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Abstract

Model selection and nonparametric estimation for regression models

In this dissertation, we deal with two different topics in statistics. The first topic in

survey sampling deals with variable selection for linear regression model from which we will

sample with a possibly informative design. Under the assumption that the finite population

is generated by a multivariate linear regression model from which we will sample with a

possibly informative design, we particularly study the variable selection criterion named

predicted residual sums of squares in the sampling context theoretically. We examine the

asymptotic properties of weighted and unweighted predicted residual sums of squares under

weighted least squares regression estimation and ordinary least squares regression estimation.

One simulation study for the variable selection criteria are provided, with the purpose of

showing their ability to select the correct model in the practical situation.

For the second topic, we are interested in fitting a nonparametric regression model to

data for the situation in which some of the covariates are categorical. In the univariate case

where the covariate is a ordinal variable, we extend the local polynomial estimator, which

normally requires continuous covariates, to a local polynomial estimator that allows for or-

dered categorical covariates. We derive the asymptotic conditional bias and variance for the

local polynomial estimator with ordinal covariate, under the assumption that the categories

correspond to quantiles of an unobserved continuous latent variable. We conduct a simula-

tion study with two patterns of ordinal data to evaluate our estimator. In the multivariate

case where the covariates contain a mixture of continuous, ordinal, and nominal variables,
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we use a Nadaraya-Watson estimator with generalized product kernel. We derive the as-

ymptotic conditional bias and variance for the Nadaraya-Watson estimator with continuous,

ordinal, and nominal covariates, under the assumption that the categories of the ordinal

covariate correspond to quantiles of an unobserved continuous latent variable. We conduct a

multivariate simulation study to evaluate our Nadaraya-Watson estimator with generalized

product kernel.
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CHAPTER 1

Introduction

1.1. Variable selection for linear regression under informative sampling

We receive a large proportion of quantitative information about our economy and our

community from sample surveys. National statistical agencies report estimates for items

such as unemployment rate, crime rate, crop production, mortgage rate, and median family

income. Some of them may come from censuses, but estimates based on a sample of the

relevant population are more common. In a fixed finite population, one cannot establish

any limit properties. One common approach to establish large-sample properties of sample

designs and estimators is to define sequences of finite populations and associated probability

samples. For simplicity, we usually assume that the Nth finite population contains N ele-

ments. Thus the set of indices for the Nth finite population is UN = {1, 2, . . . , N}. There are

column vectors of characteristics with indices UN for the Nth finite population. The column

vectors are often called simply the Nth finite population. We can also assume them to be

random vectors. For example the vector of characteristics can be the first N elements of the

sequence {yi} of independent and identically distributed (i.i.d.) random variables such that

E(yi) = µ, where and Var(yi) = σ2.

We can assume that the finite population is composed of vectors (yi,x
T
i ) that are real-

izations of i.i.d. random vectors with distribution function F satisfying the model

yi = xTi β + εi,

1



where εi’s are independent of xi’s with mean 0 and variance σ2. For example, in a survey

concerning the house value of Fort Collins, for the ith element in the population, yi can be

the current house value of the ith family, and the covariate xi = (1, x1i, x2i)
T can be the

intercept, the family size of the ith family, and the family income. If one is interested in the

relationship between current house value with family size and family income, it will involve

estimating β using the data in the sample from the finite population. If E(xiπiεi) = 0 where

πi is the probability of including the ith element into the sample, an unbiased estimator of

β can be the ordinary least squares estimator. If E(xiπiεi) 6= 0, it is said that the design is

informative for the model. In such cases it becomes necessary to incorporate the sampling

weights, i.e. 1/πi, into the analysis, for example, using weighted least squares estimator.

Problems will arise when the length of xi is big, i.e. there are many covariates, and a number

of elements in β are 0, i.e. a number of the covariates are not related with the response yi.

Then it is advisable to select a subset of covariates from xi. In the non-sampling context,

the study of this topic is well developed. Many variable selection criteria are proposed and

proved effective asymptotically. But when these criteria are applied at the sample stage,

they may not have the same ability to select the true model effectively. This motivated us to

study the variable selection criteria from the sample stage to the finite population stage and

to the asymptotic stage. In Chapter 2, we assume that the finite population is generated

by a multivariate linear regression model with informative design and define the relevant

statistics. We examine the asymptotic properties of weighted predicted residual sums of

squares (wPRESS) under weighted least squares regression estimation (WLS), unweighted

PRESS (PRESS) under ordinary least squares regression estimation (OLS), PRESS under

WLS, and unweighted PRESS under OLS. We provide new insights on the asymptotic ability

2



of the four variable selection criteria to select the candidate model that reflects the true model

as much as possible. We conduct a simulation study to show the properties what was.

1.2. Nonparametric regression with different types of covariates

To do inference to a given dataset with a column of response and columns of covariates,

one classical way is to assume a parametric model for the underlying model that relates the

covariates with the response. Then appropriate statistics can be calculated and correspond-

ing parameters can be estimated. This is call parametric modelling. However, the strength

of parametric modelling is also its weakness. By doing inference to a specified model, great

gains in accuracy and stability are possible, but only if the assumed model is true or at least

approximately true. If the assumed model is not close to the correct one, inferences can be

useless, or even worse, can lead to misleading interpretations of the data. Nonparametric

smoothing or regression provide an approach to link making no assumptions on a specific

model to making very strong assumptions. For example, consider the simple linear regression

model,

yi = β0 + β1xi + εi, i = 1, . . . , n,

where the εi’s are i.i.d. with zero mean and variance σ2. If this model is the true model

or very close to the reality, estimates of β0, β1 can be calculated and one can use it to do

inference and prediction. But if the linear model is not appropriate, for example if the true

model is

yi = β0 + eβ1xi + εi, i = 1, . . . , n,

3



fitting a linear model to a non-linear relationship can result in a degree of certainty that is

not realistic. A more general approach is the nonparametric regression model

yi = m(xi) + εi.

The function m(x) is the conditional expectation m(x) = E(Y |X = x) with E(εi|X = x) = 0,

and Var(εi|X = x) = σ2
x not necessarily constant. The covariate X is continuous. The

univariate nonparametric model can be generalized to a multivariate model with continuous

covariates. Estimators such as Nadaraya-Watson estimator, local polynomial estimator and

spline smoothing are well studied.

Less is known about the situation that the observed covariates are not continuous, for

example nominal or ordinal. We put our sight on the case that there is only one ordinal

covariate in Chapter 3. We assume that yi is the function of a latent continuous covariate

plus some random error and then connect the latent continuous covariate with the ordinal

covariate. We use a symmetric and continuous kernel function in our local polynomial esti-

mator. We study the asymptotic bias and variance of this estimator and conduct simulation

studies. We consider the case that there are continuous, ordinal and nominal covariates in

Chapter 4. We use a Nadaraya-Watson (NW) estimator with product kernel here allowing

for both categorical and continuous covariates. We derive the asymptotic properties of the

estimator and conduct a simulation study.

4



CHAPTER 2

Variable Selection For Linear Regression Under

Informative Sampling

2.1. Introduction

Multiple linear regression analysis is one of the most widely used of all statistical methods.

Given a data set, the assumption underlying linear regression is that the response is a linear

function of a number of covariates plus random error. However, even when this assumption

is correct, it is often unknown how many covariates are in the true model, as well as which

covariates are in the true model. This leads to studies of model selection in multiple linear

regression. This is a well-developed area and many model selection criteria, such as predicted

residual sums of squares (PRESS) (Allen 1974), Akaike’s information criteria (AIC) (Akaike

1974), and Adjusted R-squared (AdjR2) (Theil 1961), are in use today.

When the data come from a survey, a lot of the results for independent and identically

distributed data do not apply, and both the finite population context and the sampling

design need to be accounted for. Basically, there are two approaches in the theory of infer-

ence for finite populations. One is called design-based, which means the primary source of

randomness is the probability ascribed by the sampling design to the various subsets of the

finite population. The other is called model-based, which assumes that the values associated

with the population units are realized outcomes of random variables. Regression estimation

techniques are usually used in the design-based approach to make efficient use of auxiliary

information to estimate the population parameters like the population mean. The auxiliary

information is comprised of a number of covariates that are assumed to be linearly correlated
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with the response. We do not necessarily believe that the relation holds but just use it to

for increasing the precision of survey estimators (Särndal et al. 1978).

If our interest is in the coefficient of a multiple linear regression, we can assume the finite

population to be truly generated by the multiple linear regression model (Royall 1970).

This approach is called model-based and can lead to, for example, the best linear unbiased

estimators (Brewer 1963; Royall 1970). In this approach, since we believe the relation

between the auxiliary information and the response is true but the model that generates the

finite population is unknown, we need to decide which covariates in the auxiliary information

of the survey should be included in the model. This brings about our interest of model

selection in the sampling context.

Nascimento Silva and Skinner (1997) consider the selection of auxiliary variables in the

regression estimation of finite population means under simple random sampling. Clark and

Chambers (2008) develop an “adaptive calibration” approach, where the auxiliary variables

to be used in weighting are selected using sample data. Wang and Wang (2011) propose a

variable selection method for the additive model-assisted survey sampling based on the using

Bayes information criterion (BIC) based on a comprehensive Monte Carlo study. Koralik

and Opsomer (2010) (Master’s Project) conducted a simulation study using prediction sum

of squares (PRESS), Akaike’s information criteria (AIC), and Adjusted R-squared (AdjR2),

with design weights and without design weights, as the model selection criteria in the sam-

pling context. Their results showed that ordinary PRESS (without design weights) was

the most accurate ordinary statistic in all but one simulation. The survey design-weighted

PRESS (wPRESS) and ordinary PRESS worked almost as well as each other while ordinary
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PRESS was slightly more accurate than wPRESS. Both the wPRESS statistic and the ordi-

nary PRESS statistic had the smallest number of variables selected when compared to the

design-weighted AIC and AdjR2 and ordinary AIC and AdjR2, respectively. These results

were unexpected since wPRESS includes information of the sample design with unequal in-

clusion probability and it would be expected that wPRESS will be more accurate then the

ordinary PRESS at least when the sampling was clearly informative.

This motivated our interest in studying the design-weighted and unweighted PRESS in

the sampling context theoretically. In Section 2.2, we assume that the finite population is

generated by a multivariate linear regression model and define the relevant statistics in this

chapter. In Section 2.3, we derive the asymptotic properties of PRESS and wPRESS. We

provide new insights in the conditions under which PRESS and wPRESS work as well as each

other, and the conditions under which wPRESS works better than PRESS, asymptotically.

In Section 2.4, we conduct a simulation study to show the properties we discuss in Section

2.3.

2.2. Problem Statement and Definitions

Let {(yi,xTi , πi)} be a sequence of independent and identically distributed (i.i.d.) random

vectors of dimension k + 3 with bounded fourth moments, where yi is the response, xi is

the the covariate vector in a model we are interested in evaluating, and πi is the inclusion

probability. Let xt,i be the covariates in xi that are actually related to yi, xm,i be the

candidate covariates in xi that we are interested in. We further let M be the set of all

candidate models we are interested in. The yi are related to the xt,i through the model

yi = xTt,iβt + εi,
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where εi’s are i.i.d. random errors with mean 0 and variance σ2.

Let {FN}, N = k+3, k+4, . . ., be a sequence of finite populations, where FN is composed

of the first N elements of {(yi,xTi , πi)}. Let UN be the set of indices of the units that are

in the Nth population, N be the size of the Nth population, sN be the set of indices of

the units that are in the sample from the Nth population, and nN be the sample size. Let

Y N = (yi)i∈UN
, X t,N = (xTt,i)i∈UN

, Xm,N = (xTm,i)i∈UN
, and XN = (xTi )i∈UN

be the matrices

of the relevant covariates from the Nth population. Then, we can divide XN into five parts

XN = (1N ,XR1,N ,XR2,N ,XR3,N ,XR4,N):



XR1,N XR1,N ⊆X t,N , XR1,N ⊆Xm,N

XR2,N XR2,N ∩X t,N = ∅, XR2,N ⊆Xm,N

XR3,N XR3,N ⊆X t,N , XR3,N ∩Xm,N = ∅

XR4,N XR4,N ∩X t,N = ∅, XR4,N ∩Xm,N = ∅

where XRp,N is N × kp matrix and
4∑
p=1

kp = k. Under this classification, we can rewrite the

model as

yi = xTi β + εi,

where βT = (β0,β
T
R1
,βTR2

,βTR3
,βTR4

)T .

The following relationships hold: X t,N = (1N ,XR1,N ,XR3,N), Xm,N = (1N ,XR1,N ,XR2,N),

βTt = (β0,β
T
R1
,βTR3

)T , βTm = (β0,β
T
R1
,βTR2

)T , and βR2
= βR4

= 0.

For the sample drawn from the Nth finite population, we consider two estimators of the

regression parameters: ordinary least squares (OLS) and weighted least squares (WLS). The
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coefficient estimators are defined as:

β̂1,m = (XT
mWXm)−1XT

mWY

β̂2,m = (XT
mXm)−1XT

mY ,

where

Y = (yi)i∈sN ,

Xm = (xTm,i)i∈sN

and

W = diag
( 1

πi

)
i∈sN

.

The corresponding “hat” matrices are defined as:

H1,m = Xm(XT
mWXm)−1XT

mW

H2,m = Xm(XT
mXm)−1XT

m.

For a certain estimate β̂j,m, we are going to use two model selection criteria:

ĈV 1,j,m =
1

N

∑
sN

1

πi
(
yi − xTm,iβ̂j,m
1−Hj,m(ii)

)2

ĈV 2,j,m =
1

N

∑
sN

(
yi − xTm,iβ̂j,m
1−Hj,m(ii)

)2,

where Hj,m(ii) is ith diagonal element of Hj,m.

On the Nth finite population level, we define
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β1,m,N = (XT
m,NXm,N)−1XT

m,NY N

β2,m,N = (XT
m,NΠNXm,N)−1XT

m,NΠNY N ,

H1,m,N = Xm,N(XT
m,NXm,N)−1XT

m,N

H2,m,N = Xm,N(XT
m,NΠNXm,N)−1XT

m,NΠN ,

and

CV1,j,m,N =
1

N

∑
UN

(
yi − xTm,iβj,m,N
1−Hj,m,N(ii)

)2

CV2,j,m,N =
1

N

∑
UN

πi(
yi − xTm,iβj,m,N
1−Hj,m,N(ii)

)2,

where Hj,m,N(ii) is ith diagonal element of Hj,m,N , and

ΠN = diag
(
πi
)
i∈UN

.

For future reference, we also define µt,i = xt,iβt and µR3,i = xR3,iβR3
.

Right now, notice there are four model selection options for a given candidate model at the

sampling level, which are ĈV 1,1,m, ĈV 1,2,m, ĈV 2,1,m and ĈV 2,2,m. And CV1,1,m,N , CV1,2,m,N ,

CV2,1,m,N and CV2,2,m,N are the four model selection options at the finite population level.

The model selection option ĈV 1,1,m is wPRESS applying WLS, ĈV 1,2,m is wPRESS applying

OLS, ĈV 2,1,m is PRESS applying WLS and ĈV 2,2,m is PRESS applying OLS. We will study

the design consistency of ĈV i,j,m for CVi,j,m,N , i.e. ĈV i,j,m −CVi,j,m,N = op(1) (Fuller 2009,

p.41), as well as the asymptotic properties of CVi,j,m,N in Section 2.3. We will also use

simulations to evaluate the theoretical results in Section 2.4.
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2.3. Theoretical Results

Let zTm,i = (yi,x
T
m,i)

T , M̂ 1,m = N−1XT
mWXm, M̂ 2,m = N−1XT

mXm, M 1,m,N =

N−1XT
m,NXm,N , M 2,m,N = N−1XT

m,NΠNXm,N and M 3,m,N = N−1XT
m,NΠNΠNXm,N .

To prove our theoretical results, we use a set of assumptions that are closely related to

those in Fuller (2009, p.108-p.111).

A1. The sample design is such that for any zm with bounded fourth moments

Var{z̄m,HT − z̄m,N |FN} = Op(n
−1
N ),

where

z̄m,HT = N−1
∑
i∈sN

π−1
i zm,i,

and z̄m,N is the finite population mean of zm.

A2. There exist constants λ, λ1, and λ2 such that for all N , 0 < λ < λ1
nN

N
< πi <

λ2
nN

N
, ∀i ∈ UN , and nN

N
6→ 0 as N →∞.

A3. (xTi , πi, εi) are i.i.d. random vectors having uniformly bounded fourth moments,

E(εi|xi) = 0, Var(εi|xi) <∞ for all i.

A4. The matrices (M 1,m,N ,M 2,m,N , ,M 3,m,N) satisfy

lim
N→∞

(M 1,m,N ,M 2,m,N ,M 3,m,N) = (M 1,m,M 2,m,M 3,m) a.s. ∀m ∈M,

where M 1,m, M 2,m, and M 3,m are positive definite and M is the set that consists of all

subset of covariates in xi that we are interested in evaluating.
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A5. The sequences {(M̂ 1,m,M̂ 2,m)} and {(M 1,m,N ,M 2,m,N)} satisfy

(M̂ 1,m,M̂ 2,m)− (M 1,m,N ,M 2,m,N)|FN = Op(n
−1/2
N )

element-wise, and M̂ 1,m and M̂ 2,m are positive definite ∀m ∈M.

A6. There exist constants c, N0 such that for all N > N0, |Hk,m(ij)| < c
nN

, |Hk,m,N(ij)| <

c
N

, ∀i ∈ UN , k = 1, 2.

Theorem 2.3.1. Suppose A1-A6 hold. Then

ĈV l,j,m − CVl,j,m,N |FN = Op(n
−1/2
N ) l = 1, 2, j = 1, 2, ∀N > N0,∀m ∈M.

Proof. By A5

(1) β̂j,m − βj,m,N |FN = Op(n
−1/2
N )

holds, which means β̂j,m is design consistent with βj,m,N . Since

ĈV l,j,m − CVl,j,m,N =
1

N

∑
sN

1

πi

(yi − xTm,iβ̂j,m
1−Hj,m(ii)

)2 − 1

N

∑
UN

(yi − xTm,iβj,m,N
1−Hj,m,N(ii)

)2

=
1

N

∑
sN

1

πi

(
yi − xTm,iβ̂j,m −Hj,m(ii)

yi − xTm,iβ̂j,m
1−Hj,m(ii)

)2

− 1

N

∑
UN

(
yi − xTm,iβj,m,N −Hj,m,N(ii)

yi − xTm,iβj,m,N
1−Hj,m,N(ii)

)2
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=

(
1

N

∑
sN

1

πi
(yi − xTm,iβ̂j,m)2 − 1

N

∑
UN

(yi − xTm,iβj,m,N)2

)

−

(
1

N

∑
sN

2Hj,m(ii)
(yi − xTm,iβ̂j,m)2

1−Hj,m(ii)

− 1

N

∑
UN

2Hj,m,N(ii)
(yi − xTm,iβj,m,N)2

1−Hj,m,N(ii)

)

+

(
1

N

∑
sN

H2
j,m(ii)

(yi − xTm,iβ̂j,m)2

(1−Hj,m(ii))2

− 1

N

∑
UN

H2
j,m,N(ii)

(yi − xTm,iβj,m,N)2

(1−Hj,m,N(ii))2

)

= D1 −D2 +D3.

For the leading term D1,

1

N

∑
sN

1

πi
(yi − xTm,iβ̂j,m)2 − 1

N

∑
UN

(yi − xTm,iβj,m,N)2 =
( 1

N

∑
sN

1

πi
y2
i −

1

N

∑
UN

y2
i

)
− 2
( 1

N

∑
sN

1

πi
yix

T
m,iβ̂j,m −

1

N

∑
UN

yix
T
m,iβj,m,N

)
+
( 1

N

∑
sN

1

πi
(xTm,iβ̂j,m)2 − 1

N

∑
UN

(xTm,iβj,m,N)2
)

=
( 1

N

∑
sN

1

πi
y2
i −

1

N

∑
UN

y2
i

)
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− 2
( 1

N

∑
sN

1

πi
yix

T
m,i(β̂j,m − βj,m,N)

+ (
1

N

∑
sN

1

πi
yix

T
m,i −

1

N

∑
UN

yix
T
m,i)βj,m,N

)
+

(
1

N

∑
sN

1

πi

(
xTm,i(β̂j,m − βj,m,N)

)2

− 2
( 1

N

∑
sN

1

πi
xTm,i(β̂j,m − βj,m,N)

)
+
(
(

1

N

∑
sN

1

πi
xTm,i −

1

N

∑
UN

xTm,i)βj,m,N
)2
)

= Op(n
−1/2
N )

by (1), A1, and A3.

In the second part D2,

∣∣∣∣∣ 1

N

∑
sN

1

πi
Hj,m(ii)

(yi − xTm,iβ̂j,m)2

1−Hj,m(ii)

∣∣∣∣∣ ≤ 1

N

∑
sN

λ1
N

nN

c

nN

(yi − xTm,iβ̂j,m)2

1 + c
nN

=
λ1c

nN + c

1

nN

∑
sN

(yi − xTm,iβ̂j,m)2

≤ 2λ1c

nN + c

1

nN

∑
sN

(
y2
i + (xTm,iβ̂j,m)2

)
=

2λ1c

nN + c

1

nN

∑
sN

(
y2
i + (

∑
sN

Hj,m(ik)yk)
2
)

14



≤ 2λ1c

nN + c

1

nN

∑
sN

(
y2
i + (

∑
sN

c

nN
yk)

2
)

≤ 2λ1c

nN + c

1

nN

∑
sN

(
y2
i +

c2

nN

∑
sN

y2
k

)
≤ 2λ1c(1 + c2)

nN + c

1

nN

∑
sN

y2
i

= Op(n
−1
N )

by A1 and A6.

Similarly,

1

N

∑
UN

Hj,m,N(ii)
(yi − xTm,iβj,m,N)2

1−Hj,m,N(ii)
= Op(N

−1),

1

N

∑
sN

1

πi
H2

j,m(ii)
(yi − xTm,iβ̂j,m)2

(1−Hj,m(ii))2
= Op(n

−2
N ),

and

1

N

∑
UN

H2
j,m,N(ii)

(yi − xTm,iβj,m,N)2

(1−Hj,m,N(ii))2
= Op(N

−2)

in D3.

Therefore,

ĈV 1,j,m − CV1,j,m,N |FN = Op(n
−1/2
N ) j = 1, 2, ∀m ∈M

follows.
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In the same way, we can prove that

ĈV 2,j,m − CV2,j,m,N |FN = Op(n
−1/2
N ) j = 1, 2, , ∀N > N0, ∀m ∈M.

�

We use the following theorem to show the asymptotic property of CVk,j,m,N j = 1, 2, k =

1, 2, which are the weighted and unweighted PRESS.

Theorem 2.3.2. Suppose A1-A6 hold. Then

CV1,1,m,N
P−→ E(ε2i ) + E(µ2

R3,i
)− (E(xm,iµR3,i))

T M 1,m (E(xm,iµR3,i)) ,

CV1,2,m,N
P−→ E(ε2i ) + E(µ2

R3,i
)− (E(xm,iµR3,i))

T M 2,m (E(πixm,iµR3,i))

− 2 (E(xm,iµR3,i))
T M 2,m (E (πixm,iεi)) ,

In this way, we’ve proved that

CV2,1,m,N
P−→ E(πiε

2
i ) + E(πiµ

2
R3,i

)− (E(xm,iµR3,i))
T M 1,mM 2,mM 1,m (E(xm,iµR3,i))

+ 2E(πiµR3,iεi),

and

CV2,2,m,N
P−→ E(πiε

2
i ) + E(πiµ

2
R3,i

)− (E(xm,iµR3,i))
T M 2,mM 3,mM 2,m (E(xm,iµR3,i))

+ 2E(πiµR3,iεi)− 2 (E(xm,iµR3,i))
T M 3,m (E (πixm,iεi)) .
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Proof. From the proof of Theorem 2.3.1, it is straightforward that

CV1,j,m,N =
1

N

∑
UN

(yi − xTm,iβj,m,N)2 +Op(N
−1).

For term i in the leading summation,

(yi − xTm,iβj,m,N)2 =
(
xTR1,i

βR1
+ xTR3,i

βR3
+ εi

− HT
j,m,N(i, )

(
XR1,NβR1

+XR3,NβR3
+ εN

))2

=
(
xTR1,i

βR1
+ xTR3,i

βR3
+ εi − xTR1,i

βR1
− xTm,i

(
XT

m,NXm,N

)−1
XT

m,NεN

)2

=
(
xTR3,i

βR3
+ εi −HT

j,m,N(i, )XR3,NβR3
−HT

j,m,N(i, )εN
)2
,

where HT
j,m,N(i, ) is row i in Hj,m,N . Then

1

N

∑
UN

(yi − xTm,iβ1,m,N)2 =
1

N
(µTR3

µR3
+ εTNεN

+ 2µTR3
εN − 2µTR3

Hj,m,NεN

− µTR3
Hj,m,NµR3

− εTNHj,m,NεN).

By A3

1

N
(µTR3

µR3
)

P−→ E(µ2
R3,i

),

1

N
(εTNεN)

P−→ E(ε2i ),

and

1

N
(2µTR3

εN)
P−→ 0.
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Next, since

1

N
εTNHj,m,NεN =

1

N
εTNXm,N

(
XT

m,NXm,N

)−1
XT

m,NεN

=
1

N
εTNXm,N

(
1

N
XT

m,NXm,N

)−1
1

N
XT

m,NεN

when j = 1 and

1

N
εTNXm,N

(
1

N
XT

m,NΠXm,N

)−1
1

N
XT

m,NΠεN

when j = 2, is a product of three matrices of means, each of which has a probability limit.

The middle one converges to a constant, the last one converges to a constant (since we do not

know that XT
m,NΠεN has mean zero because of the correlation between Π and εN), but the

first one converges to 0 since we assume that E(εi|xi) = 0 and Var(εi|xi) < ∞. Hence, the

whole expression converges to 0 in probability. Following the same idea, it is straightforward

to show that

µTR3
H1,m,NµR3

P−→ (E(xm,iµR3,i))
T M 1,m (E(xm,iµR3,i)) ,

µTR3
H2,m,NµR3

P−→ (E(xm,iµR3,i))
T M 2,m (E(πixm,iµR3,i)) ,

µTR3
H1,m,NεN

P−→ 0,

and

µTR3
H2,m,NεN

P−→ (E(xm,iµR3,i))
T M 2,m (E (πixm,iεi)) .

18



In this way, we’ve proved that

CV1,1,m,N
P−→ E(ε2i ) + E(µ2

R3,i
)− (E(xm,iµR3,i))

T M 1,m (E(xm,iµR3,i)) ,

and

CV1,2,m,N
P−→ E(ε2i ) + E(µ2

R3,i
)− (E(xm,iµR3,i))

T M 2,m (E(πixm,iµR3,i))

− 2 (E(xm,iµR3,i))
T M 2,m (E (πixm,iεi)) .

Similarly, it holds that

CV2,j,m,N =
1

N

∑
UN

πi(yi − xTm,iβj,m,N)2 +Op(N
−1),

and

1

N

∑
UN

πi(yi − xTm,iβj,m,N)2 =
1

N
(µTR3

ΠµR3
+ εTNΠεN

+ 2µTR3
ΠεN − 2µTR3

Hj,m,NΠHj,m,NεN

− µTR3
Hj,m,NΠHj,m,NµR3

− εTNHj,m,NΠHj,m,NεN).

By A3

1

N
(µTR3

ΠµR3
)

P−→ E(πiµ
2
R3,i

),

1

N
(εTNΠεN)

P−→ E(πiε
2
i ),
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and

1

N
(2µTR3

ΠεN)
P−→ 2E(πiµR3,iεi).

Next, since

1

N
εTNHj,m,NΠHj,m,NεN =

1

N
εTNXm,N

(
XT

m,NXm,N

)−1
XT

m,NΠXm,N

×
(
XT

m,NXm,N

)−1
XT

m,NΠεN

=
1

N
εTNXm,N

(
1

N
XT

m,NXm,N

)−1(
1

N
XT

m,NΠXm,N

)
×
(

1

N
XT

m,NXm,N

)−1
1

N
XT

m,NεN

when j = 1 and

1

N
εTNXm,N

(
1

N
XT

m,NΠXm,N

)−1(
1

N
XT

m,NΠΠXm,N

)
×
(

1

N
XT

m,NΠXm,N

)−1
1

N
XT

m,NΠεN

when j = 2, the whole expression converges to 0 in probability for the same reason as we

dealt with CV1,j,m,N above.

Following the same idea, it is straightforward to show that

µTR3
H1,m,NΠH1,m,NµR3

P−→ (E(xm,iµR3,i))
T M 1,mM 2,mM 1,m (E(xm,iµR3,i)) ,

µTR3
H2,m,NΠH2,m,NµR3

P−→ (E(xm,iµR3,i))
T M 2,mM 3,mM 2,m (E(xm,iµR3,i)) ,
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µTR3
H1,m,NΠH1,m,NεN

P−→ (E(xm,iµR3,i))
T M 2,m (E(xm,iεi)) = 0,

and

µTR3
H2,m,NΠH2,m,NεN

P−→ (E(xm,iµR3,i))
T M 3,m (E (πixm,iεi)) .

In this way, we’ve proved that

CV2,1,m,N
P−→ E(πiε

2
i ) + E(πiµ

2
R3,i

)− (E(xm,iµR3,i))
T M 1,mM 2,mM 1,m (E(xm,iµR3,i))

+ 2E(πiµR3,iεi),

and

CV2,2,m,N
P−→ E(πiε

2
i ) + E(πiµ

2
R3,i

)− (E(xm,iµR3,i))
T M 2,mM 3,mM 2,m (E(xm,iµR3,i))

+ 2E(πiµR3,iεi)− 2 (E(xm,iµR3,i))
T M 3,m (E (πixm,iεi)) .

�

By combining Theorem 2.3.1 and Theorem 2.3.2, it is straightward to claim that

ĈV 1,1,m
P−→ E(ε2i ) + E(µ2

R3,i
)− (E(xm,iµR3,i))

T M 1,m (E(xm,iµR3,i))

= T1 + T
(1)
1,1,m,
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ĈV 1,2,m
P−→ E(ε2i ) + E(µ2

R3,i
)− (E(xm,iµR3,i))

T M 2,m (E(πixm,iµR3,i))

− 2 (E(xm,iµR3,i))
T M 2,m (E (πixm,iεi))

= T1 + T
(1)
1,2,m + T

(2)
1,2,m,

ĈV 2,1,m
P−→ E(πiε

2
i ) + E(πiµ

2
R3,i

)− (E(xm,iµR3,i))
T M 1,mM 2,mM 1,m (E(xm,iµR3,i))

+ 2E(πiµR3,iεi)

= T2 + T
(1)
2,1,m + T

(2)
2,1,m,

and

ĈV 2,2,m
P−→ E(πiε

2
i ) + E(πiµ

2
R3,i

)− (E(xm,iµR3,i))
T M 2,mM 3,mM 2,m (E(xm,iµR3,i))

+ 2E(πiµR3,iεi)− 2 (E(xm,iµR3,i))
T M 3,m (E (πixm,iεi))

= T2 + T
(1)
2,2,m + T

(2)
2,2,m,

where

T1 = E(ε2i ),

T2 = E(πiε
2
i ),

22



T
(1)
1,1,m = E(µ2

R3,i
)− (E(xm,iµR3,i))

T M 1,m (E(xm,iµR3,i)) ,

T
(1)
1,2,m = E(µ2

R3,i
)− (E(xm,iµR3,i))

T M 2,m (E(πixm,iµR3,i)) ,

T
(2)
1,2,m = −2 (E(xm,iµR3,i))

T M 2,m (E (πixm,iεi)) ,

T
(1)
2,1,m = E(πiµ

2
R3,i

)− (E(xm,iµR3,i))
T M 1,mM 2,mM 1,m (E(xm,iµR3,i)) ,

T
(2)
2,1,m = 2E(πiµR3,iεi),

T
(1)
2,2,m = E(πiµ

2
R3,i

)− (E(xm,iµR3,i))
T M 2,mM 3,mM 2,m (E(xm,iµR3,i)) ,

and

T
(2)
2,2,m = 2E(πiµR3,iεi)− 2 (E(xm,iµR3,i))

T M 3,m (E (πixm,iεi)) .

Note that since we use CVl,j,m,N to connect ĈV l,j,m to their asymptotic limits, the “P”

is with respect to both the sampling design and the regression model, considered jointly.

If the sampling is uninformative, T
(2)
1,2,m, T

(2)
2,1,m and T

(2)
2,2,m are 0. Terms T

(1)
1,2,m, T

(1)
2,1,m and

T
(1)
2,2,m reflect how much XR3 is explained by Xm. It is smaller when XR3 is explained more,

resulting in smaller criteria. On the one hand, if XR3 6= ∅ but XR3 is fully explained by

Xm, T
(1)
1,2,m, T

(1)
2,1,m and T

(1)
2,2,m are 0 and the four criteria are minimized. One the other hand,

the asymptotic limits of the four criteria are also minimized when Xm = X t or as long as
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X t ⊂ Xm. Therefore, the four criteria will tend to select the candidate model that reflects

the true model as much as possible and their ability to select such model is approximately

the same.

If the sampling is informative, T
(2)
1,2,m, T

(2)
2,1,m and T

(2)
2,2,m are not 0. For ĈV 1,1,m, note that

the asymptotic limit of ĈV 1,1,m is minimized when X t ⊂ Xm or XR3 is fully explained

by Xm, and it will converge to T1 in probability. So ĈV 1,1,m will still tend to select the

candidate model that reflects the true model as much as possible.

For ĈV 1,2,m, ĈV 2,1,m and ĈV 2,2,m, first, the asymptotic limit of them are minimized when

X t ⊂Xm or XR3 is fully explained by Xm if T
(1)
1,2,m+T

(2)
1,2,m, T

(1)
2,1,m+T

(2)
2,1,m and T

(1)
2,2,m+T

(2)
2,2,m

are greater than or equal to 0 for all the candidate models. Then, they will tend to have the

same ability as ĈV 1,1,m to select the select the candidate model that reflects the true model

as much as possible. However, the asymptotic limits are not minimized when Xm = X t if

T
(1)
1,2,m + T

(2)
1,2,m, T

(1)
2,1,m + T

(2)
2,1,m and T

(1)
2,2,m + T

(2)
2,2,m are less than 0 for some Xm, which means

they may tend to select some Xm that minimize them but not fully reflect the true model.

As a result, it will increase the chance of making wrong decision.

However, notice the scenarios that make T
(1)
1,2,m + T

(2)
1,2,m, T

(1)
2,1,m + T

(2)
2,1,m and T

(1)
2,2,m + T

(2)
2,2,m

less than 0 are very hard to reach. In order to get the effect of the three terms, we need a

model with extremely poor predictive power, for example, we need πi’s very small for some

elements and very big for others, and we need εi to have a very large variance. In other

words, these are models that are mostly composed of noise and hence, variable selection will

be extremely challenging. As a result, the asymptotic advantage of ĈV 1,1,m over the other

three criteria cannot be detected in the simulations. In this sense, we will not present a

extreme scenario simulation study of that in Section 2.4.
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2.4. Simulation

A population of 1000 different values for 8 different x variables are randomly generated

using uniform[0, 1] distribution, and 1000 different values for ε are generated using N(0, σ2).

Four different responses were generated where:

Y 1 = 1 +X(0,−1, 0, 0, 0, 0, 0, 0)T + ε,

Y 2 = 1 +X(0,−1, 0, 1.5, 0, 0, 0,−1)T + ε,

Y 3 = 1 +X(−0.5,−1, 0, 1.5, 2.5, 0, 0,−1)T + ε,

Y 4 = 1 +X(−0.5,−1,−0.8, 1.5, 2.5, 2,−1,−1)T + ε.

The design of stratified simple random sampling without replacement uses 4 strata with

each stratum containing 250 elements, and the stratification is based on a random variable

zi and ratio r. First, we generate vi from a standard normal distribution N(0, σ2
v) with σ2

v

satisfying r = σ2

σ2+σ2
v
. Then zi’s are constructed as follows:

zi =



vi − x2,iεi if 0 < r < 1

vi if r = 0

−x2,iεi if r = 1.

After sorting by zi (i = 1, . . . , N), the population is separated into 4 strata with bound-

aries given by equally-spaced quantiles of z. Then, simulations are conducted with the

stratum sample sizes (35, 30, 20, 15). For different values of r, this will cause the zi to
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be correlated with x2,iεi. In other words, the constant r controls the extent of informative-

ness. That is, when r = 0, the sampling is uninformative. As r increases, the extent of

informativeness of the sampling increases.

In this simulation, we use σ2 = 0.01. In addition, we use five different choices of r, which

are 0, 0.25, 0.5, 0.75 and 1.

One thousand samples of size 100 are drawn from this population using stratified random

sampling without replacement(STSI). Since there are eight covariates in the full model, there

are 256 possible candidate models to compare. For each sample we compute ordinary least

square regression(OLS) and weighted least square regression(WLS) on the all 256 possible

models. The four model selection criteria ĈV l,j,m are calculated for each candidate model

Xm.

The results are shown in Tables 2.1. In those tables, the “Correct” column in the tables

is the Fraction of Correct Selection (FCS), which is the percentage of ĈV l,j,m picking the

correct model from the 256 candidate models over the one thousand samples. The “Picked”

column in the tables is the number of Picked Covariates (NPC), which is the average number

of covariates ĈV l,j,m picked over the one thousand samples.

In Table 2.1, the random error εi generating the finite population follows N(0, .1). Based

on the population model and sampling strategy specified above, T
(1)
1,2,m+T

(2)
1,2,m, T

(1)
2,1,m+T

(2)
2,1,m

and T
(1)
2,2,m + T

(2)
2,2,m are greater than 0 when XR3 6= ∅.

First, since T
(1)
1,2,m + T

(2)
1,2,m, T

(1)
2,1,m + T

(2)
2,1,m and T

(1)
2,2,m + T

(2)
2,2,m are greater than 0 when

XR3 6= ∅, ĈV 1,1,m, ĈV 1,2,m, ĈV 2,1,m and ĈV 2,2,m tend to have similar ability to select the

correct model, and we can find that FCS and NPC of them are very close. Next, since the

FCS relies on this ability, given a certain r, we find that as the number of variables in the
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model increases, NPC increased and FCS improve. What is more, when the true model is the

full model, all ĈV l,j,m choose the correct model in every sample. In conclusion, these facts

indicate that the ability to select the candidate models that contain X t is approximately

the same across the four criteria in this scenario.

Table 1. Results of the simulation study for STSI design with n = 100, and
σ2 = 0.01. NPC and FCS of each criteria are shown.

1 Var. Model 3 Var. Model 5 Var. Model 8 Var. Model
r Criterion Picked Correct Picked Correct Picked Correct Picked Correct

0 ĈV 1,1,m 2.124 0.312 3.842 0.412 5.436 0.622 8.000 1.000

0 ĈV 1,2,m 2.151 0.285 3.799 0.427 5.469 0.604 8.000 1.000

0 ĈV 2,1,m 2.073 0.339 3.769 0.455 5.379 0.666 8.000 1.000

0 ĈV 2,2,m 2.095 0.307 3.747 0.445 5.453 0.608 8.000 1.000

0.25 ĈV 1,1,m 2.212 0.280 3.847 0.414 5.473 0.608 8.000 1.000

0.25 ĈV 1,2,m 2.266 0.262 3.835 0.410 5.519 0.577 8.000 1.000

0.25 ĈV 2,1,m 2.123 0.326 3.779 0.437 5.400 0.661 8.000 1.000

0.25 ĈV 2,2,m 2.120 0.313 3.778 0.444 5.479 0.604 8.000 1.000

0.5 ĈV 1,1,m 2.169 0.274 3.835 0.394 5.510 0.574 8.000 1.000

0.5 ĈV 1,2,m 2.245 0.263 3.843 0.388 5.557 0.543 8.000 1.000

0.5 ĈV 2,1,m 2.118 0.297 3.807 0.422 5.495 0.584 8.000 1.000

0.5 ĈV 2,2,m 2.140 0.297 3.783 0.419 5.509 0.575 8.000 1.000

0.75 ĈV 1,1,m 2.143 0.292 3.831 0.408 5.509 0.580 8.000 1.000

0.75 ĈV 1,2,m 2.226 0.258 3.898 0.370 5.537 0.569 8.000 1.000

0.75 ĈV 2,1,m 2.138 0.296 3.773 0.432 5.483 0.591 8.000 1.000

0.75 ĈV 2,2,m 2.111 0.299 3.805 0.414 5.470 0.609 8.000 1.000

1 ĈV 1,1,m 2.157 0.297 3.811 0.412 5.523 0.560 8.000 1.000

1 ĈV 1,2,m 2.362 0.227 3.966 0.342 5.570 0.533 8.000 1.000

1 ĈV 2,1,m 2.223 0.249 3.847 0.399 5.520 0.560 8.000 1.000

1 ĈV 2,2,m 2.159 0.290 3.816 0.400 5.482 0.593 8.000 1.000

2.5. Conclusion

In this chapter, the study was motiviated by the surprising simulation results from Ko-

ralik and Opsomer (2010) (Master’s Project). In that project, they found that wPRESS and

PRESS using OLS and WLS in the sampling context work approximately as well as each
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other with a informative design. We studied the criteria in the sampling context theoreti-

cally. We assumed that the finite population is generated by a multivariate linear regression

model with a possibly informative design. We derived the asymptotic properties of PRESS

and wPRESS using OLS and WLS. We provided new insights in the conditions under which

wPRESS using WLS worked as well as the others, and the conditions wPRESS using WLS

worked better than the others, asymptotically. We found that in order to reach the con-

ditions under which wPRESS using WLS worked better, we need a model with extremely

poor predictive power, i.e., we are basically fitting noise so that all of the criteria performed

poorly in selecting. As a result, the asymptotic advantage of wPRESS using WLS over the

others could not be detected. This theoretically confirmed the simulation studies in Koralik

and Opsomer (2010) and indicated that the four criteria worked as well as each other in the

sampling context practically. In Section 2.4, we conducted a simulation study to show the

facts we discussed in Section 2.3 in the conditions under which wPRESS using WLS worked

as well as the others.
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CHAPTER 3

Local Polynomial Regression With An Ordinal

Covariate

3.1. Introduction

Nonparametric methods have attracted much attention among statisticians in the last

several decades. There have been several landmark papers and monographs on the topic

(Nadaraya 1964; Watson 1964; Stone 1977; Cleveland 1979; Gasser and Müller 1979; Gasser

and Müller 1984; Müller 1987; Cleveland and Devlin 1988; Eubank 1988; Härdle 1990; Wahba

1990; Fan 1992; Fan 1993; Ruppert and Wand 1994; Wand and Jones 1995; Fan and Gijbels

1996; Simonoff 1996) that have shown that nonparametric regression techniques have much

to apply to a range of problem domains.

Nadaraya (1964) and Watson (1964) proposed the Nadaraya-Watson kernel estimator.

Gasser and Müller (1979, p.23-68) and Gasser and Müller (1984) originated the Gasser-Müller

estimator. Härdle (1990) gave a book-length discussion on different kernel-type approaches

to regression estimation. Wahba (1990) gave general descriptions of smoothing splines.

Stone (1977) examined the consistency properties of many nonparametric regression es-

timators, including local polynomial estimators. Cleveland (1979) and Cleveland and Devlin

(1988) showed that local polynomial regression techniques are applicable to a wide range

of problems. Müller (1987), Fan (1992), Fan (1993), Ruppert and Wand (1994) examined

the asymptotic properties of local polynomial estimators. Eubank (1988), Wand and Jones

(1995), Fan and Gijbels (1996) and Simonoff (1996) gave book-length general descriptions

of local polynomial estimation.
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The work of Aitchison and Aitken (1976) has initiated the literature on the kernel smooth-

ing of categorical variables. Afterwards, the estimation of the (conditional) probability dis-

tribution of categorical variables using nonparametric techniques has been greatly developed.

Titterington (1980) gave a comparative study of kernel-based density estimates for categor-

ical data. Hall (1981) studied nonparametric multivariate binary discrimination. Wang and

van Ryzin (1981) investigated a class of smooth estimators for discrete distributions. Bow-

man, Hall, and Titterington (1984) studied the cross-validation in nonparametric estimation

of probabilities and probability densities, Hall and Wand (1988) studied nonparametric dis-

crimination using density differences. Grund and Hall (1993) discussed the performance of

kernel estimators for high-dimensional sparse binary data. Scott (1992), Fahrmeir and Tutz

(1994), and Simonoff (1996) gave descriptions of this topic in their books.

Notice that though it is not uncommon to encounter regression situations in which covari-

ates are categorical, much less effort has been devoted to this situation in the nonparametric

context, especially in which covariates are ordered categorical (ordinal). Bierens (1983) be-

gan the consideration of kernel regression with mixed continuous and discrete covariates. Li

and Racine (2004), Racine and Li (2004), Hall, Racine, and Li (2004), Hall, Li, and Racine

(2007), Li and Racine (2008), and Ouyang, Li, and Racine (2009) have considered nonpara-

metric estimation of regression functions, conditional density, and distribution functions,

and quantile functions containing a mix of categorical and continuous covariates.

Let Yi be the continuous response and Ci be the ordinal covariate having M categories

with a natural ordering, e.g., preferences (disagree, indifference, agree), professional class

(assistant professor, associate professor, professor), etc. For simplicity, we will let it take

values in {1, 2, . . . ,M}, where lower order of Ci has smaller value. Ouyang, Li, and Racine
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(2009) assume that Yi is directly the function of Ci plus some random error:

Yi = f(Ci) + εi.

They proposed a kernel:

Kλ(Ci, t) =


1 if Ci = t

λ|Ci−t| if Ci 6= t,

where t = 1, 2, . . . ,M .

They proved that the Nadaraya-Watson estimator using this kernel

(2) m̂OLR(t, λ) =

n∑
i=1

Kλ(Ci, t)Yi

n∑
i=1

Kλ(Ci, t)

is consistent with f(·) and the optimized smoothing parameter λ̂ = Op(n
−1) under the

leave-one-out cross validation (CV) criterion. However, since neither Ci nor the kernel is

continuous, one cannot do the usual Taylor-based arguments that rely on Ci having a density

(Ruppert and Wand 1994) to derive the asymptotic bias and variance.

In this paper, we assume that Yi is the function of a latent continuous covariate Xi plus

some random error:

(3) Yi = m(Xi) + εi,

and then connect Xi with Ci. We use a symmetric and continuous kernel function in our

estimator. We will propose our estimator in Section 3.2, study the asymptotic bias and
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variance of this estimator in Section 3.3, and conduct simulation in Section 3.4 compared

with the estimator proposed by Ouyang, Li, and Racine (2009).

3.2. Proposed Estimator

Let (C1, Y1), . . . , (Cn, Yn) be a set of independent and identically distributed (i.i.d.) ran-

dom vectors following a joint distribution F , where the Yi are scalar response variables and

Ci are univariate ordinal covariates having M categories and taking values in {1, 2, . . . ,M},

where lower order of Ci has smaller value. In our latent variable model (3), Xi are iid latent

continuous covariates with density function fX(x) and known bounded support supp(fX),

and εi’s are iid, independent of Xi’s with E(εi) = 0 and Var(εi) = σ2. We can be more spe-

cific: we assume X is on [0,1], we create a grid of boundary points, and we assume that there

X has a density such that P (X ∈ Uj) = P (C = j), where Uj = ( j−1
M
, 1
M

], j = 1, 2, . . . ,M .

We first briefly review local polynomial regression for the case where the continuous co-

variate is observed directly. Then the nonparametric regression problem is that of estimating

m(x) = E(Y |X = x)

at a point x ∈ supp(fX) without the imposition of m belonging to a parametric family of

functions. The local polynomial estimator m̂(x; p, h) is obtained by fitting the polynomial

β0 + β1(.− x) + . . .+ βp(.− x)p
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to the (Xi, Yi) using weighted least squares with kernel weights Kh(Xi − x) = 1
h
K(Xi−x

h
).

The value of m̂(x; p, h) is the intercept of the fit β̂0, where β̂ = (β̂0, . . . , β̂p)
T minimizes

n∑
i=1

{Yi − β0 − . . .− βp(Xi − x)p}2Kh(Xi − x).

Assuming the invertibility of XT
xW xXx, standard weighted least squares theory leads to

the solution

β̂ = (XT
xW xXx)

−1XT
xW xY ,

where Y = (Y1, . . . , Yn)T is the vector of responses,

Xx =


1 X1 − x · · · (X1 − x)p

...
...

. . .
...

1 Xn − x · · · (Xn − x)p


is an n× (p+ 1) design matrix and

W x = diag(Kh(X1 − x), . . . , Kh(Xn − x))

is an n × n diagonal matrix of weights, Kh(·) = 1/hK(·/h) and K(·) is a symmetric and

continuous kernel function having compact support [−1, 1]. We also define the moments of

K(·) as µk =
∫ 1

−1
zkK(z)dz and Rk(K) =

∫ 1

−1
zkK2(z)dz. Since the estimator of m(x) is

the intercept coefficient, we obtain

m̂(x; p, h) = eT1 (n−1XT
xW xXx)

−1n−1XT
xW xY ,
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where eT1 = (1, 0, . . . , 0). This estimator has been well-studied (Cleveland 1979; Cleveland

and Devlin 1988; Fan 1992; Fan 1993; Ruppert and Wand 1994) and is widely used in

statistics.

In our situation, the main target will be estimating

mt = E(Yi|Ci = t)

= E(Yi|Xi ∈ Ut)

= E(m(Xi)|Xi ∈ Ut)

=

∫
Ut
m(x)fX(x) dx∫
Ut
fX(x) dx

=
m(xt)

∫
Ut
fX(x) dx∫

Ut
fX(x) dx

= m(xt),

for some xt ∈ Ut, t ∈ 1, . . . ,M. Next, we will estimate mt at the point φt = t−0.5
M

in cell Ut,

and our estimator is

m̂(t; p, h) = eT (ΦT
tW tΦt)

−1ΦT
tW tY ,

where

Φt =



1
M∑
j=1

(φj − φt)I{x1∈Uj} · · ·
M∑
j=1

(φj − φt)pI{X1∈Uj}

...
...

. . .
...

1
M∑
j=1

(φj − φt)I{xn∈Uj} · · ·
M∑
j=1

(φj − φt)pI{Xn∈Uj}


,
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W t =



M∑
j=1

Kh(φj − φt)I{x1∈Uj} 0 · · · 0

...
...

. . .
...

0 0 · · ·
M∑
j=1

Kh(φj − φt)I{xn∈Uj}


,

and φj = j−0.5
M

, j = 1, 2, . . . ,M .

For conciseness in what follows, let B = ΦT
tW tΦt and c = ΦT

tW tY . Then,

m̂(t; p, h) = eT1B
−1c.

Here, B is (p+ 1)× (p+ 1) matrix having the (k, l)th entry equal to

n∑
i=1

M∑
j=1

Kh(φj − φt)(φj − φt)k+l−2I{Xi∈Uj}

and c is (p+ 1)× 1 vector having the kth entry equal to

n∑
i=1

M∑
j=1

Kh(φj − φt)(φj − φt)k−1YiI{Xi∈Uj}.

3.3. Conditional Mean and Variance Properties

In this section we investigate the asymptotic properties of m̂(t; p, h).

We will need the following assumptions:

A7. m(p+2)(·) is continuous.

A8. fX has bounded support [0, 1], fX > 0 and has two derivatives.
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A9. The kernel K satisfies
∫ 1

−1
K(z)dz = 1, µk = 0 for k odd, µk 6= 0 for k even, and

Rl(K) > 0, k = 1, . . . , 2p+ 2, l = 1, . . . , 2p.

A10. h→ 0, h3n→∞ and hp+2M →∞.

Lemma 3.3.1. Suppose A7-A10 hold. Then n−1

n∑
i=1

M∑
j=1

Kh(φj − φt)(φj − φt)kI{Xi∈Uj} is

equal to

hkµk fX(φt) + op(h
k)

for k even and

hk+1µk+1 f
′

X(φt) + op(h
k+1)

for k odd. And n−1

n∑
i=1

M∑
j=1

K2
h(φj − φt)(φj − φt)kI{Xi∈Uj} is equal to

hk−1Rk−1(K)fX(φt) + op(h
k−1)

in either case.

Proof. Since

n−1

n∑
i=1

M∑
j=1

Kh(φj − φt)(φj − φt)kI{Xi∈Uj} = E

(
M∑
j=1

Kh(φj − φt)(φj − φt)kI{Xi∈Uj}

)

+Op



√√√√√√Var

(
M∑
j=1

Kh(φj − φt)(φj − φt)kI{Xi∈Uj}

)
n

 ,
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for the expectation,

E

(
M∑
j=1

Kh(φj − φt)(φj − φt)kI{Xi∈Uj}

)
= h−1

M∑
j=1

K(
φj − φt
h

)(φj − φt)kP (Xi ∈ Uj)

= h−1

∫
K

(
l − φt
h

)
(l − φt)k fX(l) dl +O(M−1)

= hk
∫
zkK(z)fX (zh+ φt) dz +O(M−1)

= hk
∫
zkK(z)

((
fX(φt) + zhf

′

X(φt) + o(1)
)

dz
)

+O(M−1).

For k even, it is equal to

hkµkfX(φt) + o(hk),

and for k odd, it is equal to

hk+1µk+1f
′

X(φt) + o(hk+1).

The leading term for odd k and even k are different because µk =
∫
zkK(z) dz is 0 when

k is odd and we need to expand fX(zh + φt) at z = 0 one more order to get a non-zero

leading term.

For the variance,

Var

(
M∑
j=1

Kh(φj − φt)(φj − φt)kI{Xi∈Uj}

)
= E

( M∑
j=1

Kh(φj − φt)(φj − φt)k I{Xi∈Uj}

)2


−

(
E

(
M∑
j=1

Kh(φj − φt)(φj − φt)k I{Xi∈Uj}

))2

.
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The first term is

E

( M∑
j=1

Kh(φj − φt)(φj − φt)kI{Xi∈Uj}

)2
 = h−2

M∑
j=1

K2(
φj − φt
h

)(φj − φt)2kP (Xi ∈ Uj)

= h−2

∫
K2

(
l − φt
h

)
(l − φt)2k fX(l) dl +O(M−1)

= h2k−1

∫
z2kK2(z)fX(zh+ φt) dz +O(M−1)

= h2k−1

∫
z2kK2(z) dz (fX(φt) + o(1)) +O(M−1)

= h2k−1R2kfX(φt) + o(h2k−1).

Since the second term is at most O(h2k),

Var

(
M∑
j=1

Kh(φj − φt)(φj − φt)kI{Xi∈Uj}

)
= O(h2k−1).

By A10,

Op



√√√√√√Var

(
M∑
j=1

Kh(φj − φt)(φj − φt)kI{Xi∈Uj}

)
n

 = op(h
k+1).

Then, the first two results follow.
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For the third result, since

n−1

n∑
i=1

M∑
j=1

K2
h(φj − φt)(φj − φt)kI{Xi∈Uj} = E

(
M∑
j=1

K2
h(φj − φt)(φj − φt)kI{Xi∈Uj}

)

+Op



√√√√√√Var

(
M∑
j=1

K2
h(φj − φt)(φj − φt)kI{Xi∈Uj}

)
n

 ,

we can derive the leading term of

E

(
M∑
j=1

K2
h(φj − φt)(φj − φt)kI{Xi∈Uj}

)

and

Var

(
M∑
j=1

K2
h(φj − φt)(φj − φt)kI{Xi∈Uj}

)

and determine the order of Op



√√√√√Var


M∑
j=1

K2
h(φj − φt)(φj − φt)kI{Xi∈Uj}


n

, which is

Op(2k − 2), in the same way. Then the third result follows. �

Theorem 3.3.2. Suppose that t ∈ (1, 2, . . . ,M), and that A7-A10 hold. Let m̂(t; p, h) =

eT1B
−1c, Hp = diag(1, h, . . . , hp), N p be the (p+1)× (p+1) matrix having the (i, j)th entry

equal to µi+j−2, Qp be the (p+ 1)× (p+ 1) matrix having the (i, j)th entry equal to µi+j−1,

T p is the (p+ 1)× (p+ 1) matrix having the (k, l)th element equal to
∫
uk+l−2K2(u) du, and
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C = (C1, . . . , Cn)T . Then for p odd,

E{m̂(t; p, h)−mt|C} =

{
p+1∑
j=1

((N−1
p )1,j µp+j)

}
m(p+1)(φt)

(p+ 1)!
hp+1 + op(h

p+1),

and for p even,

E{m̂(t; p, h)−mt|C} =

{
p+1∑
j=1

((N−1
p )1,j µp+j+1)

}

× {m
(p+1)(φt)

(p+ 1)!

f
′
X(φt)

fX(φt)
+
m(p+2)(φt)

(p+ 2)!
}hp+2 + op(h

p+2).

In either case

Var{m̂(t; p, h)|C} = (n−1h−1 σ2

fX(φt)
eT1N

−1
p T pN

−1
p e1)(1 + op(1)).

Remark 1. The order of the asymptotic bias is Op(h
p+1) for p odd and, Op(h

p+2) for p

even. The order of the asymptotic variance is Op(
1
nh

) in either case. This is the same as the

results for local polynomial estimator with a continuous covariate.

Remark 2. The asymptotic bias of the local polynomial estimator with an continuous

covariate is

E{m̂(x; p, h)−mt|X} =

{
p+1∑
j=1

((N−1
p )1,j µp+j)

}
m(p+1)(x)

(p+ 1)!
hp+1 + op(h

p+1)

when p is odd, and

E{m̂(x; p, h)−mt|X} =

{
p+1∑
j=1

((N−1
p )1,j µp+j+1)

}

× {m
(p+1)(x)

(p+ 1)!

f
′
X(x)

fX(x)
+
m(p+2)(x)

(p+ 2)!
}hp+2 + op(h

p+2)
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when p is even. The asymptotic variance of the local polynomial estimator with an continuous

covariate is

Var{m̂(x; p, h)−mt|x} = (n−1h−1 σ2

fX(x)
eT1N

−1
p T pN

−1
p e1)(1 + op(1))

For either odd or even p. Therefore, the leading terms are exactly the same form as ours.

The difference is that the position of the target and the values of Xi are known in the case

of local polynomial estimator with an continuous covariate. The conditional bias caused by

the uncertain values of Xi and the target’s position xt is in a smaller order in probability

than the leading terms and is absorbed in the remnant terms. Similar thing happens to the

conditional variance. This can be found clearly in the proof.

Remark 3. To prove the theorem, we are following the approach used in Ruppert and

Wand (1994).

Proof. The conditional expectation

E{m̂(t; p, h)−mt|C} = eT1 (n−1B)−1E(n−1c|C)−m(φt) +m(φt)−mt.

First, since |xt − φt| ≤ 0.5
M

and by A7, m(φt)−mt = O( 1
M

). Now, we only need to focus on

the first difference, which is

eT1 (n−1B)−1E(n−1c|C)−m(φt)
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= eT1 (n−1B)−1



n−1

n∑
i=1

M∑
j=1

Kh(φj − φt)mjI{Xi∈Uj}

...

n−1

n∑
i=1

M∑
j=1

Kh(φj − φt)(φj − φt)pmjI{Xi∈Uj}


−m(φt)

= eT1 (n−1B)−1



n−1

n∑
i=1

M∑
j=1

Kh(φj − φt) (m(φt) + . . .

+m(p+2)(φt)
(p+2)!

(φj − φt)p+2 + rt +O( 1
M

)
)
I{Xi∈Uj}

...

n−1

n∑
i=1

M∑
j=1

Kh(φj − φt)(φj − φt)p (m(φt) + . . .

+m(p+2)(φt)
(p+2)!

(φj − φt)p+2 + rt +O( 1
M

)
)
I{Xi∈Uj}


−m(φt)

= eT1 (n−1B)−1(n−1B)


m(φt)

...

m(p)(φt)
(p)!

+ eT1 (n−1B)−1(St +Rt)−m(φt)

= eT1 (n−1B)−1(St +Rt),
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where

St = n−1


m(p+1)(φt)

(p+ 1)!



n∑
i=1

M∑
j=1

Kh(φj − φt)(φj − φt)p+1I{Xi∈Uj}

...

n∑
i=1

M∑
j=1

Kh(φj − φt)(φj − φt)2p+1I{Xi∈Uj}



+
m(p+2)(φt)

(p+ 2)!



n∑
i=1

M∑
j=1

Kh(φj − φt)(φj − φt)p+2I{Xi∈Uj}

...

n∑
i=1

M∑
j=1

Kh(φj − φt)(φj − φt)2p+2I{Xi∈Uj}




,

Rt is a vector of Taylor series remainder terms plus O( 1
M

), mj = E(Yi|Ci = j) for some

xj ∈ Uj, and noting that

sup1≤j≤M |mj −m(φj)| ≤ C
1

M

for a positive real constant C using A7.

By Lemma 3.3.1,

(n−1B) = Hp{fX(φt)N p + hf
′

X(φt)Qp}Hp(Ip + op(Ip)).

Then,

eT1 (n−1B)−1 =
1

fX(φt)
{eT1N−1

p − h
f

′
X(φt)

fX(φt)
eT1N

−1
p QpN

−1
p }H−1

p (Ip + op(Ip), .

where Ip is the (p+ 1)× (p+ 1) identity matrix.
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Again, by Lemma 3.3.1,

St = Hp


m(p+1)(φt)

(p+ 1)!

hp+1fX(φt)


µp+1

...

µ2p+1

+ hp+2f
′

X(φt)


µp+2

...

µ2p+2





+
m(p+2)(φt)

(p+ 2)!

hp+2fX(φt)


µp+2

...

µ2p+2

+ hp+3f
′

X(φt)


µp+3

...

µ2p+3






(1 + op(1)).

Then,

E{m̂(t; p, h)−m(t)|C} =
1

fX(φt)


m(p+1)(φt)

(p+ 1)!
eT1N

−1
p hp+1fX(φt)


µp+1

...

µ2p+1



+
m(p+1)(φt)

(p+ 1)!
eT1N

−1
p hp+2f

′

X(φt)


µp+2

...

µ2p+2



+
m(p+2)(φt)

(p+ 2)!
eT1N

−1
p hp+2fX(φt)


µp+2

...

µ2p+2


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+
m(p+2)(φt)

(p+ 2)!
eT1N

−1
p hp+3f

′

X(φt)


µp+3

...

µ2p+3



− m(p+1)(φt)

(p+ 1)!
h
f

′
X(φt)

fX(φt)
eT1N

−1
p QpN

−1
p hp+1fX(φt)


µp+1

...

µ2p+1



− m(p+1)(φt)

(p+ 1)!
h
f

′
X(φt)

fX(φt)
eT1N

−1
p QpN

−1
p hp+2f

′

X(φt)


µp+2

...

µ2p+2



− m(p+2)(φt)

(p+ 2)!
h
f

′
X(φt)

fX(φt)
eT1N

−1
p QpN

−1
p hp+2fX(φt)


µp+2

...

µ2p+2



− m(p+2)(φt)

(p+ 2)!
h
f

′
X(φt)

fX(φt)
eT1N

−1
p QpN

−1
p hp+3f

′

X(φt)


µp+3

...

µ2p+3




× (1 + op(1)).
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First, eT1N
−1
p Qp = 0 since the last p columns of N p is the first p columns of Qp. This

implies that the last four terms are all 0. So,

E{m̂(t; p, h)−mt|C} =
1

fX(φt)


m(p+1)(φt)

(p+ 1)!
eT1N

−1
p hp+1fX(φt)


µp+1

...

µ2p+1



+
m(p+1)(φt)

(p+ 1)!
eT1N

−1
p hp+2f

′

X(φt)


µp+2

...

µ2p+2



+
m(p+2)(φt)

(p+ 2)!
eT1N

−1
p hp+2fX(φt)


µp+2

...

µ2p+2



+
m(p+2)(φt)

(p+ 2)!
eT1N

−1
p hp+3f

′

X(φt)


µp+3

...

µ2p+3




× (1 + op(1)).

Second, for p even, the 1st and 4th term are both 0. Therefore,

E{m̂(t; p, h)−mt|C} =

{
p+1∑
j=1

((N−1
p )1,j µp+j+1)

}

×{m
(p+1)(φt)

(p+ 1)!

f
′
X(φt)

fX(φt)
+
m(p+2)(φt)

(p+ 2)!
}hp+2 + op(h

p+2).
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For p odd, the 2st and 3th term are both 0. Therefore,

E{m̂(t; p, h)−mt|C} =

{
p+1∑
j=1

((N−1
p )1,j µp+j)

}
m(p+1)(φt)

(p+ 1)!
hp+1 + op(h

p+1).

In this result, term 4 is absorbed in op(h
p+1).

If we write m̂(t; p, h) as eT1BD
TY , then

Var(m̂(t; p, h)|C) = n−1eT1 (n−1B)−1(n−1DTVar(Y |C)D)(n−1B)−1e1,

where

D =



M∑
j=1

Kh(φj − φt)I{X1∈Uj} · · ·
M∑
j=1

Kh(φj − φt)(φj − φt)pI{X1∈Uj}

...
. . .

...

M∑
j=1

Kh(φj − φt)I{Xn∈Uj} · · ·
M∑
j=1

Kh(φj − φt)(φj − φt)pI{Xn∈Uj}


.

Since

Var(Yi|C) = Var(E(Yi|Xi)|C) + E(Var(Yi|Xi)|C)

= Var(m(Xi)|C) + E(σ2|C)

= O(
1

M
) + σ2.

Then, (n−1DTVar(Y |C)D) = (σ2+O( 1
M

))(n−1DTD) and (n−1DTD) is the (p+1)×(p+

1) matrix having the (k, l)th element equal to n−1

n∑
i=1

M∑
j=1

K2
h(φj − φt)(φj − φt)k+l−2I{Xi∈Uj}.
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By lemma 3.3.1,

(n−1DTD) = h−1fX(φt)HpT pHp(Ip + op(Ip)).

Then,

Var(m̂(t; p, h)|C)

= n−1σ
2 +O( 1

M
)

fX(φt)
{eT1N−1

p − h
f

′
X(φt)

fX(φt)
eT1N

−1
p QpN

−1
p }H−1

p

× h−1fX(φt)HpT pHp

× 1

fX(φt)
H−1

p {N−1
p e1 − h

f
′
X(φt)

fX(φt)
N−1

p QpN
−1
p e1}(1 + op(1))

= (n−1h−1 σ2

fX(φt)
eT1N

−1
p T pN

−1
p e1)(1 + op(1)).

�

3.4. Simulation

In this section, we do 2 patterns of simulations based on a latent covariate model:

Yi = sin(
π

2
Xi) + εi, i = 1, . . . , 100,

where Xi are generated from U(0, 1), and εi are generated from N(0, 0.1). Each pattern is

simulated 1000 times.

In the first pattern, the number of observations that fall in different categories is set to be

the same. In the second pattern, the number of observations that fall in different categories
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is set to be different, where the ratio is proportional to (5, 6, 7, 8, 10, 5, 3, 2, 2, 2) for each

category. The targets are {0.078, 0.233, 0.382, 0.522, 0.649, 0.760, 0.852, 0.923, 0.971, 0.996}.

We apply local linear estimation for 6 different bandwidth values h = 0.15, 0.2, 0.25, 0.3,

0.35, 0.4. We estimate mt at {φ1, . . . , φ10} = {1−0.5
10

, . . . , 10−0.5
10
}. For comparison, we also

estimate the response with h = 0.1, that is, weighted averaging the response in each category.

At a fixed h and φt, using the estimation m̂t,h, we approximate the pointwise bias B(m̂t,h) =

E(m̂t,h − mt), the pointwise standard deviation SD(m̂t,h) =
√

Var(m̂t,h), the pointwise

mean squared errors MSE(m̂t,h) = E(m̂t,h − mt)
2, and the mean sum of squared errors

MSSEh = E
∑

t(m̂t,h−mt)
2 by averaging the simulation results. For bandwidth selection, we

apply the approaches of CV and GCV. That is, at a certain point t, we use hCV ∈ (0.1, 1) that

minimizes CV =
∑

i

(
m̂t,h−yi

1−Sii

)2

, and hGCV ∈ (0.1, 1) that minimizes GCV =
∑

i

(
m̂t,h−yi

1−S̄

)2

,

where Sii is diagonal element of the projection matrix S and S̄ = 1/100
∑

i Sii (Rudemo

1982; Bowman, Hall, and Titterington 1984; Hall, Marron, and Park 1992). The actual

averages of the CV and GCV bandwidths are given denoted by ave(hCV ) and ave(hGCV ),

respectively. The projection matrix S is 100× 100 such that m̂t,h = hiY if Xi ∈ Ut, where

hi is row i of S. We also estimate the variance by

V̂ (m̂t,h) = eT1B
−1DT V̂ (Y |C)DB−1e1,
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where

V̂ (Y |C) =



σ̂2
1

. . .

σ̂2
1

σ̂2
2

. . .

σ̂2
10


where σ̂2

t is the simulation variance for the Yi such that Xi ∈ Ut, i.e.

σ̂2
t =

1∑
i I{Xi∈Ut} − 1

∑
i

I{Xi∈Ut}(Yi − Ȳt)2,

where Ȳt = 1∑
i I{Xi∈Ut}−1

∑
i I{Xi∈Ut}Yi. Finally, the relative bias of variance estimator

E
(
V̂ (m̂t,h)−Var(m̂t,h)

Var(m̂t,h)

)
is given by averaging the simulation results.

For comparision, we estimate the same targets using the estimator (2) Ouyang, Li, and

Racine (2009) proposed with λ = 1e − 13, 1e − 12, . . . , 1e − 7, and λCV and λGCV that

minimizes CV and GCV similarly defined above except replacing m̂t,h by m̂OLR(t, λ).

From the results, we can find that the local linear estimator works well in both of the

two patterns. Although the bias of the estimator in the 10 categories become bigger when

h increases, the standard deviations becomes smaller, that is, incorporating data from more

neighbour cells for local linear regression. The MSE first decrease and then increase when

h increases. The same thing happens to the MSSE. The bandwidth h selected by CV and

GCV matches in both of the two patterns as well as all of them are greater than 0.1. Notice

that the bias, MSSE and standard deviation in the boundary categories, i.e. m̂1 and m̂10, are

bigger than those in other categories. This is because the local linear regression incorporates
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one less cell of data at the boundary. The bias, MSSE and standard deviation are similar

between the two patterns, which means our estimator works well for both balance spaced

and unbalance spaced ordinal data. The relative bias between the estimated variance and

true variance is very small, which validates our variance estimator.

In the results of m̂OLR(t, λ), we also estimate the targets using λ = 0, that is, averaging

the response in each category. Notice that the estimators are exactly the same when h = 0.1

and λ = 0. Therefore the simulation results are same as well. Similar to h, when λ = 0,

the bias of m̂OLR(t, λ) are the smallest and when λ increases the bias become bigger. The

standard deviations become smaller when λ increases. Similarly, The MSE first decrease

and then increase when λ increases. The same thing happens to MSSE. In both of the two

patterns, using the bandwidths selected by CV and GCV, our estimator has smaller variance

and mean squared errors at all of the 10 targets compared to the m̂OLR(t, λ) estimator except

m10, and our estimator has smaller mean sum of squared errors.
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Table 2. Simulation bias (in percent) B(m̂t,h) = E(m̂t,h − mt) for pattern
1 for the 10 values of the ordinal covariate for 7 fixed bandwidth as well
as at bandwidths selected by CV and GCV, with ave(hCV ) = 0.2689 and
ave(hGCV ) = 0.2664.

h m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0.1 0.068 -0.19 0.16 -0.028 0.026 -0.054 -0.021 0.0097 0.087 -0.22
0.15 0.068 0.12 0.27 0.37 0.41 0.47 0.53 0.62 0.62 -0.22
0.2 0.068 0.17 0.28 0.43 0.47 0.54 0.61 0.71 0.69 -0.22
0.25 -0.070 0.26 0.63 0.87 1.1 1.2 1.4 1.5 0.97 -0.46
0.3 -0.093 0.29 0.76 1.0 1.3 1.5 1.7 1.8 1.0 -0.49
0.35 -0.24 0.32 1.0 1.6 2.0 2.4 2.6 2.3 1.1 -0.93
0.4 -0.29 0.32 1.1 1.9 2.4 2.8 3.1 2.5 1.1 -1.1

CV -0.12 0.20 0.67 0.95 1.20 1.40 1.60 1.40 0.82 -0.54
GCV -0.12 0.20 0.66 0.93 1.10 1.40 1.50 1.40 0.81 -0.53

Table 3. Simulation bias (in percent) B(m̂OLR(t, λ)) = E(m̂OLR(t, λ) −mt)
for pattern 1 for the 10 values of the ordinal covariate for 7 fixed bandwidth
as well as at bandwidths selected by CV and GCV, with ave(λCV ) = 2.50e− 8
and ave(λGCV ) = 2.29e− 8.

λ m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0 0.068 -0.19 0.16 -0.028 0.026 -0.054 -0.021 0.0097 0.087 -0.22
1e-13 -0.759 -0.203 0.185 0.0538 0.109 0.0552 0.0961 0.138 0.208 -0.0688
1e-12 -0.987 -0.231 0.189 0.0764 0.133 0.0869 0.13 0.176 0.246 -0.025
1e-11 -1.28 -0.281 0.192 0.106 0.166 0.129 0.177 0.227 0.299 0.0332
1e-10 -1.67 -0.365 0.19 0.143 0.211 0.187 0.24 0.297 0.371 0.112
1e-09 -2.18 -0.504 0.177 0.191 0.274 0.266 0.328 0.397 0.475 0.22
1e-08 -2.86 -0.735 0.138 0.249 0.361 0.379 0.456 0.541 0.626 0.372
1e-07 -3.79 -1.11 0.044 0.314 0.485 0.545 0.648 0.759 0.853 0.596

CV -1.96 -0.513 0.146 0.163 0.243 0.235 0.319 0.372 0.459 0.175
GCV -1.86 -0.482 0.144 0.155 0.229 0.227 0.297 0.355 0.436 0.158
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Table 4. Simulation standard deviation SD(m̂t,h) for pattern 1 for the 10
values of the ordinal covariate for 7 fixed bandwidth as well as at bandwidths
selected by CV and GCV, with ave(hCV ) = 0.2689 and ave(hGCV ) = 0.2664.

h m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0.1 0.035 0.035 0.034 0.034 0.033 0.033 0.032 0.032 0.032 0.032

0.15 0.035 0.021 0.021 0.020 0.020 0.020 0.020 0.019 0.019 0.032

0.2 0.035 0.020 0.020 0.020 0.019 0.019 0.019 0.019 0.019 0.032

0.25 0.032 0.019 0.016 0.016 0.016 0.016 0.016 0.015 0.018 0.029

0.3 0.032 0.019 0.016 0.016 0.015 0.015 0.015 0.015 0.017 0.029

0.35 0.030 0.019 0.015 0.014 0.014 0.014 0.013 0.014 0.017 0.027

0.4 0.029 0.019 0.015 0.013 0.013 0.013 0.013 0.014 0.017 0.027

CV 0.032 0.022 0.021 0.020 0.020 0.019 0.019 0.019 0.021 0.030

GCV 0.032 0.023 0.021 0.020 0.020 0.020 0.020 0.020 0.021 0.030

Table 5. Simulation standard deviation SD(m̂OLR(t, λ)) for pattern 1 for the
10 values of the ordinal covariate for 7 fixed bandwidth as well as at bandwidths
selected by CV and GCV, with ave(λCV ) = 2.50e−8 and ave(λGCV ) = 2.29e−
8.

λ m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0 0.035 0.035 0.034 0.034 0.033 0.033 0.032 0.032 0.032 0.032

1e-13 0.032 0.032 0.031 0.03 0.03 0.03 0.029 0.03 0.028 0.03

1e-12 0.032 0.031 0.03 0.029 0.029 0.03 0.028 0.029 0.027 0.03

1e-11 0.032 0.03 0.029 0.028 0.029 0.029 0.027 0.028 0.027 0.03

1e-10 0.031 0.029 0.028 0.027 0.028 0.028 0.026 0.027 0.026 0.029

1e-09 0.03 0.028 0.027 0.026 0.026 0.026 0.025 0.026 0.025 0.028

1e-08 0.029 0.027 0.025 0.025 0.025 0.025 0.024 0.024 0.024 0.027

1e-07 0.028 0.025 0.024 0.023 0.023 0.023 0.022 0.023 0.022 0.026

CV 0.032 0.029 0.028 0.027 0.027 0.027 0.026 0.027 0.026 0.029

GCV 0.033 0.03 0.029 0.027 0.028 0.028 0.026 0.027 0.026 0.029
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Table 6. Simulation square root of mean squared errors MSE(m̂t,h) and
square root of mean sum of squared errors MSSEh = E

∑
t(m̂t,h − mt)

2 for
pattern 1 for the 10 values of the ordinal covariate for 7 fixed bandwidth as
well as at bandwidths selected by CV and GCV, with ave(hCV ) = 0.2689 and
ave(hGCV ) = 0.2664.

h m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

√
MSSEh

0.1 0.035 0.035 0.034 0.034 0.033 0.033 0.032 0.032 0.032 0.032 0.1

0.15 0.035 0.021 0.021 0.021 0.021 0.02 0.02 0.02 0.02 0.032 0.074

0.2 0.035 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.032 0.073

0.25 0.032 0.019 0.018 0.018 0.019 0.02 0.021 0.022 0.02 0.03 0.07

0.3 0.032 0.019 0.017 0.019 0.02 0.021 0.022 0.023 0.02 0.029 0.072

0.35 0.03 0.019 0.018 0.021 0.024 0.027 0.03 0.027 0.021 0.029 0.078

0.4 0.029 0.019 0.019 0.023 0.027 0.031 0.034 0.028 0.021 0.029 0.083

CV 0.032 0.022 0.022 0.022 0.023 0.024 0.025 0.024 0.022 0.03 0.082

GCV 0.032 0.023 0.022 0.022 0.023 0.024 0.025 0.024 0.022 0.03 0.082

Table 7. Simulation square root of mean squared errors MSE(m̂OLR(t, λ))
and square root of mean sum of squared errors MSSEh = E

∑
t(m̂OLR(t, λ)−

mt)
2 for pattern 1 for the 10 values of the ordinal covariate for 7 fixed band-

width as well as at bandwidths selected by CV and GCV, with ave(λCV ) =
2.50e− 8 and ave(λGCV ) = 2.29e− 8.

λ m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

√
MSSEh

0 0.035 0.035 0.034 0.034 0.033 0.033 0.032 0.032 0.032 0.032 0.105

1e-13 0.033 0.032 0.031 0.03 0.03 0.03 0.029 0.03 0.028 0.03 0.0963

1e-12 0.034 0.031 0.03 0.029 0.03 0.03 0.028 0.029 0.027 0.03 0.0944

1e-11 0.034 0.031 0.03 0.028 0.029 0.029 0.027 0.028 0.027 0.03 0.0923

1e-10 0.035 0.03 0.028 0.027 0.028 0.028 0.026 0.027 0.026 0.029 0.09

1e-09 0.037 0.028 0.027 0.026 0.026 0.026 0.025 0.026 0.025 0.028 0.088

1e-08 0.041 0.028 0.026 0.025 0.025 0.025 0.024 0.025 0.024 0.028 0.0865

1e-07 0.047 0.027 0.024 0.023 0.024 0.024 0.023 0.024 0.024 0.027 0.087

CV 0.038 0.03 0.028 0.027 0.028 0.027 0.026 0.027 0.026 0.029 0.091

GCV 0.038 0.03 0.029 0.027 0.028 0.028 0.026 0.027 0.026 0.029 0.092
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Table 8. Simulation relative bias (in percent) of variance estimator

E
(
V̂ (m̂t,h)−Var(m̂t,h)

Var(m̂t,h)

)
for pattern 1 for the 10 values of the ordinal covariate

for 7 fixed bandwidth as well as at bandwidths selected by CV and GCV, with
ave(hCV ) = 0.2689 and ave(hGCV ) = 0.2664.

h m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0.1 -2.30 -1.42 0.496 1.21 1.68 1.98 -0.551 -1.81 1.15 -1.13

0.15 -2.30 -1.23 0.257 1.16 1.64 1.45 -0.289 -1.01 0.143 -1.13

0.2 -2.30 -1.16 0.164 1.14 1.63 1.25 -0.188 -0.701 -0.245 -1.13

0.25 -2.20 -1.45 0.0792 1.04 1.47 1.03 0.00457 -0.480 -0.334 -0.996

0.3 -2.16 -1.50 0.0162 0.947 1.31 0.87 0.172 -0.331 -0.397 -0.943

0.35 -2.1 -1.55 -0.265 0.802 1.11 0.775 0.266 -0.284 -0.431 -0.744

0.4 -2.04 -1.56 -0.38 0.648 0.904 0.723 0.315 -0.257 -0.453 -0.684

CV -2.24 -2.00 0.25 0.58 1.61 0.55 0.45 -0.64 -0.29 -1.18

GCV -2.19 -1.91 -0.64 0.75 1.38 0.13 0.48 -0.27 0.75 -1.17

Table 9. Simulation bias (in percent) B(m̂t,h) = E(m̂t,h − mt) for pattern
2 for the 10 values of the ordinal covariate for 7 fixed bandwidth as well
as at bandwidths selected by CV and GCV, with ave(hCV ) = 0.1674 and
ave(hGCV ) = 0.1703.

h m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0.1 0.068 -0.16 0.057 0.07 -0.033 -0.039 0.062 0.058 -0.36 -0.18
0.15 0.068 0.1 0.25 0.38 0.31 0.46 0.57 0.59 0.43 -0.18
0.2 0.068 0.14 0.28 0.42 0.37 0.54 0.65 0.66 0.54 -0.18
0.25 -0.079 0.23 0.62 0.74 0.76 0.98 1.4 1.6 0.9 -0.53
0.3 -0.1 0.25 0.74 0.86 0.92 1.2 1.7 1.9 0.97 -0.59
0.35 -0.32 0.23 0.87 1.2 1.3 1.7 2.5 2.4 0.98 -1.2
0.4 -0.38 0.22 0.94 1.4 1.6 2.1 3 2.5 0.98 -1.3

CV -0.011 -0.048 0.25 0.39 0.33 0.47 0.7 0.67 0.26 -0.51
GCV -0.025 -0.037 0.25 0.41 0.34 0.49 0.72 0.7 0.25 -0.51
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Table 10. Simulation bias (in percent) B(m̂OLR(t, λ)) = E(m̂OLR(t, λ)−mt)
for pattern 2 for the 10 values of the ordinal covariate for 7 fixed bandwidth
as well as at bandwidths selected by CV and GCV, with ave(λCV ) = 1.17e− 8
and ave(λGCV ) = 1.13e− 8.

λ m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0 0.068 -0.16 0.057 0.07 -0.033 -0.039 0.062 0.058 -0.36 -0.18
1e-13 -0.93 -0.441 -0.136 -0.0835 0.219 0.774 0.667 0.386 -0.175 -0.0467
1e-12 -1.21 -0.538 -0.194 -0.112 0.291 0.979 0.849 0.493 -0.114 -0.00731
1e-11 -1.57 -0.675 -0.272 -0.143 0.384 1.23 1.09 0.642 -0.028 0.0467
1e-10 -2.04 -0.87 -0.377 -0.172 0.508 1.55 1.41 0.854 0.0969 0.123
1e-09 -2.67 -1.15 -0.521 -0.195 0.674 1.95 1.85 1.16 0.284 0.235
1e-08 -3.52 -1.57 -0.721 -0.206 0.899 2.45 2.44 1.62 0.575 0.407
1e-07 -4.68 -2.18 -1 -0.192 1.21 3.09 3.25 2.32 1.05 0.693

CV -1.59 -0.734 -0.309 -0.0995 0.391 1.22 1.11 0.737 0.074 0.0366
GCV -1.57 -0.727 -0.303 -0.0989 0.386 1.2 1.1 0.724 0.0662 0.0346

Table 11. Simulation standard deviation SD(m̂t,h) for pattern 2 for the 10
values of the ordinal covariate for 7 fixed bandwidth as well as at bandwidths
selected by CV and GCV, with ave(hCV ) = 0.1674 and ave(hGCV ) = 0.1703.

h m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0.1 0.035 0.032 0.029 0.027 0.024 0.033 0.042 0.051 0.05 0.05

0.15 0.035 0.019 0.018 0.016 0.016 0.02 0.026 0.029 0.03 0.05

0.2 0.035 0.019 0.017 0.015 0.016 0.02 0.025 0.028 0.029 0.05

0.25 0.031 0.018 0.014 0.013 0.014 0.017 0.02 0.022 0.028 0.046

0.3 0.031 0.018 0.014 0.013 0.014 0.016 0.019 0.021 0.027 0.046

0.35 0.028 0.018 0.013 0.012 0.013 0.015 0.017 0.02 0.027 0.042

0.4 0.028 0.018 0.013 0.012 0.013 0.014 0.016 0.02 0.027 0.042

CV 0.033 0.027 0.025 0.023 0.021 0.028 0.035 0.042 0.043 0.048

GCV 0.033 0.027 0.025 0.023 0.021 0.028 0.035 0.042 0.043 0.048
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Table 12. Simulation standard deviation SD(m̂OLR(t, λ)) for pattern 2 for
the 10 values of the ordinal covariate for 7 fixed bandwidth as well as at
bandwidths selected by CV and GCV, with ave(λCV ) = 1.17e − 8 and
ave(λGCV ) = 1.13e− 8.

λ m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0 0.035 0.032 0.029 0.027 0.024 0.033 0.042 0.051 0.05 0.05

1e-13 0.032 0.029 0.027 0.024 0.021 0.03 0.037 0.044 0.046 0.048

1e-12 0.032 0.028 0.026 0.024 0.021 0.029 0.036 0.042 0.045 0.047

1e-11 0.031 0.027 0.025 0.023 0.021 0.028 0.035 0.041 0.043 0.046

1e-10 0.03 0.026 0.024 0.022 0.02 0.026 0.033 0.039 0.042 0.045

1e-09 0.029 0.025 0.023 0.021 0.019 0.025 0.031 0.037 0.04 0.044

1e-08 0.028 0.024 0.022 0.02 0.019 0.023 0.029 0.034 0.038 0.043

1e-07 0.026 0.022 0.02 0.019 0.018 0.022 0.026 0.031 0.035 0.041

CV 0.034 0.028 0.026 0.023 0.021 0.029 0.037 0.042 0.044 0.047

GCV 0.034 0.028 0.026 0.023 0.021 0.029 0.037 0.042 0.044 0.047

Table 13. Simulation square root of mean squared errors MSE(m̂t,h) and
square root of mean sum of squared errors MSSEh = E

∑
t(m̂t,h − mt)

2 for
pattern 2 for the 10 values of the ordinal covariate for 7 fixed bandwidth as
well as at bandwidths selected by CV and GCV, with ave(hCV ) = 0.1674 and
ave(hGCV ) = 0.1703.

h m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

√
MSSEh

0.1 0.035 0.032 0.029 0.027 0.024 0.033 0.042 0.051 0.05 0.05 0.12

0.15 0.035 0.019 0.018 0.016 0.017 0.021 0.026 0.029 0.031 0.05 0.088

0.2 0.035 0.019 0.017 0.016 0.016 0.02 0.026 0.029 0.03 0.05 0.087

0.25 0.031 0.018 0.015 0.015 0.016 0.02 0.024 0.027 0.029 0.046 0.081

0.3 0.031 0.018 0.015 0.016 0.017 0.02 0.025 0.029 0.029 0.046 0.082

0.35 0.029 0.018 0.016 0.017 0.019 0.023 0.03 0.031 0.029 0.044 0.085

0.4 0.028 0.018 0.016 0.018 0.02 0.025 0.034 0.032 0.029 0.044 0.087

CV 0.033 0.027 0.025 0.023 0.021 0.028 0.036 0.043 0.043 0.049 0.11

GCV 0.033 0.027 0.025 0.023 0.021 0.028 0.036 0.043 0.043 0.048 0.11
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Table 14. Simulation square root of mean squared errors MSE(m̂OLR(t, λ))
and square root of mean sum of squared errors MSSEh = E

∑
t(m̂OLR(t, λ)−

mt)
2 for pattern 2 for the 10 values of the ordinal covariate for 7 fixed band-

width as well as at bandwidths selected by CV and GCV, with ave(λCV ) =
1.17e− 8 and ave(λGCV ) = 1.13e− 8.

λ m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

√
MSSEh

0 0.035 0.032 0.029 0.027 0.024 0.033 0.042 0.051 0.05 0.05 0.121

1e-13 0.033 0.029 0.027 0.024 0.021 0.031 0.038 0.044 0.046 0.048 0.111

1e-12 0.034 0.029 0.026 0.024 0.021 0.03 0.037 0.043 0.045 0.047 0.109

1e-11 0.035 0.028 0.026 0.023 0.021 0.03 0.036 0.041 0.043 0.046 0.108

1e-10 0.036 0.028 0.025 0.022 0.021 0.031 0.036 0.04 0.042 0.045 0.106

1e-09 0.04 0.028 0.024 0.021 0.021 0.032 0.036 0.038 0.04 0.044 0.105

1e-08 0.045 0.028 0.023 0.02 0.021 0.034 0.038 0.038 0.038 0.043 0.107

1e-07 0.054 0.031 0.023 0.019 0.022 0.038 0.042 0.039 0.037 0.041 0.114

CV 0.038 0.029 0.026 0.023 0.021 0.032 0.038 0.043 0.044 0.047 0.111

GCV 0.037 0.029 0.026 0.023 0.021 0.032 0.038 0.043 0.044 0.047 0.111

Table 15. Simulation relative bias (in percent) of variance estimator

E
(
V̂ (m̂t,h)−Var(m̂t,h)

Var(m̂t,h)

)
for pattern 2 for the 10 values of the ordinal covariate

for 7 fixed bandwidth as well as at bandwidths selected by CV and GCV, with
ave(hCV ) = 0.1674 and ave(hGCV ) = 0.1703.

h m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0.1 -2.3 -1.92 2.35 1.59 0.51 -0.64 -0.0903 0.0377 -3.03 4.05e-05
0.15 -2.3 -1.35 1.3 1.6 0.438 -0.39 -0.117 -0.755 -1.87 4.05e-05
0.2 -2.3 -1.12 0.885 1.6 0.403 -0.289 -0.128 -1.03 -1.41 4.05e-05
0.25 -2.19 -1.45 0.503 1.27 0.419 -0.172 -0.418 -1.04 -1.18 -0.197
0.3 -2.15 -1.49 0.242 1.04 0.431 -0.118 -0.663 -0.969 -1.08 -0.273
0.35 -2.15 -1.44 -0.00721 0.845 0.452 -0.114 -0.678 -0.979 -1.03 -0.558
0.4 -2.08 -1.42 -0.143 0.698 0.445 -0.181 -0.673 -0.948 -0.995 -0.628

CV -1.85 -2.89 0.298 0.134 0.0228 -1.84 1.81 0.074 -4.17 -0.265
GCV -1.69 -3.08 0.362 0.105 -0.139 -1.73 1.84 -0.0104 -4.46 -0.107
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3.5. Conclusion

In this chapter, we fitted a nonparametric regression model to data for the situation in

which the covariate is an ordered categorical variable. We extended the local polynomial

estimator, which normally requires continuous covariates, to a local polynomial estimator

that allowed for ordered categorical covariates. We derived the asymptotic conditional bias

and variance for the local polynomial estimator with ordinal covariate, under the assumption

that the categories correspond to quantiles of an unobserved continuous latent variable. The

form of the leading terms of our asymptotic bias and variance were exactly the same as those

in Ruppert and Wand (1994). The difference is that the position of the target and the values

of Xi are known in the case of local polynomial estimator with an continuous covariate. The

conditional bias caused by the uncertain values of Xi and the target’s position are in a smaller

order in probability than the leading terms and are absorbed in the remnant terms. Similar

thing happened to the conditional variance. We conducted two patterns of simulations and

the results were in accordance with the asymptotic properties we had proved. We also

compared our simulation results to these using the estimator proposed in Ouyang, Li, and

Racine (2009), and our estimator had smaller variance and mean squared errors at most of

the targets using the bandwidths selected by CV and GCV.

59



CHAPTER 4

Generalized Product Kernel Smoothing

4.1. Introduction

Multivariate nonparametric regression has been proved to be very useful in practice.

Stone (1980) and Stone (1982) have shown that the local regression estimators having optimal

rates of convergence, and Cleveland and Devlin (1988) have proved that they are very useful

in modelling data. Ruppert and Wand (1994) derived the asymptotic properties of the

multivariate local linear and local quadratic estimators. No systematic study of bandwidth

matrix choice has been made for these estimators until Wand and Jones (1994) studied

multivariate plug-in bandwidth selection and Herrmann, Wand, Engel, and Gasser (1995)

proposed plug-in approaches for bivariate convolution kernel estimator.

Eubank (1988, p.286-292), Wahba (1990, p.30-39), and Green and Silverman (1994,

Chapter 7) described thin plate smoothing splines and gave earlier references to the method.

Green and Silverman (1994, p.155-159) also discussed the possibility of constructing multi-

variate regression estimators based on univariate splines using tensor products, and Simonoff

(1996, Chapter 5) gave a overall description on nonparametric regression.

However, these works are based on the assumption that the covariates in the model are

continuous. Much less efforts have been contributed to the situations that there are cate-

gorical (nominal and/or ordinal) covariates in the regression model. Bierens (1983) began

the consideration of kernel regression with mixed continuous and categorical covariates. Li

and Racine (2004), Racine and Li (2004), Hall, Racine, and Li (2004), Hall, Li, and Racine
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(2007), Li and Racine (2008), and Ouyang, Li, and Racine (2009) have considered nonpara-

metric estimation of regression functions, conditional density, and distribution functions,

and quantile functions containing a mix of categorical and continuous covariates.

In this paper, we consider a Nadaraya-Watson (NW) estimator with product kernel,

allowing for both categorical and continuous covariates. For conciseness, we simplify this

problem by assuming that there is a continuous response (Y ) and three covariates in this

problem. The three covariates are continuous (X) ordinal (C) and nominal (D), respectively.

We will propose an estimator for this problem in Section 4.2, derive the asymptotic properties

of the estimator in Section 4.3, and conduct a simulation study in Section 4.4.

4.2. Proposed Estimator

Let (X1, C1, D1, Y1), . . . , (Xn, Cn, Dn, Yn) be a set of independent and identically dis-

tributed (i.i.d.) 4-dimensional random vectors, where the Yi are scalar response variables

and Xi, Ci and Di are three univariate covariates. We only consider one univariate covariate

of each type for simplicity, but the approach generalizes to higher dimensions. The first

covariate Xi is continuous. The ordinal covariate Ci takes values in (1, 2, . . . ,M), where

lower order of Ci has smaller value. For example, it could be a typical five-level Likert item

such that Ci takes values in 1 to 5, 1 for strongly disagree, 2 for disagree, 3 for neither

disagree nor agree, 4 for agree, and 5 for strongly agree (Likert 1932). There exists a latent

continuous covariate Zi such that (Xi, Zi) are R2-valued covariates having common density

fX,Z with bounded support supp(fX,Z) and their own bounded marginal support supp(X)

and supp(Z). We can be more specific: we assume Z is on [0,1], we create a grid of bound-

ary points, and we assume that there Z has a density such that P (Z ∈ Uj) = P (C = j),

where Uj = [ j−1
M
, 1
M

], j = 1, 2, . . . ,M . The third covariate Di is a nominal variable and for
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simplicity again, we will assume that there are only two possible values. There is no order

of the two categories and their values can be literal, for example, (New York City, Boston),

(Dogs, Cats), etc. The random vector (Xi, Zi, Di) has a joint distribution. The conditional

distribution of Di given Xi and Ci, i.e. Di|Xi, Ci follows a Bernoulli distribution where

P (Di = d1|Xi, Ci) =
M∑
j=1

I{Zi∈Uj}

∫
Uj

p(Xi, z)fX,Z(Xi, z) dz,

P (Di = d2|Xi, Ci) = 1− P (Di = d1|Xi, Ci),

where d1 and d2 are the 2 categories.

We plan to use a product kernel, i.e. we will smooth local values around the target

point, where “local” will be defined by kernels in each dimension. Since the variables are of

different types, different types of kernels will be used.

For the first covariate, i.e. X, we will use a kernel function K1,h1(·) with bandwidth

h1 such that K1,h1(·) = 1
h1
K1( ·

h1
), and K1 has compact support [−1, 1], is symmetric and

continuous, and satisfies
∫ 1

−1
K1(u1)du1 = 1.

For the second covariate, i.e. C, we will use a kernel function K2,h2(·) with bandwidth

h2 such that K2,h2(·) = 1
h2
K2( ·

h2
), and K2 has compact support [−1, 1], is symmetric and

continuous, and satisfies
∫ 1

−1
K2(u2)du2 = 1. While we will apply this kernel to the ordinal

covariate in a manner that is similar to the continuous covariate, the interpretation will be

different, since it will rely on the latent variable underlying the ordinal covariate. We have

done an in-depth study of this approach in Chapter 3. This will be made clearer below.

For these first two kernels, we define the moments of Kl,hi(·) as

µj(Kl) =

∫ 1

−1

zjiKl(zi)dzi, l = 1, 2, j = 0, 1, 2, . . . ,
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and

Rj(Kl) =

∫ 1

−1

zjiK
2
l (zi)dzi, l = 1, 2, j = 0, 1, 2, . . . .

For the third covariate, i.e. D, with a slight abuse of notation, we define a kernel function

K3,λ(Di, d) with penalty parameter λ such that

K3,λ(Di, d) =


1 if Di = d

λ otherwise,

i = 1, . . . , n and d ∈ (d1, d2) (Ouyang, Li, and Racine 2009, p.3). For example, if the two

categories are different pets, like (Dogs, Cats), and d is Cats, then if Di is Dogs, K3,λ(Di, d) =

λ. If Di is Cats, K3,λ(Di, d) = 1.

mψ = E(Yi|(Xi, Ci, Di)
T = ψ)

We will assume the model

Yi = m(Xi, Zi, Di) + εi

=


m1(Xi, Zi) + εi if Di = d1

m2(Xi, Zi) + εi if Di = d2,

i = 1, . . . , n, where the εi are i.i.d with zero mean and σ2 variance and are independent of

Xi, Zi and Di.

While we are not currently specifying anything about how m1 and m2 are related to each

other, we are assuming that m1 and m2 are similar and not far apart here. For an simple
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example, m2(Xi, Zi) can be m1(Xi, Zi) + δ, where δ is a finite real number. But the method

will be applicable more broadly than to just an intercept shift between m1 and m2.

The multivariate nonparametric regression problem is that of estimating

mψ = E(Yi|(Xi, Ci, Di)
T = ψ)

= E(Yi|(Xi = x, Zi ∈ Ut, Di = d))

= E(m(Xi, Zi, Di)|(Xi = x, Zi ∈ Ut, Di = d)).

When d = d1,

mψ = E (m1(Xi, Zi)|(Xi = x, Zi ∈ Ut))

=

∫
Ut
m1(x, v)fX,Z(x, v) dv∫
Ut
fX,Z(x, v) dv

=
m1(x, z1,t)

∫
Ut
fX,Z(x, v) dv∫

Ut
fX,Z(x, v) dv

= m1(x, z1,t),

and similarly when d = d2,

mψ = m2(x, z2,t),

at a vectorψ = (x, t, d)T without imposing thatm belongs to a parametric family of functions

for some z1,t z2,t ∈ Ut. But since z1,t and z2,t are unknown. Next, we will estimate m1(x, z1,t)

and m2(x, z2,t) at mψ, which is equal to m1(x, φt) when d = d1 and m2(x, φt) when d = d2,

where φt = t−0.5
M

. We will use a NW estimator with product kernel.
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Let Wψ,i
= (K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)I{Zi∈Uj}

)
(K3,λ(Di, d)), i = 1, . . . , n, our

NW estimator with product kernel for mψ is

m̂(ψ;h1, h2, λ) =

1
n

n∑
i=1

Wψ,i
Yi

1
n

n∑
i=1

Wψ,i

.

4.3. Conditional Mean and Variance Properties

In this section we investigate the asymptotic properties of the conditional bias and vari-

ance of the NW estimator with product kernel.

We make the following assumptions:

A11. The second-order partial derivatives of mq with respect to X and Z are continuous

for q = 1, 2.

A12. The point (x, φt) is in the interior of supp(X,Z). The second-order partial deriva-

tives of fX,Z with respect to X and Z are continuous and fX,Z(X,Z) > 0 in supp(X,Z).

The second-order partial derivatives of p(X,Z) with respect to X and Z are continuous.

A13. For the kernel function Kl, µj(Kl) = 0 for all nonnegative integer j such that it is

odd, µj(Kl) 6= 0 for all nonnegative integer j such that it is even, and Rj(Kl) > 0 for all

nonnegative integer j, l = 1, 2.

A14. The bandwidths h1, h2, λ → 0, h3
1h

3
2n, h2

1M , h2
2M , and h1h2M → ∞. We also

assume that 0 ≤ λ ≤ 1.

We use the following lemma to prove Theorem 4.3.2.
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Lemma 4.3.1. Suppose A12-A14 hold. Let

Aa,b,i(x, φt, d) = (K1,h1(Xi − x)(Xi − x)a)

(
M∑
j=1

K2,h2(φj − φt)(φj − φt)bI{Zi∈Uj}

)

× (K3,λ(Di, d)) ,

where a and b are arbitrary nonnegative integers,

G1(r, s) = p(r, s)fX,Z(r, s),

and

G2(r, s) = (1− p(r, s)) fX,Z(r, s).

Then, when d = dq, for a, b even,

(4)
1

n

n∑
i=1

Aa,b,i(x, φt, d) = ha1h
b
2µa(K1)µb(K2)Gq(x, φt) + op(h

a
1h

b
2),

for a even and b odd,

(5)
1

n

n∑
i=1

Aa,b,i(x, φt, d) = ha1h
b+1
2 µa(K2)µb+1(K2)

∂

∂s
Gq(x, φt) + op(h

a
1h

b+1
2 ),

for a odd and b even,

(6)
1

n

n∑
i=1

Aa,b,i(x, φt, d) = ha+1
1 hb2µa+1(K1)µb(K2)

∂

∂r
Gq(x, φt) + op(h

a+1
1 hb2),
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for a odd and b odd,

(7)
1

n

n∑
i=1

Aa,b,i(x, φt, d) = ha+1
1 hb+1

2 µa+1(K2)µb+1(K2)
∂2

∂r∂s
Gq(x, φt) + op(h

a+1
1 hb+1

2 ),

and for all a and b,

(8)
1

n

n∑
i=1

A2
a,b,i(x, φt, d) = h2a−1

1 h2b−1
2 R2a(K1)R2b(K2)Gq(x, φt) + op(h

2a−1
1 h2b−1

2 ), q = 1, 2.

Remark 1. Notice that although the smoothing parameter λ appears in Aa,b,i(x, φt, d),

it is not involved in the leading terms and is absorbed in the remnant terms. This can be

found clearly in the proof below.

Proof. By definition, 1
n

n∑
i=1

Aa,b,i(x, φt, d) is

1

n

n∑
i=1

Aa,b,i(x, φt, d) =
1

n

n∑
i=1

(K1,h1(Xi − x)(Xi − x)a)

×

(
M∑
j=1

K2,h2(φj − φt)(φj − φt)bI{Zi∈Uj}

)
(K3,λ(Di, d))

=
1

n

n∑
i=1

(K1,h1(Xi − x)(Xi − x)a)

(
M∑
j=1

K2,h2(φj − φt)(φj − φt)bI{Zi∈Uj}

)
I{Di=d}

+
1

n

n∑
i=1

λ (K1,h1(Xi − x)(Xi − x)a)

(
M∑
j=1

K2,h2(φj − φt)(φj − φt)bI{Zi∈Uj}

)
I{Di 6=d}

=
1

n

n∑
i=1

(A1,a,b,i(x, φt, d) + λA2,a,b,i(x, φt, d)) .

Since

1

n

n∑
i=1

Aa,b,i(x, φt, d) = E(Aa,b,i(x, φt, d)) +Op(
Var(Aa,b,i(x, φt, d))√

n
),
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when d = d1, the expectation of Aa,b,i(x, φt, d) is

E(Aa,b,i(x, φt, d)) = E (E(A1,a,b,i(x, φt, d) + λA2,a,b,i(x, φt, d)|Xi, Ci))

= E

(
P (Di = d1|Xi, Ci)K1,h1(Xi − x)(Xi − x)a

×
M∑
j=1

K2,h2(φj − φt)(φj − φt)bI{Zi∈Uj}

)

+ λE

(
(1− P (Di = d1|Xi, Ci))K1,h1(Xi − x)(Xi − x)a

×
M∑
j=1

K2,h2(φj − φt)(φj − φt)bI{Zi∈Uj}

)

= E1 + E2.

The first part can be derived as

E1 = E

(
P (Di = d1|Xi, Ci)K1,h1(Xi − x)(Xi − x)a

×
M∑
j=1

K2,h2(φj − φt)(φj − φt)bI{Zi∈Uj}

)

= E

(
E

(
P (Di = d1|Xi, Ci)K1,h1(Xi − x)(Xi − x)a

×
M∑
j=1

K2,h2(φj − φt)(φj − φt)bI{Zi∈Uj}

)
|Xi

)

= E

(
K1,h1(Xi − x)(Xi − x)a

×
M∑
j=1

K2,h2(φj − φt)(φj − φt)bE
(
P (Di = d1|Xi, Ci)I{Zi∈Uj}|Xi

))
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= E

(
K1,h1(Xi − x)(Xi − x)a

×
M∑
j=1

K2,h2(φj − φt)(φj − φt)b
∫
Z∈Uj

p(Xi, Z)fX,Z|X(Xi, Z) dZ

)

= E

(
K1,h1(Xi − x)(Xi − x)a

×
(

1

h2

∫
K2

(
Z − φt
h2

)
(Z − φt)b

× p(Xi, Z)
fX,Z(Xi, Z)

fX(Xi)
dZ +O(

1

M
)

))
.

Let

v =
Z − φt
h2

,

then Z can be written as

Z = vh2 + φt.

After changing variable, for a even and b even, E1 is

E1 = E

(
K1,h1(Xi − x)(Xi − x)a

×
(
hb2

∫
vbK2(v)p (Xi, (vh2 + φt))

× fX,Z (Xi, (vh2 + φt))

fX(Xi)
dv +O(

1

M
)

))
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= E

(
K1,h1(Xi − x)(Xi − x)ahb2

∫
vbK2(v) dv (p(Xi, φt)

×fX,Z(Xi, φt)

fX(Xi)
+ o(1)

)
+O(

1

M
)

)

= hb2µb(K2)E

(
K1,h1(Xi − x)(Xi − x)ap(Xi, φt)

fX,Z(Xi, φt)

fX(Xi)
+ o(1)

)

= hb2µb(K2)

(
1

h1

∫
K1(

X − x
h1

)(Xi − x)ap(X,φt)

× fX,Z(X,φt)

fX(X)
fX(X) dX + o(1)

)

= hb2µb(K2)

(
1

h1

∫
K1(

X − x
h1

)(X − x)ap(X,φt)fX,Z(X,φt) dX + o(1)

)
.

Notice that O( 1
M

) disappears because it is also o(1) by A14.

Let

u =
X − x
h1

,

then X can be written as

X = uh1 + x.

After changing variable, E1 is

E1 = hb2µb(K2)

(∫
ha1u

aK1(u)p(uh1 + x, φt)fX,Z(uh1 + x, φt) du+ o(1)

)

= hb2µb(K2)

(∫
uaK(u) du (p(x, φt)fX,Z(x, φt) + o(1)) + o(1)

)
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= ha1h
b
2µa(K1)µb(K2)p(x, φt)fX,Z(x, φt) + o(ha1h

b
2)

= ha1h
b
2µa(K1)µb(K2)G1(x, φt) + o(ha1h

b
2).

Similarly, the second part is

E2 = ha1h
b
2λµa(K1)µb(K2) (1− p(x, φt)) fX,Z(x, φt) + o(ha1h

b
2λ)

= o(ha1h
b
2).

Therefore, when a and b are even,

E(Aa,b,i(x, φt, d)) = ha1h
b
2µa(K1)µb(K2)G1(x, φt) + o(ha1h

b
2)

holds.

For a even and b odd, after changing variable, the first part is

E1 = E

(
K1,h1(Xi − x)(Xi − x)a

(
hb2

∫
vbK2(v)p (Xi, vh2 + φt)

× fX,Z (Xi, vh2 + φt)

fX(Xi)
dv +O(

1

M
)

))
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= E

(
K1,h1(Xi − x)(Xi − x)ahb2

∫
vbK(v)

((
p(Xi, φt)

fX,Z(Xi, φt)

fX(Xi)

+vh2

(
∂p

∂v
(Xi, φt)

fX,Z(Xi, φt)

fX(Xi)

+p(Xi, φt)

∂fX,Z

∂v
(Xi, φt)

fX(Xi)

)
+ o(1)

)
dv +O(

1

M
)

))

= hb+1
2 µb+1(K2)E

(
Kh1(Xi − x)(Xi − x)a

(
∂p

∂v
(Xi, φt)

fX,Z(Xi, φt)

fX(Xi)

+p(Xi, φt)

∂fX,Z

∂v
(Xi, φt)

fX(Xi)

)
+ o(1)

)

= hb+1
2 µb+1(K2)

(
1

h1

∫
K(

X − x
h1

)(X − x)a
(
∂p

∂v
(X,φt)

fX,Z(X,φt)

fX(X)

+p(X,φt)

∂fX,Z

∂v
(X,φt)

fX(X)

)
fX(X) dX + o(1)

)
.

After changing variable and following the same technique used before, E1 is

E1 = ha1h
b+1
2 µaK1µb+1(K2)

((
∂p

∂v
(x, φt)fX,Z(x, φt)

+p(x, φt)
∂fX,Z
∂v

(x, φt)

))
+ o(ha1h

b+1
2 )

= ha1h
b+1
2 µa(K2)µb+1(K2)

∂

∂s
G1(x, φt) + o(ha1h

b+1
2 ).

Similarly, E2 = o(ha1h
b+1
2 ), so when a is even and b is odd,

E1 = ha1h
b+1
2 µa(K2)µb+1(K2)

∂

∂s
G1(x, φt) + o(ha1h

b+1
2 )

holds.
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For a odd and b even, the first part is

E1 = hb2µb(K2)

(
1

h1

∫
K(

X − x
h1

)(X − x)ap(X,φt)fX,Z(X,φt) dX + o(1)

)
.

Let

u =
X − x
h1

,

then X can be written as

X = uh1 + x.

After changing variable, E1 is

E1 = hb2µb(K2)

(
ua
∫
K(u)uap(x, φt)fX,Z(x, φt) + uh1

(
∂p

∂u
(x, φt)fX,Z(x, φt)

+p(x, φt)
∂fX,Z
∂u

(x, φt) + o(1)

)
du+ o(1)

)

= ha+1
1 µa+1(K1)hb2µb(K2)

(
∂p

∂u
(x, φt)fX,Z(x, φt) + p(x, φt)

∂fX,Z
∂u

(x, φt)

)
+ o(ha+1

1 hb2)

= ha+1
1 hb2µa+1(K1)µb(K2)

∂

∂r
G1(x, φt) + o(ha+1

1 hb2).

Similarly, E2 = o(ha+1
1 hb2), so when a is odd and b is even,

E(Aa,b,i(x, φt, d)) = ha+1
1 hb2µa+1(K1)µb(K2)

∂

∂r
G1(x, φt) + o(ha+1

1 hb2)

holds.
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For a odd and b odd, the first part is

E1 = hb+1
2 µb+1(K2)

(
1

h1

∫
K(

X − x
h1

)(X − x)a
(
∂p

∂v
(X,φt)

fX,Z(X,φt)

fX(X)

+p(X,φt)

∂fX,Z

∂v
(X,φt)

fX(X)
+ o(1)

)
fX(X) dX + o(1)

)
.

Let

u =
X − x
h1

,

then X can be written as

X = uh1 + x.

After changing variable, E1 is

E1 = ha1h
b+1
2 µb+1(K2)

(∫
uaK(u)

(
∂p

∂v
(x, φt)fX,Z(x, φt) + p(x, φt)

∂fX,Z
∂v

(x, φt)

+uh1

(
∂2p

∂u∂v
(x, φt)fX,Z(x, φt) +

∂p

∂v
(x, φt)

∂fX,Z
∂u

(x, φt)

+
∂p

∂u
(x, φt)

∂fX,Z
∂v

(x, φt) + p(x, φt)
∂2fX,Z
∂u∂v

(x, φt)

)
+ o(1)

)
du+ o(1)

)

= ha+1
1 hb+1

2 µa+1(K1)µb+1(K2)
∂2

∂r∂s
G1(x, φt) + o(ha+1

1 hb+1
2 ).

Similarly, E2 = o(ha+1
1 hb+1

2 ), so when a and b are odd,

E(Aa,b,i(x, φt, d)) = ha+1
1 hb+1

2 µa+1(K1)µb+1(K2)
∂2

∂r∂s
G1(x, φt) + o(ha+1

1 hb+1
2 )

holds.
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The expectation of A2
a,b,i(x, φt, d) is

E(A2
a,b,i(x, φt, d)) = E

(
E(A2

a,b,i(x, φt, d)|Xi, Ci)
)

= E
(
P (Di = d1|Xi, Ci)K

2
1,h1

(Xi − x)(Xi − x)2a

×
M∑
j=1

K2
2,h2

(φj − φt)(φj − φt)2bI{Zi∈Uj}

)

+ λE
(
(1− P (Di = d1|Xi, Ci))K

2
1,h1

(Xi − x)(Xi − x)2a

×
M∑
j=1

K2
2,h2

(φj − φt)(φj − φt)2bI{Zi∈Uj}

)

= E3 + E4.

For the first part, E3 can be derived as

E3 = E

(
P (Di = d1|Xi, Ci)K

2
1,h1

(Xi − x)(Xi − x)2a

×
M∑
j=1

K2
2,h2

(φj − φt)(φj − φt)2bI{Zi∈Uj}

)

= E

(
E

(
P (Di = d1|Xi, Ci)K

2
1,h1

(Xi − x)(Xi − x)2a

×
M∑
j=1

K2
2,h2

(φj − φt)(φj − φt)2bI{Zi∈Uj}

)
|Xi

)

= E

(
K2

1,h1
(Xi − x)(Xi − x)2a

×
M∑
j=1

K2
2,h2

(φj − φt)(φj − φt)2bE

(
P (Di = d1|Xi, Ci)I{Zi∈Uj}|Xi

))
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= E

(
(K2

1,h1
(Xi − x)(Xi − x)2a

×
M∑
j=1

K2
2,h2

(φj − φt)(φj − φt)2b

∫
Z∈Uj

p(Xi, Z)fX,Z|X(Xi, Z) dZ

)

= E

(
(K2

1,h1
(Xi − x)(Xi − x)2a

×
(

1

h2
2

∫
K2

2

(
Z − φt
h2

)
(Z − φt)2b

× p(Xi, Z)
fX,Z(Xi, Z)

fX(Xi)
dZ +O(

1

M
)

))
.

Let

v =
Z − φt
h2

,

then Z can be written as

Z = vh2 + φt.

After changing variable, E3 is

E3 = E

(
K2

1,h1
(Xi − x)(Xi − x)2abigg(h2b−1

2

∫
v2bK2

2(v)p (Xi, vh2 + φt)

× fX,Z (Xi, vh2 + φt)

fX(Xi)
dv +O(

1

M
)

))

= E

(
K2

1,h1
(Xi − x)(Xi − x)2ah2b−1

2

∫
v2bK2

2(v) dv(p(Xi, φt)

× fX,Z(Xi, φt)

fX(Xi)
+ o(1)) +O(

1

M
)

)
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= h2b−1
2 R2b(K2)E

(
K1,h1(Xi − x)(Xi − x)2ap(Xi, φt)

fX,Z(Xi, φt)

fX(Xi)
+ o(1)

)

= h2b−1
2 R2b(K2)

(
1

h2
1

∫
K2

1(
X − x
h1

)(Xi − x)2ap(X,φt)

× fX,Z(X,φt)

fX(X)
fX(X) dX + o(1)

)

= h2b−1
2 R2b(K2)

(
1

h2
1

∫
K2

1(
X − x
h1

)(X − x)2ap(X,φt)fX,Z(X,φt) dX + o(1)

)
.

Let

u =
X − x
h1

,

then X can be written as

X = uh1 + x.

After changing variable, E3 is

E3 = h2b−1
2 R2b(K2)

(∫
h2a−1

1 u2aK2
1(u)p(uh1 + x, φt)fX,Z(uh1 + x, φt) du+ o(1)

)

= h2a−1
1 h2b−1

2 R2b(K2)

(∫
u2aK2

1(u) du (p(x, φt)fX,Z(x, φt) + o(1)) + o(1)

)

= h2a−1
1 h2b−1

2 R2a(K1)R2b(K2)p(x, φt)fX,Z(x, φt) + o(h2a−1
1 h2b−1

2 )

= h2a−1
1 h2b−1

2 R2a(K1)R2b(K2)G1(x, φt) + o(h2a−1
1 h2b−1

2 ).

Similarly, the second part is o(h2a−1
1 h2b−1

2 ). So,

E(A2
a,b,i(x, φt, d)) = h2a−1

1 h2b−1
2 R2a(K1)R2b(K2)G1(x, φt) + o(h2a−1

1 h2b−1
2 )
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holds. In the same way, it is straightforward to show that

E(A4
a,b,i(x, φt, d)) = h4a−1

1 h4b−1
2 R4a(K1)R4b(K2)G1(x, φt) + o(h4a−1

1 h4b−1
2 ).

Combining the results above, when d = d1, the variance of Aa,b,i is

Var(Aa,b,i(x, φt, d)) = E
(
A2
a,b,i(x, φt, d)

)
+ (E(Aa,b,i(x, φt, d)))2

= h2a−1
1 h2b−1

2 R2a(K1)R2b(K2)G1(x, φt) + o(h2a−1
1 h2b−1

2 ).

The variance of A2
a,b,i(x, φt, d) is

Var(A2
a,b,i(x, φt, d)) = E

(
A4
a,b,i(x, φt, d)

)
+
(
E(A2

a,b,i(x, φt, d))
)2

= h4a−1
1 h4b−1

2 R4a(K1)R4b(K2)G1(x, φt) + o(h4a−1
1 h4b−1

2 ).

By A14, Op(

√
Var(Aa,b,i(x,φt,d))

n
) = op(h

a+1
1 hb+1

2 ) and Op(

√
Var(A2

a,b,i(x,φt,d))

n
)

= op(h
2a+1
1 h2b+1

2 ) follows. Combining the results of E(Aa,b,i(x, φt, d)), E(A2
a,b,i(x, φt, d)),

Var(Aa,b,i(x, φt, d)), and Var(A2
a,b,i(x, φt, d)), (4), (6), (5), (7) and (8) follows when q = 1.

When d = d2, Aa,b,i(x, φt, d) is

Aa,b,i(x, φt, d) = A2,a,b,i(x, φt, d) + λA1,a,b,i(x, φt, d).

The expectation of Aa,b,i(x, φt, d) is

E(Aa,b,i(x, φt, d)) = E (E(Aa,b,i(x, φt, d)|Xi, Ci))
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= E ((1− P (Di = d1|Xi, Ci))K1,h1(Xi − x)(Xi − x)a

×
M∑
j=1

K2,h2(φj − φt)(φj − φt)bI{Zi∈Uj}

)

+ λE (P (Di = d1|Xi, Ci)K1,h1(Xi − x)(Xi − x)a

×
M∑
j=1

K2,h2(φj − φt)(φj − φt)bI{Zi∈Uj}

)
.

Applying exactly the same technique above, (4), (6), (5), (7) and (8) follows immediately

when q = 2. �

Theorem 4.3.2. Let X = (X1, . . . , Xn)T , C = (C1, . . . , Cn)T and D = (D1, . . . , Dn)T

and assume that A11-A14 hold. The conditional bias of our NW estimator is

E (m̂(ψ;h1, h2, λ)|X,C,D)−mψ

= G−1
q (x, φt)

(
h2

1µ2(K1)

(
∂

∂r
Gq(x, φt)

∂mq

∂X
(x, φt) +

1

2

∂2

∂r2
Gq(x, φt)

∂2mq

∂X2
(x, φt)

)
+h2

2µ2(K2)

(
∂

∂s
Gq(x, φt)

∂mq

∂φ
(x, φt) +

1

2

∂2

∂s2
Gq(x, φt)

∂2mq

∂φ2
(x, φt)

)
+h1h2µ2(K1)µ2(K2)

(
∂2

∂r∂s
Gq(x, φt)

∂2mq

∂X∂φ
(x, φt)

))
+ op(h

2
1) + op(h

2
2) + op(h1h2), q = 1, 2.
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The conditional variance is

Var (m̂(ψ;h1, h2, λ)|X,C,D) =
1

nh1h2

σ2R0(K1)R0(K2)

Gq(x, φt)
(1 + op(1)), q = 1, 2,

where

G1(r, s) = p(r, s)fX,Z(r, s),

and

G2(r, s) = (1− p(r, s)) fX,Z(r, s)

are the same as these defined in Lemma 4.3.1.

Remark 3. Notice that although the smoothing parameter λ appears in m̂(ψ;h1, h2, λ),

it is again not involved in the leading terms and absorbed in the remnant terms. This

can be found clearly in the proof below. Not only does λ disappear, the asymptotic bias

actually gets “split” into its two components, so that the asymptotic bias for estimating m1

does not depend at all on m2 and vice versa. This happens because λ is forced to go to

zero. Something similar happens in the asymptotic variance, but it’s more subtle: when we

estimate m1, the sample size appearing the denominator is nG1, which is basically np1, the

number of observations expected to belong to m1.

Remark 4. The asymptotic bias and variance of our NW estimator has the same rate

as when bivariate smoothing using local linear estimator with both continuous covariates

(Ruppert and Wand 1994, p.1351). Combining the results of the asymptotic conditional bias

and asymptotic conditional variance can give the the asymptotic mean conditional squared

error (MSE) for estimation at ψ. If we assume h1 and h2 converge in the same rate, it is
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straightforward to show that the optimal rate of h1 and h2 to minimize MSE is in the order

of n−1/6.

Remark 5. The ordinal covariate has a similar effect on the asymptotic bias and variance

as when we do local polynomial regression with an ordinal covariate in Chapter 3.

Proof. First, we consider the case that ψ = (x, t, d1)T . The conditional expectation of

m̂(ψ;h1, h2, λ) given X, C and D is

E (m̂(ψ;h1, h2, λ)|X,C,D) =

E

(
1
n

n∑
i=1

Wψ,i
Yi|X,C,D

)
1
n

n∑
i=1

Wψ,i

.

By Lemma 4.3.1, the denominator of the conditional expectation is

1

n

n∑
i=1

Wψ,i
=

1

n

n∑
i=1

(K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)I{Zi∈Uj}

)
(K3,λ(Di, d1))

= G1(x, φt) + op(1).

Since the numerator of m̂(ψ;h1, h2, λ) is

1

n

n∑
i=1

Wψ,i
Yi =

1

n

n∑
i=1

(K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)I{Zi∈Uj}

)
(K3,λ(Di, d))Yi

=
1

n

n∑
i=1

(K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)I{Zi∈Uj}

)
YiI{Di=d1}

+
1

n

n∑
i=1

λ (K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)I{Zi∈Uj}

)
YiI{Di=d2}

=
1

n

n∑
i=1

(A1,0,0,iYi + λA2,0,0,iYi) ,
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the conditional expectation of the numerator given X, C, D is

E

(
1

n

n∑
i=1

Wψ,i
Yi|X,C,D

)
= E

(
1

n

∑
i=1

(K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)I{Zi∈Uj}

)

× (K3,λ(Di, d))Yi|X,C,D

)

=
1

n

n∑
i=1

(K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)m1(Xi, z1,j)I{Zi∈Uj}

)
I{Di=d1}

+ λ
1

n

n∑
i=1

(K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)m2(Xi, z2,j)I{Zi∈Uj}

)
I{Di=d2}

=
1

n

n∑
i=1

(K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)m1(Xi, φj)I{Zi∈Uj}

)
I{Di=d1} +O(

1

M
)

+ λ
1

n

n∑
i=1

(K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)m2(Xi, φj)I{Zi∈Uj}

)
I{Di=d2} +O(

1

M
)

= B1 +B2,

by A11 and A14. Notice that we shorten A1,a,b,i(x, φt, d) and A2,a,b,i(x, φt, d) as A1,a,b,i and

A2,a,b,i here for simplicity. They are shortened in the same way in the following proof.

The first part is

B1 =
1

n

n∑
i=1

(K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)

×
(
m1(x, φt) +

∂m1

∂X
(x, φt)(Xi − x) +

∂m1

∂φ
(x, φt)(φj − φt)

+
1

2

∂2m1

∂X2
(x, φt)(Xi − x)2 +

1

2

∂2m1

∂φ2
(x, φt)(φj − φt)2

+
∂2m1

∂φ2
(x, φt)(x, φt)(Xi − x)(φj − φt)

)
I{Zi∈Uj}

)
I{Di=d1} +O(

1

M
)
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=
1

n

n∑
i=1

(
A1,0,0,im1(x, φt) + A1,1,0,i

∂m1

∂X
(x, φt) + A1,0,1,i

∂m1

∂φ
(x, φt)

+
1

2
A1,2,0,i

∂2m1

∂X2
(x, φt) +

1

2
A1,0,2,i

∂2m1

∂φ2
(x, φt) + A1,1,1,i

∂2m1

∂φ2
(x, φt)

)
+O(

1

M
).

By Lemma 4.3.1, it is

B1 = G1(x, φt)m1(x, φt) + h2
1µ2(K1)

(
∂

∂r
G1(x, φt)

∂m1

∂X
(x, φt) +

1

2

∂2

∂r2
G1(x, φt)

∂2m1

∂X2
(x, φt)

)
+ h2

2µ2(K2)

(
∂

∂s
G1(x, φt)

∂m1

∂X
(x, φt) +

1

2

∂2

∂s2
G1(x, φt)

∂2m1

∂φ2
(x, φt)

)
+ h1h2µ2(K1)µ2(K2)

(
∂2

∂r∂s
G1(x, φt) +

∂2m1

∂X∂φ
(x, φt)

)
+ o(h2

1) + o(h2
2) + o(h1h2).

Notice that O( 1
M

) is absorbed in o(h2
1) + o(h2

2) + o(h1h2) by A14.

Similarly, B2 = o(h2
1) + o(h2

2) + o(h1h2) follows immediately.

Then, since the inverse of the denominator can be approximated by

(
1

n

n∑
i=1

Wψ,i

)−1

= G−1
1 (x, φt) + op(1),

the conditional expectation of m̂(ψ;h1, h2, λ) given X, C, and D is

E (m̂(ψ;h1, h2, λ)|X,C,D) = m1(x, φt) +G−1
1 (x, φt)

(
h2

1µ2(K1)

(
∂

∂r
G1(x, φt)

∂m1

∂X
(x, φt)

+
1

2

∂2

∂r2
G1(x, φt)

∂2m1

∂X2
(x, φt)

)
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+h2
2µ2(K2)

(
∂

∂s
G1(x, φt)

∂m1

∂φ
(x, φt) +

1

2

∂2

∂s2
G1(x, φt)

∂2m1

∂φ2
(x, φt)

)
+h1h2µ2(K1)µ2(K2)

(
∂2

∂r∂s
G1(x, φt)

∂2m1

∂X∂φ
(x, φt)

))
+ op(h

2
1) + op(h

2
2) + op(h1h2).

Note that m1(x, φt)−m1(x, z1,t) is O( 1
M

) by A11. It is again absorbed in op(h
2
1) + op(h

2
2) +

op(h1h2) by A14. Then the conditional bias of our NW estimator is

E (m̂(ψ;h1, h2, λ)|X,C,D)−m1(x, z1,t)

= G−1
1 (x, φt)

(
h2

1µ2(K1)

(
∂

∂r
G1(x, φt)

∂m1

∂X
(x, φt) +

1

2

∂2

∂r2
G1(x, φt)

∂2m1

∂X2
(x, φt)

)
+h2

2µ2(K2)

(
∂

∂s
G1(x, φt)

∂m1

∂φ
(x, φt) +

1

2

∂2

∂s2
G1(x, φt)

∂2m1

∂φ2
(x, φt)

)
+h1h2µ2(K1)µ2(K2)

(
∂2

∂r∂s
G1(x, φt)

∂2m1

∂X∂φ
(x, φt)

))
+ op(h

2
1) + op(h

2
2) + op(h1h2).

When ψ = (x, t, d2)T , the conditional expectation of m̂(ψ;h1, h2, λ) given X, C and D is

E (m̂(ψ;h1, h2, λ)|X,C,D) =

E

(
1
n

n∑
i=1

Wψ,i
Yi|X,C,D

)
1
n

n∑
i=1

Wψ,i

.
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By Lemma 4.3.1, the denominator of the conditional expectation is

1

n

n∑
i=1

Wψ,i
=

1

n

n∑
i=1

(K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)I{Zi∈Uj}

)
(K3,λ(Di, d2))

= G2(x, φt) + op(1).

Since the numerator of m̂(ψ;h1, h2, λ) is

1

n

n∑
i=1

Wψ,i
Yi =

1

n

n∑
i=1

(K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)I{Zi∈Uj}

)
(K3,λ(Di, d))Yi

=
1

n

n∑
i=1

(K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)I{Zi∈Uj}

)
YiI{Di=d2}

+
1

n

n∑
i=1

λ (K1,h1(Xi − x))

(
M∑
j=1

K2,h2(φj − φt)I{Zi∈Uj}

)
YiI{Di=d1}

=
1

n

n∑
i=1

(A2,0,0,iYi + λA1,0,0,iYi) .

Following exactly the same steps derived above, the conditional bias of our NW estimator is

E (m̂(ψ;h1, h2, λ)|X,C,D)−m2(x, z2,t)

= G−1
2 (x, φt)

(
h2

1µ2(K1)

(
∂

∂r
G2(x, φt)

∂m2

∂X
(x, φt) +

1

2

∂2

∂r2
G2(x, φt)

∂2m2

∂X2
(x, φt)

)
+h2

2µ2(K2)

(
∂

∂s
G2(x, φt)

∂m2

∂φ
(x, φt) +

1

2

∂2

∂s2
G2(x, φt)

∂2m2

∂φ2
(x, φt)

)
+h1h2µ2(K1)µ2(K2)

(
∂2

∂r∂s
G2(x, φt)

∂2m2

∂X∂φ
(x, φt)

))
+ op(h

2
1) + op(h

2
2) + op(h1h2).
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When d = d1, the conditional variance of m̂(ψ;h1, h2, λ) given X, C and D is

Var (m̂(ψ;h1, h2, λ)|X,C,D) =

Var

(
1
n

n∑
i=1

Wψ,i
Yi|X,C,D

)
(

1
n

n∑
i=1

Wψ,i

)2

=

1
n2

n∑
i=1

(
W 2

ψ,i
Var(YiI{Di=d1} + YiI{Di=d2}|X,C,D)

)
(

1
n

n∑
i=1

Wψ,i

)2

=

σ2

n
1
n

n∑
i=1

(
W 2

ψ,i

)
(

1
n

n∑
i=1

Wψ,i

)2

=
1

nh1h2

σ2R0(K1)R0(K2)

G1(x, φt)
(1 + op(1)).

Similarly, when d = d2, the conditional variance is

Var (m̂(ψ;h1, h2, λ)|X,C,D) =
1

nh1h2

σ2R0(K1)R0(K2)

G2(x, φt)
(1 + op(1)).

�

4.4. Simulation

In this section, we do three patterns of simulations based on a model with a continuous

observed covariate X, a continuous latent covariate Z, and a nominal observed convariate
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D:

Yi =


m1(Xi, Zi, Di) + εi = X2

i + sin(
π

2
Zi) + 1 + εi if Di = 0

m2(Xi, Zi, Di) + εi = (1 + α)
(

1.1X2
i + 1.2 sin(

π

2
Zi) + 1.1

)
+ εi if Di = 1,

i = 1, . . . , 100, where Xi are generated from U(0, 1), Zi are generated from U(0, 1), and

the number of observations that fall in different categories is set to be the same. Di are

generated from a Bernoulli distribution, where P (Di = 0) = 1
2

(
X2
i + (Ci−0.5

10
)2
)
, P (Di =

1) = 1− P (Di = 0), Ci =
10∑
j=1

jI{Zi∈Uj}, εi are generated from N(0, 0.1), and α takes values

in 0, 0.5, 1, which makes three patterns of models. While α increases, the difference between

m1 and m2 becomes bigger. Each pattern is simulated 10000 times.

We apply our NW estimator with product kernel for different bandwidth values choices,

where h1 takes two values 0.2, 0.7, h2 takes two values 0.2, 0.7, and λ takes two values

0.1, 0.9. Lower value of the bandwidth means smoothing more locally and higher value

means smoothing more globally in each dimension. So there are 8 different combinations of

bandwidths.

We estimate m(X,Z,D) at different values of (x, t, d), where x takes two values 0.3, 0.7,

t takes three values 3, 5, 8, and d takes two values 0, 1. Therefore there are 12 positions

to estimate. At a fixed (h1, h2, λ) and (x, t, d), using the estimator m̂(x, φt, d;h1, h2, λ),

where φt = t−0.5
10

, t = 1, 2, . . . , 10, we approximate the bias B(m̂(x, φt, d;h1, h2, λ)) =

E(m̂(x, φt, d;h1, h2, λ)−mx,t,d), the mean squared errors (MSE)MSE(m̂(x, φt, d;h1, h2, λ)) =

E(m̂(x, φt, d;h1, h2, λ)−mx,t,d)
2, and the mean sum of squared errors (MSSE) MSSEh1,h2,λ =

E
∑

x,t,d(m̂(x, φt, d;h1, h2, λ) −mx,t,d)
2 by averaging the simulation results. The simulation

standard deviation of each estimation is given, as well.
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Table 4.1-4.6 provide the simulation results when α = 0, i.e., m1 and m2 are very close

to each other. Table 4.1-4.2 shows that when λ changes from 0.1 to 0.9, amongst the 48

estimations, 23 biases are reduced. Table 4.5-4.6 shows that when λ changes from 0.1 to

0.9, amongst the 48 estimations, MSE of exactly the same 23 estimations are reduced. The

MSSE is also reduced when (h1, h2) = (0.7, 0.7). Table 4.3-4.4 shows that when λ changes

from 0.1 to 0.9, amongst the 48 estimations, 29 simulation standard errors are reduced and

12 of them are overlapped with the estimations in which bias or MSE are reduced. All these

facts indicate that when m1 and m2 are close, increasing λ, i.e. smoothing more globally in

dimension D may not only reduce bias and MSE but also the variance.

Table 4.7-4.12 provide the simulation results when α = 0.5, i.e., m1 and m2 are further

from each other. Table 4.7-4.8 shows that when λ changes from 0.1 to 0.9, amongst the

48 estimations, 12 biases are reduced. Table 4.11-4.12 shows that when λ changes from 0.1

to 0.9, amongst the 48 estimations, MSE of exactly the same 12 estimations are reduced.

But the MSSE are all increased. Table 4.9-4.10 shows that when λ changes from 0.1 to

0.9, amongst the 48 estimations, 13 simulation standard errors are reduced but only one of

them are overlapped with the estimations in which bias or MSE are reduced. All these facts

indicate that when m1 and m2 are not close, increasing λ could sometimes reduce the bias

and MSE but will at the same increase the variance.

Table 4.13-4.16 provide the simulation results when α = 1, i.e., m1 and m2 are even

further from each other. Table 4.13-4.14 shows that when λ changes from 0.1 to 0.9, amongst

the 48 estimations, 12 biases are reduced. Table 4.17-4.18 shows that when λ changes from

0.1 to 0.9, amongst the 48 estimations, 11 MSE are reduced, which are contained in the
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12 estimations in which biases are reduced. But the MSSE are all increased. Table 4.15-

4.16 shows that when λ changes from 0.1 to 0.9, amongst the 48 estimations, 11 simulation

standard errors are reduced but none of them are overlapped with the estimations in which

bias or MSE are reduced. All these facts indicate that when m1 and m2 are far from each

other, increasing λ could sometimes reduce the bias and MSE but will at the same increase

the variance.

In all of the three patterns, increasing h1 or h2 can reduce the variance of estimation in

most of the times. Increasing h1 or h2 can also reduce the MSSE in all of the patterns except

when α = 0. In that pattern increasing h2 will slightly increase MSSE. The bandwidth choice

of (h1, h2, λ) = (0.7, 0.7, 0.1) has the smallest variance in each point estimation. And all of

them have the smallest MSSE except when α = 0. In that pattern the choice of (0.7, 0.2, 0.1)

has the smallest MSSE.
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Table 16. Simulation bias B(m̂(x, φt, d;h1, h2, λ)) = E(m̂(x, φt, d;h1, h2, λ)−
mx,t,d) when α = 0 and λ = 0.1.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.682 0.812 0.0762 0.197
(0.3,5,0) 0.69 0.632 0.0748 0.0216
(0.3,8,0) 0.718 0.519 0.0817 -0.0963
(0.7,3,0) -0.468 -0.343 -0.0862 0.0323
(0.7,5,0) -0.468 -0.519 -0.0874 -0.146
(0.7,8,0) -0.459 -0.639 -0.0833 -0.264
(0.3,3,1) 0.743 0.999 0.104 0.371
(0.3,5,1) 0.745 0.813 0.0952 0.189
(0.3,8,1) 0.757 0.639 0.0973 -0.00396
(0.7,3,1) -0.605 -0.289 8.55e-05 0.238
(0.7,5,1) -0.601 -0.46 -0.0128 0.0497
(0.7,8,1) -0.565 -0.658 -0.0249 -0.135

Table 17. Simulation bias B(m̂(x, φt, d;h1, h2, λ)) = E(m̂(x, φt, d;h1, h2, λ)−
mx,t,d) when α = 0 and λ = 0.9.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.797 0.987 0.115 0.278
(0.3,5,0) 0.839 0.847 0.135 0.129
(0.3,8,0) 0.928 0.755 0.196 0.0264
(0.7,3,0) -0.455 -0.294 0.00216 0.172
(0.7,5,0) -0.439 -0.447 0.0314 0.0275
(0.7,8,0) -0.386 -0.555 0.103 -0.0691
(0.3,3,1) 0.627 0.825 -0.0619 0.109
(0.3,5,1) 0.618 0.634 -0.0911 -0.0887
(0.3,8,1) 0.652 0.486 -0.0793 -0.245
(0.7,3,1) -0.678 -0.508 -0.207 -0.0279
(0.7,5,1) -0.712 -0.711 -0.227 -0.222
(0.7,8,1) -0.708 -0.873 -0.206 -0.373
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Table 18. Simulation Standard Deviation for each estimation when α = 0
and λ = 0.1.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.0981 0.0832 0.0415 0.033
(0.3,5,0) 0.0967 0.0815 0.0423 0.031
(0.3,8,0) 0.0995 0.0753 0.0463 0.0292
(0.7,3,0) 0.0595 0.0649 0.0627 0.0431
(0.7,5,0) 0.0564 0.0616 0.0637 0.0413
(0.7,8,0) 0.0557 0.051 0.0691 0.0423
(0.3,3,1) 0.142 0.105 0.0839 0.0567
(0.3,5,1) 0.13 0.0952 0.0762 0.0491
(0.3,8,1) 0.103 0.0826 0.0601 0.0443
(0.7,3,1) 0.0873 0.103 0.11 0.0689
(0.7,5,1) 0.0954 0.0909 0.0996 0.0613
(0.7,8,1) 0.0735 0.077 0.0825 0.0585

Table 19. Simulation Standard Deviation for each estimation when α = 0
and λ = 0.9.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.104 0.0815 0.0438 0.0321
(0.3,5,0) 0.108 0.081 0.0459 0.03
(0.3,8,0) 0.109 0.0812 0.0517 0.0307
(0.7,3,0) 0.0604 0.0665 0.0658 0.0426
(0.7,5,0) 0.0613 0.0635 0.0684 0.0412
(0.7,8,0) 0.0684 0.056 0.074 0.0455
(0.3,3,1) 0.107 0.0834 0.0453 0.033
(0.3,5,1) 0.111 0.0825 0.0477 0.0311
(0.3,8,1) 0.109 0.082 0.0527 0.0321
(0.7,3,1) 0.0611 0.068 0.0685 0.0442
(0.7,5,1) 0.0633 0.0654 0.0711 0.0428
(0.7,8,1) 0.0703 0.0586 0.0751 0.0472
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Table 20. Simulation squared root of mean squared errors
MSE(m̂(x, φt, d;h1, h2, λ)) = E(m̂(x, φt, d;h1, h2, λ) − mx,t,d)

2 and
squared root of mean sum of squared errors MSSEh1,h2,λ =
E
∑

x,t,d(m̂(x, φt, d;h1, h2, λ)−mx,t,d)
2 when α = 0 and λ = 0.1.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.689 0.816 0.0867 0.2
(0.3,5,0) 0.696 0.637 0.0859 0.0378
(0.3,8,0) 0.725 0.524 0.0939 0.101
(0.7,3,0) 0.471 0.349 0.107 0.0539
(0.7,5,0) 0.471 0.523 0.108 0.152
(0.7,8,0) 0.462 0.641 0.108 0.268
(0.3,3,1) 0.756 1 0.134 0.375
(0.3,5,1) 0.756 0.818 0.122 0.195
(0.3,8,1) 0.764 0.645 0.114 0.0444
(0.7,3,1) 0.612 0.307 0.11 0.247
(0.7,5,1) 0.608 0.469 0.1 0.0789
(0.7,8,1) 0.569 0.663 0.0862 0.147√
MSSEh 2.22 2.24 0.366 0.647

Table 21. Simulation squared root of mean squared errors
MSE(m̂(x, φt, d;h1, h2, λ)) = E(m̂(x, φt, d;h1, h2, λ) − mx,t,d)

2 and
squared root of mean sum of squared errors MSSEh1,h2,λ =
E
∑

x,t,d(m̂(x, φt, d;h1, h2, λ)−mx,t,d)
2 when α = 0 and λ = 0.9.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.804 0.991 0.123 0.28
(0.3,5,0) 0.846 0.851 0.143 0.132
(0.3,8,0) 0.934 0.759 0.202 0.0405
(0.7,3,0) 0.459 0.301 0.0658 0.178
(0.7,5,0) 0.443 0.452 0.0753 0.0495
(0.7,8,0) 0.392 0.558 0.127 0.0827
(0.3,3,1) 0.636 0.829 0.0767 0.114
(0.3,5,1) 0.628 0.639 0.103 0.094
(0.3,8,1) 0.661 0.493 0.0952 0.247
(0.7,3,1) 0.68 0.513 0.218 0.0523
(0.7,5,1) 0.715 0.714 0.238 0.226
(0.7,8,1) 0.711 0.875 0.219 0.376√
MSSEh 2.35 2.4 0.529 0.646
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Table 22. Simulation bias B(m̂(x, φt, d;h1, h2, λ)) = E(m̂(x, φt, d;h1, h2, λ)−
mx,t,d) when α = 0.5 and λ = 0.1.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.792 0.944 0.0904 0.223
(0.3,5,0) 0.852 0.796 0.102 0.0576
(0.3,8,0) 1.08 0.743 0.156 -0.0438
(0.7,3,0) -0.463 -0.329 -0.0476 0.0881
(0.7,5,0) -0.452 -0.497 -0.0264 -0.0736
(0.7,8,0) -0.401 -0.604 0.0542 -0.165
(0.3,3,1) 0.936 1.39 -0.189 0.302
(0.3,5,1) 0.967 1.12 -0.145 0.0693
(0.3,8,1) 1.06 0.881 -0.0125 -0.183
(0.7,3,1) -1.44 -0.799 -0.222 0.187
(0.7,5,1) -1.36 -0.99 -0.21 -0.0708
(0.7,8,1) -1.1 -1.24 -0.146 -0.324

Table 23. Simulation bias B(m̂(x, φt, d;h1, h2, λ)) = E(m̂(x, φt, d;h1, h2, λ)−
mx,t,d) when α = 0.5 and λ = 0.9.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 1.3 1.62 0.226 0.47
(0.3,5,0) 1.5 1.59 0.334 0.385
(0.3,8,0) 1.94 1.64 0.632 0.372
(0.7,3,0) -0.416 -0.187 0.264 0.535
(0.7,5,0) -0.329 -0.285 0.411 0.471
(0.7,8,0) -0.0699 -0.318 0.768 0.486
(0.3,3,1) 0.353 0.7 -0.758 -0.492
(0.3,5,1) 0.349 0.455 -0.845 -0.777
(0.3,8,1) 0.575 0.284 -0.738 -0.999
(0.7,3,1) -1.68 -1.43 -0.952 -0.659
(0.7,5,1) -1.79 -1.73 -1 -0.926
(0.7,8,1) -1.72 -1.97 -0.844 -1.12
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Table 24. Simulation Standard Deviation for each estimation when α = 0.5
and λ = 0.1.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.129 0.104 0.0432 0.0338
(0.3,5,0) 0.168 0.106 0.0462 0.0317
(0.3,8,0) 0.304 0.121 0.0628 0.0315
(0.7,3,0) 0.0606 0.0662 0.0659 0.0454
(0.7,5,0) 0.0627 0.0632 0.0705 0.0436
(0.7,8,0) 0.0983 0.0545 0.0951 0.0475
(0.3,3,1) 0.338 0.172 0.204 0.105
(0.3,5,1) 0.3 0.155 0.177 0.0898
(0.3,8,1) 0.2 0.139 0.112 0.0826
(0.7,3,1) 0.256 0.248 0.218 0.113
(0.7,5,1) 0.333 0.219 0.19 0.101
(0.7,8,1) 0.259 0.2 0.139 0.0976

Table 25. Simulation Standard Deviation for each estimation when α = 0.5
and λ = 0.9.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.318 0.218 0.0849 0.0651
(0.3,5,0) 0.361 0.217 0.113 0.0693
(0.3,8,0) 0.379 0.238 0.158 0.0868
(0.7,3,0) 0.0933 0.107 0.145 0.0978
(0.7,5,0) 0.15 0.12 0.172 0.0992
(0.7,8,0) 0.248 0.145 0.205 0.118
(0.3,3,1) 0.332 0.221 0.0956 0.0724
(0.3,5,1) 0.368 0.217 0.125 0.0766
(0.3,8,1) 0.365 0.233 0.165 0.0939
(0.7,3,1) 0.103 0.119 0.16 0.105
(0.7,5,1) 0.168 0.133 0.185 0.105
(0.7,8,1) 0.263 0.161 0.206 0.123
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Table 26. Simulation squared root of mean squared errors
MSE(m̂(x, φt, d;h1, h2, λ)) = E(m̂(x, φt, d;h1, h2, λ) − mx,t,d)

2 and
squared root of mean sum of squared errors MSSEh1,h2,λ =
E
∑

x,t,d(m̂(x, φt, d;h1, h2, λ)−mx,t,d)
2 when α = 0.5 and λ = 0.1.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.803 0.95 0.1 0.225
(0.3,5,0) 0.869 0.803 0.112 0.0658
(0.3,8,0) 1.12 0.753 0.168 0.0539
(0.7,3,0) 0.466 0.336 0.0813 0.0991
(0.7,5,0) 0.457 0.501 0.0753 0.0855
(0.7,8,0) 0.413 0.607 0.109 0.171
(0.3,3,1) 0.995 1.4 0.278 0.32
(0.3,5,1) 1.01 1.14 0.229 0.113
(0.3,8,1) 1.08 0.892 0.113 0.201
(0.7,3,1) 1.46 0.837 0.311 0.219
(0.7,5,1) 1.4 1.01 0.283 0.123
(0.7,8,1) 1.13 1.25 0.202 0.339√
MSSEh 3.44 3.19 0.66 0.661

Table 27. Simulation squared root of mean squared errors
MSE(m̂(x, φt, d;h1, h2, λ)) = E(m̂(x, φt, d;h1, h2, λ) − mx,t,d)

2 and
squared root of mean sum of squared errors MSSEh1,h2,λ =
E
∑

x,t,d(m̂(x, φt, d;h1, h2, λ)−mx,t,d)
2 when α = 0.5 and λ = 0.9.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 1.34 1.64 0.242 0.474
(0.3,5,0) 1.54 1.6 0.353 0.392
(0.3,8,0) 1.98 1.65 0.651 0.382
(0.7,3,0) 0.427 0.215 0.301 0.544
(0.7,5,0) 0.362 0.309 0.445 0.481
(0.7,8,0) 0.258 0.35 0.795 0.5
(0.3,3,1) 0.484 0.734 0.764 0.498
(0.3,5,1) 0.507 0.504 0.855 0.781
(0.3,8,1) 0.681 0.367 0.756 1
(0.7,3,1) 1.68 1.43 0.965 0.667
(0.7,5,1) 1.8 1.73 1.02 0.931
(0.7,8,1) 1.74 1.98 0.869 1.13√
MSSEh 4.3 4.26 2.48 2.4
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Table 28. Simulation bias B(m̂(x, φt, d;h1, h2, λ)) = E(m̂(x, φt, d;h1, h2, λ)−
mx,t,d) when α = 1 and λ = 0.1.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.902 1.08 0.105 0.248
(0.3,5,0) 1.02 0.961 0.13 0.0936
(0.3,8,0) 1.43 0.967 0.231 0.0088
(0.7,3,0) -0.458 -0.316 -0.00904 0.144
(0.7,5,0) -0.437 -0.476 0.0345 -0.0012
(0.7,8,0) -0.343 -0.57 0.192 -0.0649
(0.3,3,1) 1.13 1.77 -0.482 0.233
(0.3,5,1) 1.19 1.44 -0.384 -0.0499
(0.3,8,1) 1.36 1.12 -0.122 -0.363
(0.7,3,1) -2.28 -1.31 -0.443 0.137
(0.7,5,1) -2.12 -1.52 -0.408 -0.191
(0.7,8,1) -1.64 -1.82 -0.267 -0.514

Table 29. Simulation bias B(m̂(x, φt, d;h1, h2, λ)) = E(m̂(x, φt, d;h1, h2, λ)−
mx,t,d) when α = 1 and λ = 0.9.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 1.8 2.26 0.338 0.662
(0.3,5,0) 2.16 2.33 0.534 0.642
(0.3,8,0) 2.96 2.52 1.07 0.718
(0.7,3,0) -0.378 -0.079 0.525 0.898
(0.7,5,0) -0.219 -0.122 0.79 0.915
(0.7,8,0) 0.247 -0.0807 1.43 1.04
(0.3,3,1) 0.0787 0.576 -1.45 -1.09
(0.3,5,1) 0.0807 0.277 -1.6 -1.47
(0.3,8,1) 0.498 0.0809 -1.4 -1.75
(0.7,3,1) -2.68 -2.35 -1.7 -1.29
(0.7,5,1) -2.87 -2.74 -1.78 -1.63
(0.7,8,1) -2.74 -3.07 -1.48 -1.87
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Table 30. Simulation Standard Deviation for each estimation when α = 1
and λ = 0.1.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.204 0.148 0.0462 0.036
(0.3,5,0) 0.292 0.157 0.0534 0.0346
(0.3,8,0) 0.555 0.204 0.0874 0.0384
(0.7,3,0) 0.0629 0.0685 0.0738 0.0516
(0.7,5,0) 0.074 0.0668 0.0859 0.0512
(0.7,8,0) 0.154 0.064 0.139 0.0617
(0.3,3,1) 0.553 0.247 0.341 0.164
(0.3,5,1) 0.486 0.22 0.298 0.138
(0.3,8,1) 0.308 0.2 0.178 0.129
(0.7,3,1) 0.444 0.405 0.34 0.164
(0.7,5,1) 0.591 0.357 0.293 0.144
(0.7,8,1) 0.466 0.335 0.202 0.14

Table 31. Simulation Standard Deviation for each estimation when α = 1
and λ = 0.9.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.557 0.371 0.136 0.105
(0.3,5,0) 0.635 0.367 0.19 0.115
(0.3,8,0) 0.665 0.407 0.273 0.149
(0.7,3,0) 0.142 0.16 0.239 0.161
(0.7,5,0) 0.256 0.188 0.289 0.165
(0.7,8,0) 0.439 0.246 0.347 0.198
(0.3,3,1) 0.579 0.375 0.156 0.119
(0.3,5,1) 0.645 0.366 0.213 0.128
(0.3,8,1) 0.638 0.397 0.286 0.161
(0.7,3,1) 0.161 0.182 0.264 0.174
(0.7,5,1) 0.288 0.213 0.311 0.175
(0.7,8,1) 0.466 0.273 0.349 0.205
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Table 32. Simulation squared root of mean squared errors
MSE(m̂(x, φt, d;h1, h2, λ)) = E(m̂(x, φt, d;h1, h2, λ) − mx,t,d)

2 and
squared root of mean sum of squared errors MSSEh1,h2,λ =
E
∑

x,t,d(m̂(x, φt, d;h1, h2, λ)−mx,t,d)
2 when α = 1 and λ = 0.1.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 0.925 1.09 0.114 0.251
(0.3,5,0) 1.06 0.973 0.14 0.0998
(0.3,8,0) 1.54 0.989 0.247 0.0394
(0.7,3,0) 0.462 0.323 0.0744 0.153
(0.7,5,0) 0.443 0.48 0.0925 0.0512
(0.7,8,0) 0.376 0.573 0.237 0.0896
(0.3,3,1) 1.26 1.79 0.591 0.285
(0.3,5,1) 1.28 1.45 0.486 0.147
(0.3,8,1) 1.4 1.14 0.216 0.385
(0.7,3,1) 2.32 1.37 0.559 0.213
(0.7,5,1) 2.2 1.56 0.502 0.24
(0.7,8,1) 1.7 1.85 0.335 0.533√
MSSEh 4.82 4.26 1.21 0.864

Table 33. Simulation squared root of mean squared errors
MSE(m̂(x, φt, d;h1, h2, λ)) = E(m̂(x, φt, d;h1, h2, λ) − mx,t,d)

2 and
squared root of mean sum of squared errors MSSEh1,h2,λ =
E
∑

x,t,d(m̂(x, φt, d;h1, h2, λ)−mx,t,d)
2 when α = 1 and λ = 0.9.

XXXXXXXXXXXX(x, t, d)
(h1, h2)

(0.2,0.2) (0.2,0.7) (0.7,0.2) (0.7,0.7)

(0.3,3,0) 1.88 2.29 0.364 0.67
(0.3,5,0) 2.25 2.35 0.567 0.652
(0.3,8,0) 3.03 2.55 1.1 0.733
(0.7,3,0) 0.403 0.178 0.577 0.913
(0.7,5,0) 0.336 0.225 0.841 0.929
(0.7,8,0) 0.503 0.259 1.47 1.06
(0.3,3,1) 0.584 0.687 1.46 1.1
(0.3,5,1) 0.65 0.459 1.61 1.47
(0.3,8,1) 0.809 0.405 1.43 1.76
(0.7,3,1) 2.69 2.36 1.72 1.3
(0.7,5,1) 2.88 2.75 1.8 1.64
(0.7,8,1) 2.78 3.08 1.52 1.88√
MSSEh 6.56 6.39 4.49 4.32
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4.5. Conclusion

In this chapter, we investigated nonparametric smoothing in the situation that the covari-

ates are continuous, ordinal and nominal variables. As the previous studies we introduced in

Section 1, this is the first sight on this situation to our knowledge. We proposed a NW esti-

mator with product kernel for the three covariates. We derived the asymptotic conditional

bias and asymptotic conditional variance of our estimator, which were in the same order as

when doing local linear regression with two continuous covariates (Ruppert and Wand 1994,

p.1357). Combining the results of the asymptotic conditional bias and variance could give

the asymptotic mean conditional squared error (MSE) for estimation at ψ. If we assumed

h1 and h2 converged in the same rate, it was straightforward to show that the optimal rate

of h1 and h2 to minimize MSE was in the order of n−1/6. Notice the smoothing parameter

λ was not involved in the leading terms of either asymptotic conditional bias or variance,

and it was absorbed in the remnant terms. In this way, we could not determine its optimal

rate. What we knew was that 0 < λ < 1 and it was required to go to 0 when smoothing

more locally. Not only did λ disappear, the asymptotic bias actually got “split” into its two

components, so that the asymptotic bias for estimating m1 did not depend at all on m2 and

vice versa. This happened because λ was forced to go to zero. Something similar happened

in the asymptotic variance, but it was more subtle: when we estimated m1, the sample

size appearing the denominator was nG1, which was basically np1, the expected number of

observations belonging to m1. We conducted a simulation study and the results of the bias,

variance, and choice of the bandwidths were in accordance with our theoretical results.
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104


