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ABSTRACT 

 

NEURAL CORRELATES OF EXECUTED AND IMAGINED JOYSTICK DIRECTIONAL 

MOVEMENTS: A FUNCTIONAL NEAR-INFRARED SPECTROSCOPY STUDY 

 

 Motor-based brain computer interfaces (BCIs) attempt to restore and/or enhance motor 

functioning by measuring brain signals and converting them to computerized output.  Functional 

near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging modality that is resistant to 

both noise and motion-related artifacts.  For this reason, fNIRS offers potential as an imaging 

method for use in a BCI.  Currently, there is a paucity of literature on fNIRS as a sole BCI 

imaging method.  Of the extant literature, studies were limited by low-density optode layouts 

and/or task designs which did not represent the motor goal.  The present study was designed to 

enhance our understanding of the capabilities of fNIRS by utilizing a high-density optode array 

and an experimental task that closely mirrored the motor goal.  28 participants completed a series 

of executed and imagined joystick movements in four directions (forward, back, right, and left).  

Results indicated significant differences in inferred cortical activation during executed 

movements compared to baseline, executed movements compared to imagined movements, and 

imagined movements compared to baseline.  No significant differences were observed for 

comparisons between individual movement directions.  Results support the possibility that 

fNIRS may not be capable of distinguishing between changes in brain activity associated with 

joystick movement directions.  Future research could enhance classification accuracy by 

implementing a machine learning algorithm or by pairing fNIRS with electroencephalography. 
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INTRODUCTION 

 

 Brain computer interfaces have been developed primarily as a means to enhance or 

restore function to individuals with cortical damage or impairments.  In 2013, 5.4 million 

Americans were reported to suffer from paralysis, 27% of which was caused by spinal cord 

injury (Armour et al., 2016).  At present, the treatment outcomes for patients with permanent 

paralysis are highly limited, mostly focused on mobility aid and assistive technology.  A brain 

computer interface (BCI) has the potential to enable individuals to interact with their 

environment without requiring the use of peripheral motor function.  There are numerous forms 

of BCI taking a variety of approaches to restoring functions ranging from communication and 

wheelchair control to full command over advanced neuroprosthetics. 

 When developing a BCI, the primary challenge is acquiring and classifying brain signals.  

Currently, the most advanced systems used to measure brain signals involve surgical 

implantation of hardware onto the surface of the brain.  While these methods have led to highly 

advanced BCIs (Velliste, Perel, Spalding, Whitford, and Schwartz, 2008; Collinger et al., 2013), 

they generate a significant amount of risk for the participant, including issues with tissue 

acceptance, risk of infection, and damage to cortical tissue with continued use over time 

(Nicolas-Alonso & Gomez-Gil, 2012).  

 Due to the risks and complications associated with invasive approaches to BCI, research 

has favored non-invasive neuroimaging methods.  Due to its high temporal resolution, 

electroencephalography (EEG) has become a popular imaging method for BCI development 

(Stangl, Bauernfeind, Kurzmann, Scherer, & Neuper, 2013).  Though popular, an EEG-based 
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BCI is limited by poor spatial resolution, high sensitivity to noise and motion, and would be 

impractical for daily use due to its complicated setup process (Coyle, Ward, & Markham, 2007). 

 While EEG directly measures the electrical activity of the brain, functional near-infrared 

spectroscopy (fNIRS) measures brain activity indirectly through changes in blood oxygen 

content in the brain (León-Carrión & León-Domínguez, 2012).  Though fNIRS lacks the 

temporal resolution of EEG, it benefits from higher spatial resolution, relatively low sensitivity 

to noise and movement, and a simple setup procedure (Stangl et al., 2013; León-Carrión & León-

Domínguez, 2012; Hu, Hong, & Ge, 2011).   

 Previous research has evaluated the performance of fNIRS in BCI applications with 

varying degrees of success.  In 2009, Matsuyama, Asama, and Otake designed a system which 

classified brain activity arising from mental arithmetic exercises into control signals for a 

humanoid robot.  While their system was effective in controlling the robot, they found that faster 

response times would be necessary for any practical applications (Matsuyama et al., 2009).  

Waldert, Tushaus, Kaller, Aertsen, and Mehring (2012) attempted to design a BCI system which 

relied on hand movements rather than mental arithmetic.  They concluded that fNIRS is not 

viable for decoding movement direction.  Despite their conclusions, it is possible that the low 

classification accuracy they obtained was due to an optode layout that failed to target motor areas 

of the brain and a motor task which may have been unnatural for participants to perform. 

 Other researchers have been more successful with their attempts to develop NIRS-based 

BCI systems.  For example, Naseer and Hong (2013) observed hemodynamic responses during 

10 second trials in which participants were instructed to imagine repeatedly flexing either the 

right or left wrist.  Classification accuracy using linear discriminate analysis was 73.35% for the 

right wrist and 83.00% for the left wrist (Naseer & Hong, 2013).  In 2015, the same researchers 
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performed a similar experiment in which participants performed one of four tasks: mental 

arithmetic, mental counting, left-hand motor imagery, and right-hand motor imagery.  

Hemodynamic responses during these tasks were classified using linear discriminant analysis 

with an average accuracy of 73.30% (Naseer & Hong, 2015).   

 While these experiments demonstrate the potential for fNIRS to be used successfully in a 

BCI, neither of them offers a true solution for classifying motor activity in the brain in a way that 

mirrors the intended motor control of external peripherals.  Each experiment described sought to 

generate control signals through specific, often non-intuitive tasks.  While mental counting and 

arithmetic might be easily co-opted control signals, they are less than ideal when it comes to 

real-world applications.  Optimally, a BCI would derive control signals from tasks which closely 

represent the intended output of the BCI.   

 The present study evaluated the capabilities and limitations of fNIRS to assess its 

potential to be used in a BCI.  Brain signals were measured during four different joystick 

movement directions, both real and imagined.  We predicted that greater activation would be 

observed in channels over the sensorimotor cortex and supplementary motor area during motor 

execution, while motor imagery would lead to greater activity in channels over the premotor 

cortex and posterior parietal cortex (Xu et al., 2014; Sauvage, Jissendi, Seignan, Manto, & 

Habas, 2013; Hanakawa et al., 2003; Hermes et al., 2011; Holper, Scholkmann, Shalóm, & Wolf, 

2012; Beinsteiner, Höllinger, Lindinger, Lang, & Berthoz, 1995; Aflalo et al., 2015; Connolly, 

Anderson, & Goodale, 2003; Zapparoli et al., 2013).  Previous studies have also demonstrated 

reduced activation for motor imagery and greater lateralization for motor execution (Kraeutner, 

Gionfriddo, Bardouille, & Boe, 2014; Ueno et al., 2010).  The posterior parietal cortex is 

associated with motor intention and was expected to play a critical role in the decoding of 
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movement direction (Connolly et al., 2003; Barany, Della-Maggiore, Viswanathan, Cieslak, & 

Grafton, 2014).  By controlling for differences in movement rate, expanding cortical coverage to 

motor regions, and creating a paradigm in which the imagery task is strongly associated with the 

motor goal, this experiment was designed to enhance our understanding of the capabilities of 

fNIRS.      
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METHODS 

 

PARTICIPANTS AND BEHAVIORAL MEASURES 

 Thirty-nine right-handed undergraduate students were recruited to participate in this 

study from the introductory psychology subject pool at Colorado State University.  Students 

received course credit for their participation in the study.  Left-hand dominant participants were 

identified using the Edinburgh Handedness Inventory (Oldfield, 1971) and excluded from the 

study.  Additionally, a brief survey was administered to screen for any history of psychiatric 

diagnosis, neurological disorders, traumatic brain injury, and drug use.  These exclusionary 

criteria were intended to minimize any variation in neural activity not due to the experimental 

task.  Approval for the study was obtained from the Colorado State University Institutional 

Review Board and all students provided informed consent prior to their participation.  

EXPERIMENTAL PARADIGM 

 Participants were seated at a desk facing an LCD computer monitor positioned at a 

distance of approximately 45 centimeters.  To provide a measure of inhibition control and 

executive function, participants completed a brief go/no-go task (Criaud & Boulinguez, 2013; 

Simmonds, Pekar, & Mostofsky, 2008) before beginning the primary experimental paradigm.  

After completing the go/no-go task, participants were asked to rest their right arm on the desk 

while gripping a Logitech Extreme 3D Pro joystick for the duration of the experiment.  EAR 3a 

foam insert earphones were inserted into each ear canal for presentation of an auditory pacing 

tone. 
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 Each block began with a two-second text prompt of either, “Imagine,” or, “Execute,” 

followed by an arrow presented for 16 seconds pointing either up, down, left, or right 

(subtending approximately 18° of horizontal visual angle and 10° of vertical visual angle).  

Given that brain activity detected through near-infrared spectroscopy is greatly impacted by the 

participant’s rate of response (De Guio, Jacobson, Molteno, Jacobson, & Meintjes, 2012; 

Jochumsen, Niazi, Mrachacz-Kersting, Farina, & Dremstrup, 2013), an auditory pacing tone was 

presented at a rate of 1 Hertz throughout the duration of the experiment (SPL = 73.6 dB).  The 

tone was created by modifying a 516 Hz tone using Audacity to make the tone more comfortable 

to listen to (Figure 1).   

 

 

 

  

Figure 1. Time and frequency representation of the auditory pacing tone. 
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 In the case of "Execute" trials, participants were asked to respond by repeatedly moving 

the joystick (allowing the joystick to return to center) in the direction indicated by the arrow in 

synchrony with the pacing tone.  In the "Imagine" trials, participants were instructed to imagine 

moving the joystick at the same rate of repetition as the "Execute" trials but without initiating 

any overt movements. 

 Before starting the experiment, participants completed a short practice session during 

which their responses were monitored for both "Execute" and "Imagine" trials.  This was done to 

ensure that participants understood the paradigm and engaged properly.  Overall, the 

experimental design was a full factorial design with 2 levels of cue (“Execute” vs. “Imagine”) 

and 4 levels of direction (“Right”, “Left”, “Backward”, “Forward”), resulting in 8 unique block 

types. Each 18 second block was presented 7 times in pseudorandom order to each subject, along 

with 7, 18-second rest periods, for a total of 63 blocks (Figure 2).  E-Prime 2 Professional was 

used to present the cues, as well as monitor joystick output. The total length of the experiment 

was 18 minutes and 54 seconds.  
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Figure 2. Visual representation of a single trial (A) and a single block (B).   Each trial lasted 18 
seconds and each block lasted 162 seconds.  The experiment contained seven blocks for a total 
length of 18 minutes and 54 seconds. 
 

NEAR-INFRARED SPECTROSCOPY DATA ACQUISITION  

 Hemodynamic changes associated with cortical activation were measured using 

continuous wave near-infrared spectroscopy.  The NIRScoutX (NIRScout; NIRx Medical 

Technologies, Los Angeles, CA, USA) is capable of acquiring data from up to 32 silicon dioxide 

photodetectors simultaneously.  46 light-emitting diodes (LEDs) were utilized, emitting 

wavelengths of 760 and 850 nanometers at a sampling rate of 3.67 Hz.  134 channels were 

formed between sources and detectors within an optimal separation of 25-55mm (León-Carrión 

& León-Domínguez, 2012).  This high-density array was designed to offer high spatial resolution 

while covering a large amount of cortical surface (Scholkmann, Spichtig, Muehlemann, & Wolf, 

2010; Figure 3).   
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Figure 3: Visual representation of the approximate locations of sources (red circles) and 
detectors (green circles). 
 

 Optodes were manually inserted into NIRx spring-loaded grommets (NIRx Medical 

Technologies, Los Angeles, CA, USA)) embedded in EasyCap (cap montage M15) specialized 

recording caps (Easycap GmbH, Germany) in a standard 10-05 International Electrode system 

(Oostenveld & Praamstra, 2001).  This ensured a relatively even and consistent distribution of 

optodes at an approximate spacing of three centimeters between optodes (Figure 4).  The average 

channel distance calculated using 10-05 positions was 37.30 mm.  Velcro chinstraps were used to 

secure caps and minimize cap movement.   
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Figure 4. EasyCap (cap montage M15) specialized recording cap (Easycap GmbH, Germany) 
with (right) and without (left) NIRx spring-loaded grommets (NIRx Medical Technologies, 
Los Angeles, CA, USA)) embedded in a standard 10-05 International Electrode system 
(Oostenveld & Praamstra, 2001).   
 

 JOYSTICK DATA ACQUISITION 

 Joystick data was measured during both motor execution trials and motor imagery trials.  

The direction and amplitude of joystick deviation was acquired through a serial port with a 

BAUD rate of 9,600 Hz.  Joystick response data were used to evaluate response accuracy during 

executed movement conditions.  Additionally, erroneous responses during imagined movement 

conditions were identified by the presence of joystick deviations when no movement should 

occur.   

ACCELEROMETER DATA ACQUISITION 

 To better identify erroneous responses during imagined movement conditions, a 3-axis 

accelerometer (g.Tec GmbH) was attached to the right forearm of the participant.  The 3 

channels of motion were digitized at 256 Hz and 24-bit resolution by a g.Tec HIamp amplifier 

system.  While the accelerometer data could not be used to accurately identify movement 
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directions during executed movement conditions, because there was no calibration done after 

placement on the arm, it offered a highly sensitive secondary measure to detect minor muscle 

movements which may have occurred during imagined movement conditions.  It is possible that 

these minor movements could impair our ability to accurately detect and classify imagined 

movements across subjects.  

NEAR-INFRARED SPECTROSCOPY DATA ANALYSIS 

 fNIRS channel positions were transformed into their positions in the Montreal 

Neurological Institute (MNI) brain space.  Next, the measured changes in light absorption were 

converted to changes in oxygenated hemoglobin concentrations utilizing the modified Beer-

Lambert law (Delpy et al., 1988; Khan et al., 2014; Huppert, Diamond, Franceschini, & Boas, 

2009).  The "movement artifact reduction algorithm" (Scholkmann et al., 2010) was utilized to 

correct for any motion artifacts present in the data.  This technique was implemented in 

MATLAB using the SPM-fNIRS toolbox (Brigadoi et al., 2013; Scholkmann et al., 2010).  After 

removing motion artifacts, band-pass filtering was used to remove frequencies above 0.20 Hz 

and below 0.01 Hz.  This was done to remove high-frequency instrumental noise and to reduce 

low-frequency biological noise associated with cardiac artifacts, respiratory signals, and blood 

pressure changes known as the Mayor wave (Huppert et al., 2009).  The initial sampling rate of 

3.68 Hz was resampled to 0.99 Hz.  This was done to improve compatibility with SPM and was 

necessary for motion artifact rejection analysis. 

 Oxygenated hemoglobin (HbO) data were subjected to first level analysis using a general 

linear model (GLM) approach implemented in spm_fnirs (Tak, Uga, Flandin, Dan, & Penny, 

2016) incorporating a regressor formed by applying an HRF-convolved boxcar function to the 

block design.  Second level analyses were performed using one-sample t tests to identify 
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channels with significant differences in measured activation.  Multiple comparisons were 

corrected for using a False Discovery Rate (FDR) approach. 

 Three contrasts were formed to compare activation of all executed movements relative to 

baseline, all imagined movements relative to baseline, and all executed movements compared to 

imagined movements.  Eight more contrasts were used to compare each individual executed 

movement direction to the other three executed movement directions and each imagined 

movement direction to the other three imagined movement directions. 

JOYSTICK DATA ANALYSIS 

 Joystick data was baseline corrected and filtered using a 20 Hz low-pass phase-invariant 

2nd order Butterworth filter.  Next, the number and amplitude of each detected movement in 

each block was obtained for each trial using the findpeaks.m function from Matlab (Figure 5). 

Overall movement accuracy was calculated and displayed for each block, along with movement 

amplitude.  Joystick data was then downsampled from 9,600 Hz to match the resampled NIRS 

sampling rate of 0.99 Hz.  This was necessary for performing NIRS analyses using joystick data 

as a regressor.   
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Figure 5. Example output of joystick movements and block design.  Right and left movements 
are indicated by postive and negative x values, respectively.  Forward and back movevements 
are indicated by negative and positive y values, respectively.  The enlarged section shows 
activity during the first 8 blocks. 
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ACCELEROMETER DATA ANALYSIS 

 Accelerometer data was analyzed using custom scripts implemented in MATLAB.  First, 

the accelerometer scale was converted and the DC offset was removed.  Band-pass filtering was 

applied using two-way least square finite impulse response filters with an order of 3072, 

beginning with a high-pass filter of 10 Hz followed by a low-pass filter of 0.25 Hz.  Data were 

then epoched into 1024 sample epochs and downsampled to match the resampled NIRS sampling 

rate of 0.99 Hz.  Finally, a root mean square transformation was performed to convert x, y, and z 

values to a single movement amplitude. 

 

 

 

 
Figure 6. Single subject joystick data organized by movement direction.  Green circles 
indicate peaks identified.  For accuracy calculations, only peaks occurring during the correct 
movement direction counted towards accuracy score. 
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Figure 7. Example output of accelometer data and block design.  Given that there was no 
calibration done after placement on the arm, x, y, and z values have no utility apart from 
serving as a highly sensitive secondary measure to detect minor muscle movements which 
may have occurred during imagined movement conditions.  The enlarged section shows 
activity during the first 8 blocks. 
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Figure 8. Single subject mean accelerometer data during the first 200 
seconds of the experiment.  Peaks are indicated by orange circles. 
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RESULTS 

 

FNIRS RESULTS 

 Eleven participants were eliminated from analysis due to inadequate quality of measured 

spectroscopy data.  28 participants were included in the analyses.  For each channel formed in 

the optode array, the effect of movement condition and direction on oxygenated hemoglobin 

levels was assessed using one-sample t-tests with a False Detection Rate (FDR) correction for 

multiple comparisons.  No significant differences in inferred cortical activation were observed 

between individual movement directions.  When comparing executed movements to baseline 

activity, 20 channels measured significant changes in oxygenated hemoglobin levels (Figure 9).  

When comparing imagined movements to baseline, significant changes in oxy-Hb levels were 

measured in 21 channels (Figure 10).  When comparing executed movements to imagined 

movements, four channels measured significant changes in oxy-Hb levels (Figure 11; Table 1).   
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Figure 9. Channels reflecting significant changes in hemodynamic activity during executed 
movement conditions compared to baseline.  Red activation patterns correspond to greater 
oxy-Hb levels while blue regions correspond to reduced oxy-Hb levels.   

 
Figure 10.  Channels reflecting significant changes in hemodynamic activity during imagined 
movement conditions compared to baseline.  Red activation patterns correspond to greater 
oxy-Hb levels while blue regions correspond to reduced oxy-Hb levels.   



 

 19 

 
 
  

 
Figure 11. Channels reflecting significant changes in hemodynamic activity during executed 
movement conditions compared to imagined movement conditions.  Red activation patterns 
correspond to greater oxy-Hb levels while blue regions correspond to reduced oxy-Hb levels.   
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Table 1. Channels with significant changes in HbO levels.  MNI coordinates are listed for the 

channels, and 10-05 labels are given for source-detector pairs. AAL2 brain areas were 

determined using the fOLD application for Matlab 2017a. 
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 In addition to the above whole brain analysis, several other analyses were performed.  

First, data were analyzed based on regions of interest.  These included the motor cortex, 

supplementary motor area, and posterior parietal cortex.  Channels were grouped by region using 

the fOLD toolbox in Matlab (Morais, Balardin, & Sato, 2018).  For this analysis, no significant 

differences were observed in any of the contrasts.  To account for task accuracy, data were also 

analyzed using joystick accuracy and accelerometer measurements as predictors.  No significant 

results were observed.    

 BEHAVIORAL RESULTS  

 Group-level performance measures for the Go/No-Go task indicated that participants 

performed accurately (M = 95.16%, SD = 5.44%).  On average, subjects made 2.32 ± 2.61 errors 

during the Go/No-Go task with an average error of commission rate of 1.29 ± 1.30.   

 An ANOVA was performed on processed joystick data and indicated no significant 

differences in accuracy between executed movement directions (F(3, 108) = 0.75, p = .52).  A 

second ANOVA was used to assess whether or not there was a difference in movement 

amplitude during correctly executed joystick movement conditions.  Results indicated there was 

a significant difference in movement amplitude (F(3, 108) = 70.58, p < .001).  Tukey HSD post-

hoc tests indicated that subjects moved the joystick more during right (M = 409.49, SD = 41.84) 

and left (M = 427.14, SD = 48.11) movement conditions compared to forward (M = 347.84, SD = 

39.34) and back (M = 286.48, SD = 29.62) conditions.  Additionally, participants moved the 

joystick more during forward movements (M = 347.84, SD = 39.34) compared to back 

movements (M = 286.48, SD = 29.62; Figure 12). 
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Figure 12. Bar graph indicating mean joystick amplitudes for each of the four movement 
directions.  Participants moved the joystick with greater amplitude during right and left 
conditions compared to forward and back conditions. Participants also moved the joystick 
more during forward conditions compared to back conditions. 
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DISCUSSION 

 

 The results of the preprocessing and analysis methods used in this study indicated 

significant differences in inferred cortical activation during both executed and imagined 

movements compared to baseline.  There were also significant differences between executed and 

imagined movement conditions.  For individual movement directions, no significant differences 

were observed for executed or imagined conditions.  

 Relative to baseline, inferred cortical activation during all executed movement conditions 

was greater in the right pre-motor cortex, right pre-supplementary motor area, left motor cortex, 

right motor or somatosensory cortex, and the posterior parietal cortex.  During the imagined 

movement conditions, inferred cortical activation was reduced relative to baseline in the right 

pre-supplementary motor area, right pre-motor cortex, left motor cortex, and the right 

somatosensory cortex.  When comparing the executed movement conditions to imagined 

movement conditions, the left and right pre-motor or motor cortices displayed greater activation 

in the execute conditions.  This finding did not conform with our expectation based on previous 

literature, which suggested the sensorimotor cortex and supplementary motor areas would show 

greater activation during motor execution while the premotor cortex and posterior parietal cortex 

would be more active during motor imagery (Xu et al., 2014; Sauvage, Jissendi, Seignan, Manto, 

& Habas, 2013; Hanakawa et al., 2003; Hermes et al., 2011; Holper, Scholkmann, Shalóm, & 

Wolf, 2012; Beinsteiner, Höllinger, Lindinger, Lang, & Berthoz, 1995; Aflalo et al., 2015; 

Connolly, Anderson, & Goodale, 2003; Zapparoli et al., 2013).   

 An initial interpretation of the outcomes of this study is that fNIRS is not capable of 

detecting differences in brain activity associated with small movements such as joystick 
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movement directions.  This interpretation upholds the findings of numerous research studies 

(Waldert et al., 2012).  However, it is possible that the traditional methods used for analyzing 

fNIRS data may have had a negative impact on our ability to detect and classify movement 

directions.  In fMRI literature, research has shown that correction for motion may interfere with 

the detection of signals of interest during motion-based tasks (Seto et al., 2001).  Given that 

movement is a primary component of this study, it is possible that eliminating motion artifacts 

also eliminates motion data corresponding to signals of interest. 

 Another factor which may have had a detrimental effect on results was the movement 

itself.  During the executed movement conditions, participants always returned the joystick to the 

center position between each joystick movement.  Therefore, when executing a right joystick 

movement, the actual motor activity was always composed of a right movement and a left 

movement back to center.  While the return to center was assisted by the joystick, it is possible 

that this two-way movement hindered the ability to detect individual movement directions.   

 Behavioral results logged by the joystick also showed that right and left movements were 

often mixed with slight forward/backward deviations and vice versa.  These impure movements 

may have added to the difficulty of classifying individual movement directions.  Additionally, 

moving the joystick forward and backward requires a larger overall movement, given that the 

arm is typically lifted from the table somewhat to engage the movement.  Left and right 

directions, on the other hand, require smaller movements given that only the wrist is moved.  

This effect can be observed in the results of the joystick amplitude analysis, which showed that 

participants moved the joystick a greater distance during right and left movement conditions 

compared to forward and back conditions, where movement may have been more difficult.   
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 The purpose of the present study was to evaluate the capabilities and limitations of fNIRS 

with an emphasis on BCI applications.  By controlling for differences in movement rate, 

expanding cortical coverage to provide a whole-head analysis, and utilizing movements which 

closely mirror the intended motor goal, the results of this study provide insight into the topic 

with fewer confounds than previous literature.  Though the findings of this study do not present 

an optimistic view of the future of fNIRS in BCI, there are more questions that need to be 

addressed before a definitive conclusion is drawn.  In the future, it would be worthwhile to 

perform a thorough analysis of the impact that various motion artifact rejection methods have on 

signals of interest in motor studies.  Additionally, more robust cortical activation patterns for 

individual movement directions could be attained by adjusting the motor task to elicit pure 

directional movements.   

 Another option is to consider a bimodal BCI using both EEG and fNIRS for signal 

acquisition.  Because fNIRS uses light emission, it does not interfere with EEG and therefore, 

pairs very well with EEG for multimodal neuroimaging.  To address some of the limitations of 

EEG-based BCIs, many researchers have attempted to develop bimodal BCIs using EEG and 

functional near-infrared spectroscopy (fNIRS) simultaneously.  By pairing fNIRS with EEG, 

classification accuracy of BCI is generally improved.  In a motor imagery task involving hand 

gripping with visual feedback, Fazli et al. (2012) observed an increased accuracy in over 90% of 

participants with a 5% improvement on average.  While these hybrid approaches offer improved 

classification accuracy by taking advantage of the proficiencies of each modality, they also suffer 

from all of the aforementioned drawbacks with respect to real-world practicality.  These 

limitations should be carefully considered when designing multimodal BCIs.   
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 Regardless of the imaging method, a promising direction for the future of data analysis 

utilizes machine learning algorithms to process and analyze data.  In order to implement a BCI, it 

would be necessary to analyze and classify joystick movements in real time, without 

experimenter intervention.  Not only do machine learning algorithms achieve this, research also 

suggests that they may provide better classification accuracy than traditional data analysis 

methods, such as those used in this study (Sitaram et al., 2015; Matthews, Pearlmutter, Wards, 

Soraghan, & Markham, 2008).  By adjusting the motor task and implementing a machine 

learning algorithm, future research could lead to an improved understanding of the capabilities 

and limitations of fNIRS. 
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APPENDIX A 

 

Go/No-Go Experimental Paradigm 

Before participating in the primary experiment, participants completed a brief Go/No-Go 

experiment (Criaud & Boulinguez, 2013; Simmonds, Pekar, & Mostofsky, 2008).  Forty-eight 

stimuli consisting of either "X" or "A" were presented randomly to the participant using E-Prime 

2 Professional with an inter-stimulus interval of 700ms.  When presented with an "X," 

participants were instructed to tap the spacebar as quickly as possible.  When presented with an 

"A," participants were asked to refrain from responding.  Go and No-Go trials appeared in equal 

proportions.  Data were extracted from E-Prime and analyzed in Microsoft Excel. 

  



 

 35 

APPENDIX B 

 

Scripting Procedure for fNIRS Data Processing and Analysis 

• Run script_convert_temporal_processing_Mathison.m  

• Run nirx_condition_gui_batch_Don.m  

• Run spatial processing in spm_fnirs to generate POS.mat file 

• Run script_pos_correction.m 

• Run script_spm_1st_level_stats_Mathison.m 

• Run spm_fnirs_2ndlevel_onesamp_Mathison.m 
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APPENDIX C 

 

Scripting Procedure for Joystick Data Processing and Analysis 

• Run script_joystick_converter_Apr2018.m 

• Run script_timing_correction_Apr2018.m on fNIRS data 

• Copy “timings.txt” file into joystick data folder 

• Run script_joystick_analyze_Feb2019.m 
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APPENDIX D 

 

Scripting Procedure for Accelerometer Data Processing and Analysis 

• Run script_timing_correction_Apr2018.m on fNIRS data  

• Copy “timings.txt” file into accelerometer data folder 

• Run script_analyze_gtec_accelerometer_Apr2019.m 
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APPENDIX E 

 

Matlab Scripts  

Matlab scripts for processing spectroscopy, accelerometer, and joystick data can be accessed at 

https://github.com/rojasdon/nirx_tools 
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APPENDIX F 

 

R script to run ANOVA on joystick data  
 
rm(list = ls()) 
library(nlme) 
library(multcomp) 
library(ggplot2) 
 
#Find and read data 
fname <- '/Users/Matt/Desktop/Joystick_stats.csv' #generate this from .txt file from analysis 
script 
data1 <- read.csv(fname) 
 
## Accuracy ## 
#Restructure data to prepare for ANOVA 
r_acc <- data1[,c(1,74)] 
r_acc[,3] <- colnames(r_acc[2]) 
names(r_acc)[c(2,3)] <- c("Accuracy","Movement_Direction") 
 
l_acc <- data1[,c(1,75)] 
l_acc[,3] <- colnames(l_acc[2]) 
names(l_acc)[c(2,3)] <- c("Accuracy","Movement_Direction") 
 
b_acc <- data1[,c(1,76)] 
b_acc[,3] <- colnames(b_acc[2]) 
names(b_acc)[c(2,3)] <- c("Accuracy","Movement_Direction") 
 
f_acc <- data1[,c(1,77)] 
f_acc[,3] <- colnames(f_acc[2]) 
names(f_acc)[c(2,3)] <- c("Accuracy","Movement_Direction") 
 
acc_data <- rbind(r_acc, l_acc, b_acc, f_acc) 
acc_data$id <- factor(acc_data$id) 
acc_data$Movement_Direction <- factor(acc_data$Movement_Direction) 
 
 
#Perform ANOVA 
lme_anova_acc <- lme(Accuracy~Movement_Direction, data = acc_data, random = ~1|id) 
summary(lme_anova_acc) 
 
dir_anova_acc <- aov(Accuracy~Movement_Direction+Error(factor(id)/Movement_Direction), 
data = acc_data) 
summary(dir_anova_acc) 
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con_acc <- glht(lme_anova_acc,linfct=mcp(Movement_Direction="Tukey")) 
summary(con_acc) 
 
## Count ## 
### MORE restructuring needed here ### 
 
#Restructure data to prepare for ANOVA 
r_count <- data1[,c(1,2)] 
r_count[,3] <- colnames(r_count[2]) 
names(r_count)[c(2,3)] <- c("Count","Movement_Direction") 
 
l_count <- data1[,c(1,3)] 
l_count[,3] <- colnames(l_count[2]) 
names(l_count)[c(2,3)] <- c("Count","Movement_Direction") 
 
b_count <- data1[,c(1,5)] 
b_count[,3] <- colnames(b_count[2]) 
names(b_count)[c(2,3)] <- c("Count","Movement_Direction") 
 
f_count <- data1[,c(1,4)] 
f_count[,3] <- colnames(f_count[2]) 
names(f_count)[c(2,3)] <- c("Count","Movement_Direction") 
 
count_data <- rbind(r_count, l_count, b_count, f_count) 
count_data$id <- factor(count_data$id) 
count_data$Movement_Direction <- factor(count_data$Movement_Direction) 
 
#Perform ANOVA 
lme_anova_count <- lme(Count~Movement_Direction, data = count_data, random = ~1|id) 
summary(lme_anova_count) 
 
dir_anova_count <- aov(Count~Movement_Direction+Error(factor(id)/Movement_Direction), 
data = count_data) 
summary(dir_anova_count) 
 
con_count <- glht(lme_anova_count,linfct=mcp(Movement_Direction="Tukey")) 
summary(con_count) 
 
## Amplitude ## 
#Restructure data to prepare for ANOVA 
r_amp <- data1[,c(1,2)] 
r_amp[,3] <- colnames(r_amp[2]) 
names(r_amp)[c(2,3)] <- c("Amplitude","Movement_Direction") 
 
l_amp <- data1[,c(1,3)] 
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l_amp[,3] <- colnames(l_amp[2]) 
names(l_amp)[c(2,3)] <- c("Amplitude","Movement_Direction") 
 
b_amp <- data1[,c(1,5)] 
b_amp[,3] <- colnames(b_amp[2]) 
names(b_amp)[c(2,3)] <- c("Amplitude","Movement_Direction") 
 
f_amp <- data1[,c(1,4)] 
f_amp[,3] <- colnames(f_amp[2]) 
names(f_amp)[c(2,3)] <- c("Amplitude","Movement_Direction") 
 
amp_data <- rbind(r_amp, l_amp, b_amp, f_amp) 
amp_data$id <- factor(amp_data$id) 
amp_data$Movement_Direction <- factor(amp_data$Movement_Direction) 
 
#Perform ANOVA 
lme_anova_amp <- lme(Amplitude~Movement_Direction, data = amp_data, random = ~1|id) 
summary(lme_anova_amp) 
 
dir_anova_amp <- 
aov(Amplitude~Movement_Direction+Error(factor(id)/Movement_Direction), data = amp_data) 
summary(dir_anova_amp) 
 
con_amp <- glht(lme_anova_amp,linfct=mcp(Movement_Direction="Tukey")) 
summary(con_amp) 
 
#Plot Figure(s) 
qplot(data=lme_anova_acc, 
      x = variable, 
      y = value, 
      stat = "summary", 
      fun.y = "mean", 
      geom = c("point") 
) 
 


