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Abstract. The problems of flood wave propagation, in bodies of waters, caused by 
intense rains or breaking of control structures, represent a great challenge in the 
mathematical modeling processes. The solution of this problem passes, invariably, for 
the development of mathematical models that, in their formulations, describe, in the 
closest it way, the real scenery of the process. On the other hand, the mathematical 
manipulation of those models implies in the solution of nonlinear differential 
equations, as it is the case of Saint Venant's Equation, of great application in the 
studies of rivers, for gradually varied flow. This research uses a discretization, for the 
equations that governs the propagation of a flood wave, in natural rivers, with the 
objective of a better understanding of this propagation process. The results have 
shown that the hydraulic parameters play important game in the propagation of a flood 
wave. 
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1. Introduction   

The study of the flow in open channels is an important topic of the 
hydraulics and the hydrology subjects. As Brazil is a privileged country in 
terms of water resources, the necessity of the rational and the sustained use of 
the rivers becomes an indispensable task. Being like this, the technical and 
scientific community linked to the theme is seeking, more and more, to supply 
subsidies inherent to problems related with water resources management.     

In this work it intends to study the propagation of a flood wave natural 
river, originating from torrential rains or of the breaking of a control structure. 
A wave is defined as a temporary and space variation in the properties and 
hydraulic characteristics of the flow, just as the change in the flow or in the 
height of the surface of water (Porto, 2003). This is a physical process of high 
complexity and it needs for its solution the knowledge of all hydrodynamics of 
the hydraulic system. 

The hydrodynamic model, which is composed by the differential equations 
of Saint-Venant, allows, in their main analysis, that the study of the hydraulic 
and hydrologic behavior of this body of water could be made. In that context, 
through those equations, it is possible to develop a methodology capable to 
study such variables as flow, velocity and depth in function of the space and 
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temporal coordinates and, finally, to determine every flow structure of the 
river. 

The results obtained in this work allow evaluating how it happens the 
change in the depth of the surface of water, with the entrance of a wave in the 
channel, for different roughness coefficient and different bed slope of the 
channel. 
   
2. Methodology   

The basic equations that describe the propagation of a wave in an open 
channel are the Saint Venant's equations. Those waves can be classified as: 
dynamic wave, gravitational wave, diffuse wave and cinematic wave, 
according to the number of elements considered in the model. The dynamic 
wave, for instance, considers all the terms of the momentum equation. The 
gravitational wave neglects the bed slope effects, and the friction effect that 
develops between the water and the walls of the river. In this case, the 
neglected term is g(S0-Sf). The other terms of the momentum equation are 
considered in the modeling. The cinematic wave just considers the effects of 
the bed slope and the effects of the friction that develops between the water 
and the walls. 

In this work it will be used the dynamic wave. For the development of the 
mathematical model, some simplifications were made: the flow will be 
considered one dimensional; the distribution of the pressure in the vertical is 
hydrostatic one; the water will be considered as incompressible and 
homogeneous, and the density will be considered constant in the time and in 
the space. Thus, the model equation could be defined by, 
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Where x is the longitudinal distance along the channel (m), t is the time (s), 

A is the cross section area of the flow (m2), y is the surface level of the water 
in the channel (m), S0 is the slope of bottom of the channel, Sf is the slope of 
energy grade line, B is the width of the channel (m), and g is the acceleration 
of the gravity (m.s-2).   

In order to calculate Sf, the Manning formulation will be used. Thus, 
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Where V is the mean velocity (m/s), R is the hydraulic radius (m) e n is the 
roughness coefficient.  
 
Operating algebraically (1), (2) and (3),  Keskin (1997), one can find, 
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and 
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In this hydrodynamic model it will certain two dependent variables. The 
first refers to the cross section area A(x,t), along the channel, for each interval 
of time. The second one refers to the flow field Q(x,t) along the channel, for 
the same previous conditions. As the investigation demands the knowledge of 
two dependent variables, there is the necessity of two differential equations: 
the equation (1) and the equation (4) will compose the model.   
  

 Initial Conditions: 
 

Q(x,0)=Q0  (7) 
 
 

A(x,0)=A0  (8) 
 

Where Q0 is the steady state flow of the channel, and the A0 is the cross 
section area for the steady state conditions. 
 

 Boundary Conditions: 
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Where a represents the wave amplitude; and T represents the flood wave 
period; and tb is the maximum time required for the entrance of the wave into 
the channel. 
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3. Numeric Solution of the Hydrodynamic Model   
With respect the numeric solution of the differential equations of the 

dynamic wave, the explicit discretization formulation will be used and defined 
through the relationship: 
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Making an arrangement of the equation (11) it is possible to find: 
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Where αm and βm are defined, respectively: 
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Finally with the Q calculate for the next time step, it is possible calculate the 
A(x,t), through: 
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4. Results   

For this work it was developed a hydrodynamic model capable to realize 
simulations to analyze the behavior of the depth of water, when a flood wave 
comes into the channel, as function of time. Some considerations were made 
for the numeric simulation, such as, length of the channel 50.000 meters, width 
of the channel 50 meters, and sinusoidal function to represent the entrance of a 
wave in the channel. The discretization in the x direction was made in 50 
intervals of 1.000 meters each, totaling a length of 50 km. Regarding 
discretization of the time, it became divided in 360 intervals, with 150 seconds, 
totaling a time of 15 hours.   

The Figure 1 shows the comparison among the values of the depth of the 
water in the channel, in meters, after the entrance of a wave, for different times 
and with a same value of bed slope. It was considered the bed slope of the 
channel equal to 0.0002 m/m. Thus, for n=0.01 and a time of approximately 3 
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hours, the depth is around 1.8 meters, while for n=0.03 and a time of 4 hours, 
the pick of the height is close to 3.0 meters.   
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Figure 1 – Comparison among values of water depth for different roughness.

 
As it can be observed, as bigger is the roughness, the will be the values of 

the depth of the water in the channel. This happens because the roughness 
coefficient, n, represents the most important factor in the resistance process 
concerning with friction effect (Silva et al., 2003).   

The Figure 2 shows the comparison among the values of the depth of the 
water in the channel, in meters, after the entrance of a wave, for different times 
and with a same value of the roughness n=0.01. As it can be observed, as 
bigger is the bed slope, the less will be the values of the depth of water in the 
channel. Thus, for S0=0.0002 and a time of approximately 2:30 hours, the 
depth is around 1.8 meters, while for S0 =0.0005 and a time of 2:40 hours, the 
pick of the height is close to 1.4 meters.   
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Figure 2 - Comparison among values of water depth for different bed slope.

 
5. Conclusions 

It is important to remind that the objective of the present work is the 
development of a hydrodynamic model to evaluate the behavior of the water 
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depth of the channel, with the entrance of a wave, such that it could be able to 
determine the region with more susceptibility of the occurrence of inundations.   

A relevant aspect of this research is in the implementation of a 
methodology capable to accomplish some simulations, through a 
computational program, with base in the method of the finite differences, 
where quite satisfactory results were obtained.   

In that way, it was important to verify the reach of the depth of the channel 
under the influence of a dynamic wave, for different bed slope and roughness 
coefficient, being verified that the propagation of the flood wave suffers great 
influence of these parameters.    

In the reality, this study allows that subsidies could be obtained, in order to 
apply in the development of programs of water resources management, 
especially, in the prevention of inundations. However, it is important to point 
out that there are still many aspects to research and to implement in the model.   
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