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Abstract-Two sets of block Kalman filtering equations are derived
that differ in the manner of generating the initial and updated esti­
mates. Parallel and sequential schemes for generating these estimates
are adopted. It is shown that the parallel implementation inherently
leads to a block Kalman estimator which provides filtered estimates at
the vector (block) level and fixed-lag smoothed estimates at the sample
level. The sequential implementation scheme, on the other hand, gen­
erates the estimates of each sample recursively, leading naturally to a
scalar (filter) estimator. These scalar estimates are arranged in a vec­
tor form, resulting in a block estimator which solely generates filtered
estimates both at the vector and sample levels. Simulation results on a
speech signal are also presented which indicate the advantages of the
sequential block Kalman filter. An algorithm for iterative calculation
of Kalman gain and error covariance matrices is given which does not
require any matrix inversion operation. The implementation of this
algorithm using available systolic array processors is presented. A ring
systolic array is also suggested which can be used to implement the
state update part of the block Kalman filter.

I. INTRODUCTION

BLOCK processing has been applied to numerous areas in
digital signal processing [1]-[9] and control [10]. This is to

a great extent due to its advantages and utilities in performing
parallel processing with increased throughput. rate, increased
computational efficiency, reduced roundoff error, and sensitiv­
ity performance [1]-[4]. Barnes and Shinnaka [4] used the con­
cept of block processing to arrive at a block state-space
formulation with states that propagate only at the edge of each
block rather than at each sample. Their block state-space model
has been used in a number of papers. In a paper in Anderson et
al. [5], this block state-space is used as a dynamic model for
modeling the signal and the observation in the Kalman filtering
problem. Their block Kalman filter can be used to estimate a
block of data at each iteration given the observation blocks up
to the present block. Some of the advantages of this scheme
which are inherent to the block processing method are reduced
computational effort, and better sensitivity and stability perfor­
mances. It is also shown that the block estimates are smoother
as the block Kalman estimator provides fixed-lag smoothed es­
timates of the unblocked process. Jain and Jasiulek [6] proposed
nonrecursive algorithms which utilize FFT to accomplish the
operations required in linear smoothing, Riccati equations,
boundary value problems, and block Kalman filtering problems.
In [7] Lu et al. proposed several systolic architectures for block
implemented I-D FIR and IIR digital filters. These structures
offer considerably higher sampling and throughput rates as
compared with the single processing element. Parhi and Mes-
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serschmitt [8], introduced a look-ahead computation scheme for
parallel implementation of the block state-space equation. This
scheme utilizes pipelining at bit level and allows an even higher
sampling rate. They have also proposed an incremental block
state-space structure [9] which offers fewer computational com­
plexities when compared to the standard and parallel block state­
space structures.

In this paper two generalized sets of block Kalman filtering
equations are derived. It is shown that the manner in which the
data is processed determines the types of Kalman filtering equa­
tions. In particular, parallel and sequential implementation
schemes are considered and the corresponding block Kalman
filter equations are obtained. In the first case, the initial esti­
mates are evaluated based upon the updated estimates in the
previous block and the estimates are updated in parallel when
the entire current data block is received. This scheme is found
to be somewhat similar to that developed in [5]. Although the
estimates are smoother because of the fixed-lag smoothing
property of this structure, the oversmoothing in signal estima­
tion applications may result in loss of some valid information.
Moreover, the fixed-lag smoother is sluggish in responding to
the fast transitions in the signal. In the second case, the initial
estimate for each sample within the block is obtained sequen­
tially from the updated estimates of the previous samples within
the same block hence resulting in a more accurate estimation.
In addition, this new formulation provides the true filtered es­
timate of each block without introducing any lag in the esti­
mation. Simulation results on a speech signal are presented
~hich indicate that the sequential block Kalman filter provides
the best filtered estimates when compared with those of the
original scalar Kalman filter and the parallel block Kalman fil­
ter. An iterative procedure for evaluating the Kalman gain and
the error covariance matrices is presented which is ideally suited
for implementation using current systolic array processors. A
ring systolic array is also suggested to implement the state up­
date process involved in any general Kalman filtering algo­
rithm.

II. BLOCK STATE-SPACE FORMULATIONS

Consider a discrete-time, stationary Markov process {Xk}
which is modeled by an autoregressive (AR) model of order M

M

x, = z:; a/xk _ / + Uk
l~ I

where { Uk } represents a white Gaussian (WG) process with zero
mean and variance a~ which drives the autoregression process;
and ak's are the coefficients of the AR model. The measurement
equation is given by

M-I
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where the sequence { Yk} represents the observed signal; {h k }
represents the impulse response sequence of an FIR system of
order M; and {Vk} represents the measurement or observation
noise which is assumed to be WG process with zero mean and
variance (J~, and independent of {ud, i.e.,

In state-space form the above equations can be written as

III. PARALLEL BLOCK KALMAN FILTER

In this scheme, the initial estimates of the samples within
block" i " are obtained based upon the updated estimates within
the previous blocks. The updating for the estimates in block
"i " will take place when the entire observation block Yi is re­
ceived in parallel. Let us denote the updated (a posteriori) block
estimate of Xi' conditioned on the observation blocks up to Xi
(or, equivalently, observation points up to YiM + M_ I) by Xi'
i.e.,

(3)

(4 )

Vk, I.

E[SoS~] = Qo

where

(7)

jE[0,M-1]. (8b)

Z, = Yi - Bxi _ l .

- Y - HAj+ IX~
- iM+j i~l

The initial estimate for each element of a block is obtained
recursively based upon observations up to YiM _ I' i.e.,

where the elements of Zi' i.e., ZiM + j are given by

ZiM+j = YiM+j - HSiM+j

Note that in spite of. the fact that Yi is dependent of
{Yo . .. Yi _ I }, since Xi _I is obtained based upon the obser­
vation set {Yo . .. Yi _ I }, the block innovation sequence Z,
will contain only the "new information" in Yi and thus is or­
thogonal to {Yo . .. Yi _ I }. Now, utilizing the linearity prop­
erty of the minimum variance estimator (MVE) we get

Xi = Xi + E[XiIZi]

= Xi + E[ Xi IZiM ... ZiM+M- d (Ba)

and the initial (a priori) block estimate of Xi' conditioned on
the past observation blocks up to Yi _ I (or equivalently obser­
vation points up to YiM _ I ) by Xi' i.e.,

Xi ~ E[XiIYo ... Yi-d = E[xilYo ... YiM-d. (6b)

Then, the' 'block innovation sequence" {Zi} can be defined as

(5)

0 0
0

0
0 0

A= B=

0
aM aM-I al

where

Sk = [Xk-M+ I Xk- M+2 ... xd'

H = [hM _ I .•• ho]

and So is a zero-mean Gaussian random vector independent of
{ud and {vd.

Now let us assume that the measurements are received in
nonoverlapping blocks of N samples (N = M for simplicity),
and it is desirable to compute a block of filtered estimates at
each stage of the algorithm. The block state-space equation can
be obtained by partitioning the sequences {x, }, {Uk}' { Yk},
and {vk } into nonoverlapping blocks of size M, letting
k = iM + j and writing the state-space equation (4) for all
j € [0, M - 1]. This would yield

Xi = AX-I + RUi

Yi = BXi _ 1 + oo, + Vi

Thus we obtain

(10)

vt ? 1. (11)

k, IE [0, M - l ]

j E [0, M - 2]. (9a)

k *- I

Vj E [0, M - 1]

AS' = Aj+ IX~"I'= iM+j-1 -

E[ZiM+kZiM+d *- 0

whereas

This fact indicates that although the block innovation sequence
{Zi} represents a vectorially uncorrelated process, the elements
of Z, are mutually correlated. In other words, Z, can be regarded
as a multichannel process [11] with mutual coupling between
the individual channels. This contradicts with the scalar nature
of the original signal and observation models.

Remark /II-I: Note that since SiM+j,j E [0, M - 1] is ob­
tained based upon the observation points up to YiM _ I' ZiM + j does
not solely represent the "new part" of YiM+i: Thus

(9b)

Forj = M - 1

SiM+M-l = [XiM XiM+1 ... XiM+M-IJ'

I5 = HeR,

A = AM

R = [AM-IB AM- 2B ... B]

and Xi represents the ith block of signal xi, i.e.,

Xi = SiM+M-I = [XiM XiM+ I ••• XiM+M-I]'

Ui, Y,., and Vi are similarly defined.
In what follows, two sets of block Kalman filtering equations

are derived which differ in the manner of generating the initial
(a priori) and the updated (a posteriori) estimates.
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Defining

as the "Kalman gain matrix," the updating equation (8a) be­
comes

Remark IIl.2: The block estimate i; is a vector containing
the smoothed estimates of the scalar signal Xk having different
lags depending on the position of the particular element, i.e.,

(18)

(19)

[

E [X'MI Yo Y'M] ]

E[X,M+ II Yo Y,M+ d

E[x,M+M-II Yo Y,M+M-I]

[

E [XiMI Yo Y'M-d ]

E[XiM+II Yo Y'M]

E[XiM+M-II Yo Y'M+M-Z]'

formed based upon the updated estimates of all the past samples
including the ones in the same block. For example, in finding
XiM + j we use all the updated estimates i" I = iM - M + j,
. . . , iM + j - 1, that are better than X, used in the previous
case. Thus, the estimates generated using this structure are more
reliable and accurate. Second, the updating in this case takes
place sequentially on each sample within a block as opposed to
the parallel method where the updating is done vectorwise. Each
processor estimates based upon the relevant observation point
available to it, e.g., first processor estimates based upon the
first element of the observation block; second processor esti­
mates based upon the first and second observation points, etc.
In contrast to the parallel method this scheme generates purely
filtered estimates both at the vector and the scalar levels. The
updated block estimate in this case is given by

which represents the scalar estimates arranged in a block form.
The initial block estimate is then given by

(12)

(14)

[

E [X,MIYO Y,M+M-d ]

E[X,M+ II Yo Y,M+M- d

~[X'M+M-II Yo Y,M+M- d

[

E [X'MI Yo Y,M- d l
~[X'M+M-IIYo'" Y,M-dJ

+ [~[X;MIZd l.
E[X;M+M-IIZdJ

Using the orthogonal projection lemma [12] and considering
that the updating takes place based upon the entire vector Z;,
we have

( 15) Applying the linearity property of MVE to each element yields

New Kalman filter equations are derived which account for the
presence of the direct feedthrough term with gain D in (5). These
formulations that differ in complexity from those obtained in
[5] are given in order as

(21)

(20a)

(20b)

[

E [XiMIZiM] ]

~ _ E[XiM+lIZiM+d
Xi = Xi + .

~[XiM+M-llziM+M- d

= ASiM +j - 1 j E [0, M - 1].

Also we have

where scalar innovation sequence is

ZiM+j = YiM+j - HSiM+j j E [0, M - 1].

Note that in this case SiM + j is given by

(16a)

(16b)

(16c)

(16d)

Pb(i) ~ E[XiXn = APa{i - l)A' + BQuB' (16e)

Pa{i) ~ E[X;X:] = Pb(i) - K(i)[fiPa{i - l)A' + DQuB']

(16f)

Rz{i) ~ E[ZiZ:] = fipa{i - 1)fi' + DQuDt + Qv

K(i) = (APa{i - l)fi' + BQuD')R;I{i)

ii = Xi + K{iHY; - Mi-d

where Xi ~ Xi - Xi and Xi ~ Xi - ii; Pa(i) and Pb(i) are,
respectively, the a posteriori and the a priori error covariance and
matrices; Qu and Qv are the covariance matrices of { Vi} and
{ Vi} block sequences, given by

(22a)

(22b)

E[ViVJ] = Quo(i -j) = a~IO(i-j)

E[ViVJ] = Qvo(i -j) = a~Io(i -j) (17)

and 0 ( . ) represents the Kronecker delta function.

IV. SEQUENTIAL BLOCK KALMAN FILTER

This case differs from the previous one in a number of ways.
First, the initial estimate for each sample within a block is

Remark IV. I : In this case SiM + j' j E [0, M - 1], in the
scalar innovation is obtained based upon the updated estimates
i" I = iM - M + j, . . . , iM + j - 1, which are in tum
evaluated based upon the observation points up to YiM + j _ I' That
is, ZiM + j does indeed represent the "new part" of YiM + j and
thus is independent of all the observation points in the set
{Yo' .. YiM+j-I}, i.e.,

vt E [0, iM + j - 1]
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or

This implies that the sequence {Zk} represents an uncorrelated
scalar process. This certainly matches more closely to the scalar
nature of the original signal and observation models.

Applying the linearity property of the estimator to each scalar
estimate yields

E[SiM+jl Yo '" YiM+j]

= E[SiM+j!YO ... YiM+j-l] + E[SiM+jlziM+J

and

k =1= I, vk. I (23)

set of sequential block Kalman filter equations, obtained by
blocking the scalar estimator equations. As can be seen, these
formulations provide purely block filtered estimate. If station­
arity is assumed, the steady-state Kalman gain Ks can be ob­
tained using (26b), (26c), and (26f). This gain matrix is then
used throughout the entire updating process. Equations (27) and
(29) would then represent a simplified sequential block Kalman
filtering procedure.

Remark IV.2: In addition to the above benefits, this scheme
provides a very efficient means of block Kalman filtering, since
the Kalman gain and error covariance evaluations using (26b),
(26c), and (26f) do not require any matrix inversion operation,
as in the scalar case.

where

where a is defined in (5) and R; is given by its (k, I) elements
as

V. SIMULATION RESULTS

In order to examine the effectiveness of the proposed block
Kalman filters, a speech signal for the word "hello" is digitized
at 16 KHz and used throughout the experimentation. This signal
which contains 5000 points is shown in Fig. 1. This signal is
then corrupted by adding white Gaussian noise with zero mean
and variance 0.158 to obtain a SNR of 6.9 dB. The corrupted
signal is shown in Fig. 2. The entire simulation is performed
on a Mac II computer with a 68020 processor and a 68881 Math
coprocessor. A fifth-order AR model is fitted to this data and
the model parameters are obtained by solving the Yule-Walker
equations. Using this method the variance of the driving noise
sequence (J~ is found to be 0.02. Standard Kalman filter is first
applied to the scalar model in (4) with initial Pa (0) = 10 I and
H = [0 0 0 . . . 0 1]. The filtered signal is shown in Fig.
3. The SNR is measured to be 9.7 dB which shows considerable
noise reduction. The entire process is implemented on-line and
it took 148 s. Fig. 4 shows the behavior of the parallel block
Kalman filter. The effect of smoothing can clearly be seen in
this result. This filter has slower response than the standard sca­
lar Kalman filter. The degradation in performance can also be
observed from the variance of the output noise that is found to
be 0.286, giving a SNR of 4.3 dB which is even smaller than
that of the degraded signal. Additionally, some loss of valid
information is evident in the processed signal. The computa­
tional time for this process is approximately 94 s which is
smaller than that of the standard Kalman filter. Again in this
case the Kalman gain equations are evaluated on-line. The re­
sult of the sequential block Kalman filter is shown in Fig. 5
which indicates the effectiveness of this method when compared
with the previous cases. This improvement is also reflected in
the value of the variance of the noise in the output signal which
is reduced to 0.058 giving a SNR of 11.25 dB. The estimates
are obtained in approximately 31 s. In this case the steady state
Kalman gain was obtained off-line, thus (27) and (29) are the
only ones that are evaluated on-line. Overall, the tracking be­
havior of the sequential block Kalman filter is by far better than
the parallel case. This, coupled with its accuracy and efficiency
as discussed above makes this method very attractive for signal
estimation applications.

(27)

(28)

(24)

(26e)

(26f)

k, IE [1, M].k > I

Z, = Yi - HXi - 1 -1'i.;z;

S'M+j = SiM+j + Ki(j)Z,M+j

[

0
R k I =

t( ,) HAk-IKi(1 _ 1)

Now using the orthogonal projection theorem [12] the second
term on the right-hand side of (24) can be expressed as

E[SiM+j!Z;M+J = E[SiM+jZiM+J {E[ZiM+jZiM+j]}-IZ;M+j

Now writing (26e) for j E [0, M - 1], i.e., for each element
of block ','i " and expressing all the initial estimate vectors in
terms of Xi _I yields

t; ~ [AM- I K; (0) '" x,(M - 1)].

Similarly writing (26d) in block form and using (21) and (22)
gives

= K;(j )ZiM+j (25)

where K, (j) is the Kalman gain matrix for the jth element in
block "L." The Kalman filter equations for this structure are
derived to be

SiM+j = ASiM+j- 1 j E [0, M - I] (26a)

Pb(iM + j) = APa(iM + j - l)At + BBt(J~ (26b)

Ki(j) = Pb(iM + j)Ht[HPb(iM + j)Ht + (J;'(

(26c)

ZiM+j = YiM+j - HSjM+j, j E [0, M - 1] (26d)

Equations (27) and (29) together with (26b), (26c), and (26f)
for calculating Kalman gain and error covariances represent a

Equation (28) can be rewritten as

Z, = Wi-IPi - aXi _ l )

where the nonsingular matrix Wi is

Wi = 1+ Ri .

(29a)

(29b)

VI. IMPLEMENTATION USING SYSTOLIC ARRAYS

The development of Kalman filtering algorithms suitable for
implementation using systolic arrays has recently been consid­
ered in a number of papers, namely [13]-[15]. In this section,
systolic array implementations of the block Kalman filter are
presented. The results can be applied to any general MIMO
Kalman filter structure. The proposed systolic architectures im-

-------.__..---- ----- ~~---- -
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Fig. 1. Original speech signal.
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Fig. 4. Filtered speech signal using parallel block Kalman filter (SNR =
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Fig. 3. Filtered speech signal using standard Kalman filter (SNR
9.7 dB).
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Fig. 5. Filtered speech signal using sequential block Kalman filter (SNR
= 11.25 dB).

plement all the operations involved in the Kalman filtering pro­
cess such as the Kalman gain evaluation, iterative update for
the a priori and the a posteriori error covariance matrices and
the state update procedure. An algorithm for iterative calcula­
tions of Kalman gain and the error covariance matrices is sug­
gested which does not require any matrix inversion operation.
The global convergence of this algorithm is also established.
The consecutive matrix-matrix multiplications (MMM's) in this
algorithm are implemented on an expanded skew pipeline struc­
ture which uses the available geometric array parallel processor
(GAPP) [15], [16] type systolic arrays. The state update process
is implemented using a ring systolic array structure [17]-[ 19].
Let us first briefly introduce the GAPP systolic array.

A. GAPP [16J

The geometric array parallel processor or GAPP is a com­
mercial two-dimensional systolic array processor chip manufac-
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Fig. 6. Interconnections among four cells of the GAPP.

(a)

A* all '" a'3'" a'2:::J
~ ~ ~
a22", a2, '" a23:::J
~ '\ '\a

31
a
31

a
31

A 11'
(b)

Fig. 8. (a) The path of circulant loading. (b) The loading path of
matrix A.

(a)

outputting are shown in Fig. 10. As can be seen, the partial
summations for matrix C is skewed for this particular operation.

For a GAPP type SIMD machine, one cannot change the
stored matrix A* before the completion of the first MMM (be­
fore the last row or column of C is generated). Thus, the effi­
ciency of this structure is limited only to 50 % if the array is to
be used for consecutive MMM operations. However, Cor C*
can be loaded into the same array, but with different memory

(b)

Fig. 7. (a) A 3 x 3 GAPP-type systolic array. (b) Ring connection of a
GAPP-type systolic array.

NO'

Nll

CMNll

CMNO'

.+.
w

Wll

EO'

W'O

EOO

B. Consecutive Matrix-Matrix Multiplication Using GAPP

A GAPP type array is shown in Fig. 7(a). External connec­
tions are added to this array in order to perform the operations
needed in this section. The resultant array isshown in Fig. 7(b).
Note that the required multiplexers for the external communi­
cation links are not shown in this figure for the sake of simplic­
ity.

Let us assume that a matrix, say A, is cyclically loaded from
the bottom of the array in a row parallel fashion as shown in
Fig. 8(a). The matrix stored in the array shall be denoted by
A *. Note that the diagonal shift operations in this array can be
accomplished in two steps. Fig. 8(b) shows the loading of a 3
x 3 matrix. Once the loading operation is completed, all the
MMM combinations of matrix A (or At) by matrix B (or B t)
which result in C (or C") can be computed in a skew pipelined
fashion as shown in Fig. 9. Without loss of generality and to
simplify the discussion here we have assumed that matrices A,
B, and C are of the same size as M x M. At every PE, an entry
of matrix B is multiplied by the corresponding entry of matrix
A and the result is added to the entry of matrix C. then all the
entries of matrices Band C move to other PE's following their
corresponding paths. All the possible combinations of MMM's
and their data flows are shown in Table I. A 3 x 3 example for
performing matrix operation BA and the types of inputting and

tured by NCR. It is a mesh-connected 6-by-12 arrangement of
l-b processor eiements, or PE's. Each PE can communicate
with four neighbors: North, East, South, and West. Each PE is
composed of a I-b serial ALU, 128 word by l-b RAM and 4
single bit latches: three latches hold inputs to the ALU and the
fourth latch allows I/O through the cell without interrupting the
ALU, i.e., I/O operations are overlapped with the computa­
tions. Each instruction is broadcast to all the PE's making the
array to operate like a single instruction mulitple data (SIMD)
machine.

The cascadeability of the GAPP allows system designers to
implement arrays of processors of arbitrary size in multiples of
6-by-12 elements. Fig. 6 shows the interconnections among four
cells. The following development is based upon a generalized
GAPP type systolic array and not limited by the specific size of
memory and/or the dimension.
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Fig. 9. The MMM operation path.

TABLE I
ALL EIGHTPOSSIBLE COMBINATIONS OFMMM's OF MATRICES A, B,

AND C IMPLEMENTED ONTHESTRUCTURE IN FIG. 9

Type of Type of
Inputting Summing Outputting

C= B Path of B Path of C C

AB Column Skewed Left-to-right Column
Parallel Parallel

A'B Column Left-to-right Skewed Column
Parallel Parallel

B'A' Column Skewed Left-to-right Row
Parallel Parallel

B'A Column Left-to-right Skewed Row
Parallel Parallel

BA Row Left-to-right Skewed Row
Parallel Parallel

BA' Row Skewed Left-to-right Row
Parallel Parallel

A'B' Row Left-to-right Skewed Column
Parallel Parallel

AB' Row Skewed Left-to-right Column
Parallel Parallel

address, during the MMM time for the next consecutive MMM
operation as shown in Fig. 11. If the type of inputting of the
next MMM matches the type of outputting of the present MMM
(see Table I), e.g., both are row parallel, then the two MMM's
can be performed using a pair of identical arrays without inter­
ruption. The relevant architecture which improves the speed by
a factor of two is shown in Fig. 12. These architectures will be
used to implement the consecutive MMM operations involved
in the iterative update of Kalman gain and also the error co­
variance matrices.

In what follows, an algorithm for iterative computation of
Kalman gain and error covariance matrices is proposed which
avoids any matrix inversion operation.

C. An Iterative Procedure for Updating Kalman Gain and
Error Covariance Matrices Using Only MMM Operations

Let us consider the implementation of the Kalman filtering
algorithm in Section III. A similar algorithm can be derived for
any general (MIMO) Kalman filtering process.

In [20] an algorithm is developed based upon the matrix in­
version lemma which can be used to generate a first-order ap­
proximation of R;I (i) in (l6c). However, the first-order
approximation may not generally guarantee the global conver­
gence of the algorithm. Additionally, the first-order approxi­
mation may result in poor filtering performance. In this section,
inspired by the method in [20], an iterative procedure is sug­
gested which can generate R;I (i) using only MMM's with any
arbitrary accuracy.

Fig. 10. A 3 x 3 example showing the data flow in performing matrix
operation BA.

Systolic
Array

Fig. 11. The external data flow of a systolic array.

Fig. 12. A pair of systolic arrays.

Recall from (l6b) that

Rz(i) = 8Pa(i - 1)81 + DQufY + Qv. (30)

In this expression all the terms except Pa (i - 1) are constants.
If the Kalman filter is assumed to be convergent (the conver­
gence issue will be discussed later), then the elements of Pa

matrix decrease from one iteration to the next. Thus we can
write

(3Ia)

where the error matrix Ll R, (i - 1) is

LlRz(i - 1) = 8(Pa(i - 2) - Pa(i - 1))8'

= 8LlPa(i - 1)81
• (3Ib)

The inverse of R; (i ) can also be written as

R; 1 (i) = R; 1(i - 1) + LlR; I (i - 1). (32)

Note that LlR; 1 '* (LlR z ) -I. Premultiplying (32) by (3Ia) gives

LlR;I(i - 1) = R;I(i - 1) LlRz(i - I)R;I(i - 1)

+ LlR;l(i - 1) LlRAi - I)R;l(i - 1).

(33)

If we ignore the effects of the second term on the right-hand
side of (33) the algorithm in [20] will be obtained. Now let us
denote R;I by <I' and 11R;l by 11<1', then the following iterative
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procedure for solving (33) can be used:

Ll<l'k(i - 1) = ~(i - 1) LlRz(i - 1)~(i - 1)

+ Ll~k-\(i - 1) LlRz(i - 1)~(i - 1) (34)

where Ll~k(i - 1) is the (k + 1)th order solution of (33) at ith
iteration of the filtering algorithm. For k = 0, the first-order
approximation is

Thus it is clear that

II LlRz(i - 1)~(i - 1)11 ~ 1.

Additionally, due to the presence of Qv and DQuIY terms in
Rz(i - 1)

Thus

where

(37)

(44a)

(43c)

(43d)

vk ~ 0

T = (4k* + 11)T;

K(i) = (.4Pa(i - 1)8' + RQuD')~( i)

Pa(i) = .4Pa(i - 1).4' + RQuR'

- K(i) [8Pa(i - 1).4' + DQuR']. (43e)

~_\(i) = ~(i - 1)

for k = 0, 1, ... , until for k = k* (say) we have
2

Ll<p~* (i )m.n ~ [<Pk* (i )m.n - <Pk* - I (i )m.J < E,

Vm, n,[1, M]

with

lim II ~k(i) - ~k-\ (i) II = o.
k~ 00

Repeat these steps for all i.
This algorithm is very well suited for implementations using

the systolic array architectures designed in Section VI-B. This
is considered in the next section.

(43b)

where <Pk* ( i )m.n represents (m, n )th entry of ~k* (i ) matrix and
E is a small positive threshold. Then set ~ (i) = ~k* (i) and
proceed.

Step 3: Evaluate Kalman gain and error covariances using

Q,E.D.
As a result, the iterative procedure for on-line computation

of the Kalman gain and error covariance matrices using the
above algorithm becomes:

Step I: Compute the error matrix

LlRz(i - 1) = 8[Pa(i - 2) - Pa(i - 1)]8', (43a)

Step 2: Iterate

D. Systolic Array Implementation of Kalman Filter Equations

Using the structure in Fig. 12 an implementation scheme can
be devised which provides minimum computation time when
the inputting and outputting patterns are matched in accordance
with Table II. The critical (longest) path of successive matrix
operations in algorithm of (43) when implemented on this struc­
ture can be as small as 5.5 MMM time. This particular case
occurs when the first-order approximation of ~ (i) would suf­
fice. A MMM time is defined as the time elapsed between the
first vector of the input matrix entering the array and the last
vector of the output matrix leaving the array. The decision rule
in step 2 of the algorithm can be implemented using the global
output of the GAPP type architecture [16]. Assuming that k* is
the value of k at which the appropriate solution for ~ (i) is
obtained, then from Table II one iteration period is

(38)

(36b)

vk ~ O.

lim II~k(i) - ~k-\(i)11 = o.
k -« 00

Ll~di - 1) = ~k-\(i) LlRz(i - 1)~(i - 1),

vk ~ 0 (36a)

with ~ -I (i) = ~ (i - 1).
Note that ~k _ 1 (i) is the kth order estimate of ~ (i). Using

(36) we have

~k(i) = ~(i - 1) + Ll~k(i - 1)

= [I + ~k-l(i) LlRz(i - 1)]~(i - 1),

Proof From (37) we can write

~k(i) - ~k-\(i)

= [~k-\(i) - ~k-2(i)] LlRz(i - 1)~(i - 1)

= [~\(i) - ~o(i)] [LlRAi - 1)~(i - l)t-
l

. (39)

Now, using (34)-(36) yields

~k(i) - ~k-\ (i)

= ~(i - 1) [LlRz(i - 1)~(i - 1)t+\. (40)

Taking the norm of both sides of (40) gives the following in­
equality:

II~k(i) - ~k-\(i)11

~ 11~(i - 1)11 II LlRz(i - 1)~(i - 1)ll
k

+ \

~ A;;;i~[Rz (i - 1)] II LlRAi - 1)~(i - 1)ll
k

+ 1 (41)

where Amin [Rz (i - 1)] represents the smallest eigenvalue of
R, (i - 1). The second term on the right-hand side is

LlRz(i - 1)~(i - 1)

= (8LlPa(i - 1)8')[8Pa(i - 1)8' + DQuD' + Qv(.

(42)

Ll~o(i - 1) = ~(i - 1) LlRz(i - 1)~(i - 1) (35)

This offers a recursive equation for generating the estimate
of R;1 (i ) (or ~ (i ) ) with any arbitrary accuracy given the ma­
trices Ll R, (i - 1) and ~ (i - 1). The error matrix Ll R, (i - 1)
is computed from (31b) and ~ (i - 1) is the final solution of ~
( or R;\) at filtering iteration (i - 1). '

Lemma VI. I: The recursive algorithm in (37) is globally
convergent in the sense that

which is the solution used in [20].
Expression (34) can be rewritten as



AZIMI-SADJADI et al.: PARALLEL AND SEQUENTIAL BLOCK KALMAN FILTERING

TABLE II
SCHEDULE FOR COMPUTING KALMAN GAIN AND ERROR COVARIANCE MATRICES USING THE

ARCHITECTURE IN FIG. 12

145

Array I Array II

MMM Input Output Input
Period Type Operation Type Type Operation

T1 C L I = ii*PaO - I) C C M1 = A*PaO - I)
T2

M3 = M1ii*'T3 R L3(i) = Llii*' R R
T4 L4(i) = L3(i) - L3(i - I) M4 = M3 + (BQuJ5 ' )
T5 R L5 = 4> (i - I) toRi 0 - I) R R M; = MIA*'

T6 L6=I+Ls M6 = M; + BQuB'
T7 C L7 = L:4>(i - I) = 4>00) C

r, to¢~(m, n) > E C M. = M:L7

T9 R L9 = 4>00) toRi 0 - I) R M. Invalid
TIO L IO = 1 + L9

T" C L I I = L;o4>(i - I) = 4>1 (i) C

TI2 to¢f(m, n) > E C M I2 = MtL 11
Tl3 M I2 Invalid

Output
Type

c

R

R

c

c

T4k* +8

T4k* + 9

T4k* + 10

T4 k * + 11

C L4k• + 7 = L:k • + 64> 0 - I)
= ~k*(i)

to¢f.(m, n) < E, vm, n

R L4k' + 10 = K(i)M:'

L4k • +" = Po0 )
= M 6 - L4k* + IO

c

R

or

and K, is the steady-state Kalman gain matrix for the parallel
block Kalman filter. Similarly, (27) and (29) can be rewritten
as

R = Rowparallel, C = Column parallel.

where T, is one half of a MMM computation time, i.e.,

t; = M(TM U L + TAD D ) (44b)

and TMUL is the scalar multiplication time and TA D D is the _scal~r

addition time. Note that it is assumed that the results of BQuBt
and jjtQuD' are precomputed and stored in the array. The cal­
culation of the state vector Xi can be inserted during any idle
period of the array processor in Fig. 12.

If the Kalman gain matrix is preevaluated off-line on a host
computer, the state update part can be implemented using a sim­
pler structure described in the next section.

where

D ~ A - KsH (46)

(47a)

(47b)

E. Systolic Array Implementation of State Update Part

In our earlier work [17] several parallel and pipeline algo­
rithms and structures for 2-D recursive filters were proposed.
The skew pipeline structure presented in [17] uses a GAPP type
array for 2-D scalar and block filtering operations. In this sec­
tion, a skew pipeline architecture is presented for both parallel
and sequential block Kalman filters which uses a 1-D systolic
array in which each PE is assigned to the computation of an
element within the block estimate. The 1-D skew pipeline struc­
ture is quite similar to the ring systolic array in [18] and [19].

In the development of this architecture, it is assumed that the
steady-state Kalman gain matrices are evaluated off-line and
used throughout the updating process. In this case (16a) and
(16d) can be rewritten as

Xi = AXi- 1 + Ks[Y, - HXi-d (45a)
or

Xi = Dk-l + KsY, (45b)

where

(48)

and its is the steady-state Kalman gain matrix for the sequential
block Kalman filter. The processes in (45b) and (47b) can now
be implemented using only two matrix-vector multiplications.

A A single PE is assigned to each element of the block estimate
Xi' Fig. 13(a) shows the configuration of the 1-D ring systolic
array processor, for M = 4, where M is the block or the array
size. The structures of all PE's are identical. Fig. 13(b) shows
the internal structure of PEm , i.e., the mth PE where Gim,n and
(3m,n, m, n E [0, M - 1], denote the (m, n )th elements of the
matrices D (or F) and K, (or G) in (45b) (or (47b), respec­
tively. The elements of these matrices in PEm are stored in the
following order: {(m, m), (m, (m + M - 1) mod M), (m,
(m + M - 2) mod M), ... , Un, (m + 1) mod M)} m e [0,
M - 1].
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am,(m+M-2) mod M
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~m.m

where TM UL and TA D D are defined before. The delay time (la­
tency) from Yj arrival to Xi generation is

am,{m+M-1) mod M

VII. CONCLUSION

Two different sets of block Kalman filter equations are de­
rived which correspond to the parallel and sequential modes of
implementation. It is shown that the parallel implementation
provides fixed-lag smoothed estimates. However, in this scheme
the estimation cannot start until the entire observation block is
available. The sequential block implementation does not have
this particular problem. The initial estimates are more accurate

J}m.(m+M-1) mod M

R
m

+
1

J}m,(m+M-3) mod M

pm.(m+M-2) mod M

During each iteration, these coefficients are shifted in a round­
robin fashion. Rm and Sm are two registers used to store the
variables. It is assumed that before stage i, ii_l(m), i.e., the
mth element of vector Xi _1 has been generated and held in reg­
ister Sm' The operations at each iteration start by shifting
ii-I (m) from register Sm to Rm and clearing Sm' Then in the
next 2M steps the first and second terms in (45b) or (47b) are
generated consecutively in registers Sm's. At the completion of
the last step, the elements of the updated estimate vector Xi can
be obtained from registers So to SM-I' The process continues
until all the block estimates are computed. The average sam­
pling period for each element of a block is
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