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ABSTRACT 
 
 
 

MECHANISMS OF IMPAIRED RED BLOOD CELL ATP RELEASE IN OLDER ADULTS: 

IMPLICATIONS FOR ALTERED VASCULAR CONTROL WITH AGE 

 
 

 The following dissertation is comprised of a series of experiments with the overall aim of 

determining the mechanisms of impaired ATP release from red blood cells (RBCs) of healthy 

older adults in response to hemoglobin deoxygenation and identifying a potential role of this 

impairment in the declines in vascular control of peripheral blood flow with advancing age.  

Advancing age is the primary risk factor for cardiovascular disease (CVD), which is the leading 

cause of death in societies today and is strongly associated with arterial dysfunction.  

Furthermore, impairments in vascular control and the subsequent regulation of tissue blood flow 

and oxygen delivery contribute to vascular pathologies such as atherosclerosis and ischemic 

disease, as well as the age-associated declines in functional capacity, exercise tolerance, and 

overall quality of life.  Thus, understanding the mechanisms of the age-related impairments in 

vascular control and identifying potential therapeutic targets holds significant potential for 

reducing the healthcare burden associated with a rapidly aging population. 

 Accordingly, the ultimate goal of this dissertation is to determine if an in vivo 

pharmacological approach can be utilized to treat the age-related declines in RBC ATP release, 

thereby restoring circulating ATP responses and subsequent vascular control during the 

physiological stimuli of hypoxia and exercise in healthy older adults.  The key novel findings of 

this dissertation are that (i) age-associated declines in RBC deformability are the primary 

mechanism of impaired deoxygenation-induced ATP release from RBCs of healthy older adults; 

(ii) primary (healthy) aging is not associated with a global decline in RBC function given that 

inhibition of cyclic AMP hydrolysis by phosphodiesterase 3 did not improve deoxygenation-

induced ATP release from RBCs of older adults and that the cellular responses to Gi protein 
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activation remained intact with age; and (iii) that systemic Rho-kinase inhibition via 

administration of fasudil improves the age-related impairments in vascular control and 

circulating ATP during systemic hypoxia and exercise, which may be related to enhanced RBC 

ATP release and NO bioavailability.  These findings are the first to identify a role for Rho-kinase 

inhibition in improving these physiological responses in healthy older adults and are therefore 

clinically significant for aging population in which impaired vascular control contributes to 

elevations in cardiovascular disease risk and declines in exercise tolerance, functional 

independence and overall quality of life. 
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CHAPTER I – INTRODUCTION AND EXPERIMENTAL AIMS 
 
 
 

 Cardiovascular disease (CVD) is the leading cause of death in societies today, and the 

majority of CVD-related mortality is associated with arterial dysfunction.  Advancing age is the 

primary risk factor for CVD, and it is estimated that over 90% of all deaths associated with CVD 

are observed in adults over 60 years of age.  Furthermore, human aging is associated with a 

decline in functional capacity that leads to reductions in exercise tolerance, functional 

independence, and overall quality of life.  All of these age-associated changes, as well as 

vascular pathologies like atherosclerosis and ischemic disease, involve impairments in vascular 

control and the subsequent regulation of tissue blood flow and oxygen delivery.   

 The local control and regulation of blood flow involves the integration of multiple 

signaling pathways and vascular responses, the end goal of which is the precise matching of 

oxygen supply to tissue metabolic demand.  While the exact mechanisms of how the body 

senses this oxygen demand and stimulates the appropriate vascular responses to increase 

supply remain unclear, a growing body of evidence indicates that red blood cells (RBCs) may 

play a central role in this process.  Specifically, RBCs can act as ‘sensors’ for oxygen demand in 

addition to their traditional role as oxygen ‘carriers’, in that they are able to stimulate 

vasodilation and increased oxygen delivery to the tissue through the release of the adenine 

nucleotide adenosine triphosphate (ATP) in direct proportion to the degree of hemoglobin 

deoxygenation.  ATP release from RBCs is also stimulated by deformation of the RBC 

membrane, and more deformable cells have been shown to release more ATP in response to a 

given stimulus.  Many components of the intracellular signaling cascade for ATP release from 

RBCs in response to stimuli such as hemoglobin deoxygenation or membrane deformation have 

been characterized (Figure 1.1).  First, hemoglobin deoxygenation and membrane deformation 

both stimulate the heterotrimeric inhibitory G (Gi) protein.  Gi stimulation is followed by activation 

of adenylyl cyclase (AC) and increases in intracellular cyclic AMP (cAMP), the overall level of 
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which is controlled by the balance between AC-mediated synthesis and phosphodiesterase 3- 

(PDE3) mediated hydrolysis of cAMP.  Increases in intracellular cAMP then stimulate protein 

kinase A (PKA) followed by the cystic fibrosis transmembrane conductance regulator (CFTR) 

that, through a mechanism that remains to be determined, facilitates ATP release via pannexin 

1 channels.  Upon release, circulating ATP binds to purinergic P2Y receptors along the 

endothelium and evokes a vasodilatory response that acts locally and conducts along the vessel 

to increase the distribution of blood within the tissue as well as the overall delivery of blood to 

the tissue.  Collectively, these findings demonstrate that RBCs are ideally positioned and able to 

both detect imbalances between oxygen delivery and metabolic need and initiate a vascular 

response to facilitate the matching of local tissue oxygen supply and demand. 

 With advancing age, skeletal muscle blood flow responses to hypoxia and exercise are 

impaired relative to healthy young adults.  Our laboratory has demonstrated previously that the 

vasodilatory response to intra-arterial infusion of ATP is not different between young adults and 

healthy older adults exhibiting ‘classic’ endothelial dysfunction as evidenced by reduced 

acetylcholine-mediated vasodilation.  Thus, if aging was to adversely affect the contribution of 

ATP to vascular tone and the control of peripheral blood flow, the impairment must be related to 

the source of ATP (i.e., RBC ATP release).  Accordingly, our laboratory was the first to 

demonstrate age-related impairments in ATP release with primary (healthy) aging based on (i) 

blunted increases in plasma [ATP] in response to systemic isocapnic hypoxia (SpO2 ~80%) and 

graded-intensity rhythmic handgrip exercise, with the latter also being closely associated with 

impairments in vasodilation and forearm blood flow; and (ii) impairments in hemoglobin 

deoxygenation-induced ATP release from isolated RBCs of older adults.  These age-associated 

declines in ATP release and the control of tissue blood flow and oxygen delivery may 

predispose this population to increased risk for CVD, ischemic disease, exercise intolerance, 

and a decline in overall quality of life.  Moreover, circulating ATP has diverse effects beyond the 

control of vasomotor tone, including potent antiadhesive and anticoagulative properties, thus 
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further predisposing this aging population to increased CVD risk.  Currently, the underlying 

mechanisms of this age-associated impairment in RBC ATP release and its contribution to 

impaired vascular responses to changes in oxygen supply or demand during physiological 

stimuli such as hypoxia or exercise are unknown.  

 Therefore, the overall goal of this dissertation is to identify the changes in RBC structure 

and function with advancing donor age that contribute to impaired ATP release and determine 

whether in vivo pharmacological treatment of these changes can restore RBC ATP release and 

improve vascular responses to hypoxia and exercise in older adults. 

 

Specific Aims 

Experiment 1: to determine if decreased membrane deformability of RBCs from healthy older 

adults contributes to impaired ATP release from isolated RBCs of older vs. young adults during 

hemoglobin deoxygenation. 

 

Experiment 2: to determine if cAMP signaling within RBCs is altered in healthy older adults and 

contributes to impaired ATP release from isolated RBCs of older vs. young adults during 

hemoglobin deoxygenation. 

Follow-up Experiment: to determine if responsiveness to Gi activation is impaired in isolated 

RBCs from older vs. young adults. 

 

Experiment 3: to determine if systemic Rho-kinase inhibition improves the hemodynamic and 

circulating ATP responses to hypoxia and exercise in healthy older adults, as well as ATP 

release from isolated RBCs of older vs. young adults during hemoglobin deoxygenation. 
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 This collection of work provides the first insight into mechanisms of impaired RBC ATP 

release with advancing age, demonstrating that age-associated decreases in RBC membrane 

deformability are the primary mechanism of blunted deoxygenation-induced ATP release from 

RBCs of healthy older adults, whereas the impairment is not due to changes in intracellular 

cAMP signaling or responsiveness to Gi activation.  Furthermore, the translation of these novel 

findings from isolated RBCs to in vivo physiology provides the first experimental evidence that 

systemic administration of the Rho-kinase inhibitor fasudil improves both the hemodynamic and 

circulating ATP responses to hypoxia and exercise in healthy older adult humans.  Although 

determining the precise mechanisms of these fasudil-mediated improvements is beyond the 

scope of this dissertation, they may be related to the concomitant improvements in circulating 

ATP based on the work herein that demonstrates the ability of Rho-kinase inhibition to restore 

deoxygenation-induced ATP release from isolated RBCs of healthy older adults; additional 

mechanisms could involve increases in the bioavailability of other vasodilators such as nitric 

oxide based on established cellular targets of Rho-kinase.  These collective findings may hold 

significant therapeutic potential for aging populations in which alterations in vascular control and 

the regulation of blood flow and oxygen delivery contribute to increases in cardiovascular 

disease risk and declines in exercise tolerance, functional independence, and overall quality of 

life.  
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Figure 1.1.  Experimental targets of the signaling cascade for deoxygenation-induced 
ATP release from red blood cells (RBCs) 
The work described in Chapter II targeted the RBC cytoskeleton, utilizing the Rho-kinase 
inhibitor Y-27632 to increase membrane deformability and the cell-stiffening agent diamide to 
decrease membrane deformability in isolated RBCs.  The work described in Chapter III utilized 
the phosphodiesterase 3 (PDE3) inhibitor cilostazol to limit the hydrolysis of cAMP and the Gi 
activator mastoparan 7 (Mas 7) to evaluate the effects of age on the subsequent cellular 
responses in isolated RBCs.  The work described in Chapter IV utilized the Rho-kinase inhibitor 
fasudil to target RBC deformability in order to improve ATP release and subsequent 
hemodynamic responses in vivo. 
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CHAPTER II – MANUSCRIPT I 
 
 
 

Role of red blood cell deformability in impaired deoxygenation-induced ATP release  
with age 

 
 
Summary 

 Red blood cells (RBCs) release adenosine triphosphate (ATP) upon deoxygenation, 

which binds to endothelial purinergic receptors and stimulates conducted vasodilation. As local 

tissue metabolic demand increases, ATP release increases in direct proportion to the degree of 

hemoglobin deoxygenation, thus allowing RBCs to both detect and initiate a vascular response 

to imbalances between oxygen supply and demand.  However, RBCs from older adults have an 

impaired ability to release ATP in response to deoxygenation compared to RBCs from young 

adults, yet the underlying cause of this remains unknown.  RBC deformability has been shown 

to decrease with advancing donor age, thus we hypothesized that increasing membrane 

deformability (via the Rho-kinase inhibitor Y-27632) would restore ATP release from RBCs of 

older adults, while decreasing membrane deformability (via the cell-stiffening agent diamide) 

would impair ATP release from RBCs of young adults.  Blood filtrometry was used to measure 

red (blood) cell transit time (RCTT) as an index of deformability in RBCs from young (24 ± 1 

years; n = 9) and older adults (64 ± 2 years; n = 9), with the higher RCTT in RBCs from older 

adults in control conditions indicating lower deformability compared to young (RCTT: 8.541 ± 

0.050 vs. 8.234 ± 0.098 (a.u.), respectively, P < 0.05).  Isolated RBC ATP release during 

normoxia (PO2 ~112 mmHg) and hypoxia (PO2 ~18 mmHg) was quantified in RBCs from young 

(23 ± 1 years; n = 13 for Y-27632 and diamide) and older (65 ± 1 years; n = 14 and 10 for Y-

27632 and diamide, respectively) adults using the luciferin-luciferase technique following RBC 

incubation with saline (vehicle control), Y-27632, or diamide.  On average, the relative change in 

ATP release from normoxia to hypoxia in saline conditions was significantly less in RBCs from 

older compared with young adults (~50% vs. ~125%; P < 0.05).  Y-27632 improved RBC ATP 
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release to 111.7 ± 17.2% and deformability (RCTT) to 8.228 ± 0.083 in older adults such that 

neither were different from the young control (P > 0.05), whereas diamide decreased RBC ATP 

release to 67.4 ± 11.8% and impaired deformability (RCTT = 8.955 ± 0.114) in young adults 

such that they were similar to the older control.  Our findings indicate that decreased RBC 

deformability is a primary contributor to age-related impairments in RBC ATP release, and that 

this may have implications for altered vascular control with advancing age.   

 

Introduction 

 The local control and regulation of blood flow involves the integration of multiple 

signaling pathways and vascular responses, the end goal of which is the precise matching of 

oxygen supply to tissue metabolic demand (Clifford & Hellsten, 2004; Mortensen & Saltin, 2014; 

Joyner & Casey, 2015).  Of these signaling pathways, ATP is among the most unique in that it 

can stimulate vasodilation that acts both locally to help distribute blood flow within a tissue and 

conducts upstream to facilitate increased blood flow and oxygen delivery to the tissue (Collins et 

al., 1998; Winter & Dora, 2007; Dora, 2017), it is the only molecule that has been shown to have 

the intrinsic ability to blunt sympathetically-meditated vasoconstriction when administered 

exogenously (Rosenmeier et al., 2004; Kirby et al., 2008; Hearon Jr. et al., 2017), and it has 

potent antiadhesive and anticoagulative properties (Hrafnkelsdóttir et al., 2001; Zhu et al., 2011; 

Kirby et al., 2014).  Importantly, circulating concentrations of ATP increase during hypoxia and 

exercise in healthy young adults, and are closely correlated with skeletal muscle blood flow 

during exercise (Mortensen et al., 2011; Kirby et al., 2012).  Advancing age in humans is 

associated with impairments in vasodilation and regulation of blood flow to the skeletal muscle 

during exercise, which can contribute to increases in cardiovascular disease morbidity and 

mortality, as well as declines in functional capacity, exercise tolerance, functional 

independence, and overall quality of life (WHO, 1993; Go et al., 2014; Hearon Jr. & Dinenno, 

2016; Mozaffarian et al., 2016).  Interestingly, advancing age is also accompanied by an 
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attenuation in circulating ATP during hypoxia and exercise (Kirby et al., 2012), but not an 

impaired responsiveness to ATP as determined by measuring vasodilation in the forearm to 

brachial artery infusion of ATP (Kirby et al., 2010).  Although there is evidence that the 

vasodilatory responsiveness to ATP may differ with age in the leg and that this can be 

modulated by physical activity status (Mortensen et al., 2012), the collective evidence suggests 

that if aging adversely affects the contribution of ATP to vascular control and regulation of 

skeletal muscle blood flow, the impairment must be related to the source of ATP. 

 While the exact mechanisms of how the body senses local changes in metabolic 

demand and stimulates the appropriate vascular responses to match the oxygen supply remain 

unclear, a growing body of evidence indicates that red blood cells (RBCs) may play a central 

role in this process (Bergfeld & Forrester, 1992; Ellsworth et al., 1995; Ellsworth, 2000; Jagger 

et al., 2001; Jensen, 2009; Ellsworth & Sprague, 2012).  Specifically, RBCs can act as a 

‘sensor’ for oxygen demand in addition to their traditional role as an oxygen ‘carrier’, in that they 

are able to stimulate vasodilation and increased oxygen delivery to the tissue through the 

release of ATP in direct proportion to the degree of hemoglobin deoxygenation (Dietrich et al., 

2000; Jagger et al., 2001; González-Alonso et al., 2002; Sprague et al., 2009).  RBCs also 

release ATP in response to cell deformation, with more deformable cells releasing more ATP in 

response to a given stimulus (Sprague et al., 1998; Faris & Spence, 2008; Sridharan et al., 

2010b; Thuet et al., 2011).  Importantly, the aforementioned increase in circulating ATP during 

exercise has been shown to be dependent on skeletal muscle perfusion, which indicates that 

intravascular sources such as RBCs play an essential role in this response (Kirby et al., 2013).  

Consistent with the evidence that RBCs are a primary source of circulating ATP and that 

circulating ATP responses to hypoxia and exercise are impaired with age, our laboratory was 

the first to demonstrate that deoxygenation-induced ATP release is impaired in RBCs isolated 

from healthy older adults compared to RBCs from young adults (Kirby et al., 2012).   
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 Although the underlying mechanisms of this age-associated impairment in RBC ATP 

release are unknown, one likely candidate is the age-associated decrease in RBC membrane 

fluidity and deformability (Reid et al., 1976; Hegner et al., 1979; Gelmini et al., 1987, 1989) 

given that acute, pharmacologically-induced increases or decreases in RBC deformability 

produce parallel changes in ATP release from RBCs of young healthy donors.  Accordingly, the 

primary purpose of the present study was to determine if age-related declines in RBC 

deformability contribute to impaired deoxygenation-induced ATP release in RBCs from healthy 

older adults.  Specifically, we tested the hypothesis that increasing RBC deformability would 

improve deoxygenation-induced ATP release in RBCs from older adults, and conversely, that 

decreasing RBC deformability would attenuate deoxygenation-induced ATP release in RBCs 

from young adults. 

 

Methods 

Ethical approval and subjects 

 With Institutional Review Board approval and after written informed consent, a total of 18 

young and 15 older healthy adults participated in the present investigation.  Of those, 12 young 

and 10 older subjects participated in multiple experiments.  All subjects were free from overt 

cardiovascular disease as assessed from a medical history, free of cardiovascular medications, 

non-smokers, non-obese, normotensive, and sedentary to moderately active.  Young female 

subjects were studied during the early follicular phase of their menstrual cycle to minimize any 

potential cardiovascular effects of sex-specific hormones, whereas older female subjects were 

post-menopausal and not taking hormone replacement therapy.  Additionally, older subjects 

were further evaluated for clinical evidence of cardiopulmonary disease with a physical 

examination and resting and exercise (Balke protocol) electrocardiograms.  Body composition 

was determined by whole-body dual-energy X-ray absorptiometry scans (QDR series software, 
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Hologic, Inc., USA).  Whole blood lipid panels were run using a Piccolo Xpress chemistry 

analyzer (Abaxis, USA).  All studies were performed according to the Declaration of Helsinki.    

 

Isolation of red blood cells 

 Blood was obtained by either catheterization of the brachial artery (if the subject was 

participating in another study in the laboratory) or venipuncture of the antecubital vein and 

collected into Vacutainer tubes containing sodium heparin (158 USP units) after a 4 hour fast 

and 12 hour abstention from caffeine, alcohol, and exercise.  RBCs were isolated by 

centrifugation of the collected whole blood (500g, 4°C, 10 min) followed by removal of the 

plasma and buffy coat by aspiration.  Packed RBCs were resuspended and washed three times 

in a cell wash buffer containing (in mM) 4.7 KCl, 2.0 CaCl2, 1.2 MgSO4, 140.5 NaCl, 21.0 Tris-

base, 5.5 glucose, and 0.5% BSA, with pH adjusted to 7.4 at room temperature (Sridharan et 

al., 2010b; Thuet et al., 2011; Kirby et al., 2012).  All studies were performed immediately after 

blood collection and RBC isolation. 

 

Measurement of red blood cell deformability 

 RBC deformability was measured using the St. George’s blood filtrometer (Carri-Med, 

Dorking, UK) (Sprague, 1996; Sprague et al., 1998, 2001b, 2001a; Olearczyk et al., 2004a; 

Sridharan et al., 2010b; Thuet et al., 2011; Clapp et al., 2013; Richards et al., 2014).  This 

device develops a calibrated 3 cm H2O pressure gradient across a vertically mounted, 13 mm 

diameter polycarbonate filter (Nucleopore) with 9.53 mm exposed surface diameter and average 

pore size of 5 µm.  Distal to the filter, the outflow channel was filled with CWB and flow was 

prevented by a tap.  Proximal to the filter, the chamber and an open-ended capillary tube were 

filled with either CWB (as described above for RBC isolation, but with pH adjusted to 7.4 at 

37°C) alone or a 10% hematocrit solution of RBCs and CWB, both warmed to 37°C.  For 

calibration, the time required for CWB alone to pass through the filter was measured by four 
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fiber optic detectors and recorded digitally, with this process being repeated until the coefficient 

of variance between runs was 1% or less.  The RBC suspension was then passed through the 

calibrated filter, and red (blood) cell transit time (RCTT) was calculated based on the rate at 

which the RBC suspension traversed the filter relative to the rate of CWB alone as described 

previously (Sprague, 1996).  If the average filter pore size and hematocrit are kept constant, 

then RCTT is a unitless index of RBC deformability, with lower RCTT indicating greater RBC 

deformability.  Measurements of RBC deformability were made after a 30-min incubation with 

either saline (vehicle control), the Rho kinase inhibitor Y-27632 (1 µM; Sigma), or the thiol 

cross-linking agent diamide (500 µM; Sigma).  This dose of Y-27632 has been shown to 

increase deformability and hypoxia-induced ATP release in RBCs from healthy humans (Thuet 

et al., 2011), whereas diamide has been shown to decrease RBC deformability and hypoxia-

induced ATP release (Sridharan et al., 2010b; Thuet et al., 2011) without significantly altering 

hemoglobin or normal cell function (Kosower et al., 1969; Maeda et al., 1983).  RBC 

deformability was measured on the same day and in triplicate for each condition, with the 

treatment order randomized and counterbalanced between subjects.  RBC deformability was 

measured on a different day than the measurements of deoxygenation-induced ATP release in 

order to ensure that RBCs were studied within ~4 hours of isolation, which would not be 

possible if both measurements were made on the same day. 

 

Red blood cell deoxygenation and measurement of extracellular ATP 

 As described previously by our laboratory (Kirby et al., 2012), washed RBCs were 

diluted to 20% hematocrit with a bicarbonate-based buffer containing (in mM) 4.7 KCl, 2.0 

CaCl2, 1.2 MgSO4, 140.5 NaCl, 11.1 glucose, 23.8 NaHCO3, and 0.5% BSA warmed to 37°C.  

This 20% hematocrit RBC suspension was placed in a rotating bulb tonometer (Eschweiler 

GmbH & Co. KG, Germany) and warmed to 37°C.  On separate days, RBCs were incubated in 

the tonometer bulbs with either 1 µM Y-27632 or 500 µM diamide, each paired with a saline-
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treated sample (vehicle control), for 30 min in normoxia (16% O2, 6% CO2, balanced nitrogen; 

PO2 = 111.8 ± 0.7 mmHg and FO2Hb =  94.9 ± 0.1% across all age groups and conditions).  A 

sample of drug- and saline-treated RBCs were removed from each tonometer bulb for 

measurement of extracellular and intracellular ATP in normoxia (details below).  RBCs were 

then deoxygenated by exposure to hypoxia (1% O2, 6% CO2, balanced nitrogen; PO2 = 18.4 ± 

0.5 mmHg and FO2Hb =  21.7 ± 1.0%  across all age groups and conditions) for 15 min and 

RBC samples were taken for measurement of ATP as in normoxia.  Normoxic and hypoxic 

gases were blended via gas blender (MCQ Gas Blender Series 100, Italy) and humidified before 

introduction into the tonometer bulbs.  Blood gases were confirmed by blood gas analysis 

(Siemens Rapid Point 405 Series Automatic Blood Gas System, Los Angeles, CA) (Kirby et al., 

2012).   

 ATP was measured via the luciferin-luciferase technique as described previously 

(Sprague et al., 2001a; Sridharan et al., 2010b, 2010a; Thuet et al., 2011; Kirby et al., 2012; 

Richards et al., 2013), with light emission during the reaction detected by a luminometer (TD 

20/20, Turner Designs).  For extracellular ATP (i.e., ATP release) measurements, a 10 µL 

sample of the 20% hematocrit suspension was taken from each tonometer bulb and diluted 500-

fold (0.04% hematocrit), from which a 200 µL sample was taken and injected into a cuvette 

containing 100 µL of firefly tail extract (10 mg/mL DI water; Sigma) and 100 µL of D-luciferin (0.5 

mg/mL DI water; Research Products International).  Peak light output was measured at least in 

triplicate for each experimental condition and the mean was used for determination of ATP 

levels by comparison to a standard curve for ATP (Calbiochem) generated on the day of the 

experiment.  Cell counts were obtained from each 0.04% RBC suspension and extracellular 

ATP was normalized to 4 x 108 cells.  To confirm that ATP release was not due to hemolysis, 

the 0.04% RBC suspensions from which samples for ATP analysis and cell counting were taken 

were analyzed for free hemoglobin by measuring absorbance at 405 nm similar to previous 
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reports, and samples with significant lysis were excluded (Sprague et al., 1998, 2011; Sridharan 

et al., 2010a; Thuet et al., 2011; Kirby et al., 2012, 2014; Richards et al., 2013). 

 

Measurement of red blood cell total intracellular ATP 

 To confirm that the effects of donor age and pharmacological agents on RBC ATP 

release were not due to differences in total intracellular ATP or the increase in RBC glycolytic 

activity during hypoxia (Messana et al., 1996; Campanella et al., 2005; Lewis et al., 2009), 50 

µL samples of drug- and saline-treated RBCs (20% hematocrit) were taken from the tonometer 

bulbs in normoxia and hypoxia following measurement of extracellular ATP and lysed in DI 

water at room temperature (a 20-fold dilution).  This lysate was diluted an additional 400-fold 

(8000-fold total) and ATP was measured using the same ATP assay used for determination of 

extracellular ATP (Sridharan et al., 2010b, 2010a; Sprague et al., 2011; Thuet et al., 2011; Kirby 

et al., 2012, 2014).  Values were normalized to ATP concentration per RBC. 

 

Statistics 

 All values are reported as mean ± SEM.  Statistical analyses of absolute ATP values 

(intracellular and extracellular) were performed using R (R Core Team 2016, R Foundation for 

Statistical Computing, Vienna, Austria).  Absolute ATP values were tested using a 3-way 

repeated measures ANOVA, with age as the between subjects factor (young vs. older) and 

drug/gas conditions as the within subject factors (control vs. drug and normoxia vs. hypoxia, 

respectively).  When an interaction or main effect was found, appropriate pairwise comparisons 

were made.  For statistical analyses of blood gases and the relative (%) change in ATP release 

from normoxia to hypoxia and RBC deformability (RCTT), SigmaPlot (Systat Software, San 

Jose, CA, USA) was used to perform a 2-way repeated measures ANOVA.  In the event of a 

main effect of or interaction between age and drug condition, post hoc comparisons were made 

with Tukey’s HSD test.  Significance was set at P < 0.05. 
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Results 

Subjects and blood gases 

 Subject characteristics are reported in Table 2.1.  Compared to the young adults, older 

adults had either trending or significant elevations in body mass index (BMI), body fat 

percentage, and blood lipids, although all values were still within the normal healthy range.  

Blood gases for isolated RBCs are reported in Table 2.2.  Most importantly, there were no 

significant differences in the fraction of oxygenated hemoglobin (FO2Hb) between age groups or 

pharmacological treatments in normoxia or hypoxia. 

 

Effect of donor age, Y-27632, and diamide on red blood cell deformability 

 RBC deformability was lower in RBCs from older adults as indicated by the significantly 

higher RCTT in the saline condition compared to young adults (8.541 ± 0.050 vs. 8.234 ± 0.098, 

respectively; P < 0.05) (Fig. 2.1).  Incubation with the Rho-kinase inhibitor Y-27632 improved 

RBC deformability relative to the saline condition only in the older adults (RCTT: 8.228 ± 0.083; 

P < 0.05), such that there was no longer a difference between the age groups (Fig. 2.1).  In 

contrast, incubation with diamide significantly decreased RBC deformability compared to saline 

in young and older adults (RCTT: 8.955 ± 0.114 and 9.242 ± 0.154, respectively; P < 0.05) (Fig. 

2.1). 

 

Effect of donor age, Y-27632, and diamide on deoxygenation-induced ATP release from red 

blood cells 

 In the Y-27632 experiment, ATP release in normoxia was not different between age 

groups or drug condition (Fig. 2.2A).  With saline, extracellular ATP from RBCs of older adults in 

hypoxia tended to be lower compared to young adults (19.7 ± 3.1 nmol/4 x 108 RBCs vs. 29.7 ± 

4.3 nmol/4 x 108 RBCs, respectively; P = 0.15) (Fig. 2.2A) and the mean percent increase in 

RBC ATP release from normoxia to hypoxia was significantly impaired in the older vs. young 
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adults (35.8 ± 11.1% vs. 114.7 ± 11.0%, respectively; P < 0.05) (Fig. 2.2B).  However, 

incubation of RBCs with Y-27632 completely reversed this age-related impairment in ATP 

release during hypoxia such that the 111.7 ± 17.2% increase in extracellular ATP from normoxia 

to hypoxia was no longer different from the young saline control (Fig. 2.2B; P < 0.05 vs. saline).  

Incubation of RBCs from young adults with Y-27632 also increased deoxygenation-induced ATP 

release to 159.7 ± 22.5% (Fig. 2.2B; P < 0.05 vs. saline).  

 In the diamide experiment, ATP release in normoxia was not different between age 

groups and was only decreased by diamide incubation in RBCs from young adults compared to 

saline (10.1 ± 1.9 nmol/4 x 108 RBCs vs. 12.3 ± 1.7 nmol/4 x 108 RBCs, respectively; P < 0.05) 

(Fig. 2.3A).  Similar to the Y-27632 experiment, extracellular ATP from RBCs of older adults in 

the saline hypoxia condition trended towards being lower compared to young adults (18.0 ± 3.0 

nmol/4 x 108 RBCs vs. 25.8 ± 2.5 nmol/4 x 108 RBCs, respectively; P = 0.097) (Fig. 2.3A) and 

the mean percent increase in RBC ATP release from normoxia to hypoxia was significantly 

impaired vs. young adults (57.7 ± 14.2% vs. 137.9 ± 25.3%, respectively; P < 0.05) (Fig. 2.3B).  

Relative to the saline condition, incubation of RBCs with diamide attenuated ATP release during 

hypoxia in young adults to 67.4 ± 11.8% (Fig. 2.3B; P < 0.05) such that it was not different from 

the older adults, but the effect on ATP release during hypoxia in the older adults was not 

significant (26.8 ± 20.2% increase in extracellular ATP from normoxia to hypoxia; P = 0.241 vs. 

saline) (Fig. 2.3B). 

 

Effect of donor age, Y-27632, and diamide on red blood cell intracellular ATP 

 In both the Y-27632 and diamide experiments (Figs. 2.4A and 2.4B, respectively), there 

were no differences in intracellular ATP between the age groups (P > 0.05) and intracellular 

ATP was significantly higher in hypoxia vs. normoxia in all conditions (Fig. 2.4; P < 0.05).  

Incubation with Y-27632 had no effect on intracellular ATP compared to saline (Fig. 2.4A; P > 
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0.05), whereas diamide significantly decreased intracellular ATP vs. saline in both normoxia and 

hypoxia (Fig. 2.4B; P < 0.05). 

 

Discussion 

 The primary novel finding from the present study is that the age-related decrease in RBC 

deformability is a significant mechanism of impaired deoxygenation-induced ATP release from 

RBCs of healthy older adult humans.  Specifically, this is the first study to demonstrate that 

improving RBC deformability in older adults abolishes the impairment in deoxygenation-induced 

ATP release (Fig. 2.2), whereas decreasing RBC deformability in young adults impairs 

deoxygenation-induced ATP release to the same degree as occurs with advancing donor age 

(Fig. 2.3).  To the best of our knowledge, this is also the first study to demonstrate that the age-

related impairment in deoxygenation-induced ATP release is not due to changes in RBC 

metabolism, as intracellular ATP in normoxia and its increase during hypoxia were unaffected 

by donor age (Fig. 2.4).  These collective findings provide the first insight into a key underlying 

mechanism of impaired RBC ATP release in healthy older adults, and indicate that targeting 

RBC deformability may be an effective therapeutic strategy to improve the decline in 

vasodilation and regulation of skeletal muscle blood flow and the increase in cardiovascular 

disease risk that occur with advancing age. 

 

Determinants and pharmacological manipulation of red blood cell deformability 

 The fundamental structure of the RBC membrane is a phospholipid bilayer and an 

underlying cytoskeleton, which interact at cytoskeletal-integral protein complexes to form anchor 

points between the two layers.  Although there are hundreds of proteins associated with the 

RBC membrane, the ones that are the primary determinants of RBC deformability are band 3, 

glycophorin C, and Rh-associated glycoprotein (RhAG) in the lipid bilayer and spectrin, actin, 

adducin, ankyrin, and protein 4.1 in the cytoskeleton (Mohandas & Chasis, 1993; Mohandas & 
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Evans, 1994; Mohandas & Gallagher, 2009; Lux IV et al., 2016).  On average, six spectrin 

proteins, each of which forms a flexible spring-like structure through the intertwining of its α and 

β subunits, interact with actin to form the generally hexagonal “spoke and hub” framework of the 

cytoskeleton, which is further stabilized by the interaction of adducin and protein 4.1 with the 

spectrin-actin complex (Mohandas & Chasis, 1993; Mohandas & Evans, 1994; Lux IV et al., 

2016).  The primary linkage between the cytoskeleton and the lipid bilayer appears to be 

facilitated by ankyrin, which simultaneously interacts with spectrin and the integral protein band 

3 (Mohandas & Chasis, 1993; Mohandas & Evans, 1994; Mohandas & Gallagher, 2009; Lux IV 

et al., 2016).  However, other linkages between these two layers that have been shown to 

contribute to membrane deformability and stability include  RhAG-ankyrin-spectrin, glycophorin 

C-protein 4.1-spectrin, and band 3-adducin-spectrin (Mohandas & Chasis, 1993; Mohandas & 

Evans, 1994; Anong et al., 2009; Mohandas & Gallagher, 2009; Lux IV et al., 2016). 

 Altering the associations between cytoskeletal proteins or between protein complexes at 

the anchor points of the cytoskeleton with the lipid bilayer can dramatically influence RBC 

deformability by affecting the ability of spectrin molecules to undergo a conformational 

rearrangement (Mohandas & Chasis, 1993; Mohandas & Evans, 1994).  With regards to the 

present study, one action of Rho-kinase is the prevention of actin disassembly (Sumi et al., 

1999); thus, a potential mechanism by which Rho-kinase inhibition with Y-27632 increased RBC 

deformability is through an increase in actin disassembly and subsequent decrease in the 

number of associations between spectrin proteins in the cytoskeleton.  In contrast, diamide 

decreases RBC deformability by increasing the associations between spectrin in the 

cytoskeleton through the formation of crosslinking disulfide bonds (Haest et al., 1977, 1980; 

Maeda et al., 1983; Fischer, 1988). 
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Red blood cell deformability and deoxygenation-induced ATP release 

 Acute, pharmacologically-induced increases or decreases in RBC deformability have 

been shown to produce corresponding increases or decreases in deoxygenation-induced ATP 

release (Sridharan et al., 2010b; Thuet et al., 2011), which strongly suggests that these two 

properties of RBCs are linked.  However, the precise pathway for RBC ATP release in response 

to deoxygenation and the mechanism(s) by which RBC deformability alters this process remain 

to be fully elucidated.  Deoxygenation-induced ATP release has been shown to be dependent 

on the activation of the heterotrimeric inhibitory G (Gi) protein, and although the exact nature of 

this activation has not been tested in RBCs, one proposal is that it is mechanically activated by 

the R- to T-state conformational change of hemoglobin (Jagger et al., 2001; Olearczyk et al., 

2004a, 2004b; Ellsworth et al., 2009; Sridharan et al., 2010b; Thuet et al., 2011) based on 

evidence that Gi proteins have mechanosensitive properties (Gudi et al., 1998).  Accordingly, 

this conformational change from oxygenated hemoglobin (oxyHb) to deoxygenated hemoglobin 

(deoxyHb) has been clearly linked to a number of RBC properties through the reversible 

association of deoxyHb with band 3 (the most abundant protein in the RBC membrane) (Chu et 

al., 2008, 2016; Sega et al., 2015).  Specifically, as the percentage of deoxyHb and its 

subsequent association with band 3 increases, there is a corresponding increase in RBC 

metabolism and deformability through the displacement of a glycolytic enzyme complex 

(Campanella et al., 2005, 2008; Chu & Low, 2006; Lewis et al., 2009; Puchulu-Campanella et 

al., 2013; Chu et al., 2016) and ankyrin (Stefanovic et al., 2013; Chu et al., 2016) from band 3, 

as well as an increase in RBC ATP release (Chu et al., 2016).  Furthermore, increases in RBC 

intracellular ATP (as occurs during deoxygenation) produce fluctuations or “flickering” of the 

RBC membrane (Park et al., 2010).  Although it remains to be tested, fluctuations of the RBC 

membrane could activate mechanosensitive proteins like Gi proteins or Piezo1 channels (Cinar 

et al., 2015) and facilitate the subsequent release of ATP.   
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 The findings from the present study provide additional support for a link between RBC 

deformability and ATP release, and more importantly, provide the first experimental evidence 

that age-related decreases in RBC deformability (Fig. 2.1) are a primary mechanism of impaired 

deoxygenation-induced ATP release from RBCs of healthy older adult humans, as both 

increasing deformability of RBCs from older adults and decreasing deformability of RBCs from 

young adults (Fig. 2.1) abolished the difference in deoxygenation-induced ATP release between 

the age groups (Figs. 2.2 and 2.3).  If the stimulus for RBC ATP release following hemoglobin 

deoxygenation is indeed mechanical in nature as the evidence described above suggests, then 

it is probable that the parallel effects of increasing or decreasing RBC deformability on 

deoxygenation-induced ATP release are due to respective increases or decreases in the 

activation of mechanosensitive pathways that facilitate RBC ATP release.  Additionally, this 

study provides the first experimental evidence that the age-related impairment in 

deoxygenation-induced ATP release from RBCs of healthy older adults is not due to changes in 

RBC metabolism, as the absolute concentration of intracellular ATP was not different between 

the age groups under any conditions and the increase in glycolytic ATP synthesis during 

hypoxia was unaffected by donor age or pharmacological treatments (Fig. 2.4). 

 

Mechanisms of decreased red blood cell deformability in older adults  

 Advancing donor age is associated with multiple deleterious changes in RBC properties, 

including increased fragility (Detraglia et al., 1974; Bowdler et al., 1981), morphological changes 

(Bowdler et al., 1981), and decreases in membrane fluidity and deformability (Reid et al., 1976; 

Hegner et al., 1979; Gelmini et al., 1987, 1989).  However, these changes are not necessarily 

linked to RBC age per se, as older adults have increased RBC turnover and an overall higher 

proportion of chronologically younger RBCs relative to young adults (Glass et al., 1985; 

Gershon & Gershon, 1988; Magnani et al., 1988; Shperling & Danon, 1990; Pinkofsky, 1997).  

Indeed, comparing RBCs of similar chronological age from young and older adults reveals that 
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RBCs from aged individuals have an “older” phenotype based on enzyme activity (particularly 

those involved in protection against oxidative stress) and markers of cell damage and 

senescence (Glass & Gershon, 1984; Glass et al., 1985; Jozwiak & Jasnowska, 1985; Gershon 

& Gershon, 1988).   

 Of these age-associated changes, the decline in antioxidant capacity (Glass & Gershon, 

1984; Gershon & Gershon, 1988; Gil et al., 2006; Rizvi & Maurya, 2007; Chaleckis et al., 2016) 

is likely one of the most detrimental given that RBCs can generate substantial amounts of 

reactive oxygen/nitrogen species (Johnson et al., 2005; Cimen, 2008; Rifkind & Nagababu, 

2013; Kuhn et al., 2017), which cause oxidative damage that has been clearly linked to 

decreased RBC deformability (Haest et al., 1977; Wang et al., 1999; Tsantes et al., 2006; 

Rifkind & Nagababu, 2013; Mohanty et al., 2014) and would only be exacerbated by the 

increased susceptibility of RBCs from older adults to oxidative damage (Glass & Gershon, 1984; 

Gershon & Gershon, 1988; Gil et al., 2006; Rizvi & Maurya, 2007).  Furthermore, oxidative 

stress may be detrimental to RBC anion transport, which is required for proper RBC ATP 

release in response to deoxygenation (Petty et al., 1991; Bergfeld & Forrester, 1992).  Despite 

this established decline in RBC antioxidant capacity with advancing age, studies testing the 

efficacy of administering exogenous antioxidants or inducing endogenous antioxidant production 

for improving age-associated decrements in RBC properties are limited (Nelson et al., 2006; 

Cazzola et al., 2012), and are nonexistent as it pertains to RBC ATP release.  The majority of 

the work that has been performed with RBCs in this area has focused on demonstrating the 

ability of antioxidant administration to improve redox status (Pandey & Rizvi, 2010; Wojceiech et 

al., 2010; Nakagawa et al., 2011; Kumar et al., 2015; Richie Jr. et al., 2015) or protect against 

an oxidative challenge either acutely or under more chronic stress conditions (Brown et al., 

1997; Zou et al., 2001; Amer et al., 2006; Luqman & Rizvi, 2006; Vijayakumar & Nalini, 2006; 

Pandey & Rizvi, 2010; Wojceiech et al., 2010; Soudani et al., 2011; Salini et al., 2016; Jagadish 

et al., 2017), although some studies have found that antioxidant administration can actually 
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increase susceptibility to oxidative stress under certain conditions (Brown et al., 1997; Zhang et 

al., 2016). 

 Cholesterol is a major component of the RBC membrane and can influence multiple 

membrane material properties (Mohandas & Chasis, 1993; Mohandas & Evans, 1994; 

Mohandas & Gallagher, 2009).  Relevant to the present study, decreasing the membrane 

cholesterol content in RBCs from healthy adults has been shown to increase RBC deformability 

and shear-induced ATP release, but interestingly, enriching cholesterol in the RBC membrane 

had no effect on RBC deformability or ATP release compared to control (Forsyth et al., 2012).  

Although there was a slight negative correlation between total cholesterol and the mean percent 

change in extracellular ATP during hypoxia under control conditions in the present study (r2 = 

0.112; P = 0.049), there was no relationship between total cholesterol and RCTT (r2 = 0.059; P 

= 0.178).  These collective findings suggest that it is unlikely that the elevated total cholesterol 

in whole blood from older adults in the present study (Table 2.1) was a primary contributor to the 

age-related declines in RBC deformability and deoxygenation-induced ATP release. 

 

Experimental considerations and limitations 

 In the present study, incubation of RBCs with 500 µM diamide significantly decreased 

intracellular ATP in normoxia and hypoxia compared to the saline control condition (Fig. 2.4).  

However, this effect of diamide was the same in RBCs from both age groups and it also did not 

affect the upregulation of glycolytic activity and increase in intracellular ATP in hypoxia (Fig. 

2.4), which is required for deoxygenation-induced ATP release (Jagger et al., 2001).  In both 

age groups in present study, diamide did not alter RBC characteristics like hemoglobin 

concentration or oxygen saturation relative to saline in normoxia or hypoxia; furthermore, other 

functional properties of RBCs including survival, osmotic fragility, density distribution, and 

hemoglobin polymerization have been shown to be unaffected by treatment with diamide at 

similar concentrations (Kosower et al., 1969; Schmid-Schönbein & Gaehtgens, 1981; Maeda et 
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al., 1983).  Diamide-mediated decreases in RBC deformability and deoxygenation-induced ATP 

release have also been shown to be abolished by subsequent incubation of RBCs with Y-27632 

(Thuet et al., 2011).  Thus, the decrease in deoxygenation-induced ATP release from RBCs of 

young adults following incubation with diamide in the present study is likely to be due primarily 

to the decrease in RBC deformability. 

 It has recently been suggested that RBC ATP release occurs primarily through 

hemolysis rather than a regulated export process (Sikora et al., 2014; Grygorczyk & Orlov, 

2017).  However, while hemolysis can certainly contribute to extracellular ATP and is an 

important methodological challenge that must be controlled for in studies such as these (Keller 

et al., 2017), the collective experimental evidence does not support the hypothesis that 

hemolysis is a primary mechanism for ATP release from human RBCs (Kirby et al., 2015).  

Accordingly, there were no significant differences in hemolysis (hemoglobin absorbance at 405 

nm) between age groups or drug treatments during normoxia or hypoxia in the present study, 

and no significant correlations between hemolysis and extracellular ATP in young or older adults 

during any of the experimental conditions (adjusted r2 ranged from -0.042-0.056, p = 0.118-

0.993).  Thus, RBC ATP release in the present study was primarily due to a regulated export 

process that was dependent on the oxygenation state of hemoglobin and influenced by donor 

age and pharmacological manipulations of deformability.  

 

Conclusions 

 ATP is a unique vasoactive molecule that can stimulate vasodilation and blunt 

sympathetically-mediated vasoconstriction to help facilitate appropriate regulation of blood flow 

to the skeletal muscle.  RBCs are a primary source of circulating ATP, and the ability to release 

ATP in response to cell deformation and hemoglobin deoxygenation allows RBCs to act as both 

a ‘sensor’ of local elevations in tissue oxygen demand and an ‘effector’ to match oxygen supply 

through the release of ATP and subsequent vasodilation, which increases tissue blood flow and 



23 
 

oxygen delivery to the region to meet the metabolic need.  Recent findings have demonstrated 

that deoxygenation-induced ATP release is impaired in RBCs from healthy older adults, but the 

underlying mechanisms of this impairment were unknown. 

 This series of studies demonstrates that age-related decreases in RBC deformability are 

a primary mechanism of impaired deoxygenation-induced ATP release, as improving 

deformability restored the ability of RBCs from older adults to release ATP to a level that was 

not different from RBCs of young adults, whereas decreasing deformability of RBCs from young 

adults attenuated the release of ATP such that it was identical to the typical impaired response 

in RBCs from older adults.  It is unclear if this decrease in deformability with advancing age is 

the only mechanism of impaired ATP release in RBCs from healthy older adults, or if there are 

overlapping mechanisms with other conditions such as diabetes in which RBC ATP release is 

also impaired.  The contribution of impaired RBC ATP release to the declines in vascular 

function and blood flow regulation in healthy older adults, and whether enhancing RBC ATP 

release in vivo can improve vascular function with age, also remains to be determined. 
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Table 2.1. Subject Characteristics 

 
Deformability Y-27632 Diamide 

Young Older Young Older Young Older 

Male:Female 6:3 4:5 7:6 6:8 8:5 4:6 

Age (years) 24±1 64±2* 22±1 65±2* 23±1 65±3* 

Body mass index (kg/m2) 22.7±0.8 25.6±1.1 23.0±0.8 24.9±0.7* 23.2±0.8 25.1±0.9 

Body fat (%) 24.3±2.2 34.2±3.0* 24.7±1.8 34.9±2.1* 25.6±2.4 34.0±2.9* 

Total cholesterol (mg/dL) 158±12 193±9* 159±9 191±9* 161±9 195±11* 

LDL cholesterol (mg/dL) 94±10 115±7 94±7 117±7* 97±7 118±10 

HDL cholesterol (mg/dL) 49±3 58±6 50±3 54±5 50±3 60±6 

LDL:HDL 2.0±0.2 2.2±0.3 1.9±0.2 2.5±0.3 2.0±0.2 2.1±0.3 

Triglycerides (mg/dL) 80±8 103±19 75±12 100±11 77±10 87±9 

*P < 0.05 vs. young (within condition) 
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Table 2.2. Isolated red blood cell gases 

   pH 
PO2 

(mmHg) 
PCO2 

(mmHg) 
tHb 

(g/dL) 
FO2Hb 

(%) 
FHHb 
(%) 

Normoxia 

Young 
Saline 7.327±0.010 112.1±1.9 35.4±1.0 7.1±0.2 95.1±0.2 3.4±0.1 

Y-27632 7.327±0.009 112.5±2.5 34.4±0.7 7.1±0.2 95.1±0.2 3.3±0.1 

Older 
Saline 7.344±0.009 111.8±2.7 35.0±0.7 7.7±0.3 95.0±0.2 3.6±0.2 

Y-27632 7.360±0.006*† 114.0±2.7* 34.1±0.4 7.4±0.2 95.2±0.2 3.4±0.1* 

Hypoxia 

Young 
Saline 7.340±0.010 19.3±1.2 36.5±1.1 7.1±0.2 24.1±2.8 72.1±2.6 

Y-27632 7.340±0.010 19.6±1.4 36.6±0.8 7.1±0.2 24.1±2.8 72.2±2.7 

Older 
Saline 7.367±0.010 18.7±1.7 35.8±1.0 7.6±0.3 23.1±3.4 73.1±3.2 

Y-27632 7.375±0.008† 18.2±1.4 35.2±0.4 7.3±0.2 21.5±3.0 74.4±2.9 

Normoxia 

Young 
Saline 7.324±0.007 109.6±1.1 34.8±0.6 6.7±0.1 94.6±0.2 3.6±0.1 

Diamide 7.319±0.007 110.0±0.8 35.1±0.6 6.7±0.1 94.6±0.2 3.5±0.1 

Older 
Saline 7.314±0.008 111.8±1.0 33.9±0.9 6.5±0.2 94.5±0.1 3.7±0.2 

Diamide 7.306±0.009 111.9±1.2 34.5±0.6 6.5±0.2 94.5±0.3 3.5±0.2 

Hypoxia 

Young 
Saline 7.348±0.007 16.8±0.8 34.6±0.6 6.5±0.1 17.4±1.2 78.1±1.2 

Diamide 7.347±0.007 17.5±1.0 35.8±0.7 6.6±0.2 19.6±2.1 76.1±1.9 

Older 
Saline 7.332±0.010 18.1±1.1 35.0±0.5 6.4±0.2 17.9±2.0 77.7±1.9 

Diamide 7.339±0.016 21.1±1.7† 34.5±1.2 6.6±0.2 28.8±3.9 67.3±3.6 

PO2 = partial pressure of oxygen, PCO2 = partial pressure of carbon dioxide, tHb = total 
hemoglobin, FO2Hb = fraction of oxygenated hemoglobin, FHHb = fraction of deoxygenated 
hemoglobin  *P < 0.05 vs. saline (within age); †P < 0.05 vs. young (within condition) 
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Figure 2.1.  Effect of donor age, Y-27632, and diamide on red blood cell deformability 
As a decrease in RCTT reflects an increase in RBC deformability, RBCs from older adults were 
less deformable than RBCs from young adults in control (saline) conditions.  Incubation of RBCs 
with 1 µM Y-27632 restored deformability in older adults, whereas 500 µM diamide decreased 
RBC deformability similarly in young and older adults.  *P < 0.05 vs. saline (within age);  
†P < 0.05 vs. young (within condition) 
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Figure 2.2.  Effect of donor age and Y-27632 on red blood cell ATP release in normoxia 
and hypoxia   
A: Y-27632 increased extracellular ATP during hypoxia in RBCs from older adults.  In the 
hypoxia saline condition, extracellular ATP from RBCs of older adults trended towards being 
lower compared to young adults (P = 0.15).  B: the mean percent increase in extracellular ATP 
from normoxia to hypoxia was impaired in RBCs from older adults in control (saline) conditions.  
Incubation with Y-27632 rescued this response in RBCs from older adults relative to the young 
saline control, but the age impairment remained within the Y-27632 condition due to an 
improvement in the young as well.  *P < 0.05 vs. saline (within age); †P < 0.05 vs. young (within 
condition); ‡P < 0.05 vs. normoxia (within condition) 
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Figure 2.3.  Effect of donor age and diamide on red blood cell ATP release in normoxia 
and hypoxia 
A: diamide decreased extracellular ATP in both age groups during hypoxia and in the young 
during normoxia.  In the hypoxia saline condition, extracellular ATP from RBCs of older adults 
trended towards being lower compared to young adults (P = 0.097).  B: the mean percent 
increase in extracellular ATP from normoxia to hypoxia was impaired in RBCs from older adults 
in control (saline) conditions, but diamide significantly decreased ATP release in young adults 
such that it was no longer different from older adults.  *P < 0.05 vs. saline (within age);  
†P < 0.05 vs. young (within condition); ‡P < 0.05 vs. normoxia (within condition) 
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Figure 2.4.  Effect of donor age, Y-27632, and diamide on red blood cell intracellular ATP 
in normoxia and hypoxia 
A: RBC intracellular ATP increased in hypoxia and was unaffected by donor age or Y-27632; 
young (n = 9) and older (n = 10).  B: intracellular ATP increased in hypoxia and was not different 
with donor age, but it was lower than saline conditions following incubation with diamide; young 
(n = 11) and older (n = 10).  *P < 0.05 vs. saline (within age); ‡P < 0.05 vs. normoxia (within 
condition) 
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CHAPTER III – MANUSCRIPT II 
 
 
 

Role of red blood cell cAMP in impaired deoxygenation-induced ATP release with age 
 
 
Summary 

 Red blood cells (RBCs) release adenosine triphosphate (ATP) in direct proportion to the 

degree of hemoglobin deoxygenation, which binds to purinergic receptors on the endothelium 

and stimulates local and conducted vasodilation.  Accordingly, RBCs act as both a ‘sensor’ for 

oxygen demand and an ‘effector’ for increasing oxygen delivery to facilitate the matching of 

tissue oxygen supply and demand.  Deoxygenation-induced ATP release is impaired in RBCs 

from healthy older adults and age-associated reductions in RBC deformability contribute 

significantly to the impairment; however, it is unclear if other factors play a role as well.  Type 2 

diabetes is also associated with impaired RBC ATP release, and this appears to be at least 

partly due to alterations in cyclic AMP (cAMP) signaling given that treatment with cilostazol, to 

inhibit phosphodiesterase 3 (PDE3) hydrolysis of cAMP, improves deoxygenation-induced ATP 

release from RBCs of these patients.  Thus, we hypothesized that treatment of RBCs with 

cilostazol would improve deoxygenation-induced ATP release from RBCs of healthy older 

adults, and sought to determine if RBC intracellular signaling related to cAMP is impaired with 

advancing age.  Isolated RBC ATP release during normoxia (PO2 ~114 mmHg) and hypoxia 

(PO2 ~24 mmHg) was quantified in RBCs from young (26 ± 1 years; n = 10) and older (64 ± 2 

years; n = 12) adults using the luciferin-luciferase technique following RBC incubation with 

dimethylformamide (DMF; vehicle control) or cilostazol (100 µM).  With DMF, the relative 

change in ATP release from normoxia to hypoxia was significantly less in RBCs from older 

compared with young adults (~50% vs. ~120%; P < 0.05), and these responses were unaffected 

by cilostazol (~60% vs. ~140%, respectively; P > 0.05 vs. DMF).  This finding suggests that 

altered cAMP signaling is not a mechanism of impaired deoxygenation-induced RBC ATP 
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release in healthy older adults.  To confirm this, intracellular cAMP responses (n = 6 per age 

group) and ATP release (n = 4 per age group) in response to inhibitory G (Gi) protein stimulation 

by mastoparan 7 (Mas 7; 10 µM) were quantified in RBCs from young and older adults using a 

commercially available enzyme immunoassay and the luciferin-luciferase technique, 

respectively.  With Mas 7, the relative increase in intracellular cAMP and ATP release from 

control and baseline conditions was not different between young and older adults (~55% and 

~240%, respectively for both age groups; P > 0.05 for young vs. older).  Collectively, these 

findings suggest that advancing age is not associated with alterations in RBC intracellular cAMP 

signaling or responsiveness to Gi stimulation, which may have implications for treating impaired 

vascular control in healthy older adults.     

 

Introduction 

 Matching skeletal muscle blood flow and oxygen delivery with tissue metabolic demand 

is an essential physiological process, particularly during dynamic exercise when both skeletal 

muscle metabolic rate and blood flow can increase nearly 100-fold and exceed the pumping 

capacity of the heart when extrapolated to the whole-body level (Andersen & Saltin, 1985; 

Richardson et al., 1993).  This process requires the coordination and integration of multiple 

stimuli, including mechanical forces and vasoactive/metabolic substances resulting from muscle 

contraction, vasoconstrictor stimuli from the sympathetic nervous system, and vasodilator 

stimuli derived from the endothelium and circulating factors like red blood cells (RBCs).  

Changes to these stimuli that occur with primary (healthy) aging include chronic elevations in 

sympathetic nervous system activity and declines in the synthesis or general availability of 

important vasodilatory molecules like nitric oxide (NO) and adenosine triphosphate (ATP).  

Advancing age also results in impaired vascular responses and subsequent regulation of blood 

flow to the skeletal muscle during physiological stressors such as hypoxia and exercise, which 

contributes to the age-related reduction in aerobic exercise capacity (an independent predictor 
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of cardiovascular disease morbidity and mortality), functional independence, and overall quality 

of life.   

 Of the alterations in vasoactive stimuli that occur with advancing age, data from our 

laboratory indicate that augmented sympathetic vasoconstriction does not contribute to the 

reduction in peripheral vasodilation and skeletal muscle hyperemia during hypoxia or exercise in 

older adults (Richards et al., 2014a, 2017).  Therefore, the attenuation in local vasodilatory 

signaling with advancing age is likely to be a major contributor to this impairment.  Of the local 

vasodilators that are affected by age, the blunted increases in circulating ATP during hypoxia 

and exercise (Kirby et al., 2012) may be among the most important given the unique ability of 

ATP to stimulate both local and conducted vasodilation via binding to purinergic P2Y receptors 

on the endothelium (Collins et al., 1998; Winter & Dora, 2007; Dora, 2017), blunt adrenergic 

vasoconstriction (Rosenmeier et al., 2004; Kirby et al., 2008; Hearon Jr. et al., 2017), and limit 

adhesion and coagulation in the blood (Hrafnkelsdóttir et al., 2001; Zhu et al., 2011; Kirby et al., 

2014).  Red blood cells (RBCs) are a primary source of circulating ATP and can contribute to 

the coupling of blood flow and oxygen delivery to tissue metabolic demand through the release 

of ATP in direct proportion to the degree of hemoglobin deoxygenation (Bergfeld & Forrester, 

1992; Ellsworth et al., 1995; Dietrich et al., 2000; Ellsworth, 2000; Jagger et al., 2001; 

González-Alonso et al., 2002; Sprague et al., 2009; Jensen, 2009; Ellsworth & Sprague, 2012; 

Kirby et al., 2013), but this deoxygenation-induced ATP release is impaired in RBCs from 

healthy older adults (Kirby et al., 2012). 

 The experiments described in Chapter II of this dissertation are the first to investigate the 

underlying mechanisms of the age-related impairment in RBC ATP release.  While the results 

indicate that the decrease in deformability of RBCs from older adults is a significant contributor, 

this is the only mechanism of impaired RBC ATP release with healthy aging that has been 

studied and it is therefore unclear if other factors play a role as well.  Type 2 diabetes is another 

condition that is associated with impaired RBC ATP release in response to cell deformation 
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(Subasinghe & Spence, 2008) and deoxygenation (Sprague et al., 2010, 2011, Richards et al., 

2014b, 2015; Dergunov et al., 2015), both of which have been shown to cause ATP release 

through the stimulation of heterotrimeric inhibitory G (Gi) proteins (Olearczyk et al., 2004a, 

2004b).  The signaling cascade for RBC ATP release downstream of Gi stimulation has been 

demonstrated to involve the subsequent activation of adenylyl cyclase (AC) and increases in 

intracellular cyclic AMP (cAMP), the overall level of which is controlled by the balance between 

AC-mediated synthesis and hydrolysis by phosphodiesterase 3 (PDE3) (Sprague et al., 2001, 

2006, 2011; Conti & Beavo, 2007; Adderley & Sprague, 2010; Lomas & Zaccolo, 2014; Brescia 

& Zaccolo, 2016).  Although recent findings dispute the importance of cAMP in this pathway 

(Keller et al., 2017), RBCs from people with type 2 diabetes have also been shown to have 

impaired increases in intracellular cAMP and ATP release following direct Gi protein stimulation 

with mastoparan 7 (Mas 7) relative to RBCs from healthy controls (Sprague et al., 2006, 2011). 

 Importantly, the impairments in intracellular cAMP and ATP release associated with type 

2 diabetes or elevated insulin can be improved by incubation of RBCs with the PDE3 inhibitor 

cilostazol (Hanson et al., 2010; Sprague et al., 2011; Dergunov et al., 2015), indicating that 

altered cAMP signaling is a significant underlying mechanism of impaired deoxygenation-

induced ATP release from RBCs of individuals with type 2 diabetes.  However, it is unclear if 

alterations in RBC intracellular cAMP signaling are a shared mechanism of impaired RBC ATP 

release between diabetes and healthy aging.  Thus, the primary goal of the present study was 

to test the hypothesis that treatment of RBCs with the PDE3 inhibitor cilostazol would improve 

deoxygenation-induced ATP release from RBCs of healthy older adults, and to determine if 

cellular responses downstream of Gi activation (i.e., increased intracellular cAMP and ATP 

release) are impaired with advancing age. 
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Methods 

Ethical approval and subjects 

 With Institutional Review Board approval and after written informed consent, a total of 14 

young and 13 older healthy adults participated in the present investigation.  Of those, 6 young 

and 6 older subjects participated in multiple experiments.  All subjects were free from overt 

cardiovascular disease as assessed from a medical history, free of cardiovascular medications, 

non-smokers, non-obese, normotensive, and sedentary to moderately active.  Young female 

subjects were studied during the early follicular phase of their menstrual cycle to minimize any 

potential cardiovascular effects of sex-specific hormones, whereas older female subjects were 

post-menopausal and not taking hormone replacement therapy.  Additionally, older subjects 

were further evaluated for clinical evidence of cardiopulmonary disease with a physical 

examination and resting and exercise (Balke protocol) electrocardiograms.  Body composition 

was determined by whole-body dual-energy X-ray absorptiometry scans (QDR series software, 

Hologic, Inc., USA).  Whole blood lipid panels were run using a Piccolo Xpress chemistry 

analyzer (Abaxis, USA).  All studies were performed according to the Declaration of Helsinki.    

 

Isolation of red blood cells 

 Blood was obtained by either catheterization of the brachial artery (if the subject was 

participating in another study in the laboratory) or venipuncture of the antecubital vein and 

collected into Vacutainer tubes containing sodium heparin (158 USP units) after a 4 hour fast 

and 12 hour abstention from caffeine, alcohol, and exercise.  RBCs were isolated by 

centrifugation of the collected whole blood (500g, 4°C, 10 min) followed by removal of the 

plasma and buffy coat by aspiration.  Packed RBCs were resuspended and washed three times 

in a cell wash buffer containing (in mM) 4.7 KCl, 2.0 CaCl2, 1.2 MgSO4, 140.5 NaCl, 21.0 Tris-

base, 5.5 glucose, and 0.5% BSA, with pH adjusted to 7.4 at room temperature (Kirby et al., 
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2012; Richards et al., 2014b, 2015).  All studies were performed immediately after blood 

collection and RBC isolation. 

 

Red blood cell deoxygenation and measurement of extracellular ATP 

 As described previously by our laboratory (Kirby et al., 2012), washed RBCs were 

diluted to 20% hematocrit with a bicarbonate-based buffer containing (in mM) 4.7 KCl, 2.0 

CaCl2, 1.2 MgSO4, 140.5 NaCl, 11.1 glucose, 23.8 NaHCO3, and 0.5% BSA warmed to 37°C.  

This 20% hematocrit RBC suspension was placed in a rotating bulb tonometer (Eschweiler 

GmbH & Co. KG, Germany) and warmed to 37°C.  RBCs were incubated in the tonometer bulbs 

with dimethylformamide (DMF; vehicle control; Sigma) or the PDE3 inhibitor cilostazol (100 µM; 

Sigma) for 30 min in normoxia (16% O2, 6% CO2, balanced nitrogen; PO2 = 114.3 ± 0.7 mmHg 

and FO2Hb =  95.0 ± 0.1% across both age groups and conditions) (Sprague et al., 2011), after 

which RBCs were sampled from each tonometer bulb for measurement of extracellular and 

intracellular ATP in normoxia (details below).  RBCs were then deoxygenated by exposure to 

hypoxia (2.25% O2, 6% CO2, balanced nitrogen; PO2 = 24.1 ± 0.4 mmHg and FO2Hb =  34.8 ± 

1.2%  across all age groups and conditions) for 15 min and RBC samples were taken for 

measurement of ATP as in normoxia.  Normoxic and hypoxic gases were blended via gas 

blender (MCQ Gas Blender Series 100, Italy) and humidified before introduction into the 

tonometer bulbs.  Blood gases were confirmed by blood gas analysis (Siemens Rapid Point 405 

Series Automatic Blood Gas System, Los Angeles, CA) (Kirby et al., 2012).   

 ATP was measured via the luciferin-luciferase technique as described previously 

(Sprague et al., 2001, 2011, Richards et al., 2012, 2014b, 2015; Kirby et al., 2012), with light 

emission during the reaction detected by a luminometer (TD 20/20, Turner Designs).  For 

extracellular ATP (i.e., ATP release) measurements, a 10 µL sample of the 20% hematocrit 

suspension was taken from each tonometer bulb and diluted 500-fold (0.04% hematocrit), from 

which a 200 µL sample was taken and injected into a cuvette containing 100 µL of firefly tail 
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extract (10 mg/mL DI water; Sigma) and 100 µL of D-luciferin (0.5 mg/mL DI water; Research 

Products International).  Peak light output was measured at least in triplicate for each 

experimental condition and the mean was used for determination of ATP levels by comparison 

to a standard curve for ATP (Calbiochem) generated on the day of the experiment.  Cell counts 

were obtained from each 0.04% RBC suspension and extracellular ATP was normalized to 4 x 

108 cells.  To confirm that ATP release was not due to hemolysis, the 0.04% RBC suspensions 

from which samples for ATP analysis and cell counting were taken were analyzed for free 

hemoglobin by measuring absorbance at 405 nm similar to previous reports, and samples with 

significant lysis were excluded (Sprague et al., 1998, 2011, Kirby et al., 2012, 2014, Richards et 

al., 2013, 2014b, 2015). 

 

Measurement of red blood cell total intracellular ATP 

 To confirm that the effects of donor age and cilostazol on RBC ATP release were not 

due to differences in total intracellular ATP or the increase in RBC glycolytic activity during 

hypoxia (Messana et al., 1996; Campanella et al., 2005; Lewis et al., 2009), 50 µL samples of 

drug- and saline-treated RBCs (20% hematocrit) were taken from the tonometer bulbs in 

normoxia and hypoxia following measurement of extracellular ATP and lysed in DI water at 

room temperature (a 20-fold dilution).  This lysate was diluted an additional 400-fold (8000-fold 

total) and ATP was measured using the same ATP assay used for determination of extracellular 

ATP (Sridharan et al., 2010b, 2010a; Sprague et al., 2011; Thuet et al., 2011; Kirby et al., 2012, 

2014).  Values were normalized to ATP concentration per RBC. 

 

Measurement of red blood cell intracellular cAMP 

 As described previously (Olearczyk et al., 2004a; Sprague et al., 2005, 2006, 2011; 

Hanson et al., 2010; Sridharan et al., 2010b), washed RBCs were diluted to a 50% hematocrit in 

a cell wash buffer (as described for isolation of RBCs) and three 1 mL aliquots of this RBC 
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suspension were incubated at room temperature with either DMF for 45 min (vehicle and time 

control), the Gi activator mastoparan 7 (Mas 7; 10 µM; Sigma) for 15 min, or the PDE3 inhibitor 

cilostazol (100 µM) for 30 min followed by an additional 15 min co-incubation with Mas 7 (10 

µM).  The reaction was halted by the addition of 4 mL of ice cold acidified ethanol (1.3 µL of 

11.6 M HCl in 15 mL of 200 proof ethanol), followed by vortexing and centrifugation (14,000g, 

4°C, 10 min).  The supernatant was removed and stored overnight at -20°C to precipitate the 

remaining proteins and centrifuged (3,700g, 4°C, 10 min) the next day.  The final supernatant 

was removed, dried under vacuum centrifugation, and stored at -80°C until enough samples 

were collected to run the assay.  The dried sample was reconstituted in an assay buffer and the 

concentration of cAMP (fmol) was determined using a commercially available enzyme 

immunoassay (GE Healthcare; non-acetylation protocol kit).  RBCs from 6 young and 6 older 

subjects were used for this experiment.  Treatment of RBCs and measurement of intracellular 

cAMP was performed in duplicate and averaged for each subject, and the mean was used to 

determine the relative (%) change in intracellular cAMP compared to the DMF vehicle control 

(Hanson et al., 2010). 

 

Red blood cell Gi activation (Mas 7) and measurement of extracellular ATP 

 Washed RBCs were diluted to a 10% hematocrit with a bicarbonate-based buffer (as 

described above for RBC deoxygenation), placed in a rotating bulb tonometer, and warmed to 

37°C in normoxia (15% O2, 6% CO2, balanced nitrogen; PO2 = 118.1 ± 1.1 mmHg and FO2Hb =  

93.7 ± 0.2% across both age groups and conditions).  After a 15 min equilibration period, RBC 

samples were taken from each tonometer bulb for baseline measurement of extracellular ATP 

(details below), followed by incubation with saline (vehicle control) or 10 µM Mas 7 (Sprague et 

al., 2005, 2006, Hanson et al., 2009, 2010; Sridharan et al., 2010b; Thuet et al., 2011).  Saline-

treated RBCs were sampled for measurement of extracellular ATP at 15 min after the addition 

of saline, and RBCs incubated with Mas 7 were sampled for extracellular ATP at 5, 10, and 15 



46 
 

min after the addition of Mas 7 and the peak value was used for calculating the relative (%) 

change in extracellular ATP from baseline. 

 ATP was measured via the luciferin-luciferase technique as described previously 

(Sprague et al., 2001, 2011, Richards et al., 2012, 2014b, 2015; Kirby et al., 2012), with light 

emission during the reaction detected by a luminometer (TD 20/20, Turner Designs).  For 

extracellular ATP (i.e., ATP release) measurements, a 10 µL sample of the 10% hematocrit 

suspension was taken from each tonometer bulb and diluted 250-fold (0.04% hematocrit), from 

which a 200 µL sample was taken and injected into a cuvette containing 100 µL of firefly tail 

extract (10 mg/mL DI water; Sigma) and 100 µL of D-luciferin (0.5 mg/mL DI water; Research 

Products International).  Peak light output was measured at least in triplicate for each 

experimental condition and the mean was used for determination of ATP levels by comparison 

to a standard curve for ATP (Calbiochem) generated on the day of the experiment.  Cell counts 

were obtained from each 0.04% RBC suspension and extracellular ATP was normalized to 4 x 

108 cells.  To confirm that ATP release was not due to hemolysis, the 0.04% RBC suspensions 

from which samples for ATP analysis and cell counting were taken were analyzed for free 

hemoglobin by measuring absorbance at 405 nm similar to previous reports, and samples with 

significant lysis were excluded (Sprague et al., 1998, 2011, Kirby et al., 2012, 2014, Richards et 

al., 2013, 2014b, 2015).    

 

Statistics 

 All values are reported as mean ± SEM.  Statistical analyses of absolute ATP values 

(intracellular and extracellular) were performed using R (R Core Team 2016, R Foundation for 

Statistical Computing, Vienna, Austria).  Absolute ATP values were tested using a 3-way 

repeated measures ANOVA, with age as the between subjects factor (young vs. older) and 

drug/gas conditions as the within subject factors (DMF vs. cilostazol and normoxia vs. hypoxia, 

respectively).  When an interaction or main effect was found, appropriate pairwise comparisons 
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were made.  The relative increase in intracellular cAMP compared to zero was tested using a 

one-tailed t-test.  For statistical analyses of blood gases, the relative (%) change in ATP release 

from normoxia to hypoxia and in response to incubation with Mas 7, and the relative (%) change 

in intracellular cAMP, SigmaPlot (Systat Software, San Jose, CA, USA) was used to perform a 

2-way repeated measures ANOVA.  In the event of a main effect of or interaction between age 

and drug condition, post hoc comparisons were made with Tukey’s HSD test.  Significance was 

set at P < 0.05. 

 

Results 

Subjects and blood gases 

 Subject characteristics are reported in Table 3.1.  Compared to the young adults, older 

adults had either trending or significant elevations in body mass index (BMI), body fat 

percentage, and blood lipids, although all values were still within the normal healthy range.  

Blood gases for isolated RBCs are reported in Table 3.2.  Most importantly, there were no 

significant differences in the fraction of oxygenated hemoglobin (FO2Hb) between age groups or 

pharmacological treatments in normoxia or hypoxia. 

 

Effect of donor age and cilostazol on deoxygenation-induced ATP release from red blood cells 

and red blood cell intracellular ATP 

 Extracellular ATP in normoxia was not different between age groups or drug condition 

(Fig. 3.1A).  In the DMF vehicle control condition, extracellular ATP from RBCs of older adults in 

hypoxia tended to be lower compared to young adults (10.7 ± 1.4 nmol/4 x 108 RBCs vs. 15.0 ± 

2.5 nmol/4 x 108 RBCs, respectively; P = 0.196) (Fig. 3.1A) and the mean percent increase in 

RBC ATP release from normoxia to hypoxia was significantly impaired in the older vs. young 

adults (46.7 ± 8.0% vs. 117.6 ± 13.3%, respectively; P < 0.05) (Fig. 3.1B).  This age impairment 

in ATP release during hypoxia was unaffected by incubation of RBCs with cilostazol, as both the 
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trend for lower absolute levels of extracellular ATP from RBCs of older compared to young 

adults (10.7 ± 1.2 nmol/4 x 108 RBCs vs. 16.7 ± 3.4 nmol/4 x 108 RBCs, respectively; P = 0.146) 

(Fig. 3.1A) and the significantly blunted relative increase in RBC ATP release from normoxia to 

hypoxia in older vs. young (64.2 ± 11.4% vs. 141.0 ± 25.6%, respectively; P < 0.05) (Fig. 3.1B) 

persisted.  RBC intracellular ATP was not different between age groups or drug condition (P > 

0.05) and was significantly increased in hypoxia vs. normoxia (Fig. 3.2; P < 0.05). 

  

Effect of donor age and cilostazol on the red blood cell intracellular cAMP response to Mas 7 

 Unstimulated (DMF vehicle control) intracellular cAMP concentration was not 

significantly different between young and older adults (233.2 ± 41.0 fmol vs. 191.4 ± 38.0 fmol, 

respectively; P = 0.47).  Incubation of RBCs with the Gi activator Mas 7 (10 µM) significantly 

increased the mean relative (%) change in intracellular cAMP from DMF vehicle control in RBCs 

from both young and older adults (52.3 ± 15.2% and 60.8 ± 22.8%, respectively; P < 0.05 vs. 

zero) (Fig. 3.3).  This relative increase in intracellular cAMP to 10 µM Mas 7 remained greater 

than zero in RBCs from both young and older adults after pretreatment with the PDE3 inhibitor 

cilostazol (100 µM) (36.5 ± 18.9% and 34.7 ± 14.9%; P < 0.05) (Fig. 3.3), and was not 

significantly different  between age groups or from Mas 7 alone (Fig. 3.3; P > 0.05). 

 

Effect of donor age on red blood cell ATP release in response to Mas 7 

 Baseline extracellular ATP prior to the addition of saline or Mas 7 was not different in 

young (10.8 ± 5.6 nmol/4 x 108 RBCs and 12.5 ± 6.1 nmol/4 x 108 RBCs, respectively; P > 0.05) 

or older (7.5 ± 1.2 nmol/4 x 108 RBCs and 6.4 ± 1.9 nmol/4 x 108 RBCs, respectively; P > 0.05) 

adults.  ATP release from RBCs of both young and older adults did not increase significantly 

following incubation with saline for 15 min (20.0 ± 18.5% and 1.6 ± 17.9%, respectively; P > 

0.05 vs. zero) (Fig. 3.4).  Peak ATP release from measurements taken at 5, 10, and 15 min after 

the addition of Mas 7 (10 µM) was significantly greater than saline in RBCs from both young and 



49 
 

older adults (231.8 ± 91.4% and 259.8 ± 43.8%, respectively; P < 0.05) (Fig. 3.4) and was not 

different between age groups (P > 0.05). 

 

Discussion 

 The primary novel findings from the present investigation are as follows.  First, treatment 

of RBCs from older adults with the PDE3 inhibitor cilostazol does not improve the age-related 

impairment in deoxygenation-induced ATP release.  Second, the increase in RBC intracellular 

cAMP in response to the Gi activator Mas 7 is not impaired in healthy older adults.  Finally, RBC 

ATP release in response to the Gi activator Mas 7 also remains intact in healthy older adults.  

These collective findings provide the first evidence that advancing age is not associated with 

alterations in RBC intracellular cAMP signaling or responsiveness to Gi stimulation, and 

therefore, that this is not a mechanism of impaired deoxygenation-induced ATP release from 

RBCs of healthy older adults. 

 

Impaired red blood cell ATP release in healthy older vs. young adults 

 In support of our previous findings (Kirby et al., 2012; Chapter II of this dissertation), the 

results of the present study demonstrate that ATP release from RBCs of healthy older adults in 

response to deoxygenation is impaired relative to RBCs from healthy young adults (Fig. 3.1).  

More importantly, this study provides the first experimental evidence that this age-related 

impairment in deoxygenation-induced RBC ATP release is not the result of a broad decline in 

RBC function with advancing donor age, as multiple cellular functions remained intact when 

comparing RBCs from healthy young and older adults.  First, RBCs from older adults retained 

the ability to increase glycolysis in hypoxia (Fig. 3.2) as a result of deoxygenated hemoglobin 

(deoxyHb) reversibly associating with band 3 and displacing a complex of glycolytic enzymes 

(Campanella et al., 2005, 2008; Chu & Low, 2006; Lewis et al., 2009; Puchulu-Campanella et 

al., 2013; Chu et al., 2016), which has been shown to be required for deoxygenation-induced 
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ATP release despite the presence of a large intracellular pool of ATP (Jagger et al., 2001; Chu 

et al., 2016).  Second, RBCs from healthy older adults had preserved increases in intracellular 

cAMP following direct Gi stimulation with 10 µM Mas 7 compared to RBCs from healthy young 

adults (Fig. 3.3).  An increase in intracellular cAMP has been proposed to be a crucial 

component of the signaling cascade for RBC ATP release (Sprague et al., 2001; Ellsworth & 

Sprague, 2012), therefore the finding that this response is intact in RBCs from healthy older 

adults suggests that it is not a contributing factor to impaired deoxygenation-induced ATP 

release with age.  Finally, RBC ATP release in response to 10 µM Mas 7 was also the same 

between young and older adults (Fig. 3.4), which provides additional evidence in support of the 

conclusion that primary aging does not affect RBC intracellular cAMP signaling or 

responsiveness to Gi stimulation, and that the mechanisms of impaired deoxygenation-induced 

ATP release from RBCs of healthy older adults must involve other factors such as the age-

associated decline in RBC deformability. 

 

Impaired red blood cell ATP release with primary aging vs. diabetes: distinct mechanisms 

 In contrast to RBCs from healthy older adults, evidence from the literature demonstrates 

that RBCs from individuals with type 2 diabetes have blunted increases in intracellular cAMP 

and ATP release following the same Gi stimulus used in the present study (10 µM Mas 7) 

compared to RBCs from healthy subjects (Sprague et al., 2006, 2011) in addition to impaired 

deoxygenation-induced ATP release (Sprague et al., 2010, 2011, Richards et al., 2014b, 2015; 

Dergunov et al., 2015).  Furthermore, all three of these impaired responses associated with type 

2 diabetes can be improved by treatment with the PDE3 inhibitor cilostazol (Hanson et al., 2010; 

Sprague et al., 2011; Dergunov et al., 2015), whereas the same concentration of cilostazol (100 

µM) had no effect on deoxygenation-induced ATP release from RBCs of older adults in the 

present study (Fig. 3.1).  In comparison to the literature, the findings from the present study 

provide the first experimental evidence that impaired deoxygenation-induced RBC ATP release 
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with primary aging and type 2 diabetes is at least partly due to distinct mechanisms, with altered 

cAMP signaling not contributing in healthy older adults whereas it does in RBCs from individuals 

with type 2 diabetes. 

 ATP release from RBCs has been studied more extensively with diabetes than primary 

aging, and therefore an examination of the literature can provide some additional mechanistic 

insight into the factors unique to diabetes that underlie the impaired responses to deoxygenation 

and direct Gi activation.  First, although the mechanisms are unclear, RBCs from people with 

type 2 diabetes have reduced expression of the Gi isoform Gi2 (Sprague et al., 2006), whereas 

the expression of other components in the signaling cascade that are related to regulation 

intracellular cAMP concentrations, including AC and PDE3, are unaffected (Sprague et al., 

2006, 2011).  Second, hyperinsulinemia associated with type 2 diabetes could increase cAMP 

hydrolysis given that insulin can activate PDE3 (Degerman et al., 1997; Conti & Beavo, 2007).  

Accordingly, insulin has been shown to blunt intracellular cAMP responses and ATP release 

following Gi stimulation with Mas 7 as well as deoxygenation-induced ATP release when it is co-

incubated with RBCs from healthy humans (Hanson et al., 2010; Richards et al., 2013).  Third, 

during the process of insulin production in pancreatic β-cells, the enzymatic cleavage of 

proinsulin produces mature insulin and connecting peptide (C-peptide), which are both released 

into the circulation and equilibrate at a C-peptide to insulin ratio of 1:1 or greater due to the 

longer half-life of C-peptide compared to insulin (30 min vs. 3-5 min, respectively) (Polonsky et 

al., 1986; Duckworth et al., 1998; Steiner, 2004).  Similar to insulin, C-peptide can also blunt 

deoxygenation-induced ATP release when co-incubated with RBCs from healthy humans 

(Richards et al., 2013).  However, incubating insulin and C-peptide together at concentrations 

and ratios that reflect normal physiological levels no longer impairs deoxygenation-induced ATP 

release from RBCs of healthy humans (Richards et al., 2013).  More importantly, this co-

incubation of C-peptide and insulin reverses the impairment in deoxygenation-induced ATP 

release from RBCs of people with type 2 diabetes by a mechanism that is proposed to involve 



52 
 

balanced activation of PDE3 (Richards et al., 2014b, 2015), although both of these beneficial 

effects are lost when supraphysiological concentrations or ratios of C-peptide and insulin are 

used (Richards et al., 2013, 2014b).  Thus, overproduction of insulin in the earlier stages of type 

2 diabetes or administration of exogenous insulin in the treatment of diabetes without co-

administration of C-peptide could impair RBC ATP release by altering the normal physiological 

balance of these two compounds.  Collectively, these findings suggest that the distinct 

contribution of altered cAMP signaling to impaired deoxygenation-induced ATP release from 

RBCs of people with type 2 diabetes compared to healthy older adults results from a 

combination of reduced cAMP synthesis due to lower Gi expression and an increase in PDE3-

mediated hydrolysis of cAMP caused by hyperinsulinemia or altered C-peptide to insulin ratios.   

 

Impaired red blood cell ATP release with primary aging vs. diabetes: common mechanisms 

 While the experimental evidence from the present and previous studies strongly 

suggests that there are distinct mechanisms between primary aging and diabetes that contribute 

to impaired deoxygenation-induced RBC ATP release, there are also overlapping changes to 

RBC properties with age and diabetes.  As discussed in Chapter II of this dissertation, aging is 

associated with a decline in RBC antioxidant capacity and increased susceptibility to oxidative 

damage of RBC membrane proteins (Glass & Gershon, 1984; Gershon & Gershon, 1988; Gil et 

al., 2006; Rizvi & Maurya, 2007; Chaleckis et al., 2016), which can result in decreased RBC 

deformability (Haest et al., 1977; Wang et al., 1999; Tsantes et al., 2006; Rifkind & Nagababu, 

2013; Mohanty et al., 2014).  Similarly, RBCs from both type 1 and type 2 diabetics have 

increased oxidative stress (Schwartz et al., 1991; Subasinghe & Spence, 2008; Maellaro et al., 

2013), reduced deformability due to oxidative damage of membrane proteins and increased 

tubulin content in the membrane (the latter unique to diabetes) (McMillan et al., 1978; McMillan 

& Gion, 1981; Ernst & Matrai, 1986; Schwartz et al., 1991; Linderkamp et al., 1999; Caimi & Lo 

Presti, 2004; Hach et al., 2008; Nigra et al., 2016), and alterations in RBC shape (Piagnerelli et 
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al., 2007) relative to RBCs from healthy controls, all of which may be caused at least in part by 

elevated glucose concentrations.  Accordingly, impaired deformability may depend on disease 

severity or the quantification methodology used as changes with diabetes are not always 

observed (Schwartz et al., 1991; Richards et al., 2014b).  Based on the results of the 

experiments described in Chapter II of this dissertation, changes in RBC deformability 

associated with diabetes would almost certainly contribute to the impairment in deoxygenation-

induced ATP release, but this has not been directly tested using pharmacological manipulation 

of deformability in RBCs from people with diabetes.  However, the impaired responses to Gi 

activation in RBCs from diabetic patients are likely unrelated to decreased RBC deformability 

with diabetes, as neither improving deformability with Y-27632 or simvastatin nor decreasing 

deformability with diamide alters the response of healthy RBCs to Mas 7 (Sridharan et al., 

2010b; Thuet et al., 2011; Clapp et al., 2013); furthermore, the responses to Gi stimulation with 

Mas 7 in the present study were not impaired with age (Figs. 3.3 and 3.4) despite age-related 

reductions in RBC deformability (Ch. 2, Fig. 2.1; Reid et al., 1976; Hegner et al., 1979; Gelmini 

et al., 1987, 1989).  

 

Experimental considerations and limitations 

  The primary limitation of the present study is that cilostazol did not significantly increase 

the intracellular cAMP response to Mas 7 in RBCs from young or older adults (Fig. 3.3).  This 

raises an important question about the efficacy of cilostazol-mediated inhibition of PDE3.  The 

concentration of cilostazol used in the present study (100 µM) has been shown to increase the 

intracellular cAMP response to Mas 7 in RBCs from healthy humans and those with type 2 

diabetes, although the improvement appears to be greater in the RBCs from type 2 diabetics 

compared to healthy humans (~45% increase vs. ~15% increase, respectively) (Sprague et al., 

2011).  Given that the cAMP response to Mas 7 alone was not impaired in RBCs from healthy 

humans in that previous study and that it was also not different between RBCs from healthy 
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young and older adults in the present study (Fig. 3.3), one possible explanation is that the 

efficacy of cilostazol is limited when the intracellular response to Gi stimulation is not impaired 

and thus an effect on intracellular cAMP was not detected in the present study.  Accordingly, the 

concentration of cilostazol used in the present study has also been shown to reverse the 

inhibitory effects of insulin on the intracellular cAMP and ATP release responses to Mas 7 in 

RBCs from healthy humans (Hanson et al., 2010).  Unfortunately, intracellular cAMP responses 

in that study were not determined with co-incubation of just Mas 7 and cilostazol, thus the 

efficacy of cilostazol under normal conditions (i.e., not influenced by the inhibitory effects of 

insulin) cannot be confirmed.  However, these findings from the present and previous studies in 

combination with the finding that Gi-mediated increases in ATP release were also unaffected by 

age (Fig. 3.4) suggest that cilostazol’s lack of effect on deoxygenation-induced ATP release 

from RBCs of healthy older adults is due to this signaling pathway not being involved in the age-

related impairment rather than a lack of efficacy. 

 An alternative explanation for why cilostazol did not have an effect on ATP release in the 

present study is that cAMP may not actually be involved in the signaling cascade for RBC ATP 

release, as suggested by Keller et al. (2017) based on their recent experimental findings.  This 

proposal is based on the specific findings that incubation of RBCs with the active cAMP analog 

8Br-cAMP did not induce any ATP release independent of significant increases in RBC lysis 

(Fig. 5) and that treatment of RBCs with various compounds that increased intracellular cAMP 

had no effect of ATP release (Fig. 6) (Keller et al., 2017).  These findings are in direct contrast 

to work performed by Sprague et al. (2001) demonstrating that incubation of RBCs with the 

active cAMP analog Sp-cAMP stimulates ATP release, whereas pretreatment with Rp-cAMP, an 

inactive cAMP analog and inhibitor of protein kinase A, blocks deformation-induced RBC ATP 

release.  The aforementioned studies demonstrating the efficacy of cilostazol for improving 

intracellular cAMP responses and ATP release from RBCs of people with diabetes or RBCs co-

incubated with insulin also supports a role for cAMP in the signaling cascade for ATP release 
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(Hanson et al., 2010; Sprague et al., 2011; Dergunov et al., 2015).  The reasons for this 

discrepancy are unclear, but this is an issue that warrants further investigation in order to define 

more clearly the intracellular factors that regulate the release of ATP from RBCs in response to 

physiological stimuli such as deformation and deoxygenation, while taking special care to 

control and account for RBC lysis.   

 Accordingly, in the present study there were no significant differences in hemolysis 

(hemoglobin absorbance at 405 nm) between age groups during normoxia or hypoxia, and no 

significant correlations between hemolysis and extracellular ATP in both the DMF and cilostazol 

conditions (r2 = 0.051 and -0.008, respectively; P > 0.05).  There was also no correlation 

between total cholesterol and the mean percent change in extracellular ATP during hypoxia 

under control conditions (r2 = 0.06; P = 0.147).  Thus, RBC ATP release in the present study 

was primarily due to a regulated export process that was dependent on the oxygenation state of 

hemoglobin and influenced by donor age. 

 

Conclusions 

 This series of studies demonstrates that primary aging is not associated with changes in 

cAMP signaling within RBCs, as both intracellular cAMP responses and ATP release following 

direct Gi activation remained intact in RBCs from older adults compared to young, while 

treatment with the PDE3 inhibitor cilostazol did not improve the age-related impairment in 

deoxygenation-induced ATP release from RBCs of healthy older adults.  These novel findings 

provide the first evidence of distinct mechanisms underlying the impairment in RBC ATP release 

with age vs. diabetes, and suggest that treatments which aim to improve RBC-mediated 

vascular control in diabetes may not be applicable to aging per se given the collection of studies 

which indicate that improving intracellular cAMP responses can restore deoxygenation-induced 

ATP release from RBCs of people with type 2 diabetes.  With this in mind, the collective findings 

from this dissertation thus far suggest that reductions in RBC deformability associated with 
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advancing donor age are the primary mechanism of impaired deoxygenation-induced ATP 

release in healthy older adults and should be the principal therapeutic target for improving this 

age-related decrement in RBC function.  Whether these findings in isolated RBCs are 

translatable to the in vivo environment in humans and whether potential increases in circulating 

ATP following restored responsiveness of RBCs to physiological stimuli are associated with 

improved vascular control of skeletal muscle blood flow and oxygen delivery in response to 

stressors such as hypoxia or exercise remains to be determined. 
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Table 3.1. Subject Characteristics 

 
ATP release in hypoxia 

with cilostazol 
Intracellular cAMP Mas 7-induced ATP 

release 

Young Older Young Older Young Older 

Male:Female 5:5 7:5 3:3 3:3 2:2 2:2 

Age (years) 26±1 64±2* 27±1 65±3* 23±2 67±2* 

Body mass index (kg/m2) 22.3±0.7 25.4±0.8* 22.2±0.8 25.3±0.8* 22.6±1.3 23.8±0.4 

Body fat (%) 23.2±2.6 32.3±1.9* 24.3±2.2 32.1±3.0 25.0±2.0 28.3±4.3 

Total cholesterol (mg/dL) 158±8 200±11* 165±13 207±19* 152±10 222±24* 

LDL cholesterol (mg/dL) 79±7 118±8* 82±12 126±11* 83±10 131±18 

HDL cholesterol (mg/dL) 63±3 61±4 66±4 60±8 52±2 71±6* 

LDL:HDL 1.3±0.1 2.0±0.2* 1.3±0.2 2.2±0.2* 1.6±0.2 1.8±0.1 

Triglycerides (mg/dL) 79±8 107±10* 89±11 102±11 84±5 99±14 

*P < 0.05 vs. young (within condition) 
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Table 3.2. Isolated red blood cell gases 

   pH 
PO2 

(mmHg) 
PCO2 

(mmHg) 
tHb 

(g/dL) 
FO2Hb 

(%) 
FHHb 
(%) 

Normoxia 

Young 
DMF 7.330±0.010 113.1±1.2 34.9±0.6 6.6±0.1 94.9±0.2 3.8±0.1 

Cilostazol 7.325±0.012 114.1±1.7 34.7±0.7 6.5±0.2 94.9±0.2 3.7±0.1 

Older 
DMF 7.362±0.013 115.7±1.3 35.4±0.8 6.8±0.1 95.1±0.1 3.3±0.2 

Cilostazol 7.350±0.013* 114.0±1.1 37.0±0.6 6.8±0.2 95.2±0.1 3.5±0.1* 

Hypoxia 

Young 
DMF 7.352±0.010 23.5±1.1 34.8±0.5 6.9±0.2 33.3±3.2 63.2±3.0 

Cilostazol 7.339±0.009 24.5±1.2 36.4±0.8* 6.8±0.2 35.7±3.2 60.8±2.9 

Older 
DMF 7.375±0.012 24.3±0.6 36.2±0.5 7.0±0.1 34.8±1.7 61.9±1.6 

Cilostazol 7.361±0.013 24.1±0.6 36.0±0.7 7.0±0.2 35.5±1.8 61.1±1.7 

Normoxia 

Young 
Saline 7.439±0.024 120.6 35.1±1.7 3.2±0.1 94.3±0.3 3.7±0.4 

Mas 7 7.433±0.018 114.5±1.8 36.9±0.7 3.2±0.2 94.2±0.3 3.8±0.2 

Older 
Saline 7.399±0.006 120.0±0.8 35.4±0.9 2.9±0.1 92.6±0.0† 4.4±0.5 

Mas 7 7.396±0.009 119.6±1.3 36.7±1.0 3.0±0.1 93.2±0.4 4.0±0.3 

PO2 = partial pressure of oxygen, PCO2 = partial pressure of carbon dioxide, tHb = total 
hemoglobin, FO2Hb = fraction of oxygenated hemoglobin, FHHb = fraction of deoxygenated 
hemoglobin  *P < 0.05 vs. vehicle control (within age); †P < 0.05 vs. young (within condition)
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Figure 3.1.  Effect of donor age and cilostazol on red blood cell ATP release in normoxia 
and hypoxia.  
A: cilostazol had no effect on extracellular ATP in young or older adults in normoxia or hypoxia.  
During hypoxia, extracellular ATP from RBCs of older adults trended towards being lower 
compared to young adults in both the dimethylformamide (DMF; vehicle control) and cilostazol 
conditions (P = 0.196 and 0.146, respectively).  B: the mean percent increase in extracellular 
ATP from normoxia to hypoxia was impaired in RBCs from older adults in both the DMF and 
cilostazol conditions.  †P < 0.05 vs. young (within condition); ‡P < 0.05 vs. normoxia (within 
condition) 
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Figure 3.2.  Effect of donor age and cilostazol on red blood cell intracellular ATP in 
normoxia and hypoxia 
RBC intracellular ATP increased in hypoxia and was unaffected by donor age or cilostazol; 
young (n = 10) and older (n = 12). ‡P < 0.05 vs. normoxia (within condition) 
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Figure 3.3.  Effect of donor age and cilostazol on the red blood cell intracellular cAMP 
response to Mas 7 
The Gi activator Mas 7 increased intracellular cAMP similarly in RBCs from young and older 
adults, and this response was unaffected by pretreatment of RBCs with cilostazol.   
*P < 0.05 vs. zero 
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Figure 3.4.  Effect of donor age on red blood cell ATP release in response to incubation 
with Mas 7 
Extracellular ATP was unaffected by incubation with saline (vehicle and time control), whereas 
the Gi activator Mas 7 increased extracellular ATP similarly in RBCs from young and older 
adults.  *P < 0.05 vs. saline (within age) 
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CHAPTER IV – MANUSCRIPT III 
 
 
 

Effect of Rho-kinase inhibition on hemodynamic responses and circulating ATP during 
hypoxia and exercise in healthy older adults 

 
 
Summary 

 Circulating adenosine triphosphate (ATP) is a potent vasodilator believed to assist in the 

matching of tissue oxygen delivery to metabolic demand.  Older adults have impaired skeletal 

muscle hemodynamic responses to hypoxia and exercise and blunted increases in circulating 

ATP during these stimuli, which may be due to reduced deoxygenation-induced red blood cell 

(RBC) ATP release.  Based on previous findings that Rho-kinase inhibition improves RBC 

deformability and ATP release from isolated RBCs of older adults, the goal of the present study 

was to test the hypothesis that in vivo Rho-kinase inhibition via fasudil would improve 

hemodynamic responses and circulating ATP during hypoxia and exercise in older adults.  

Healthy young (Y; 25 ± 1 years; n = 11) and older (O; 66 ± 1 years; n = 12) adults participated in 

a double-blind, randomized, placebo-controlled, crossover design study on 2 days (≥ 5 days 

between visits).  A deep venous catheter in the forearm was used to administer saline (100 

mL/60 min; placebo control) or fasudil (60 mg/60 min) and to sample blood for plasma [ATP].  

Forearm vascular conductance (FVC; mean arterial pressure from finometry and forearm blood 

flow (FBF) from Doppler ultrasound) was calculated at rest, during 5 min of isocapnic hypoxia 

(80% SpO2), and during graded intensity rhythmic handgrip exercise at 5%, 15%, and 25% of 

maximum voluntary contraction (MVC; 4 min per workload).  All age- and drug-related effects 

are similar when data are presented as FVC or FBF, so only FVC is reported here.  Venous 

plasma concentration of ATP ([ATPV]) was measured at rest and at the end of each condition 

and RBCs were isolated to measure ATP release in response to normoxic (PO2 ~123 mmHg) 

and hypoxic (PO2 ~25 mmHg) stimuli, both measured using the luciferin-luciferase technique.  

With saline, ∆FVC during hypoxia was ~60% lower in O vs Y and the greatest age impairment 
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during exercise occurred with ∆FVC from rest to 25% MVC (220.2 ± 19.4 vs 339.5 ± 25.5 

mL/min/100mmHg; P < 0.05).  There was also no increase in [ATP]V or ATP effluent (FBF x 

[ATP]V; an index of the total circulating rate of ATP to account for the impact of changes in FBF 

on [ATP]V measurements) from normoxia to hypoxia in O vs Y (P > 0.05), and ∆ATP effluent 

from rest to 25% MVC was also lower in O vs Y (22.5 ± 4.3 vs 44.4 ± 10.3 nmol/min; P < 0.05).  

The % ∆ in isolated RBC ATP release from normoxia to hypoxia was impaired by ~75% in 

washed and unwashed RBCs from O vs Y as well (P < 0.05).  In O, fasudil restored ∆FVC 

during hypoxia and 25% MVC compared to saline (7.8 ± 1.4 vs 2.7 ± 1.0 mL/min/100mmHg and 

276.5 ± 17.3 vs 220.2 ± 19.4 mL/min/100mmHg, respectively; P < 0.05), abolishing the 

impairment vs Y.  Similarly, fasudil tended to improve the increase in [ATP]V during hypoxia (P = 

0.10 vs. normoxia and P = 0.12 vs. zero) and significantly improved ∆ATP effluent during 

hypoxia and 25% MVC vs. saline in O (0.96 ± 0.38 vs. 0.24 ± 0.14 nmol/min and 36.8 ± 7.6 vs. 

22.5 ± 4.3 nmol/min; P < 0.05).  Fasudil also tended to improve isolated RBC ATP release from 

unwashed cells in O vs. saline (53.0 ± 13.5 vs. 15.0 ± 14.6%, respectively; P = 0.08).  Finally, 

the % ∆ in brachial artery diameter during exercise, a nitric oxide- (NO) dependent response, 

was impaired in O vs. Y at 15% (1.0 ± 0.4 vs 5.0 ± 0.9%) and 25% MVC (3.9 ± 0.7 vs 9.3 ± 

1.3%) and was improved with fasudil in O at 15% (3.4 ± 0.8%) and 25% MVC (7.6 ± 1.0%) (P < 

0.05).  These data suggest that in vivo Rho-kinase inhibition improves hemodynamic responses 

to hypoxia and exercise in O at least partly via improved ATP release and NO bioavailability.  

 

Introduction 

 Cardiovascular diseases (CVD) remain the leading cause of death worldwide and the 

majority of CVD-related mortality is associated with arterial dysfunction (Benjamin et al., 2017).  

Advancing age is the primary risk factor for CVD, and it is estimated that over 90% of all deaths 

associated with CVD are observed in adults over 60 years old (Benjamin et al., 2017).  

Furthermore, healthy (primary) aging is associated with a decline in functional capacity that 
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leads to reductions in exercise tolerance, functional independence, and overall quality of life 

(WHO, 1993).  All of these age-associated changes, as well as vascular pathologies like 

atherosclerosis and ischemic disease, involve impairments in vascular control and the 

subsequent regulation of tissue blood flow and oxygen delivery. 

 The multifaceted nature of local blood flow regulation requires an integrated and 

coordinated balance between vasodilatory factors, which can arise from the vascular 

endothelium, circulating elements in the blood, tissue metabolites, and mechanical forces, and 

vasoconstricting signals from the sympathetic nervous system, vasculature, and surrounding 

tissues (Clifford & Hellsten, 2004; Segal, 2005; Harold Laughlin et al., 2012; Hellsten et al., 

2012; Mortensen & Saltin, 2014).  Primary aging is associated with reductions in skeletal muscle 

blood flow during physiological stimuli like exercise (for review, see Proctor & Parker, 2006; 

Wray & Richardson, 2015; Hearon Jr. & Dinenno, 2016) and hypoxia (Casey et al., 2011; 

Richards et al., 2017), as well as increases in sympathetic nervous system activity (reviewed by 

Dinenno & Joyner, 2006) and declines in the production or bioavailability of vasodilatory 

molecules.  Of these alterations in vasoactive stimuli, attenuated local vasodilatory signaling is 

likely to be the major contributor to the age-related impairment in blood flow regulation, as data 

from our laboratory indicate that augmented sympathetic vasoconstriction does not contribute to 

the reduction in peripheral vasodilation and skeletal muscle hyperemia during hypoxia or 

exercise in older adults (Richards et al., 2014, 2017). 

 Among the vasodilatory signals that are affected by aging, the blunted increases in 

circulating adenosine triphosphate (ATP) during hypoxia and exercise (Kirby et al., 2012) may 

be one of the most significant impairments given the unique ability of circulating ATP to both 

stimulate local and conducted vasodilation via binding to purinergic P2Y receptors on the 

endothelium (Collins et al., 1998; Winter & Dora, 2007; Dora, 2017) while also blunting 

adrenergic vasoconstriction (Rosenmeier et al., 2004; Kirby et al., 2008; Hearon Jr. et al., 2017), 

as well as its anti-adhesive and anti-coagulative properties (Hrafnkelsdóttir et al., 2001; Zhu et 
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al., 2011; Kirby et al., 2014).  Importantly, it has been demonstrated that the vasodilatory 

responsiveness to exogenous ATP is preserved in the forearm of older adults (Kirby et al., 

2010), and although some work indicates that this differs in other vascular beds (e.g., the leg) in 

a manner that is influenced by physical activity status (Mortensen et al., 2012), the collective 

evidence suggests that potential age-related impairments in the contribution of ATP to vascular 

control and regulation of skeletal muscle blood flow must be related to the source of ATP.   

 Red blood cells (RBCs) release ATP in response to cell deformation and in direct 

proportion to the degree of hemoglobin deoxygenation, and can therefore contribute to the 

coupling of blood flow and oxygen delivery to tissue metabolic demand (Bergfeld & Forrester, 

1992; Ellsworth et al., 1995; Dietrich et al., 2000; Ellsworth, 2000; Jagger et al., 2001; 

González-Alonso et al., 2002; Sprague et al., 2009; Jensen, 2009; Ellsworth & Sprague, 2012).  

Furthermore, increases in circulating ATP during exercise are dependent on intact skeletal 

muscle perfusion (i.e., intravascular sources) (Kirby et al., 2013) and deoxygenation-induced 

ATP release from isolated RBCs is impaired with primary aging (Kirby et al., 2012).  The 

experimental findings from Chapters II and III of this dissertation indicate that reduced RBC 

deformability in older adults is the primary underlying mechanism of impaired deoxygenation-

induced ATP release and that improving deformability via treatment of isolated RBCs from 

healthy older adults with a Rho-kinase inhibitor can restore their ability to release ATP in 

response to deoxygenation.  However, there have been no attempts to improve RBC 

deformability and ATP release in vivo, and it is unknown if successfully doing so would improve 

the hemodynamic responses to hypoxia and exercise in healthy older adults.  Thus, the primary 

goal of the present study was to test the hypothesis that systemic administration of the Rho-

kinase inhibitor fasudil would improve the hemodynamic responses to hypoxia and exercise in 

healthy older adults and that this would be accompanied by improvements in circulating ATP 

and deoxygenation-induced ATP release from isolated RBCs. 
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Methods 

Ethical approval and subjects 

 The study conformed to the standards set by the Declaration of Helsinki, except for 

registration in a database.  With approval from the Institutional Review Board at Colorado State 

University, a total of 11 young and 12 older healthy adults participated in the present 

investigation after providing their informed, written consent.  All subjects were free from overt 

cardiovascular disease as assessed from a medical history, free of cardiovascular medications, 

non-smokers, non-obese (body mass index < 30 kg/m2), normotensive (resting blood pressure < 

140/90), and sedentary to moderately active.  Young female subjects were studied during the 

early follicular phase of their menstrual cycle to minimize any potential cardiovascular effects of 

sex-specific hormones, whereas older female subjects were post-menopausal and not taking 

hormone replacement therapy.  Additionally, older subjects were further evaluated for clinical 

evidence of cardiopulmonary disease with a physical examination and resting and exercise 

(Balke protocol) electrocardiograms.  Body composition was determined by whole-body dual-

energy X-ray absorptiometry scans (QDR series software, Hologic, Inc., USA).  Whole blood 

lipid panels were run using a Piccolo Xpress chemistry analyzer (Abaxis, USA).  Studies were 

performed in the Human Cardiovascular Physiology Laboratory at Colorado State University 

(altitude: ∼1500 m) after a 4 hour fast, 24 hour abstention from alcohol/substance use, and a 12 

hour abstention from caffeine and exercise, with subjects in the supine position with the 

experimental arm abducted to 90° and slightly elevated above heart level upon a tilt-adjustable 

table. 

 

Experimental design and general experimental protocol 

 The overall experimental design and timeline for each experimental visit is depicted in 

Fig. 4.1.  Using a double-blind, placebo-controlled, crossover design, subjects were randomized 

to receive an infusion of either saline (placebo control) or fasudil for their first experimental visit.  
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Subjects then received the opposite treatment for their second experimental visit, with at least 

five days and no more than two months between the first and second visit.  Fasudil and 

hydroxyfasudil are metabolized quickly (half-life of ~45 min and ~280 min, respectively with a 60 

mg/60 min infusion of fasudil; Shibuya et al., 2005) and thus typically administered two to three 

times per day in clinical practice (Shibuya et al., 1992, 2005, Suzuki et al., 2007, 2008; Zhao et 

al., 2011; Satoh et al., 2014; Jiang et al., 2015).  Therefore, at least five days between visits was 

deemed to be sufficient for washout of any potential effects of fasudil administration. 

 All experimental measures were performed in the same order for each visit within a 

subject, with the order of hypoxia and graded-intensity rhythmic handgrip exercise trials 

randomized and counterbalanced between subjects.  Arterial stiffness measures (augmentation 

index and carotid-femoral pulse wave velocity) were performed before and after placement of 

the venous catheter and 60 min treatment administration.  For both the hypoxia and exercise 

trials, resting hemodynamics were measured for 2-3 min until a steady-state was observed, 

after which the physiological stimulus was initiated.  The hypoxia trial consisted of 3 min of 

steady-state hypoxia at an oxygen saturation of ~80% as assessed via pulse oximetry on the 

earlobe (SpO2; plus ~2 min for the normoxia to hypoxia transition).  The exercise trial consisted 

of 4 min at each workload to ensure that steady-state hemodynamics were achieved.  Timing of 

blood sampling is indicated by arrows; most importantly, blood samples for plasma [ATP] were 

taken under steady-state conditions at rest, the end of hypoxia, and the end of each exercise 

workload. 

   

Venous catheterization 

 As described previously by our lab (Crecelius et al., 2011, 2013, Kirby et al., 2012, 

2013), an 18- or 20-gauge (depending on inspection of vein size) 5.1 cm catheter was inserted 

in retrograde fashion into an antecubital vein of the experimental arm for treatment 

administration and deep venous blood samples.  The catheter was connected to a three-way 
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stopcock, with one connection to an intravenous solution set for treatment administration 

followed by continuous flushing with saline at a rate of approximately 2 mL/min for the duration 

of the study to keep it patent and the other connection to a 10- or 3-mL syringe for blood 

sampling. 

 

Intravenous fasudil and placebo (saline) administration 

 Fasudil monohydrochloride (fasudil; LC Laboratories, Woburn, MA, USA) was prepared 

in saline (10 mg/1 mL sodium chloride 0.9% PF injection; Pencol Compounding Pharmacy, 

Denver, CO, USA) and passed all measures for purity by HPLC, sterility, endotoxins, and fungal 

presence (Analytical Research Laboratories, Oklahoma City, OK, USA) prior to use.  60 mg of 

fasudil (6 mL vial) was added to a 100 mL saline bag immediately prior to administration, 

covered to protect it from exposure to light, and infused intravenously over 60 min (Shibuya et 

al., 2005).  This single dose of fasudil was well tolerated by both young and older adults, and no 

adverse events were observed or reported in either age group.  For the placebo control trial, 

saline administration was performed identically to fasudil administration, with a covered 100 mL 

saline bag infused intravenously over 60 min.  Fasudil mixed in saline was indistinguishable 

from saline alone, thus all investigators remained blinded during treatment administration.   

 

Forearm blood flow and vascular conductance 

 A 12 MHz linear-array ultrasound probe (Vivid 7, General Electric, Milwaukee, WI, USA) 

was used to determine brachial artery mean blood velocity (MBV) and diameter proximal to the 

catheter insertion site as described previously (Crecelius et al., 2011; Kirby et al., 2012; Hearon 

Jr. et al., 2017; Richards et al., 2017).  Foam tape was used to mark the outline of the probe for 

consistent placement and measurement over the course of the experiments.  For blood velocity 

measurements, the probe insonation angle was maintained at < 60 degrees and the frequency 

used was 5 MHz.  The Doppler shift frequency spectrum was analyzed via a Multigon 500M 
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TCD (Multigon Industries, Mt. Vernon, NY, USA) spectral analyzer from which MBV was 

determined as a weighted mean of the spectrum of Doppler shift frequencies.  Brachial artery 

diameter measurements were made in duplex mode at end-diastole and between contractions 

(at least in triplicate) during steady-state conditions (Crecelius et al., 2011; Kirby et al., 2012; 

Richards et al., 2017).  Forearm blood flow (FBF) was calculated as: FBF = MBV × π × (brachial 

artery diameter/2)2 × 60, where FBF is expressed as mL/min, MBV as cm/s, brachial diameter 

as cm, and 60 was used to convert from mL/s to mL/min.  Forearm vascular conductance (FVC) 

was calculated as (FBF/MAP) × 100 and expressed as mL/min/100 mmHg (Kirby et al., 2012; 

Richards et al., 2014, 2017; Hearon Jr. et al., 2017).  All studies were performed in a semi-

darkened, cool (20-22°C), temperature-controlled environment with a fan directed toward the 

forearm to minimize the contribution of skin blood flow to forearm hemodynamics. 

 

Systemic isocapnic hypoxia 

 The systemic isocapnic hypoxia trial was performed using a self-regulating partial 

rebreathe system developed by Banzett et al. (2000) and more recently described by our 

laboratory (Markwald et al., 2011; Crecelius et al., 2011; Kirby et al., 2012; Richards et al., 

2017).  This system allows for constant alveolar fresh air ventilation independent of changes in 

breathing frequency or tidal volume (Banzett et al., 2000; Dinenno et al., 2003; Wilkins et al., 

2008).  Using this system, we were able to clamp end-tidal CO2 levels despite the hypoxia-

induced increases in ventilation.  The level of oxygen was manipulated by mixing nitrogen with 

medical air via an anesthesia gas blender.  Specifically, inspired oxygen was titrated to achieve 

an SpO2 of ~80%.  Subjects breathed through a scuba mouthpiece with a nose-clip to prevent 

nasal breathing.  An anesthesia monitor (Cardiocap/5, Datex-Ohmeda, Louisville, CO, USA) 

was used to determine heart rate (HR; 3-lead ECG) and expired CO2 sampled at the 

mouthpiece.  Ventilation was measured via a turbine pneumotachograph (model 17125 UVM, 

Vacu-Med, Ventura, CA, USA). 



77 
 

Graded-intensity rhythmic handgrip exercise 

 Maximum voluntary contraction (MVC) was determined for the experimental arm as the 

average of three maximal squeezes of a handgrip dynamometer (Stoelting, Chicago, IL, USA) 

that were within 3% of each other.  Rhythmic handgrip exercise during the trials was performed 

with weights corresponding to 5%, 15%, and 25% MVC attached to a pulley system and lifted 4-

5 cm over the pulley at a duty cycle of 1 s contraction-2 s relaxation (20 contractions per min) 

using both visual and auditory feedback to ensure the correct timing (Dinenno & Joyner, 2003, 

2004; Kirby et al., 2012; Richards et al., 2014).  Handgrip exercise was performed for four min 

at each workload, for a total of 12 min. 

 

Blood sampling and measurement of [fasudil], [hydroxyfasudil], plasma [ATP], plasma [Hb], and 

blood gases 

 Timing of deep venous blood samples is indicated by arrows in Fig. 4.1.  Based on 

preliminary pharmacokinetics experiments performed in our laboratory (data not shown), a 

blood sample for peak plasma concentrations of fasudil and hydroxyfasudil was taken ~15 min 

after the treatment infusion ended and an additional sample was taken at the end of the study 

immediately prior to catheter removal to confirm that concentrations of each compound 

remained at a level that can effectively inhibit Rho-kinase, which has been shown to range from 

0.08-1.9 µM for fasudil (Davies et al., 2000; Wickman et al., 2003; Shibuya et al., 2005; Rikitake 

et al., 2005; Jacobs et al., 2006; Satoh et al., 2012) and from 0.04-1.8 µM for hydroxyfasudil 

(Shimokawa et al., 1999; Shimokawa, 2002; Shibuya et al., 2005; Rikitake et al., 2005; Jacobs 

et al., 2006; Satoh et al., 2012).   

 The plasma concentrations of fasudil and hydroxyfasudil were measured by triple 

quadrupole UPLC-MS/MS.  Stock solutions of standards fasudil (1 mg/mL), hydroxyfasudil (0.5 

mg/mL) and ranitidine (1 mg/mL) were prepared in methanol.  A 9-point calibration curve was 

prepared with fasudil and hydroxyfasudil using ranitidine as an internal standard in methanol, 
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and in a pooled blank plasma created by mixing aliquots of plasma from test subjects following 

saline injection.  Analytical samples and matrix calibration solutions were prepared by mixing a 

230 µL aliquot of plasma, 400 µL methanol and 70 µL of a 5 µg/mL solution of ranitidine in an 

Eppendorf tube, they were vortexed for 30s, and centrifuged at 11,000 rpm for 5 min.  150 µL of 

the supernatant was transferred to an autosampler vial.  QC samples and blanks were run every 

8 injections and all injections were introduced in duplicate.  A Waters H-class Acquity UPLC 

systems in-line with a Waters triple quadrupole mass spectrometer (TQD) equipped with an 

electrospray ionization (ESI) source was used for separation and detection of the target 

analytes.  A Waters Acquity BEH UPLC column (50 x 2.1 mm 1.7 µm particle size) was used 

with gradient separation.  Mobile phase A was water with 0.1% formic acid and 2 mM 

ammonium acetate, mobile phase B was methanol.  The gradient started at 50% B, held for 0.1 

min, ramped to 80% B over 2.5 min, held at 80% B for 0.5 min, returned to 50% B over 0.1 min, 

and equilibrated at 50% B for 0.9 min for total UPLC run time of 4 min.  Source conditions on 

the TQD were as follows: capillary voltage 2.4 kV, cone voltage 40 V, source temperature 

150°C, desolvation temperature 200°C, desolvation gas flow 550 L/hr, cone gas flow 1 L/hr, 

extractor 3 V and RF lens 2.5 V.  Transitions used for quantitation (quant) as confirmatory 

qualifiers (qual) along with dwell times, cone voltage and collision voltages were as follows: 

fasudil parent m/z 292.1, daughter m/z 69.1, dwell 0.008 s, cone 40 V, collision 24 V (qual); 

fasudil parent m/z 292.1, daughter 99.2, dwell 0.008 s, cone 40 V, collision 18 V (quant); 

hydroxyfasudil parent 308.2, daughter 69.0, dwell 0.008 s, cone 54 V collision 24 V (qual); 

hydroxyfasudil parent 308.2, daughter 99.2, dwell 0.008 s, cone 50 V, collision 26 V (quant); 

ranitidine parent 315.2, daughter 97.0, dwell 0.005 s, cone 34 V, collision 52 V (qual); ranitidine 

parent 315.2, daughter 175.9, dwell 0.005 s, cone 34 V, collision 19 V (quant).  Data were 

processed using the response ratio for target analytes fasudil and hydroxyfasudil to the internal 

standard ranitidine (Chen et al., 2010).  
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 Blood samples for plasma [ATP] and blood gases were taken immediately after the 

treatment infusion (ATP standard curve sample) and at the end of rest, hypoxia, and each 

exercise intensity.  Our method for blood sampling, preparation, and measurement of plasma 

[ATP] (Kirby et al., 2012, 2013; Crecelius et al., 2013) generally follows the procedures 

established by Gorman and colleagues (Gorman et al., 2003, 2007) and was performed as 

previously described in detail (Kirby et al., 2012).  Briefly, ~3-5 mL of venous blood was drawn 

directly into a pre-heparinized 10 mL syringe, from which 2 mL was gently and at once expelled 

into a tube containing 2.7 mL of an ATP-stabilizing solution to equal a blood:diluent ratio of 1.35 

(Gorman et al., 2003, 2007, Kirby et al., 2012, 2013; Crecelius et al., 2013).  This ATP-

stabilizing solution is used to inhibit the degradation of ATP via nucleotidases and additional 

ATP release post-sampling.  The blood-diluent mixture was immediately centrifuged at 4000 

rpm (~1200g) for 3 min at 22°C, and 100 µL of the supernatant was taken for measurement of 

plasma [ATP] via luciferin-luciferase assay.  An ATP standard curve was created on each visit 

prior to hypoxia and exercise trials using plasma from each subject studied as the medium.  All 

plasma ATP measures were performed at least in triplicate.  

 To account for the potential influence of RBC hemolysis on measures of plasma [ATP], 

which can increase significantly with only small amounts of hemolysis, a 1 mL sample of plasma 

supernatant from the blood-diluent mixture was taken immediately following ATP measurements 

and analyzed for plasma hemoglobin (Hb) via spectrophotometry (SpectraMax, Molecular 

Devices, Sunnyvale, CA, USA) at wavelengths of 415, 380, and 450 nm as described previously 

by our laboratory (Kirby et al., 2012, 2013; Crecelius et al., 2013).  The percentage hemolysis 

was then calculated as ((100 – hematocrit) × plasma [Hb]/total [Hb]) × 100.  Any sample that 

was more than two standard deviations from the mean percentage hemolysis was excluded 

from the analysis and regarded as a technical error. 

 Blood gas samples (~2 mL) were immediately (< 1 min) analyzed with a clinical blood 

gas analyzer (Rapid Point 400 Series Automatic Blood Gas System, Siemens Healthcare 
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Diagnostics, Deerfield, IL, USA) for partial pressures of oxygen and carbon dioxide (PO2 and 

PCO2), pH, fraction of oxygenated hemoglobin (FO2Hb), oxygen content, and Hb.   

 

Isolation of red blood cells 

 Blood was collected from the antecubital vein catheter into two Vacutainer tubes 

containing sodium heparin (158 USP units).  It was unclear if the potential effects of in vivo Rho-

kinase inhibition would be diminished by cell washing during the normal RBC isolation process 

as described previously by our lab (Kirby et al., 2012) given that both fasudil and hydroxyfasudil 

inhibit Rho-kinase via competitive inhibition at the ATP binding site (Jacobs et al., 2006), 

therefore RBCs were isolated from one tube of blood with washing and from the second tube 

without washing.  For both tubes, whole blood was initially centrifuged (500g, 4°C, 10 min) 

followed by removal of the plasma and buffy coat by aspiration.  For unwashed RBCs, excess 

blood was aspirated in order to remove as much of the buffy coat as possible.  For washed 

RBCs, packed cells were resuspended in cell wash buffer (CWB) containing (in mM) 4.7 KCl, 

2.0 CaCl2, 1.2 MgSO4, 140.5 NaCl, 21.0 Tris-base, 5.5 glucose, and 0.5% BSA, with pH 

adjusted to 7.4 at room temperature.  Centrifugation, buffy coat aspiration, and resuspension in 

CWB were repeated two additional times for a total of three wash cycles.  All RBC ATP 

measures were performed immediately after RBC isolation was completed. 

 

Red blood cell deoxygenation and measurement of extracellular ATP 

 The paired washed and unwashed RBCs were diluted to 20% hematocrit with a 

bicarbonate-based buffer containing (in mM) 4.7 KCl, 2.0 CaCl2, 1.2 MgSO4, 140.5 NaCl, 11.1 

glucose, 23.8 NaHCO3, and 0.5% BSA warmed to 37°C.  These 20% hematocrit RBC 

suspensions were placed in a rotating bulb tonometer (Eschweiler GmbH & Co. KG, Germany) 

and incubated for 30 min in normoxia (16% O2, 6% CO2, balanced nitrogen; PO2 ~123 mmHg 

and FO2Hb ~95% across all age groups and conditions) at 37°C.  Samples of washed and 
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unwashed RBCs were removed from each tonometer bulb for measurement of extracellular and 

intracellular ATP in normoxia (details below).  RBCs were then deoxygenated by exposure to 

hypoxia (1.5% O2, 6% CO2, balanced nitrogen; PO2 ~25 mmHg and FO2Hb ~34% across all age 

groups and conditions) for 15 min and RBC samples were taken for measurement of ATP as in 

normoxia.  Normoxic and hypoxic gases were blended via gas blender (MCQ Gas Blender 

Series 100, Italy) and humidified before introduction into the tonometer bulbs.  Blood gases 

were confirmed by blood gas analysis (Siemens Rapid Point 405 Series Automatic Blood Gas 

System, Los Angeles, CA) (Kirby et al., 2012).   

 ATP was measured via luciferin-luciferase technique as described previously (Sprague 

et al., 2001; Sridharan et al., 2010b, 2010a; Thuet et al., 2011; Kirby et al., 2012; Richards et 

al., 2013), with light emission during the reaction detected by a luminometer (TD 20/20, Turner 

Designs).  For extracellular ATP (i.e., ATP release) measurements, a 10 µL sample of the 20% 

hematocrit suspension was taken from each tonometer bulb and diluted 500-fold (0.04% 

hematocrit), from which a 200 µL sample was taken and injected into a cuvette containing 100 

µL of firefly tail extract (10 mg/mL DI water; Sigma) and 100 µL of D-luciferin (0.5 mg/mL DI 

water; Research Products International).  Peak light output was measured at least in triplicate 

for each experimental condition and the mean was used for determination of ATP levels by 

comparison to a standard curve for ATP (Calbiochem) generated on the day of the experiment.  

Cell counts were obtained from each 0.04% RBC suspension and extracellular ATP was 

normalized to 4 x 108 cells.  To confirm that ATP release was not due to hemolysis, the 0.04% 

RBC suspensions from which samples for ATP analysis and cell counting were taken were 

analyzed for free hemoglobin by measuring absorbance at 405 nm similar to previous reports 

(Sprague et al., 1998, 2011; Sridharan et al., 2010a; Thuet et al., 2011; Kirby et al., 2012, 2014; 

Richards et al., 2013) as well as at 570 nm and subtracting out the background at 700 nm as 

recently suggested by Keller and colleagues (Keller et al., 2017), and samples with significant 

lysis were excluded. 
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Measurement of total red blood cell intracellular ATP 

 To determine if donor age or in vivo fasudil administration affected total intracellular ATP 

or the increase in RBC glycolytic activity during hypoxia (Messana et al., 1996; Campanella et 

al., 2005; Lewis et al., 2009), 50 µL samples of drug- and saline-treated RBCs (20% hematocrit) 

were taken from the tonometer bulbs in normoxia and hypoxia and lysed in DI water at room 

temperature (a 20-fold dilution).  This lysate was diluted an additional 400-fold (8000-fold total) 

and ATP was measured using the same ATP assay used for determination of extracellular ATP 

(Sridharan et al., 2010b, 2010a; Sprague et al., 2011; Thuet et al., 2011; Kirby et al., 2012, 

2014).  Values were normalized to ATP concentration per RBC. 

 

Central artery stiffness: carotid-femoral pulse wave velocity and central augmentation index 

 Carotid-femoral pulse wave velocity (cfPWV) and central augmentation index (AIx) were 

determined noninvasively using the SphygmoCor XCEL (AtCor Medical) as described 

previously (Butlin et al., 2013; Hwang et al., 2014; Butlin & Qasem, 2016; Shoji et al., 2017; 

Suleman et al., 2017; Nakagomi et al., 2018).  For determination of cfPWV, the device 

automatically calculates the ratio of the time delay between femoral pulse waves acquired using 

a cuff-based approach and carotid pulse waves acquired by applanation tonometry to the 

corrected distance between pulse measuring sites.  Distance correction was performed by 

factoring in measurements from the suprasternal notch to the carotid site and the proximal edge 

of the thigh cuff (placed midway between hip and the knee) to the femoral artery at the inguinal 

ligament, both made using a nonstretchable tape measure, and a measurement from the 

suprasternal notch to the proximal edge of the thigh cuff that was made with tree calipers to 

avoid overestimation of the distance between these two points.  For AIx measures, the 

SphygmoCor XCEL utilizes a validated cuff-based approach to derive AIx automatically from 

measurements over the brachial artery that are processed and transformed by the device’s 

software using a proprietary generalized transfer function.  In the present experiment, the 
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brachial cuff was placed midway between the shoulder and elbow of the arm contralateral to the 

catheter.   

 

Data acquisition and analysis 

 All in vivo data were collected and stored on a computer at 250 Hz and were analyzed 

offline with signal-processing software (WinDaq, DATAQ Instruments, Akron, OH, USA).  

Resting MAP was determined non-invasively over the brachial artery (Cardiocap/5, Datex-

Ohmeda, Louisville, CO, USA).  Beat-by-beat MAP was measured at the heart level by finger 

photoplethysmography (Finometer, FMS, Netherlands) on the middle finger of the control hand 

during hypoxia and rhythmic handgrip exercise trials (Kirby et al., 2012).  FBF, HR, MAP, and 

oxygen saturations (pulse oximetry) represent an average of the last 30 seconds of the 

appropriate time period.  Minute ventilation and end-tidal CO2 in the hypoxia trial were 

determined from an average of the data over the last minute of each time period in order to 

ensure an adequate number of sampling points.   

 Venous oxygen content (CvO2) determined from deep venous blood samples taken at 

the end of rest, hypoxia, and each exercise intensity was combined with estimates of arterial 

oxygen content (CaO2)  in normoxia (203.7 mL O2 / L blood) and hypoxia (165.4 mL O2 / L 

blood) based on data collected previously by our laboratory via brachial artery catheter in both 

young and older adults (Richards et al., 2014, 2017; no difference with age) in order to quantify 

oxygen delivery, extraction, and consumption.  Arteriovenous oxygen difference was calculated 

as CaO2 – CvO2.  Oxygen delivery was calculated as (CaO2 × FBF × 0.001) and expressed in 

mL/min.  Oxygen extraction, reported as a percent, was calculated as ((CaO2 – CvO2)/CaO2 × 

100).  Oxygen consumption across the forearm (V̇O2) was calculated as ((CaO2 – CvO2) × FBF × 

0.001) and expressed in mL/min. 

 To account for changes in FBF and its impact on [ATP] concentration measurements 

and to quantify the rate of total ATP draining the active muscle, ATP effluent was calculated as 
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FBF × [ATP] × 0.001, as quantified previously by our laboratory (Kirby et al., 2012; Crecelius et 

al., 2013) and similar to other methods of data quantification when blood flow is altered 

(González-Alonso et al., 2002; Giannarelli et al., 2009). 

 

Statistics 

 All values are reported as mean ± SEM.  All analyses were performed using R (R Core 

Team 2016, R Foundation for Statistical Computing, Vienna, Austria) with the lme4, lmerTest, 

pbkrtest, and lsmeans packages.  Age (young or older), drug (saline or fasudil), condition (rest 

or exercise intensity or hypoxia), and age×drug×condition for three-way repeated measures or 

age×drug for two-way repeated measures ANOVA were treated as fixed effects.  In order to 

account for the crossover design, subject and subject×drug were in included in the model as 

random effects for the three-way repeated measures analyses and subject was included as a 

random effect for the two-way repeated measures analyses.  When an interaction or main effect 

was found, appropriate pairwise comparisons were made and a Tukey test was included when 

necessary.  Comparisons of variables relative to zero were tested using a one-tailed t-test, and 

differences in subject characteristics were tested using a two-tailed t-test.  Comparisons 

between saline and fasudil were performed within age group and comparisons between young 

and old were performed within condition.  Significance was set at P < 0.05. 

 

Results 

Subject characteristics and plasma [fasudil] and [hydroxyfasudil] 

 Subject characteristics are reported in Table 4.1.  The mean age difference between the 

young and older adults was 41 years.  Compared to the young adults, older adults had higher 

body fat percentage, total cholesterol, and LDL cholesterol (P < 0.05); however, all values were 

still within the normal healthy range.  In a subset of subjects (n = 14; 7 young and 7 older 

adults), blood samples were taken approximately 15 min after the treatment infusion stopped 
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(peak) and at the end of the study just before the venous catheter was removed (end) for 

measurement of plasma concentrations of fasudil and hydroxyfasudil.  The average [fasudil] at 

peak and end was 1.003 ± 0.321 µM and 0.071 ± 0.010 µM, respectively, and the average 

[hydroxyfasudil] at peak and end was 2.208 ± 0.190 µM and 1.013 ± 0.133 µM, respectively.  

Importantly, there were no differences between young and older adults and fasudil was well 

tolerated in all subjects with no adverse events. 

 

Effects of age and fasudil on ventilatory, hemodynamic, and plasma ATP responses during 

systemic isocapnic hypoxia  

 Hemodynamic and ventilatory responses during normoxia and systemic isocapnic 

hypoxia are reported in Table 4.2.  SpO2, minute ventilation, and end-tidal CO2 were not 

significantly different between age groups in the saline condition, whereas in the fasudil 

condition there were some age-related differences in SpO2 and minute ventilation as well as an 

effect of fasudil on minute ventilation; however, ~80% SpO2 was achieved in all conditions.  

MAP was significantly higher in older vs. young adults during normoxia and hypoxia with saline 

and this was decreased with fasudil (P < 0.05) (Table 4.2 and Fig. 4.2E).  There were no 

differences in baseline (normoxia) FBF or FVC between age groups or treatment conditions 

(Table 4.2, Figs. 4.2A and 4.2B).  The increase in FBF and FVC from normoxia to hypoxia was 

impaired in older vs. young adults in the saline control condition (2.2 ± 0.6 vs. 6.3 ± 1.2 mL/min 

and 2.7 ± 1.0 vs. 7.1 ± 1.4 mL/min/100 mmHg, respectively; P < 0.05), and this was completely 

reversed for both FBF and FVC following fasudil administration such that there was no longer a 

difference between older and young adults (7.2 ± 1.6 vs. 6.2 ± 1.2 mL/min and 7.8 ± 1.4 vs. 6.2 

± 1.1 mL/min/100 mmHg, respectively; P > 0.05) (Figs. 4.2C and 4.2D).   

 Resting venous plasma [ATP] and ATP effluent in normoxia were not different between 

young and older adults in saline (79.9 ± 16.1 vs. 101.2 ± 16.6 nmol/L and 1.6 ± 0.4 vs. 2.2 ± 0.4 

nmol/min, respectively; P > 0.05) or fasudil (81.3 ± 16.8 vs. 66.9 ± 12.8 nmol/L and 1.5 ± 0.3 vs. 
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1.5 ± 0.3 nmol/min, respectively; P > 0.05) conditions, and within each age group these values 

were not different between saline and fasudil (P > 0.05) (Figs. 4.3A and 4.3B).  In older adults, 

[ATP]V and ATP effluent did not increase during hypoxia compared to normoxia with saline 

(105.0 ± 20.4 vs. 101.2 ± 16.6 nmol/L and 2.4 ± 0.4 vs. 2.2 ± 0.4 nmol/min, respectively; P > 

0.05) (Figs. 4.3A and 4.3B), whereas this increase during hypoxia vs. normoxia was improved 

with fasudil for [ATP]V (82.8 ± 23.5 vs. 66.9 ± 12.8 nmol/L, respectively; P = 0.10) and ATP 

effluent (2.5 ± 0.7 vs. 1.5 ± 0.3 nmol/min, respectively; P < 0.05) (Figs. 4.3A and 4.3B).  

Similarly, ∆[ATP]V from normoxia to hypoxia in older adults was not significantly different from 

zero with saline, but tended to be with fasudil (P = 0.12) (Fig. 4.3C), and ∆ATP effluent during 

hypoxia was impaired in older vs. young adults with saline (0.24 ± 0.14 vs. 1.08 ± 0.21 

nmol/min, respectively; P < 0.05) and restored with fasudil (0.96 ± 0.38 nmol/min; P < 0.05 vs. 

saline) (Fig. 4.3D). 

 

Effects of age and fasudil on hemodynamic, plasma ATP, and brachial artery diameter 

responses during graded-intensity rhythmic handgrip exercise 

 Hemodynamic responses at baseline and during graded-intensity rhythmic handgrip 

exercise are reported in Table 4.3.  MAP was significantly higher in older vs. young adults at all 

time points with saline (P < 0.05) and this difference was improved with fasudil (Table 4.3 and 

Fig. 4.4E; P < 0.05).  Importantly, fasudil did not alter the increase in MAP from rest at each 

exercise intensity in either age group relative to saline (Fig. 4.4F; P > 0.05).   

 There were no effects of age or fasudil on resting FBF or FVC (Table 4.3, Figs. 4.4A and 

4.4B; P > 0.05).  With saline, the increase in FBF and FVC from rest to exercise was impaired in 

older vs. young adults at 25% MVC (248.0 ± 20.1 vs. 327.8 ± 31.1 mL/min and 220.2 ± 19.4 vs. 

339.5 ± 25.5 mL/min/100 mmHg, respectively; P < 0.05) and also at 15% MVC for FVC (134.3 ± 

13.3 vs. 194.0 ± 17.4 mL/min/100 mmHg, respectively; P < 0.05) (Figs. 4.4C and 4.4D).  With 

fasudil, the increase in FBF and FVC from rest to exercise was blunted in young adults at 25% 
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MVC compared to saline (290.1 ± 26.7 vs. 327.8 ± 31.1 mL/min and 286.8 ± 21.9 vs. 339.5 ± 

25.5 mL/min/100 mmHg, respectively; P < 0.05) (Figs. 4.4C and 4.4D).  In contrast, fasudil 

significantly improved the change in FBF and FVC at 25% MVC in older adults compared to 

saline (289.5 ± 22.3 vs. 248.0 ± 20.1 mL/min and 276.5 ± 17.3 vs. 220.2 ± 19.4 mL/min/100 

mmHg, respectively; P < 0.05) (Figs. 4.4C and 4.4D). 

 Venous plasma [ATP] and ATP effluent at rest were not different between young and 

older adults in saline (75.7 ± 12.9 vs. 53.5 ± 6.0 nmol/L and 1.6 ± 0.4 vs. 1.2 ± 0.2 nmol/min, 

respectively; P > 0.05) or fasudil (74.3 ± 11.2 vs. 81.0 ± 15.6 nmol/L and 1.8 ± 0.4 vs. 2.1 ± 0.5 

nmol/min, respectively; P > 0.05) conditions, and within each age group these values were not 

different between saline and fasudil (P > 0.05) (Figs. 4.5A and 4.5B).  During 5% MVC exercise 

in the saline condition, older adults had significantly lower plasma [ATP]V compared to young 

adults (61.5 ± 9.8 vs. 111.8 ± 15.9, respectively; P < 0.05) and there was a trend for lower ATP 

effluent in older vs. young adults as well (4.6 ± 1.1 vs. 8.0 ± 1.3, respectively; P = 0.07), both of 

which significantly improved with fasudil (132.9 ± 22.3 nmol/L and 9.5 ± 2.0 nmol/min, 

respectively; P < 0.05 vs. saline) (Figs. 4.5A and 4.5B).  Fasudil also tended to increase plasma 

[ATP]V at 15% and 25% MVC in older adults compared to saline (127.4 ± 28.1 vs. 88.5 ± 10.8 

nmol/L, P = 0.09 and 123.6 ± 23.6 vs. 83.8 ± 12.1 nmol/L, P = 0.08, respectively) (Fig. 4.5A).  

Similarly, ATP effluent was significantly impaired in older vs. young adults with saline at 25% 

MVC (23.8 ± 4.4 vs. 46.3 ± 10.5 nmol/min; P < 0.05) and this response was improved with 

fasudil in older adults (38.9 ± 7.8; P < 0.05 vs. saline) (Fig. 4.5B).  In the saline condition, 

∆[ATP]V from rest to exercise was only impaired with age at 5% MVC and this was significantly 

improved with fasudil (Fig. 4.5C).  The ∆ATP effluent from rest to exercise was also significantly 

impaired in older vs. young adults with saline at 5% and 25% MVC (3.31 ± 0.85 vs. 6.36 ± 1.04 

nmol/min and 22.54 ± 4.27 vs. 44.43 ± 10.28 nmol/min, respectively; P < 0.05), and this 

impairment was improved with fasudil in older adults at 5% MVC (7.10 ± 1.70 nmol/min) and 

25% MVC (36.83 ± 7.56 nmol/min) compared to saline (P < 0.05) (Fig. 4.5D). 
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 Absolute brachial artery diameter was not different between age groups at any time 

point, although fasudil did increase brachial artery diameter relative to saline at rest and 25% 

MVC in young adults and 15% and 25% MVC in older adults (P < 0.05) (Fig. 4.6A).  The relative 

(%) change in brachial artery diameter from rest to exercise, measured during the last ~30 sec 

at a given workload, was significantly impaired in older vs. young adults with saline at 15% MVC 

(1.0 ± 0.4 vs. 5.0 ± 0.9%, respectively) and 25% MVC (3.9 ± 0.7 vs. 9.3 ± 1.3%, respectively) (P 

< 0.05) (Fig. 4.6B).  Fasudil significantly improved this increase in brachial artery diameter at 

15% and 25% MVC in older adults (3.4 ± 0.8% and 7.6 ± 1.0%, respectively; P < 0.05 vs. saline) 

such that there was no longer an age-related impairment (Fig. 4.6B). 

 

Effects of age and fasudil on oxygen delivery, extraction, and consumption during systemic 

isocapnic hypoxia and graded-intensity rhythmic handgrip exercise 

 In the hypoxia trial, there was a trend for forearm V̇O2 to decrease during hypoxia relative 

to normoxia in older adults with saline (2.0 ± 0.3 vs. 2.4 ± 0.2 mL/min, respectively; P = 0.07) 

(Fig. 4.7E).  Fasudil significantly increased oxygen delivery and forearm V̇O2 during hypoxia in 

older adults compared to saline (4.8 ± 0.5 vs. 3.8 ± 0.4 mL/min and 2.5 ± 0.4 vs. 2.0 ± 0.3 

mL/min, respectively; P < 0.05) (Figs. 4.7A and 4.7E).  In the exercise trial, oxygen delivery and 

forearm V̇O2 were both impaired in older vs. young adults at 25% MVC with saline (55.0 ± 4.4 vs. 

73.2 ± 8.8 mL/min and 36.3 ± 3.0 vs. 43.8 ± 4.1 mL/min, respectively; P < 0.05) (Figs. 4.7B and 

4.7F).  These age-related impairments at 25% MVC were reversed with fasudil due to 

improvements in both oxygen delivery (64.2 ± 4.8 mL/min) and forearm V̇O2 (40.6 ± 3.4 mL/min) 

in the older adults relative to saline (P < 0.05) (Figs. 4.7B and 4.7F). 

 

Effects of age and fasudil on isolated red blood cell extracellular and intracellular ATP 

 Blood gases for isolated RBCs are shown in Table 4.4.  The only differences between 

age groups or drug condition in the fraction of oxygenated hemoglobin (FO2Hb), which provides 
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an index of the stimulus for ATP release given the linear relationship between hemoglobin 

oxygenation state and extracellular ATP, was a higher value during hypoxia in washed RBCs 

from older vs. young adults with fasudil (35.2 ± 1.6 vs. 26.7 ± 3.6%, respectively; P < 0.05) 

(Table 4.4).  With washed RBCs, the increase in extracellular ATP from normoxia to hypoxia 

was significantly impaired in older vs. young adults with saline (52.5 ± 16.7 vs. 165.4 ± 53.0%, 

respectively; P < 0.05) and fasudil (17.4 ± 13.2 vs. 113.7 ± 25.4%, respectively; P < 0.05) (Fig. 

4.8C).  With unwashed RBCs, the increase in extracellular ATP from normoxia to hypoxia was 

also significantly impaired in older vs. young adults with saline (15.0 ± 14.6 vs. 92.7 ± 15.8%, 

respectively; P < 0.05) and fasudil (53.0 ± 13.5 vs. 105.4 ± 16.3%, respectively; P < 0.05), 

although there was a trend for fasudil to improve this change in extracellular ATP in the older 

adults relative to saline (53.0 ± 13.5 vs. 15.0 ± 14.6%, respectively; P = 0.08) (Fig. 4.8D).  

Similarly, extracellular ATP from unwashed RBCs of older adults was not elevated in hypoxia 

compared to normoxia with saline (14.1 ± 2.6 vs. 12.3 ± 1.8 nmol/4x108 RBCs, respectively; P > 

0.05) whereas it was with fasudil (16.5 ± 2.7 vs. 11.6 ± 2.0 nmol/4x108 RBCs, respectively; P < 

0.05) (Fig. 4.8B).  Finally, intracellular ATP increased in hypoxia (P < 0.05) and there were no 

differences between age groups or drug conditions (Figs. 4.8E and 4.8F). 

 

Effects of age and fasudil on central artery stiffness 

 Carotid-femoral pulse wave velocity (cfPWV) was significantly higher in older vs. young 

adults and was not significantly changed by fasudil administration in either age group (Fig. 

4.9A).  Similarly, central augmentation index (AIx) was also significantly elevated in older 

relative to young adults and was unaffected by fasudil administration (Fig. 4.9B).   

 

Discussion 

 This is the first study to investigate the use of fasudil in healthy older adult humans as a 

means to improve the age-related impairments in circulating ATP responses to systemic 



90 
 

hypoxia and exercise, and the control of vascular tone and peripheral blood flow during these 

physiological stimuli in this population.  The primary novel findings are as follows.  First, fasudil 

completely reversed the impairments in local vasodilatory and blood flow responses to systemic 

hypoxia in older adults, accompanied by a general trend for improvements in ATP release 

based on measures of venous plasma [ATP] and the rate of ATP effluent from skeletal muscle 

during the hypoxic stimulus.  Second, fasudil significantly improved the age-related impairment 

in vasodilation and blood flow during high-intensity (25% MVC) rhythmic handgrip exercise, and 

this was also accompanied by improvements in circulating ATP in older adults based on trends 

for increased venous plasma [ATP] and significantly improved ATP effluent.  Third, the 

improvements in the hemodynamic responses to systemic hypoxia and exercise with fasudil 

resulted in increased oxygen delivery to the skeletal muscle and improved forearm V̇O2 during 

these physiological stimuli in older adults.  Fourth, fasudil improved the age-related impairment 

in flow-mediated dilation of the brachial artery during progressive, graded-intensity rhythmic 

handgrip exercise such that there was no longer a difference between young and older adults.  

Fifth, fasudil significantly lowered mean arterial blood pressure in healthy, normotensive older 

adults at rest, during systemic hypoxia, and during exercise such that age-related elevations in 

control conditions were abolished.  Sixth, in vivo fasudil administration tended to improve the 

impairment in deoxygenation-induced ATP release from unwashed RBCs of older adults.  

Finally, fasudil had no effect on the age-related increases in central artery stiffness in older 

adults.  These collective findings provide the first experimental evidence that systemic fasudil 

administration improves ATP release in vivo and the regulation of vascular tone and skeletal 

muscle blood flow during the physiological stimuli of systemic hypoxia and exercise in healthy 

older adults, which may have therapeutic implications for reducing cardiovascular disease risk 

and increasing exercise tolerance and functional independence in aging populations. 
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Possible mechanisms of fasudil-mediated improvements in vascular function in older adults: 

ATP release 

 The design of the present study does not allow the underlying mechanisms of the 

fasudil-mediated improvements in vasodilatory and blood flow responses to systemic hypoxia 

and graded-intensity rhythmic handgrip exercise in older adults to be identified conclusively; 

however, some insight can be gained by evaluating the effects of fasudil on other outcomes of 

interest.  The experimental basis for the present study was the novel finding from experiments 

performed in Chapter II of this dissertation that age-related declines in RBC deformability are a 

primary mechanism of impaired deoxygenation-induced ATP release from RBCs of healthy 

older adults, and more specifically, that improvements in deformability of RBCs from older 

adults following Rho-kinase inhibition restored the ability of these cells to release ATP in 

response to hemoglobin deoxygenation relative to RBCs from young adults.  Although 

methodological concerns prevented experimental confirmation of the effects of systemic fasudil 

administration on RBC deformability (discussed in more detail in the ‘Experimental 

considerations and limitations’ section below), the general improvements in circulating ATP 

measures during systemic hypoxia and rhythmic handgrip exercise in older adults with fasudil 

strongly suggest that fasudil improved RBC deformability and ATP release in vivo  given our 

previous findings that increases in circulating ATP during exercise are dependent on skeletal 

muscle perfusion and thus an intravascular cell source like RBCs (Kirby et al., 2013), as well as 

the aforementioned effects of Rho-kinase inhibition on RBC deformability and ATP release from 

Chapter II.  Accordingly, there was also a trend for improved deoxygenation-induced ATP 

release from isolated RBCs of older adults following in vivo administration of fasudil, but only in 

the unwashed RBCs (P = 0.08).  This discrepancy between the effect of fasudil on washed and 

unwashed RBCs may be due to methodological limitations as well (discussed below).  

Considering the ability of ATP to stimulate both local and conducted vasodilation (Winter & 

Dora, 2007; Dora, 2017), the preserved vasodilatory responsiveness to exogenous ATP in the 



92 
 

forearm of older adults (Kirby et al., 2010), and the associations between plasma [ATP] and 

FBF in young and older adults (Kirby et al., 2012), the increase in circulating ATP following 

fasudil administration in the present study likely contributed to the enhanced vascular responses 

during hypoxia and exercise.   

 

Possible mechanisms of fasudil-mediated improvements in vascular function in older adults: 

nitric oxide 

 Rho-kinase has a variety of molecular targets, one of which is the nitric oxide-producing 

enzyme endothelial nitric oxide synthase (eNOS) (Satoh et al., 2014; Shimokawa et al., 2016).  

Specifically, Rho-kinase inhibits eNOS-mediated synthesis of nitric oxide (NO) via 

phosphorylation of the enzyme at threonine 495 (Sugimoto et al., 2007).  Accordingly, some of 

the vascular effects of fasudil and hydroxyfasudil have been shown to be mediated in large part 

by improved NO bioavailability as a result of decreasing the inhibition of eNOS by Rho-kinase 

(Büssemaker et al., 2007; Satoh et al., 2014).  Pertinent to the present study, the increase in 

brachial artery diameter during progressive, graded-intensity handgrip exercise has been shown 

to be largely dependent on NO in healthy young adults and impaired in older adults as a result 

of age-related declines in NO-mediated vascular function (Wray et al., 2011; Trinity et al., 2013).  

In the present study, the increase in brachial artery diameter during graded-intensity rhythmic 

handgrip exercise was also significantly impaired in older adults with saline and this impairment 

was reversed with fasudil administration such that there was no longer an age-related difference 

(Fig. 4.6).  Taken together, these findings suggest that at least some of the fasudil-mediated 

improvements in vascular function in older adults were due to enhanced NO bioavailability. 
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Possible mechanisms of fasudil-mediated improvements in vascular function in older adults: 

literature-based evidence of additional pathways 

  The evidence for increases in ATP and NO bioavailability as possible mechanisms of the 

improvements in vascular function during hypoxia and exercise following fasudil administration 

in older adults is based on both experimental findings in the present study and results of 

previous investigations by various groups.  However, given the diverse molecular targets of 

Rho-kinase in vivo and the systemic administration of fasudil in the present study, there are 

multiple additional pathways that could have contributed to the fasudil-mediated improvements 

in vascular function in older adults that can only be addressed at this point by turning to the 

scientific literature.  An additional vasodilatory pathway that may have been affected by fasudil 

administration is the KV7 subfamily of voltage-gated K+ (KV) channels, which contribute to both 

cyclic GMP- (cGMP) and cyclic AMP- (cAMP) dependent vasodilation and have been shown be 

selectively activated by fasudil (specifically KV7.4 and KV7.4/KV7.5) (Stott & Greenwood, 2015; 

Zhang et al., 2016).  In contrast, the Rho-kinase inhibitors fasudil and Y-27632 have both been 

shown to blunt the vascular response to multiple vasoconstrictors.  Specifically, fasudil can limit 

α-adrenergic vasoconstriction induced by norepinephrine and abolish endothelin-mediated 

vasoconstriction (Büssemaker et al., 2007) and Y-27632 has been shown to cause a dose-

dependent decrease in α1-adrenergic vasoconstriction stimulated by phenylephrine (Löhn et al., 

2005).  If some degree of inhibition of α-adrenergic vasoconstriction occurred in the present 

study, it is unlikely that it contributed to the improved vascular responses in older adults given 

our previous observations that local adrenoceptor blockade does not improve the age-related 

impairments in vasodilation during hypoxia (80% SpO2) or graded-intensity rhythmic handgrip 

exercise (5%, 15%, and 25% MVC).  However, the effect of fasudil on endothelin-mediated 

constriction (Büssemaker et al., 2007) may have contributed in the present study given that an 

age-related increase in vasoconstriction mediated by endothelin A (ETA) receptors has been 
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identified in the leg of healthy older adults both at rest and during exercise (Barrett-O’Keefe et 

al., 2015). 

 

Experimental considerations and limitations 

 The primary experimental limitation of the present study is that fasudil could not be 

delivered specifically to RBCs and therefore systemic drug administration was required in order 

to inhibit Rho-kinase in the circulating pool of RBCs.  Given that Rho-kinase is distributed widely 

throughout the body and has a diverse range of cellular targets, follow-up studies will be needed 

to gain more definitive mechanistic insight into the fasudil-mediated improvements in vascular 

control in healthy older adults.  Such studies could utilize systemic fasudil administration in 

combination with local brachial artery infusion of pharmacological antagonists of the pathways 

proposed to be altered by Rho-kinase inhibition, such as barium chloride for blocking ATP-

mediated dilation via inwardly rectifying potassium (KIR) channels (Crecelius et al., 2012), L-

NMMA for blocking eNOS-derived NO, and BQ-123 for blocking the ETA receptor (Barrett-

O’Keefe et al., 2015), with subsequent analysis of how these antagonists alter the effects of 

fasudil providing insight into which pathways were involved. 

 Another limitation of systemic drug administration is that fasudil and its active metabolite 

hydroxyfasudil can have off-target effects from Rho-kinase, including myosin light chain kinase, 

protein kinase A, and protein kinase C.  However, the inhibitor constant (Ki) of fasudil is much 

more specific for Rho-kinase, ranging from 0.33-1.9 µM (Davies et al., 2000; Wickman et al., 

2003; Shibuya et al., 2005; Rikitake et al., 2005; Jacobs et al., 2006; Satoh et al., 2012) 

compared to 55 µM for myosin light chain kinase (Satoh et al., 2012), ~10 µM on average for 

protein kinase A (Davies et al., 2000; Rikitake et al., 2005; Jacobs et al., 2006; Satoh et al., 

2012), and ranging from 3.3 µM to over 100 µM for protein kinase C (Rikitake et al., 2005; Satoh 

et al., 2012).  Importantly, hydroxyfasudil is an even more potent and specific inhibitor of Rho-

kinase than fasudil, with a Ki ranging from 0.039-1.8 µM (Shimokawa et al., 1999; Shimokawa, 
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2002; Shibuya et al., 2005; Rikitake et al., 2005; Jacobs et al., 2006; Satoh et al., 2012) 

compared to 140 µM for myosin light chain kinase (Satoh et al., 2012), 2.2-37 µM for protein 

kinase A (Rikitake et al., 2005; Jacobs et al., 2006; Satoh et al., 2012), and 18-100 µM for 

protein kinase C (Shimokawa et al., 1999; Rikitake et al., 2005; Satoh et al., 2012), and it has a 

significantly longer half-life in circulation compared to fasudil (over four hours vs. less than one) 

(Shibuya et al., 2005).  Given that plasma [fasudil] and [hydroxyfasudil] were within the Ki range 

specific for Rho-kinase, it is unlikely that any effects of fasudil in the present study were due to 

off-target effects of these compounds. 

 Finally, we were unable to confirm that systemic fasudil administration altered RBC 

deformability due to methodological considerations associated with RBC isolation that could 

affect deformability and ATP release measures, as well as methodological limitations associated 

with measuring deformability via blood filtrometry.  Beginning with RBC isolation, the primary 

methodological consideration is that it is unclear how removal of RBCs from the in vivo 

environment in which fasudil and hydroxyfasudil are circulating alters the effects of these 

compounds and influences the ex vivo measures of RBC function (i.e., deformability and ATP 

release) given that both act via competitive inhibition at the ATP binding site of Rho-kinase as 

opposed to inducing a more permanent or long-lasting change (Jacobs et al., 2006).  As 

opposed to the ex vivo studies described in Chapters II and III where pharmacological agents 

are incubated with isolated cells followed by the initiation of physiological measures within 5-30 

min, at least 90 min pass between removal of RBCs from the in vivo environment in which 

fasudil and hydroxyfasudil are circulating and the initial ATP release measures in normoxia for 

washed RBCs as a result of the time associated with multiple cell washes, which may also alter 

the drug effects independent from time.  Although there is less of a time delay with the 

unwashed RBCs, at least 50 min still pass between removal of RBCs and the initial ATP release 

measures in normoxia.  These differences between washed and unwashed RBCs may explain 

why there was a trend for fasudil to increase deoxygenation-induced ATP release in unwashed 
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RBCs from older adults compared to saline (P = 0.08) whereas there was no effect of fasudil in 

washed RBCs (Figs. 4.8C and 4.8D).   

 Regarding the methodological limitations associated with blood filtrometry, the measure 

is highly influenced by the presence of non-RBCs given that it is dependent on cells deforming 

to pass through filter pores 5 µm in diameter.  RBCs (~8 µm in diameter) are generally able to 

accomplish this, but other monocytes (ranging from 7-30µm in diameter), which inevitably 

persist without cell washing despite the removal of plasma and the visible buffy coat, cannot.  

To confirm this, we performed pilot tests of RBC deformability using washed and unwashed 

RBCs (n = 3 young adults) and found that red blood cell transit time (RCTT), where lower 

values indicate greater deformability, was significantly elevated and more than twice as variable 

in unwashed RBCs compared to washed (data not shown).  Thus, given these considerations 

associated with cell washing and the limitations associated with measuring RBC deformability in 

unwashed cells, we were unable to confirm an effect of in vivo fasudil administration on RBC 

deformability.  However, based on the experiments performed in Chapter II of this dissertation, it 

is likely that the improvements in circulating ATP in vivo and the trend for increased ATP 

release from unwashed RBCs in the present study resulted from fasudil-mediated 

improvements in RBC deformability and ATP release in vivo. 

 

Conclusions 

 This investigation provides the first experimental evidence that age-related impairments 

in the peripheral vasodilatory and hyperemic responses to systemic hypoxia and graded-

intensity rhythmic handgrip exercise can be significantly improved by Rho-kinase inhibition, and 

that this is accompanied by improvements in circulating ATP during these physiological stimuli.  

These findings also provide the necessary foundation for performing future investigations to 

determine the underlying mechanisms by which fasudil improves these hemodynamic 

responses in healthy older adults.  Collectively, the work performed in this dissertation indicates 
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that RBCs may be a promising therapeutic target for improving vascular control of blood flow 

and oxygen delivery in older adults through the enhanced release of ATP, and for ultimately 

ameliorating the age-related increases in cardiovascular disease risk and declines in exercise 

tolerance and functional independence associated with impaired vascular function with 

advancing age. 
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Table 4.1. Subject Characteristics 
 Young Older 

Male:Female 6:5 5:7 

Age (years) 25 ± 1 66 ± 1* 

Body mass index (kg/m2) 23.4 ± 0.6 24.7 ± 0.9 

Body fat (%) 24.1 ± 2.2 33.6 ± 2.6* 

Forearm volume (ml) 897.2 ± 78.4 967.6 ± 95.1 

Forearm fat-free mass (g) 749.4 ± 89.2 701.3 ± 84.0 

Maximum voluntary contraction (kg) 34 ± 3 28 ± 2 

5% workload (kg) 1.7 ± 0.2 1.4 ± 0.1 

15% workload (kg) 5.1 ± 0.5 4.2 ± 0.4 

25% workload (kg) 8.5 ± 0.8 7.0 ± 0.6 

Total cholesterol (mg/dl) 151 ± 10 185 ± 12* 

LDL cholesterol (mg/dl) 82 ± 7 107 ± 10* 

HDL cholesterol (mg/dl) 53 ± 4 61 ± 3 

LDL:HDL 1.6 ± 0.1 1.8 ± 0.2 

Triglycerides (mg/dl) 77 ± 6 86 ± 8 

* P < 0.05 vs. young (within condition) 
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Table 4.2. Hemodynamic and ventilatory responses during systemic isocapnic hypoxia 

 Young  Older 

 Normoxia Hypoxia   Normoxia Hypoxia  

Saline      

MAP (mmHg) 88±2 89±2  100±3† 99±4† 

HR (beats/min) 57±2 78±4  58±2 68±2† 

FBF (ml/min) 18.6±1.6 24.9±2.7  20.7±2.1 22.8±2.2 

FVC (ml/min/100mmHg) 21.1±1.9 28.2±3.1  20.7±2.0 23.4±2.3 

SpO2 (%) 98.6±0.3 79.1±1.0  97.5±0.4 79.8±0.6 

Minute vent (L/min; BTPS) 8.5±0.7 16.6±1.1  7.7±0.6 14.4±1.0 

End-tidal CO2 (mmHg) 40.7±0.8 39.9±0.9  38.8±1.1 37.6±0.8 

Fasudil      

MAP (mmHg) 87±3 90±4  93±3* 92±3* 

HR (beats/min) 59±3 79±3  56±2 66±3† 

FBF (ml/min) 18.7±2.4 25.0±3.2  21.6±2.9 28.8±3.1* 

FVC (ml/min/100mmHg) 21.1±2.2 27.3±2.7  23.1±2.8 30.9±2.6* 

SpO2 (%) 98.7±0.4 77.5±1.0  97.1±0.6† 79.6±0.8† 

Minute vent (L/min; BTPS) 8.9±0.8 19.0±1.5*  8.4±0.8 12.7±0.6† 

End-tidal CO2 (mmHg) 39.6±1.1 38.8±0.9  37.6±1.6 37.2±1.1 

* P < 0.05 vs. saline; † P < 0.05 vs. young (within condition) 
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Table 4.3. Hemodynamic responses during graded-intensity rhythmic handgrip exercise 
 Young  Older 

 Rest 5% MVC  15% MVC 25% MVC   Rest 5% MVC  15% MVC 25% MVC  

Saline          

MAP (mmHg) 87±3 92±4 91±4 95±5  100±3† 103±5† 107±5† 113±5† 

HR (beats/min) 56±3 59±3 61±2 66±3  58±2 60±2 61±2 63±2 

FBF (ml/min) 19.2±1.5 70.5±7.3 198.9±19.9 347.1±31.6  21.8±1.9 71.3±8.5 166.5±15.9 269.7±21.5† 

FVC (ml/min/100mmHg) 22.1±1.8 76.2±6.2 216.2±17.7 361.7±26.3  21.8±1.8 69.1±7.4 156.0±14.6† 242.0±20.7† 

          

Fasudil          

MAP (mmHg) 87±3 90±3 93±3 99±4  93.1±3.4* 96±4* 98±4* 103±4* 

HR (beats/min) 55±3 63±2 64±3 71±5  54±2 57±2 59±2 61±2† 

FBF (ml/min) 23.4±2.9 76.4±8.7 181.1±19.1 313.5±27.9*  25.5±2.8 69.2±6.5 169.3±16.1 315.0±23.4* 

FVC (ml/min/100mmHg) 26.6±2.8 83.9±8.0 193.3±18.3 313.4±23.5*  27.2±2.4 71.7±5.6 171.6±14.7 303.7±18.4* 

* P < 0.05 vs. saline; † P < 0.05 vs. young (within condition) 
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Table 4.4. Isolated red blood cell gases 

   pH 
PO2 

(mmHg) 
PCO2 

(mmHg) 
tHb 

(g/dL) 
FO2Hb 

(%) 
FHHb  
(%) 

Washed RBCs        

Normoxia 

Young 
Saline 7.33±0.02 119.8±2.6 34.3±0.8 6.6±0.2 95.1±0.2 3.1±0.1 

Fasudil 7.33±0.01 122.5±4.2 34.6±1.8 6.8±0.3 95.5±0.2 3.3±0.1 

Older 
Saline 7.32±0.01 123.4±2.0 36.6±0.8 6.6±0.1 94.9±0.2 3.5±0.1 

Fasudil 7.32±0.01 125.0±1.4 37.1±0.7† 6.9±0.2* 95.2±0.1 3.1±0.1 

Hypoxia 

Young 
Saline 7.35±0.01 23.4±1.5 36.2±0.7 6.6±0.2 30.9±3.0 65.6±2.8 

Fasudil 7.37±0.01 21.4±1.6 36.2±0.8 6.9±0.3 26.7±3.6 69.7±3.4 

Older 
Saline 7.32±0.01 26.3±1.3 39.0±0.7 6.6±0.2 34.3±2.4 62.0±2.3 

Fasudil 7.33±0.01 26.8±0.8 39.6±0.6† 7.1±0.2* 35.2±1.6† 61.3±1.6†

Unwashed RBCs        

Normoxia 

Young 
Saline 7.42±0.02 121.5±2.6 33.9±0.7 6.3±0.1 95.5±0.2 2.9±0.1 

Fasudil 7.44±0.02 123.0±4.5 33.8±2.8 6.3±0.2 95.8±0.2 3.0±0.1 

Older 
Saline 7.39±0.02 123.7±2.4 38.1±1.3 6.7±0.1† 95.5±0.1 3.0±0.1 

Fasudil 7.41±0.01 126.4±1.6 36.2±0.6 6.7±0.1† 95.7±0.1 2.8±0.1 

Hypoxia 

Young 
Saline 7.44±0.01 22.6±1.1 35.4±0.8 6.3±0.2 34.1±3.1 62.2±3.0 

Fasudil 7.46±0.01 21.3±1.3 34.8±0.9 6.3±0.2 32.1±3.9 64.5±3.6 

Older 
Saline 7.41±0.01 25.5±0.7 39.2±0.8 6.8±0.2† 37.9±1.5 58.4±1.5 

Fasudil 7.41±0.01 24.8±0.9 40.1±0.8† 6.7±0.1 36.0±2.8 60.5±2.8 

PO2 = partial pressure of oxygen, PCO2 = partial pressure of carbon dioxide, tHb = total 
hemoglobin, FO2Hb = fraction of oxygenated hemoglobin, FHHb = fraction of deoxygenated 
hemoglobin.  * P < 0.05 vs. saline; † P < 0.05 vs. young 
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Figure 4.1. Overall experimental design and experimental visit timeline 
A: double-blind, placebo-controlled, randomized, crossover experimental design; after 
successful screening, subjects were randomized in a double-blind manner to receive an infusion 
of either saline (placebo control) or fasudil for their first experimental visit. Subjects then 
received the opposite treatment for their second experimental visit, with at least five days 
between visit 1 and visit 2.  B: experimental visit timeline; arterial stiffness measures were 
performed before and after venous catheter placement and treatment infusion followed by either 
hypoxia or graded-intensity rhythmic handgrip exercise trials, the order of which was 
randomized and counterbalanced between subjects, but kept the same for both visits within a 
subject. Timing of blood sampling is indicated by arrows, with samples for plasma [ATP] taken 
under steady-state conditions at rest, during hypoxia, and the end of each exercise workload. 
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Figure 4.2. Effects of age and fasudil on hemodynamic responses during systemic 
hypoxia 
A,B: there were no significant differences in absolute forearm blood flow (FBF) and vascular 
conductance (FVC) between young and older adults, but both increased significantly during 
hypoxia with fasudil in older adults.  C,D: ∆FBF and ∆FVC from normoxia to hypoxia were 
impaired with age in the saline condition and were restored with fasudil.  E: mean arterial 
pressure (MAP) was elevated in older adults with saline and was reduced with fasudil.  F: ∆MAP 
from normoxia to hypoxia was unaffected by age or fasudil. * P < 0.05 vs. saline; † P < 0.05 vs. 
young; ‡ P < 0.05 vs. normoxia  
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Figure 4.3. Effects of age and fasudil on ATP release during systemic hypoxia 
A,C: in young adults, plasma [ATP]V increased during hypoxia from normoxia with saline and 
this ∆[ATP]V was significantly greater than zero with saline, but not fasudil. In older adults, 
fasudil tended to improve [ATP]V during hypoxia compared to normoxia and ∆[ATP]V from 
normoxia to hypoxia relative to zero.  B,D: ATP effluent increased significantly from normoxia to 
hypoxia in young adults. In older adults, fasudil improved ATP effluent during hypoxia compared 
to normoxia and reversed the age-related impairment in ∆ ATP effluent.  * P < 0.05 vs. saline;  
† P < 0.05 vs. young; ‡ P < 0.05 vs. normoxia; # P < 0.05 vs. zero (∆[ATP]V only) 
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Figure 4.4. Effects of age and fasudil on hemodynamic responses during rhythmic 
handgrip exercise 
A,B: with saline, forearm blood flow (FBF) was impaired during 25% maximum voluntary 
contraction (MVC) and forearm vascular conductance (FVC) was impaired during 15% and 25% 
MVC in older adults. Fasudil decreased FBF and FVC at 25% MVC in young adults and 
increased FBF and FVC at 25% in older adults.  C,D: effects of age and fasudil on ∆FBF and 
∆FVC from rest to exercise were the same as for absolute values in Panels A and B.  E: mean 
arterial pressure (MAP) was elevated in older adults with saline and was reduced with fasudil at 
rest and during exercise.  F: ∆ MAP from rest to exercise was unaffected by age or fasudil.   
* P < 0.05 vs. saline; † P < 0.05 vs. young; # P < 0.05 vs. zero (∆ MAP only) 
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Figure 4.5. Effects of age and fasudil on ATP release during rhythmic handgrip exercise 
A,C: with saline, plasma [ATP]V increased at all exercise intensities from rest in young adults 
and at 15% and 25% maximum voluntary contraction (MVC) in older adults, but was lower at 
5% MVC in older vs. young adults. Fasudil increased absolute and ∆[ATP]V at 5% MVC and 
tended to increase [ATP]V at 15% and 25% MVC in older adults.  B,D: absolute and ∆ ATP 
effluent were lower in older vs. young adults at 5% and 25% MVC with saline and were 
improved with fasudil at both exercise intensities *P < 0.05 vs. saline; † P < 0.05 vs. young;  
‡ P < 0.05 vs. rest ([ATP]V only); # P < 0.05 vs. zero (∆[ATP]V only) 
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Figure 4.6. Effects of age and fasudil on brachial artery flow-mediated dilation during 
rhythmic handgrip exercise 
A: aging did not affect absolute brachial artery diameter at rest or during exercise. Fasudil 
increased brachial diameter at rest and 25% maximum voluntary contraction (MVC) in young 
adults and at 15% and 25% MVC in older adults.  B: the relative (%) change in brachial artery 
diameter from rest to exercise was impaired in older adults with saline and significantly 
improved with fasudil at 15% and 25% MVC.  * P < 0.05 vs. saline; † P < 0.05 vs. young 
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Figure 4.7. Effects of age and fasudil on forearm oxygen delivery, extraction, and 
consumption during hypoxia (A,C,E) and rhythmic handgrip exercise (B,D,F) 
A,C,E: there were no differences in O2 delivery (A), extraction (C), or consumption (E) between 
young and older adults. V̇O2 tended to decrease during hypoxia in older adults with saline (E) 
and both O2 delivery and V̇O2 were improved with fasudil (A,E).  B,D,F: O2 delivery (B) and V̇O2 

(F) were both impaired in older vs. young adults at 25% maximum voluntary contraction (MVC) 
with saline and this was reversed with fasudil.  * P < 0.05 vs. saline; † P < 0.05 vs. young;  
‡ P < 0.05 vs. normoxia  
  



109 
 

 
Figure 4.8. Effects of age and fasudil on deoxygenation-induced ATP release and 
intracellular ATP from washed (A,C,E) and unwashed (B,D,F) red blood cells (RBCs) 
A,B: in young adults, extracellular ATP significantly increased from normoxia to hypoxia. In older 
adults, extracellular ATP significantly increased during hypoxia with saline for washed RBCs (A) 
and with fasudil for unwashed RBCs (B).  C,D: the relative (%) change in extracellular ATP from 
normoxia to hypoxia was significantly impaired with age in all conditions, but fasudil tended to 
improve ATP release compared to saline in the unwashed RBCs (D).  E,F: intracellular ATP 
increased from normoxia to hypoxia in all conditions and there were no differences between 
young and older adults.  * P < 0.05 vs. saline; † P < 0.05 vs. young; ‡ P < 0.05 vs. normoxia 
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Figure 4.9. Effects of age and fasudil on measures of central artery stiffness 
A: carotid-femoral pulse wave velocity (cfPWV) was elevated in older compared to young adults 
and there was no effect of fasudil.  B: central augmentation index (AIx) was elevated in older 
compared to young adults and was unaffected by fasudil administration.  † P < 0.05 vs. young; 
‡ P < 0.05 vs. pre-catheter 
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CHAPTER V – LIMITATIONS AND PERSPECTIVES 
 
 
 

General Experimental Limitations 

 The first two sets of investigations provided novel mechanistic insight into the effects of 

primary aging on deoxygenation-induced ATP release from isolated red blood cells (RBCs).  

However, the major limitation of this dissertation is that the experimental approach utilized does 

not allow for the mechanisms of fasudil-mediated improvements in the hemodynamic responses 

to hypoxia and exercise in older adults to be determined; thus, we cannot establish a conclusive 

link between the first investigation, which demonstrated the ability of Rho-kinase inhibition to 

rescue deoxygenation-induced ATP release from RBCs of healthy older adults, and the third 

investigation in which systemic Rho-kinase inhibition in vivo significantly improved the 

hemodynamic responses to hypoxia and exercise in older adults.  In order to address this 

limitation, the underlying mechanisms of the hemodynamic improvements following fasudil 

administration in older adults could be tested in follow up studies utilizing experimental 

approaches with which our laboratory has extensive expertise.  Specifically, coupling fasudil 

administration with the use of local infusions of pharmacological antagonists into the brachial 

artery to inhibit the vasodilatory pathways thought to be improved by fasudil administration (e.g., 

ATP and nitric oxide) would provide a means to ‘pharmacodissect’ the contributing factors 

based on how blockade of these pathways affects the response to fasudil.  Although this 

approach has limitations of its own, namely that there are currently no specific antagonists of 

purinergic P2 receptors available for use in humans, it is possible to block pathways that are 

downstream of ATP binding to P2 receptors such as activation of inwardly rectifying potassium 

channels, which we have demonstrated is the primary pathway for ATP-mediated dilation in 

humans. 

 Related to this primary limitation is the fact that systemic administration of fasudil was 

required in this study in order to expose the circulating RBC pool to the drug.  Given that it is 
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currently not possible in humans to target the delivery of fasudil specifically to RBCs and that 

Rho-kinase is prevalent throughout the body, systemic drug administration may have been 

associated with inhibition of Rho-kinase in other tissues for which it would be difficult to control.  

However, our use of the forearm model is advantageous in this respect given that (i) the small 

muscle mass of the forearm is minimally impacted by systemic cardiovascular changes that can 

occur with systemic drug administration; (ii) handgrip exercise limits the stimulation of systemic 

cardiovascular reflexes that occur with whole body exercise and, when engaged, can confound 

the interpretation of peripheral vascular responses; and (iii) it allows for the broadest range of 

pharmacological agents to be utilized in vivo with the aforementioned ‘pharmacodissection’ 

approach that would otherwise not be possible due to risks and potential confounding effects 

that accompany the need to infuse higher drug doses when studying a larger muscle mass.   

 In addition to the potential confounding effects of inhibiting Rho-kinase in a variety of cell 

types, fasudil and hydroxyfasudil, the active metabolite of fasudil, can have off-target effects 

beyond Rho-kinase that include myosin light chain kinase and multiple protein kinases.  

However, the plasma concentrations that were achieved for both compounds in the third 

investigation were well below the average concentrations needed to inhibit targets other than 

Rho-kinase.  Furthermore, hydroxyfasudil is a much more selective inhibitor of Rho-kinase than 

fasudil and it has a significantly longer elimination half-life (over four hours compared to less 

than one hour for fasudil).  Thus, it is unlikely that the effects of fasudil on hemodynamics and 

circulating ATP in the third investigation were due to effects that were independent from Rho-

kinase inhibition. 

 

Perspectives 

 The regulation of blood flow to the tissues requires the complex integration and 

coordination of many different stimuli in order to appropriately match oxygen supply with the 

metabolic demand of the tissues.  Over decades of research, it has become increasingly evident 
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that RBCs are more than just simple carriers of oxygen.  Instead, through the regulated release 

of ATP in response to a variety of stimuli, including hemoglobin deoxygenation and cell 

deformation, RBCs are ideally positioned to both detect local changes in tissue metabolic 

demand and initiate a vasodilatory response to increase blood flow and participate in this crucial 

matching of oxygen supply and demand.  While the effects of primary aging on vascular function 

have been widely studied, it was only identified recently that aging is also associated with 

impaired RBC ATP release in response to hemoglobin deoxygenation.  However, the 

mechanisms of this impairment and its contribution to age-related declines in vascular function 

have remained completely unknown.   

 The data in this dissertation provide the first experimental evidence of the underlying 

mechanisms of impaired deoxygenation-induced ATP release from RBCs of healthy older 

adults, identifying declines in RBC membrane deformability as a primary mechanism whereas 

the cellular responses to Gi activation (e.g., increases in intracellular cAMP and ATP release) 

remain intact.  Furthermore, the translation of these findings from isolated RBCs represents the 

first attempt to improve RBC ATP release in vivo in healthy older adults, and these studies are 

therefore the first to demonstrate that systemic Rho-kinase inhibition can improve hemodynamic 

and circulating ATP responses to hypoxia and exercise in older adults.  Accordingly, RBC ATP 

release represents a novel therapeutic target for improving vascular function in aging 

populations, which may provide significant benefits for exercise tolerance, cardiovascular 

disease risk, functional independence, and overall quality of life. 
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APPENDIX A – HUMAN SUBJECTS APPROVAL 
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APPENDIX B – CONSENT FORM 
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