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ABSTRACT

REGIONAL PROPERTIES OF ANGULAR REFLECTANCE MODELS

The inference of the reflected flux density from satellite radiance
measurements requires a knowledge of the angular properties of the re-
flected radiance field. This study examines the angular dependence and
the spatial variability of the radiance fields reflected from 30 re-
gional atmospheric scenes. The reflected radiance data set was col-
lected from a high altitude aircraft during the Summer Monsoon Experi-
ment using a unique multi-detector instrument which permitted an
instantaneous sampling of the radiance fields from twelve angular view-
ing coordinates. All of the scenes display sufficient anisotropy to
conclude that neglecting the angular variation of the reflected radi-
ances would lead to significant errors (10 ~ 100%) in the inferred flux
density. Radiances over the relatively isotropic scenes converge to
their regional mean values on a spatial scale which is small compared
to that of the total region. For example, the mean behavior of the
radiance field for a 1000 km segment of desert is approached usually
after sampling any 25 km portion of the segment. At the other extreme,
the mean behavior of the radiance pattern over the same expanse of
clear ocean is approached only after a sampling distance of 250 km.

The data are analyzed to search for angular coordinates which are opti-
mal for flux density inference. For example, over the clear ocean
scene the variance of the inferred flux density is significantly re-
duced by using radiances reflected at small or large nadir angles and
at azimuth angles which are small relative to the azimuth of the sun.

It is also shown that a two satellite system is adequate for inferring
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ABSTRACT (Continued)

REGIONAL PROPERTIES OF ANGULAR REFLECTANCE MODELS

flux densities over the relatively isotropic scenes while anisotropic
scenes benefit from using, at most, three satellites. The angular
patterns are applied to TIROS-N measurements over the monsoon region to
assess their impact on flux density inferences for a climaticallyv signi-
ficant region. Use of the angular models results in increases in
directional reflectances of up to 2.7% compared to isotropically in-
ferred values for individual scene types. The directional reflectance
over the entire region is increased by 1.5% due to the application of

the angular reflectance patterns.
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1.0 INTRODUCTION

The feasibility of monitoring the earth's radiation budget was
greatly enhanced with the advent of the earth orbiting satellite plat-~
form. Because of its altitude, high above the radiatively active atmos-
phere, a satellite-borne radiometer is ideally located for measurements
of the earth's longwave emitted flux as well as the shortwave reflected
flux. From the first proposal for taking such measurements, (Suomi,
1958) a steadily increasing effort has been put forth to adequately
monitor the exchange of radiative energy at the outer limits of our
atmosphere.

Initial efforts addressed the problem of the determination of the
long term, planetary écale, bulk radiative properties such as equator
to pole gradients of longwave radiation loss and shortwave radiation
gain. The difference between these quantities is the gradient of the
net radiation which is the ultimate energy source for the oceanic and
atmospheric circulation systems. The earliest studies were based on
data collected by wide field of view radiometers (flat plate or hemi-
spheric) which measured the total upwelling radiant exitance at the
point of the satellite sensor. Weinstein and Suomi (1961) used meas-
urements of terrestrial radiation at night from Explorer VII and showed
that a definite relationship exists between the radiation centers and
low and high pressure centers. Bandeen et al. (1964) analyzed data
from TIROS 11, I1I, IV and VII and inferred a slightly larger longwave
radiative loss and a significantly smaller albedo than previously cal-
culated; for example. London (1957). 1In addition to the types of in-

struments borne by Explorer VIT, the TIROS series included a medium



resolution scanning radiometer with a 5° field of view and the capa-
bility of measuring absolute intensities in five spectral intervals.
Rasool and Prabhakara (1966) also reported on the data collected by .the
TIROS meteorological satellites during 1962 and 1963. They calculated
albedo values over the deserts of North Africa and Arabia between 40
and 45 percent, contradicting earlier results which had estimated these
albedos to be between 20 and 25 percent. The higher values were large
enough to imply a net radiative deficit for these regions as compared
to the earlier results (20-25%) which indicated a positive radiation
balance. House (1965) examined data collected by the hemispherical
sensor aboard TIROS IV and found that the measurements of the planetary
albedo confirmed earlier estimates, however, the equator to pole gradi-
ent of albedo-was found to be somewhat larger than previously thought.
Winston and Taylor (1967), and Winston (1967) compiled global maps of
longwave radiation and albedo from TIROS IV and TIROS VII measurements.
Their results indicated an inverse correlation between albedo and long-
wave radiation on a broad scale and that both quantities were generally
related to the strength and location of features of the westerlies over
the Northern Hemisphere.

All of the efforts reported above utilized data collected with
hemispheric sensors for the analysis of the reflected shortwave com—
ponent, or, when medium scanning radiometer data were used, assumed
that the reflecting surface was isotropic. Arking (1965), pointed out
that the measured reflected intensity depended on the solar zenith
angle, the satellite viewing angle and the relative azimuth between the

sun and the satellite. Arking and Levine (1964) used correction



factors, averaged over the 'quasi--globe'1 in an analysis of TIROS VII
data and arrived at a value of albedo of 20.6% averaged over an annual
period and the 'quasi-globe’.

Raschke and Pasternak (1967) included correction factors for non-
Lambertian surfaces which were derived from 'many measurements of the
angular dependence of reflected solar radiation' in an analysis of the
radiation data from Nimbus 2. For the approximately 2.5 month period
included in the study, the vaiue of planetary albedo was significantly
smaller than the annual global values previously calculated, (28.1 -
30.6% compared to 35%), but apparently larger than earlier satellite
measurements (Vonder Haar, 1968), which yielded a reflected component
too small (v 25%) to-be in balance with the corresponding incoming
Solar and emitted longwave fiuxes. The intermediate value of albedo
apparently resulted from the application of the anisotropic reflectance
models. Raschke and Bandéeﬁ (1970) extended the analysis of Nimbus 2
data to include a total of five successive semimonthly periods and
arrived at a value of the planetary albedo of 29-31%.

Vonder Haar and Suomi (1971) summarized the series of radiation
budget studies resulting from measurements by the first and second
generation United States Meteorological satellites. For the 39 months
of available data, 80% of which was acquired from sensors of low spa-
tial resolution, a value of 30% was deduced for the mean planetary
albedo. It was also determined that the earth was in radiative balance

to within the accuracy of the measurements. Raschke et al. (1973)

lThe 'quasi-glohe' is a region encompassing 85% of the earth's
Surface. Excluded are the polar regions beyond 60° latitude and small
Areas of southern South America and Siberia.



reported on the earth's radiation budget monitored from Nimbus 3. This
study provided for the first time estimates of the 'annual' (10 month)
budget with a high spatial resolutioun (102 - 103 km) over the entire
globe. The improvement of the spatial resolution was accomplished by
using nine empirically derived models of the angular variation of the
upwelling radiance fields, which were derived from anirplane, balloon
and satellite measurements of reflected solar radiation. Smith et al.
(1977), described the Nimbus.ﬁ earth radiation budget experiment, which
has, as one of its primary objectives, the collection of an adequate
data base to be used for modelling the angular variation of reflected
radiance fields. The instrument package includes a four channel scan-
ning radiometgr which is capable of sampling the angular radiance field
once as the éateliite-travels 700 km along the subpoint track. Pre-
liminary results show the relatively isotropic nature of the radiance
field measured over the Sahara compared to the anisotropic nature of
field measured over the ice surface of Greenland. Gruber and Winston
(1978) provide a brief description of an earth radiation budget data
set collected from NOAA operational satellites. These data were com—
piled assuming isotropy of the reflected radiation field. Jacobowitz
et al. (1979) discuss the planetary radiation budget measured by the
low spatial resolution sensors on Nimbus 6, from July 1975 to December
1976. The importance of high resolution features in the radiation bud-
get shown by the scanning radiometer data from Nimbus 6 are yet to be
published.

As time has passed there has been a tendency toward increased
spatial resolution in the measurements of the earth's radiation budget

components. In order to obtain higher spatial resolution from a



limited number of satellite platforms, scanning radiometers with narrow
fields of view are required. Since radiation reflected from natural
surfaces is in general anisotropic, adequate angular models of the re-
flected component are necessary to interpret such measurements. As
these models were developed they were incorporated into most of the
more recent radiation budget studies. Summarized below are the major
efforts in developing such angular reflectance models.

As noted previously Arking (1965) developed angular patterns of
upwelling radiance averaged over the quasi-globe. The patterns were
compiled from TIROS IV observations over a large time and space.scale.
Ruff et al. (1968) used data from the 0.55 - 0.75 um TIROS IV channel
to develop angular-ieflectiqn patterns for clouds. The data were col-
lected over three approximately 30 day periods during the spring of
1962, The measurements were limited to clouds by selecting only those
targets which had an effective black body equivalent temperature less
than 252°K as monitored by the 8 - 12 um TIROS IV channel. Their re-
sults clearly indicate the anisotropic nature of the radiation field.
Salomonson and Marlatt (1968) used data collected by the Nimbus 3
medium resolution radiometer, flown on a low altitude aircraft (v 3 km)
to measure the angular patterns of reflected radiation over stratus
clouds near the California coast and in the mountain valleys of Utah.
In addition measurements were made over white sand, snow, a dry desert
lake bed, a grassland sod surface, a swampy-dense vegetation surface
and water. Anisotropy in the reflected solar radiation was observed in
varying degrees for all the surfaces studied. Salomonson (1968) has
shown that the measured stratus cloud patterns compare well to pub-

lished results derived from Monte Carlo simulations by Kattawar and



Plass (1968a,b). Griggs and Marggraf (1967) used a photometric polari-
meter to measure the reflectance characteristics of stratus clouds, of
snow surfaces and of the ocean in the 0.4 to 0.96 um portion of the
spectrum. The instrument was capable of completing a full scan (42
different angular measurements) in about four minutes. The instrument
was mounted on a DC-3 aircraft and flown at a height of about 1000 feet
above the various targets. The basic anisotropic nature of the various
reflected fields is obvious in their results. Bartman (1968) measured
the angular pattern of reflected radiation in the 0.55 - 0.75 um and
the 0.20 - 5.0 ym spectral regions with TIROS and Nimbus type radio-
meters carried aloft on a balloon gondola at an altitude of 32 to 34
km. Angular reflectance patterns were presented for stratocumulus
clouds, cirrus abo;e stratocumulus clouds, broken cumulus and cirrus
above scattered cumulus. A high degree of anisotropy was found in all
cases. Brennan and Bandeen (1970) presented patterns of reflected
solar radiation from cloud, water and land surfaces with an aircraft
borne medium resolution radiometer. Reflectances in the 0.2 - 4.0 um
and 0.55 - 0.85 um portions of the spectrum were measured from an al-
titude of about 12 km. Angular patterns were measured for strato-
cumulus clouds, forest, ocean and farmland. As previously mentioned,
one of the major objectives of the Nimbus series earth radiation budget
program is to compile a data base which could be used to produce ade-
quate angular reflectance models. This effort continues, and some
preliminary results are found in Stowe et al. (1980). These measure-
ments ultimately will be paired with a description of the state of the
underlying atmosphere and the nature of the surface. Stowe et al. re-

ported angular patterns for high ice clouds for which it was found that



errors of up to 800% may be made if the isotropic assumption is ap-
lied.

The research which will be presented here is similar in many re-
spects to the studies of the angular characteristics of reflected solar
radiation cited above. Our goai is to assess the applicability of
angular patterns of reflected radiation on a regional scale. There
are, however, significant and important differences between the present
effort and previous studies. First, the data presented here have been
collected with a new type of instrument, which allows instantaneous
angular sampling of the upwelling radiation field, whereas ail previous
efforts have utilized scanning radiometers which require an extended
time and space scale to complete a sampling process. The instrument
will be described in the next section. Secondly, previous studies have
analyzed reflection patterns over extremely large geographical areas
such as the 'quasi-globe', or, for quite specific targets such as a
stratocumulus cloud deck, a forest, a swamp etc., which required data
collection over a very small geographical area. This study focuses on
radiance patterns which may be applicable over space scales of from 250
km to 1000 km which is the scale of interest for regional climate model-
ling. Because of the ability to sample the radiance field on an al-
most instantaneous basis it was possible to examine the spatial con-~
vergence properties of the various angular patterns. None of the pre-
vious efforts have specified a spatial scale over which their results
may be valid. Thirdly, results are presented in the literature for
discrete values of, or limited ranges of solar zenith angle. Measure-
ments over a variety of zenith angle ranges by a single instrument are

lacking. These data are indispensable for the determination of an



adequate stratification of reflectance models with respect to zenith
angle, or for attempting to specify a model which might be used over
the total daytime period to interpret geostationary satellite readings.
Finally, although this document is far from an exhaustive study, it is
believed to be the most comprehensive study in terms of surface type
and solar zenith angle range to date.

With these goals in mind the next section will describe the.méthod
of data collection, including a detailed description of the measuring
instrument. This will be followed by a section describing the method
of data reduction and a presentation of the results. Comparison with
previous results follows and the final section discusses the implica-
tions of the present findings regarding the use of angular reflectance

models for inferring the total reflected solar flux.



2.0 DESCRIPTION OF THE EXPERIMENT

The data used in this report were collected during the summer
MONsoon EXperiment (MONEX). The measuring instruﬁent was flown on
NASA's Convair 990 aircraft at an altitude of 10-12 km. By including
data taken on the ferry flights it was possible to sample a wide vari-
ety of reflecting surfaces from the ice fields of Hudson Bay to the
sands of the Saudi Arabian empty quarters, for a variety of solar
zenith angles. All of the data used in the present study were col-

lected with a single instrument which is described below.

2.1 Description of the 'bugeye instrument'

The instrument used to collect the data presented in this report
consists of a hemiéphefical array of thirteen high quality silicon
photodiodes and associated electrical circuitry mounted in an aluminum
housing; see Figure 1. The instrument is hereafter referred to as the
bugeye instrument. The angular positions of the photodiodes are given
in Table 1 and the field of view of each detector was limited to 10° +
1° full angle by inserting each diode in a collimator tube. The 10°
field of view combined with the flight altitude of 10-12 km produces a
sub-measurement spot size of 1.75 km which compares with sub-satellite
resolutions of 0.9 km, 1.0 km for the visible GOES and TIROS channels.
The Nimbus scanning radiometers have a field of view of 5.12° x .25°
which translates into a much coarser resolution of approximately 40 x
2 km. The 10° full angle field of view on each of the thirteen sensors
permits instantaneous sampling of 5% of the total downward facing
hemisphere. A complete tabulation of the electrical and optical pro-

perties of the silicon photodiode is given in Appendix I. For the
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Figure 1. The multidector bugeye instrument.
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Detector Angle from Azimuth Field
Number Nadir Angle * of View
Steradian
1 0° — .0239
2 30° "
3 30° 90° "
4 30° 180° "
5 30° 270° "
6 60° 0° "
7 60° 45° "
8 60° 90° "
9 60° 135° "
10 60° 180° "
11 60° 225° "
12 60° 270° "
13 60° 315° "

*The azimuth angle is measured relative to the
forward direction of the ailrcraft increasing
toward the direction of the right wing

Tab]ekl. The nadir and azimuthal coordinates of the bugeve photodiodes
in degrees.
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purpose of the following presentation it is important to note the spec-—
tral response of the photodiode depicted in Figure 2. The diode and
amplification circuit have a response time on the order of a few milli-
seconds, and the response of the diode is linear with incident irrai
diance over seven decades. In addition, the upper limit of the aifcraft
data system inpu£ (10 volts) was exceeded by the bugeye channels only

when the aircraft entered the upper regions of thick cirrus outflow;

none of these data are used in this report.

2.2 Calibration of the Instrument

The sampling advantages of a multidetector instrument are obvious.
However, the advantage of a simplified flight pattern required to sam-
ple the angular)pattérn_of reflected radiation must be weighed in re-
lation to the disadvantage of a more complicéted calibration procedure.
Since the goal of the experiment is to examine the properties of re-
flected solar radiation, and in view of the limited spectral response
of the photodiodes,.no attempt was made to obtain the absolute sensi-
tivities of the individual diodes. Rather, it is assumed that the
angular properties of the total reflected solar component in the 0.3 to
3.0 um spectral range behave in the same manner as the measured 0.4 to
1.1 um portion of the spectrum. The extent to which this assumption
may be valid is treated in the next section. Thus, it is necessary
only to specify the relative sensitivities of the bugeye channels which
were determined from measurements on ten occasions prior to, during and
after the experiment. Prior to the experiment the individual detectors

were illuminated with an incandescent lamp through a diffusing surface.

The lamp was supplied with an adjustable but regulated voltage and
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relative sensitivities were obtained for a range of detector output
voltages. During the experiment calibrations were performed using a
portable unit consisting of a battery powered lamp which illuminated a
smali diffusing sphere. Because the supply voltage could not be held
constant in this case, the output of the lamp was monitored by a sepa-
rate diode of the identical type used in the bugeye, so that as the
calibrator was moved from one diode fo the next any changes in light
output could be accounted for. After the experiment the relative sen-
sitivities were again measured using the portable unit. When all of
the calibrations are considered the relative sensitivities displayed a
standard deviation of less than 5% of their respective mean values.
This figure is uysed as an estimate of the experimental error in the

measurements used in this report.

2.3 Deployment of the Instrument

The bugeye instrument was mounted within a cowling, on the under-
side, near the front of NASA's Convair 990 high altitude research air-
craft. Three other instruments were mounted within the same cowling:
an Eppley 0.3 - 3.0 um pyrancmeter, an Eppley 0.7 - 3.0 um pyranometer
and an Eppley pyrgeometer, see Figure 3. The instruments were arranged
so that none of the Eppley instruments obstructed the field of view of
any of the bugeye channels. After some initial adjustments the instru-
ment was never removed from the aircraft until the termination of
summer MONEX. All field calibrations were taken with the instrument in
place.

In total, data were collected on 30 flights of the Convair 990

aircraft during April through July of 1979. However, since the data
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Figure 3. The mounting position of the bugeye instrument on
NASA's Convair 990 in relation to the Eppley radiometers.



are analyzed with satellite applications in mind, and because only cer-
tain flights were flown over surfaces which are easily categorized, this
report focuses on data collected during 13 of the missions. The first
of these took place on April 30 originating at Malmstrom Air Force Base
near Great Falls, Montana and terminating at Sondre Stromfjord,
Greenland. During a portion of this flight data were taken over the
broken ice of Hudson Bay for solar zenith angle ranges of 40° - 50° and
50° - 60°, see Figure 4a.

The second target was the desert sands of the Empty Quarters in
Saudi Arabia. Data were taken for increments of solar zenith angle of
10° between the limits of 0° and 80°. Care was taken to eliminate any
measurements near or beyond the coast line which may have been con-
taminated with reflection from stratus cloud or water. This was accom-
plished by setting upper aﬁd lower bounds for the 0.3 to 3.0 um upwell-
ing irradiance and for the individual bugeye readings. When any of the
bugeye channels failed a test criterion all of the readings taken at
that instant were discardedt These flights took place on May 9, 10,

12 and 14. Figure 4b shows two photographs typical of the desert
scenes.

The third target was that of a reasonably unobscured ocean surface.
These data were taken before the onset of the monsoon on the 29th and
31st of May and on June 3. The ocean surface was reasonably calm (no
whitecaps were seen) and convection was suppressed. Fair weather
cumulus clouds were almost always present but were of small horizontal
extent and estimated to be below satellite resolution, see Figure 4c.
Some altocumulus clouds were observed and the minimum-maximum criterion

was applied to the upwelling irradiance and bugeye readings to eliminate
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Two photographs typical of the ice fields of Hudson's Bay.

Figure 4a.



Figure 4b.

Two photographs typical of the Saudi Arabian Desert scene.
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Figure 4c.

Two photographs typical of the 'clear' ocean
atmospheric scene.
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the small fraction of the data which may have been collected in close
proximity to such anomalously bright features. Data were collected for
six solar zenith angle increments of 10° each from 0° to 60°.

Data collected over the Indian subcontinent comprises the fourth
category. These data were collected on the flights of the 5th and 1lth
of June. Analysis was limited to data collected south of 30°N latitude
and inland of coastal stratus and altocumulus cloud features. Suffi-
cient data were obtained for four 10° zenith angle increments from 0°
to 40°. The data analyzed are characterized by an almost complete
absence of cloud although a heavy haze and dust loading was observed
throughout these missions, see Figure 4d.

The data taken north of 30°N latitude on June 11 provided suffi-
cient information to compilé two zenith angle stratifications from 10°
to 20° and 20° to 30° of radiance reflected from the Himalayan moun-
tains and plateau region. These scenes were characterized by steeply
sloping barren surfaces partially covered with old snow and partially
obscured by broken altocumulus cloudiness, as shown in Figure 4e.

Five 10° zenith angle fegimes for mixed middle and low clouds over
ocean were obtaiﬁed on two flights into}the northern edge of highly
convective regions. Cloud conditions on these missions are difficult
to categorize but varied from fairly thick cirrus to clear sky at and
above flight level accompanied by altocumulus and fair weather cumulus
below with the ocean surface often visible, see Figure 4f. Data col-
lected under moderate to thick cirrus were excluded from tﬁe analysis
by a check on the total downward irradiance as measured by an Eppley
pyranometer mounted on top of the aircraft. A 90% transmittance

threshold on a horizontal surface was used for this purpose. Since the



Figure 4d.

Two photographs typical of the Indian Subcontinent
scene.
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Figure 4e.

Two photographs

typical of the Himalaya scene.
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Two photographs typical of the middle and low cloud
atmospheric scene.

Figure 4f.
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goal of this study is to provide reflectance patterns for atmospheric
scenes and not to limit the apnalysis of radiances exiting solely from
clouds, no lower limit was applied to the individual bugeye channels.
However, in order to ensure that the scene was characterized by a sig-
nificant amount of underlying clouds only data which resulted in an up-
welling (0.3 to 3.0 um) irradince of 150 wat:t:s'm--2 or greater were in-
cluded in this analysis.

The final category presented in this report is for altostratus
clouds over the Pacific. These data were collected on the ferry flight
of July 7 from Anchorage, Alaska to Moffet Field at Ames, California.
Conditions of total undercast prevailed while the sun was between 20° -
30°, 30° - 40° and 40° - 50° from the zenith. Figure 4g shows repre-
sentative photographs. |

The descriptions presented above define some of the specific fea-
tures of the regions of data collection for the models which will be
presented in the next '‘section. In addition the following commeﬁts
apply in general to all of the above categories. First, all of the
analyses are limited to data collected above an altitude of 20,000
feet (6.3 km), which was the altitude commonly observed as the top of
the dust - haze layer typical of the pre-monsoon atmosphere. Second,
except as noted in the description of the low and middle cloud scene,
the amount of cirrus cloudiness above the aircraft was observed to be
negligible. This condition was confirmed quantitatively by measurement
from a second bugeye type instrument mounted atop the aircraft, which
was designed to measure the relative magnitudes of the direct and
diffuse components of the downwelling solar irradiance. A description

of this instrument is given in Appendix TII. Although the performance



Figure 4g.

Two photographs typical of the altostratus cloud scene.
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of this instrument is still being evaluated the preliminary data analy-
sis indicates a ratio of diffuse to total downward irradiance of from
2% to 5% for all data used in the present analysis with the exception
of the mixed low and middle cloud cases. -Wheh the data from the top
bugeye were analyzed for the low and middle cloud cases more than 90%
of the points failed a diffuse to total irradiance test of 10%, while
observations indicated much more of the data should have been accept-
able. Because the top bugeye's performance is still under evaluation
the alternate test criterion was applied as described above.

Finally, since most of the missions were not dedicated solely to
the collection of angular reflectance data, the actual flight patterns
varied considerably among the categorizations listed above. Thus, the
actual number of data péints differed considerably from scene to scene.
Nevertheless, for all but a few of the cases, the space scale of data
collection is greater than 250 km. The actual flight tracks which
correspond to the categories given above are shown in Appendix III

along with the corresponding average feflectance model.



3.0 DATA ANALYSIS

In the two previous sections the term "angular reflectance" has
been used in a general way. Below, its definition is given, along with
the method of assembling the data into angular reflectance models.

Figure 5 shows the geometry of an idealized measurement. Solar
energy is incident on the target at a zenith angle z and azimuth angle
¢S' The target is considered to be the atmosphere beneath the aircraft
and the underlying surface as previously categorized. The energy is
scattered and absorbed by the atmosphere and the surface, and arrives
at the level ot measurement t;aveling in an upward direction at an angle
0 from the zenith and a relative azimuth angle ¢. ¢ is 0 when looking
into the direction Qf thé sun and is taken as positive for clockwise
rotation about this reference. The bugeye instrument instantaneously
measures the normal component of the radiant power incident on the ac-
tive element of an individual photodiode within its spectral bandpass.

Or if Vi is the voltage output of the ith diode amplifier system;

V. = C* k, ffu(e, $, A) F(X) cos(0 - 6, ) dQ dA @)
i i Ni
A, Qi
where
k. is the relative sensitivity of the ith diode amplifier
' combination
N is the spectral radiance arriving at the detector
A is the wavelength of the energy
Qi' is the amount of solid angle subtended by the aperture

of the collimator tube on the ith diode

F()) is the spectral response function of the diode (see
Figure 2)

27
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Geometry of the measurement

- th
|
Direction of incident /detector
solar radiation
6 N
4--\8
NANG, B N)
r
| // o
|~ s
target //

Figure 5. Depiction of the geometry of the measurement.
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BN i1s the nadir angle of the normal to the active area of
i the ith photodiode

and C is the absolute sensitivity of the photodiode.

Since the collimator tubes have a narrow field of view 10° + 1°
full angle and considering the angular resolution of interest, it is
sufficient to invoke the mean value theorem with respect to the angular

integration so that;

<
]

1 Cc- ki J/l/.N(e, ¢, A) F(X) cos(6 —-BNi) dQ di
A, Qi

C*k, ° Qi fN(A, ei, ¢i) F()) dA (2)
A

where ﬁ(A, Gi, ¢i) is.the average radiance in the solid angle Qi cen-
tered at (61, ¢1). The integral on the right of Eq. (2) is the filtered
radiance and after division by the appropriate relative amplifier sensi-
tivities (ki) and the detector field of view (Qi), the adjusted voltage
v’ (8,¢) is proportional to the filtered radiance. The constant of pro-
portionality is the absolute sensitivity of the photodiode C. The bug-
eye measured twelve2 filtered radiances at every data scan (taken at one
second intervals) at the angular positions of the diodes (given in

Table 1). At each data scan the appropriate navigational parameters

of the aircraft were used to form a rotation matrix which transformed

%Due to a wiring error on the Convair 990 only the first twelve
diode outputs were recorded.



30

the angular coordinates from the aircraft frame to a fixed morth-south
horizontal reference frame. The solar azimuth measured in the same re-
ference frame was used to obtain the position of each measurement in a
"horizontal-solar" reference frame,

In the above manner a large number of measurements were compiled
for a particular scene. The measurements were stratified in nadir and
relative azimuth in 10° increments from 0° - 90° and 0° - 360° re-
spectively and averages at each angular position were taken. The array
of averaged, adjusted voltages was integrated over the downward facing
hemisphere to obtain a number porportional to the filtered irradiance

(E) on a downward facing horizontal plane according to;

n/2  2m
Ev' = f f V'(6,9) cos® sinf d6 d¢, (3
6=0, ¢=0

where filtered irradiance is given by E = Ey'/C. If the filtered
irradiance were proportional to the upwelling 0.3 - 3.0 ym reflected
flux density ES’ the constant of proportionality would be given by the

ratio K = ES/E. Figure 6 shows a plot of Kk *« E vs E_, for data collect-

S

ed over and within clouds of variable horizontal and vertical extent
over the Arabian Sea. Here K has the average value of ES/E over the
data record. Although some relatively large discrepancies are evidenf,
the agreement is generally good and is an indication that the spectral
deficiencies of the measurements are not serious.

Since this research deals with the angular properties of reflected
solar radiation iq the 0.3 to 3.0 ym portion of the spectrum, it would

be ideal if F(A) = 1.0 throughout that spectral region. However, since
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Figure 6. A comparison of the flux density reflected from broken

clouds over ocean as measured by the Eppley 0.3 - 3.0
um radiometer to the integral of the radiance field

derived from the bugeye measurements.
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this is not the case the following remarks should be considered. First,
a significant fraction of the radiant energy reflected from various
atmosphere-surface combinations lies within the spectral bandpass of
the bugeye. A probable exception occurs in the case of high clouds.
For example, Figure 7 shows a plot of relative spectral distribution of
various targets and the photodiode spectral response, Table 2 gives the
fractions of the total reflected energy which would be measured by the
bugeyé given the spectral response of the photodiode. Note the rela-
tively constant ratio of filtered radiance to total radiance displayed
by the entires. Similar ratios calculated for the 0.5 - 0.9 uym TIROS
and the 0.5 - 0.9 um GQES channels show much greater variability.
Measurements by Griggs et al. (1967) indicate even greater frac-
tions of refiectea energy are contained in the bugeye spectral bandpass
for snow, ocean and various cloud targets. Salomonson (1968) presents
results which indicate that a normalized radiance pattern for the
0.55 - 0.85 um region is nearly identical to the same parameter taken
over the 0.2 - 4.0 um ;egion for stratus cloud, dry lake bed and white
sand surfaces. This similarity is probably even more pronounced for
the present study which utilizes data collected at an altitude (v 10
km) compared to Salomonson's data collected at altitudes from 1 to 3
km, due to the enhanced Rayleigh contribution for A < 1.1 um and the
added gaseous absorption for A > 1.1 um. For these reasons the angular
properties which are analyzed in this report are assumed.to be repre-
sentative of the same properties of reflected solar radiation in the
0.3 - 3.0 um portion of the spectrum. However, it is not necessary to
assume that the radiances in the two spectral regions are related by a

proportionality constant in all the analyses which follow.
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Type of Surface Fraction of 0.3 - 3.0 um energ.
. within bugeve spectral bandpuss

Earth's surface obscured bv a low A
altitude cloud deck for solar
zenith of 30°

Vegetated surface for a solar 42
zenith of 30°

Winter snow and ice for a solar .41
zenith of 30°

Earth's surface composed of soil v
and rocks for solar zenith angle
of 30°

Table 2. The fraction of the 0.3 - 3.0 pym radiances reflected by
various surface and cloud types within the spectral band-
pass of the bugeye photodiode. Spectral distributions are
from The Infrared Handbook, 1978, edited by Wolfe & Zissis.
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3.1 Angular Reflectance Models

The development of typical angular reflectance models follows
the procedure set forth in several of the studies mentioned in the
introduction. The goal is to provide an angular model which may be
used to infer the upward flux density of reflected solar radiation
from a region, by measuring the radiance exiting the region in one
or at mést a few angular directions. This is normally accomplished

by specifying a bi-directional normalization coefficient X defined

by:

fN(G, ¢, z) cosb dQ

Q ,
X(e’ (pa Z) = = N(e, ¢’ Z) (4)

where N, 6, ¢, z and Q have the definitions given in the preceding

section. The analogous expression in terms of filtered radiances

and irradiances is given by:

c - B E'
X(6, ¢, 2) = TTITIN(E, ¢, 2) - TV (8, $, z)

(5)

Note that using ¥ obtained by the latter expression for its 0.3 - 3.0
um equivalent requires the assumption of proportionality between the

0.4 - 1.1 ym and 0.3 - 3.0 um radiances.
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For the purposes of specifying a typical angular model the values
of V'(6, ¢, z) are azimuthally averaged about the principal plane
[V'(6, ¢, z) = v, 2m - ¢, z)]. Although the symmetrical model is not
as representative as the asymmetric version for the particular surface
over which the data were collected, it is considered optimal for appli-
cation to all similar scene types. For example, if a particular pat-
tern obtained from measurements over the Saudi Arabian Desert was to be
used to interpret data collected over the Saharan Desert, non-
symmetrical features caused by sand dune orientation in the Empty
Quarters would almost certainly lead to larger errors than would re-
sult from use of a symmetric model.

The parameter ¥ is useful since its multipiication by a measured
radiance and T results in a value of reflected flux demsity. This is
the procedure envisioned as the solution to the problem of monitoring
the reflected compgnent of the radiation budget of a region from satel-
lite-borne scanning radiometers. Questions concerning the applica-
bility of these average models to regional scales will be considered
in the next sections. In this study the average angular reflectance
models are presented in terms of x-l, which corresponds to a normal-
ized brightness. More significantly the deviation of x-l(e, ¢, z) from
unity represents the fractional error between the true reflected flux
density and a flux density inferred from application of the isotropic
assumption to a radiance measured at the angular position (8,¢). Thus,
for a scene which is isotropic X—l = 1.0.

Since the bidirectional reflectance normalization coefficient is
usually applied to satellite radiance data it is important to consider

the effect on the angular variation of X_l of the atmosphere above
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the level of data collection (v 200 mb). The most important and most
consistently applicable adjustment to angular patterns measured by high
altitude aircraft is due to Rayleigh scattering. In order to account
for the Rayleigh contribution above the level of data acquisition a
single scattering approximation given in Paltridge and Platt (1976) is
used. Figure 8 shows the single scattering approximation compared to
the exact calculétion {taken from Coulson, 1959) for solar radiation
reflected by an atmosphere of optical depth T = .05 for solar zenith
angles of 66° and 37°. The spectrally averaged Rayleigh optical depth
of the 200 mb layer above the level of data collection was calculated
to be .035 so that the single scattering approximation applied to the
angular models will result in smaller errors tham indicated in Figure
8. Errors of similar magnitude result when the approximation is appli-
ed to the forward scattered component. In order to apply the Rayleigh
correction the measured %iltered radiances are scaled to 0.3 - 3.0 um
values using the assumpfion af proportionality and the scaling factor
K. The single scattering approximation is applied to each angular
component to obtain the forward scattered component at the top of the
200 mb layer above the aircraft. These values are added to the trans-
mitted upwelling component and the solar reflected component calculated
with the single scattering approximation (using a value of 1375 watts ¢
m-'2 for the solar constant) to obtain the distribution of the 0.3 - 3.0
um radiance field. Equation 4 is reapplied to find X—l at the top of
the 200 mb layer. The magnitude of the Rayleigh adjustment expressed
as a percentage of the upwelling radiance incident on the 200 mh layer

is about 1.5% for the forward scattered component, and 6% due to the
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solar reflected component with essentially 97% of the upwelling radi-
ance being transmitted through the layer.

A simple interpolation scheme is used to fill in the missing val-
ues in the xrl array. The scheme uses the inverse of the angular dis-
tance between the interpolated point and all points within an angular
neighborhood as a weighting function is such a way so that local char~
acteristics are not influenced by values of x_l located more than 30°
away. The complete set of xnl patterns are shown in Appendix III along
with pertinent information regarding the locale of data collection.

Because the interpolation scheme was used to supply only angular
positions which were missing, several points are included which were
derived from only a few measurements. This results in an unsmoothed or
fairly noisy pattern. Thé general characteristics of the x-l field are
more discernable in a smoothed vérsion of the pattern. Also it is con-
venient to have some means of accessing a particular value of x_l other
than graphical interpblatiqn or tabular look-up. For these reasons the
data were fitted using as a basis the set of spherical harmonic func-
tions in a slightly modified form with a simple least squares technique.
In this case the entries are number weighted so that points resulting
from only a few measurements have little effect on the fit. For the
spherical harmonic function Yg(8,¢), there are 2n + 1 values of m for
each value of n. The maximum value of n used in any of the fits to the
data was 6 which allowed for a maximum of 49 basis functions to be in;
cluded. The amount of the variance attributed to each term of the fit
was calculated and terms which accounted for less than 0.257% of the
norm of x—] were discarded. The number weighted r.m.s. error, cal-

culated after the least significant terms were deleted ranged from 4%
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to 28% depending upon the variability of the data field. The complete
set of fitted X—l patterns, spherical harmonic coefficients and result-
ing r.m.s. error are given in Appendix IV. A few of the smoothed
patterns are shown below and some of the more interesting features are
discussed.

Figures 9a,b,c show the smooth x—l reflectance models resulting
from measurements over the Saudi Arabian Desert for zenith angle ranges
of 0° - 10°, 30° - 40° and 70° - 80°. Figure 9a shows a nearly iso-
tropic pattern with values of X_l ranging from 0.90 to 1.1 The pattern
shows a bright region near the center of the figure (small values of
the nadir angle) with a slight tendency toward backscatter at inter-
mediate nadir apgle values. 1In this and all similar figures the nadir
angle varies from 0° at the center to 70° at the outer rim of the fig-
ure while values of relative azimuth vary from 0° (facing the direction
of the sun) to 180° in the anti-solar direction. Figure 9b indicates a
higher degree of anisotropy with values ranging from 0.80 to 1.20 and
shows a more pronounced b;ckscatter. For the largest zenith angle
range, Figure 9c shows a transition to a forward scattering maximum
probably due to scattering from the atmosphere. The backscatter fea-
ture is still evident with the darkest features indicated near the
nadir. The fitted x—l values range from 0.50 to 1.70 for the last case
while the corresponding interpolated pattern shown in Appendix III
indicates a slightly smallef range, 0.6 f_xfl < 1.70. In either case
an overestimate of 70% in the reflected flux density would result if
the isotropic assumption were applied to radiances measured near the

8 = 70°, ¢ = 0° direction.
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Figure 9a. The spherical .harmonic approximation to the
angular reflectance (X~1) model for the 0-10°
solar zenith angle desert case.
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Figure 10 shows the smoothest version of x_l for data collected
over the Himalayas. This figure should be used to denote only the
coarsest features of the scene since the r.m.s. error of the data fit
is nearly 20%. A broad brighter region is evident extending from the
nadir out to 50° and 60° in the solar and anti-solar directions re-
spectively. The x_l coefficient ranges from 0.9 to 1,1 in the fitted
pattern but ranges from 0.8 to 1.1 in the interpolated version. 1In
either case photographs suggest that the general feature of a darker
region toward the horizon may be the result of bare rock features which
protrude above and obscure the intervening valleys where brighter snow
and ice have accumulated.

Figures 1lla and b show the fitted x-l patterns for the Indian sub-
continent in the solar zenith angle regimes of 0° - 10° and 30° - 40°.
Figure 1la shows a slightly mere specular nature of the Indian sub-
continent compared to the corresponding pattern measured in Saudi
Arabia. The relative1§ greater specular component is probably the re-
sult of reflection off the surface of various rivers which typify the
central western portion of that country. A detailed examination of
the photographic record indicates the specular reflectance. Inspection
of the interpolated results for the same scene indicates values of ¥
as high as 1.35 for a nadir angle of 5° while at 15° nadir the highest
reading is 1.13 which is another indication of specular reflection from
the water surfaces. It should also be noted, however, that much of the
data collecﬁed over the Ganges River portion of the flight was collect-

ed at low altitude and thus excluded from the sample. 1In Figure 11b
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Figure 10. The spherical harmonic approximation to the angular re-
flectance (x~1) model for the 20-30° solar zenith angle
Himalayan case.
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Figure lla. 'the spherical harmonic approximation to the
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the X-l values range from 0.75 to 1.20 and a prominent backscatter
feature is evident. This figure should be compared with Figure 9b, the
30° - 40° desert case.

Zenith angle ranges of 0° - 10° and 50° - 60° are shown in Figures
12a,b for the clear ocean cases. Xhl ranées from 0.25 to 2.00 and from
0.18 to 2.75 respectively. (The interpolated pattern for the latter
case shows a x-l range of 0.25 f_x_l < 2.75.) Obvious in these plots
is the sunglint feature which may be seen to progress outward to the
horizon upon inspection of the complete set of x-l plots in Appendix
III.

Figures 13a,b represent the data fits to the middle and low level
éloud cases (hereafter referred to as CLOUD1} for zenith angle ranges
of 10° - 20; andv30°'— 40° respectively. A slight tendency toward
backscattering is observed in the smaller zenith angle cases with x—l
ranging from 0.75 to 1.05. The situation is reversed in the latter
case which displays a strong and broad region of scattering in the for-
ward direction and a iarger range in normalized brightness from X_l =
0.50 to 1.75. It is noted here that it is difficult to be certain that
the scene type is not significantly different between these cases be-
cause of changing cloud type. Even though the data were collected in
the same geographical locations and cloud conditions were observed to
be similar, the different features of the patterns may have resulted to
a large extent from undetected differences in the type or amount of
cloud cover. Nevertheless the patterns are representative of the re-
gions of broken, variable, middle and low level cloudiness encountered

during the experiment. The slight backscatter feature at the

smaller zenith angle ranges may be attributable to reflection off the
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Figure 12a. ‘'Ihe spherical harmonic approximation to the
angular reflectance (x~1) model for the 0-10°
solar zenith angle clear ocean case.
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case.
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vertical walls of individual clouds into the upward direction. As the
zenith angle increases reflection from the cloud tops in the forward
direction becomes important as well as an increased contribution due to
sunglint méasured between the clouds.

Figures l4a,b show the patterns for data collected over a reason-
ably homogeneous altostratus deck (hereafter referred to as CLOUD2).
For a solar zenith of from 20° to 30° there is both forward and back-
ward scattering evident at the larger nadir angles with a rather broad
region of smaller normalized radiances in the anti-solar direction at
small and intermediate nadir angles. For the larger solar zenith angle
case 40° < z < 50° a more pronounced forward scatter feature is evident.
Also the region gf lowyer x—l values has shifted to the solar side of
the scene. The backscattér in this case may be attributable to one or
both of two proceéses. First, aithough the clouds are stratiform in
this case Figure 4g shows the cellular nature of the layer. Thus the -
possibility for backécatte; from the individual vertical protrusions
exists. Second the presence of ice crystals in the layer may add to
the backscatter feature becéuse of the secondary maximum displayed by
the scattering phase functions of ice crystals for scattering angles
near 180°.

The brief descriptions and explanations given above are not meant
to completely account for all of the features in the patterns. Some of
the properties such as those found in the clear ocean cases are easily
accounted for. Others, such as the prominent backscatter in the small
zenith angle cloud cases may be explained with much less confidence and
are subject to further verification. The most general conclusion

which may be drawn from the ensemble of the angular reflectance models,
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and the most important, is that the anisotropy displayed by all scene
types is of sufficient magnitude to have a significant impact on re-

flected flux densities inferred from scanning radiometer measurements.

3.2 Comparison with Previous Results

Because there have been only a few experimental programs dedicated
to the measurement of angular reflectance patterns it is important to
compare the data presented here to previous studies whose results have
been incorporated into various radiative energy budget estimates (see
Introduction). Also, some theoretical efforts have been published
which are sufficiently rigorous to offer a good basis for comparisom.
The comparisons below will be made following the historical perspec-
tive given in the Introduction. Many of the angular reflectance models
used in the comparisons which follow were compiled by Mr. Eric A. Smith
and were supplied to the author by personal communication. These
models are indicated below by an asterisk.

The first comparison was made between the clear Arabian Sea data
collected with the bugeye and clear Pacific Ocean data from (0.2 - 6.0
pm) TIROS IV measurements compiled by Arking (1965). Arking's data
were presented in terms of an apparent reflectance R = (T * N) / (Fo .
cos z), where F 1is the solar constant (the symbols N and z have been
changed from the original document to comply with present notation).

In order to affect the comparison a value for Fo of 1375 watts'm_2 was
used to recover N, the (0.2 - 6.0 um) radiance, from the original
apparent reflectance values. The average of the adjusted voltages
measured by the bugeye in the principal plane was used to obtain a

factor to scale the bugeye readings to the average radiance value from
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the previous study. Figure 15 shows a plot of the comparison in the
principal plane for a solar zenith angle of 53°. In view of the dif-
ferences between the data collection techniques the agreement is good.
The figure also indicates the general validity of scaling (0.4 to 1.1
um) data to represent the behavior in the broader spectral region.
Figures 16a and b show comparisons between an agular model®* com-
piled from the data of Ruff et al. (1968) for clouds and the X—l pat-
terns compiled from the bugeye measurements of altostratus and middle
and low level broken clouds respectively. The plots show contours of
the difference between the x’l values with positive numbers indicating
that relatively brighter regions were measured by the bugeye while
negative numbers indicate regions of greater brightness resulting from
the previous study. Also shown near the bottom left of the figure is
the average difference in the‘x-l values taken over the 0° - 70° nadir
angle and the 0° -, 360° relative azimuth range. The average of the
differences would be zero for the entire 0° - 90° nadir angle range,
however the bugeye measurements for nadir angles beyond 70° are con-
sidered to be extrapolations supported by sparse data only. A positive
value of the average error indicates that an overall brighter field
was measured by the bugeye for the 0° - 70° nadir angle range. The
corresponding r.m.s. error is given at the bottom right of the figure
indicating the average magnitude of the difference in the x_l values
over the field displayed in the figure. 1In Figure 16a which represents
measurements taken over altostratus clouds for a solar zenith angle
range of 40° - 50°, the average error of -.02 indicates that the bugeye
measured values are relatively smaller over the 0° - 70° range. The

primary contributions to the negative overall error are found in a
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Figure 16b. A comparison between the angular reflectance (x_l)
model for the 40-50° solar zenith angle middle

and low level cloud case and a cloud model derived
from the data of Ruff et al.
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broad region in the forward scattering direction. Also indicated is
the greater backscatter measured by the bugeye instrument with a 0.19
maximum difference indicated at the 60° nadir position at relative
azimuths of 135° and 225°. The r.m.s. error of 0.11 indicates fair agree-
ment on a point by point basis. In Figure 16b the x_l pattern* from
Ruff et al. (1968) is compared to the bugeye measured middle and low
level cloud case for a solar zenith angle range of 20° - 30°. 1In this
case slightly poorer agreement is found for the average and r.m.s.
differences stemming from disagreement throughout the nadir-azimuth
array. Since the data used by Ruff et al. were obtained from 0.55 -
0.75 pm TIROS IV measurements and included only those cases which
filled the field of view of an 8 — 12 ym channel, one might expect
poorer agreement with measurements over broken clouds as indicated by
these comparisons.

Figures 17a shows a similar comparison between the bugeye 40° -
50° solar zenith angle altostratus cloud case and a x_l model* generat-
ed from'the measurements by Salomonson (1968) over stratus clouds off
of the California coast. In this case the bugeye measures a relatively
brighter field over the 0° - 70° nadir angle range with the greatest
differences indicated in the backscatter regime. The r.m.s. difference of
0.09 shows moderately good agreement considering the spectral dif-
ferences between the measurements (0.4 - 1.1 ym vs 0.2 - 4.0 ym) and
the differences between the altitudes of the measurements (10 km vs v
1.0 km). In Figure 17b the same results* from Salomonson are compared
to the 40° - 50° middle and low level cloud case. The average agree-
ment is somewhat better for the 0° - 70° nadir angle range than with

the bugeye stratus case and the average magnitude or r.m.s. difference
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is only slightly worse. The figure clearly indicates the relatively
stronger forward scatter and weaker backscatter measured over the low
stratus deck, a feature which is most probably due to the differences
between scattering properties of horizontally continuous and broken
cloud fields.

Figure 18 is a comparison between bugeye measurements taken over
the desert for a 70° - 80° solar zenith angle range and a x—l model*
compiled ffom the data which Salomonson (1968) collected over a dry
desert lake bed. The small average error indicates nearly equal appor-
tionment by the two data sets into the less than 70° and greater than
70° nadir angle regimes. However, the figure shows great disagreement
between the data Sets resulting from the strong forward scatter meas-
ured by the bugeye and the relatively strong backscatter in the results
of Salomonson. In this case the r.m.s. difference is over 0,43 and a
disagreement of 1.11 occurs at the maximum nadir in the solar direction.
It is remarkable that the disagreement is so great between patterns
generated from data collected over a desert scene which is normally
accepted as isotropic and envisioned as the case for which angular re-
flectance modelling is least required. The differences exhibited in
this case are almost certainly due to the forward scattering off the
relatively thicker and dust laden intervening atmosphere between the
bugeye and the desert sands although spectral differences may not be
ruled out as a contributing factor. Also Salomonson's data were col-
lected over a dry desert lake bed and exhibited strong backscatter even
in visual observations. Salomonson remarks that '"the degree of re-

flection back toward the sun in this case is more than that to be ex-

pected over desert sand".
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Figure 19 shows a comparison between measurements by Griggs et al.
(1967) over a 3 km thick stratus cloud deck for a solar zenith angle of
50.1° and the 40° - 50° measurements of an altostratus deck by the bug-
eye. In this case an average scaling factor has been applied to the
adjusted bugeye voltages to scale them to radiance values and the plot
is shown as a function of the angle of scatter from the incident solar
direction. The values from Griggs et al. are unsmoothed measurements
and display a wide variance. The curve through the points is an esti-
mate of the best fit. The bugeye values show the same trends toward
forward and backward scatter over the range of angles measured and the
scaled voltages generally lie within the scatter of the previous meas-
urements.

Figure 20 compares the 40° - 50° Arabian Sea bugeye measurements
with a x-1 pattern* generated from the results of Brennan and Bandeen
(1970) whose data were obtained over the Pacific Ocean from aircraft
at an altitude of about 12 km. Overall the bugeye measurements are
0.025 lower in the 0° - 70° nadir angle range and an r.m.s. difference
of 0.20was calculated. Much of the disagreement is found in the for-
ward and backward scattering directions which in this case may be
caused by significant differences in sea surface conditions. In fact
a positive difference of 1.07 is found in the region of the sun's glint
indicating that the feature is much less prominent in the Pacific Ocean
data. In addition, spectral differences must again be mentioned and
the presence of the dust-haze layer which was typical of the Arabian
Sea area during the pre-monsoon period. However, it is unlikely that

either of the last two features could account for the large discre-

pancies between the angular patterns.
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and Bandeen.
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The final comparisons are presented in Figures 2la and b again for
clear ocean scenes. In this case, however, the results from calcula-
tions by Plass et al. (1975) are used. Their Monte Carlo calculation
takes into account the effects of Rayleigh scatteriuyg and Mie scatter-
ing by aerosols as well as molecular and aerosol absorption in the
atmosphere. At the air-ocean interface the Cox-Munk wave slope dis-
tributions were used to determine reflection characteristics. In the
ocean Rayleigh scattering by the water molecules and Mie scattering by
the hydrosols as well as absorption by both were accounted for. The
calculation was carried out for a wavelength of 0.46 um. Figure 2la
compares the scaled bugeye radiance to the radiance calculated as
emerging from the top of the atmosphere for a solar zenith angle of 0°
and a wind speed of 10 knots. Figure 21b shows a similar comparison
for a zenith angle of 57°. The agreement between the trends in the two
cases 1is reasonably. good in view of the probable differences in aerosol
distribution, the spectral discrepancies and the fact that the computa-
tion is cloud free.

The comparisons given above are intended only as a sampling of
many more which could be made. The specific cases were selected with
no a priori information regarding the extent of the agreement with the
various x—l models obtained from the bugeye. It is highly umnlikely
that the cases selected offer the worst possible agreement with the
present data. Thus there is a high probability that many of the angu-
lar reflectance models examined may not be generally representative of
their respective, similarly described target types. Differences in
the spectral bandpass of the measurement and the altitude at which the

data were taken have been invoked as possible explanations for lack of



Comparison of cleor Arabian Sea data with calculated clear ocean
case for a solar zenith angle of O°and a surface wind of |0 knots.
60 a
T
1
73
¢}'| Sof A e ¢ ¢ BUGEYE MEASUREMENTS
E. a & & CALCULATIONS FROM PLASS etal.
v
£ ao}
g . . 1
S 3of
c
o
©
o
X 20F
o
Q2
3
] o
i L 1 1 N
o° lo* 20° 30° 40° s0°
Observation Nadir Angle
for ¢ = O°
Figure 2la. A comparison between normalized radiances re-

flected from the clear Arabian Sea measured by
the bugeye for a 0-10° solar zenith angle range

and a calculation of the same quantity by Plass
and Kattawar.

€9



(watts -M-2-SR-1)

Scaled Radiance

Comparison of clear Arabian Seo data with calculated clear oceon
cose for o solar zenith angle of 57°and o surface wind of 10 knots
A
100} * ¢ ¢ s BUGEYE MEASUREMENTS
90} a a CALCULATIONS FROM PLASS etal.
r'y
sof ¢
70t
[ ]
60}
F Y
5o}
40} b
A
30}- [
20f
10}
1 L L i L | S - i 1
0° 10° 20° 30° a0° 50° 60° 70° 80° 90°
Observation Nadir Angle

Figure 21b.

For ¢=O°

A comparison between normalized radiances re-
flected from the clear Arabian Sea measured by
the bugeye for a 50-60° solar zenith angle range

and a calculation of the same quantity by Plass
and Kattawar.

%9



65

agreement between the measured patterns. Most of the disagreement,

however, almost certainly results from the natural variability in the
radiances reflected from the earth-atmosphere scenes. Because of the
bugeye instrument's multi-sensor configuration it is possible to exam-
ine the nature of this variability for the atmospheric scenes studied

during the experiment. This discussion is included in Section 4.2.



4.0 IMPLICATIONS CONCERNING THE APPLICATION OF ANGULAR REFLECTANCE
MODELS ON A REGIONAL BASIS
Having obtained the average angular reflectance models over vari-
ous atmospheric scene types one could proceed to apply the various
models to satellite radiance measurements and compile reflected flux
densities. Before making such casual use of the models some note
should be made concerning the limitations of the models. Considera-
tions relating to the spectral characteristics and spatial convergence

behavior are given below.

4.1 Spectral Considerations

It has been pointed out in several instances that the spectral
response of the bugeye photodiode may have resulted in angular reflec- |
tance characteristics unique to some extent to the bugeye instrument.
Ideally measurements would have been made over the 0.2 - 4.0 um spec-
tral region and the resulting X—I models would be most properly applied
to radiance measurements in the same spectral interval. Because of the
limited spectral response of these measurements and the temptatiomn to
apply the models to operational satellite data which are even more
spectrally constrained (see Figure 22) some method of conversion is
dictated. Smith et al. (1981) indicate that GOES-1 0.5 - 0.9 pm radi-
ance measurements may be converted to GOES-1 0.3 - 4.0 um broadband
measurements by using simple linear regression coefficients which are
target specific. They indicate r.m.s. errors in inferred reflectance
of less than 1% using the simple model. A similar attempt was
made to convert bugeye directional reflectance to the 0.3 - 3.0 um

directional reflectance measured by the Eppley instruments on the

66
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CV 990. 1In this case averages of the directional reflectance measured
by both instruments were taken over a given scene type based on the
total data set for the scene. Usually this resulted in computing a
bugeve directional reflectance from the set of average bugeye radiances
compiled at over 100 angular positions.

Table 3 lists the bugeye and Eppley measured directional reflec-
tance values for various scene types. Although there are not enough
data to regress the directional reflectances one on the other for each
scene type it is possible to construct a single linear regression model
using all pairs regardless of scene type. The result of this regres-
sion is shown at the bottom of Table 3. The r.m.s. error figure is
quite large and when computed separately by scene type indicates that
errors of 10% in the inferred 0.3 - 3.0 um reflectance are common using
this scheme and that a 30% error may be incurred in a few cases. It
must be reiterated that these comparisons are being made between aver-
age directional reflectance values collected over a region and that
several target types for various solar zenith angles have been in-
cluded. Thus, although Figure 6 indicates that a simple regression
may be valid over a particular scene type a universal application is
not advisable,.

Given a conversion relation between 0.4 - 1.0 um and 0.2 - 4.0 um
directional reflectance values one could conceivably construct similar
relationships between the bugeye reflectance measurements and those of
the TIROS-N or GOES-1 channels. A two step transfer from operational
reflectance values first to bugeye directional reflectances and then to
broadband directional reflectances might then be affected. Such a

procedure, however, does not appear feasible at this stage. Thus,



Solar Zenith Desert Ocean Himalaya Indian Middle & Low Cloud Altostratus
Angle Range DR, DR, DR, DR, DR, DR, DR, DR DRy DR, DR DR,

0° - 10° .26 .24 04 .07 15 .14 .25 .31

10° - 20° .26 .30 .04 .09 .22 .26 .13 .13 .23 .30 .19 .23
20° - 30° .24 .28 .06 .09 .28 .32 .13 .19 .33 .41 .22 .38
30° - 40° .26 .31 .05 .10 12 .14 .19 .23 .26 .30
40° - 50° £27 .32 .06 .09 .33 .41

50° - 60° 30 .35 .10 .11

60° - 70° .30 .38

70° - 80° .34 .48

DRE = 1.17 * DRB + .015, Correlation coefficient = .96, r.m.s. error = .034

Table

3. The directional reflectance values measured by the bugeye and the Eppley 0.3 - 3.0 um

pyranometer for various scene types-.(top) and the linear regression relation between
the directional reflectance values (bottom).
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application of the present results to operational satellite data must
rely upon the approximate similitude of the )(—l patterns among the var-
ious filter functions involved and an independent satellite calibration.
The assumption that the similitude among X-l functions is more reliable
than correlation among the filtered reflectances may be examined if
only approximately. First, a filtered bidirectional reflectance (BDR)

is defined as

fn(e, ¢, N) £,00) dr

- A ;
BDRi(6,¢) =

cos z * on()\) £, ax
A

where fi(k) represents the ith filter function, EO(A) the incident
solar radiation and the remaining symbols retain their previous mean-

ings. The corresponding directional reflectance is given by,

DRy = “/fBDRi(e,¢) cosf dQ

1]

f(fN(e, ¢, A) £.(R) d)\) cosf dQ
_ a2\ i

cos z J/EO(X) fi(l) dA

A
The corresponding angular reflectance model x;1(9,¢) is given by

L B fu(e, 8 M) £,(0) )
Xi (e,(b) h )\

v/ﬂ Jfﬁ(e, $, A) fi(k) dA] cosb d

Q \A
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If it is assumed that the radiance N(0,¢,)) may be approximated as the

product of a function of angle A(8,¢) and a function of wavelength W(A),

then the expressions above reduce to:

BoR, (8,0) = A(0® Wy 44

cos z /EO(A) £,0) d
\

W Mi / A(9,9) cosb dR

DR, = L ’
i cos z * /EO(J\) £,00 dA
A
_ S W, DX, A, (6,9)
and X4 1 (6,¢) = T 1 114

Wi Mg /A(e,¢) cos® dQ
Q

_ T A (8,0) ,
}( A (0,¢) cosb dQ
Q

where'ﬁi represents the filtered mean of Wi(k). Under these assump-
tions x_l is no longer dependent on the type of filter function used
in the measurements. However correlations among BDR values or DR val-
ues still depend on the extent to which a relationship exists among the

Wi weighted means.

4.2 Spatial convergence of the angular reflectance models

If angular reflectance models are to be used to infer flux densi-

ties on a regionmal basis (250 - 1000 km) it is important to assess how
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rapidly the models converge to the respective mean patterns. An exam-
ination of the rate of the convergence is made possible because of the
multi-sensor design of the bugeye instruments. The convergence charac-
teristics of the various models were examined by performing the follow-
ing numerical experiment. For a particular target scene type an angu-
lar array of average normélized radiances was compiled subject to the
same maximum—minimum criteria described in Secticn 2.3 The dinstanta-
neous radiance measurements were normalized by the upwelling (0.3 - 3.0 um)
irradiance which was simultaneously measured by the Eppley pyranometer.
The resulting angular array is thus proportional to the average of a
large number of instantaneous samples of the x_l pattern. The result
is an unsmoothed, partially filled, non-symmetric field which is the
most representative version of an angular model for the specific target
which can be obtained from the present data. Having established the
mean pattern, the sequence of measurements is then entered at a random-
ly selected point and a running mean computation is begun ét each of
the angular positions for which at least 30 data points exist for ex-
amination. The computation continues and establishes the number of
points required at each angular position such that the fractional dif-
ference between the running mean and the true mean is less than 5%.

The number of data points needed to achieve this error threshold is
recorded for each angular point. This process was repeated for 100
different random entries into the data set and the average and standard
deviation of the number of points needed for convergence computed at
each angular position. Finally a number weighted mean of the latter
two quantities was taken over all angular positions as an indication

of the convergence properties of the data set as a whole. These
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results are shown in Table 4 for each scene type. Also shown in the
last column is an equivalent distance corresponding to the length of
the total data sample.

In general the results of Table 4 support the premise that angular
reflectance models are a useful tool for diagnosing the reflected flux
density over a fairly large region. The indications are that on the
averége a maximum from 5-28% of the total region must be sampled in
order to insure that the normalized radiance measured at a particular
angular position is representative of the average of the same quantity
taken over the region as a whole. The standard deviation of this
number taken over the 100 trials does indicate however that in most
cases (except fof.the'desgrt and ice) the convergence fraction is quite

variable, and assuming a normal distribution of the convergence fig-

ures, high confidence of convergence requires over half of the data

.

set to be sampled.

It mﬁst be pointéd out- here that it is difficult to avoid biases
in the results of Table 4 due to samples collected over small spatial
scales, since the comparison was made for every angular position at
which at least 30 measurements had been made. No attempt was made to
differentiate between cases in which the measurements were taken con-
secutively over a small space scale and those cases in which the mea-
surements were taken non-consecutively over a much larger space scale.
The number weighting of the various fractional convergence values cer-
tainly diminishes the possible effect of such a bias but in order to
insure that this influence is minimized, the mean fractional values
should certainly not be used to infer convergence over space scales

larger than the equivalent distance given in the table.



Solar Mean Standard Equivalent

Scene Type Zenith Fraction of Deviation Length in
Angle data needed of the km of the
Range for conver- fraction entire data
gence needed for set

convergence

Desert 0° - 10° 0.03 0.04 400

" 10° - 20° 0.04 0.06 1100

" 20° - 30° 0.03 0.04 700

" 30° - 40° 0.09 0.11 1000

" 40° - 50° 0.01 0.02 1200

" 50° - 60° 0.02 0.03 1000

" 60° - 70° 0.04 0.07 675

" 70° - 80° 0.04 0.05 500

Himalaya 10° - 20° 0.18 0.20 220

" 20° - 30° .22 0.21 100

Clear Ocean 0° - 10° 0.14 0.14 800

" " 10° - 20° 0.17 0.19 1200

" " 20° - 30° 0.21 0.21 1100

" " 30° - 40° 0.23 0.22 900

" " ) T 40° - 50° 0.13 0.16 1200

" " 50° - 60° 0.20 0.18 600

Indian Subcontinent 0° - 10°° 0.09 0.09 250

" ' " 10° - 20° 0.13 0.13 275

" Y 20° - 30° 0.05 0.07 450

" " 30° - 40° 0.04 0.06 400
Altostratus 20°-- 30° 0.28 0.23 175
" 30° - 40° 0.12 0.14 275

" 40° - 50° 0.19 0.20 150
Broken Cloud 0° - 10° - - -
" " 10° - 20° 0.14 0.17 175

" " 20° - 30° 0.19 0.20 150

" " 30° - 40° 0.16 0.19 100

" " 40° - 50° 0.28 0.23 25

Ice 50° - 60° 0.03 0.04 500

Table 4. The mean and standard deviation of the fraction of the total
data sample required for convergence to within 5% of the mean
angular reflectance model for the various scene types.



75

These results may be taken one step further, to search for angular
viewing coordinates which display minimum convergence fractions. This
exercise was carried out for all of the angular models presented in
this study. The results may be briefly summarized by stating that no
angular regions were found which displayed the preferred convergence
statistics. Figures 23-29 are presented which show the fractions of
the data samples required for convergence as a function of observation
nadir and relative solar azimuth. These plots are typical of those
which pertain to the remainder of the angular models. It should be
noted that there is no reason to expect continuity in the convergence
arrays as evidenced by the contour behavior across the principal plane.
The convergence arrays were finally averaged with respect to the rela-
tive azimuth angle to examine their variation with nadir angle. Only
in a few instances did a particular nadir angle exhibit convergence
fractions which deviated by more than a few hundredths from the frac-
tions listed in Table 4. Thus, there appears to be little reason to
anticipate the existence of angular positions at which the angular

reflectance models show preferred spatial convergence behavior.
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Figure 28.  The fraction of the total data sample required
for convergence to within 57 of the mean dis-
played as a function of observation nadir and
relative azimuth for the 30-40° solar zenith
angle altostratus cloud case.
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Figure 29. The fraction of the total data sample required
for convergence to within 5% of the mean dig-
played as a function of observation nadir and
relative azimuth for the 50-60° solar zenith
angle ice field case.



4.3 ‘Optimal Viewing Angles for Flux Density Inference Based on
Application of Angular Models in a 1, 2 or 3 Satellite System

The previous section concluded that the rate of spatial conver-
gence displayed by the measured radiances was essentially independent
of angular coordinates. This conclusion was based on an examination of
the behavior of the cumulative or running mean of the normalized .radi-
ances as a function of angle. There is yet another criterion which
may be invoked to categorize a particular observation coordinate as
optimal, namely the absolute magnitude of the error between the instan-
taneously inferred reflected flux density and the scene average of the
same quantity. This absolute difference is related to the variance of
the radiances evaluated over the scene and the vériation of the ab-
solute error as a function of observation angle is useful under the
following ciréumst;nces. First, if inferences of reflected flux densi-
ties must be made over a space scale smaller than those established in
the previous section it would be preferable to utilize radiances for
which the magnitude of the absolute error is minimized. Second, if
more than one observatién platform is available, negative correlations
may exist between or among the errors in the inferences made at two or
three angular coordinates which may dictate preferences in pairs or
triplets of nadir or relative azimuth positioms.

In order to examine the possibility that optimum angular coordin-
ates exist under these circumstances the following numerical experiment
was performed. The mean x~1 pattern was obtained for a particular re-
flecting target in a specified zenith angle range. The data were left

in an asymmetric form so that taken over the entire scene, E =

N(B, ¢, z) * i (6, ¢, z) * T, where the overbar indicates taking the
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scene average. The r.m.s. deviation 6(8, ¢, z) between E and
E (09, ¢, z) was evaluated using all measurements acquired over the
scene, where E (0, ¢, 2z) is the reflected flux density inferred from
the instantaneous radiance measurement N(6, ¢, z) through the mean
x(6, ¢, z) model. The deviations were analyzed in the following manner
primarily with geostationary satellite applications in mind. For a
particular type of surface the deviations were averaged over all rela-
tive azimuth and solar zenith angles to proauce nadir dependent devia-
tions 66. Likewise an average over»all nadir and solar zenith angles
was taken to form deviations 6¢ which depend only on the relative
azimuth angle. For the case of an inference made from a pair of satel-
lites the pertinent -statistic is the deviation between the actual scene
averaged reflected flux density and the average of the inferences made
by the two observations [ﬁ (61, ¢1, z) + E (62, ¢2, z]/2. This r.m.s.
deviation is denoted by 6(61 62, ¢1 ¢2, z); 1ts value when averaged
over all pairs of relative azimuths {¢i¢j} and over all solar zenith
angles is denoted by 66,8,’ and when averaged over all pairs of nadir
angles {6182} and all szlir zenith angles by 6¢1¢2. In a similar way
it is possible to construct the statistics 66_9_9 and 6¢‘¢‘¢ for the
ijk i'j'k
case of an inference made from three satellites.

Although the data were originally stratified into 10° nadir and
relative azimuth resolutions, for practical reasons three nadir
stratifications were considered, 0° < 6 < 20°, 20° < 6 < 50° and 50° <
6 < 70° hereafter referred to as low (L), medium (M) and high (H)
regimes. The original 36 relative azimuth stratifications were de-
graded to six 60° sectors; the first sector was centered on the solar

azimuth so that it extends from -30° to + 30° in relative azimuth and



the second through sixth sectors were numbered in a clockwise sense
looking down on the scene. When calculating the values which apply to
the multiple satellite system, combinations of inferences which involve
identical pairs or triplets of a particular observation angle (nadir

or azimuth) on the 10° resolution scale were not allowed. Thus, it is
possible to calculate a value for GLL comprised of data taken at 0 -
10° and 10 - 20° nadir angles but 6LLL is excluded since this would re-
quire a pairing of one of the nadir ranges 0 - 10° or 10 - 20°. Note
‘that GMMM is allowed which would be comprised of the average of the in-
‘ferences made at 20 - 30°, 30 - 40° and 40 - 50°.

The results of the analysis are shown in Figures 30 through 36 for
the various types of reflecting surfaces. Table 5 presents the aver-
age values of the deviations made with a one, two or three satellite
system. The left half of each of the figures depicts the behavior of
~the deviations with nadir and the right side shows the azimuthal de-
-pendencies. All values are presented as percentages of the 0.3 - 3.0
ym reflected flux density. The order of the inference, i.e. the number
-0f different angles involved in the inference increases from the top
‘to the bottom of each figure. Single position deviations are repre-
sented as a row vector, double angle deviations by a symmetric array
and triple position deviations by the 'upper' (i > j,k) portion of a
.symmetric three dimensional array. Values which are not allowed be-
cause of duplication of the indices at the 10° resolution scale are
indicated with a dash (-), and in cases for which insufficient data

exists to perform the calculation the letter M is used to indicate the

missing entry.
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Deviations between measured and inferred reflected
flux density for the desert

NADIR DEPENDENCE AZIMUTHAL DEPENDENCE
SUN
330° 30°
6 2
270°
L 50°
oo 20°

L M H |

89 5.1]5.7]4.9 5.115.5|5.2]52]48{54 8¢

SINGLE OBSERVATION CASE
i 2 3 4 5 6
3.0]3.1]3.0]2.9{2.9}3.1

L M H 2|31]3.1{3.0|2.9]|3.0]3.2
L|3.0|3.2[27 3{3.0{3.0|2.8|28|2.9(3.0

895 g, m[32|3s6 3.0 al29|29]28|26|2.8|30 843.- 95j
Hi2.7|3.0[2.5 5|2.9[3.0|29|28]2.8]3.0
6|3.1]3.2|30(3.0/30]3.2

DUAL OBSERVATION CASE

The nadir and azimuthal dependence of the r.m.s. devia-
tions between average measured 0.3 - 3.0 pm reflected flux
density and the inference of the same quantity made from
1, 2 or 3 instantaneous radiance measurements over the
‘desert expressed as a percent of the average reflected

flux density.

Figure 30.
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Figure 30.

(Continued).



Deviations between measured and inferred reflected
flux density for the Himalayas

NADIR DEPENDENCE

AZIMUTHAL DEPENDENCE

330°

SUN

300

5 3
L 50°
o 20° 210° 150°
L M H I 2 3 4 5 &
89 14.6[19.0123.4 224419.3|20321.7}20421.4
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Il 2 3 4 5 6
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Lim |13.i[148 30148)i5.2(14.8[14.4[14.9(16.7
8 5
8, Qj‘ M[i3.1]13.2]154 41147(14.0{144(15.7|16.4[15.0
H[14.8[i54]17.1 5i6.7)156 |14.9i64{I7.0/I7.9
616.3|12.4(16.7/15.0]17.9| —

Figure 31.

DUAL OBSERVATION CASE

90°

Sy b,

The nadir and azimuthal dependence of the r.m.s. devia-
tions between average measured 0.3 - 3.0 um reflected

flux density and the inference of the same quantity made
from 1, 2 or 3 instantaneous radiance measurements over
the Himalayas expressed as a percent of the averaged re-

flected flux density.
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(Continued).
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Deviations between measured and inferred reflected
flux density for the ocean

NADIR DEPENDENCE AZIMUTHAL DEPENDENCE
SUN
330° 30°
6 2
270° 90°
5 3
4
L 50°
o 210° 150°
o° 20
L M _H | 2 3 4 5 6
89 [326f40.0340) 21.4|33.9[35.3J40.341 9|34 6 Sc,b

SINGLE OBSERVATION CASE
| 2 3 4 5 6
16.7]18.6|18.5|17.9]20.616.9

—
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89,- g, m|9.7|225[206 a|7.9]19.6/19.3]197]22.4176|0, P,
H|18.0[206/18.9 5 20.6[23.2021.7[22.6(25.6[207
6|l6.9}18.2{19.2|I76]207|16.7

DUAL OBSERVATION CASE

Figure 32. The nadir and azimuthal dependence of the r.m.s. devia-
tions between average measured 0.3 - 3.0 um reflected flux
density and the inference of the same quantity made from
1, 2 or 3 instantaneous radiance measurements over the
clear ocean expressed as a percent of the average reflected
flux density.
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Figure 32.

(Continued).
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Deviations between measured and inferred reflected
flux density for the Indian subcontinent

NADIR DEPENDENCE AZIMUTHAL DEPENDENCE
SUN
330° 30°
6 2
270°

wQ
o 20
L M _H l
Sg 5.2|5.8[6.2 65
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I 2 3 4 5 6
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H|35{35]a7 5/36|35[35|34|38|31
6[35[34(35(3.1(3.1]33

DUAL OBSERVATION CASE

The nadir and azimuthal dependence of the r.m.s. devia-
tions between average measured 0.3 - 3.0 um reflected
flux density and the inference of the same quantity
made from 1, 2 or 3 instantaneous radiance measurements
over the Indian Subcontinent expressed as a percent of
the average reflected flux density.

Figure 33.
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Deviations between measured and inferred reflected
flux density for the cloud | case

NADIR DEPENDENCE AZIMUTHAL DEPENDENCE
SUN
330° 30°
6 2
270° 90°
5 3
4
L 50°
o 210° 150°
0 20
L M H t 2 3 4 5 &
89 146|15.71155 15.2115.915.2]15.3|16.0/15.0 qu
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Figure 34. The nadir and azimuthal dependence of the r.m.s. devia-

tions between average measured 0.3 - 3.0 um reflected flux
density and the inference of the same quantity made from

1,

2 or 3 instantaneous radiance measurements over middle

and low level clouds expressed as a percent of the average

reflected flux demsity.
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Deviations between measured and inferred reflected
flux density for the cloud 2 case

NADIR DEPENDENCE AZIMUTHAL DEPENDENCE
SUN
330° 30°
6 2
270° 90°
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1 {17.5§15.815.9{14.5{14.5]17.3

LM H 2[158]164)16.7(15.2}14.416.0
L{ M [15.7]6.1 3|is.9(167 |15.3(14.6[15.0{16.7

89; g, Mmlis7 14.5]15.5 414.5)15.214.614.1 i3.5/14.4 8¢i P
H|16.1[15.515.6 5114.5(14.4/15.0(13.5/13.3/14.4
6(17.3|16.0]I6.7|14.4{14.4]16.1

DUAL OBSERVATION CASE

Figurc 35. The nadir and azimuthal dependence of the r.m.s. devia-
tions between averaged measured 0.3 - 3.0 um reflected
flux density and the inference of the same quantity made
from 1, 2 or 3 instantaneous radiance measurements over
altostratus clouds expressed as a percent of the average
reflected flux density.
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Figure 35. (Continued).
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Deviotions between measured and inferred reflected

flux density for ice

NADIR DEPENDENCE AZIMUTHAL DEPENDENCE
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Figure 36. The nadir and azimuthal dependence of the r.m.s. devia-

tions between average measured 0.3 - 3.0 um reflected flux
density and the inference of the same quantity made from
1, 2 or 3 instantaneous radiance measurements over ice
expressed as a percent of the average reflected flux

density.
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Surface Type Number of solar Average deviation inferred vs measured flux density
zenith angles

One Satellite Two Satellites Three Satellites
Desert 8 5.2% 3.0% 3.07%
Himalaya 2 19.0% 14.7% 13.2%
Ocean 6 35.5% 19.3% 17.5%
Indian Sub. Con. 4 5.7% 3.5% 3.1%
Cloud 1 6 15.3% 12.1% 10.9%
Cloud 2 3 24.3% 15.5% 12.7%
Ice 1 6.8% 3.7% 2.9%

Table 5. The r.m.s. deviation between inferred and measured, scene averaged reflected flux
density averaged over all observation angles and solar zenith angles.

L6



The results of this analysis reinforce the assumption that cer-
tair reflecting surfaces are spatially homogeneous with respect to re-
flected flux density. The smaller values of the deviations evident in
the desert, Indian subcontinent and ice scenes indicate that inferences
made from one or two instantaneous radiance measurements would result
in an error of only a few percent in the average scene reflected flux
densities. Little additional reduction in the error results if a third
platform is used. For these spatially homogeneous surfaces the ice
case indicates the greatest dependence on observation geometry, where
in the single observation geometry intermediate nadir angles and small
relative azimuth angles are indicated as the poorest observation posi-
tions based on the minimum variance criterion. It should be pointed
out however that the data collected over ice were limited to a single
solar zenith angle range (50 - 60°) while an average over four and
seven zenith angle ranges has been included in the respective Indian
subcontinent and desert cases. It is certainly possible that inclu-
sion of several zenith angle cases especially obscures nadir angle
preferences. Neverthelesé, because observations taken from geo-
stationary satellites over a diurnal period will include a range of
solar zenith angles, the averaging process over that variable seems
justified.

The most spatially inhomogeneous surface type based on the pre-
sent results with respect to reflected flux density is that of rela-
tively unobscured ocean. The maximum deviation is nearly 42% of the
total average reflected flux density; a :esult which seems initially to

cast doubt on the feasibility of flux density inference. However, two
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aspects of this analysis may act to restore confidence in the procedure.
First, the reader is reminded that the value is an r.m.s. calculated
deviation and does not benefit from fluctuations about the mean with
inclusion of more than a single measurement in time, and while a devia-
tion of 40% seems high, 84% of the variance is explained in this worst
case example. Second, the magnitude of the deviation includes all of
the variance due to spatial differences in the reflected flux density,
i.e. even if instantaneously measured flux densities were used to infer
the scene average an r.m.s. deviation of 12% would result from spatial
fluctuations over the distance pertaining to the data set (v 1000 km).
The results of the clear ocean case indicate a much stronger dependence
on observation geometry. In the single observation platform case the
deviation is reduced from 40% to 32.6%Z when the nadir regime is changed
from the middle to lower ranges. The best relative azimuth position
was found to be in the solar direction where the deviation was equal to
half of the worst case value. The clear ocean case benefits greatly
from an additional observation platform, the average of the deviations
falling from 35.5% to 19.3% of the average total reflected flux den-
sity. With the addition of the third observation this figure is re-
duced further to 17.5%. When a pair of observations are available

both should be made at small nadir angles while using two observations
at intermediate nadir angles should be avoided. The two satellite
azimuthal dependence shows the persistence of small deviations when

one or both observations_ are made toward the sun, however relative
azimuths between 270° and 330° also result in deviations of equal
Azimuthal observations between 210° and 270° increase the

magnitude,

best case deviation by a factor of 1.5. If three nadir observations



are available the smallest deviation values result when inferences from
intermediate nadir angles are avoided and in the azimuthal sense, opti-
mum results are indicated in general for all measurements between 23%0°
and 30°.

The lack of symmetry displayed in the azimuthal deviations is
somewhat unexpected and may have resulted from two factors. First, an
asymmetric distribution about the principal plane of low level, fair
weather cumulus cloudiness could have introduced this behavior. Exam-
ination of the photographic record indicates that the low level clouds
are randomly distributed about the principal plane. However, the
photographs were limted by a 41° full angle field of view lens. Thus,
it was not possible to examine the entire scene measured by the bugeye
detectors from the photographic data. Second, since the measurements
taken at a particular relative azimuth angle were not necessarily taken
consecutively due to changes in aireraft heading, variations due to
changes in sea state may have been introduced into the data set in an
asymmetric manner. As was done in the presentation of the average xﬂl
models, the most generally applicable set of deviations may result
from a simple average of the values with respect to the principal
plane.

The results given in Table 5 for the Himalayas indicate a sub-
stantial improvement (19% to 13.2%) in the average deviation figures
as the number of observation platforms is increased from one to three.
In the single observation case small values of the nadir are indicated
while no clear azimuthal preference emerges. When two measurements
are available for the inference the preference for small nadir angles

persists and a slight tendency toward intermediate relative azimuth
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measurements is evident. An increase to three measurement platforms
shows a persistence of increased deviation values at large nadir angles
and an increased trend toward preferred low and intermediate relative
azimuth angles.

The average deviation decreases from 15.3% to 10.9%Z if the number
of observation positions is increased from one to three in the middle
and low level cloud case. A slight improvement is indicated for single
measurements made at intermediate nadir angles but the deviations are
almost invariant with relative azimuth. The smallest deviations in
the multiple observation case as a function of nadir occur when low
and intermediate nadir measurements are combined. The results also
indicate multiple observations should exclude measurements in the
solar direction.

The altostratus cloud case also demonstrates the general improve-
ment in the inference process with an increase in the number of ob-
servational positions, the average deviation decreasing from 24.3% to
12.7%. A slight improvement is seen at large nadir angles in the
single observation case and intermediate nadir angles are indicated if
more than one observation position is available but only by about a
one percent reduction in the deviation values. The azimuthal depen-
dence shows a 77 reduction in the deviation if the altostratus deck is
observed between 210° and 270° rather than between the 90° to 150° re-
lative azimuth sector. This asymmetric behavior is difficult to ex-
plain but may be the result of the alignment of the small convective
cells with respect to the solar geometry, or asymmetric distributions
of small breaks in the cloud structure. The azimuthal dependence for

the case of two observation positions indicates that combining



inferences made from relative azimuths between -90° and +30° lead to
the largest deviations. This tendency is also evident for the case
when three observations are used in the inference.

In summary the results of Table 5 indicate that for relatively
homogeneous surfaces, little improvement is gained with the addition
of a third observation platform and for the most inhomogeneous cases
the trend in the reduction of the average deviations indicates that
addition of a fourth observation position may not be warranted. The
breakdown of the deviations as a function of observation geometry in-
dicates that appreciable reduction in the deviation value is possible
in some instances by choosing the appropriate observation angle(s),
however, in many cases a clear indication of the optimal position(s)
was not revealed by examining the r.m.s. deviations. Also, it must be
noted that the choice of the deviation between measured and inferred
flux densities as the basis of the analysis is somewhat arbitrary. It
is not to be implied that the values presented in Figures 30 through
36 are typical of the errors which would be made in an operational
sense. Rather, this statistic was chosen as representative of a worst
case inference process for it represents the magnitude of the error
which would be made if the reflected flux density of a large region
were inferred from an instantaneous sampling of the radiance field.
Also, the slight trends indicated by Figures 30-36 may be even less
significant in the operational mode when an average of many data points
is available to affect the inference.

Finally, it is noted that the best single observation coordinate
for a specific surface in terms of a observation nadir, relative azi-

muth and solar zenith angle has been obscured in the averaging
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processes which led to the results in Figures 30-36. Table 6 presents
the best case inference for each of the surface types. The angular
resolutions are those of the original analysis i.e., 10° in the solar
zenith, 10° in observation nadir and 30° in relative azimuth. The
results of Tahle 6 indicate substantial improvements in the inference
are possible if specific observation positions could be achieved.

4.4 TImpact of the Angular Reflectance Models when Applied to a
Climatically Significant Region

We stress during this report that the angular reflectance patterns
are characteristic of regional scale atmospheric scenes. The conver-
gence properties and optimum angular viewing coordinates have been ex-
amined in relation to. an extended space scale. In this section the
models are applied to a climatically significant region in order to
assess their impact on the reflected flux density. Green (1980) has
shown that improper modeling of the directional features of reflected
radiation may lead t6 errors of up to 5 wat:ts-m_2 in the average re-
flected flux density over a 10° zone of latitude. This error resulted
when measurements of the reflected radiance fields were simulated
assuming isotropy and compared to a simulation which accounted for the
angular anisotropy. The simulated field of view associated with the
5 watts-nf9 error was over 40° half angle and the angular anisotropy
was introdiuced using a bidirectional reflectance function3 which was
independent of latitude, longitude and surface type. Greater correc-

tions mav result if target specific reflectance functions are applied

. -1
3The bidirectional reflectance function is equivalent to X /.



Solar Zenith Observation Nadir Relative Azimuth R.M.S. deviaticn ex-
Target Type Angle in Degrees Angle in Degrees Angle in Degrees z;eiszdm:znar£§§§§22d

flux density
Desert 40 - 50 20 - 30 60 - 90 1.0
Himalayas 20 - 30 0 - 10 330 - 360 15.7
Ocean 50 - 60 20 - 30 300 - 330 1.6
Indian Subcontinent 10 - 20 60 - 70 180 - 210 2.0
Cloudl 30 - 40 0- 10 120 - 150 7.3
Cloud2 30 - 40 20 - 30 180 - 210 7.0
Ice 50 - 60 60 - 70 90 - 120 1.1

Table 6. The best observational position for a single platform inference and the resulting r.m.s. devia-
tion between the inferred and measured reflected flux density expresscd as a percent aof the
average 0.3 - 3.0 um reflected flux density.
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to measurements of a zonally inhomogeneous region by a scanning radio-
meter with a much smaller field of view.

The data used to compile most of the x-l patterns in this study
were collected over the region between 45 and 80° east longitude and
0 to 35° north latitude, hereafter referred to as the monsoon region.
The x_l patterns should be representative of this region which will
now be used to examine the sensitivity of reflected flux density to
application of the angular reflectance models. In fact, the compari-
son will be made using TIROS-N data collected on May 30, 1979, a date
almost halfway through the duration of Summer MONEX. Data from the
TIROS-N 0.55 - 0.90 um and 0.725 -~ 1.10 um channels were obtained from
four ascending orbits over the region between 9:30 and 12:00 z. The
sub-satellite resolution of a TIROS-N measurement in these spectral
bandpasses is about 1 km.

In order to apply the x-l correction to the TIROS-N data the
monsoon region was divided into 1400 area elements, their boundaries
formed by the whole number degrees of latitude and longitude. Each of
these elements was assigned one of five surface or target identifica~
tions as shown in Figure 37 which delineates desert, ocean, the Indian
subcontinent, the northern latitudes of the Himalayas and the coastal
regions. Each value of reflectance R measured by the satellite was
identified with a particular target type according to the latitude and
longitude of reflecting surface. The solar zenith angle z, nadir
angle of the reflected radiation 6, and relative azimuth angle ¢, were
computed, and for the ocean target, the angle B between the direction
of the measurement and the direction of the specular reflection from a

flat water surface were calculated. The angular patterns were then
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Figure 37. A depiction of the separation of the 'monsoon
region' (between 45 and 85° east longitude and
0 and 35° north latitude) into various surface
or target types for the application of the
angular reflectdnce 1) models.
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applied wherever appropriate to obtain corrected reflectance values
R' = Ri)(_l for each TIROS-N channel. In a few instances the angular
patterns were extrapolated and applied to solar zenith angle ranges
outside of the angular range over which they were measured, {primarily
for the Himalaya target). Also, whenever high reflectances indicated
obvious regions of cloudiness the Cloudl (middle and low level) model
was applied. A complete list of the exceptions and extrapolations to
the normal application of the angular models is given in Table 7.

The reflectance values were converted to their approximate flux
density equivalents through multiplication by the extraterrestrial in-
cident solar flux density in each spectral bandpass; 467 and 339
watts-m-2 respectively. Average values of measured (isotropic) and
corrected reflected flux density were calculated for each 1° x 1° ele-
ment comprising the region from 45 to 85° east longitude and 0 to 35°
north latitude. The averages were computed from about 500 measurements
in each area element. The difference between the reflected flux densi-
ties (measured minus corrected), was also calculated and is meaningful
only in what has been defined as the monsoon region since the correc-
tions were not applied outside that area.

The average measured, corrected and differenced flux density val-
ues are shown in Figures 38, 39 and 40 for TTROS-N channel 1 and in
Figures 41, 42 and 43 for TIROS-N channel 2. Note that negative flux
density corrections imply that the application of the x-l models has
resulted in relatively greater values of reflected flux density and
positive values indicate that the original measurements were larger.
The signs of the differences are appropriate for the additional flux

density absorbed in the earth-atmosphere system for each area element



Surface Type(s) Criterion for Alternate Procedure Alternate Procedure

All z > 80° R' =R
All 6 > 70° R' = R
Coastal R < 0.20 R' =R
R >0.20 and z < 50° Cloudl)(_1 pattern used
R > 0.20 and z > 50° R' =R
Himalayas R < 0.40 R' = R
R > 0.40 and z < 10° Himalaya x_l pattern for 10 < z < 20° used
R > 0.40 and 30° § z < 40° Himalaya X-l pattern for 20 < z < 30° used
R > 0.40 and z > 40° R' =R
Ocean R > 0.15 and B > 30° Cloudl x-lpattern used
R < 0.15 and 60° < z < 70° Ocean )(—l pattern for 50° < z < 60° used
Indian Subcontinent R >0.25 and 0° < z 60° Cloudl x-l pattern used
R > 0.25 and 60° < z R' = R

Table 7. The criteria for and specification of alternate procedures in applying the angular reflectance
correction functions.



Figure 38.

Values of reflected flux density (watts-m—z) agssociated with TIROS-N 0.55 - 0.90 ym reflec~
tance measurements on 30 May 1979 using the isotropic assumption over the region between
30 - 100° east longitude and 0 - 35° north latitude.
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Figure 39. Values of reflected flux density (watts'm-z) associated with TIROS-N 0.55 - 0.90 um refiec~-
tance measurements on 30 May 1979 resulting from application of the angular reflectance (x~1)

models over the 'monsoon region'.
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Figure 40.

Values of the differences between isotropically inferred reflected flux density (watts-m-z)
and the same quantity derived from application of the angular reflectance (x~1) models to
TIROS-N 0.55 - 0.90 um reflectances on 30 May 1979 over the 'monsoon region'.
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Figure 41. Values of the reflected flux density (watts-m-z) associated with TIROS-N 0.725 - 1,10 um
reflectance measurements on 30 May 1979 using the isotropic assumption over the region be-
tween 30 - 100° east longitude and 0 - 35° north latitude.



Figure 42. Values of the reflected flux density (watts-m-z) assoclated with TIROS-N 0.725 - 1.10 um

reflectance measurements on 30 May 1979 resulting from application of the angular reflec-
tance (x‘l) models over the 'monsoon region'.
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Figure 43. Values of the differences between isotropically inferred reflected flux density (watts-m_z)
and the same quantity derived from application of the angular reflectdnce (x~1) models to
TIROS-N 0.725 - 1.10 um reflectances on 30 May 1979 over the 'monsoon region'.
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of latitude and longitude which results from application of the angular
modgls. Note also that if it 1is assumed that the values of reflectance
in these spectral regions are representative of the entire solar spec-
trum, and if the same assumption is applied to the x-l models the
magnitudes of the flux density corrections would be 3 or 4 times larger
than the values calculated for the respective TIROS-N channels 1 and 2.
Fiéures 38 through 43 indicate that the largest flux density cor-
rections result for the convective regions of the equator, the two
convective centers in southern India. and one convective region in
southern Pakistan. Since the Cloudl x-l pattern was used to interpret
the radiances reflected from these convective elements it is certainly
possible that thé inferred flux demsities are in error. {1t was not
possible to measure reflectances from the highest clouds from NASA's
CV 990 aircraft.) What is not obvious in Figures 38-43 are the cor-
rections of smaller magnitude but which are nevertheless just as or
more important because they apply to a much larger area. In order to
assess the impact of these less obvious corrections to the reflected
flux density, an area weighted average correction was calculated for
the different target types comprising the monsoon region. The highly
convective regimes were excluded from the weighted average in order to
maximize the impact of the corrections of smaller magnitude which re-
sult from application of the angular models that are most representa-
tive of the regions. Using the average zenith angle for the region
to determiné the incident flux density, an approximate directional re-
flectance, corrected directional reflectance and change in directional

reflectance were calculated and the results are shown in Table 8 for



Magnitude of

Isotropically Inferred - Corrected Directional Reflectance

Target Type Directional. Reflectance Directional Reflectance .
) Correction
Desert 31.3 33.5 -2.2
Himalayas 31.4 31.3 0.1
Ocean 12.9 14.4 -1.5
Coastal Regions 19.5 20.7 -1.2
Indian Subcontinent 1 24.5 27.2 -2.7
Entire Monsoon region 20.2 21.7 -1.5

Table 8. Directional reflectances inferred from TIROS-N 0.55 - 0.90 ym reflectances measured over the
monsoon region assuming isotropy (Column 1), the same quantity corrected with the angular
reflectance models (Columm 2), and the differences [isotropically inferred minus correctedl,

{Column 3).
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the 0.55 - 0.90 um channel. The results for the 0.725 - 1.10 um
channel are almost identical.

The results of Table 8 indicate that the overall effect of using
the angular reflectance models is to increase the directional reflec-
tance of the region over that inferred by the isotropic assumption.
Only in the northern latitudes of the Himalayas is the directional re-
flectance decreased. The magnitude of this decrease is small because
x- correction has been applied only to reflectances greater than 0.40,
which occurs only over a small fraction of the latitudes north of 30°N
latitude. The majority of the reflectances measured in these latitudes
are not corrected; thus the area averaging results in a small dif-
ference for the entire northern region. For the entire monsoon region,
application of the angular reflectance models increases the area aver-
aged directional reflectance from 20.2 to 21.7, an increase of 1.5,
which is significant for an area as large as the monsoon region. On
the space scale of the individual target types (1 v 7 x 106 ka) the
differences between correctéd and isotropically inferred reflected
flux densities are considerablé, especially if it is assumed that
similar corrections would apply over the entire solar spectrum. With
this assumption, the application of the angular models results in from
15 to 27 watts-m-2 of additional reflected flux density, depending on

surface type, which is typically over 10% of the total 0.3 - 3.0 um

reflected flux density.



5.0 SUMMARY AND CONCLUSIONS

The earth-atmosphere system gains or loses energy almost entirelvy
through radiative processes. Thus, predictions of climate trends will
almost certainly require an accurate accounting of the earth's radia-
tion budget. Earth orbiting satellites provide an ideal platform from
which radiative fluxes may be monitored due to their location above the
earth's radiatively active atmosphere. By using wide field of view
instruments, the net flux density may be measured at the satellite
pogsition, and long term {(monthly), zonal averages of the radiation bud-
get may be obtained. However, the problem is not as straightforward if
the net radiative input is required on a smaller time or space scale.
Sampling limitations imposed by the use of a small number of satellites
require that the budget be inferred from radiance measurements made by
scanning, narrow field of view instruments. This method requires some
type of angular reflectance model which allows target-specific radiance
measurements to be converted to emitted or reflected flux density val-
ues.

Using data acquired on high altitude (v 10 km) flights by NASA's
CV 990 aircraft during summer MONEX, thirty angular reflectance models
were compiled. Each model consists of the normalized, scene-averaged,
reflected radiance displayed as a function of observation nadir and
the azimuth angle taken relative to the direction of the incoming solar
radiation. The normalization factor is the quotient of 7 divided by
the scene-averaged reflected flux density. The models were stratified
according to the underlying reflecting surface and the value of the

zenith angle of the incident solar radiation. Eight models were
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compiled for the Empty Quarters of the Saudi Arabian peninsula, six
for the reasonably unobscured Arabian Sea, two for the Himalaya moun-
tains, four over the Indian Subcontinent and five over low and middle
level broken clouds. By including data from two ferry flights two
models were formed over the ice fields of Hudson Bay and three models
were compiled for the radiance reflected from altostratus clouds in the
Gulf of Alaska and near the California coast. The space scale of data
collection for each model was generally between 150 and 1000 km.

| The resulting angular reflectance models display many expected
characteristics such as the relatively isotropic nature of the field
of the radiance reflected from the Empty Quarters of the Saudi Arabian
Desert for small-solar zenith angles. However, one of the most aniso-
tropic reflectance patterns was found for the 70 - 80° solar zenith
angle desert case which displayed a pronounced forward peak almost cer-
tainly due to atmospheric scattering of solar radiation incident at
grazing angles. Also observed was the persistent sunglint feature of
a relatively unobscured, calm oceanic scene. However, patterns of
radiances reflected from fields of middle and low level broken clouds
indicate a significant amount of radiation backscattered toward the
direction of the incident solar energy for small solar zenith angles;
this may have resulted from reflection from the vertical boundaries of
the finite cloud elements. The angular reflectance patterns of alto-
stratus clouds also displayed a strong backscatter feature. In addi-
tion to reflectance from the small vertical proturberances of the cloud
deck, backscatter may have resulted from the presence of ice crystals
in the cloud. The scattering phase functions of ice crystals commonly

display enhanced scattering at large scattering angles.



The most important conclusion to be drawn from in-
spection of the angular patterns is that, in nearly
every case, reflected radiance fields display a
sufficient degree of anisotropy to conclude that
neglecting their angular variations would lead to
significant errors (10 - 100%) in the inferred flux
density, and that the anisotropy persists even when
the data are averaged over large geographic regions.

The resulting angular characeristics of the reflected radiance
fields were applied to three distinct problems related to the inference
of flux density. First, the spatial convergence properties of the
radiance fields were examined in order to establish minimum sampling
criteria which should be observed when using the angular models. Se-
cond, the radiances from the various scenes were analyzed in a search
for optimum angular sampling coordinates in a hypothetical situation in
which one, two or three satellites were available to make flux density
inferences. Third, the importance of applying appropriate angular
models for the inference of fiux denmsity was examined for the region
extending from the-Saudi Arabian peninsula to the Indian subcontinent
and from the equator to the Himalayan mountain range.

The spatial convergence study consisted of a repeated application
of a simple running mean technique to establish the fraction of a scene-
specific data set which was required for the radiance in a particular
direction to converge to within 5% of the scene-averaged mean radiance
in the same direction. The results indicated that for some scenes such
as ice, desert or a sparsely vegetated surface, convergence was achieved
after sampling a small fraction of the entire data set (£ 10%). How-
ever, for other scenes, such as clear ocean, clouds or the Himalayas,

a significant fraction of the entire data set (= 30%) was required for

convergence. The conclusion of this analysis is that,



121

scenes which tend to be isotropic also tend to be
spatially homogeneous while scenes which are ani-
sotroplc require substantial spatial sampling in
order to insure convergence to the mean pattern.
For example, the flux density reflected from a
1200 km segment of desert may be accurately in-
ferred by application of the mean angular model
to radiance data gathered along 25 km of the
segment. At the other extreme, scanning radio-
meter data along a 250 km track would be required
to adequately infer reflected flux density over

~ the same amount of clear ocean.

In order to search for optimum angular viewing coordinates, the
r.m.s. deviation between measured reflected flux density and the in-
stantaneously inferred value of the same quantity was used as a worst
case test statistic. Some scenes such as desert, sparsely vegetated
surfaces, broken cloud and altostratus cloud showed only a slight pre-
ference for any viewing coordinate. For other scenes such as ocean,
ice and the Himalayas proper choite of the nadir or relative azimuth
viewing coordinate significantly reduced the value of the test statis-
tic. For example, viewing the Himalaya scene at small rather than
large nadir angles reduced the deviation (expressed as a percentage of
the mean flux density) between measured and inferred flux densities
from 23 to 15%. No significant dependence on the azimuthal viewing
coordinate was found in the Himalayan scene. Over the ocean it was
found that inferences made from intermediate nadir angles gave the
poorest results and a definite preference was found for inferences made
looking toward the sun. The ice scene data also indicated that inter-
mediate nadir angles should be avoided. However, the largest deviation
as a function of relative azimuth occurred when inferences were made

loaking into the solar direction, exactly opposite the results for

clear ocean. The above analyses were carried out for hypothetical, one
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two or three satellite system and when averaged over all viewing co-
ordinates the test statistics reveal the most important finding of this
analysis;

a two satellite radiation budget monitoring system

is sufficient for inferring shortwave reflected

flux densities over desert, ice or sparsely vege-

tated surfaces. Mountainous or oceanic regions or

cloudy scenes benefit from a three satellite system.

However, the results of this study indicated that in

no case would the addition of a fourth satellite be

warranted.

Finally, the sensitivity of the reflected flux density of a region
to application of appropriate angular reflectance models was addressed.
Using TIROS-N data for the region extending from the Saudi Arabian pen-
insula to the Indian subcontinent and from the equator to the Himalavas,
appropriate angular reflectance models were applied to obtain corrected
reflected flux densities. Even after deletion of the effects of high.
clouds regional directional reflectances were increased by as much as
2.7% compared to values inferred using an isotropic assumption. For
the region as a whole, the area averaged directional reflectance was
increased by 1.5% due to application of the models. The conclusion of
this analysis is that,

application of appropriate angular reflectance models

to operational satellite data resulted in corrections

to the isotropically inferred flux values of from 1.5

to 2.7%. Changes of this magnitude constitute a sig-

nificant fractional change (10%) in the reflected com-

ponent of the radiation budget.

In summary, this study began with the goal of specifying the

nature of the angular variability of various upwelling radiance fields
so that satellite radiance measurements could be used to infer reflected

flux densities on a regional basis. We proceeded to specify bidirect-

ional reflectance models which could be used to interpret the satellite
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results. In the process of compositing the models, the variable nature
of the reflected radiance fields became evident. The angular models
required to deduce the flux show significant variation even when the
underlying scene does not change in a way which would cause its re-
categorization. As a result the spatial convergence properties of the
models were investigated and it was found that for highly anisotropic
scenes, significant sampling distances were required. The search for
optimum viewing co-ordinates confirmed the variability of the radiance
fields; even when the flux density of a region was inferred from three
different viewing co-ordinates, unacceptably large errors resulted for
anisotropic scenes. Thus 1t is the author's suggestion that angular
reflectance models should only be used if the radiance fields are aver-
aged over an appropriate distance, so that their natural variability
becomes insignificant. The scene averaged angular models presented
here are certainly valid for the specific condition of the earth atmos-
phere system which prevailed at the time and location of the data col-
lection. -The models presented in this study are better supported stat-
istically than those used in previous radiation budget studies. Even
so, becsuss: of subtle unperceived differences in the scenes and the
associated variaticn in the upwelling radiance fields application of
these models may still lead to inferred flux densities which are in
error hy severai percent. Thus, accurate inferences of the reflected
component of ithe earth's radiation budget from scanning radiometer data
may nol be .casible unless the natural variability of the reflected

radiasnce tislds has been properly taken into account.
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APPENDIX I

Electrical and Optical Characteristics of the Bugeye Photodiode
The complete electrical and optical properties of the EG&G SGD-
100A silicon photodiode as specified by the manufacturer are listed
below in Table AI-1. Besides the spectral response which is shown
in Figure 2 of the text, the most pertinent characteristics are the

response time and the linearity range of the diode.

AI-1



CHARACTERISTIC

UNITS AND CONDITIONS

Spectral Range
Spectral Sensitivity
Integrated Sensitivity
2870°K Blackbody
6000°K Blackbody
Luminous Sensitivity
2870°K Blackbody
6000°K Blackbody
Operating Voltage
Breakdown Voltage
Linearity of Response
Operating Temperature
Rise Time
Dark Current
Dark Current
Capacitance 3
NEP (0.9 um, 10 , 1)
D * (0.9 um, 103, 1)
Channel Impedance
Field of View
D.C. Photocurrent
Pulsed Photocurrent
Power Dissipation
D.C.
Pulsed

200

-65

180

+150

20 X 10

100 X 10

7.0

-
N

0.2
25

-9

Micrometers
Amps/Watt at 0.9 um

Amps/Watt
Amps/Watt

PA/Lumen

YA/ Lumen

Volts

Volts at 100 upA

% over 7 decades

°c

Seconds at 100V

Amps at 10V at 25°C
Amps at 100V at 25°C
Picofarads at 100V
Watts at 25° E/Z
Watts~lem Hz at 25°C
Ohms at 100V at 25°C
Degrees-Full Angle
mA at 150V

mA at 150V

Watts
Watts (1 p sec Max.)

Table AI-1, Optical and electrical characteristics of the SGD-100A photodiode.



APPENDIX II

Description of the Upward Looking Bugeye Instrument

The upward looking bugeye instrument was designed to measure the
angular distribution of the downwelling radiation field. 1In this
study it was used as a check on the relative magnitudes of the down-
welling direct and diffuse irradiances. If the diffuse component ex-
ceeded 107% of the total downward irradiance, the bottom bugeye data
were rejected on the basis that the presence of high cloud would in-
validate the results. The physical characteristics of the top bugeye
differed from those of ;he bottom bugeye by an alternate arrangement
of the diodes. Table AII-1 gives the angular position of the top bug-
eye diodes wiéh re;pect to the aircraft frame. Also, the fields of
view of the diodes in the top:bugeye were not constrained by collimator
tubes. Rather, a small teflon disk was placed atop each diode to atten-
uate the signal énd to extend the field of view from the 160° full
angle figure quoted in ﬁhe diode characteristics (Table AI-1) to 180°
full éngle.

The voltage output (Vi) of the ith diode is proportional to the
sum of the downwarq direct solar irradiance EO and the downward diffuse

irradiance Ei incident on the ith diode or;

ki E cos Bi- + ki J/.Ni (6,9) Ci (6,¢9) d Qi

-
It

i
-
(%%
1
o
(]
O
n
w0
[N
+
=
=

ATI-1



AITI-2

UPWARD LOOKING BUGEYE

Detector Angle from Azimuth Field
Number Zenith Angle * of View
Steradian
1 0° — 2m
2 30° 315° "
3 30° 45° "
4 30° 135° "
5 30° 225° "
6 45° 0° "
7 45° 90° "
8 45° 180° "
9 45° 270° "
10 60° 315° "
11 60° 45° "
12 60° 135° "
13 60° 225° "

*The .azimuth angle as measured in the aircraft re-
ference frame with the forward direction at 0° and
positive taken in the clockwise sense.

Table AII-1. Angular positions and fields of view of the upward
looking bugeye detectors.



AlI-3

where ki is the relative sensitivity of the ith diode and amplifier,

Bi is the angle between the direction of incident direct solar radia-
tion and the normal to the active area of the ith diode, Ci(9,¢) is the
dot product between the normal to the ith diode and the direction of
the diffuse contribution from the (6,¢) direction, and @2, is the solid
angle viewed by the ith diode. For this application Ni(6,¢) is assumed
to be isotropic. Thus, the evaluation of the integral on the right
hand side of the above equation would be trivial were it not for the
truncation of the integration at the horizon (the diffuse component is
assumed to be identically zero below the horizontal plane). Although
the top of the NASA CV 990 aircraft was coated with a black paint,

some input to the off zenith diodes is inevitable due to reflection
from the aircraft. Also, the same diodes receive an unknown irradiance
due to the upwelling radiation reflected from the surface and atmos-
phere which is subtended by the wide fields of view. These contribu-
tions are certainly small compared to the contribution from the direct
solar beam but it is not clear that these contributions are negligible
compared to the small Rayleigh contribution typical at the high alti-
tudes of tﬁe measurement. Nevertheless, a solution is sought for the
over-determined system consisting of thirteen equations or measurements
in the two unknowns: E0 and Ei' A linear programming algorithm was

used to solve the constrained system (Eo’ N. > 0) and the ratio Ei/

i
(E, + Eo) < .10 was used as the data filter criterion.
i
The results of this analysis resulted in a flight averaged dif-
fuse to total ratio which was typically less than 0.05. However, when

this criterion was applied to the flights over broken low and middle

clouds a very high fraction of the data filed the test and the



average diffuse to total fraction was approximately 0.40 which was

much greater than expected from visual flight observations. Because

of the uncertainty of the magnitude of the contribution of the up-
welling radiances (discussed above), especially in the case of the
relatively bright underlying clouds, it was decided to use the altern-
ate test for clouds above the measurement altitude described .in Chapter

II.



APPENDIX III

Appendix III is a compilation of the complete set of interpolated
x_l patterns and plots of the flight tracks of the Convair 990 associ-
ated with each x_l pattern. The flight tracks were not subjecﬁed to
the same filtering techniques which were applied to the bugeye and
irradiance data. Thus, some of the points shown in the plots of the
flight tracks were not allowed into the x_l compilation. However,
differences between the points of actual data collection and the

flight tracks shown below are small.

AITI-1
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zenith angle ocean case.
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Figure ATII-17. Interpolated x_l pattern (left) and associated flight track (right) for the 0-10° solar
zenith angle Indian subcontinent case. These data were collected during the MONEX

flight (s) of the 5th and 1l1lth of June, 1979.
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Figure AIII-19. Interpolated X
These data were collected during the MONEX

zenith angle Indian Subcontinent case.
flight(s) of the 5th and 1l1lth of June, 1979.
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These data were collected during the MONEX

1979.
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These data were collected during the MONEX

zenith angle middle and low level cloud case.

flight(s) of the 19th and 23rd of June, 1979.
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Figure AITI-26. Interpolated x-l pattern (left) and associated flight track (right) for the 20-30° sclar
zenith angle altostratus cloud case. These data were collected during the MONEX flight(s)
of the 7th of July, 1979,
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These data were collected during the MONEX flight(s)
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Figure AIII-29. Interpolated x-l pattern (left) and associated flight track (right) for the 40-50° =clar
zenith angle ice case. These data were collected during the MONEX flight(s) of the 30th
of April, 1979.
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of April, 1979.
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APPENDIX IV

Appendix IV presents the coefficients of the least squares fit of
all of the xnl patterns discussed in this study. The basis functions
used in the regression are the spherical harmonic functions in a
slightly modified form. Thus, each of the le patterns has been ap-
proximated as

1 N

70,0 = I ¢ Y.(8,0),

i=1

where O is the nadir angle and ¢ the relative azimuth angle. Yi(8,¢)
is one of the spherical harmonics YE(6,¢), where for each value of n
there are 2 nt+l possible values of m. In the approximations which
follow n was allowed to range from 0 to 6 which allows i to range from
1 to 49. The terms in the fit which contribute less than 0.25% to the
norm of ﬁ—l have been discarded and a number weighted r.m.s. error has
been calculated after deletion of these terms. Table AIV-1 lists the
set of Yi(9’¢) functions used in the fit. Figures AIV-1 through AIV-30
list the coefficients Css and the associated r.m.s. error of the fit.
The user of these approximations is reminded that the approximations
are considered valid for nadir angles of 70° or less and are considered
to be extrapolations for nadir angles greater than 70°. A plot of the

approximate ﬁ*l field is also given for each scene type studied.

AIV-1
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The ith basis function Yi (6,0)
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0.282094792
0.488602512 * cos (6)
-0.345494149 + sin (8) + cos (9)
0.345494149 * sin (8) * sin (¢)
0.630783130 + (1.5 + cos’ (8) - 0.5)
=0.772548404 + sin (0) * cos (B) + cos (¢)
0.772548404 * sin (8) * cos (0) * sin ($)
0.386274202 * sin® (8) -+ cos (26)
~0.386274202 * sin® (8) + sin (2¢)
~0.417224000 * sin> (8) * cos (3)
0.417224000 *+ sin> (8) * sin (30)
1.021985000 * cos (8) - sin’ (8) = cos (26)
~1.021985000 * cos (8) + sin® (8) + sin (20)
= ©0.323180140 * (5 * cos’ (8) -1) * sin (8) * cos (39)
~0.323180140 * (5 + cos® (8) -1) + sin (8) * sin (3¢)
= 0.373176300 * (5 * cos> (8) - 3 * cos (8))
= 0.442530000 « sin” (8) * cos (4¢)
= 0.442530000 - sin® (8) * sin (49)
= -1.251670000 * cos (8) * sin> (8) - cos (3¢)
1.251670000 * cos (8) * sin> (8) - sin (36)
= 0.334520000 « (7 + cos® (8) -1) » sin® (8) - cos (26)
= 0.334520000 * (7 * cos® (8) -1) + sin® (8) - sin (24)
~0.283850000 * (5 * cos> (8) -1) * sin (8) * cos (4)
0.283850000 * (5 * cos> (8) -1) + sin (8) * sin (4)
0.105790000 + (35 + cos” (8) -30 + cos® (8) + 3)
-0.464130000 * sin> (8) + cos (56)
0.464130000 + sin’ (8) - sin (5¢)
1.467700000 + sin” (8) + cos (0) + cos (4¢)
= -1.467700000 - sin® (8) « cos (0) - sin (4¢)
= -0.345940000 + (9 + cos® (8) -1) * cos (3¢)
= 0.345940000 « (9 + cos® (8) -1) » sin (34)
= 1.694770000 + (3 * cos> (8) - cos (8)) * cos (24)

Table AIV-1. (Page 1)



AIV-3

i The ith basis function Y, 6,9)
33 ¥y, = -1.694770000 * (3 * cos> (8) - cos (8)) * sin (20)
3% Y, = -0.320280000 - (21 * cos? (8) - 14 + cos® (8) + 1)
+ cos (¢)
35 Y = 0.320280000 - (21 - cos4 6) - 14 - cos2 ®) + 1)
35
sin (¢)
36 Y., = 0.116950000 * (63 * cos® () - 70 * cos> (8) + 15
36
* cos (0))
37 ¥y, = 0.483080000 ein® (8) + cos (60)
38 Y38 = -0.483080000 ° sin6 (®) * sin (69)
39 Y39 = 1.673450000 - sin5 (8) ¢ cos (B) * cos (5¢)
40 Y40 = ~1.673450000 - sin5 (8) * cos (8) * sin (5¢)
41 Y41 = (.356780000 - sin4 G) * (11 - cos2 (0) - 1) * cos (4¢)
42 ¥, = -0.356780000 * sin® (8) * (11 + cos® (8) ~ 1) + sin (4d)
43 Y = 0.651390000 * sin3 o) - (11 - cos3 (6) = 3 « cos (8))
43 ; ;
* cos (3¢) ,
44 Y = -=0.651390000 - sin3 (8 « (11 - cos3 (6) - 3 * cos (B8))
44
* sin (3¢)
45 Y, = 0.325690000 - sin® (8) + (33 + cos® (8) - 18 + cos® (8)
+ 1) * sin (2¢)
46 Y, ¢ = ~0-325690000 - sin’ (6) = (33 - cos® (6) - 18 cos® (8)
~ + 1) * cos (29)
47 Y,, = 0.411980000 * sin (8) + (77 * cos® (8) - 70 * cos> (8)
+ 5 * cos (9)) * cos ($)
48 Y,o = -0.411980000 - sin (6) - (77 « cos® (8) - 70 » cos® (8)
+ 5 + cos (8)) « sin (¢)
49 Y,o = 0.063570000 « (231 - cos® (8) - 315 cos® (8) + 105
. cos? (8) + 5)
Table AIV-1, Modified spherical harmonic functions which form the

basis of the Q-l approximations.
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