bias, we apply the TEC gradient mapping method as discussed

in [14]. Our implementations are identical, and so the method will not be described here.

The algorithm provides an absolute estimate of ∆H1,2, which we use to correct the inter-

frequency biases and overall TEC estimated using triple-frequency signals.

AB GIFC Jump Correction

Here we describe in more detail our implementation of a jump-correction algorithm for

the GIFC signal. The algorithm can be divided into three steps: finding no-jump segments,

estimating jump amplitudes, and applying jump corrections. We should note that this

algorithm differs from traditional cycle slip estimation and correction in that individual

jump times are not detected.

We begin by taking the epoch-to-epoch difference of the GIFC signal. We consider

all contiguous segments for which the magnitude of this difference does not exceed 0.2 for

the GIFC units given in Equation 2.23. We associate one jump value per segment. We

simultaneously estimate jump values and a 3rd-order polynomial fit to the entire GIFC

signal for a given pass using the following system, which is a modified Vandermonde matrix:
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where pi are the polynomial coefficients and Ji are the jump amplitudes. The system in

Equation A-8 is solved for the least-squares estimate of [p0, p1, p2, J1, · · · ]
T . The jump es-

timates Ji are then used to correct the individual no-jump segments of the GIFC. GIFC

epochs that did not satisfy the no-jump threshold test described above are removed from

the analysis by setting their values to NaN.
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