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ABSTRACT 

REGIONAL PROPERTIES OF ANGULAR REFLECTANCE MODELS 

The inference of the reflected flux density from satellite radiance 

measurements requires a knowledge of the angular properties of the re-

flected radiance field. This study examines the angular dependence and 

the spatial variability of the radiance fields reflected from 30 re-

gional atmospheric scenes. The reflected radiance data set was col-

lected from a high altitude aircraft during the Summer Monsoon Experi-

ment using a unique multi-detector instrument which permitted an 

instantaneous sampling of the radiance fields from twelve angular view-

ing coordinates. All of the scenes display sufficient anisotropy to 

conclude that neglecting the angular variation of the reflected radi-

ances would lead to significant errors (10 - 100%) in the inferred flux 

density. Radiances over the relatively isotropic scenes converge to 

their regional mean values on a spatial scale which is small compared 

to that of the total region. For example, the mean behavior of the 

radiance field for a 1000 km segment of desert is approached usually 

after sampling any 25 km portion of the segment. At the other extreme, 

the mean behavior of the radiance pattern over the same expanse of 

clear ocean is approached only after a sampling distance of 250 km~ 

The data are analyzed to search for angular coordinates which are opti-

mal for flux density inference. For example, over the clear ocean 

scene the variance of the inferred flux density is significantly re-

duced by using radiances reflected at small or large nadir angles and 

at azimuth angles which are small re1ative to the azimuth of the sun. 

It is also shown that a two satellite system is adequate for inferring 
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ABSTRACT (Continued) 

REGIONAL PROPERTIES OF ANGULAR REFLECTANCE MODELS 

flux densities over the relatively isotropic scenes while anisotropic 

scenes benefit from using, at most, three satellites. The angular 

patterns are applied to TIROS-N measurements over the monsoon region to 

assess their impact on flux density inferences for a climatically signi·· 

ficant region. Use of the angular models results in increases in 

directional reflectances of up to 2.7% compared to i~otropically in-

ferred values for individual scene types. The directional reflectance 

over the entire region is increased by 1.5% due to the application of 

the angular reflectance patterns. 
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1.0 INTRODUCTION 

The feasibility of monitoring the earth's radiation budget was 

greatly enhanced with the advent of the earth orbiting satellite plat-

form. Because of its altitude, high above the radiatively active atmos-

phere, a satellite-borne radiometer is ideally located for measurements 

of the earth's longwave emitted flux as well as the shortwave reflected 

flux. From the first proposal for taking such measurements, (Suomi, 

1958) a steadily increasing effort has been put forth to adequately 

monitor the exchange of radiative energy at the outer limits of our 

atmosphere. 

Initial efforts addressed the problem of the determination of the 

long term, planetary scale, bulk radiative properties such as equator 

to pole gradients of longwave radiation loss and shortwave radiation 

gain. The difference between these quantities is the gradient of the 

net radiation which is the ultimate energy source for the oceanic and 

atmospheric circulation systems. The earliest studies were based on 

data collected by wide field of view radiometers (flat plate or hemi-

spheric) which measured the total upwelling radiant exitance at the 

point of the satellite sensor. Weinstein and Suomi (1961) used meas-

urements of terrestrial radiation at night from Explorer VII and showed 

that a definite relationship exists between the radiation centers and 

low and high pressure centers. Bandeen et al. (1964) analyzed data 

from TI ROS lJ, II I~ IV and VII and inferred a slightly larger longwave 

radiative loss and a significantly smaller albedo than previously cal-

culated; for example, London (J95 7). In addition to the types of in-

struments borne by Explorer VIT, the TIROS series included a medium 

1 
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resolution scanning radiometer with a 5° field of view and the capa-

bility of measuring absolute intensities in five spectral intervals. 

Rasool and Prabhakara (1966) also reported on the data collected by __ the 

TIROS meteorological satellites during 1962 and 1963. They calculated. 

albedo values over the deserts of North Africa and Arabia between 40 

and 45 percent, contradicting earlier results which had estimated these 

albedos to be between 20 and 25 percent. The higher values were large 

enough to imply a net radiative deficit for these regions as compared 

to the earlier results (20-25%) which indicated a positive radiation 

balance. House (1965) examined data collected by the hemispherical 

sensor aboard TIROS IV and found that the measurements of the planetary 

albedo confirm~d earlier estimates, however, the equator to pole gradi-

ent of albedo was found to be somewhat larger than previously thought. 

Winston and Taylor (1967), and Winston (1967) compiled global maps of 

longwave radiation and albedo from TIROS IV and TIROS VII measurements. 

Their results indicated an inverse correlation between albedo and long-

wave radiation on a broad scale and that both quantities were generally 

related to the strength and location of features of the westerlies over 

the Northern Hemisphere. 

All of the efforts reported above utilized data collected with 

hemispheric sensors for the analysis of the reflected shortwave com-

ponent, or, when medium scanning radiometer data were used, assumed 

that the reflecting surface was isotropic. Arking (1965), pointed out 

that the measured reflected intensity depended on the solar zenith 

angle, the satellite viewing angle and the relative azimuth between the 

sun and the satellite. Arking and Levine (1964) used correction 
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factors, averaged over the 'quasi-globe' 1 in an analysis of TIROS VII 

data and arrived at a value of albedo of 20.6% averaged over an annual 

period and the 'quasi-globe' • 

Raschke and Pasternak (1967) included correction factors for non-

Lambertian surfaces which were derived from 'many measurements of the 

angular dependence of reflected solar radiation' in an analysis of the 

radiation data from Nimbus 2. For the approximately 2.5 month period 

included in the study, the value of planetary albedo was significantly 

smaller than the annual global values previously calculated, (28.1 -

30.6% compared to 35%), but apparently larger than earlier satellite 

measurements (Vonder Haar, 1968), which yielded a reflected component 

too small ('\.J 25%) to· be i.n balance with the corresponding incoming 

solar and emitted longwave fluxes. The intermediate value of albedo 

apparently resulted from the application of the anisotropic reflectance 

models. Raschke and Bandeen (1970) extended the analysis of Nimbus 2 

data to include a total of five successive semimonthly periods and 

arrived at a value of the planetary albedo of 29-31%. 

Vonder Haar and Suomi (1971) surranarized the series of radiation 

budget studies resulting from measurements by the first and second 

&eneration United States Meteorological satellites. For the 39 months 

of available data, 80% of which was acquired from sensors of low spa-

tial resolution, a value of 30% was deduced for the mean planetary 

albedo. It was also determined that the earth was in radiative balance 

to within the accuracy of the measurements. Raschke et al. (1973) 

1 The 'quasi-gJ nhe' is a region encompassing 85% of the earth's 
surface. Excluded are the polar regions beyond 60° latitude and sma]l 
areas of southern South America and Siberia. 
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reported on the earth's radiation budget monitored from Nimbus 3. TLis 

study provided for the first time estimates of the 'annual' (10 month) 

budget with a high spatial resolutiou (102 - 103 km) over the entire 

globe. The improvement of the spatial resolution was accomplished by 

using nine empirically derived models of the angular variation of the 

upwelling radiance fields, which were derived from aLrplane, balloon 

and satellite measurements of reflected solar radiation. Smith et al~ 

(1977), described the Nimbus 6 earth radiation budget experiment, which 

has, as one of its primary objectives, the collection of an adequate 

data base to be used for modelling the angular variation of reflected 

radiance fields. The instrument package includes a four channel scan-

ning radiometer which is capable of sampling the angular radiance field 

once as the satellite·travels 700 km along the subpoint track. Pre-

liminary results show the relatively isotropic nature of the radiance 

field measured over the Sahara compared to the anisotropic nature of 

field measured over the ice surf ace of Greenland. Gruber and Winston 

(1978) provide a brief description of an earth radiation budget data 

set collected from NOAA operational satellites. These data were com-

piled assuming isotropy of the reflected radiation field. Jacobowitz 

et al. (1979) discuss the planetary radiation budget measured by the 

low spatial resolution sensors on Nimbus 6, from July 1975 to December 

1976. The importance of high resolution features in the radiation bud-

get shown by the scanning radiometer data from Nimbus 6 are yet to be 

published. 

As time has passed there has been a tendency toward increased 

spatial resolution in the measurements of the earth's radiation budget 

components. In order to obtain higher spatial resolution from a 
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limited number of satellite platforms, scanning radiometers with narrow 

fields of view are required. Since radiation reflected from natural 

surfaces is in general anisotropic, adequate angular models of the re-

flected component are necessary to interpret such measurements. As 

these models were developed they were incorporated into most of the 

more recent radiation budget studies. Summarized below are the major 

efforts in developing such angular reflectance models. 

As noted previously Arking (1965) developed angular patterns of 

upwelling radiance averaged over the quasi-globe. The patterns were 

compiled from TIROS IV observations over a large time and space scale. 

Ruff et al. (1968) used data from the 0.55 - 0.75 µm TIROS IV channel 

to develop angular·reflection patterns for clouds. The data were col-

lected over three approximately 30 day periods during the spring of 

1962. The measurements were limited to clouds by selecting only those 

targets which had an effective black body equivalent temperature less 

than 252°K as monitored by the 8 - 12 µm TIROS IV channel. Their re-

sults clearly indj_cate the anisotropic nature of the radiation field. 

Salomonson and Marlatt (1968) used data collected by the Nimbus 3 

medium resolution radiometer, flown on a low altitude aircraft (~ 3 km) 

to measure the angular patterns of reflected radiation over stratus 

clouds near the California coast and in the mountain valleys of Utah. 

In addition measurements were made over white sand, snow, a dry desert 

lake bed, a grassland sod surface, a swampy-dense vegetation surface 

and water. Anisotropy in the reflected solar radiation was observed in 

Varying degrees for all the surfaces studied. Salomonson (1968) has 

shown that the measured stratus cloud patterns compare wel 1 to puh-

lished results derived from Monte Carlo simulations by Kattawar and 
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Plass (1968a,b). Griggs and Marggraf (1967) used a photometric polari-

meter to measure the reflectance characteristics of stratus clouds, of 

snow surfaces and of the ocean in the 0.4 to 0.96 µm portion of the 

spectrum. The instrument was capable of completing a full scan (42 

different angular measurements) in about four minutes. The instrument 

was mounted on a DC-3 aircraft and flown at a height of about 1000 feet 

above the various targets. The basic anisotropic nature of the various 

reflected fields is obvious in their results. Bartman (1968) measured 

the angular pattern of reflected radiation in the 0.55 - 0.75 µm and 

the 0.20 - 5.0 µm spectral regions with TIROS and Nimbus type radio-

meters carried aloft on a balloon gondola at an altitude of 32 to 34 

km. Angular r~flectance patterns were presented for stratocumulus 

clouds, cirrus above stratocumulus clouds, broken cumulus and cirrus 

above scattered cumulus. A high degree of anisotropy was found in all 

cases. Brennan and Bandeen (1970) presented patterns of reflected 

solar radiation from cloud, water and land surf aces with an aircraft 

borne medium resolution radiometer. Reflectances in the 0.2 - 4.0 µm 

and 0.55 - 0.85 µm portions of the spectrum were measured from an al-

titude of about 12 km. Angular patterns were measured for strato-

cumulus clouds, forest, ocean and farmland. As previously mentioned, 

one of the major objectives of the Nimbus series earth radiation budget 

program is to compile a data base which could be used to produce ade-

quate angular reflectance models. This effort continues, and some 

preliminary results are found in Stowe et al. (1980). These measure-

ments ultimately will be paired with a description of the state of the 

underlying atmosphere and the nature of the surface. Stowe et al. re-

ported angular patterns for high ice clouds for which it was found that 
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errors of up to 800% may be made if the isotropic assumption is ap-

lied. 

The research which will be presented here is similar in many re-

spects to the studies of the angular characteristics of reflected solar 

radiation cited above. Our goal is to assess the applicability of 

angular patterns of reflected radiation on a regional scale. There 

are, however, significant and important differences between the present 

effort and previous studies. First, the data presented here have been 

collected with a new type of instrument, which allows instantaneous 

angular sampling of the upwelling radiation field, whereas all previous 

efforts have utilized scanning radiometers which require an extended 

time and space scale to complete a sampling process. The instrument 

will be described in the next section. Secondly, previous studies have 

analyzed reflection patterns over extremely large geographical areas 

such as the 'quasi-globe', or, for quite specific targets such as a 

stratocumulus cloud deck, a forest, a swamp etc., which required data 

collection over a very small geographical area. This study focuses on 

radiance pattern8 which may be applicable over space scales of from 250 

km to 1000 km which is the scale of interest for regional climate model-

ling. Because of tht::~ ahili.ty to samplt:! the radlance field on an al-

most instantaneous basis it was possible to examine the spatial con-

vergence properties· of the various angular patterns. None of the pre-

vious efforts have specified a spatial scale over which their results 

may be valid. Thirdly, results are presented in the literature for 

discrete values of, or limited ranges of solar zenith angle. Measure-

ments over a variety of zenith angle ranges by a single instrument are 

lacking. These data are indispensable for the determination of an 
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adequate stratification of reflectance models with respect to zenith 

angle, or for attempting to specify a model which might be used over 

the total daytime period to interpret geostationary satellite readings. 

Finally, although this document is far from an exhaustive study, it is 

believed to be the most comprehensive study in terms of surface type 

and solar zenith angle range to date. 

With these goals in mind the next section will describe the method 

of data collection, including a detailed description of the measuring 

instrument. This will be followed by a section describing the method 

of data reduction and a presentation of the results. Comparison with 

previous results follows and the final section discusses the implica-

tions of the_present findings regarding the use of angular reflectance 

models for inferring the total reflected solar flux. 



2.0 DESCRIPTION OF THE EXPERIMENT 

The data used in this report were collected during the summer 

MONsoon EXperiment (MONEX). The measuring inst~ument was flown on 

NASA's Convair 990 aircraft at an altitude of 10-12 km. By including 

data taken on the ferry flights it was possible to sample a wide vari-

ety of reflecting surfaces from the ice fields of Hudson Bay to the 

sands of the Saudi Arabian empty quarters, for a variety of solar 

zenith angles. All of the data used in the present study were col-

lected with a single instrument which is described below. 

2.1 Description of the 'bugeye instrument' 

The instrument used to collect the data presented in this report 

consists of a hemispherical array of thirteen high quality silicon 

photodiodes and associated electrical circuitry mounted in an aluminum 

housing; see Figure 1. The ·instrument is hereafter referred to as the 

bugeye instrument. The angular positions of the photodiodes are given 

in Table 1 and the field of view of each detector was limited to 10° + 

1° full angle by inserting each diode in a collimator tube. The 10° 

field of view combined with the flight altitude of 10-12 km produces a 

sub-measurement spot size of 1.75 km which compares with sub-satellite 

resolutions of 0.9 km, 1.0 km for the visible GOES and TIROS channels. 

The Nimbus scanning radiometers have a field of view of 5.12° x .25° 

which translates into a much coarser resolution of approximately 40 x 

2 km. The 10° full angle field of view on each of the thirteen sensors 

permits instantaneous sampling of 5% of the total downward facing 

hemisphere. A complete tabulation of the electrical and optical pro-

perties of the silicon photodiode is given in Appendix I. For the 
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Figure 1. The multidector bugeye instrument. 
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Detector Angle from Azimuth Field 
Number Nadir Angle * of View 

Ste radian 

1 oo .0239 
2 30° " 
3 30° 90° " 
4 30° 180° II 

5 30° 270° II 

6 60° oo " 
7 60° 45° " 
8 60° 90° " 
9 60° 135° " 

10 60° 180° " 
11 60° 225° " 
12 60° 270° " 
13 6.0° 315° " 

*The azimuth angle is measured relative to the 
forward direction of the aircraft increasing 
toward the direction of the right wing 

Table '1. The nadir and azimuthal coordinates of the bugeye photodiodes 
in degrees. 
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purpose of the following presentation it is important to note the spec-

tral response of the photodiode depicted in Figure 2. The diode and 

amplification circuit have a response time on the order of a few milli-

seconds, and the response of the diode is linear with incident irra-

diance over seven decades. In addition, the upper limit of the aircraft 

data system input (10 volts) was exceeded by the bugeye channels only 

when the aircraft entered the upper regions of thick cirrus outflow; 

none of these data are used in this report. 

2.2 Calibration of the Instrument 

The sampling advantages of a multidetector instrument are obvious. 

However, the advantage of a simplified flight pattern required to sam-

ple the angular pattern of reflected radiation must be weighed in re-

lation to the disadvantage of a more complicated calibration procedure. 

Since the goal of the experiment is to examine the properties of re-

flected solar radiation, and in view of the limited spectral response 

of the photodiodes, no attempt was made to obtain the absolute sensi-

tivities of the individual diodes. Rather, it is assumed that the 

angular properties of the total reflected solar component in the 0.3 to 

3.0 µm spectral range behave in the same manner as the measured 0.4 to 

1.1 µm portion of the spectrum. The extent to which this assumption 

may be valid is treated in the next section. Thus, it is necessary 

only to specify the relative sensitivities of the bugeye channels which 

were determined from measurements on ten occasions prior to, during and 

after the experiment. Prior to the experiment the individual detectors 

were illuminated with an incandescent lamp through a diffusing surface. 

The lamp was supplied with an adjustable but regulated voltage and 
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Spectral Response of the Bugeye Photodiode 
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relative sensitivities were obtained for a range of detector output 

voltages. During the experiment calibrations were performed using a 

portable unit consisting of a battery powered lamp which illuminated a 

small diffusing sphere. Because the supply voltage could not be held 

constant in this case, the output of the lamp was monitored by a sepa-

rate diode of the identical type used in the bugeye, so that as the 

calibrator was moved from one diode to the next any changes in light 

output could be accounted for. After the experiment the relative sen-

sitivities were again measured using the ~ortable unit. When all of 

the calibrations are considered the relative sensitivities displayed a 

standard deviation of less than 5% of their respective mean values. 

This figure is qsed as an estimate of the experimental error in the 

measurements used in this report. 

2.3 Deployment of the Instrument 

The bugeye instrument was mounted within a cowling, on the l.lll.der-

side, near the front of NASA's Convair 990 high altitude research air-

craft. Three other instruments were mounted within the same cowling: 

an Eppley 0.3 - 3.0 µm pyranometer, an Eppley 0.7 - 3.0 µm pyranometer 

and an Eppley pyrgeometer, see Figure 3. The instruments were arranged 

so that none of the Eppley instruments obstructed the field of view of 

any of the bugeye channels. After some initial adjustments the instru-

ment was never removed from the aircraft until the termination of 

sunnner MONEX. All field calibrations were taken with the instrument in 

place. 

In total, data were collected on 30 flights of the Convair 990 

aircraft during April through July of 1979. However, since the data 
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Figure 3. The mounting position of the bugeye instrument on 
NASA's Convair 990 in relation to the Eppley radiometers. 



are analyzed with satellite applications in mind, and because only cer-

tain flights were flown over surfaces which are easily categorized, this 

report focuses on data collected during 13 of the missions. The first 

of these took place on April 30 originating at Malmstrom Air Force Base 

near Great Falls, Montana and terminating at Sondre Stromfjord, 

Greenland. During a portion of this flight data were taken over the 

broken ice of Hudson Bay for solar zenith angle ranges of 40° - 50° and 

50° - 60°, see Figure 4a. 

The second target was the desert sands of the Empty Quarters in 

Saudi Arabia. Data were taken for increments of solar zenith angle of 

10° between the limits of 0° and 80°. Care was taken to eliminate any 

measurements near or beyond the coast line which may have been con-

taminated with re~lect~on from stratus cloud or water. This was accom-

plished by setting upper and lower bounds for the 0.3 to 3.0 µm upwell-

ing irradiance and for the individual bugeye readings. When any of the 

bugeye channels failed a test criterion all of the readings taken at 

that instant were discarded. These flights took place on May 9, 10, 

12 and 14. Figure 4b shows two photographs typical of the desert 

scenes. 

The third target was that of a reasonably unobscured ocean surface. 

These data were taken before the onset of the monsoon on the 29th and 

31st of May and on June 3. The ocean surf ace was reasonably calm (no 

whitecaps were seen) and convection was suppressed. Fair weather 

cumulus clouds were almost always present but were of small horizontal 

extent and estimated to be below satellite resolution, see Figure 4c. 

Some altocumulus clouds were observed and the minimum-maximum criterion 

was applied to the upwelling irradiance and bugeye readings to eliminate 



Figure 4a. Two photographs typical of the ice fields of Hudson's Bay. 



Figure 4b. Two photographs typical of the Saudi Arabian Desert scene. 



Figure 4c. Two photographs typical of the 'clear' ocean 
atmospheric scene. 
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the small fraction of the data which may have been collected in close 

proximity to such anomalously bright features. Data were collected for 

six solar zenith angle increments of 10° each from 0° to 60°. 

Data collected over the Indian subcontinent comprises the fourth 

category. These data were collected on the flights of the 5th and 11th 

of June. Analysis was limited to data collected south of 30°N latitude 

and inland of coastal stratus and altocumulus cloud features. Suffi-

cient data were obtained for four 10° zenith angle increments from 0° 

to 40°. The data analyzed are characterized by an almost complete 

absence of cloud although a heavy haze and dust loading was observed 

throughout these missions, see Figure 4d. 

The data taken north of 30°N latitude on June 11 provided suf f i-

cien t information to compile two zenith angle stratifications from 10° 

to 20° and 20° to 30° of radiance reflected from the Himalayan moun-

tains and plateau region. These scenes were characterized by steeply 

sloping barren surfaces part~ally covered with old snow and partially 

obscured by broken altocumulus cloudiness, as sho~n in Figure 4e. 

Five 10° zenith angle regimes for mixed middle and low clouds over 

ocean were obtained on two flights into the northern edge of highly 

convective regions. Cloud conditions on these missions are difficult 

to categorize but varied from fairly thick cirrus_ to clear sky at and 

above flight level accompanied by altocumulus and fair weather cumulus 

below with the ocean surface often visible, see Figure 4f. Data col-

lected under moderate to thick cirrus were excluded from the analysis 

by a check on the total downward irradiance as measured by an Eppley 

pyranometer mounted on top of the aircraft. A 90% transmittance 

threshold on a horizontal surface was used for this purpose. Since the 



Figure 4d. Two photographs typical of the Indian Subcontinent 
scene. 



Figure 4e. Two photographs typical of the Himalaya scene . 
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Figure 4f. Two photographs typical of the middle and low cloud 
atmospheric scene. 
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goal of this study is to provide reflectance patterns for atmospheric 

scenes and not to limit the analysis of radiances exiting solely from 

clouds, no lower limit was applied to the individual bugeye channels. 

However, in order to ensure that the scene was characterized by a sig-

nificant amount of underlying clouds o~ly data which resulted in an up-

-2 welling (0.3 to 3.0 µm) irradince of 150 watts•m or greater were in-

eluded in this analysis. 

The final category presented in this report is for altostratus 

clouds over the Pacific. These data were collected on the ferry flight 

of July 7 from Anchorage, Alaska to Moffet Field at Ames, California. 

Conditions of total undercast prevailed while the sun was between 20° -

30°, 30° - 40° and 40° - 50° from the zenith. Figure 4g shows repre-

sentative photographs. 

The descriptions presented above define some of the specific fea-

tures of the regions o~ data collection for the models which will be 

presented in the next ·section. In addition the following comments 

apply in general to all of the above categories. First, all of the 

analyses are limited to data collected above an altitude of 20,000 

feet (6.3 km), which was the altitude commonly observed as the top of 

the dust - haze layer typical of the pre-monsoon atmosphere. Second, 

except as noted in the description of the low and middle cloud scene, 

the amount of cirrus cloudiness above the aircraft was observed to be 

negligible. This condition was confirmed quantitatively by measurement 

from a second bugeye type instrument mounted atop the aircraft, which 

was designed to measure the relative magnitudes of the direct and 

diffuse components of the downwelling solar irradiance. A description 

of this instrument is given in Appendix II. Although the performance 



Figure 4g. Two photographs typical of the altostratus cloud scene. 
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of this instrument is still being evaluated the preliminary data analy-

sis indicates a ratio of diffuse to total downward irradiance of from 

2% to 5% for all data used in the present analysis with the exception 

of the mixed low and middle cloud cases. When the data from the top 

bugeye were analyzed for the low and middle cloud cases more than 90% 

of the points failed a diffuse to total irradiance test of 10%, while 

observations indicated much more of the data should have been accept-

able. Because the top bugeye's performance is still under evaluation 

the alternate test criterion was applied as described above. 

Finally, since most of the missions were not dedicated solely to 

the collection of angular reflectance data, the actual flight patterns 

varied considerably among the categorizations listed above. Thus, the 

actual number of data point·s differed considerably from scene to scene. 

Nevertheless, for all but a few of· the cases, the space scale of data 

collection is greater than 250 km. The actual flight tracks which 

correspond to the categories given above are shown in Appendix III 

along with the corresponding average reflectance model. 



3.0 DATA ANALYSIS 

In the two previous sections the tenn "angular reflectance" has 

been used in a general way. Below, its definition is given, along with 

the method of assembling the data into angular reflectance models. 

Figure 5 shows the geometry of an idealized measurement. Solar 

energy is incident on the target at a zenith angle z and azimuth angle 

$8 • The target is considered to be the atmosphere beneath the aircraft 

and the underlying surf ace as previously categorized. The energy is 

scattered and absorbed by the atmosphere and the surface, and arrives 

at the level ot measurement traveling in an upward direction at an angle 

e from the zenith and a relative azimuth angle $. $ is 0 when looking 

into the direction of the sun and is taken as positive for clockwise 

rotation about this reference. The'bugeye instrument instantaneously 

measures the normal comp9nent of the radiant power incident on the ac-

tive element of an individual photodiode within its spectral bandpass. 

Or if V. is the voltage output of the ith diode amplifier system; 
l 

where 

v. 
J.. 

k. 
1 

N 

n. 
1 

c • k. 
1 

$, A) F(A} cos(0 - SN ) dn dA 
i 

is the relative sensitivity of the ith diode amplifier 
combination 

is the spectral radiance arriving at the detector 

is the wavelength of the energy 

is the amount of soli.d angle subtended by the aperture. 
of the collimator tube on the ith diode 

F(~) is the spectral response function of the diode (see 
Figure 2) 
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(1) 
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Geometry of the measurement 

Direction of incident 
. th I 

{detector 
solar· radiation 

Figure 5. Depiction of the geometry of the measurement. 



29 

eN is the nadir angle of the normal to the active area of 
i the ith photodiode 

and c is the absolute sensitivity of the photodiode. 

Since the collimator tubes have a narrow field of view 10° + lo 

full angle and considering the angular resolution of interest, it is 

sufficient to invoke the mean value theorem with respect to the angular 

integration so that; 

= 

= 

$, A) F(A) cos(9 - SN ) dn dA 
i 

(2) 

A 

where N(A, e1, ¢i) is the average radiance in the solid angle n1 cen-

tered at (9
1

, ~1). The integral on the right of Eq. (2) is the filtered 

radiance and after division by the· appropriate relative amplifier sensi-

tivities (k
1

) and the detector field of view (Qi)' the adjusted voltage 

V~(0,~) is proportional to the filtered radiance. The constant of pro-

portionality is the absolute sensitivity of the photodiode C. The bug-

eye measured twelve 2 filtered radiances at every data scan (taken at one 

second intervals) at the angular positions of the diodes (given in 

Table 1). At each data scan the appropriate navigational parameters 

of the aircraft were used to form a rotation matrix which transformed 

2nue to a wiring error on tbe Convair 990 only the first twelve 
diode outputs were recorded. 
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the angular coordinates from the aircraft frame to a fixed north-south 

horizontal reference frame. The solar azimuth measured in the same re-

ference frame was used to obtain the position of· each measurement in a 

"horizontal-solar" reference frame. 

In the above manner a large number of measurements were compiled 

for a particular scene. The measurements were stratified in nadir .and 

relative azimuth in 10° increments from 0° - 90° and 0° - 360° re-

spectively and averages at each angular position were taken. The array 

of averaged, adjusted voltages was integrated over the downward facing 

hemisphere to· obtain a number porportional to the filtered irradiance 

(E) on a downward facing horizontal plane according to; 

7T /2 2'IT 

Ev' = f . f V' (9,<f>) cosS sin0 dS d<f>, 

6=0, cp=O 

where filtered irradiance is given by E = Ev'/C. If the filtered 

irradiance were proportional to the upwelling 0.3 - 3.0 µm reflected 

(3) 

flux density ES, the constant of proportionality would be given by the 

ratio K = E8/E. Figure 6 shows a plot of K • E vs E8 for data collect-

ed over and within clouds of variable horizontal and vertical extent 

over the Arabian Sea. Here K has the average value of E8/E over the 

data record. Although some relatively large discrepancies are evident, 

the agreement is generally good and is an indication that the spectral 

deficiencies of the measurements are not serious. 

Since this research deals with the angular properties of reflected 

solar radiation in the 0.3 to 3.0 µm portion of the spectrum, it would 

be ideal if F(A) = 1.0 throughout that spectral region. However, since 
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Figure 6. A comparison of the flux density reflected from broken 
clouds over ocean as measured by the Eppley 0.3 - 3.0 
µm radiometer to the integral of the radiance field 
derived from the bugeye measurements. 
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this is not the case the following remarks should be considered. First, 

a significant fraction of the radiant energy reflected from various 

atmosphere-surface combinations lies within the spectral bandpass of 

the bugeye. A probable exception occurs in the case of high clouds. 

For example, Figure 7 shows a plot of relative spectral distribution of 

various targets and the photodiode spectral response. Table 2 gives the 

fractions of the total reflected energy which would be measured by the 

bugeye given the spectral response of the photodiode. Note the rela-

tively constant ratio of filtered radiance to total radiance displayed 

by the entires. Similar ratios calculated for the 0.5 - 0.9 µm TIROS 

and the 0.5 - 0.9 µm GOES channels show much greater variability. 

Measure~ents by Griggs et al. (1967) indicate even greater frac-

tions of reflected energy are contained in the bugeye spectral bandpass 

for snow, ocean and various cloud targets. Salomonson (1968) presents 

results which indicate that a normalized radiance pattern for the 

0.55 - 0.85 µm region is nearly identical to the same parameter taken 

over the 0.2 - 4.0 µm region for stratus cloud, dry lake bed and white 

sand surfaces. This similarity is probably even more pronounced for 

the present study which utilizes data collected at an altitude (~ 10 

km) compared to Salomonson's data collected at altitudes from 1 to 3 

km, due to the enhanced Rayleigh contribution for A < 1.1 µm and the 

added gaseous absorption for A > 1.1 µm. For these reasons the angular 

properties which are analyzed in this report are assumed.to be repre-

sentative of the same properties of reflected solar radiation in the 

0.3 - 3.0 µm portion of the spectrum. However, it is not necessary to 

assume that the radiances in the two spectral regions are related by a 

proportionality constant in all the analyses which follow. 
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Relative spectral response of the Bugeye Photodiode 
and various relative spectral radiances 

- Bugeye Photodiode 

.... oo°"o.a~ ... ~\ 
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--- Low Altitude Cloud Deck 

-·-· Veoetoted Surface 
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Figure 7. Relative spectral distributions of the satellite 
measured radiances reflected from various underlying 
surfaces. 
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---------------~-- --- - . ---------··· -~---·· .... --- ·--

Type of Surface Fraction of 0.3 - 3.0 um en!'rg.'-
witbin hugeye spectral bantlj1.1sc~ 

Earth's surf ace obscured by a low . 46 
altitude cloud deck for solar 
zenith of 30 ° 

Vegetated surface for a solar .42 
zenith of 30° 

Winter snow and ice for a solar .41 
zenith of 30 ° 

Earth's surface composed of soil .44 
and rocks for solar zenith angle 
of 30° 

Table 2. The fraction of the 0. 3 - 3 .0 µm radiances reflected by 
various surface and cloud types within the spectral band-
pass of the bugeye photodiode. Spectral distributions are 
from The Infrared Handbook. 1978, edited by Wolfe & Zissis. 
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3.1 Angular Reflectance Models 

The development of typical angular reflectance models follows 

the procedure set forth in several of the studies mentioned in the 

introduction. The goal is to provide an angular model which may be 

used to infer the upward flux density of reflected solar radiation 

from a region, by measuring the radiance exiting the region in one 

or at most a few angular directions. This is normally accomplished 

by specifying a bi-directional normalization coefficient X defined 

by: 

X{8, ¢_, z) = 

f N(6, </>, z) cos6 ell 
n 
'IT • N(6, <f>, z) 

where N, 6, ¢, z and r2 have the definitions given in the preceding 

section. The analogous expression in tenns of filtered radiances 

and irradiances is given by: 

x(e, ¢, z) = 
C • E ' v 

C •TI• V'(8, ~' z) 
= 

E ' v 
TI • V' (6, cp, z) 

(4) 

(5) 

Note that using x obtained by the latter expression for its 0 .. 3 - 3.0 

µm equivalent requires the assumption of proportionality between the 

O. 4 - J • ] pm and 0. 3 - 3. 0 pm rad1.anr:es. 
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For the purposes of specifying a typical angular model the values 

of V'(8, ¢, z) are azimuthally averaged about the principal plane 

[V'(8, ~' z) = V(8, 2n - ¢, z)]. Although the symmetrical model is not 

as representative as the asymmetric version for the particular surf ace 

over which the data were collected, it is considered optimal for appli-

cation to all similar scene types. For example, if a particular pat-

tern obtained from measurements over the Saudi Arabian Desert was to be 

used to interpret data collected over the Saharan Desert, non-

symmetrical features caused by sand dune orientation in the Empty 

Quarters would almost certainly lead to larger errors than would re-

sult from use of a synnnetric model. 

The parameter X is useful since its multiplication by a measured 

radiance and n results· in a value of reflected flux density. This is 

the procedure envisioned as the solution to the problem of monitoring 

the reflected compqnent of the radiation budget of a region from sat~l-

lite-borne scanning radiometers. Questions concerning the applica-

bility of these average models to regional scales will be considered 

in the next sections. In this study the average angular reflectance 
-1 models are presented in tenns of X , which corresponds to a normal-

ized brightness. More significantly the deviation of X-l(e, ¢, z) from 

unity represents the fractional error between the true reflected flux 

density and a flux density inferred from application of the isotropic 

assumption to a radiance measured at the angular position (8,¢). Thus, 
-1 for a scene which is isotropic X = 1.0. 

Since the bidirectional reflectance normalization coefficient is 

usually applied to satellite radiance data it is important to consider 

-1 the effect on the angular variation of X of the atmoEphere above 
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the level of data collection c~ 200 mb). The most important and most 

consistently applicable adjustment to angular patterns measured by high 

altitude aircraft is due to Rayleigh scattering. In order to account 

for the Rayleigh contribution above the level of data acquisition a 

single scattering approximation given in Paltridge and Platt (1976) is 

used. Figure 8 shows the single scattering approximation compared to 

the exact calculation (taken from Coulson, 1959) for solar radiation 

reflected by an atmosphere of optical depth T = .05 for solar zenith 

angles of 66° and 37°. The spectrally averaged Rayleigh optical depth 

of the 200 mb layer above the level of data collection was calculated 

to be .035 so that the single scattering approximation applied to the 

angular models will~ result in smaller errors than indicated in Figure 

8. Errors of similar magnitude result when the approximation is appli-

ed to the forward scattered component. In order to apply the Rayleigh 
4 

correction the measured filtered radiances are scaled to 0.3 - 3.0 µm 

values using the assumption af proportionality and the scaling factor 

K. The single scattering approximation is applied to each angular 

component to obtain the forward scattered component at the top of the 

200 mb layer above the aircraft. These values are added to the trans-

mitted upwelling component and the solar reflected component calculated 

with the single scattering approximation (using a value of 1375 watts • 

m- 2 for the solar constant) to obtain the distribution of the 0.3 - 3.0 

µm radiance field. -1 Equation 4 is reapplied to find X at the top of 

the 200 mb layer. The magnitude of the Rayleigh adjustment expressed 

as a percentage of the upwelling radiance incident on the 200 mb layer 

is about 1.5% for the forward scattered component, and 6% due to the 
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solar reflected component with essentially 97% of the upwelling radi-

ance being transmitted through the layer. 

A simple interpolation scheme is used to fill in the missing val-
-1 ues in the X array. The scheme uses the inverse of the angular dis-

tance between the interpolated point and all points within an angular 

neighborhood as a weighting function is such a way so that local char-
-! acteristics are not influenced by values of X located more than 30° 

away. Th 1 Set Of X-l h i A di III 1 e comp ete patterns are s own n ppen x a ong 

with pertinent information regarding the locale of data collection. 

Because the interpolation scheme was used to supply only angular 

positions which were missing, several points are included which were 

derived from only~ a few measurements. This results in an unsmoothed or 

fairly noisy pattern. The general characteristics of the x-l field are 

more discernable in a smoothed version of the pattern. Also it is con-
.. -1 venient to have some means of accessing a particular value of x other 

than graphical interpolation or tabular look-up. For these reasons the 

data were fitted using as a basis the set of spherical harmonic func-

tions in a slightly modified form with a simple least squares technique. 

In this case the entries are number weighted so that points resulting 

from only a few measurements have little effect on the fit. For the 

spherical harmonic function Ym(8,¢), there are 2n + 1 values of m for n 

each value of n. The maximum value of n used in any of the fits to the 

data was 6 which allowed for a maximum of 49 basis functions to be in-

eluded. The amount of the variance attributed to each term of the fit 

was calculated and terms which accounted for less than 0.25% of the 
-] norm of );, were dtscarded. The number weighted r.m.s. error, cal-

culated after tlH': le.ast signifieant terms were deleted ranged fr0m 4% 
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to 28% depending upon the variability of the data field. The complete 
-1 set of fitted x patterns, spherical harmonic coefficients and result-

ing r.m.s. error are given in Appendix IV. A few of the smoothed 

patterns are shown below and some of the more interesting features are 

discussed. 
-1 Figures 9a,b,c show the smooth X reflectance models resulting 

from measurements over the Saudi Arabian Desert for zenith angle ranges 

of 0° - 10°, 30° - 40° and 70° - 80°. Figure 9a shows a nearly iso-
-1 tropic pattern with values of X ranging from 0.90 to 1.1 The pattern 

shows a bright region near the center of the figure (small values of 

the nadir angle) with a slight tendency toward backscatter at inter-

me.diate nadir angle values. In this and all similar figures the nadir 

angle varies from 0° at ·the center to 70° at the outer rim of the fig-

ure while values of relative azimuth vary from 0° (facing the direction 

of the sun) to 180° in the anti-solar direction. Figure 9b indicates a 

higher degree of anisotropy with values ranging from 0.80 to 1.20 and 

shows a more pronounced backscatter. For the largest zenith angle 

range, Figure 9c shows a transition to a forward scattering maximum 

probably due to scattering from the atmosphere. The backscatter fea-

ture is still evident with the darkest features indicated near the 

nadir. -1 The fitted X values range from 0.50 to 1.70 for the last case 

while the corresponding interpolated pattern shown in Appendix III 
-1 indicates a slightly smaller range, 0.6 ~ X ~ 1.70. In either case 

an overestimate of 70% in the reflected flux density would result if 

the isotropic assumption were applied to radiances measured near the 

e = 70°, $ = 0° direction. 
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-1 Figure 10 shows the smoothest version of X for data collected 

over the Himalayas. This figure should be used to denote only the 

coarsest features of the scene since the r.m.s. error of the data fit 

is nearly 20%. A broad brighter region is evident extending from the 

nadir out to 50° and 60° in the solar and anti-solar directions re-

spectively. -1 The X coefficient ranges from 0.9 to 1.1 in the fitted 

pattern but ranges from 0.8 to 1.1 in the interpolated version. In 

either case photographs suggest that the general feature of a darker 

region toward the horizon may be the result of bare rock features which 

protrude above and obscure the intervening valleys where brighter snow 

and ice have accumulated. 
~ -1 Figures lla and b show the fitted X patterns for the Indian sub-

continent in the solar zenith angle regimes of 0° - 10° and 30° - 40°. 

Figure lla shows a slightly mere specular nature of the Indian sub-

continent compared to the corresponding pattern measured in Saudi 

Arabia. The relatively greater specular component is probably the re-

sult of reflection off the surface of various rivers which typify the 

central western portion of that country. A detailed examination of 

the photographic record indicates the specular reflectance. Inspection 

f . 1 d 1 f h . d. 1 f -I o the interpo ate resu ts or t e same scene in icates va ues o x 
as high as 1.35 for a nadir angle of 5° while at 15° nadir the highest 

reading is 1.13 which is another indication of specular reflection from 

the water surfaces. It should also be noted, however, that much of the 

data collected over the Ganges River portion of the flight was collect-

ed at low altitude and thus excluded from the sample. In Figure llb 
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the X-l 1 f 0 75 1 20 d . b k va ues range rom . to . an a prominent ac scatter 

feature is evident. This figure should be compared with Figure 9b, the 

30° - 40° desert case. 

Zenith angle ranges of 0° - 10° and 50° - 60° are shown in Figures 

12a,b for the clear ocean cases. -1 X ranges from 0.25 to 2.00 and from 

0.18 to 2.75 respectively. (The interpolated pattern for the latter 

case shows a X-l range of 0.25 2._ X-l ~ 2.75.) Obvious in these plots 

is the sunglint feature which may be seen to progress outward to the 

horizon upon inspection of the complete set of X-l plots in Appendix 

III. 

Figures 13a,b represent the data fits to the middle and low level 

cloud cases ~hereafter referred to as CLOUDl) for zenith angle ranges 

of 10° - 20° and 30° ·- 40° respectively. A slight tendency toward 
-1 backscattering is observed in the smaller zenith angle cases with x 

ranging from 0.7~ to 1.05. The situation is reversed in the latter 

case which displays a strong and broad region of scattering in the for-
-1 ward direction and a larger range in normalized brightness from x 

0.50 to 1.75. It is noted here that it is difficult to be certain· that 

the scene type is not significantly different between these cases be-

cause of changing cloud type. Even though the data were collected in 

the same geographical locations and cloud conditions were observed to 

be similar, the different features of the patterns may have resulted to 

a large extent from undetected differences in the type or amount of 

cloud cover. Nevertheless the patterns are representative of the re-

gions of broken, variable, middle and low level cloudiness encountered 

during the experiment. The slight backscatter feature at the 

smaller zenith angle ranges may be attributable to reflection off the 
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vertical walls of individual clouds into the upward direction. As the 

zenith angle increases reflection from the cloud tops in the forward 

direction becomes important as well as an increased contribution due to 

sunglint measured between the clouds. 

Figures 14a,b show the patterns for data collected over a reason-

ably homogeneous altostratus deck (hereafter referred to as CLOUD2). 

For a solar zenith of from 20° to 30° there is both forward and back-

ward scattering evident at the larger nadir angles with a rather broad 

region of ·smaller normalized radiances in the anti-solar direction at 

small and intermediate nadir angles. For the larger solar zenith angle 

case 40° < z < 50° a more pronounced forward scatter feature is evident. 
-1 Also the region ~f lower X values has shifted to the solar side of 

the scene. The backscatter in this case may be attributable to one or 

both of two processes. First, although the clouds are stratiform in 

this case Figure 4g snows the cellular nature of the layer. Thus the 

possibility for back~catter from the individual vertical protrusions 

exists. Second the presence of ice crystals in the layer may add to 

the backscatter feature because of the secondary maximum displayed by 

the scattering phase functions of ice crystals for scattering angles 

near 180°. 

The brief descriptions and explanations given above are not meant 

to completely account for all of the features in the patterns. Some of 

the propertieH such as those found in the clear ocean cases are easily 

accounted for. Others, such as the prominent backscatter in the small 

zenith angle cloud cases may be explained with much less confidence and 

are subject to further verification. The most general conclusion 

which may be drawn from the ensemble of the angular reflectance models, 
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and the most important, is that the anisotropy displayed by all scene 

types is of sufficient magnitude to have a significant impact on re-

fleeted flux densities inferred from scanning radiometer measurements. 

3.2 Comparison with Previous Results 

Because there have been only a few experimental programs dedicated 

to the measurement of angular reflectance patterns it is important to 

compare the data presented here to previous studies whose results have 

been incorporated into various radiative energy budget estimates (see 

Introduction). Also, some theoretical efforts have been published 

which are sufficiently rigorous to offer a good basis for comparison. 

The comparisons below will be made following the historical perspec-

tive given in the Introduetion. Many of the angular reflectance models 

used in the comparisons which follow were compiled by Mr. Eric A. Smith 

and were supplied to the author by personal communication. These 

models are indicated below by an asterisk. 

The first comparison was made between the clear Arabian Sea data 

collected with the bugeye and clear Pacific Ocean data from (0.2 - 6.0 

µm) TIROS IV measurements compiled by Arking (1965). Arking's data 

were presented in terms of an apparent reflectance R = (n • N) I (F • 
0 

cos z), where F is the solar constant (the symbols N and z have been 
0 

changed from the original document to comply with present notation). 

In order to affect the comparison a value for F 
0 

-2 of 1375 watts•m was 

used to recover N, the (0.2 - 6.0 Um) radiance, from the original 

apparent reflectance values. The average of the adjusted voltages 

measured by the bugeye in the principal plane was used to obtain a 

factor to scale the bugeye readings to the average radiance value from 
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the previous study. Figure 15 shows a plot of the comparison in the 

principal plane for a solar zenith angle of 53°. In view of the dif-

ferences between the data collection techniques the agreement is good. 

The figure also indicates the general validity of scaling (0.4 to 1.1 

µm) data to represent the behavior in the broader spectral region. 

Figures 16a and b show comparisons between an agular model* co1tt-

-1 piled from the data of Ruff et al. (1968) for clouds and the X pat-

terns compiled from the bugeye measurements of altostratus and .middle 

and low level broken clouds respectively. The plots show contours of 
-1 the difference between the X values with positive numbers indicating 

that relatively brighter regions were measured by the bugeye while 

negative numbers indicate regions of greater brightness resulting from 

the previous study. Also shown near the bottom left of the figure is 
-1 the average difference in th~ X values taken over the 0° - 70° nadir 

angle and the 0° -4360° relative azimuth range. The average of the 

differences would-be zero for the entire 0° - 90° nadir angle range, 

however the bugeye measurements for nadir angles beyond 70° are con-

sidered to be extrapolations supported by sparse data only. A positive 

value of the average error indicates that an overall brighter field 

was measured by the bugeye for the 0° - 70° nadir angle range. The 

corresponding r.m.s. error is given at the bottom right of the figure 
-1 indicating the average magnitude of the difference in the X values 

over the field displayed in the figure. In Figure 16a which represents 

measurements taken over altostratus clouds for a solar zenith angle 

range of 40° - 50°, the average error of -.02 indicates that the bugeye 

measured values are relatively smaller over the 0° - 70° range. The 

primary contributions to the negative overall error are found in a 
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broad region in the forward scattering direction. Also indicated is 

the greater backscatter measured by the bugeye instrument with a 0.19 

maximum difference indicated at the 60° nadir position at relative 

azimuths of 135° and 225°. The r.m.s. error of 0.11 indicates fair agree-
-I ment on a point by point basis. In Figure 16b the X pattern* from 

Ruff et al. (1968) is compared to the bugeye measured middle and low 

level cloud case for a solar zenith angle range of 20° - 30°. In this 

case slightly poorer agreement is found for the average and r.m.s. 

differences stemming from disagreement throughout the nadir-azimuth 

array. Since the data used by Ruff et al. were obtained from 0.55 -

0.75 µm TIROS IV measurements and included only those cases which 

filled the field of view of an 8 - 12 µm channel, one might expect 

poorer agreement with measurements over broken clouds as indicated by 

these comparisons. 

Figures 17a shows a similar comparison between the bugeye 40° -
-1 50° solar zenith angle altostratus cloud case and a X model* generat-

ed from the measurements by Salomonson (1968) over stratus clouds off 

of the California coast. In this case the bugeye measures a relatively 

brighter field over the 0° - 70° nadir angle range with the greatest 

differences indicated in the backscatter regime. The r.m.s. difference of 

0.09 shows moderately good agreement considering the spectral dif-

ferences between the measurements (0.4 - 1.1 µm vs 0.2 - 4.0 µm) and 

the differences between the altitudes of the measurements (10 km vs ~ 

LO km). In Figure 1 Th the same results* from Salomonson are compared 

to the 40° - 50° middle and low level cloud case. The average agree-

ment is somewhat better for the 0° - 70° nadi.r angle range than w:t.th 

the bugeye stratus case and the average magnitude or r.m.s. difference 
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is only slightly worse. The figure clearly indicates the relatively 

stronger forward scatter and weaker backscatter measured over the low 

stratus deck, a feature which is most probably due to the differences 

between scattering properties of horizontally continuous and broken 

cloud fields. 

Figure 18 is a comparison between bugeye measurements taken over 
-1 the desert for a 70° - 80° solar zenith angle range and a X model* 

compiled from the data which Salomonson (1968) collected over a dry 

desert lake bed. The small average error indicates nearly equal appor-

tiorunent by the two data sets into the less than 70° and greater than 

70° nadir angle regimes. However, the figure shows great disagreement 

between the data .sets resulting from the strong forward scatter meas-

ured by the bugeye and the relatively strong backscatter in the results 

of Salomonson. In this case the r.m.s. difference is over 0.43 and a 

disagreement of 1.11 occurs at the maximum nadir in the solar direction. 

It is relllarkable that the dtsagreement is so great between patterns 

generated from data collected over a desert scene which is normally 

accepted as isotropic and envisioned as the case for which angular re-

flectance modelling is least required. The differences exhibited in 

this case are almost certainly due to the forward scattering off the 

relatively thicker and dust laden intervening atmosphere between the 

bugeye and the desert sands although spectral differences may not be 

ruled out as a contributing factor. Also Salomonson's data were col-

lected over a dry desert lake bed and exnibited strong backscatter even 

in visual observations. Salomonson remarks that "the degree of re-

flection back toward the sun in this case is more than that to be ex-

d" pected over desert san . 
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Figure 19 shows a comparison between measurements by Griggs et al. 

(1967) over a 3 km thick stratus cloud deck for a solar zenith angle of 

50.1° and the 40° - 50° measurements of an altostratus deck by the bug-

eye. In this case an average scaling factor has been applied to the 

adjusted bugeye voltages to scale them to radiance values and the plot 

is shown as a function of the angle of scatter from the incident solar 

direction. The values from Griggs et al. are unsmoothed measurements 

and display a wide variance. The curve through the points is an esti-

mate of the best fit. The bugeye values show the same trends toward 

forward and backward scatter over the range of angles measured and the 

scaled voltages generally lie within the scatter of the previous meas-

urements. 

Figure 20 compares the 40° - 50° Arabian Sea bugeye measurements 

-1 with a X pattern* generated from the results of Brennan and Bandeen 

(1970) whose data were obtained over the Pacific Ocean from aircraft 

at an altitude of about 12 km. Overall the bugeye measurements are 

0.025 lower in the 0° - 70° nadir angle range and an r.m.s. difference 

of 0.20was calculated. Much of the disagreement is found in the for-

ward and backward scattering directions which in this case may be 

caused by significant differences in sea surface conditions. In fact 

a positive difference of 1.07 is found in the region of the sun's glint 

indicating that the feature is much less prominent in the Pacific Ocean 

data. In addition, spectral differences must again be mentioned and 

the presence of the dust-haze layer which was typical of the Arabian 

Sea area during the pre-monsoon period. However, it is unlikely that 

either of the last two features could account for the large discre-

pancies be tweF.'n the angu1 ar patterns. 
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The final comparisons are presented in Figures 2la and b again for 

clear ocean scenes. In this case, however, the results from calcula-

tions by Plass et al. (1975) are used. Their Monte Carlo calculation 

takes into account the effects of Rayleigh scatteriug and Mie scatter-

ing by aerosols as well as molecular and aerosol absorption in the 

atmosphere. At the air-ocean interface the Cox-Munk wave sJope dis-

tributions were used to determine reflection characteristics. In tht 

ocean Rayleigh scattering by the water molecules and Mie scattering by 

the hydrosols as well as absorption by both were accounted for. The 

calculation was carried out for a wavelength of 0.46 µm. Figure Zla 

compares the scaled bugeye radiance to the radiance calculated as 

emerging from the top of the atmosphere for a solar zenith angle of 0° 

and a wind speed of 10 knots. Figure 2lb shows a similar comparison 

for a zenith angle of 57°. Tlie agreement between the trends in the two 

cases is reasonabl~ good in view of the probable differences in aerosol 

distribution, the spectral discrepancies and the fact that the computa-

tion is cloud free. 

The comparisons given above are intended only as a sampling of 

many more which could be made. The specific cases were selected with 

no a priori information regarding the extent of the agreement with the 

. -1 various x models obtained from the bugeye. It is highly l.lll.likely 

that the cases selected offer the worst possible agreement with the 

present data. Thus there is a high probability that many of the angu-

lar reflectance models examined may not be generally representative of 

their respective, similarly described target types. Differences in 

the spectral bandpass of the measurement and the altitude at which the 

data were taken have been invoked as possible explanations for lack of 



-"'j a:: en 
N 
I 

~ 

(/) --0 
~ 

(1J 
0 c 
.Q 
"'O 
0 a:: 
-0 
(1J 

0 u 
(/) 

60 

50 

40 

30 

20 

10 

Comparison of clear Arabian Sea data with calculated clear ocean 

.. 
case for o solar zenith angle of 0° and o surface wind of 10 knots. 

• 

10• 

••• 
.. 
• 

20• 300 
Observation Nod i r Angle 

for t/J = 0° 

. .. BUGEYE MEASUREMENTS 

CALCULATIONS FROM PLASS et al. 

• 

Figure 21a. A comparison between normalized radiances re-
flected from the clear Arabian Sea measured by 
the bugeye for a 0-10° solar zenith angle range 
and a calculation of the same quantity by Plass 
and Kattawar. 

CJ\ ....., 



T a:: 
en 
N 

I 

:e 
en --0 
~ 

Q) 
u c 
0 
:0 
0 a:: 
-0 
.!! 
0 u 

(/) 

Comparison of clear Arabian Seo data with calculated clear ocean 
case for a solar zenith angle of 57°ond a surface wind of 10 knots 

• 

100 • e • • BUGEYE MEASUREMENTS 

90 • • CALCULATIONS FROM PLASS et al. • 
80 • 
70 

• 
60 

• 50 

40 • 
• 

30 • 
20 

10 

oo 10° 20° 30° 40° 50° 60° 
Observation Nadir Angle 

80° goo 

For cp = 0° 

Figure 2lb. A compnrison between normalized radiances re-
flected from the clear Arabian Sea measured bv 
the bugeye for a 50-60° solar zenith angle ra~ge 
and a calculation of the same quantity by Plass 
and Kattawar. 



65 

agreement between the measured patterns. Most of the disagreement, 

however, almost certainly results from the natural variability in the 

radiances reflected from the earth-atmosphere scenes. Because of the 

bugeye instrument's multi-sensor configuration it is possible to exam-

ine the nature of this variability for the atmospheric scenes studied 

during the experiment. This discussion is included in Section 4.2. 



4.0 IMPLICATIONS CONCERNING THE APPLICATION OF ANGULAR REFLECTANCE 
MODELS ON A REGIONAL BASIS 

Having obtained the average angular reflectance models over vnri-

ous atmospheric scene types one could proceed to apply the various 

models to satellite radiance measurements and compilt- reflected flux 

densities. Before making such casual use of the models some note 

should be made concerning the limitations of the models. Considera-

tions relating to the spectral characteristics and spatial convergence 

behavior are given below. 

4.1 Spectral Considerations 

It has been pointed out in several instances that the spectral 

response of the bugeye photodiode may have resulted in angular ref lec-

tance characteristics unique to some extent to the bugeye instrument. 

Ideally measurements would have been made over the 0.2 - 4.0 µm spec-
-1 tral region and the resulting X models would be most properly applied 

to radiance measurements in the same spectral interval. Because of the 

limited spectral response of these measurements and the temptation to 

apply the models to operational satellite data which are even more 

spectrally constrained (see Figure 22) some method of conversion is 

dictated. Smith et al. (1981) indicate that GOES-1 0.5 - 0.9 µm radi-

ance measurements may be converted to GOES-1 0.3 - 4.0 µm broadband 

measurements by using simple linear regression coefficients which are 

target specific. They indicate r.m.s. errors in inferred reflectance 

of less than 1% using the simple model. A similar attempt was 

made to convert bugeye directional reflectance to the 0.3 - 3.0 wm 
directional reflectance measured by the Eppley instruments on the 

66 
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CV 990. In this case averages of the directional reflectance measured 

by both instruments were taken over a given scene type based on the 

total data set for the scene. Usually this resulted in computing a 

bugeye directional reflectance from the set of average bugeye radiances 

compiled at over 100 angular positions. 

Table 3 lists the bugeye and Eppley measured directional ref lec-

tance values for various scene types. Although there are not enough 

data to regress the directional reflectances one on the other for eacl1 

scene type it is possible to construct a single linear regression model 

using all pairs regardless of scene type. The result of this regres-

sion is shown at the bottom of Table 3. The r.m.s. error figure is 

quite large and when computed separately by scene type indicates that 

errors of 10% in the inferred 0.3 - 3.0 µm reflectance are conunon using 

this scheme and that a 30% error may be incurred in a few cases. It 

must be reiterated that these comparisons are being made between aver-

age directional reflectance values collected over a region and that 

several target types for various solar zenith angles have been in-

cluded. Thus, although Figure 6 indicates that a simple regression 

may be valid over a particular scene type a universal application is 

not advisable. 

Given a conversion relation between 0.4 - 1.0 µm and 0.2 - 4.0 µm 

directional reflectance values one could conceivably construct similar 

relationships between the bugeye reflectance measurements and those of 

the TIROS-N or GOES-1 channels. A two step transfer from operational 

reflectance values first to bugeye directional reflectances and then to 

broadband directional reflectances might then be affected. Such a 

procedure, however, does not appear feasible at this stage. Thus, 



Solar Zenith Desert Ocean Himalaya Indian Middle & Low Cloud Altostratus 
Angle Range 

D~ D~ D~ DRE D~ DI): DRB DRE D~ D~ DRB D~ 

oo - 10° .26 .24 .04 .07 .15 .14 .25 .31 

10° - 20° .26 .30 .04 .09 .22 .26 .13 .13 .23 .30 .19 .23 

20° - 30° .24 .28 .06 .09 .28 .32 .13 .19 .33 .41 .22 .38 

30° - 40° .26 .31 .05 .10 .12 .14 .19 .23 .26 .30 

40° - 50° .27 . 32 .06 .09 .33 .41 

50° - 60° .30 • 35 .10 .11 

60° - 70° .30 .38 

70° - 80° .34 .48 

D~ = 1.17 * D~ + .015, Correlation coefficient = .96, r.m.s. error = .034 

Table 3. 'lbe directional reflectance values measured by the bugeye and the Eppley 0.3 - 3.0 µm 
pyranometer for various scene types.(top) and the linear regression relation between 
the directional reflectance values (bottom). 
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application of the present results to operational satellite data must 

rely upon the approximate similitude of the x- 1 patterns among the var-

ious filter functions involved and an independent satellite calibration. 

The assumption that the similitude among x-l functions is more reliable 

than correlation among the filtered reflectances may be examined if 

only approximately. First, a filtered bidirectional reflectance (BDR) 

is defined as 

BDR. (8,¢) 
1 

~(8, $, A) fi(A) dA 
A 

cos z • JE
0

(A) fi(A) dA 
A 

where f.(A) represents the ith filter function, E (A) the incident 
1 0 

solar radiation and the i=emaining symbols retain their prevfous mean-

ings. The corresponding directional reflectance is given by, 

DRi • JBDRi(8,$) cos8 d!"l 
n 

[([ N(8, $, A) fi (A) dA) cose d!"l 

cos z JE
0

(A) fi(A) dA 
A 

-1 The corresponding angular reflectance model Xi (8,¢) is given by 

11 • /Nee, ¢, A.) f. (A) dA. 
-1 1 

X· (8,¢) = A 
1 

dA) f (!N(6, ¢, A.) f 1 (A) case dS"i! 

n A. 
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If it is assumed that the radiance N(0,$,A) may be approximated as the 

product of a function of angle A(6,~) and a function of wavelength W(A), 

then the expressions above reduce to: 

and 

BDR. (6, Q>) 
1 

= 

DR. 
1 

-1 
X· 1 

= 

cos z • /E
0

(A) f 1(A) dA 
A 

wi ~Ai J A(0,~) cose dO 
n 

cos z • / E
0

(1t) fi(.A) dA 
A 

.w l\).i Ai(S,$) 
(6,¢) 7T • i 

l\Af I A(6, ¢i) wi cos8 
n 

7r • A (8,~) = I A < e·, ct>> cos8 dO 
n 

dn 

where wi represents the filtered mean of Wi(.A). Under these assump-

-1 tions X is no longer dependent on the type of filter function used 

in the measurements. However correlations among BDR values or DR val-

ues still depend on the extent to which a relationship exists among the 

W. weighted means. 
1 

4. 2 ~~--'~~ia1 convergence of the angular reflectance models 

If angular reflectance models are to be used to infer flux densi-

ties on a regional basis (250 - 1000 km) it is important to assess how 



rapidly the models converge to the respective mean patterns. An exam-

ination of the rate of the convergence is made possible because of the 

multi-sensor design of the bugeye instrlUilents. The convergence charac-

teristics of the various models were examined by performing the follow-

ing numerical experiment. For a particular target scene type an angu-

lar array of average normalized radiances was compiled subject to the 

same maximum-minimum criteria described in Section 2.3 The instanta-

neous radiance measurements were normalized by the upwelling (0.3 - 3.0 ~m) 

irradiance which was simultaneously measured by the Eppley pyranometer. 

'Ihe resulting angular array is thus proportional to the average of a 

-1 large number of instantaneous samples of the x pattern. The result 

is an unsmoothed, partially filled, non-symmetric field which is the 

most representative version of an angular model for the specific target 

which can be obtained from the present data. Having established the 

mean pattern, the s~quence of measurements is then entered at a random-

ly selected point and a running mean computation is begun at each of 

the angular positions for which at least 30 data points exist for ex-

amination. The computation continues and establishes the number of 

points required at each angular position such that the fractional dif-

ference between the running mean and the true mean is less than 5%. 

The number of data points needed to achieve this error threshold is 

recorded for each angular point. This process was repeated for 100 

different random entries into the data set and the average and standard 

deviation of the number of points needed for convergence computed at 

each angular position. Finally a number weighted mean of the latter 

two quantities was taken over all angular positions as an indication 

of the convergence properties of the data set as a whole. These 
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results are shown in Table 4 for each scene type. Also shown in the 

last column is an equivalent distance corresponding to the length of 

the total data sample. 

In general the results of Table 4 support the premise that angular 

reflectance models are a useful tool for diagnosing the reflected flux 

density over a fairly large region. The indications are that on the 

average a maximum from 5-28% of the total region must be sampled in 

order to insure that the normalized radiance measured at a particular 

angular position is representative of the average of the same quantity 

taken over the region as a whole. The standard deviation of this 

number taken over the 100 trials does indicate however that in most 

cases (except for the 'desert and ice) the convergence fraction is quite 

variable, and assuming a normal ~istribution of the convergence fig-

ures, high confidence of convergence requires over half of the data 

set to be sampled. 

It must be pointed ou~ here that it is difficult to avoid biases 

in the results of Table 4 due to samples collected over small spatial 

scales, since the comparison was made for every angular position at 

which at least 30 measurements had been made. No attempt was made to 

differentiate between cases in which the measurements were taken con-

secutively over a small space scale and those cases in which the mea-

surements were taken non-consecutively over a much larger space scale. 

The number weighting of the various fractional convergence values cer-

tainly diminishes the possible effect of such a bias but in order to 

insure that this influence is minimized, the mean fractional values 

should certainly not be used to infer convergence over space scales 

larger than the equivalent distance given in the table. 



Solar Mean Standard Equivalent 
Scene Type Zenith Fraction of Deviation Length in 

Angle data needed of the km of the 
Range for conver- fraction en tire data 

gence needed for set 
convergen<"e 

Desert oo - 10° 0.03 0.04 400 
" 100 20° 0.04 0.06 1100 
11 20° 30° 0.03 0.04 700 
" 30° 40° 0.09 0.11 1000 
" 40° 50° 0.01 0.02 1200 
" 50° - 60° 0.02 0.03 1000 
" 60° - 70° 0.04 0.07 675 
" 70° 80° 0.04 0.05 500 

Himalaya 10° - 20° 0.18 0.20 220 
" 20° 30° 0.22 0.21 100 

Clear Ocean oo - 10° 0.14 0.14 800 
" ti 10° - 20° 0.17 0.19 1200 
" " 20° - 30° 0.21 0.21 1100 
" " 30° - 40° 0.23 0.22 900 
" " 40° 50° 0.13 0.16 1200 
" " 50"0 - 60° 0.20 0.18 600 

Indian Subcontinent oo - 10°' 0.09 0.09 250 
" " 100 20° 0.13 0.13 275 
" 11 20° 30° 0.05 0.07 450 
" " 30° 40° 0.04 0.06 400 

Altostratus 20°- - 30° 0.28 0.23 175 
" 30° 40° 0.12 0.14 275 
" 40° 50° 0.19 0.20 150 

Broken Cloud oo - 10° 
" " 100 20° 0.14 0.17 175 
" " 20° 30° 0.19 0.20 150 
" ,, 30° 40° 0.16 0.19 100 
" " 40° 50° 0.28 0 .. 23 25 

Ice 50° - 60° 0.03 0.04 500 

Table 4. The mean and standard deviation of the fraction of the total 
data sample required for convergence to within 5% of the mean 
angular reflectance model for the various scene types. 
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These results may be taken one step further, to search for angular 

viewing coordinates which display minimum convergence fractions. This 

exercise was carried out for all of the angular models presented in 

this study. The results may be briefly sununarized by stating that no 

angular regions were folllld which displayed the preferred convergence 

statistics. Figures 23-29 are presented which show the fractions of 

the data samples required for convergence as a function of observation 

nadir and relative solar azimuth. These plots are typical of those 

which pertain to the remainder of the angular models. It should be 

noted that there is no reason to expect continuity in the convergence 

arrays as evidenced by the contour behavior across the principal plane. 

The convergence arrays were finally averaged with respect to the rela-

tive azimuth angle to examine their variation with nadir angle. Only 

in a few instances did a particular nadir angle exhibit convergence 

fractions which deviated by more than a few hundredths from the frac-

tions listed in Table 4. Thus, there appears to be little reason to 

anticipate the existence of angular positions at which the angular 

reflectance models show preferred spatial convergence behavior. 
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4.3 Optimal Viewing Angles for Flux Density Inference Based on 
Application of Angular Models in a l~ 2 or 3 Satellite Syste~ 

The previous section concluded that the rate of spatial conver-

gence displayed by the measured radiances was essentially independent 

of angular coordinates. This conclusion was based on an examination of 

the behavior of the cumulative or running mean of the normalized .radi-

ances as a function of angle. There is yet another criterion which 

may be invoked to categorize a particular observation coordinate as 

optimal, namely the absolute magnitude of the error between the instan-

taneously inferred reflected flux density and the scene average of the 

same quantity. This absolute difference is related to the variance of 
' the radiances evaluated over the scene and the variation of the ab-

solute error a~ a function of observation angle is useful under the 

following circumstances. First, if inferences of reflected flux densi-

ties must be made over a space scale smaller than those established in 

the previous section it would be preferable to utilize radiances for 

which the magnitude of the absolute error is minimized. Second, if 

more than one observation platform is available, negative correlations 

may exist between or among the errors in the inferences made at two or 

three angular coordinates which may dictate preferences in pairs or 

triplets of nadir or relative azimuth positions. 

In order to examine the possibility that optimum angular coordin-

ates exist under these circumstances the following numerical experiment 

was performed. -1 The mean X pattern was obtained for a particular re-

fleeting target in a specified zenith angle range. The data were left 

in an asymmetric form so that taken over the entire scene, E = 

N(S, ~' z) • X (6, ~, z) • TI, where the overbar indicates taking the 
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scene average. The r.m.s. deviation 0(6, ¢, z) between E and 

"' E (6, ¢, z) was evaluated using all measurements acquired over the 

scene, where E (8, ¢, z) is the reflected flux density inferred from 

the instantaneous radiance measurement N(8, ¢, z) through the mean 

x<e, ¢, z) model. The deviations were analyzed in the following manner 

primarily with geostationary satellite applications in mind. For a 

particular type of surface the deviations were averaged over all rela-

tive azimuth and solar zenith angles to produce nadir dependent devia-

tions 06 • Likewise an average over 1all nadir and solar zenith angles 

was taken to form deviations 6¢ which depend only on the relative 

azimuth angle. For the case of an inference made from a pair of satel-

lites the pertinent ·statistic is the deviation between the actual scene 

averaged reflected flux density and the average of the inferences made 

by the two observations [E (61 , ¢1 , z) + E (62 , ¢2 , z]/2. This r.m.s. 

deviation is denoted by 6(61 62 , ¢1 ¢2 , z); its value when averaged 

over all pairs of relative azimuths {¢1¢j} and over all solar zenith 

angles .is denoted by oe. e.' and when averaged over all pairs of nadir 
l. J 

angles {e1e2} and all solar zenith angles by 0¢ ¢ . 
1 2 

it is possible to construct the statistics 09 e e 
i j k 

case of an inference made from three satellites. 

In a similar way 

Although the data were originally stratified into 10° nadir and 

relative azimuth resolutions, for practical reasons three nadir 

stratifications were considered, 0° < e < 20°, 20° ~a< 50° and 50° < 

e < 70° hereafter referred to as low (L), medium (M) and .high (H) 

regilll£s. The original 36 relative azimuth stratifications were de-

graded to six 60° sectors; the first sector was centered on the solar 

azimuth so that it extends from -30° to + 30° in relative azimuth and 



the second through sixth se.ctors were numbered in a clockwise ·sense 

looking down on the scene. When calculating the values which apply to 

the multiple satellite system, combinations of inferences which involve 

identical pairs or triplets of a particular observation angle (nadir 

or azimuth) on the 10° resolution scale were not allowed. Thus, it is 

possible to calculate a value for 011 comprised of data taken at 0 -

10° and 10 - 20° nadir angles but 6LLL is excluded since this would re-

quire a pairing of one of the nadir ranges 0 - 10° or 10 - 20°. Note 

·that oMMM is allowed which would be comprised of the average of the in-

ferences made at 20 - 30°, 30 - 40° and 40 - 50°. 

The results of the analysis are shown in Figures 30 through 36 for 

the various types of reflecting surfaces. Table 5 presents the aver-

age values of the deviations made with a one, two or three satellite 

system. The left half of each of the figures depicts the behavior of 

hthe deviations with nadir and the right side shows the azimuthal de-

··pendencies. All values are presented as percentages of the 0. 3 - 3. 0 

:µm reflected flux density. The order of the inference,. i.e. the .. number 

·of .different angles involved in the inference increases from the top 

·to the bottom of each figure. Single position deviations are repre-

sented as a row vector, double angle deviations by a syimnetric array 

and triple position deviations by the 'upper' (i ~ j,k) portion of a 

symmetric three dimensional array. Values which are not allowed be-

cause of duplication of the indices at the 10° resolution scale are 

indicated with a dash (-), and in cases for which insufficient data 

exists to perform the calculation the letter M is used to indicate the 

missing entry. 
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Deviations between measured and inferred reflected 
flux density for the desert 

NADIR DEPENDENCE 

L M H 
, 5. I, 5.7, 4.91 
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I 2 3 4 ~ 6 
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SINGLE OBSERVATION CASE 
I 2 3 4 5 6 

3.0 3.1 3.0 2.9 2.9 3.1 

L M H 3.1 3.1 3.0 2.9 3.0 3.2 
-

L 3.0 3.2 2.7 3.0 3.0 2.8 2.8 2.9 3.0 
8 8;8j M 3.2 3.6 3.0 

2 

3 

4 

5 

6 

2.9 2.9 2.8 2.6 2.8 3.0 

H 2.7 3.0 2.5 2.9 3.0 2.9 2.8 2.8 3.0 

3.1 3.2 3.0 3.0 3.0 3.2 

DUAL OBSERVATION CASE 

Fieure 30. The nc~dir and azimuthal dependence of the r .m. s. devia-
tions between average measured 0.3 - 3.0 µm reflected flux 
density and the inference of the same quantity made from 
l> 2 or 3 instantaneous radiance measurements over the 
desert expressed as a percent of the average reflected 
flux density. 
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Figure 30. (Continued). 



85 

Deviations between measured and inferred reflected 
flux density for the Himalayas 

NADIR DEPENDENCE 
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16.3 12.4 16.7 15.0 17.9 -

DUAL OBSERVATION CASE 

Figure 31. The nadir and azimuthal dependence of the r.m.s. devia-
tions between average measured 0.3 - 3.0 µm reflected 
flux density and the inference of the same quantity made 
from 1, 2 or 3 instantaneous radiance measurements over 
the Himalayas expressed as a percent of the averaged re-
flected flux density. 
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Figure 31. (Continued). 
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Deviations between measured and inferred reflected 
flux density for the ocean 
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Figure 32. The nadir and azimuthal dependence of the r.m.s. devia-
tions between average measured 0.3 - 3.0 µm reflected flux 
density and the inference of the same quantity made from 
1, 2 or 3 instantaneous radi.ance measurements over the 
clear ocean expressed as a percent of the average reflected 
fJux density. 
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Figure 32. (Continued). 
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Deviations between measured and inferred reflected 
flux density for the Indian subcontinent 
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Figure 33. The nadir and azimuthal dependence of the r.m.s. devia-
tions between average measured 0.3 - 3.0 µm reflected 
flux density and the inference of the same quantity 
made from 1, 2 or 3 instantaneous radiance measurements 
over the Indian Subcontinent expressed as a percent of 
the average reflected flux density. 
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Figure 33. (Continued). 
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Deviations between measured and inferred reflected 
flux density for the cloud I case 
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Figure 34. The nadir and azimuthal dependence of the r.m.s. devia-
tions between average measured 0.3 - 3.0 um reflected flux 
density and the inference of ·the same quantity made from 
1, 2 or 3 instantaneous radiance measurements over middle 
and low level clouds expressed as a percent of the average 
reflected flux density. 
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Figure 34. (Continued). 
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Deviations between measured and inferred reflected 
flux density for the cloud 2 case 
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Figure 35. The nadir and azimuthal dependence of the r.m.s. devia-
tions between averaged measured 0.3 - 3.0 µm reflected 
flux density and the inference of the same quantity made 
from 1, 2 or 3 instantaneous radiance measurements over 
altostratus clouds expressed as a percent of the average 
reflected flux density. 
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Figure 35. (Continued). 
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Deviations between measured and inferred reflected 
flux· density for ice 
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Figure 36. The nadir and azimuthal dependence of the r.m.s. devia-
tions between average measured 0.3 - 3.0 µm reflected flux 
density and the inference of the same quantity made from 
1, 2 or 3 instantaneous radiance measurements over ice 
expressed as a percent of the average reflected flux 
density. 
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Surface Type Number of solar Average deviation inferred vs measured flux density 
zenith angles 

One Satellite Two Satellites Three Satellites 

Desert 8 5 .2% 3.0% 3.0% 

Himalaya 2 19.0% 14.7% 13.2% 

Ocean 6 35.5% 19.3% 17.5% 

Indian Sub. Con. 4 5. 7% 3.5% 3.1% 

Cloud 1 6 15.3% 12.1% 10.9% 

Cloud 2 3 24.3% 15.5% 12.7% 

Ice 1 6.8% 3.7% 2.9% 

Table 5. The r.m.s. deviation between inferred and measured, scene averaged reflected flux 
density averaged over all observation angles and solar zenith angles. 

\0 ..... 



The results of this analysis reinforce the assumption that cer-

tair reflecting surfaces are spatially homogeneous with respect to re-

flected flux density. The smaller values of the deviations evident in 

the desert, Indian subcontinent and ice scenes indicate that inferences 

made from one or two instantaneous radiance measurements would result 

in an error of only a few percent in the average scene reflected flux 

densities. Little additional reduction in the error results if a third 

platform is used. For these spatially homogeneous surfaces the ice 

case indicates the greatest dependence on observation geometry, where 

in the single observation geometry intermediate nadir angles and small 

relative azimuth angles are indicated as the poorest observation posi-

tions based on the minimum variance criterion. It should be pointed 

out however that the data collected over ice were limited to a single 

solar zenith angle range (50 - 60°) while an average over four and 

seven zenith angle ranges has been included in the respective Indian 

subcontinent and desert cases. It is certainly possible that inclu-

sion of several zenith angle cases especially obscures nadir angle 

preferences. Nevertheless, because observations taken from geo-

stationary satellites over a diurnal period will include a range of 

solar zenith angles, the averaging process over that variable seems 

justified. 

The most spatially inhomogeneous surface type based on the pre-

sent results with respect to reflected flux density is that of rela-

tively unobscured ocean. The maximum deviation is nearly 42% of the 

total average reflected flux density; a result which seems initially tu 

cast doubt on the feasibility of flux density inference. However, two 



99 

aspects of this analysis may act to restore confidence in the procedure. 

First, the reader is reminded that the value is an r.m.s. calculated 

deviation and does not benefit from fluctuations about the mean with 

inclusion of more than a single measurement in time, and while a devia-

tion of 40% seems high, 84% of the variance is explained in this worst 

case example. Second, the magnitude of the deviation includes all of 

the variance due to spatial differences in the reflected flux density, 

i.e. even if instantaneously measured flux densities were used to infer 

the scene average an r.m.s. deviation of 12% would result from spatial 

fluctuations over the distance pertaining to the data set (~ 1000 km). 

The results of the clear ocean case indicate a much stronger dependence 

on observation geometry. In the single observation platform case the 

deviation is reduced from 40% to 32.6% when the nadir regime is changed 

from the middle to lower ranges. The best relative azimuth position 

was found to be in the solar direction where the deviation was equal to 

half of the worst case value. The clear ocean case benefits greatly 

from an additional observation platform, the average of the deviations 

falling from 35.5% to 19.3% of the average total reflected flux den-

sity. With the addition of the third observation this figure is re-

duced further to 17.5%. When a pair of observations are available 

both should be made at small nadir angles while using two observations 

at intermediate nadir angles should be avoided. The two satellite 

azimuthal dependence shows the persistence of small deviations when 

one or both observations_ are made toward the sun, however relative 

azimuths between 270° and 330° also result in deviations of equal 

magnitude. Azimuthal observations between 210° and 270° increase the 

best case deviation by a factor of 1.5. If three nadir observations 



are available the smallest deviation values result when inferences from 

intermediate nadir angles are avoided and in the azimuthal sense. opti-

mum results are indicated in general for all measurements between 2J0° 

and 30°. 

The lack of synnnetry displayed in the azimuthal deviations is 

somewhat unexpected and may have resulted from two factors. First, an 

asymmetric distribution about the principal plane of low level, fair 

weather cumulus cloudiness could have introduced this behavior. Exam-

ination of th~ photographic record indicates that the low level clouds 

are randomly distributed about the principal plane. However, the 

photographs were limted by a 41° full angle field of v~ew lens. Thus~ 

it was not possible to examine the entire scene measured by the bugeye 

detectors from the photographic data. Second, since the measurements 

taken at a particular relative azimuth angle were not necessarily taken 

consecutively due to changes in aircraft heading, variations due to 

changes in sea state may have been introduced into the data set in an 
-1 asymmetric manner. As was done in the presentation of the average X 

models, the most generally applicable set of deviations may result 

from a simple average of the values with respect to the principal 

plane. 

The results given in Table 5 for the Himalayas indicate a sub-

stantial improvement (19% to 13.2%) in the average deviation figures 

as the number of observation platforms is increased from one to three. 

In the single observation case small values of the nadir are indicated 

while no clear azimuthal preference emerges. When two measurements 

are available for the inference the pre"ference for small nadir angles 

persists and a slight tendency toward intermediate relative azimuth 
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measurements is evident. An increase to three measurement platforms 

shows a persistence of increased deviation values at large nadir angles 

and an increased trend toward preferred low and intermediate relative 

azimuth angles. 

The average deviation decreases from 15.3% to 10.9% if the number 

of observation positions is increased from one to three in the middle 

and low level cloud case. A slight improvement is indicated for single 

measurements made at intermediate nadir angles but the deviations are 

almost invariant with relative azimuth. The smallest deviations in 

the multiple observation case as a function of nadir occur when low 

and intermediate nadir measurements are combined. The results also 

indicate multiple observations should exclude measurements in the 

solar direction. 

The altostratus cloud case also demonstrates the general improve-

ment in the inference process with an increase in the number of ob-

servational positions, the average deviation decreasing from 24.3% to 

12.7%. A slight improvement is seen at large nadir angles in the 

single observation case and intermediate nadir angles are indicated if 

more than one observation position is available but only by about a 

one percent reduction in the deviation values. The azimuthal depen-

denc~ shows a 7% reduction in the deviation if the altostratus deck is 

observed between 210° and 270° rather than between the 90° to 150° re-

lative azimuth sector. This asymmetric behavior i.s difficult to ex-

plain bur may be the result of the alignment of the small convective 

cells with respect to the solar geometry, or asymmetr1c distributions 

of small breaks in the cloud structure. The azimuthal dependence for 

the case of two observation positions indicates that combining 
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inferences made from relative azimuths between -90° and +30° lead to 

the largest deviations. This tendency is also evident for the case 

when three observations are used in the inference. 

In summary the results of Table 5 indicate that for relatively 

homogeneous surfaces, little improvement is gained with the addition 

of a third observation platform and for the most inhomogeneous cases 

the trend in the reduction of the average deviations indicates that 

addition of a fourth observation position may not be warranted. The 

breakdown of the deviations as a function of observation geometry in-

dicates that appreciable reduction in the deviation value is possible 

in some instances by choosing the appropriate observation angle(s), 

however, in many cases a clear indication of the optimal position(s) 

was not revea~ed by examining the r.m.s. deviations. Also, it must be 

noted that the choice of the deviation between measured and inf erred 

flux densities as the basis of the analysis is somewhat arbitrary. It 

is not to be implied that the values presented in Figures 30 through 

36 are typical of the errors which would be made in an operational 

sense. Rather, this statistic was chosen as representative of a worst 

case inference process for it represents the magnitude of the error 

which would be made if the reflected flux density of a large region 

were inferred from an instantaneous ~ampling of the radiance field. 

Also, the slight trends indicated by Figures 30-36 may be even less 

significant in the operational mode when an average of many data points 

is available to affect the inference. 

Finally, it is noted that the best single observation coordinate 

for a specific surface in terms of a observation nadir, relative azi-

muth and solar zenith angle has been obscured in the averaging 
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processes which led to the results in Figures 30-36. Table 6 presents 

the best case inference for each of the surface types. The angular 

resolutions are those of the original analysis i.e., 10° in the solar 

zenith, 10° in observation nadir and 30° in relative azimuth. The 

results of Table 6 indicate substantial improvements in the inference 

are possible if specific observation positions could be achieved. 

4.4 Impact of the Angular Reflectance Models when Applied to a 
Clj_matically Significant Region 

We stress during this report that the angular reflectance patterns 

are characteristic of regional scale atmospheric scenes. The conver-

gence properties and optimum angular viewing coordinates have been ex-

amined in relation to.an extended space scale. In this section the 

models are applied to a climatically significant region in order to 

assess their impact on the reflected flux density. Green (1980) has 

shown that improper modeling of the directional features of reflected 

radiation may lead to errors of up to 5 watts·m-2 in the average re-

fleeted flux density over a 10° zone of latitude. This error resulted 

when measun~ments of t.he reflected radiance fields were simulated 

assuming isotropy and cvmpared to a simulation which accounted for the 

angular anisotropy. The simulated field of view associated with the 
-'.J 0 5 watts. ru error was over 40 half angle and the angular anisotropy 

was int rodm Pd using a bidirectional reflectance function 3 which was 

indepen<lent of latitude> longitude and surface type. Greater correc-

r-ions mm: resuJ t if target specif1-c reflectance functions are applied 

3 'd' . 1 f] f . . i 1 -l/ Itw hl 1 rect1ona re ectaace .unction 1s equ va ent to X . TT. 



Solar Zenith Observation Nadir Relative Azimuth R.M.S. deviatic~ ex-
Target Type Angle in Degrees Angle in Degrees Angle in Degrees pressed as a percent 

of the mean reflected 
flux density 

Desert 40 - so 20 - 30 60 - 90 1.0 

Himalayas 20 - 30 0 - 10 330 - 360 15.7 

Ocean so - 60 20 - 30 300 - 330 1.6 

Indian Subcontinent 10 - 20 60 - 70 180 - 210 2.0 

Cloud! 30 - 40 0 - 10 120 - 150 7.3 

Cloud2 30 - 40 20 - 30 180 - 210 7.0 

Ice 50 - 60 60 - 70 90 - 120 1.1 

Table 6. The best observational position for a single platform inference and the resulting r.m.s. devia-
tion between the inferred and measured reflected flux density expressed as a percent ai the 
average 0.3 - 3.0 µrn reflected flux density. 
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to measurements of a zonally inhomogeneous region by a scanning radio-

meter with a much smaller field of view. 

Th d t d il Of the X- l i hi d e a a use to comp e most patterns n t s stu y 

were collected over the region between 45 and 80° east longitude and 

0 to 35° north latitude, hereafter referred to as the monsoon region. 
-1 The X patterns should be representative of this region which will 

now be used to examine the sensitivity of reflected flux density to 

application of the angular reflectance models. In fact, the compari-

son will be made using TIROS-N data collected on May 30, 1979, a date 

almost halfway through the duration of Summer MONEX. Data from the 

TIROS-N 0.55 - 0.90 µm an-0 0.725 - 1.10 µm channels were obtained from 

four ascending. orbits over the region between 9:30 and 12:00 z. The 

sub-satellite resolution of a TIROS-N measurement in these spectral 

bandpasses is about 1 km. 
-1 In order to apply the X correction to the TIROS-N data the 

monsoon region was divided into 1400 area elements, their boundaries 

formed.by the whole number degrees of latitude and longitude. Each of 

these elements was assigned one of five surf ace or target identif ica-

tions as shown in Figure 37 which delineates desert, ocean, the Indian 

subcontinent, the northern latitudes of the Himalayas and the coastal 

regions. Each value of reflectance R measured by the satellite was 

identified with a particular target type according to the latitude and 

longitude of reflecting surface. The solar zenith angle z, nadir 

angle of the reflecte.d radiation 8, and relative azimuth angle ¢, were 

computed, and for the ocean target, the angle B between the direction 

of the measurement and the direction of the specular reflection from a 

flat water surface were calculated. The angular patterns were then 
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applied wherever appropriate to obtain corrected reflectance values 
-1 R' = Rix for each TIROS-N channel. In a few instances the angular 

patterns were extrapolated and applied to solar zenith angle ranges 

outside of the angular range over which they were measured, (primarily 

for the Himalaya target). Also, whenever high reflectances indicated 

obvious regions of cloudiness the Cloud! (~ddle and low level) model 

was applied. A complete list of the exceptions and extrapolations to 

the normal application of the angular models is given in Table 7. 

The reflectance values were converted to their approximate flux 

density equivalents through multiplication by the extraterrestrial in-

cident solar flux density in each spectral bandpass; 467 and 339 
-2 watts•m respectively. Average values of measured (isotropic) and 

corrected reflected flux density were calculated for each 1° x 1° ele-

ment comprising the region from 45 to 85° east longitude and 0 to 35° 

north. latitude. The averages were computed from about 500 measurements 

in each area element. The difference between the reflected flux densi-

ties (measured minus corrected), was also calculated and is meaningful 

only in what has been defined as the monsoon region since the correc-

tions were not applied outside that area. 

The average measured, corrected and differenced flux density val-

ues are shown in Figures 38, 39 and 40 for TJROS-N channel 1 and in 

Figures 41, 42 and 43 for TIROS-N channel 2. Note that negative flux 
-1 density corrections imply that the application of the X models has 

resulted in relatively greater values of reflected flux density and 

positive values indicate that the original measurements were larger. 

The signs of the dj fferenees are appropriate for the additional flux 

density abhm~hed in the earth--atmosphere system for each area element 



Surface Type(s) 

All 
All 

Coastal 

Himalayas 

Ocean 

Indian Subcontinent 

Criterion for Alternate Procedure 

z > 80° 
e > 70° 
R < 0.20 

R > 0.20 and z < 50° 
R > 0.20 and z > 50° 

R < 0.40 
R > 0.40 and z < 10° 
R > 0.40 and 30°' < z < 40° 
R > 0.40 and z > 40° 
R > 0.15 and a > 30° 

R < 0.15 and 60° < z < 70° 
R > 0.25 and 0° < z 60° 
R > 0.25 and 60° < z 

Alternate Procedure 

R' R 
R' R 
R' R 

Cloudl X -1 pattern used 
R' = R 

R' R 
Himalaya X-l pattern for 10 < z < 20° used 
Himalaya X-l pattern for 20 < z < 30° used 

R' = R 
-1 Cloud! X pattern used 

Ocean X-l pattern for 50° < z < 60° used 

Cloudl X-1 d pattern use 
R' = R 

Table 7. The criteria for and specification of alternate procedures in applying the angular reflectance 
correction functions. 
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Figure 38. 
-2 Values of reflected flux density (watts•m ) associated with TIROS-N 0.55 - 0.90 µm reflec-

tance measurements on 30 May 1979 using the isotropic assumption over the region between 
30 - 100° east longitude and 0 - 35° north latitude. 
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Figure 39. 
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-2 Values of reflected flux density (watts•m ) associated with TIROS-N 0.55 - 0.90 µm refleL-
tance measurements on 30 May 1979 resulting from application of the angular reflectance (x-1) 
models over the 'monsoon region'. 
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-2 Values of the differences between isotropically inferred reflected flux density (watts·m ) 
and the same quantity derived from application of the angular reflectance <x-1) models to 
TIROS-N 0.55 - 0.90 µm reflectances on 30 May 1979 over the 'monsoon region'. 



Figure 41. 
-2 Values of the reflected flux density (watts·m ) associated with TIROS-N 0.725 - l.:o ~m 

reflectance measurements on 30 May 1979 using the isotropic assumption over the region be-
tween 30 - 100° east longitude and 0 - 35° north latitude. 



Figure 42. -2 Values of the reflected flux density (watts·m ) associated with TIROS-N 0.725 - 1.10 µm 
reflectance measurements on 30 May 1979 resulting from application of the angular reflec-
tance <x-1) models over the 'monsoon region'. 
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Figure 43. Values of the differences between isotropically inferred reflected flux density (watts·m-2) 
and the same quantity derived from application of the angular reflectance <x-1) models to 
TIROS-N 0.725 - 1.10 µm reflectances on 30 May 1979 over the 'monsoon region'. 
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of latitude and longitude which results from application of the angular 

models. Note also that if it is assumed that the values of reflectance 

in these spectral regions are representative of the entire solar spec-
-! trum, and if the same assumption is applied to the X models the 

magnitudes of the flux density corrections would be 3 or 4 times larger 

than the values calculated for the respective TIROS-N channels 1 and 2. 

Figures 38 through 43 indicate that the largest flux density car-

rections result for the convective regions of the equator, the two 

convective centers in southern India. and one convective region in 

southern Pakistan. -1 Since the Cloud! X pattern was used to interpret 

the radiances reflected from these convective elements it is certainly 

possible that the inferred flux densities are in error. (It was not 

possible to measure reflectances from the highest clouds from NASA's 

CV 990 aircraft.) What is not obvious in Figures 38-43 are the car-

rections of smaller magnitude but which are nevertheless just as or 

more important because they apply to a much larger area. In order to 

assess the impact of these less obvious corrections to the reflected 

flux density, an area weighted average correction was calculated for 

the different target types comprising the monsoon region. The highly 

convective regimes were excluded from the weighted average in order to 

maximize the impact of the correc~ions of smaller magnitude which re-

sult from application of the angular models that are most representa-

tive of the regions. Using the.average zenith angle for the region 

to determine the incident flux density, an approximate directional re-

flectance, corrected directional reflectance and change in directional 

reflectance were calculated and the results are shown in_Table 8 for 



Target Type 

Desert 

Himalayas 

Ocean 

Coastal Regions 

Indian Subco~tinent 

Entire Monsoon region 

Isotropically Inf erred 
Directional-Reflectance 

31.3 

31.4 

12.9 

19.5 

·24.s 

20.2 

Corrected 
Directional Reflectance 

33.5 

31. 3 

14.4 

20.7 

27.2 

21. 7 

Magnitude of 
Directional Reflectance 

Correction 

-2.2 

0.1 

-1. 5 

-1.2 

-2.7 

-1. 5 

Table 8. Directional reflectances inferred from TIROS-N 0.55 - 0.90 µm reflectances measured over the 
monsoon regi.on assuming isotropy (Column 1), the same quantity corrected with the ang11Jar 
reflectance models (Column 2), and the differences [isotropically inferred ml.nus corrected], 
(Column 3). 
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the 0.55 - 0.90 µm channel. The results for the 0.725 - 1.10 µm 

channel are almost identical. 

The results of Table 8 indicate that the overall effect of using 

the angular reflectance models is to increase the directional reflec-

tance of the region over that inferred by the isotropic assumption. 

Only in the northern latitudes of the Himalayas is the directional re-

flectance decreased. The magnitude of this decrease is small because 

-1 X correction has been applied only to reflectances greater than 0.40, 

which occurs only over a small fraction of the latitudes north of 30°N 

latitude. The majority of the reflectances measured in. these latitudes 

are not corrected; thus the ·area averaging results in a small dif-

ference for the entire· northern region. For the entire monsoon region, 

application of the angular reflectance models increases the area aver-

aged directional reflectance from 20.2 to 21.7, an increase of 1.5, 

which is significant· for an area as large as the monsoon region. On 
6 2 the space scale of the individual target types (1 ~ 7 x 10 km ) the 

differences between corrected and isotropically inferred reflected 

flux densities are considerable, especially if it is assumed that 

similar corrections would apply over the entire solar spectrum. With 

this assumption, the application of the angular models results in from 
-? 15 to 27 watts•m - of additional reflected flux density, depending on 

surface type, which is typically over 10% of the total 0.3 - 3.0 µm 

reflected flux density. 



5.0 SUMMARY AND CONCLUSIONS 

The earth-atmosphere system gains or loses energy almost entirely 

through radiative processes. Thus, predictions of climate trends will 

almost certainly require an accurate accounting of the earth's radia-

tion budget. Earth orbiting satellites provide an ideal platform from 

which radiative fluxes may be monitored due to their location above the 

earth's radiatively active atmosphere. By using wide field of view 

instruments, the net flux density may be measured at the satellite 

position, and long term (monthly), zonal averages of the radiation bud-· 

get may be obtained. However, the problem is not as straightforward if 

the net radiative input is required on a smaller time or space scale. 

Sampling limitations imposed by the use of a small number of satellites 

require that the budget be inferred from radiance measurements made by 

scanning, narrow field of view instruments. This method requires some 

type of angular !eflectance model which allows target-specific radiance 

measurements to.be converted to emitted or reflected flux density val-

ues. 

Using data acquired on high altitude (~ 10 km) flights by NASA's 

CV 990 aircraft during summer MONEX, thirty angular reflectance models 

were compiled. Each model consists of the normalized, scene-averaged, 

reflected radiance displayed as a function of observation nadir and 

the azimuth angle taken relative to the direction of the incoming solar 

radiation. The normalization factor is the quotient of TI divided by 

the scene-averaged reflected flux density. The models were stratified 

according to the underlying reflecting surface and the value of the 

zenith angle of the incident solar radiation. Eight models were 

118 



119 

compiled for the Empty Quarters of the Saudi Arabian peninsula, six 

for the reasonably unobscured Arabian Sea, two for the Himalaya moun-

tains, four over the Indian Subcontinent and five over low and middle 

level broken clouds. By including data from two ferry flights two 

models were formed over the ice fields of Hudson Bay and three models 

were compiled for the radiance reflected from altostratus clouds in the 

Gulf of Alaska and near the California coast. The space scale of data 

collection for each model was generally between 150 and 1000 km. 

The resulting angular reflectance models display many expected 

characteristics such as the relatively isotropic nature of the field 

of the radiance reflected from the Empty Quarters of the Saudi Arabian 

Desert for small-solar zenith angles. However, one of the most aniso-

tropic reflectance patterns was found for the 70 - 80° solar zenith 

angle desert case which displayed a pronounced forward peak almost cer-

tainly due to atmospheric scattering of solar radiation incident at 

grazing angles. Also observed was the persistent sunglint feature of 

a relatively unobscure.d, calm oceanic scene. However, patterns of 

radiances reflected from fields of middle and low level broken clouds 

indicate a s1.gnificant amount of radiation backscattered toward the 

direction of the incident solar energy for small solar zenith angles; 

this may have resulted from reflection from the vertical boundaries of 

the finite cloud elements. The angular reflectance patterns of alto-

stra tus cloudR also displayed a -strong backseat ter feature. In addi-

tion· to reflectance from the small vertical proturberances of the cloud 

deck, backsf"·atter may have resulted from the presence of ice crystals 

ln the domi. ThE scattering phase functions of ice crystals commonly 

display enhanced scattering at large scattering angles. 



The most important conclusion to be drawn from in-
spection of the angular patterns is that, in nearly 
every case, reflected radiance fields display a 
sufficient degree of anisotropy to conclude that 
neglecting their angular variations would lead to 
significant errors (10 - 100%) in the inferred flux 
density, and that the anisotropy persists even when 
the data are averaged over large geographic regions. 

The resulting angular characeristics of the reflected radiance 

fields were applied to three distinct problems related to the inference 

of flux density. First, the spatial convergence properties of the 

radiance fields were examined in order to establish minimum sampling 

criteria which should be observed when using the angular models. Se-

cond, the radiances from the various scenes were analyzed in a search 

for optimum angular sampling coordinates in a hypothetical situation in 

which one, two or three satellites were available to make flux density 

inferences. Third, the importance of applying appropriate angular 

models for the inference of flux density was examined for the region 

extending from the .. Saudi Arabian peninsula to the Indian subcontinent 

and from the equator to the Himalayan mountain range. 

The spatial convergence study consisted of a repeated application 

of a simple running mean technique to establish the fraction of a scene-

specific data set which was required for the radiance in a particular 

direction to converge to within 5% of the scene-averaged mean radiance 

in the same direction. The results indicated that for some scenes such 

as ice, desert or a sparsely vegetated surface, convergence was achieved 

after sampling a small fraction of the entire data set (:5 10%). How-

ever, for other scenes, such as· clear ocean, clouds or the Himalayas, 

a significant fraction of the entire data set c~ 30%) was required for 

convergence. The conclusion of this analysis is that, 
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scenes which tend to be isotropic also tend to be 
spatially homogeneous while scenes which are ani-
sotropic require substantial spatial sampling in 
order to insure convergence to the mean pattern. 
For example, the flux density reflected from a 
1200 km segment of desert may be accurately in-
ferred by application of the mean angular model 
to radiance data gathered along 25 km of the 
segment. At the other extreme, scanning radio-
meter data along a 250 km track would be required 
to adequately infer reflected flux density over 
the same amount of clear ocean. 

In order to search for optimum angular viewing coordinates, the 

r.m.s. deviation between measured reflected flux density and the in-

stantaneously inferred value of the same quantity was used as a worst 

case test statistic. Some scenes such as desert, sparsely vegetaterl 

surfaces, broken cloud and altostratus cloud showed only a slight pre-

ference for any viewing coordinate. For other scenes such as ocean, 

ice and the Himalayas proper choice of the nadir or relative azimuth 

viewing coordinate significantly reduced the value of the test statis-

tic. For example, viewing the Himalaya scene at small rather than 

large nadir angles reduced the deviation (expressed as a percentage of 

the mean flux density) between measured and inferred flux densities 

from 23 to 15%. No significant dependence on the azimuthal viewing 

coordinate was found in the Himalayan scene. Over the ocean it was 

found that inferences made from int:ermedi.ate nadir angles gave the 

poorest resul u. and a definite preference was found for inferences made 

looking toward the sun. Th~ ice scene data also indicated that inter-

mediate nadir angles should bP avojded. Howeve.r, the largest deviation 

as a function (if n·1ative azimuth occurred when inferences were made 

looking i.nro the sohrr dir~ct"jon, exHctly oppo~dtt>. the results fnr 

cle•H ocean, TIH· ,qhove analyses wen~ carri t:d out for hypothet.iea 1, one 



two or three satellite system and when averaged over all viewing co-

ordinates the test statistics reveal the most important finding of this 

analysis; 

a two satellite radiation budget monitoring system 
is sufficient for inferring shortwave reflected 
flux densities over desert, ice or sparsely vege-
tated surfaces. Mountainous or oceanic regions or 
cloudy scenes benefit from a three satellite system. 
However, the results of this study indicated that in 
no case would the addition of a fourth satellite be 
warranted. 

Finally, the sensitivity of the reflected flux density of a region 

to application of appropriate angular reflectance models was addressed. 

Using TIROS-N data for the region extending from the Saudi Arabian pen-

insula to the Indian subcontinent and from the equator to the Himalayas, 

appropriate angular reflectance models were applied to obtain corrected 

reflected flux densities. Even after deletion of the effects of high. 

clouds regional directional ref lectances were increased by as much as 

2.7% compared to values inferred using an isotropic assumption. For 

the region as a whole, the area averaged di.rectional reflectance was 

increased by 1.5% due to application of the models. The conclusion of 

this analysis is that, 

application of appropriate angular reflectance models 
to operational satellite data resulted in corrections 
to the isotropically inferred flux values of from 1.5 
to 2.7%. Changes of this magnitude constitute a sig-
nificant fractional change (10%) in the reflected com-
ponent of the radiation budget. 

In summary, this study began with the goal of specifying the 

nature of the angular variability of various upwelling radiance fields 

so that satellite radiance measurements could be used to inf er reflected 

flux densities on a regional basis. We proceeded to specify bidirect-

ional reflectance models which could be used to interpret the satellite 
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results. In the process of compositing the models, the variable nature 

of the reflected radiance fields became evident. The angular models 

required to deduce the flux show significant variation even when the 

underlying scene does not change in a way which would cause its re-

ca tegorization. As a result the spatial convergence properties of the 

models were investigated and it was found that for highly anisotropic 

scenes, significant sampling distances were required. The search for 

optimum v1ewing co-ordinates confirmed the variability of the radiance 

fields; even when the flux density of a region was inferred from three 

different viewing co-ordinates, unacceptably large errors resulted for 

anisotropic scenes. Thus it is t~ author's suggestion that angular 

reflectance model.fi should only be used if the radiance fields are aver-

aged over an appt·opriate distance,_ so that their natural variability 

becm~s· 1ns:f gnj ficant. The scene averaged angular models presented 

here an? c'-=-rtainly valid for the specific condition of the earth atmos-

phert: sys tern wh ·t.f'h prevailed at the time and location of the data col-

lect i01J. . 'foe models present.ed ·in this study are better supported stat-

is ti call y tlam those used in previous radiation budget studies. Even 

so~ bec<:-11J~-=- of subtle tmperce1ved di.fferences in the scenes and the 

assoc:i ;~ t·;:'.rj vc:.riaU.nn in the upwelU.ng radiance fields application of 

t:hese mn ci.:~ 1 E may s ti 1 l lead to inferred flux densities which are in 

error hy scvera.l percent. Thus, accurate inferences of the reflected 

componeut of t.b~ earth's radiatign budget from scanning radiometer data 

may nc.it. be , (:as:ihl~ unless the natural variability of the reflected 

radianre t-idd~• l:as been properly tak~n into account. 
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APPENDIX I 

Electrical and Optical Characteristics of the Bugeye Photodiode 

The complete electrical and optical properties of the EG&G SGD-

lOOA silicon photodiode as specified by the manufacturer are listed 

below in Table AI-1. Besides the spectral response which is shown 

in Figure 2 of the text, the most pertinent characteristics are the 

response time and the linearity range of the diode. 

AI-1 



CHARACTERISTIC MINIMUM TYPICAL MAXIMUM UNITS AND CONDITIONS 

Spectral Range 0.35 1.13 Micrometers 
Spectral Sensitivity 0.45 0.5 0.65 Amps/Watt at 0.9 µm 
Integrated Sensitivity 

2870°K Blackbody 0.12 Amps/Watt 
6000°K Blackbody 0.20 Amps/Watt 

Luminous Sensitivity 
2870°K Blackbody 5000 µA/Lumen 
6000°K Blackbody 1500 µA/Lumen 

Operating Voltage 0 100 180 Volts 
Breakdown Voltage 200 600 Volts at 100 µA 
Linearity of Response 5 % over 7 decades 
Operating Temperature -65 25 +150 oc 
Rise Time 4 x 10:~ 

20 x 10-9 Seconds at lOOV 
Dark Current 3 x 10 Amps at lOV at 25°C 
Dark Current 10 x 10-9 100 x 10-9 Amps at lOOV at 25°C 
Capacitance 3 4.0 13 7.0 Picofarads at lOOV 
NEP (0.9 µm, 10 , 1) 1 x 10 Watts at 25°~ 
D * (0.9 µm, 103, 1) 2.3 x 1012 Watts-lcm Hz 12 at 25°C 
Channel Impedance 3 x 106 Ohms at lOOV at 25°C 
Field of View 160 Degrees-Full Angle 
D.C. Photocurrent 1.0 mA at 150V 
Pulsed Photocurrent 120 mA at 150V 
Power Dissipation 

D.C. 0 .. 2 Watts 
Pulsed 25 Watts (1 µ sec Max.) 

Table AI-1. Optical and electrical characteristics of the SGD-lOOA photodiode. 



APPENDIX II 

Description of the Upward Looking Bugeye Instrument 

The upward looking bugeye instrument was designed to measure the 

angular distribution of the downwelling radiation field. In this 

study it was used as a check on the relative magnitudes of the down-

welling direct and diffuse irradiances. If the diffuse component ex-

ceeded 10% of the total downward irradiance, the bottom bugeye data 

were rejected on the basis that the presence of high cloud would in-

validate the results. The physical characteristics of the top bugeye 

differed from those of the bottom bugeye by an alternate arrangement 

of the diodes·~ Table AII-1 gives the angular position of the top bug-

eye diodes with respect to the aircraft frame. Also, the fields of 

view of the diodes in the top·bugeye were not constrained by collimator 

tubes. Rather, a ~mall teflon disk was placed atop each diode to atten-

uate the signal and to extend the field of view from the 160° full 

angle figure quoted in the oiode characteristics (Table AI-1) to 180~ 

full angle. 

The voltage output (V.) of the ith diode is proportional to the 
1. 

sum of the downward direct solar irradiance E and the downward diffuse 
0 

irradiance E. incident on the ith diode or; 
1 

V. k. E cos s .. + k. /Ni (6,¢) Ci (6,¢) d ni 
1 1. 0 1 l. 

n1 

= k. E cos 6. + ki Ei 1. 0 1 

AII-1 



All-2 

UPWARD LOOKING BUGEYE 
Detector Angle from Azimuth Field 
Nuni>er Zenith Angle * of View 

Ste radian 

1 oo 2TI 

2 30° 315° II 

3 30° 45° " 
4 30° 135° " 
5 30° 225° " 
6 45° oo II 

7 45° 90° ti 

8 45° 180° " 
9 45° 270° II 

10 60° 315° " 
11 60° 45° II 

12 60° 135° " 
13 60° 225° " 

*The.azimuth angle as measured in the aircraft re-
ference frame with the forward direction at 0° and 
positive taken in the clockwise sense. 

Table AII-1. Angular positions and fields of view of the upward 
looking bugeye detectors. 



AII-3 

where ki is the relative sensitivity of the ith diode and amplifier, 

Si is the angle between the direction of incident direct solar radia-

tion and the normal to the active area of the ith diode, c1 (8,$) is the 

dot product between the normal to the ith diode and the direction of 

the diffuse contribution from the (8,¢) direction, and ni is the solid 

angle viewed by the ith diode. For this application N1 (8,$) is assumed 

to be isotropic. Thus, the evaluation of the integral on the right 

hand side of the above equation would be trivial were it not for the 

truncation of the integration at the horizon (the diffuse component is 

assumed to be identically zero below the horizontal plane). Although 

the top of the NASA CV 990 aircraft was coated with a black paint, 

some input to -the off zenith diodes is inevitable due to reflection 

from the aircraft. Also, the same diodes receive an tmknown irradiance 

due to the upwelling radiation reflected from the surf ace and atmos-

phere which is subtended by the wide fields of view. These contribu-

tions are certainly small compared to the contribution from the direct 

solar beam but it is not clear that these contributions are negligible 

compared to the small Rayleigh contribution typical at the high alti-

tudes of the measurement. Nevertheless, a solution is sought for the 

over-determined system consisting of thirteen equations or measurements 

in the two unknowns: E
0 

and Ei. A linear progrannning algorithm was 

used to solve the constrained system (E
0

, N1 > O) and the ratio E1 / 

(E + E ) < .10 was used as the data filter criterion. 
i 0 

The results of this analysis resulted in a flight averaged dif-

fuse to tota1 ratio which was typically less than 0.05. However, when 

this criterion was applied to the flights over broken low and middle 

clouds a very high fraction of the data filed the test and the 
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average diffuse to total fraction was approximately 0.40 vhich was 

much greater than expected from visual flight observations. Because 

of the \lllcertainty of the magnitude of the contribution of the up-

welling radiances (discussed above), especially in the case of the 

relatively bright underlying clouds, it was decided to use the altern-

ate test for clouds above the measurement altitude described.in ·chapter 

II. 



APPENDIX III 

Appendix III is a compilation of the complete set of interpolated 

-1 X patterns and plots of the flight tracks of the Convair 990 associ-
-1 ated with each X pattern. The flight tracks were not subjected to 

the same filtering techniques which were applied to the bugeye and 

irradiance data. Thus, some of the points shown in the plots of the 
-1 flight tracks were not allowed into the X compilation. However, 

differences between the points of actual data collection and the 

flight tracks shown below are small. 

AIII-1 



DESERT SPATIAL SAMPLE Ft:IR SOLAR ZENITH ANGLES FROM o• TO 10• 
t:Ci:RT CHltttt-1 r:~ &UR ZENITH F'Ra'1 0.00 TO 10.00 OCG 

Figure AIII-1. 

8 I 

35 'N 
I I I ! I I I I I 

---r---r---r---r---r---r---r---r---r---
-L 

>- I 

' T 
I 

-~ ~ 

30 'N 
I 

I I I I I I I ---r---r---r---r---r---r---r---
1 I 
I P'RKISTl\ll 

~ i!S 'N 

~ :r: 

' ~~ I 
I 
I 

~ I 

J 
... Y' ~ 

... J... ... I j T 
I I I I I I - ~~.-r---

- r - - - r - - - r - - - r - - - r __ cLMr",.."°" - r ..: - - r - - -
I I I I I • I I I ... ;t 

I I ~ 
I .L -,.. I 

o• 
I ! I I I 

I I I I I I I I I 
-r---r---r---r---r---r---r---r---r---

1 I 
I 

I I '"i"(LLH I I I I I I 
---r---r---r---r---r---r---r---r---r---

' I I• 

~ 

Interpolated X-l pattern (left) and associated flight track (right) for the 0-10° solar 
zenith angle desert case. These data were collected during the MONEX flight(s) of the 
9th and 14th of May, 1979. 
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Figure AIII-2. 
-1 Interpolated X pattern (left and associated flight track (right) for the 10-20° solar 

These data were collected during the MONEX flight(s) of the zenith angle desert case. 
9th, 10th and 14th of May, 1979. 
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Figure AIII-3. 
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-1 Interpolated X pattern (left) and associated flight track (right) for the 20-30° solar 
zenith angle desert case. These data were collected during the MONEX flight(s) nf the 
9th, 10th, 12th and 14th of May, 1979. 
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Interpolated X pattern (left) and associated flight track (right) for the 30-40° solar 
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Figure AIII-5. -1 Interpolated X pattern (left) and associated flight track (right) for the 40-50° solar 
zenith angle desert case. These data were collected during the MONEX flight(s) of the 
9th, 10th, 12th and 14th of May, 1979. 
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zenith angle desert case. These data were collected during the MONEX flight(s) of the 
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Figure AIII-9. 
-1 Interpolated x pattern (left) and associated flight track (right) for the 10-20° solar 

zenith angle Himalaya case. These data were collected during the MONEX flight(s) of the 
11th of June, 1979. 
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Figure AIII-11. Interpolated x-l pattern (left) and associated flight track (right) for the 0-10° solar 
zenith angle ocean case. These data were collected during the MONEX flight(s) of the 
31st of May and 3rd of June, 1979. 
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zenith angle ocean case. These data were collected during the MONEX flight(s) of the 
29th and 31st of May and the 3rd of June, 1979. 
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Figure AIII-17. Interpolated X-l pattern (left) and associated flight track (right) for the 0-10° 8olar 
zenith angle Indian subcontinent case. These data were collected during the MONEX 
flight(s) of the 5th and 11th of June, 1979. 
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Interpolated X-l pattern (left) and associated flight track (right) for the 20-30° ~cl~r 
zenith angle Indian Subcontinent case. These data were collected during the MONEX 
flight(s) of the 5th and 11th of June, 1979. 
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Figure AIII-20. -1 
Interpolated X pattern (left) and associated flight track (right) for the 30-40° solar 
zenith angle Indian Subcontinent case. These data were collected during the MONEX 
flight(s) of the 5th and 11th of June, 1979. 
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of the 7th of July, 1979. 
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Figure AIII-29. 
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-1 Interpolated x pattern (left) and associated flight track (right) for the 40-50° solar 
zenith angle ice case. These data were collected during the MONEX flight(s) of the 30th 
of April, 1979. 
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APPENDIX IV 

Appendix IV presents the coefficients of the least squares fit of 
-1 all of the X patterns discussed in this study. The basis functions 

used in the regression are the spherical harmonic functions in a 

slightly modified form. -1 Thus, each of the X patterns has been ap-

proximated as 

= 
N 
E Ci Yi(S,¢), 

i=l 

where 8 is the nadir angle and ¢ the relative azimuth angle. Y.(8,¢) 
1 

is one of the spherical harmonics Ym(S,¢), where for each value of n n 

there are 2 n+l possible values of m. In the approximations which 

follow n was allowed to range from~O to 6 which allows i to range from 

1 to 49. The terms in the fit which contribute less than 0.25% to the 
A-1 norm of X have been discarded and a number weighted r.m.s. error has 

been calculated after deletion of these terms. Table AIV-1 lists the 

set of Yi(8,¢) functions used in the fit. Figures AIV-1 through AIV-30 

list the coefficients c., and the associated r.m.s. error of the fit. 
1 

The user of these approximations is reminded that the ·approximations 

are considered valid for nadir angles of 70° or less and are considered 

to be extrapolations for nadir angles greater than 70°. A plot of the 

. ~1 approximate X field is also given for each scene type studied. 

AIV-1 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

yl 

AIV-2 

The ith basis function Y. (8,¢) 
1. 

0.282094792 
y 2 = 0. 488602512 • cos ( 8) 

Y
3 

= -0.345494149 • sin (8) • cos (¢) 

Y4 = 0.345494149 • sin (8) • sin (¢) 

Y
5 

= 0.630783130 • (1.5 • cos 2 (8) - 0.5) 

Y6 = -0.772548404 • sin (0) • cos (8) • cos (¢) 

Y7 = 0.772548404 • sin (8) • cos (8) • sin (¢) 

Y8 = 0.386274202 • sin2 (8) • cos (2¢) 
Y9 = -0.386274202 • sin2 (0) • sin (2¢) 

-0.417224000 • sin3 (8) • cos (34>) 

0.417224000 • sin3 (6) • sin (3¢) 

1.021985000 • cos (8) • sin2 (8) • cos (2$) 

ylO = 
yll = 
y12 = 

y13 = 
y14 = 
yl5 = 

y16 = 
Y17 = 

y18 = 
y19 = 

y20 = 
y21 = 

y22 = 
y23 = 
y24 = 
y25 = 
y26 = 

y27 = 

y28 = 
y29 = 

y30 = 
y31 = 

y32 = 

-1.021985000 • cos (8) • sin2 (8) • sin (2¢) 
:'b.323180140 • (5 • cos 2 (6) -1) • sin (8) • cos (34>) 
-0.323180140 • (5 • cos 2 (8) -1) • sin (6) • sin (3¢) 
0.373176300 • (5 • cos 3 (8) - 3 • cos (8)) 
0.442530000 • sin4 (8) • cos (4¢) 
0.44Z530000 • sin4 (6) • sin (4¢) 
-1.251670000 • cos (8) • sin3 (8) • cos (3¢) 
1.251670000 •, cos (6) • sin3 (0) • sin (3¢) 
0.334520000 • (7 • cos 2 (0) -1) • sin2 (6) • cos (24>) 
0.334520000 • (7 • cos2 (8) -1) • sin2 (6) • sin (2¢) 
-0.283850000 • (5 • cos2 (6) -1) • sin (0) • cos (¢) 

0.283850000 • (5 • cos2 (8) -1) • sin (8) • sin (¢) 
. 4 2 0.105790000 • (35 • cos (8) -30 • cos (8) + 3) s· . 

-0.464130000 • sin (8) • cos (5¢) 

0.464130000 • sin5 (6) • sin (5¢) 
4 1.467700000 • sin (8) • cos (0) • cos (4¢) 

-1.467700000 • sin4 (6) • cos (8) • sin (4¢) 
-0.345940000 • (9 • cos2 (6) -1) • cos (3¢) 
0.345940000 • (9 • cos2 (6) -1) • sin (3¢) 
1.694770000 • (3 • cos 3 (6) - cos (8)) • cos (2$) 

Table AIV-1. (Page 1) 



i 

33 
34 

35 

36 

37 
38 
39 
40 
41 
42 
43 

44 

45 

46 

47 

48 

49 

y37 
y38 
y39 
y40 
y41 
y42 
Y43 

'\.' 
"49 

AIV-3 

The ith basis function Y1 (8,¢) 

-1.694770000 • (3 • cos 3 (8) - cos (6)) • sin (2¢) 
= -0.320280000 • (21 • cos4 (6) - 14 • cos2 (8) + 1) 

• cos (4>) 

= 0.320280000 • (21 • cos4 (6) 14 • cos2 (6) + 1) 
sin (¢) 

= 0.116950000 • (63 • cos5 (6) 70 • cos 3 (6) + 15 
• cos (8)) 

= 0.483080000 • sin6 (6) • cos (6cf>) 
= -0.483080000 • sin6 (6) • sin (6¢) 

= 1.673450000 • sin5 (6) • cos (8) • cos (5¢) 
= -1.673450000 • sin5 (6) • cos (6) • sin (5¢) 
= 0.356780000 • sin4 (8) • (11 • cos2 (6) - 1) • cos (4¢) 
= -0.356780000· • sin4 (6) • (11 • cos 2 (6) - 1) • sin (4¢) 

= 0.~51390000 • sin3 (6) • (11 • cos3 (6) - 3 • cos (8)) 
• cos (3cf>) 

= -0.651390000 • sin3 (8) • (11 • cos 3 (6) - 3 • cos (8)) 
• siu (3¢) 

= 0.325690000 • sin2 (8) • (33 • cos4 (6) 18 • cos2 (8) 
+ 1) • sin (2¢) 

= -0.325690000 • sin2 (6) ~ (33 • cos4 (8) - 18 cos2 (8) 
+ 1) • cos (2¢) 

= 0.411980000 • sin (6) • (77 • cos5 (8) - 70 • cos3 (6) 
+ 5 • cos (6)) • cos ($) 

= -0.411980000 • ·sin (8) • (77 • cos5 (8) - 70 • cos3 (6) 
+ 5 • cos (8)) • sin (¢) 

= 0.063570000 • {231 • cos6 (8) - 315 • cos 4 (8) + 105 
• cos 2 (8) + 5) 

Table A.IV-1. Modified spherical harmonic functions which form the 
A-1 basis of the X approximations. 
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