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ABSTRACT 

 

ANALYZING ROOT TRAITS TO CHARACTERIZE JUNIPER EXPANSION INTO 

RANGELANDS 

 

Juniper expansion into sagebrush communities is a widespread phenomenon occurring 

across large regions of the western U.S. over the past century. Fire suppression and increased 

grazing activity are commonly considered as the primary drivers of expansion but they do not 

explain all instances of expansion. In order to develop a complete explanation for the success of 

juniper we investigated the competitive abilities of J. osteosperma (Utah juniper) and A. 

tridentata (big sagebrush) based on fine root traits, including specific root length (SRL), fine root 

diameter, and fine root biomass, and spatial patterns of water use inferred from stem and soil 

stable oxygen isotopes (δ18O). Data were collected from three different age classes of J. 

osteosperma (seedling, sapling, and mature) to better understand the competitive abilities at 

different life stages. J. osteosperma age classes were originally determined by height and later 

aged from cross sections. The youngest seedling in our study was 14 years of age, therefore we 

refer to the seedlings in this study as ‘advanced.’ Advanced J. osteosperma seedlings 

demonstrated the ability to switch their reliance from shallow to deep water sources later in the 

season, potentially enhancing their survival particularly during drought events. A. tridentata had 

traits associated with faster root proliferation and resource acquisition (significantly greater SRL 

and smaller root diameter) suggesting competition for limiting resources is likely not a primary 

driver of expansion of J. osteosperma.  

 



 iii 

ACKNOWLEDGEMENTS 

 

 There are many individuals I would like to acknowledge for their assistance and support 

in the completion of my master’s research. First, I would like to acknowledge my advisor, Dr. 

Troy Ocheltree for giving me the opportunity to join his lab and having faith in me despite the 

little background I had in plant ecophysiology. Thanks for encouraging me to create my own 

questions and for your support throughout this process from setting up my field site to addressing 

coding issues in R.   

I would also like to extend my sincere gratitude to my committee members, Drs. Louise 

Comas and Alan Knapp for their time and expertise.  A special thanks to Louise for offering 

advice on how to take the soil cores, lending equipment, and discussing processing of root 

samples. I would also like to thank Junior Garza, a contractor with ARS who welded a metal 

guide specifically for my soil coring and mended warped core tubes.  

Lastly I would like to thank those nearest to me, including Matthew – my best friend and 

partner. Your continuous support has meant the world to me. Thank you also to my twin brother, 

Connor, who inspires me to appreciate the environment every day. I only wish I could be close to 

as passionate about the natural world as you are.  And thanks to my older sisters Maureen and 

Mary who have always offered me love and support.  

 

 

 

 

 



 iv 

TABLE OF CONTENTS 

 

ABSTRACT………………………………………………………………………………………ii 

ACKNOWLEDGEMENTS………………………………………………………………………iii 

HISTORY OF JUNIPER EXPANSION INTO RANGELANDS………………………………...1 

 Introduction………………………………………………………………………………..1 

 Juniper Woodlands………………………………………………………………………...2 

 Effects of Juniper Encroachment………………………………………………………….3 

 Mechanisms Explaining Juniper Encroachment…………………………………………..5 

 Water-use Strategies……………………………………………………………………....7 

 Summary…………………………………………………………………………………10 

LITERATURE CITED…………………………………………………………………………..11 

ANALYZING ROOT TRAITS TO CHARACTERIZE JUNIPER EXPANSION INTO 

RANGELANDS…………………………………………………………………………………15 

 Introduction………………………………………………………………………………15 

 Methods…………………………………………………………………………………..18 

 Results……………………………………………………………………………………26 

 Discussion………………………………………………………………………………..35 

LITERATURE CITED…………………………………………………………………………..41 

APPENDIX………………………………………………………………………………………48 

 

 

 

 

 

 



 1 

HISTORY OF JUNIPER EXPANSION INTO RANGELANDS 

 

Introduction 

The encroachment of woody plants (shrubs and trees) into grassland-dominated 

ecosystems is a phenomenon that has occurred globally over the past several thousand years, but 

within the past century has occurred at an unprecedented rate (Brunelle et al. 2013, Van Auken 

2009). Woody encroachment is most prevalent in arid and semi-arid ecosystems across the 

globe. This makes it a fairly extensive issue as nearly 41% of the earth’s land surface is made up 

of arid and semi-arid ecosystems and approximately 2.4 billion people live in these systems (Van 

Auken 2009). The majority of this land area is rangeland or pastoral land and as a result concern 

over woody encroachment is primarily focused on the loss of forage quantity and quality. 

Management of this phenomenon is costly; the US Natural Resource Conservation Service 

(NRCS) spent $127 million on woody encroachment management across more than 1 million ha 

of rangeland between 2005 and 2009 alone (Anadón et al. 2014).  

While current management practices have been effective for some species, research to 

better understand the underlying causes of woody encroachment is still needed to better manage 

the encroachment of other species. Several factors have been researched to try and explain 

woody encroachment including increases in atmospheric CO2 (Knapp et al. 2001), increased 

grazing (Brunelle et al. 2013, Jacobs et al. 2011, Soulé and Knapp 1999), altered fire regimes 

(Arendt and Baker 2013, Romme et al. 2009), and re-establishment of juniper into historical 

ranges (Miller et al. 2008, Miller and Wigand 1994, Romme et al. 2009). Encroachment is likely 

caused by a combination of these factors or others and is likely species dependent. 
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Juniper Woodlands 

In the western United States Juniperus is one of the major woody taxa encroaching into 

shrub and grass dominated ecosystems. Piñon-juniper woodlands cover approximately 40 million 

hectares in the western United States (Romme et al. 2009), with significant infill and expansion 

occurring in the last century. Comparisons of data from the mid 1800’s to current day suggest 

that the land area occupied by juniper has increased by 140%-600% on some sites (Miller et al. 

2008). However, recent research by Arendt and Baker (2013) found that juniper was actually 

declining in some areas within and around Dinosaur National Monument.  

There are several species of juniper occurring in the West, including Juniperus 

occidentalis Hook., Juniperus monosperma (Engelm.) Sarg., Juniperus osteosperma (Torr.) 

Little., and Juniperus deppeana Steud.. J. occidentalis predominately occurs in the northwest 

portion of the Great Basin, J. monosperma and J. deppeana predominately occur in New Mexico 

and Arizona, and lastly J. osteosperma occurs throughout most of the Great Basin in Nevada, 

Utah, Colorado, Idaho, and Wyoming (Romme et al. 2009). Piñon-juniper woodlands are 

typically associated with sagebrush species and perennial, cool-season grasses in the northern 

and western portions of its range while warm season grasses are more dominant in the southern 

and eastern portions (Romme et al. 2009). 

The climate of piñon-juniper woodlands is challenging for plant growth, and like many 

other ecosystems, strongly influences plant species composition. The climate of piñon-juniper 

woodlands is characterized by harsh, cold winters and hot, dry summers with extreme 

temperatures ranging from -43.9°C (-47°F) in the winter and 38.3°C (101°F) in the summer 

(Germino and Reinhardt 2014). The majority of precipitation falls as snow during the winter 

months, and occasional pulses of moisture are experienced during summer storms. Winter 
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precipitation slowly melts as temperatures rise and infiltrates deep into the soil profile, 

recharging deeper pools of moisture. However, summer precipitation does not typically infiltrate 

deep into the soil profile – it is either quickly taken up by shallow rooted plants or subject to 

evapotranspiration.  

 

Effects of Juniper Encroachment 

The expansion of juniper into ecosystems can alter several ecosystem functions, some of 

which are managed in order to maintain desired conditions. One of the primary management 

concerns is the reduction in forage for wildlife and livestock. Declines of understory forbs, 

grasses, and shrubs have been widely reported with increases in juniper cover (Barrett 2007, 

Miller and Tausch 2001), and resulting in reduced biodiversity on some sites (Bates et al. 2000, 

Belsky 1996). The litter is often thick, slow to decompose, and contains hydrophobic compounds 

(Madsen et al. 2008) making it difficult for germinating understory seedlings to gain access to 

sunlight and soil moisture (Horman and Anderson 2003, Robinson et al. 2010). Furthermore 

juniper litter can promote preferential flow of water towards juniper and increase penetration of 

water to deeper soil layers reducing water available for understory species, and could impact 

nutrient dynamics in the system (Robinson et al. 2010). Lastly, canopy interception and annual 

water-use by juniper also decreases available soil water for understory species (Barrett 2007, Zou 

et al. 2015).  

Soil erosion is also a common management concern associated with juniper 

encroachment.  Soil erosion is most prominent in intercanopy spaces and is typically attributed to 

low understory cover (Davenport et al. 1998, Reid et al. 1999) and can be 17 to 24 times greater 

in intercanopy spaces than under juniper canopies (Breshears 2006, Reid et al. 1999). Erosion 
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from intercanopy spaces results in losses of soil nutrients from the system, particularly soil C and 

N (Law et al. 2012) and potentially loss of understory seeds (Miller and Tausch 2001). Piñon-

juniper woodlands are commonly nutrient deficient and the loss of soil nutrients by erosion likely 

further increases competition between plants for these limited resources (Law et al. 2012, 

McKinley and Blair 2008). In addition to erosion, the slow nutrient cycling attributed with 

juniper trees also reduces nutrient availability. Given that junipers are not deciduous, the addition 

of nutrients to the soil through the decomposition of leaf litter is lower than other species (Wall 

et al. 2001). Furthermore, as described by Robinson et al. (2010) juniper’s hydrophobic litter 

may promote the flow of water towards the tree, thereby creating ‘islands’ of nutrient 

availability.   

Although primarily associated with undesired changes in ecosystem function, the 

transition from grass or sagebrush dominated ecosystems to juniper woodlands may result in 

greater sequestration of carbon (C). While juniper sequesters more C aboveground than A. 

tridentata (Sankey et al. 2013), belowground C sequestration by juniper is estimated to be low 

(Rau et al. 2013), potentially reducing juniper’s overall value as a C sink. Additionally, 

management efforts in which juniper trees are burned or otherwise removed may nullify 

juniper’s C sink (Campbell et al. 2012). Ultimately, the benefit of juniper as a C sink may not 

outweigh the costs that encroachment has on other ecosystem functions.  

Lastly, juniper encroachment has been linked to decreases in groundwater and reduction 

in streamflow (Barrett 2007, Miller 2005). These findings, amongst others, have prompted 

management efforts in which juniper trees are removed. However a literature review by Ffilliot 

and Gottfried (2012) found that removing juniper trees does not significantly increase 

streamflow, and is therefore not an effective management strategy.  
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Mechanisms Explaining Juniper Encroachment 

Significant research has been conducted to determine the causes of juniper expansion into 

sagebrush-dominated ecosystems. Fire suppression and increased grazing activity are commonly 

considered as the primary drivers of juniper expansion, although climate change and species 

range shifts, both natural and climate change driven, have also been considered.  

It is commonly believed that fire frequency in piñon-juniper forests decreased as a result 

of fire suppression efforts of the early 1900’s (Stephens and Ruth 2005, USFS 2015) which 

ultimately allowed for increases of both juniper range and density of juniper stands. However, 

research on the ecology of juniper woodlands suggests that fire was likely not as important in 

controlling juniper expansion as previously thought (Romme et al. 2009). Low intensity surface 

fires were uncommon in juniper woodlands both before and after the fire suppression policy of 

the early 1900’s, made evident by the lack of fire scars found in juniper trees across the Great 

Basin (Romme et al. 2009). Furthermore, discontinuous understories found in most juniper 

forests are not capable of supporting such fire types (Romme et al. 2009). High severity fires in 

which trees and shrubs were killed have been found to be the dominant fire type for juniper 

forests. Juniper trees are particularly vulnerable to fire due to their thin bark (Romme et al. 

2009). Fire rotations for PJ woodlands have been estimated to be approximately 400-600 years 

(Romme et al. 2009), which is actually longer than the fire return intervals measured for these 

woodlands today (Arendt and Baker 2013). While fire suppression may have contributed to 

juniper expansion in some areas, particularly juniper stands with greater understories, it cannot 

explain all cases of expansion given the long fire return interval of these forests.  

Increased livestock grazing has also been attributed to increased juniper expansion 

(Brunell et al. 2013, Jacobs 2011, Soulé and Knapp 1999). Decreased understory plant cover 
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caused by grazing can encourage juniper seedling establishment and survival by reducing 

competition (Jacobs 2011).  While this likely explains some cases of juniper expansion, 

particularly in the more productive parts of its range, the evidence for this mechanism is mixed. 

Both increases and decreases in juniper cover with grazing have been reported (Romme et al. 

2009). It is also believed that grazing caused fire rotations to increase by decreasing understory 

that could carry the fire. Again, while this may explain expansion in more productive portions of 

juniper’s range where surface fires may have been more prevalent, surface fires are not 

considered a common disturbance in most of juniper’s range (Romme et al. 2009).  

In addition to changes in fire rotations and increased grazing, several other factors have 

been researched to better understand the mechanisms driving juniper encroachment. Numerous 

studies have suggested that climate change, particularly the rise in atmospheric CO2, promotes 

juniper encroachment (Miller and Tausch 2001, Romme et al. 2009, Soulé and Knapp 1999). 

Higher CO2 concentrations can be beneficial particularly in water-limited environments because 

plants reduce stomatal conductance, and therefore transpirational losses, causing an overall 

increase in water-use efficiency (Knapp and Soulé 2001). This increase in water-use efficiency 

would likely make it easier for both existing juniper trees and germinating seedlings to survive 

under drought conditions. A study by Knapp and Soulé (2001) has shown that juniper responds 

positively to increases in CO2 concentrations during both wet periods and periods of drought. 

However, little research has been done on the response of sagebrush to increasing CO2 levels 

(Schlaepfer et al. 2014). While the benefits of elevated CO2 to juniper growth and establishment 

have been explored, there is still a lack of evidence to satisfactorily link elevated CO2 levels as 

the primary driver of expansion (Van Auken 2009, Jacobs et al. 2011, Rowland et al. 2011). 

Elevated CO2 levels also benefit numerous other C3 species aside from juniper (Jacobs et al. 
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2011).  Furthermore, rising CO2 levels and peaks of juniper establishment have not always 

occurred simultaneously (Miller et al. 2005, Van Auken 2009).  

Lastly, it is possible that juniper encroachment is a result of a natural range expansion of 

juniper, climate driven range shifts of sagebrush, or both. On the small scale, juniper stands may 

be re-establishing in areas where there was severe disturbance, such as a stand replacing fire or 

intensive timber harvesting. On the larger scale, both juniper and piñon trees have been 

expanding their ranges following the most recent glacial melting at the end of the Pleistocene 

(Miller et al. 2008, Miller and Wigand 1994, Romme et al. 2009). Alternatively, juniper 

encroachment may also be the result of a climate driven range shift by A. tridentata. The range 

of A. tridentata could be shifting to higher latitudes as a result of changes in climate, particularly 

increases in the variability of winter precipitation (Schlaepfer et al. 2015, Still and Richardson 

2015). Additional research needs to be conducted to satisfactorily test this idea.  

 

Water-Use Strategies 

Because juniper encroachment occurs predominately in arid and semi-arid ecosystems it 

is likely that water-use strategies are important in understanding the success of juniper. For 

several decades research efforts have focused on developing hypotheses and models to describe 

water-use strategies of different functional groups to understand how some can coexist and why 

others may compete.  

Walter’s (1971) two-layer hypothesis was one of the first attempts to describe water-use 

strategies of coexisting plant species and its applicability is still researched today (Kulmatiski 

and Beard 2013, Ogle and Reynolds 2004, Ward et al. 2013). Walter proposed that trees and 

grasses are able to coexist because they rely on spatially explicit sources of water – deep and 
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shallow sources respectively. Schlensinger et al. (1990) developed the desertification model, 

which, unlike Walter’s hypothesis, incorporates horizontal distribution of soil moisture. This 

model emphasizes the impact of surface disturbances, suggesting that they cause increases in 

runoff, creating challenges for re-establishment of herbaceous species in intercanopy spaces. 

Schlesigner et al. (1990) ultimately suggests that trees and shrubs can better tolerate surface 

disturbances because they have deeper roots.  

Instead of focusing on spatial heterogeneity in soil moisture, Noy-Meir (1973) developed 

the “pulse-reserve” model that describes the importance of precipitation variability, both timing 

and intensity, on driving species composition. Ogle and Reynolds (2004) added on to both 

Walter’s and Noy-Meir’s models by developing the “threshold-delay” model, which incorporates 

other parameters such as delayed responses of plants to precipitation events and soil moisture 

prior to precipitation events.  

Lastly, the two-pool soil water model is a recent model regarding water-use developed by 

Ryel et al. (2008). Similar to Walter’s two-layer hypothesis, Ryel et al.’s model proposes that 

there are two primary sources of water – shallow and deep. However, unlike Walter, Ryel et al. 

suggest that all plant functional types in arid and semi-arid systems rely on and compete for 

shallow water to support growth and reproduction. Deep water sources are only used for 

maintenance of plant activity during severe drought by functional types that can reach these 

pools, such as woody species.  

Although none of these theories have been proven to accurately describe water-use in all 

semi-arid and arid ecosystems, they provide useful guidelines for considering how water-use 

strategies of different plant species can influence interactions between them.  However, the 

recent discovery of hydraulic redistribution (HR) adds another layer of complexity when 
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attempting to understand soil moisture available to plants. HR is the movement of water by the 

root system from an area of high water potential to an area of lower water potential (Prieto et al. 

2012, Warren et al. 2008). It was previously thought that HR only involved the movement of 

water from deep to shallow soil layers, and was therefore termed hydraulic lift. However, with 

the discovery that plants can move moisture to shallow and deep soil layers the term has changed 

to hydraulic redistribution (Burgess et al. 1998). Warren et al. (2008) reports that more than 50 

woody and herbaceous species are capable of conducting HR.  

HR is relevant in discussions regarding juniper encroachment because A. tridentata (Ryel 

et al. 2002, Ryel et al. 2010) and J. osteosperma (Leffler et al. 2002, Ryel et al. 2010) have been 

found to be capable of performing HR. HR is potentially a very important phenomenon in 

ecosystems dominated by juniper and sagebrush. The movement of water from deep to shallow 

soil layers can increase nutrient availability by increasing decomposition and sustaining suitable 

conditions for mycorrhizal fungi (Prieto et al. 2012). Increased water and nutrient availability 

may also benefit neighboring plants in addition to the plant that conducted HR. Alternatively, the 

movement of water from shallow layers to deep soil layers can maintain plant water potentials 

during periods of drought (Prieto et al. 2014) and allow nutrients stored deep in the soil profile to 

become available (Maeght et al. 2013, McCulley et al. 2004). Additionally, the movement of 

water to deeper soil layers may minimize competition for water with shallow rooted species 

(Prieto et al. 2012). Lastly, as a result of greater soil moisture availability, HR can increase 

transpiration rates. Prieto et al. (2012) found increases transpiration rates of 20-25% in semi-arid 

and arid ecosystems in which plants performed HR. Higher transpiration rates commonly result 

in increases in plant carbon gain.  
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Summary 

Juniper encroachment into grass and sagebrush dominated systems is a phenomenon that 

has been occurring over the last century. It was originally believed to be the result of increased 

fire suppression and grazing which allowed for the competitive release of juniper seedlings. 

However, fire suppression and increased grazing activity do not explain all instances of juniper 

expansion. Changes in climate and range shifts have also been assessed to better understand 

juniper encroachment. Despite the uncertainty regarding the drivers of encroachment, 

management has focused on the removal of juniper trees given the negative impacts 

encroachment has on understory plants. Given that juniper encroachment is occurring in semi-

arid and arid ecosystems, which are considered to be resource limiting, understanding how 

juniper and sagebrush access resources may be valuable in better understanding their 

interactions.     
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ANALYZING ROOT TRAITS TO CHARACTERIZE JUNIPER EXPANSION INTO 

RANGELANDS 

 

Introduction 
 

Piñon-juniper woodlands cover approximately 40 million hectares in the western United 

States (Romme et al. 2009), with significant infill and expansion occurring in the last century. 

Comparisons of data from the mid 1800’s to current day suggest that the land area occupied by 

juniper has increased by 140%-600% on some sites (Miller et al. 2008), and results in major 

changes to ecosystem function. Juniper encroachment typically occurs across ecotones, with 

juniper establishing into areas primarily dominated by sagebrush resulting in  decreased forage 

availability for livestock and wildlife (Barrett 2007, Belsky 1996, Miller et al. 2008, Miller and 

Tausch 2001), the development of hydrophobic layers that decrease soil moisture availability 

(Madsen et al. 2008, Robinson et al. 2010), increased erosion promoting loss of soil nutrients 

(Breshears 2006, Law et al. 2012, Reid et al. 1999), changes in microbial populations (Haskins 

and Gehring 2004), and increased carbon sequestration (Fernandez et al. 2013). Fire suppression 

and increased grazing activity since the late 1800’s are commonly considered as the primary 

drivers of expansion but they do not explain all instances of expansion (Romme et al. 2009). 

Given the arid and semi-arid regions in which J. osteosperma and A. tridentata occur, 

competition for limiting resources, particularly water, may play an important role in driving 

changes in species composition.  

Roots are responsible for absorbing and transporting water and nutrients from the soil, 

and are therefore vital to understanding species survival in resource-limiting environments. 

However, little is known about the root systems of both J. osteosperma and A. tridentata. In 
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several studies measurements of fine root traits have led to increased understanding of the 

survival and competitive ability of species in different environments (Baddeley and Watson 

2005, Johnson et al. 2014, Peek et al. 2006, Pregitzer et al. 2002). Studies of root systems have 

highlighted several root traits associated with acquiring resources and tolerating drought 

including long specific root length, low root tissue density, and tihn fine root diameter (Bardgett 

et al. 2014, Comas et al. 2013). Species with long specific root length (SRL; ratio of root length 

to dry mass) are capable of exploiting resource patches at greater distances from the plant at a 

relatively low carbon cost (Pregitzer et al. 2002, Adams et al. 2013, Hajek et al. 2014). 

Additionally, species with small fine root diameters may have greater hydraulic conductivity 

than larger diameter fine roots due to differences in the path length of water to enter the root and 

xylem (Comas et al. 2013). Research on the differences in root systems of angiosperms and 

gymnosperms (Bauhus and Messier in: Comas and Eissenstat 2004) found that angiosperms 

typically have greater SRL allowing them to explore greater soil volumes. Therefore, we expect 

A. tridentata to have fine root traits associated with faster root proliferation and resource 

acquisition, however this contradicts the apparent ability of J. osteopserma to outcompete A. 

tridentata for resources.  

In addition to fine root traits, rooting depth can increase access to water and nutrients 

deep in the soil profile, which can be particularly important in ecosystems that commonly 

undergo periods of drought. Woody species, including A. tridentata (Foxx et al. 1984) and J. 

osteosperma (Gottfried et al. 1995), are known for developing deep roots. Specific rooting 

depths for these species are unknown, but conservative estimates suggest at least several meters 

(Mandel and Alberts 2005). Roberts and Jones (2000) suggest that Juniperus roots grow even 

deeper than A. tridentata, accessing resources that A. tridentata cannot. Isotopic analyses of stem 
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and soil water confirm that A. tridentata and J. osteosperma are both capable of extracting water 

from deep in the soil profile (Germino et al. 2008, Leffler et al. 2002, Ryel et al. 2008), however 

when growing in dense stands of mature J. osteosperma, A. tridentata has been found to decrease 

its use of deep water (Leffler and Caldwell 2005). These results in addition to similar patterns in 

water uptake as predicted by water-use models (Ryel et al. 2008, Walter 1971) suggest potential 

competition for water sources between J. osteosperma and A. tridentata. However, it is unknown 

if competitive interactions will be observed at the beginning of encroachment given that Leffler 

and Caldwell’s (2005) study focused on mature J. ostesoperma.   

Since encroachment relies upon the successful establishment and survival of seedlings, 

measurement of root traits at this life stage is vital to understanding the growth and survival of 

seedlings. Surprisingly little research has been conducted on the ability of Juniperus seedlings 

(Schupp et al. 1998) to compete for belowground resources with mature A. tridentata. 

Hypotheses have been made suggesting competitive interactions between Juniperus seedlings 

and A. tridentata for nutrients (Roberts 2000), however facilitative interactions in which A. 

tridentata serves as a nurse plant for juniper seedlings has also been suggested (Gottfried et al. 

1995, Redmond and Barger 2013, Van Auken et al. 2004), particularly given the discovery of A. 

tridentata to perform hydraulic lift (Ryel et al. 2002, Ryel et al. 2010, Prieto et al. 2014). In order 

to better understand the relationship between J. osteosperma seedlings and A. tridentata it is 

essential to know how J. osteosperma seedlings develop their root system.  It is believed that J. 

osteosperma seedlings develop a deep taproot (Mandel and Alberts 2005, Young et al. 1984) in 

order to avoid reliance on shallow sources of water that can be inconsistent, but the rate of root 

development into deeper soil layers has not been evaluated.  
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We measured fine root traits and root biomass of J. osteosperma and A. tridentata down 

to 180cm soil depth in an area of active encroachment in northwestern Colorado. Root traits were 

measured on neighboring A. tridentata and J. osteosperma plants and on J. osteosperma of 

seedling, sapling, and mature age classes. We also estimated depth of water extraction for A. 

tridentata and J. osteosperma by measuring stem and soil water δ2H (δD) and δ18O. We use the 

data on isotopic signatures and root traits to address the following questions: (1) are there 

significant differences in fine root traits between J. osteosperma and A. tridentata, (2) are A. 

tridentata and J. osteosperma competing for the same water source or do they utilize different 

sources, and (3) are root traits and depth of water extraction by J. osteosperma consistent 

between older age classes (sapling and mature trees) and seedlings?  

 

Methods 

Site Description  

The study site was in Moffat County, the northwest region of Colorado, approximately 60 

miles west of the town Craig (12T 707673 E 4502118 N). The site was established in an area 

managed by the Bureau of Land Management (BLM) Little Snake Field Office and considered to 

be under active encroachment by juniper. The site had not been grazed for approximately 20 

years and had experienced minimal to no fire activity for at least the last three decades (D. 

Beckerman, personal communication, May 2015). Elevation ranged from 1500 to 2100m. Soils 

at the field site were predominately composed of the Carmody Rock River Crestman complex 

(NRCS 2014). This region is considered semi-arid, experiencing harsh, cold winters and long, 

dry summers. Average annual precipitation of the area is 400 mm (Linton et al. 1998, PRISM 

Climate Group), with majority of precipitation received as winter snowpack. J. osteosperma and 
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A. tridentata were the dominant vegetation on the field site and the perennial, C3 bunch grass 

Hesperostipa comata (Trin. & Rupr.) Barkworth was also abundant on the field site.    

Establishing Plant Pairs 

In order to investigate interactions between J. osteosperma and A. tridentata we 

established pairs of these species growing in close proximity. Plant pairs were established within 

a 300 m2 area on the field site. Five transects were established across the study area running 

45°NW and separated by 50 m to ensure there was no overlap. Transects were 300m long, fully 

spanning the encroachment boundary starting in monospecific A. tridentata stands and ending in 

near monospecific J. osteosperma stands.  

To better understand how interactions between J. osteosperma and A. tridentata may 

change with juniper age, we established pairs of different J. osteosperma age classes. Height was 

used as a predictor variable to categorize J. osteosperma into the following age classes: seedlings 

(<30cm), saplings (30cm-3m), and mature (>3m) (Miller and Rose 1999).  Each transect had a 

pair in each age class (i.e. 1 seedling pair, 1 sapling pair, and 1 mature pair for a total of n=5 

pairs for each age class from all transects). Pairs were established by first identifying the nearest 

J. osteosperma of the desired age class to a randomly selected point along the transect and then 

the nearest A. tridentata plant was selected to complete the pair. To ensure that plant pairs were 

distributed across the site, transects were broken up into three equal sections (0-100m, 100-200m 

and 200-300m) with one pair randomly established in each section (Figure 1.1). Pairs were all 

within 25m of the transect and the distance between the paired plants was never greater than 

1.5m.  

In addition to the pairs, J. osteosperma and A. tridentata plants growing in monospecific 

stands at either end of each transect were also randomly selected for soil coring. These soil cores 
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are referred to as ‘monospecific A. tridentata’ and ‘monospecific J. osteosperma.’ These cores 

were taken to allow for intraspecific comparisons of roots traits between A. tridentata or J. 

osteopserpma plants growing in monospecific stands to A. tridentata or J. osteosperma plants in 

the established pairs.  

At the end of the study all J. osteosperma plants were aged from cross sections to verify 

differentiation into the three age classes. Aging of J. osteosperma trees revealed that the 

youngest J. osteosperma in our seedling category was 14 years old. To distinguish from true 

seedlings that are only a couple of years old, we hereafter refer to our seedlings as ‘advanced 

seedlings.’ 

 

 
Figure 1.1: Transect 1 traversing the field site. Transects were 300 meters long and considered 
as three, 100 meter segments. Pairs were randomly established off of the transect by randomly 
selecting a segment and a meter mark within that segment where they were to be established.  
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Soil Coring 

Three soil cores were taken for each plant pair: (1) within the drip line of J. osteosperma 

– ‘Juniper’, (2) midway between the two plants in the pair – ‘Mid’, and (3) within the drip line of 

A. tridentata – ‘Sagebrush’ (Figure 1.3). For ‘monospecific’ A. tridentata and J. osteosperma 

plants, one soil core was taken within the drip line of the plant canopy. The drip line was defined 

as the edge of the plant canopy.  

Soil cores 5.72cm (2.25in) in diameter were taken using a pneumatic post-hole driver 

(model PD-55, Rhino Tool Company, Kewanee, IL, US) powered by a towable air compressor 

(Airman PDS185S-6E1, MMD Equipment, Simi Valley, CA, US). Soil core tubes were 

stabilized using a metal guide (Figure 1.2). A hydraulic pump or hi-lift jack was used to pull soil 

core tubes out of the ground. 

Soil cores were taken as deep as the equipment would allow, down to 180cm. The 

presence of a hardpan layer made accessing greater depths impossible in some areas. Soil cores 

were separated into the following eight depth increments: 0-10cm, 10-20cm, 20-30cm, 30-40cm, 

40-60cm, 60-90cm, 90-130cm, and 130-180cm. Once separated, the core segments were placed 

in sealed plastic bags and stored in the freezer until they could be processed.  
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Figure 1.2: Extracting a ‘monospecific A. tridentata’ soil core from the ground using a hydraulic 
pump. Soil cores were taken using a pneumatic post-driver to pound the core tube into the soil. 
The core tube was stabilized by a metal guide, which was placed in the drip line of the canopy.  
 
 

 
Figure 1.3: For each pair, soil cores were taken from three locations: (A) ‘Sagebrush’, (B) 
‘Mid’, and (C) ‘Juniper.’ ‘Sagebrush’ and ‘Juniper’ cores were taken within the drip line of the 
plant canopies. For ‘monospecific’ plants only one soil core was taken from the drip line.   
 
 
Analysis of Root Traits 

Soil core samples were washed using a lower pressure showerhead and the roots were 

separated by species. Species were identified primarily by differences in color and texture. J. 

osteosperma had dark red, thick and bumpy roots and A. tridentata had light brown, thin and 

smooth roots. Root samples were then separated into coarse and fine. Fine roots were considered 

A B C 

A.	tridentata	 J.	osteosperma	
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first and second order only to allow for comparisons of roots that serve similar functions (Comas 

et al. 2002, Pregitzer et al. 2002). Because roots in the samples were often fragmented, first and 

second order roots were determined by comparing roots to known first and second order samples 

of each species and checking for secondary growth, which would indicate a higher order, by 

looking for woody development. 

A subsample of roots was randomly selected and scanned using WinRHIZO software 

(Regent Instrumentals, Québec, Canada). Roots were scanned at 400 dpi (Bouma et al. 2000). 

Subsamples included 4-6 scans of each species for each depth and each core location (2 species x 

4 scans x 8 depths x 3 core locations, N=192 scans, n=96 scans per species).  

Root samples were dried in ovens at 55°C for at least 72 hours and weighed after they 

acclimated to room temperature using a microbalance (M2P, Sartorius, Goettingen, Germany). 

For scanned samples in which root mass was split up between several scans, the mass from each 

scan was weighed separately and later summed to calculate total root biomass for the sample. 

SRL was calculated from the scanned samples by dividing the total length of roots within a depth 

increment by its mass. Regression equations were calculated from the scanned samples to 

estimate SRL from unscanned samples by weight.  

 

Isotopic Analysis 

Soil and stem samples were collected for the extraction of water and analysis of δD and 

δ18O. Samples were collected once a month from June – September with the exception of July in 

which samples could not be collected due to heavy rain events. Both stem and soil samples were 

stored in 12 ml glass vials (Labco, UK) that were capped, sealed with parafilm, and placed in a 

freezer to avoid evaporative enrichment. 



 24 

Stem samples were collected before dawn, allowing xylem and bark to come to 

equilibrium with soil water. Stem samples were taken from all paired plants and ‘monospecific’ 

A. tridentata and J. osteosperma plants (n=40 samples per month). Stem samples were taken 

from fully suberized branches and clipped back from leaves to avoid evaporative enrichment 

resulting from photosynthesis occurring in the leaves (West et al. 2006).  All stem samples were 

collected from the NW facing side of the plant. In August grass samples were also collected from 

the NW facing side of the pairs. Samples consisted of non-photosynthetic tissue from the crown 

region collected from several neighboring grasses to allow for enough water for analysis 

(Nippert and Knapp 2007).  

Soil samples were taken from ‘Mid’ core locations (Figure 1.3), using the same 

equipment that was used for the root cores. Approximately 10cm3 of soil was collected for each 

of the following depth increments: 0-20cm, 20-40cm, and 40-130cm. In June, soil isotope 

samples were taken from root cores allowing for a sample from all pairs and ‘monospecific’ 

plants (15 pairs + 5 ‘monospecific A. tridentata’ + 5 ‘monospecific J. osteosperma’, n=25). In 

August and September, a subset of 6 soil cores was taken for sample collection. Cores were 

taken from 6 randomly selected plant pairs, ensuring that cores spanned the field site to account 

for potential spatial variability in soil moisture.  

Water was extracted from plant and soil samples using a cryogenic vacuum extraction 

line (Nippert and Knapp 2007, West et al. 2006) in the Stable Isotope Mass Spectrometry Lab 

(SIMSL) at Kansas State University. Briefly, samples were heated to move water down the line 

where it froze under the presence of liquid nitrogen. The frozen water was then heated to allow 

for the water to move down the line to collection vials that were submerged in liquid nitrogen. 

Water samples were stored in a refrigerator and analyzed using a Finnigan Delta-Plus (Bremen, 
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Germany). Isotopic abundance was expressed in parts per mil (‰) based on the following 

equation where R is the ratio of rare to common isotope (i.e.18O: 16O): 

 

δ = [ቀ �ೞ�೘�೗೐�ೞ೟�೙೏�ೝ೏ − ͳቁ × ͳͲͲͲ] 
 

 
Statistical Analyses  

All statistical analyses were conducted in R (version 3.2.3, The R Foundation for 

Statistical Computing). Analyses were run to test for both intra- and inter- specific differences in 

root traits with juniper age, soil depth, and core location. Analyses were also run to test for both 

intra- and inter- specific differences in isotopic signatures with juniper age.  

Linear mixed effects models were used (Bates et al. 2015) to test for intra- and inter- 

specific differences in root traits including specific root length (SRL), fine root biomass, and root 

diameter. The mixed effects model accounted for repeated measures of soil core samples 

collected from the same plant at different core locations (i.e. T1 Mature samples from ‘Juniper’, 

‘Mid’, and ‘Sagebrush’ locations).  

When testing for intraspecific differences in juniper root traits with age and depth 

between ‘monospecific J. osteosperma’ and paired plants only the ‘juniper’ location was used 

since only one soil core was taken from ‘monospecific’ plants. The ‘sagebrush’ location was 

used when testing for intraspecific differences in sagebrush root traits with age and depth 

between ‘monospecific A. tridentata’ plants and paired plants. Separate analyses were conducted 

excluding ‘monospecific’ plant values of both species to allow for testing of intraspecific 

differences in J. osteosperma and A. tridentata root traits with location. All comparisons were 

made using Tukey’s adjustment and significance was considered at α=0.05.  
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Isotope samples were analyzed using the simmr (formerly SIAR) package (Parnell 2010). 

Using simmr, a mixing model compares soil water isotopic signatures to those of stem samples 

to estimate proportional contributions of water sources (posterior distribution) to the plants. The 

simmr package also incorporates Bayesian statistics to better account for uncertainty and natural 

variability in isotopic values and estimated contributions (Parnell et al. 2010, Phillips et al. 

2014). Four soil water sources were used: (1) 0-20cm, (2) 20-40cm, (3) 40-130cm, and (4) 

groundwater (GW). The isotopic signature of groundwater was estimated from the Regionalized 

Cluster-Based Water Isotope Prediction (RWCIP) (Terzer et al. 2013), by averaging predicted 

values of δ18O and δD from November – February (-19.03‰ and -141.58‰ respectively). 

Comparisons of intra- and inter- specific differences in isotopic values of δ18O and δD were 

performed with lsmeans. Comparisons were only made within the same sampling date. All 

comparisons were made using Tukey’s adjustment and significance was considered at α=0.05.  

 

Results 

Fine Root Biomass 

J. osteosperma had significantly greater fine root biomass than A. tridentata from 0-30cm 

(p-value < 0.04, Figure 1.4). J. osteosperma fine root biomass was significantly greater at 

‘Juniper’ (p-value = 0.0044) and ‘Mid’  (p-value = 0.0014) soil core locations compared to A. 

tridentata for all age classes. Lastly, mature J. osteosperma trees had significantly greater fine 

root biomass than their paired A. tridentata plants (p-value = <0.0001). A. tridentata fine root 

biomass was significantly greater at 0-10cm than all other soil depths (p-value = <0.003 for all 

depths).  There were no significant differences with soil core location or J. osteosperma age. J. 

osteosperma fine root biomass was significantly greater at 0-10cm and 10-20cm than all other 
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soil depths (p-value <0.04). There was a minor interaction between depth and age. Mature trees 

had much greater fine root biomass at 10-20cm than seedlings or saplings (p-value = <0.0003). 

There were no significant differences between J. osteosperma age or soil core location alone. 

 

Specific Root Length (SRL) 

A. tridentata SRL was significantly greater than J. osteosperma SRL at all depths (p-

value = <0.0001) except for 90-130cm (Figure 1.4). However, sample sizes for the 90-130cm 

depth increment were low (J. osteosperma n = 3, A. tridentata n =5) because few cores contained 

roots at this depth. These results were consistent when comparing SRL between juniper age 

classes and between core locations. Tests for intraspecific differences revealed that there was no 

significant difference in A. tridentata SRL between soil depths (p > 0.1), juniper age classes (p-

value > 0.18), or soil core locations (p-value > 0.13). J. osteosperma had few significant 

difference in SRL with depth – SRL was significantly lower (p-value = 0.0002) at 10-20cm than 

at 20-30cm and SRL at 90-130cm was significantly greater (p-value < 0.0005) than all other 

depths. There were no significant differences in J. osteosperma SRL between age classes (p-

value > 0.26) or soil core locations (p-value > 0.36).  
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Figure 1.4: (a) SRL of A. tridentata (grey circles) and J. osteosperma (black triangles) with soil depth. SRL of A. tridentata was 
significantly greater (α<0.05) than J. osteosperma at all depths except 90-130cm. However, the number of samples with roots in 90-
130cm was small (A. tridentata n=4, J. osteosperma n=3). (b) Fine root biomass of A. tridentata, H. comata, and J. osteosperma with 
soil depth. For all species fine root biomass was significantly greater in shallow soil layers. H. comata roots were not found below 
75cm. Errors bars for both graphs are ±1 SE.  
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Root Diameter and Root Tissue Density 

J. osteosperma had significantly larger root diameter and significantly greater root tissue 

density (RTD; root dry weight/fresh volume) than A. tridentata (p-values = <0.0001) (Figure 

1.5) across all soil depths, juniper age classes, and core locations. Within roots sampled from A. 

tridentata fine root diameter remained constant between soil depths, but there was an interaction 

between core location and soil depth – A tridentata fine root diameter from 30-40 cm was 

significantly larger at the ‘Mid’ core location than the ‘Juniper’ core location (p-value = 0.0015). 

Additionally, RTD of A. tridentata was consistent between core location (p-value >0.43) and 

juniper age class (p-value >0.12). However, there was a significant difference in A. tridentata 

RTD with depth – RTD was significantly greater at 0-10cm than 30-40cm (p-value = 0.031).  

J. osteosperma fine root diameter was significantly smaller at 30-40cm than 60-90cm and 

90-130cm (p-value <0.005). There was a minor interaction between soil core location and depth. 

J. osteosperma fine root diameter was significantly larger at the ‘Juniper’ core location than the 

‘Sage’ location at 30-40cm. Lastly, there were no significant differences in J. osteosperma RTD 

with core location (p-value >0.63) , soil depth (p-value >0.59) , or juniper age (p-value >0.28).  

 

Root Surface Area  

Root surface area was estimated by multiplying SRL by fine root biomass. Surface area 

values were summed across depth increments for each of the individual plants measured. A. 

tridentata had significantly greater surface area than J. osteosperma (p-value =0.0001) when 

averaged over core location and J. osteosperma age classes. A. tridentata  had significantly 

greater surface area at the ‘Sagebrush’ core location (p-value = 0.0002) but not at ‘Juniper’ or 

‘Mid locations. Additionally, A. tridentata had greater surface area than advanced J. osteosperma 
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seedlings (p-value = 0.0407) and saplings (p-value = 0.0001), but not mature J. ostesoperma (p-

value = 0.3478). There were no intraspecific differences in surface area of J. osteosperma or A. 

tridentata between core location and J. osteopserma age class.  
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Figure 1.5: Fine root diameter (left) and root tissue density (right) of A. tridentata and J. osteosperma averaged across soil depth, core 
location, and juniper age class. J. osteosperma had significantly larger fine root diameter (p-value <0.0001) and RTD (p-value 
<0.0001) than A. tridentata.  
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Isotopic Analysis 

Although there were no differences in root traits of J. osteosperma with age, there were 

significant differences in depth of soil water uptake with age, suggesting that even advanced 

seedlings were accessing ‘deep’ water sources. For all time periods, the mature J. osteosperma 

trees used deeper water than paired A. tridentata (α=0.05) (Table A1). In September, this 

relationship was true for all age classes (advanced seedling, sapling, and mature) when testing 

for moderate significance (α=0.1) (Table A1).  

Results from simmr suggest that J. osteosperma saplings and mature trees and A. 

tridentata from all age classes increased their proportional uptake of water from deep sources 

throughout the sampling period (Table 1.1, 1.2). J. osteosperma advanced seedlings utilized 

higher proportions of shallow water in June and August before switching to predominately 

deeper water sources in September (Figure 1.6).  

There were no significant differences in A. tridentata stem isotopic values of δ18O or δD 

across juniper age classes within the same sampling period (Table A1). There were few 

significant differences in J. osteosperma stem isotopic values of δ18O between age classes in 

June and August and none in September (Table A1).  

 The perennial grass H. comata was only sampled in August. Although fine root biomass 

was found down to 75cm (Figure 1.4), H. comata took up an estimated 90% of its water from 0-

20cm (Table 1.3).  
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Figure 1.6: Proportional uptake of water by J. osteosperma and A. tridentata from 4 soil depth 
increments (1) 0-20cm, (2) 20-40cm, (3) 40-130cm, and (4) groundwater (GW) as estimated by 
simmr for August (black bars) and September (grey bars). Results are shown for advanced J. 
osteopserma seedlings (a), J. osteosperma saplings (b), J. osteosperma mature trees (c), and A. 
tridentata (d). A. tridentata results are from running A. tridentata plants from all pairs as one 
group. Errors bars are ±1 SE.  
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Table 1.1: Proportional uptake of water by A. tridentata from four depth increments as estimated by a mixed model in the R package 
simmr. Proportions were estimated comparing soil isotope values to stem isotope values.  

 
June August September 

 
Seedling Sapling Mature Seedling Sapling Mature Seedling Sapling Mature 

0-20cm 0.319 0.307 0.311 0.235 0.202 0.324 0.17 0.164 0.178 
20-40cm 0.432 0.34 0.495 0.359 0.319 0.275 0.24 0.246 0.209 
40-130cm 0.197 0.273 0.154 0.277 0.288 0.265 0.286 0.27 0.289 
Groundwater 0.052 0.08 0.041 0.128 0.191 0.136 0.304 0.32 0.324 

 

Table 1.2: Proportional uptake of water by J. osteosperma from four depth increments as estimated by a mixed model in the R 
package simmr. Proportions were estimated comparing soil isotope values to stem isotope values.  

 
June August September 

 
Seedling Sapling Mature Seedling Sapling Mature Seedling Sapling Mature 

0-20cm 0.328 0.28 0.27 0.613 0.251 0.16 0.143 0.122 0.099 
20-40cm 0.449 0.301 0.351 0.156 0.356 0.318 0.233 0.204 0.166 
40-130cm 0.175 0.294 0.238 0.151 0.264 0.288 0.281 0.278 0.242 
Groundwater 0.048 0.126 0.141 0.081 0.13 0.234 0.343 0.396 0.492 

 
 
Table 1.3: Proportional uptake of water in August by the perennial C3 grass H. comata from four depth increments as estimated by a 
mixed model in the R package simmr. Although taken from plant pairs, grass samples were run as a single, lumped group.  
Soil Depth (cm) Proportion Uptake 
0-20cm 0.906 
20-40cm 0.036 
40-130cm 0.037 
Groundwater 0.021 
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Discussion 

Juniper encroachment has long been considered a result of increased fire suppression and 

grazing activity, but these changes in disturbance do not explain all instances of expansion 

(Romme et al. 2009). Given the uncertainty regarding the drivers of juniper encroachment, the 

goal of our study was to better understand how differences in root traits and water extraction 

patterns between A. tridentata and J. osteosperma might help explain the encroachment 

phenomenon. While A. tridentata and J. osteosperma relied on similar water sources throughout 

the season, our results suggest that A. tridentata has root traits associated with greater resource 

acquisition, such as greater SRL, smaller root diameter, and greater surface area than J. 

osteosperma. This may indicate that competition for limiting resources such as water is not the 

primary driver of expansion. Furthermore, we found that advanced J. osteosperma seedlings 

invest in developing deep roots which likely aid in their survival, particularly during periods 

when water sources are limiting.  

Depth of water extraction by J. osteosperma was consistent across age classes late in the 

growing season, with advanced seedlings demonstrating the ability to uptake water from similar 

depths as saplings and mature trees (Table A1). For example, one of the smallest J. osteosperma 

was only 6cm tall but extracted approximately 65% of its water from 40-130cm or deeper in 

September (Table A2). By investing in the development of deep roots, advanced J. osteosperma 

seedlings can access stable sources of water. Access to deep water could enhance advanced 

seedling survival, particularly during periods of drought and may help explain the widespread 

encroachment of this species. Deeper-rooted shrubs and tree seedlings from other systems have 

demonstrated lower sensitivity to climate than species only accessing water in the shallower soil 

layers (Nippert et al., 2013, Ovalle et al. 2015). Contrary to Silvertown et al. (2015) these results 
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suggest that J. osteosperma advanced seedlings (and saplings) are not necessarily more 

vulnerable to die off from drought than mature trees, unless conditions are severe and sustained 

for long periods of time (Anderegg and Anderegg 2013). This data on spatial patterns of water 

uptake should be combined with water-use rates of J. osteosperma at different ontogenetic stages 

to improve our understanding of J. osteosperma survival.  

 The potential resistance of advanced J. osteosperma seedlings to drought is also 

important to consider given the sensitivity of A. tridentata seedlings to changes in precipitation, 

particularly in the winter (Schlaepfer et al. 2015, Still and Richardson 2015). In fact, current 

juniper encroachment may be a result of this as the range of A. tridentata is predicted to shift to 

more northern latitude as winter and spring precipitation becomes more variable (Schlaepfer et 

al. 2015). However, it is important to note that the results presented here are representative of 

advanced seedlings that were over a decade in age (Table A2). During the year of sampling in 

this study younger seedlings were not available on our site, but additional data on younger 

seedlings would improve our understanding of the conditions required for the success of young 

J. osteosperma individuals. Seedlings of a younger age may not develop as deep of a root system 

as the advanced seedlings we measured. This may be important to consider for management, 

because if true J. osteosperma seedlings can be eradicated competition with A. tridentata may be 

avoided or minimized.  

Our isotopic analysis of δ18O and δD indicate that A. tridentata and J. osteosperma 

saplings and mature trees follow similar spatial patterns of water-use. Although J. osteosperma 

has significantly greater fine root biomass from 0-40cm (Figure 1.3) both A. tridentata and J. 

osteosperma sapling and mature trees received approximately 50% of their water from this depth 

in June and July. Later in the growing season spatial patterns of soil water uptake shifted with A. 
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tridentata and J. osteosperma of all age classes taking up more than half of their water from 40-

130cm or groundwater (Table 1.2). These results support previous findings describing the 

tendency of J. osteosperma to rely heavily on deeper water (Breshears et al. 1997, Leffler et al. 

2002, Leffler et and Caldwell 2005, Wilcox et al. 2003). However, our results did not support 

findings by Leffler and Caldwell (2005), which found that A. tridentata, relies on shallow water 

sources when growing with mature J. osteosperma trees. The similarity in water-use patterns 

between A. tridentata and J. osteosperma saplings and mature trees seem to follow predictions 

by Ryel et al.’s (2008) two-pool soil water model suggesting that woody plants utilize deep water 

sources to maintain physiological activity later in the growing season.  

Ryel et al.’s two-pool soil water model further suggests that competition for resources in 

shallow soil layers is high for all functional groups. This appears to be true for A. tridentata, J. 

osteosperma, and H. comata earlier in the growing season. The similarity in shallow root 

biomass allocation between J. ostesoperma, A. tridentata, and H. comata  (Figure 1.3) is likely a 

result of higher nutrient availability in shallow soil layers (Jobbágy and Jackson 2001, Ryel et al. 

2002, 2010) and could be important in allowing rapid respond to shallow rain events (Flanagan 

et al. 1992, Leffler et al. 2002). However, as demonstrated in other studies (Kulmatiski and 

Beard 2013, Nippert and Knapp 2007) root biomass was not always a strong indicator of water-

use patterns. As predicted by Walter’s Two Later hypothesis (Walter 1971) J. osteosperma and 

A. tridentata demonstrated the ability to switch to deeper water sources in spite of having lower 

fine root biomass with depth. This change to a heavier reliance on ‘deep’ water sources may be 

due to a decline in the availability of resources in shallow soil layers or an attempt to avoid 

competition with other shallow-rooted species (Kulmatiski and Beard 2013, Nippert and Knapp 

2007). Alternatively, although the perennial C3 grass H. comata is estimated to have a maximum 
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rooting depth of 1.5m (Wickens 1998), 90% of its water was taken up from 0-20cm soil depth in 

August (Table 1.3), when J. osteosperma and A. tridentata were relying on deeper water. This is 

consistent with other research showing that although grasses have deep roots, they don’t supply a 

large proportion of the water-budget of these growth forms, but may aid in drought survival 

(Nippert et al. 2012). 

Despite the success of J. ostesoperma in encroaching into sagebrush-dominated 

ecosystems, analysis of root traits would suggest that A. tridentata is well adapted to the 

resource-limited environment in which it grows. With long SRL, small root diameter, and high 

surface area A. tridentata is capable of exploring greater volumes of soil than J. ostesoperma at a 

relatively low carbon cost. Furthermore, the decrease in J. osteosperma fine root biomass with 

increasing proximity to A. tridentata suggests that direct competition for resources (Schenk 

2006) near A. tridentata may not be strong. Given that J. osteosperma is successful in 

encroaching into A. tridentata despite these differences in fine root traits indicates that 

competition for acquiring resources may not be the primary driver of expansion. However, it is 

important to note that while greater SRL is associated with increased uptake of certain nutrients 

(Hodge et al. 2009, de Kroon and Visser 2003, Lambers et al. 2008), the relationship between 

SRL and water uptake is not well understood, largely due to the numerous factors that influence 

soil moisture availability (Craine and Dybzinski 2013). When considering competition for water, 

the stronger competitor is typically the one whose root system can tolerate lower water 

potentials, which is strongly related to the ability to resist cavitation. ψ50 measurements on roots 

of J. osteosperma (Koepke and Kolb 2013, Linton et al. 1998) and A. tridentata (Kolb and 

Sperry 1999) were -5MPa to -6MPa and -1.5MPa respectively, indicating that J. osteosperma 

can withstand lower water potentials. Ultimately, the ability to tolerate lower water potentials 
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may be more important than the ability to explore greater soil volumes in this system given the 

success of J. osteosperma over A. tridentata.  

Although having larger diameter fine roots requires a greater carbon investment by J. 

osteosperma, this trait can prove advantageous. Mycorrhizal fungi prefer to associate with larger 

diameter roots (Comas et al. 2014, Fitter 1987) because they have greater cortical area to attach 

to (Comas et al. 2014, Kong et al. 2014). Both J. osteosperma (Haskins and Gehring 2004, 

Reinsvold and Reeves 1986, Salisbury and Ross 1992) and A. tridentata (Stahl et al. 1998) are 

known to associate with vesicular arbuscular mycorrhizae (VAM). Reinsvold and Reeves (1986) 

estimated that average mycorrhizal colonization of J. osteosperma roots to be as a high as 78%. 

The presence and abundance of mycorrhizae were not measured in this study but could 

significantly increase the amount of soil volume explored by J. osteosperma or A. tridentata and 

should therefore be considered in future studies.  

In addition to mycorrhizal colonization, root longevity is another important trait that was 

not measured in this study but could be important in considering the carbon costs of J. 

osteosperma and A. tridentata root systems. Both root diameter (Baddeley and Watson 2005, 

McCormack et al. 2012) and mycorrhizal colonization (de Kroon and Visser 2003, Pregitzer et 

al. 2002) have been found to increase root longevity. The strength of these associations is still 

debated (Withington et al. 2006) as many other factors such as root nitrogen concentration, soil 

temperature and soil biota may also influence root longevity (Eissenstat et al. 2000, de Kroon 

and Visser 2003). However, research by Peek et al. (2006) found the mean lifespan of fine J. 

osteosperma roots to be approximately one year – which is twelve times longer than the 

estimated mean lifespan of A. tridentata fine roots. If J. osteosperma roots do indeed have a 
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greater lifespan than A. tridentata roots, this may offset the initial cost of making the roots. In 

fact, A. tridentata may actually spend more C supporting its root system than J. osteosperma.  

In summary, our results suggest that J. osteosperma and A. tridentata follow similar 

patterns in water-use and show the ability to switch their reliance from shallow to deep water 

sources. However, analysis of fine root traits suggest that A. tridentata is a stronger competitor 

for resources than J. osteosperma indicating that competition for belowground resources may not 

be the primary driver of expansion. Other root traits that were not analyzed in this study 

including root longevity and mycorrhizal colonization should be considered to strengthen our 

understanding of the interactions between J. osteosperma and A. tridentata. The ability of 

advanced J. osteosperma seedlings to access deep water sources is likely key to their survival, 

particularly during periods of drought. Future research should analyze the development of roots 

by true J. osteosperma seedlings, as differences between A. tridentata and J. osteosperma in 

tolerating changes in precipitation, particularly in the winter, may contribute to our 

understanding of the encroachment phenomenon.   
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APPENDIX 

 

 

Figure A1: “Isospace” plot from simmr of soil and plant isotopes samples in August. Group 1 is 
J. osteosperma, Group 2 is A. tridentata, and Group 3 is H. comata.  
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Figure A2: Fine root diameter by SRL of A. tridentata (grey circles, R2=0.34) and J. 
osteosperma (black triangles, R2=0.16).   
 

 
Figure A3: Root tissue density by SRL of A. tridentata (grey circles, R2=0.18) and J. 
osteosperma (black triangles R2=0.18).  
 
 

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
10

0
20

0
30

0
40

0

Fine Root Diameter (mm)

S
R

L 
(m

 g
−1

)

A.tridentata

J. osteosperma

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
50

10
0

15
0

20
0

25
0

30
0

Root Tissue Density by SRL

Root Tissue Density (g cm−3)

S
R

L 
(m

 g
−1

)

A.tridentata

J. osteosperma



 50 

Table A.1: Mean d18O values for JUOS and ARTR paired and control plants. Lowercase letters indicate significant (α=0.05) 
interspecific (lowercase) differences over the same sampling period. Asterisks (*) indicate moderate significance (α=0.1). 
Capital letters indicate significant (α=0.05) intraspecific differences for juniper over the same sampling period. There were no 
significant intraspecific differences for sagebrush.  

 
Seedling  Sapling Mature Control 

Sampling 
Date Sagebrush Juniper Sagebrush Juniper Sagebrush Juniper Sagebrush Juniper 

June -9.25a  -8.65a/A -10.36a -11.34a/AB -8.64a -11.68b/B -9.66a -12.15b/B  

August -9.64a -6.2b/A -10.88a -9.62a/BC -8.65a -11.6b/B -9.8a -7.36b/AC 

September -9.3a 
-

11.64a*/A -9.7a -12.05a*/A -9.48a -13.38b/A -10.54a -12.44a/A 
 
 
 
 
Table A.2: Proportion of water taken up by juniper seedlings in September from Transects 1 – 5 as estimated by simmr for 4 different 
water sources: (1) 0-20cm, (2) 20-40cm, (3) 40-130cm, and (4) groundwater. Age of each seedling was estimated by counting growth 
rings from cross sections.  

  
Soil Depth  

Transect 
Age 
(years) 0-20cm 20-40cm 40-130cm Groundwater 

T1 20 0.275 0.303 0.285 0.137 
T2 21 0.116 0.184 0.246 0.454 
T3 25 0.119 0.172 0.215 0.493 
T4 16 0.142 0.242 0.392 0.223 
T5 14 0.078 0.122 0.122 0.678 

 


