THESIS

PRACTICAL SNOW DEPTH SAMPLING AROUND SIX SNOW TELEMETRY (SNOTEL) STATIONS IN COLORADO AND WYOMING, UNITED STATES

Submitted by:

Amir Kashipazha

Department of Ecosystem Science and Sustainability

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2012

Master's Committee:

Advisor: Steven Fassnacht

Stephanie Kampf Melinda Laituri Mazdak Arabi

ABSTRACT

PRACTICAL SNOW DEPTH SAMPLING AROUND SIX SNOW TELEMETRY (SNOTEL) STATIONS IN COLORADO AND WYOMING, UNITED STATES

Across the Western United States, the Natural Resources Conservation Service (NRCS) operates about 700 automated snowpack telemetry (SNOTEL) measurement stations. These stations measure snow depth (SD), snow water equivalent (SWE), air temperature and precipitation. To assess how representative the stations are of the surrounding 1 km² area, a set of approximately 200 snow depth measurement were taken using ten 1000-m transects sampled at 50-m intervals. This sampling was undertaken at the Dry Lake, Joe Wright, Lizard Head, Niwot, (in Colorado) South Brush Creek, and Togwotee Pass (in Wyoming) SNOTEL stations during the winters of 2008, 2009, and 2010. Various sampling patterns were employed at each sampling point, such as three depth measurements in a row parallel or perpendicular to a transect, and five in a row or five in a plus pattern. We used these patterns and various sub-sets of the 1 km^2 surrounding area to assess suitable and practical sampling strategies, to determine the minimum number of transects need for measuring the average SD of each station, to evaluate if each station represent the SD average of its 1km² area surrounding, and to investigate inter- and intraannual variations of SD for each station. Statistical analysis used the least-significant-based analysis of variance with a 95 percent confidence level.

Statistical analyses showed snow depth averages of incorporated sampling methods were not significantly difference at the 95 percent confidence level. Therefore, any sampling method could be used for SD measurement based on sampling constraints. We recommend measuring three to five snow depths at each sampling spot and the distance between sampling spots should be less than 200m. The minimum number of transects needed for each station was not the same and it depended upon the physiographic and vegetation heterogeneity of the area surrounding a station.

Snow depth varied within a 1km² area surrounding of SNOTEL station and we did not find two sampling methods that had the same average SD. However, this did not mean that the average SD using a variety of sampling methods was significantly different at the 95 percent confidence level. A heterogeneous snowpack is caused variations in precipitation, wind patterns, solar radiation, etc. Physiographic and vegetation characteristics can be used as surrogates for these meteorological factors that vary at the small and large scale. The effect of these factors on snowpack heterogeneity is more likely greater when the distance of sampling spots is more than 1 km. The correlation between snowpack heterogeneity and the surrogate characteristics varied in spatially and temporally, and from location to location.

The Dry Lake, Joe Wright, Lizard Head, and Niwot SNOTEL stations represented the SD average of their 1 km² area surrounding while Lizard Head station represented the SD average of its 0.36 km² area surrounding, all at the 95 percent confidence level. However, the Togwotee Pass and South Brush Creek stations did not represented the SD average of their surrounding area. Whether a SNOTEL station does or does not represent the SD average of its surrounding area is related to the complexity of the terrain. For example, the area surrounding the Joe Wright station has complex terrain but represented the station SD while the South Brush Creek terrain was more homogeneous and did not represent station SD. The performance of the SD sensor at the SNOTEL station can be affected by the interaction of meteorology, physiography, vegetation, and possibly human influences, that can produce an highly varying snow pack under

and/or around a SD sensor and led to a lack of sensor representivity or sensor error. Due to potential SD sensor and sampling errors a reasonable amount of error for snow samples, such as 5-10% should be considered.

ACKNOWLEDGEMENTS

I would like to thank to those who contributed their time and contribution to field data collection: Steven Fassnacht, Joel Murray, Eric Richer, Johannes Beeby, Jared Heath, Douglas Hultstrand, Niah Venable, Magdalena Skordahl, Graham Sexstone, Pedro Lopez, Adam Pierce, Heidi Knudsvig, and everyone who collect the field data. I acknowledge support and helpful contribution of Aliyar Fouladkhah on statistical analysis for this thesis. I would like to acknowledge my advisor, Steven Fassnacht, as well as committee members, Stephanie Kampf, Melinda Laituri, and Mazdak Arabi who provided valuable insight.

Funding for the 2008 and 2009 fieldwork was provided by a grant from the National Oceanic and Atmospheric Administration (NOAA Office of Hydrologic Development grant #NA07NWS4620016).

TABLE OF CONTENTS

Chapter 1: Introduction	1
Chapter 2: Practical snow depth sampling around six snow telemetry (SNC	OTEL) stations in
Colorado and Wyoming, United States	б
Materials and Methods	6
2-1 Introduction	6
2-2 Background	
2-2 Study area	
2-2 SNOTEL data	
2-3 Geospatial data	
2-4 Methods	
2-4-1 Field Sampling	
2-4-2 Data Analyses	
Chapter 3: Results	
3-1 Effect of Sampling Method of SD Average of Specific Transect,	Surrounding and
Concentric Box	
3-2 SD of SNOTEL station versus transect and transect versus transect	
3-3 SD of SNOTEL station versus Surrounding and concentric boxes	
3-4 Number of transect need for each station	

3-5 inter and intra annual analyses	
Chapter 4: Discussion	
Chapter 5: Conclusions and Recommendations	
References:	47
Appendix A: Naming convention for sampling patterns with various spacing	
Appendix B: Physiographic and land cover properties of surrounding 1km2 of studie stations	d SNOTEL 52
Appendix C: Sampling strategies for SD measurement	55
Appendix D: Sampling transects and spots	56
Appendix E: Dry Lake SNOTEL station statistical analyses results	66
Appendix F: Joe Wright SNOTEL station statistical analyses results	
Appendix G: Lizard Head SNOTEL station statistical analyses results	133
Appendix H: Niwot SNOTEL station statistical analyses results	138
Appendix I: South Brush Creek SNOTEL station statistical analyses results	162
Appendix J: Togwotee Pass SNOTEL station statistical analyses results	181

LIST OF TABLES

Table 2-1 Name and location of the studied SNOTEL stations. Data were obtained from the
NRCS SNOTEL website (http://www.wcc.nrcs.usda.gov/snow/)16
Table 2-2 sampling dates, numbers, and patterns for the SNOTEL stations 16
Table 3-1 statistical analyses of SD averages of transects versus SNOTEL stations for F050 sampling method at the 95 percent confidence level
Table 3-2 inconsistency of SD difference in transects of South Brush Creek Station at the 95 percent confidence level
Table 3-3 statistical analyses of transects versus transects of Joe Wright station for F050 sampling method on March/01/2009 and May/02/2009 at the 95 percent confidence level 26
Table 3-4 statistical analyses of SD averages of surrounding boxes versus SNOTEL stations forF050 sampling method at the 95 percent confidence level27
Table 3-5 statistical analyses of measured SD at May/01/2010 and May/02/2010 versus Joe Wright SNOTEL station at 95 percent confidence level
Table 3-6 inconsistency of SD difference in surrounding boxes of Niwot and South Brush Creek Station 28
Table 3-7 statistical analyses of surrounding boxes versus surrounding boxes of Joe Wright station on for F050 sampling method March/01/2009 and May/02/2009 at the 95 percent confidence level
Table 3-8 statistical analyses of SD averages of consentric boxes versus SNOTEL stations forF050 sampling method at the 95 percent confidence level29

Table 3-9 statistical analyses of SD average of 3, 5, and 10 transects versus SNOTEL station for
F050 sampling method in 95 percent confidence level
Table A-1 Naming convention for sampling patterns with various spacing,
Table E-1 snow depth of field measurement analyzing of transects versus snow depth of Dry
Lake SNOTEL station for April/04/2008 in 5 percent confidence limit
Table E-2 snow depth field measurement analysis of surrounding boxes versus snow depth of
Dry Lake SNOTEL for April/04/2008 in 95 percent confidence limit
Table E-3 snow depth field measurement analysis of concentric boxes versus snow depth of Dry
Lake SNOTEL for April/04/2008 in 95 percent confidence limit
Table E-4 snow depth field measurement analyzing of transects versus snow depth of Dry Lake
SNOTEL station for May/02/2008 in 95 percent confidence limit
Table E-5 snow depth field measurement analysis of surrounding boxes versus snow depth of
Dry Lake SNOTEL for May/02/2008 in 95 percent confidence limit
Table E-6 snow depth field measurement analysis of concentric boxes versus snow depth of Dry
Lake SNOTEL for May/02/2008 in 95 percent confidence limit
Table E-7a snow depth field measurement analyzing of transects versus snow depth of Dry Lake
SNOTEL station for February/28/2009 (Transects 1 to 5) in 95 percent confidence limit
Table E-7b snow depth field measurement analyzing of transects versus snow depth of Dry Lake
SNOTEL station for February/28/2009 (Transects 6 to 10) in 95 percent confidence limit 75
Table E-8 snow depth field measurement analysis of surrounding boxes versus snow depth of
Dry Lake SNOTEL for February/28/2009 in 95 percent confidence limit
Table E-9 snow depth field measurement analysis of concentric boxes versus snow depth of Dry
Lake SNOTEL for February/28/2009 in 95 percent confidence limit

Table E-10 a snow depth field measurement analyzing of transects versus snow depth of Dry Lake SNOTEL station for March/28/2009 (Transects 1 to 5) in 95 percent confidence limit 80

Table E-10 b snow depth field measurement analyzing of transects versus snow depth of Dry Lake SNOTEL station for March/28/2009 (Transects 6 to 10) in 95 percent confidence limit ... 81

 Table E-16 statistical analyses of SD averages of 3, 5, and 10 transects versus Dry Lake

 SNOTEL station in 95 percent confidence level

 89

 Table E-17 statistical analyses of inter and intra annual for sampling dates of Dry Lake SNOTE
 90

 in 95 percent confidence level
 90

Table F-3 snow depth field measurement analysis of concentric boxes versus snow depth of JoeWright SNOTEL for April/03/2008 in 95 percent confidence limit
Table F-4 snow depth of field measurement analyzing of transects versus snow depth of Joe Wright SNOTEL station for May/01/2008 in 95 percent confidence limit
Table F-5 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for May/01/2008 in 95 percent confidence limit
Table F-6 snow depth field measurement analysis of concentric boxes versus snow depth of Joe Wright SNOTEL for May/01/2008 in 95 percent confidence limit
Table F-7 a snow depth of field measurement analyzing of transects versus snow depth of Joe Wright SNOTEL station for January/31/2009 in 95 percent confidence limit
Table F-7 b snow depth of field measurement analyzing of transects versus snow depth of JoeWright SNOTEL station for January/31/2009 in 95 percent confidence limit
Table F-8 snow depth field measurement analysis of surrounding boxes versus snow depth of JoeWright SNOTEL for January/31/2009 in 95 percent confidence limit
Table F-9 snow depth field measurement analysis of concentric boxes versus snow depth of JoeWright SNOTEL for January/31/2009 in 95 percent confidence limit
Table F-10 a snow depth of field measurement analyzing of transects versus snow depth of JoeWright SNOTEL station for February/27/2009 in 95 percent confidence limit
Table F-10 b snow depth of field measurement analyzing of transects versus snow depth of Joe Wright SNOTEL station for February/27/2009 in 95 percent confidence limit
Table F-11 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for February/27/2009 in 95 percent confidence limit
Table F-12 snow depth field measurement analysis of concentric boxes versus snow depth of Joe Wright SNOTEL for February/27/2009 in 95 percent confidence limit

SNOTEL station in 95 percent confidence level
Table F-22 statistical analyses of SD average of 3, 5, and 10 transects versus SD of Joe Wright
Table F-21 statistical analyses of concentric boxes versus concentric boxes of each specific sampling date for Joe Wright SNOTEL station in 95 percent confidence level
sampling date for Joe Wright SNOTEL station in 95 percent confidence level
Table F-20 statistical analyses of surrounding boxes versus surrounding boxes of each specific
Table F-19 statistical analyses of transects versus transects of each specific sampling date for JoeWright SNOTEL station in 95 percent confidence level126
Wright SNOTEL for May/01/2010 in 95 percent confidence limit
Table F-18 snow depth field measurement analysis of concentric boxes versus snow depth of Joe
Table F-17 snow depth field measurement analysis of surrounding boxes versus snow depth ofJoe Wright SNOTEL for May/01/2010 in 95 percent confidence limit
Wright SNOTEL station for May/01/2010 in 95 percent confidence limit 121
Table F-16 b snow depth of field measurement analyzing of transects versus snow depth of Joe
Wright SNOTEL station for May/01/2010 in 95 percent confidence limit 120
Table F-16 a snow depth of field measurement analyzing of transects versus snow depth of Joe
Table F-15 snow depth field measurement analysis of concentric boxes versus snow depth of JoeWright SNOTEL for May/02/2009 in 95 percent confidence limit
Joe wright SNOTEL for May/02/2009 in 95 percent confidence finit
Table F-14 snow depth field measurement analysis of surrounding boxes versus snow depth of
Wright SNOTEL station for May/02/2009 in 95 percent confidence limit
Table F-13 b snow depth of field measurement analyzing of transects versus snow depth of Joe
Wright SNOTEL station for May/02/2009 in 95 percent confidence limit
Table F-13 a snow depth of field measurement analyzing of transects versus snow depth of Ioe

Table F-23 statistical analyses of inter and intra annual for sampling dates of Joe Wright
SNOTEL in 95 percent confidence level
Table G-1 snow depth field measurement analysis of surrounding boxes versus snow depth of
Lizard Head SNOTEL for April/05/2008 in 95 percent confidence limit
Table G-2 snow depth field measurement analysis of concentric boxes versus snow depth of
Lizard Head SNOTEL for April/05/2008 in 95 percent confidence limit
Table G-3 statistical analyses of surrounding boxes versus surrounding boxes of April/05/2008
for Lizard Head SNOTEL station in 95 percent confidence level
Table G-4 statistical analyses of concentric boxes versus concentric boxes of April/05/2008 for
Lizard Head SNOTEL station in 95 percent confidence level
Table H-1 snow depth of field measurement analyzing of transects versus snow depth of Niwot
SNOTEL station for April/07/2008 in 95 percent confidence limit
Table H-2 snow depth field measurement analysis of surrounding boxes versus snow depth of
Niwot SNOTEL for April/07/2008 in 95 percent confidence limit
Table II 2 many danth field management analysis of concentric house many don't of
Table H-3 show depth field measurement analysis of concentric boxes versus show depth of
Niwot SNOTEL for April/07/2008 in 95 percent confidence limit
Table H-4 snow depth of field measurement analyzing of transects versus snow depth of Niwot
SNOTEL station for May/05/2008 in 95 percent confidence limit
Table H-5 snow depth field measurement analysis of surrounding boxes versus snow depth of
Niwot SNOTEL for May/05/2008 in 95 percent confidence limit
Table H 6 snow donth field measurement analysis of concentric boxes versus snow denth of
Nivet SNOTEL for May/05/2008 in 05 percent confidence limit
iniwor Sino i EL for May/05/2008 III 95 percent confidence finitt
Table H-7 snow depth of field measurement analyzing of transects versus snow depth of Niwot
SNOTEL station for March/06/2009 in 95 percent confidence limit
xiii

Table H-8 snow depth field measurement analysis of surrounding boxes versus snow depth ofNiwot SNOTEL for March/06/2009 in 95 percent confidence limit
Table H-9 snow depth field measurement analysis of concentric boxes versus snow depth ofNiwot SNOTEL for March/06/2009 in 95 percent confidence limit
Table H-10 a snow depth of field measurement analyzing of transects versus snow depth of Niwot SNOTEL station for April/03/2009 in 95 percent confidence limit
Table H-10 b snow depth of field measurement analyzing of transects versus snow depth of Niwot SNOTEL station for April/03/2009 in 95 percent confidence limit
Table H-11 snow depth field measurement analysis of surrounding boxes versus snow depth ofNiwot SNOTEL for April/03/2009 in 95 percent confidence limit
Table H-12 snow depth field measurement analysis of concentric boxes versus snow depth ofNiwot SNOTEL for April/03/2009 in 95 percent confidence limit
Table H-13 statistical analyses of transects versus transects of each specific sampling date for Niwot SNOTEL station in 95 percent confidence level
Table H-14 statistical analyses of surrounding boxes versus surrounding boxes of each specificsampling date for Niwot SNOTEL station in 95 percent confidence level
Table H-15 statistical analyses of concentric boxes versus concentric boxes of each specific sampling date for Niwot SNOTEL station in 95 percent confidence level
Table H-16 statistical analyses of SD averages of 3, 5, and 10 transect versus SD of NiwotSNOTEL station in 95 percent confidence level159
Table H-17 statistical analyses of inter and intra annual for sampling dates of Niwot SNOTEL in95 percent confidence level160
Table I-1 snow depth field measurement analysis of surrounding boxes versus snow depth of South Brush Creek SNOTEL for April/05/2008 in 95 percent confidence limit

 Table I-9 statistical analyses of transects versus transects of each specific sampling date for

 South Brush Creek SNOTEL station in 95 percent confidence level

 176

Table I-12 Statistical analyses	s of average SD of 3, 5, and	10 transects versus	s SD of South	Brush
Creek SNOTEL station in 95	percent confidence level			178

 Table I-13 statistical analyses of intra annual for sampling dates of South Brush Creek SNOTEL
 in 95 percent confidence level
 179

LIST OF FIGURES

Figure 2	2-1 Loc	ation map of S	NOTEL	stations,	data	was ta	ken from	NRCS	SNOT	TEL data
website	(<u>http://w</u>	ww.wcc.nrcs.us	sda.gov/si	<u>now/</u> , and	d <u>http:</u>	<u>//www.</u>	nationala	las.gov/))	17
Figure	2-2	surrounding	1 km ²	area	of	the	Studied	l SNO	OTE	station,
(<u>http://w</u>	ww.epa	.gov/mrlc/nlcd-2	2001.htm	l and <u>httr</u>	o://data	agatewa	y.nrcs.us	<u>da.gov/</u>).		
Figure 2	-3 appli	ed different sam	pling pat	tern in ea	ach spo	ot, 2-9 a	a one sam	ple (C05	0, C10	0, C200)
2-9 b th	ree samj	ples in a row wi	ith 5m di	stance (H	F050, I	F100, F	200), 2-9	c three	sample	es in row
with 2 o	or 3m dis	stance (T050, T	100, T200)), 2-9 d	three	sample	s perpend	icular to	transe	ct (P050,
P100, P2	200), 2-9	9 e five samples	in a star	shape (A	A 050, <i>I</i>	A100, A	A200), and	1 2-9 f fi	ve sam	ples in a
row with	n 2.5m d	listance (A050, A	A100, A2	00)						
Figure 4	-1 aspec	et distribution of	the 1km ²	of studi	ed SN	OTEL s	station			41
Figure 4	-2 SD a	verages of main	aspects f	for 1km ²	area o	of Dry I	Lake SNC	TEL on	March	/28/2009
and num	ber of s	ampling spots at	t each asp	ect						
Figure 4 and num	-3 SD a ober of s	verages of main ampling spots at	aspects f	for 1km ² ect	area o	of Joe V	Vright SN	OTEL o	on May	/02/2009
Figure 4	4-4 Dail	ly solar radiatio	on for tra	insects 1	to 8	versus	transects	9 to 1	0 of E	Dry Lake
SNOTE	L statior	· 1								
Figure 4	I-5 SD o	of a 50m transed	ct next to	the Joe	Wrigh	nt SNO	TEL vers	us SD of	f this s	station (S
stands fo	or SNOT	ΓEL)								
Figure 4	-6 SD m	neasurement in t	he adjace	nt of the	SD se	nsor on	June/02/2	2011		44
Figure 4	-7 SD m	neasurement in the	he adjace	nt of the	SD se	nsor on	June/04/2	2011		

Figure B-1 Elevation distributions of the 1km² areas of surrounding SNOTEL stations, data were obtained from USDA Geospatial Data Gate Way web site (<u>http://datagateway.nrcs.usda.gov/</u>). 52

Figure B-2 Slope distributions of the 1km² areas of surrounding SNOTEL stations, Data were obtained from USDA Geospatial Data Gate Way web site (<u>http://datagateway.nrcs.usda.gov/</u>). 53

Figure B-3 aspect distributions of the 1km² areas of surrounding SNOTEL stations, data were obtained from USDA Geospatial Data Gate Way web site (<u>http://datagateway.nrcs.usda.gov/</u>). 53

Figure	B-4 land cov	ver distri	butions of	the 1km ² areas	of surro	ounding	SNOTEL	stations,	data
were	obtained	from	USDA	Geospatial	Data	Gate	Way	web	site
(<u>http://o</u>	datagateway.1	nrcs.usda	. <u>gov/</u>)						54

Figure B-5 canopy density distributions of the 1km² areas of surrounding SNOTEL stations, data were obtained from National Land Cover Database (http://www.epa.gov/mrlc/nlcd-2001.html) 54

Figure C-1 Conducted transect in each SNOTE	ے station 5	5
---	-------------	---

Figure C-2 surrounding boxes around SNTOEL station, b concentric boxes each color represent	nt
once concentric box	5
Figure D-1 Sampling spots at April/04/2008 of Dry Lake SNOTEL Station	6
Figure D-2 Sampling spots at May/02/2008 of Dry Lake SNOTEL Station	6
Figure D-3 Sampling spots at February/28/2009 of Dry Lake SNOTEL Station	7
Figure D-4 Sampling spots at March/28/2009 of Dry Lake SNOTEL Station	7
Figure D-5 Sampling spots at April/03/2008 for Joe Wright SNOTEL station	8

Figure D-8 Sampling spots at February/27/2009 for Joe Wright SNOTEL station

Figure D-9 Sampling spots at May/02/2009 for Joe Wright SNOTEL station
Figure D-10 Sampling spots at May/01/2010 for Joe Wright SNOTEL station
Figure D-11 Sampling spots at March/17/2008 for Lizard Head Pass SNOTEL station
Figure D-12 Sampling spots at April/07/2008 for Niwot SNOTEL station
Figure D-13 Sampling spots at May/05/2008 for Niwot SNOTEL station
Figure D-14 Sampling spots at March/06/2009 for Niwot SNOTEL station
Figure D-15 Sampling spots at April/03/2009 for Niwot SNOTEL station
Figure D-16 Sampling spots at April/05/2008 for South Brush Creek SNOTEL station
Figure D-17 Sampling spots at March/01/2009 for South Brush Creek SNOTEL station
Figure D-18 Sampling spots at March/29/2009 for South Brush Creek SNOTEL station
Figure D-19 Sampling spots at March/17/2009 for Togwotee Pass SNOTEL station
Figure E-1 snow depth field measurement of transects versus snow depth of Dry Lake SNOTEL
station for April/04/2008 (Refer to Table A-1 for clarification of abbreviations)
Figure E-2 snow depth field measurement analysis of surrounding boxes versus snow depth of
Dry Lake SNOTEL for April/04/2008 (Refer to Table A-1 for clarification of abbreviations) 69
Figure E-3 snow depth field measurement analysis of Concentric boxes versus snow depth of
Dry Lake SNOTEL for April/04/2008 (Refer to Table A-1 for clarification of abbreviations) 69
Figure E-4 snow depth field measurement analyzing of transects versus snow depth of Dry Lake
SNOTEL station for May/02/2008 (Refer to Table A-1 for clarification of abbreviations) 71
Figure E-5 snow depth field measurement analysis of the surrounding boxes versus snow depth
of Dry Lake SNOTEL for May/02/2008 (Refer to Table A-1 for clarification of abbreviations) 73

Figure E-6 snow depth field measurement analysis of the concentric boxes versus snow depth of Dry Lake SNOTEL for May/02/2008(Refer to Table A-1 for clarification of abbreviations).....73

Figure E-7 snow depth field measurement analyzing of transects versus snow depth of Dry Lake SNOTEL station for February/28/2009 (Refer to Table A-1 for clarification of abbreviations). 76

Figure E-8 snow depth field measurement analysis of surrounding boxes versus snow depth of Dry Lake SNOTEL for February/28/2009 (Refer to Table A-1 for clarification of abbreviations)

Figure E-10 snow depth field measurement analyzing of transects versus snow depth of Dry Lake SNOTEL station for March/28/2009 (Refer to Table A-1 for clarification of abbreviations)

Figure E-11 snow depth field measurement analysis of surrounding boxes versus snow depth of Dry Lake SNOTEL for March/28/2009 (Refer to Table A-1 for clarification of abbreviations). 85

Figure E-12 snow depth field measurement analysis of concentric boxes versus snow depth of Dry Lake SNOTEL for March/28/2009(Refer to Table A-1 for clarification of abbreviations)...85

Figure E-13 SD difference between transects and SD of Dry lake SNOTEL station (F050 minu
SNOTEL)
Figure E-14 SD difference between surrounding boxes and SD of Dry lake SNOTEL station
F050 minus SNOTEL)
Figure E-15 SD difference between concentric boxes and SD of Dry lake SNOTEL station (F05)
ninus SNOTEL)
Figure E-16 SD averages of 3, 5, and 10 transects versus Dry Lake SNOTEL station (refer to
column 1 of Table E-16 for definition)

Figure F-2 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for April/03/2008 (Refer to Table A-1 for clarification of abbreviations) 97

Figure F-3 snow depth field measurement analysis of Concentric boxes versus snow depth of Joe Wright SNOTEL for April/03/2008 (Refer to Table A-1 for clarification of abbreviations).......97

Figure F-5 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for May/01/2008 (Refer to Table A-1 for clarification of abbreviations) 101

Figure F-6 snow depth field measurement analysis of Concentric boxes versus snow depth of Joe Wright SNOTEL for May/01/2008 (Refer to Table A-1 for clarification of abbreviations)...... 101

Figure F-7 snow depth field measurement of transects versus snow depth of Joe Wright SNOTEL station for January/31/2009 (Refer to Table A-1 for clarification of abbreviations). 104

Figure F-9 snow depth field measurement analysis of Concentric boxes versus snow depth of Joe Wright SNOTEL for January/31/2009 (Refer to Table A-1 for clarification of abbreviations). 107

Figure F-10 snow depth field measurement of transects versus snow depth of Joe Wright SNOTEL station for February/27/2009 (Refer to Table A-1 for clarification of abbreviations) 110

Figure F-13 snow depth field measurement of transects versus snow depth of Joe Wright SNOTEL station for May/02/2009 (Refer to Table A-1 for clarification of abbreviations) 116

Figure F-14 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for May/02/2009 (Refer to Table A-1 for clarification of abbreviations) 119

Figure F-15 snow depth field measurement analysis of Concentric boxes versus snow depth of Joe Wright SNOTEL for May/02/2009 (Refer to Table A-1 for clarification of abbreviations) 119

Figure F-16 snow depth field measurement of transects versus snow depth of Joe Wright SNOTEL station for May/01/2010 (Refer to Table A-1 for clarification of abbreviations) 122

Figure F-17 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for May/01/2010 (Refer to Table A-1 for clarification of abbreviations) 125

Figure F-18 snow depth field measurement analysis of Concentric boxes versus snow depth of Joe Wright SNOTEL for May/01/2010 (Refer to Table A-1 for clarification of abbreviations) 125

Figure F-19 SD difference between transects and Joe Wright SNOTEL station in each samp	oling
date (F050 minus SNOTEL)	128
Figure F-20 SD difference between surrounding boxes and Joe Wright SNOTEL station in a	each
sampling date (F050 minus SNOTEL)	129
Figure F-21 SD difference between concentric boxes and Joe Wright SNOTEL station in a	each
sampling date (F050 minus SNOTEL)	129

Figure F-22 SD average of 3, 5, and 10 transects versus SD of Joe Wright SNOTEL station (refer
to column 1 of Table F-22 for definition)
Figure F-23 frequency of the SD difference between field sampling and SD of the Joe Wright
SNOTEL station for each sampling date
Figure G-1 snow depth field measurement analysis of surrounding boxes versus snow depth of
Lizard Head SNOTEL for April/05/2008 (Refer to Table A-1 for clarification of abbreviations)
Figure G-2 snow depth field measurement analysis of Concentric boxes versus snow depth of
Lizard Head SNOTEL for April/05/2008 (Refer to Table A-1 for clarification of abbreviations)
Figure G-3 SD difference between surrounding boxes and Lizard Head SNOTEL station (F050
minus SNOTEL)
Figure G-4 SD difference between surrounding boxes and Lizard Head SNOTEL station (F050
minus SNOTEL)
Figure G-5 frequency of the SD difference between field sampling and SD of the Lizard Head
SNOTEL station for March/17/2009
Figure H-1 snow depth field measurement of transects versus snow depth of Niwot SNOTEL
station for April/07/2008 (Refer to Table A-1 for clarification of abbreviations)
Figure H-2 snow depth field measurement analysis of surrounding boxes versus snow depth of
Niwot SNOTEL for April/07/2008 (Refer to Table A-1 for clarification of abbreviations) 141
Figure H-3 snow depth field measurement analysis of Concentric boxes versus snow depth of
Niwot SNOTEL for April/07/2008 (Refer to Table A-1 for clarification of abbreviations) 141

Figure H-5 snow depth field measurement analysis of surrounding boxes versus snow depth of Niwot SNOTEL for May/05/2008 (Refer to Table A-1 for clarification of abbreviations) 145

Figure H-6 snow depth field measurement analysis of Concentric boxes versus snow depth of Niwot SNOTEL for May/05/2008 (Refer to Table A-1 for clarification of abbreviations) 145

Figure H-8 snow depth field measurement analysis of surrounding boxes versus snow depth of Niwot SNOTEL for March/06/2009 (Refer to Table A-1 for clarification of abbreviations).... 149

Figure H-9 snow depth field measurement analysis of Concentric boxes versus snow depth of Niwot SNOTEL for March/06/2009(Refer to Table A-1 for clarification of abbreviations) 149

Figure H-11 snow depth field measurement analysis of surrounding boxes versus snow depth of Niwot SNOTEL for April/03/2009 (Refer to Table A-1 for clarification of abbreviations) 155

Figure H-12 snow depth field measurement analysis of Concentric boxes versus snow depth of Niwot SNOTEL for April/03/2009 (Refer to Table A-1 for clarification of abbreviations) 155

Figure H-13	SD diffe	rence	between	transects	and	Niwot	SNOT	EL	station	in e	each	sampling	date
(F050 minus	SNOTE	L)											. 158

Figure I-3 snow depth field measurement of transects versus snow depth of South Brush Creek SNOTEL station for March/01/2009 (Refer to Table A-1 for clarification of abbreviations) ... 166

Figure I-6 snow depth field measurement of transects versus snow depth of South Brush Creek SNOTEL station for March/29/2009 (Refer to Table A-1 for clarification of abbreviations) ... 172

Figure I-9 SD difference between transects and South Brush Creek SNOTEL station in each sampling date (F050 minus SNOTEL)
Figure I-10 SD difference between surrounding boxes and South Brush Creek station in each sampling date (F050 minus SNOTEL)
Figure I-11 SD difference between concentric boxes and South Brush Creek SNOTEL station in each sampling date (F050 minus SNOTEL)
Figure I-12 average SD of 3, 5, and 10 transects versus SD of South Brush Creek SNOTEL station (Refer to column 1 of Table I-12 for definitions)
Figure I-13 frequency of the SD difference between field sampling and SD of the South Brush Creek SNOTEL station for each sampling date
Figure J-1 snow depth field measurement of transects versus snow depth of Togwotee Pass SNOTEL station for March/17/2009 (Refer to Table A-1 for clarification of abbreviations) 183
Figure J-2 snow depth field measurement analysis of surrounding boxes versus snow depth of Togwotee Pass SNOTEL for March/17/2009 (Refer to Table A-1 for clarification of abbreviations)
Figure J-3 snow depth field measurement analysis of Concentric boxes versus snow depth of Togwotee Pass SNOTEL for March/17/2009 (Refer to Table A-1 for clarification of abbreviations)
Figure J-4 SD difference between transects and Togwotee Pass SNOTEL station in March/17/2009 (F050 minus SNOTEL)
Figure J-5 SD difference between surrounding boxes and Joe Togwotee Pass station in March/17/2009 (F050 minus SNOTEL)
Figure J-6 SD difference between concentric boxes and Togwotee Pass SNOTEL station in March/17/2009 (F050 minus SNOTEL)
xxvi

Figure J-7 frequency of the SD difference b	etween field sampling	and SD of the	Togwotee Pass
SNOTEL station for March/17/2009			

CHAPTER 1: INTRODUCTION

Population growth, increased agriculture, industrial and commercial development have increased global demands on water resources exponentially (Chang *et al.* 2004). To address these demands it is necessary to develop a comprehensive understanding of availability of water resources and have accurate measurements of the hydrologic processes. For effective water resource management there is a need to adequately quantify the various components of a hydrological cycle across various different space and time scales.

Mountainous regions are important hydrologic and climatologic regions of the world (Viviroli *et al.* 2007), as they have a crucial role in water cycle and meteorological phenomena (Jong *et al.* 2005). Mountain river basins supply the water demand of 60 million people in the western United States (Bales *et al.* 2006). Nevertheless, our knowledge regarding the mountain regions is limited due to their complex topographic setting, strong climate gradients, limited monitoring station, and limited understanding of the spatial scaling and measurement (Bales *et al.* 2006).

Snow is the main fraction of precipitation in the mountainous regions. Seasonal snow cover area is an important component of a climate system. It controls the surface energy balance and the majority of runoff from these regions is derived from snow melt (Hua *et al.* 2008). The snowpack is considered a dynamic component of an ecosystem since its properties highly variable over time and space (Hua *et al.* 2008). These properties include snow water equivalent (SWE), snow depth (SD), snow density, and snow covered area (SCA). Estimation of these snow properties is necessary to understand the hydrologic responses in mountain regions. Moreover, to

better predict snow storage and detect trends in the variations of water resources more accurate snowpack information and the known error is essential (Chang *et al.* 2004).

Space-borne scanning data provide a wide spatial and temporal coverage that can be suitable for global snow measurements. Various satellite sensors have been used to map snow. Chang *et al.* (2004) used passive microwave imagery to study spatial and temporal variations of snow depth (SD), and suggested it is necessary to compare ground point SD measurement and satellite SD to understand uncertainties in point and areal SD. Dong *et al.* (2005 and 2007) incorporated passive microwave into land surface models to evaluate SWE in Canada. The passive microwave imagery provides highly temporal resolution of SWE (e.g. 1 - 3 repeat every day) with a reasonable spatial resolution (25 - 50 km) for a flat region (Dong *et al.* 2007). While, passive microwave imagery is suitable to provide global scale SWE maps, its application has limited utility in small areas and in a complex terrain such as mountain.

Moderate Resolution Imaging Spectroradiometer (MODIS) have been used to determine snow cover area (SCA) at a 500m resolution (e.g. Hua *et al.* 2008, Xiaobing *et al.* 2005, and Hall *et al.* 2002). Although, MODIS images provide a suitable snow cover area for a region, they do not provide SEW or SD.

Across the western U.S. temporal snowpack properties such as SWE and SD have been measured manually on the first of each month at snow course stations for almost 75 years (Serreze *et al.* 1999). Natural Resources Conservation Service (NRCS) is replacing these snow courses stations with automated Snowpack Telemetry Stations (SNOTEL). Besides SWE and SD these stations record air temperature and accumulated precipitation. The snow course and SNOTEL stations have been established based on site accessibility and protection from public disturbance. Therefore, these stations may not represent spatial variation of snowpack in a large domain (Molotch and Bales 2005).

SNOTEL stations represent highly temporal snow properties (hourly to daily) of a single point $(10m^2)$ (Serreze *et al.* 1999). Although these point data are accurate, the ability to predict or model the spatial variation of the surrounding snow pack is poor (Tarboton *et al.* 2000). Despite the knowledge that there is extreme spatial variability among snow properties, only a few point measurements are often available in a catchment of interest that may cover a large area. Thus a small number of SNOTEL station may not be representative of spatial patterns and/or spatial averages for the catchment of interest (Elder *et al.* 1991). In this regards, SNOTEL stations may not provide the quantitative spatial snowpack information needed for spatially distributed modeling. Consequently, there is a need to develop a more representative ground-based measurement to improve our ability to measure and estimate spatial snowpack properties with more accuracy and to assess if SNOTEL stations represent snow properties of their surrounding area.

Ground based snow measurements have been collected to better understand the distribution of snow (Elder *et al.* 1998, Winstral *et al.* 2002, Erxleben *et al.* 2002, Molotch and Bales 2005). Intensive snow surveys are usually limited to a small basin or a small area of a basin with limited topographic variation similar to that of SNOTEL stations, due to labor cost, accessibility, steep terrain, and avalanche hazards (Elder *et al.* 1998). Moreover, the optimal area of a spatial survey that correlates to a SNOTEL station is unknown. For example, SNOTEL SWE was up to 200 percent greater than the mean of the 16, 4, and 1 km² area surrounding six SNOTEL stations in the Rio Grande basin (Molotch and Bales, 2005). Therefore, it is necessary

to develop an appropriate sampling strategy and apply it in several areas surrounding SNOTEL stations such as 0.5, 1, 4, or 16 km² areas to determine if each SNOTEL station represents the SD and/or SWE of their surrounding area.

It is important to consider that the area which a SNOTEL station represent is likely not the entire area of interest such as a watershed. Therefore, it is necessary to incorporate ground based measurements and statistical techniques to interpolate snowpack properties across a basin. Several interpolation techniques have been incorporated for SD and SWE interpolation (Winstral *et al.* 2002, Erxleben *et al.* 2002, Molotch and Bales 2005, Hultstrand *et al.* 2006, and Fassnacht *et al.* 2003). However, prior to interpolate SWE we need to know if a specific SNOTEL station represents SWE across the area of interest.

Manual measurement of SWE and SD is practical to be measure in field. SWE is the mass of snow at a point, which is product of snow depth (SD) and depth-average density (Fassnacht *et al.* 2010) and both SWE and SD are measured at SNOTEL stations. Snow depth tends to be more variable than snow density (Logan 1973, Elder *et al.* 1991, and Fassnacht *et al.* 2010). Manual measurements of SD are more practical and easier than SWE or snow density since SD is measured using a depth probe while SWE requires the extraction of a snow core. Density can be measured in a snow pit using 10 cm increments samples, and while this is more accurate than extraction core (Fassnacht *et al.* 2010) it is more laborious. We can measure more SD samples compared to SWE or density. For instance, we collected approximately 1000 SD points in one sampling date around the Joe Wright SNOTEL station while we could not sample more than 5 snow pits to measure snow density in the same time. Therefore, measuring SD gives

us the capability to determine the distribution of snow over larger area which provides appropriate spatial data to evaluate a SNOTEL station performance.

The purpose of this research is to determine how well a SNOTEL station represents the snowpack characteristic of its surrounding area. The corresponding hypothesis is that a SNOTEL station represents snowpack properties of its 1 km^2 surrounding area where the station is located in the center. In order to test this hypothesis we conducted field snow measurements across the 1 km^2 area. Several analyses were undertaken to compare the field measured data to the SNOTEL station data to determine the suitable sampling strategy and optimum sampling number needed to represent SD over a 1 km^2 around a SNOTEL station.

CHAPTER 2: PRACTICAL SNOW DEPTH SAMPLING AROUND SIX SNOW TELEMETRY (SNOTEL) STATIONS IN COLORADO AND WYOMING, UNITED STATES Materials and Methods

2-1 Introduction

Population growth, increased agriculture, industrial and commercial development have increased global demands on water resources exponentially (Chang *et al.* 2004). To address these demands it is necessary to develop a comprehensive understanding of availability of water resources and have accurate measurements of the hydrologic processes. For effective water resource management there is a need to adequately quantify the various components of a hydrological cycle across various different space and time scales.

Mountainous regions are important hydrologic and climatologic regions of the world (Viviroli *et al.* 2007), as they have a crucial role in water cycle and meteorological phenomena (Jong *et al.* 2005). Mountain river basins supply the water demand of 60 million people in the western United States (Bales *et al.* 2006). Nevertheless, our knowledge regarding the mountain regions is limited due to their complex topographic setting, strong climate gradients, limited monitoring station, and limited understanding of the spatial scaling and measurement (Bales *et al.* 2006).

Snow is the main fraction of precipitation in the mountainous regions. Seasonal snow cover area is an important component of their climate system. It controls the surface energy balance and the majority of runoff from these regions is derived from snow melt (Hua *et al.* 2008). Across the western U.S. temporal snowpack properties such as SWE and SD have been

measured manually on the first of each month at snow course stations for almost 75 years (Serreze *et al.* 1999). Natural Resources Conservation Service (NRCS) is replacing these snow courses stations with automated Snowpack Telemetry Stations (SNOTEL). Besides SWE and SD these stations record air temperature and accumulated precipitation. These stations have been established based on site accessibility and protection from public disturbance, therefore; they may not represent spatial variation of snowpack in a large domain (Molotch and Bales 2005).

Despite the knowledge that there is extreme spatial variability among snow properties, only a few point measurements are often available in a catchment of interest that may cover a large area. Thus a small number of SNOTEL station may not be representative of spatial patterns and/or spatial averages for the catchment of interest (Elder *et al.* 1991). In this regards, snow SNOTEL stations may not provide the quantitative spatial snowpack information needed for spatially distributed modeling.

It is important to consider that the area which a SNOTEL station represent is likely not the entire area of interest such as a watershed. Therefore, it is necessary to incorporate ground based measurements and statistical techniques to interpolate snowpack properties across a basin. However, before using statistical methods for interpolation we need to know if a specific SNOTEL station represents snow properties of its surrounding area. Consequently, there is a need to develop a more representative ground-based measurement data to improve our ability to measure and estimate spatial snowpack properties with more accuracy and to assess if a specific SNOTEL station represents snow properties of its surrounding area.

In this research we conducted intensive ground base snow depth (SD) measurement in surrounding 1km² of six SNOTEL stations to determine a practical sampling strategies for SD

measurement in surrounding 1km² of SNOTEL station regarding to the sampling constraint and to know if those stations represent SD average of their surrounding 1km².

2-2 Background

Snow is the main source of water in the mountainous regions and its properties vary in spatially and temporally (Hua *et al.* 2008). These properties include snow water equivalent (SWE), snow depth (SD), snow density, and snow covered area (SCA). Estimation of these snow properties is necessary to understand the hydrologic responses in mountain regions. Moreover, to better predict snow storage and detect trends in the variations of water resources more accurate snowpack information and the known error is essential (Chang *et al.* 2004). Nevertheless, our knowledge regarding the snowpack characteristics within mountain regions is restricted due to complex topographic setting, strong climate gradients, and inadequate number of monitoring station (Bales *et al.* 2006).

Space-borne scanning data provide a wide spatial and temporal coverage that can be suitable for global snow measurements. Various satellite sensors have been used to map snow. Chang *et al.* (2004) used passive microwave imagery to study spatial and temporal variations of snow depth (SD), and suggested it is necessary to compare ground point SD measurement and satellite SD to understand uncertainties in point and areal SD. Dong *et al.* (2005 and 2007) incorporated passive microwave into land surface models to evaluate SWE in Canada. The passive microwave imagery provides highly temporal resolution of SWE (e.g. 1 - 3 repeat every day) with a reasonable spatial resolution (25 - 50 km) for a flat region (Dong *et al.* 2007). Although, passive microwave imagery is suitable to provide global scale SWE maps, but its application has limited utility in small areas and in a complex terrain such as mountain.

Moderate Resolution Imaging Spectroradiometer (MODIS) have been used to determine snow cover area (SCA) at a 500m resolution (e.g. Hua *et al.* 2008, Xiaobing *et al.* 2005, and Hall *et al.* 2002). While MODIS images provide a suitable snow cover area for a region, they do not provide SEW or SD.

SNOTEL stations measure highly temporal snow properties (hourly to daily) of a single point (10m²) (Serreze *et al.* 1999). Although these point data are accurate, the ability to predict or model the spatial variation of the surrounding snow pack is poor (Tarboton *et al.* 2000). Moreover, the optimal area of a spatial survey that correlates to a SNOTEL station is unknown. For example, SNOTEL SWE was up to 200 percent greater than the mean of the 16, 4, and 1 km² area surrounding six SNOTEL stations in the Rio Grande basin (Molotch and Bales, 2005). Therefore, it is necessary to develop an appropriate sampling strategy and apply it in several areas surrounding SNOTEL stations such as 0.5, 1, 4, or 16 km² areas to determine if each SNOTEL station represents the SD and/or SWE of their surrounding area.

Ground based snow measurements have been collected to better understand the distribution of snow (Elder *et al.* 1998, Winstral *et al.* 2002, Erxleben *et al.* 2002, Molotch and Bales 2005). Nonetheless, intensive snow surveys are usually limited to small basins or a small spatial area due to labor costs, accessibility, steep terrain, and avalanche hazards (Elder *et al.* 1991; Dozier *et al.* 2004). Therefore, there is a need to develop sampling methods to accurately estimate snowpack properties over an area in a reasonable time and with limited manpower (Elder *et al.* 1991). For instance, we can apply a spatial sampling in several areas surrounding SNOTEL stations such as 0.5, 1, 4, or 16 km² areas to determine if each SNOTEL station represents the SD and SWE of their surrounding area.
Manual measurement of SWE and SD is practical to be measure in field. SWE is the mass of snow at a point, which is product of snow depth (SD) and depth-average density (Fassnacht *et al.* 2010) and both SWE and SD are measured at SNOTEL stations. Snow depth tends to be more variable than snow density (Logan 1973, Elder *et al.* 1991, and Fassnacht *et al.* 2010). Manual measurements of SD are more practical and easier than SWE or snow density since SD is measured using a depth probe while SWE requires the extraction of a snow core. Density can be measured in a snow pit using 10 cm increments samples, and while this is more accurate than extraction core (Fassnacht *et al.* 2010) it is more laborious. We can measure more SD samples compared to SWE or density. For instance, we collected approximately 1000 SD points in one sampling date around the Joe Wright SNOTEL station while we could not sample more than 5 snow pits to measure snow density in the same time. Therefore, measuring SD gives us the capability to determine the distribution of snow over larger area.

The purpose of this research is to determine how well a SNOTEL station represents the snowpack characteristic of its surrounding area. We conducted intensive SD measurement of surrounding 1km² areas of six stations due to high spatial distribution of SD to test the following hypothesis:

- SNOTEL station represents snow depth of their surrounding 1km^2 at the 95 percent confidence level because interactions among climate and terrain do not lead to heterogynous snowpack at the 1km^2 .

- Sampling strategies effects snow depth average of surrounding 1km² of SNOTEL station at the 95 percent confidence level due to various numbers of recorded data in each method.

2-2 Study area

Six SNOTEL stations in Colorado and Wyoming were studied (Table 2-1, Figure 2-1 and 2-2) during winter of 2008, 2009, and 2010 (Table 2-2). We sampled SD of 1 km² surrounding area of six SNOTEL stations approximately from 7am to 4pm Pacific Time (PST) for each sampling date. The area of the box was increased for Joe Wright, Niwot, and South Brush Creek since some of the sampling points were located outside of the 1 km² area.

Forested regions were the main land cover of surrounding 1km² areas of the studies stations. More than 80 percent of these areas covered by evergreen, deciduous, mixed forest, and grassland. Evergreen forest was the dominant land cover of surrounding 1km² of the studied station except for Dry Lake. Deciduous forest was the main land cover at Dry Lake. Canopy density within the surrounding 1km² areas of the studies stations was high. More than 50 percent part of these areas was more than 50 percent, and it was highest at Niwot, Joe Wright, and South Brush Creek respectively.

Terrain varies for surrounding 1km² area of each station. Joe Wright and Togwotee Pass have complex terrain. Approximately slope of 55% of the surrounding 1km² of Joe Wright station is more than 20 percent and slope between 3 to 20 percent cover 53% of the surrounding 1km² of Togwotee Pass. Terrain variation for surrounding 1km² area of Dry Lake was lower than Joe Wright and Togwotee Pass but it was higher than the other 3 stations. Terrain does not vary much for surrounding 1km² areas of Lizard Head, Niwot, and South Brush Creek station. Snow depth data of SNOTEL stations were obtained from NRCS snow web site (http://www.wcc.nrcs.usda.gov/snow/) for each sampling date from 7am to 4pm (PST). Hourly snow depth from the SNOTEL stations during this time period was incorporated to compare SNOTEL stations versus field sampling snow depth. SNOTEL depth data are reported in 2.5 cm (1 inch) increments, so this was the precision of the data.

2-3 Geospatial data

The Digital Elevation Model (DEM) and land cover data were obtained from USDA Geospatial Data Gate Way web site (<u>http://datagateway.nrcs.usda.gov/</u>). Slope and aspect maps were created from the 30m resolution DEM. Canopy density was obtained from National Land Cover Database (NLCD 2001) website (<u>http://www.mrlc.gov/</u>). Spatial resolution of DEM, canopy density and land cover data were 30m.

2-4 Methods

2-4-1 Field Sampling

Intensive field surveys were conducted across the 1 km² areas uses ten 1000m long transects spaced 100m apart. The direction of transects depended up on the terrain and was either north-south or east-west. Each transect was sampled at a 50m interval and each 50m interval called a spot. The first spot was at the beginning of each transect, and GPS units were used to locate each spot along transects. The UTM coordinate and snow depths were recorded at each spot. Several sampling patterns were used to measure snow depth at each spot. These sampling

patterns were 1 point in the center of a spot (Figure 2-3 a), 3 points along a transect (Figure 2-3 b and c), 3 points perpendicular to a transect (Figure 2-3 d), 5 points in a plus (Figure 2-3 e), and five points along the transect (Figure 2-3 f). Table 2-3 explains the abbreviated names of these sampling patterns.

2-4-2 Data Analyses

Before initiating the statistical analysis, extreme values were removed. These were deemed to be artifacts of human activities, such as roads, snow banks, and snow mobile trails. The Q test (Skoog *et al.*, 1996) was incorporated to find these data. The Q test calculate differences between questionable result and its nearest neighbor (e.g. for minimum and maximum results) then evaluate if the questionable result can be reject with the indicated degree of confidence level (Skoog *et al.*, 1996). In addition, incomplete transects and transects that were not straight line were removed for statistical analysis.

The spacing between spots in each transect was increased from 50 to 100 to 200m. Then they were combined with sampling patterns. These combinations were called sampling methods (Table 2-3). SD averages from similar sampling patterns were compared. For example, we compared 3 points in a row where distances between each spot were 50, 100, and 200m (e.g. F050, F100, and F200). Besides, SD averages of different sampling patterns that have the same distances were compared. For example 1, 3 points in a row or perpendicular to transect, or 5 points in a row or plus that distance between each spot was 50m (e.g. C050, F050, A050, and P050). Statistical Analysis Software version 9.2 (SAS. Inc., Chicago, IL) was used to analyze the data. The first step was to investigate which sampling strategy was suitable to estimate the average snow depth of one transect and if SD average a specific transect and the SNOTEL station were significantly different at the 95 percent confidence level (all were at this level). In this regard, the SD average for sampling methods of each transect were with one another and to the SD of the SNOTEL station compared. Next SD of transects were compared one another to determine the SD differences among them. Then SD averages of the 10 transects, 5 odd transects (1, 3, 5, 7, and 9), 5 even transects (2, 4, 6, 8, and 10), and 3 transects (1, 5, and 10) were compared to the SNOTEL station to determine the number of transects needed to measure SD average of the 1km² area around each SNOTEL station.

The second step was to determine how a specific SNOTEL station represents snow depth over an area up to 1 km². Five subareas, specifically 200*200m, 400*400m, 600*600m, 800*800m, and 1000*1000m, were used with various sampling methods. SD averages of these sub-areas, or surrounding boxes, and were compared to SNOTEL station to determine if they were statistically different. Lastly, SD averages of surrounding boxes were compared one another to determine SD difference among them.

Since the larger surrounding boxes in step 2 included data from the smaller boxes (e.g. 800*800m included the 200*200m, 400*400m, and 600*600m surrounding boxes), snow depths of the smaller boxes affect the average snow depth of any larger box. To address this, data of the small surrounding boxes were removed from larger box. For example, sampling spots of the 800*800m were removed from 1000*100m, and the remaining data were the sampling spots located from 800m to 1000m away from the SNOTEL station. These areas were named

concentric boxes. Five concentric boxes around the SNOTEL station of 0-200m, 200-400m, 400-600m, 600-800m, and 800-1000m were used for step 3 of this research. SD averages of concentric boxes and SNOTEL station were compared to see if they are significantly different. Then, SD averages of concentric boxes were compared one another to determine SD difference among them.

The final step of this analysis was to compare inter and intra annual snow depth variations. For intra-annual, sampled SD collected during a specific year were compared. For inter-annual comparison the SD measurements collected on approximately the same date of each year were compared.

To compare the means of two groups or one group with a determined value, studentbased T-test or a related non-parametric approach (the Mann-Whitney-Wilcoxon or MWW test) was used (Ott and Longnecker 2001). The criteria for choosing between the student based t-test (parametric) and MWW (non-parametric) was normality of each data set and independence of variances which were assessed based on quarantile-quarantile plots (QQ Plot) and residual versus fitted value plots (Ott and Longnecker 2001). To compare the means for three or more groups, when all pair comparisons were desired, Tukey-adjusted least significant difference (LSD) analysis of variance (ANOVA) or a related non-parametric approach, i.e., the Kruskal Wallis test, was used (Gliner *et al.* 2009, and Creswell 2011). Criteria and plots for ANOVA analyses were the same as student T-test. All statistical analyses were conducted using SAS 9.2. The significance level for all analyses was set 95 percent (alpha=0.05).

SNOTEL Name	Longitude	Latitude	Elevation	Minimum elevation of 1km ²	Minimum Maximum elevation elevation SNOTEL of 1km ² of 1km ² ID		Period of record (years)	Mean Max SWE (mm)
Dry Lake, CO	-106.781	40.534	2560	2475	2650	06J01S	30	580
Joe Wright, CO	-105.887	40.532	3085	3055	3326	05J37S	32	680
Lizard Head Pass, CO	-107.924	37.799	3109	3071	3160	07M29S	30	420
Niwot, CO	-105.544	40.035	3021	2924	3124	05J42S	30	350
South Brush Creek, WY	-106.502	41.329	2560	2521	2615	06H19S	30	340
Togwotee Pass, WY	-110.058	43.749	2920	2844	3031	10F09S	28	670

Table 2-1 Name and location of the studied SNOTEL stations. Data were obtained from the NRCS SNOTEL website (http://www.wcc.nrcs.usda.gov/snow/)

Table 2-2 sampling dates, numbers, and patterns for the SNOTEL stations

SNOTEL station	Sampling date	Sample n in each po	umber oint	Sampling	g Shape	Number of transect	Number of set of points		
		3	5	Row	Star		Center	Total	
	04/04/2008	*		*		7	137	411	
Drv Lake	05/02/2008		*		*	10	197	985	
	02/28/2009		*		*	9	174	870	
	03/28/2009		*	*		10	197	985	
	04/03/2008		*		*	6	31	155	
	05/01/2008	*		*		10	204	612	
	01/31/2009		*		*	8	147	735	
Joe Wright	02/27/2009		*		*	8	162	810	
	05/02/2009		*	*		10	198	990	
	05/01/2010 05/02/2010		*	*		10	193	965	
Lizard Head Pass	03/17/2008		*		*	10	150	750	
	04/07/2008	*		*		10	176	528	
NIWOT	05/05/2008	*		*		10	209	627	
	03/06/2009	*		*		7	144	432	
	04/03/2009		*	*		10	201	1005	
	04/05/2008	*		*		6	64	195	
South Brush Creek	03/01/2009		*		*	10	210	1050	
	03/29/2009		*	*		10	204	1020	
Togwotee Pass	03/17/2009		*		*	7	106	530	

Figure 2-1 Location map of SNOTEL stations, data was taken from NRCS SNOTEL data website (<u>http://www.wcc.nrcs.usda.gov/snow/</u>, and <u>http://www.nationalatlas.gov/</u>)

Figure 2-3 applied different sampling pattern in each spot, **2-9 a** one sample (C050, C100, C200) **2-9 b** three samples in a row with 5m distance (F050, F100, F200), **2-9 c** three samples in row with 2 or 3m distance (T050, T100, T200), **2-9 d** three samples perpendicular to transect (P050, P100, P200), **2-9 e** five samples in a star shape (A050, A100, A200), and **2-9 f** five samples in a row with 2.5m distance (A050, A100, A200)

CHAPTER 3: RESULTS

3-1 Effect of Sampling Method of SD Average of Specific Transect, Surrounding and Concentric Box

One hundred fifty two transects were analyzed. SD averages for some sampling methods of 5 transects of theses 152 transects were significantly different in regards to the other sampling methods of those transects. The observed differences were for 2 and 4 sampling methods of transect 6 and 7 on May/01/2008 at Joe Wright, 2 sampling methods of transect 6 on May/02/2009 at Joe Wright SNOTEL station, 2 sampling methods of transect 6 on Niwot on March/06/2009, and 2 sampling methods of transect 10 of South Brush Creek on March/01/2009. These observed differences were just for these sampling methods, but SD of these methods were not significantly different considering to the other sampling methods of those transects at the 95 percent confidence level.

Statistical analyses of surrounding and concentric boxes showed 2 sampling methods of 200*200m surrounding and 0-200m concentric box of Joe Wright SNOTEL station at February/27/2009 were significantly different at the 95% confidence level. But, other sampling methods of these boxes were not significantly different at the 95 percent confidence level.

Results of the statistical analyses of transects, surrounding and concentric boxes demonstrated SD averages various sampling methods were not significantly different at the 95 percent confidence level. In the other words, the sampling pattern and spacing does not affect SD of a specific transect, surrounding or a concentric box. In this reason, three sample in each spots with 50m spot distance (F050) sampling methods were used for rest of statistical analyses. Because, this sampling method was available for all dates, it has the most data as compared to other sampling methods that were available such as one sample at the center of spot (C050), and there is not a significant difference in SD average of this sampling pattern with regards to the others in 95 percent confidence level.

3-2 SD of SNOTEL station versus transect and transect versus transect

Snow depth of SNOTEL stations was higher than transects except for 6 transects of Niwot station on May/05/2008. Nevertheless, it does not mean SD of SNOTEL stations and transects were significantly different at the 95 percent confidence level. The number of conducted transects were 36, 52, 37, 20, and 7 for Dry Lake, Joe Wright, Niwot, South Brush Creek, and Togwotee Pass and SD averages of 9, 19, 7, 9, and 6 of these transects were significantly different versus SNOTEL station at the 95 percent confidence level respectively (Table 3-1). It is important to notice significant SD different between SNOTEL station and a transect of one specific day were not consistent. For instance, SD averages of transect 1 of South Brush Creek SNOTEL at 50 and 100 spatial distance were significantly different on March/01/2009, while it was not significantly different for 200m spatial distance (Table 3-2). This inconsistency also was found for SD differences among transects. For example, SD averages of transects for Joe Wright station were not significantly different on May/01/2008 but significantly SD differences were found for transect 9 and 10 of Dry Lake Station.

3-3 SD of SNOTEL station versus Surrounding and concentric boxes

SD of SNOTEL stations was higher than surrounding boxes except on May/05/2008 at Niwot station. Dry Lake SNOTEL represent SD average of its surrounding 1km² area at the 95 percent confidence level and one significant difference was found for the surrounding 0.04 1km² area of this station on 02/28/2009 (Table 3-4). Joe Wright station represented SD average of its surrounding 1km² area except on 05/01/2010. SD of the 1km² area of Joe Wright SNOTEL station at 2010 was measured on May/01 and May/02. Table 3-5 is the statistical analyses for measured SD of surrounding boxes of May/01 and May/02 versus SNOTEL station. In this reason we cannot conclude if SNOTEL station represented or did not represent SD of its 1 km² surrounding area at this date. To address this problem we conducted more analyses to validate these result using F050 sampling method (Table 3-5). Results showed Joe Wright station represented SD average on May/02 but it did not represented SD average on May/01. Since sampling accomplished on two dates, we cannot conclude if Joe Wright SNOTEL represented or not represented SD average it 1km² surrounding area, and recommend to sample SD in one date.

Statistical analyses showed Lizard Head SNOTEL represent SD averages of its surrounding 1km^2 area, however; sampling spots were not distributed in all parts of this area. In this reason, Lizard head station represented SD of its 0.36km^2 area. Niwot Station represented SD average of its surrounding area except on 03/06/2009.

South Brush Creek station did not represent SD average of its surrounding area except its 1km^2 surrounding area on 03/29/2009. It is important to notice although South Brush Creek represented SD of its 1km^2 surrounding area on 03/29/2009 but this station did not represented

SD of smaller surrounding boxes (Table 3-4). Togwotee Pass station did not represent its surrounding 0.64 km^2 at the 95 percent confidence level.

SD difference between sampling methods of surrounding areas versus SNOTEL stations were not consistent. For example, SD of Niwot station versus F050, C050, and C200 sampling methods on March/06/2009 were significantly different but it was not significantly different regarding to the other sampling methods of this date (Table 3-6). These inconsistencies also were founded among SD averages of surrounding boxes. For instance, SD averages of surrounding boxes of Joe Wright were not significantly different at the 95 percent confidence level on May/02/2009 but they were different on February/27/2009 (Table 3-7).

Statistical analyses of concentric boxes demonstrate SD of small surrounding boxes affected the larger boxes but these effects were not consistent for all station (Table 3-8). For instant, the number of differences increased for Dry Lake and Joe Wright but decreased for South Brush Creek station.

3-4 Number of transect need for each station

Number of transects were needed for each station was different. Additionally, number of transects were required to measure SD average of surrounding 1km² of one SNOTEL station were not equal at each date (Table 3-9). Results of this work showed minimum number of transect required were 4, 5, 3, 3 for Dry Lake, Joe Wright, Niwot, and south Brush Creek respectively.

3-5 inter and intra annual analyses

SD averages of Dry Lake, Joe Wright, Niwot, and South Brush Creek station were significantly different intra annually. SD averages of South Brush Creek station did not significantly different inter annual but SD averages of Dry Lake, Joe Wright, and Niwot were significantly at the 95 percent confidence level.

Table 3-1	statistical	analyses	of SD	averages	of	transects	versus	SNOTEL	stations	for	F050
sampling n	nethod at th	he 95 perc	cent co	nfidence le	eve	1					

SNOTEL station	Dates	1	2	3	4	5	6	7	8	9	10
Dry Lake	04/04/2008			М		М	М			Î	Î
	05/02/2008									Ŷ	1
	02/28/2009	Ŷ								М	1
	03/28/2009				Î					Ŷ	1
Joe Wright	03/03/2008	М			ſ		1	ſ	М	М	М
	05/01/2008		Î					↑	î		
	01/31/2009					М	М			Ť	
	02/27/2009					М		М		Ŷ	
	05/02/2009		î	î			Î	Î		Î	
	05/01/2010		î		î	î	î	Î	î		
Niwot	04/07/2008										
	05/05/2008			↓					↓		
	03/06/2009			М	М	1	Î		1	Ŷ	М
	04/03/2009						Î				
South Brush Creek	03/01/2009	1		Î				ſ	î		Î
	03/29/2009				1		Î		î	î	
Togwotee Pass	03/17/2009	М	М	1	1	1	1	\uparrow	1		М

Empty cell : no significant difference, M: missing data, N/A: not applicable

↓: significantly difference and SD of SNOTEL is lower ,↑: significantly difference and SD of SNOTEL is higher

Table 3-2 inconsistency of SD difference in transects of South Brush Creek Station at the 95
 percent confidence level

		1			2			3			4			5		
Spacing Sampling patte	ern	50	100	200	50	100	200	50	100	200	50	100	200	50	100	200
Mar/01/2009	С	Ŷ	Ŷ					↑		↑			↑			
	Α	î	Ť					ſ		1			Ť			
	F	Ŷ	Ť					Ŷ		1			Î			
	Р	î	Î					1		Î	1		↑			

Empty cell : no significant difference, M: missing data, N/A: not applicable

↓: significantly difference and SD of SNOTEL is lower ,↑: significantly difference and SD of SNOTEL is higher

	May/01/2008		May/02/2009	
	Mean ± STD (cm) ^a	SID ^b	Mean ± STD (cm)	SID
Transect 1	262.18 ± 20.20		162.10 ± 18.06	T3, T7
Transect 2	250.51 ± 21.94		156.87 ± 14.32	
Transect 3	170.27 ± 46.70		146.93 ± 22.14	T1, T8, T10
Transect 4	165.56 ± 34.28		154.70 ± 21.57	
Transect 5	167.68 ± 36.06		156.68 ± 20.92	
Transect 6	159.83 ± 24.86		150.68 ± 8.22	T8, T10
Transect 7	152.73 ± 32.29		144.77 ± 28.60	T1, T8, T10
Transect 8	157.32 ± 26.47		165.40 ± 36.78	T3, T6, T7, T9
Transect 9	165.77 ± 29.16		148.42 ± 20.33	T8, T10
Transect 10	167.56 ± 27.92		166.98 ± 27.40	T3, T6, T7, T9

Table 3-3 statistical analyses of transects versus transects of Joe Wright station for F050 sampling method on March/01/2009 and May/02/2009 at the 95 percent confidence level

a Values represent mean \pm Standard Deviation

b Significant difference, blank column mean there is no significant difference

T is transect

Station	Date	200*200m	400*400m	600*600m	800*800m	1000-1000m
Dry Lake	04/04/2008	М				
	05/02/2008					
	02/28/2009	↑				
	03/28/2009					
Joe Wright	04/03/2008		↑			М
	05/01/2008					
	01/31/2009	М				
	02/27/2009	↑				
	05/02/2009				1	
	05/01/2010	↑		↑	↑	↑
Lizard Head	03/17/2008					
Niwot	04/07/2008					
	05/05/2008					
	03/06/2009	↑	Ŷ	Ŷ	1	1
	04/03/2009					
South Brush Creek	04/05/2008	↑	Ŷ	Ŷ	1	М
	03/01/2009	1	1	1	1	1
	03/29/2009	↑ (1	↑	↑	
Togwotee Pass	03/17/2009	↑	↑	1	↑	М

Table 3-4 statistical analyses of SD averages of surrounding boxes versus SNOTEL stations for F050 sampling method at the 95 percent confidence level

Empty cell : no significant difference, M: missing data, N/A: not applicable

↓: significantly difference and SD of SNOTEL is lower ,↑: significantly difference and SD of SNOTEL is higher

Table 3-	5 statistical	analyses	of m	easured	SD	at	May/01/2010	and	May/02/2010	versus	Joe
Wright S	NOTEL stat	ion at 95 p	bercen	nt confid	lence	le	vel				

SNOTEL Date	Field Data / Sampling Pattern	F050
May01	May01 and May02	*
May02	May01 and May02	
May01 and May02	May01 and May02	*
May01	May01	*
May02	May02	
May01	May01 and adjusted May02	*

* means significant difference, and empty cell means no significant difference

~ .	200*200m		400	400*400m			600*600m			800*800m			1000-1000m			
Spacing Sampling pattern		50	100	200	50	100	200	50	100	200	50	100	200	50	100	200
Mar/06/2009 Niwot	С	ſ	↑	N/A	ſ			ſ			ſ		1	ſ		ſ
Niwot	F	↑	↑	N/A	ſ	Ť		Ŷ			ſ	1	1	ſ		
Mar/29/2009 South Brush	С	ſ	↑	N/A	↑	↑		¢	ſ	ſ	ſ		1			
Creek	А	Ŷ	↑	N/A	ſ	↑		Ŷ	↑		ſ		↑			Ŷ
	F	Ŷ	↑	N/A	↑	Ŷ		Ŷ	↑		Ŷ	↑	1			
	Т	↑	\uparrow	N/A	↑	↑		↑	Ŷ		Î		1	Î		

Table 3-6 inconsistency of SD difference in surrounding boxes of Niwot and South Brush Creek

 Station

Empty cell : no significant difference, M: missing data, N/A: not applicable

↓: significantly difference and SD of SNOTEL is lower ,↑: significantly difference and SD of SNOTEL is higher

Table 3-7 statistical analyses of surrounding boxes versus surrounding boxes of Joe Wright station on for F050 sampling method March/01/2009 and May/02/2009 at the 95 percent confidence level

	February/27/2009		May/02/2009	
	Mean ± STD (cm) ^a	SID ^b	Mean ± STD (cm)	SID
Box 200	111.08 ± 21.15	B600, B800, B1000	153.47 ± 30.03	
Box 400	129.58 ± 27.10	B1000	158.83 ± 25.82	
Box 600	141.51 ± 23.26	B200	154.90 ± 24.05	
Box 800	140.34 ± 21.82	B200	153.91 ± 24.70	
Box 1000	142.72 ± 23.56	B200, B400	155.56 ± 23.89	

a Values represent mean \pm Standard Deviation

b Significant difference, blank column mean there is no significant difference

B is the surrounding boxes

Station	Date	0-200m	200-400m	400-600m	600-800m	800-1000m
Dry Lake	04/04/2008	М				
	05/02/2008					
	02/28/2009	1				↑ (
	03/28/2009					
Joe Wright	04/03/2008		↑			М
	05/01/2008			↑	↑	
	01/31/2009	М				
	02/27/2009	1				
	05/02/2009			↑	↑	
	05/01/2010	1	1	↑	↑	1
Lizard Head	03/17/2008					
Niwot	04/07/2008					
	05/05/2008				1	
	03/06/2009	1	↑	↑	↑	
	04/03/2009					
Soth Brush Creek	04/05/2008	1	1	1	1	М
	03/01/2009	1	\uparrow		↑	
	03/29/2009	1	1			
Togwotee Pass	03/17/2009	1	1	↑	↑	М

Table 3-8 statistical analyses of SD averages of consentric boxes versus SNOTEL stations for F050 sampling method at the 95 percent confidence level

Empty cell : no significant difference, M: missing data, N/A: not applicable

 \downarrow : significantly difference and SD of SNOTEL is lower , \uparrow : significantly difference and SD of SNOTEL is higher

	May/01/2008		Jan/31/209	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID
SNOTEL	182.37 ± 8.64		133.10 ± 1.31	
10 transects (all)	162.54 ± 30.57	odd, even, thr	$127.60\pm24.93^{\text{d}}$	
Transects 2, 4, 6, 8, 10 (even)	178.79 ± 43.77	all, thr	132.75 ± 21.71^{e}	odd
Transects 1, 3, 5, 7, 9 (odd)	183.59 ± 51.94	all, thr	$122.44 \pm 26.93^{\rm f}$	even
Transects 1, 5, 10 (thr)	198.62 ± 52.95	all, odd, even	-	
	May/02/2009		May/01/2010	
	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	170.94 ± 2.41	odd	173.23 ± 2.88	All, even, odd, thr
10 transects (all)	155.56 ± 23.89		150.02 ± 23.58	SNOTEL
Transects 2, 4, 6, 8, 10 (even)	159.11 ± 24.56	odd	148.37 ± 24.33	SNOTEL
Transects 1, 3, 5, 7, 9 (odd)	151.94 ± 22.75	SNOTEL, thr, even	151.76 ± 22.76	SNOTEL
Transects 1, 5, 10 (thr)	162.09 ± 22.54	odd	154.14 ± 23.22	SNOTEL

Table 3-9 statistical analyses of SD average of 3, 5, and 10 transects versus SNOTEL station for F050 sampling method in 95 percent confidence level

a Values represent mean \pm Standard Deviation

b Refer to Table A-1 for clarification of abbreviations

c Significant difference, blank column means there is no significant difference

d transects 1, 2, 3, 4, 7, 8, 9, 10

e transects 2, 4, 8, and 10

f transects 1, 3, 7, and 9

CHAPTER 4: DISCUSSION

Intensive snow surveys are usually limited to small basins or a small spatial area due to labor costs, accessibility, steep terrain, and avalanche hazards (Elder *et al.* 1991; Dozier *et al.* 2004). Therefore, there is a need to develop sampling methods to accurately estimate snowpack properties over an area in a reasonable time and with limited manpower (Elder *et al.* 1991). We conducted intensive snow depth (SD) sampling in a 1km² surrounding area around various SNOTEL stations to assess sampling strategies. Various sampling patterns were used to average local variability of a sampling spot, yet the SD averages of various sampling patterns of a particular transect were not significantly different. This means that the local SD of a sampling spot was not significantly different, and using various sampling patterns did not make a significant difference on SD averages for sampling methods of one transect.

The three spacings were used to study how SD average on one transect could be different statistically with incorporating different distances between sampling spots. Results showed SD averages of various sampling distances of a transect were not significantly different at the 95 percent confidence level. In addition to transects, results of statistical analyses for a particular surrounding and concentric box showed SD averages of various sampling methods of these boxes were not significantly different, except for the 200*200m box of Joe Wright SNOTEL station on February/27/2009.

Precipitation controls the spatial distribution of snow pack especially at a small scale like a 1km² surrounding box (Elder *et al.*, 1991; Faria *et al.*, 2000; and Trujillo *et al.*, 2007). In this reason, SD was not significantly different within the 1km² surrounding each SNOTEL station. Although, SD averages of transects, surrounding and concentric boxes not being significantly different at the 95 percent confidence level, it does not imply that SD averages of various sampling methods were not different. No two sampling methods had the exact same average SD.

The differences were largest to smallest in the following order: transects, concentric boxes, and surrounding boxes. Snow accumulation and ablation processes are governed by topography, land cover (e.g. coniferous, deciduous, or open), and vegetation structure, as illustrated by canopy density (Davis et al., 1997, Hardy et al., 1997, Link and Marks, 1999, Faria et al., 2000, and Musselman et al., 2008). In alpine and open areas wind redistribution is a primary reason for the spatial heterogeneity of snow (Elder et al., 1991; Winstral et al. 2002; Hiemstra et al. 2006). All these factors create a heterogeneous snowpack in a small region, such as a 1km² area, or even at a sampling spot. For instance, the SD difference between two sampling methods of the transect 7 of Joe Wright station on the May/01/2008 was 36 cm, these inconsistent SD differences were also founded for other SNOTEL stations. Vegetation dissimilarity and physiographic variation was more within a 1km² surrounding area compared to a transect (Figure 2-2), but SD variation among sampling methods of surrounding boxes was less. One reason SD differences were higher among sampling methods for one transect is the number of sampling spots. For instance, SD average on a North-East aspect of Joe Wright station was higher on average than all other aspects on May/02/2009 (Figure 4-3), but there were only two sampling spots on that aspect. This yielded a considerable increase in SD average for one transect since there are 21 sampling spots in a transect, while the number of sampling spots within a 1km² area is usually more than 200. Since there are more points within a surrounding box, averaging minimize the extreme SD values.

In addition to the physiographic and vegetation structure, Musselman et al. (2008) found tree wells resulted in inconsistent snow accumulation under the canopy, with SD in open-spaces higher than SD on the south and north sides of tree wells; SD was higher on the north side of a tree trunks compared to the next to it. The results herein showed the significant SD differences were related to the sampling spacing not the sampling pattern, because SD average of sampling methods with similar pattern and various spacing were different. The differences were between the 50m and 200m spacing (data not shown). This implies that a 200m could be a spacing threshold for the distance between sampling spots around a SNOTEL station. Therefore, it is recommended to measure SD along a transect with distances of less than 200m between sampling spot. The sampling pattern is not important at the studied SNOTEL stations, and any sampling pattern could be used based on other measurement constraints. López-Moreno et al. (2011) did an intensive SD survey at a plot scale in the Spanish Pyrenees Mountains. They recommended that when spatial heterogeneity of snow is substantial the number of snow depth samples should be increased; a "true" snow depth estimation error would be less than 10% if five or more measurements were taken at a sampling spot. Results herein showed that three snow depth measurements in a sampling spot along a transect or around a box yielded an average error less than 5%.

Since time, safety, labor availability, and labor experience are very important factors for snow measurement, we recommend the use of a sampling method that is not time consuming and is simple with a reasonable spatial distribution and coverage, such as three measurements in each spot at a 100m distance if trying to obtain an average SD. It is important to choose a simple sampling method for SD measurement especially for people who are not familiar with snow sampling so to reduce confusion. For example, less experienced samplers may not complete a transect or may record SD incorrectly. The Togwotee Pass sampling was five points 1m apart in a plus, yielding 21 points per spot, which was very labor intensive.

It is important to note that SD averages of the surrounding boxes were not different even with varying physiographic and vegetation structure (Figures 2-2 and 4-1). The effects of independent variables on snow depth may change over a few kilometers and it is not similar in various regions (Elder 1995 as cited by Molotch and Bales 2005). The largest distance between the farthest spots of this work at a site was less than 1.5km. This means that the independent variables made SD differences among sampling methods but due to the small spatial distances, these variables did not make considerable SD differences. However, the independent variables minimum number of transect needed to be estimate SD average over a 1km² area around a SNOTEL station was not always the same for each station.

It is difficult to determine which factor control spatial distribution of snow (Molotch and Bales 2005). Because, the effect of physiographic and vegetation on snow depth is different inter and intra annually and it is complicate to determine which factor was responsible for SD distribution. Erxleben *et al.* (2002) found aspect and Molotch and Bales (2005) found elevation and solar radiation were the most important physiographic factor for snow distribution. Molotch and Bales (2005) also reported factors which effected the snow distribution were not same at different year. Blumberg (2012) studied the effect of physiographic and vegetation variables on SD of surrounding area of Joe Wright station and found SD had higher correlation on May-2009 with canopy density, elevation, sin of slope, and northness respectively, while it had higher

correlation with northness, eastness, maximum upwind slope, canopy density, and elevation respectively on May-2010. These

Transects 9 and 10 of Dry Lake station were consistently lower (significantly) than the SNOTEL station and other transects (data not shown). These two transects have a south, southwest, and west aspects and are covered mostly by low density deciduous forest and grasslands while the eight other transects have a north, northwest, or west aspect and are covered with denser evergreen and deciduous forest (Figure 4-1). Transects 9 and 10 thus get more solar radiation and had less snow depth (Figure 4-4). Although; the amount of solar radiations these two transect received were not significantly different than other transects at the 95 percent confidence level but it could be a reason of why SD was lower for transect 9 and 10. In addition snow may have been redistributed away from this area, or wind may have compacted snow in this area. Aspect is likely the main factor for the low SD of these transects (Figure 4-2). We dug 3 snow pits in the in the 1km² surrounding area of this station on March/28/2009, and one of them located on transect ten. SWE of the snow pit of transect 10 was 40.5cm and SWE of the two other pits and SNOTEL station were 57, 53.4, and 56.4cm respectively. We can conclude that SWE over this part of the 1km² of Dry Lake study area was lower. However; we cannot make a conclusion on SWE for other date since we did not have a snow pit near transect 9 or 10 on the other dates. Moreover, snow densities for the snow pit of transect 10, two other pits, and the SNOTEL station on March/28/2009 were 318, 352, 356, and 379 kg/m³ respectively. It means that the low SWE and SD for the transect 9 and 10 was not related to the snow compaction since snow density of the snow pit on transect 10 was the lowest.

Joe Wright SNOTEL station represented SD average of its 1 km² area at the 95 percent confidence except on May/01/2010 (Tables 3-4). SD measurement of surrounding area of this station was accomplished at May/01 and May/02 of 2010. Additional analyses (Table 3-5) demonstrated Joe Wright SNOTEL did not represent SD average of its 1km² surrounding area at these dates. Because SD was sampled in two dates and 7.3cm of SD depth decreased from May/01 to May/02. We do not know if Joe Wright SNOTEL station represented SD average of its 1 km² area in 95 percent confidence level on May/01 or May/02 of 2010. To avoid this problem, we recommend sampling SD on one sampling date. While this station did not represent SD average at the 95 percent confidence level on these dates it could represent SD average on a lower confidence level (e.g. 90 percent). SD of SNOTEL station on May/01 was 7.3cm higher than May/02. SD of averages of the F050 sampling method was 2.1cm higher on May/01. These differences could be the reason of SD difference between SNOTEL station and 1km² surrounding area. May is a melting season at the Joe Wright and the snow pit we dug at these date showed wet snow with 0 C ° temperatures. These indicate snow melt faster in the SNOTEL station or under SD sensor or snow melting was not simulations for SNOTEL site and the 1km^2 area. In addition the difference could because of the SD sensor error.

Niwot station represented SD average of its 1 km^2 area at the 95 percent confidence except on March/06/2009 (Tables 3-4). Table 3-4 shows the statistical analyses of the F050 sampling method and SNOTEL stations. Average SD of the F050 was 1 cm lower than other sampling methods at this date. SO we can conclude that Niwot station represented SD average of its 1 km² surrounding box. However, it represented SD at a confidence level lower than 95 percent which is reasonable. A standard error of 10 percent for snow sampling is acceptable regarding the independent variables and sampling errors (Dickinson and Whiteley 1972), and the standard error for this work was 5 percent.

South Brush Creek SNOTEL station did not represented SD average of its surrounding boxes except for the 1000*1000m surrounding box on March/29/2009 (Table 3-4). But the 800-1000m concentric box of South Brush Creek station was not significantly different (Table 3-8). Thus it is possible that SD average for a larger area (e.g. 2km²) could represent a station while not representing smaller areas. Although, surrounding 1km² area of South Brush Creek station is homogeneous (Figures 2-2 and 4-1), but it did not represent SD average of its surrounding boxes. But SD averages of surrounding boxes versus surrounding boxes of these stations were not significantly different at the 95 percent confidence level (data not shown). It means snow distributed homogenously in the 1km² areas of this station, because of the homogeneity of 1km² surrounding area of this station, therefore; selection of SNOTEL site for station establishment could not be wrong.

Unlike South Brush Creek SNOTEL the 1km² surrounding area of the Togwotee Pass is not homogeneous (Figures 2-2 and 4-1). Nevertheless, results of this work showed physiographic variations do not enough reason to conclude if a SNOTEL station do not represent SD average of its 1km² surrounding area. For example, physiographic variation is more in surrounding area of Joe Wright station compared to Togwotee Pass, but Joe Wright represented SD average of its surrounding area.

On noticeable result of this research was SD of SNOTEL stations were generally higher than SD surrounding boxes except for May/05/2008 at Niwot station (data not shown). It is important to know why SNOTEL stations over estimate SD averages of their surrounding area.

Molotch and Bales (2005) explained SNOTEL stations may not represent spatial variation of snowpack in a large domain because they established based on site accessibility and protection from public disturbance. In 2011, due to the unprecedented snowfall, the NRCS took snow cores with a federal sampler for calibrate the Joe Wright snow pillow SWE measurements. Therefore, one reason of why SD of SNOTEL station was higher than surrounding boxes could be SNOTEL stations locate in an area which does not represent SD average of the surrounding region. For example, Joe Wright SNOTEL locates close to a meadow and Togwotee Pass SNOTEL locates next to a treeless area and wind deposit snow on the SNOTEL station. Snow like other sediment tends to accumulate or erode when flow decelerate or accelerate (Elder et al., 1991). The interaction of the terrain and wind led to inconsistent snow depth in a small scale like a sampling spot (Musselman et al., 2008) or large scale such as 1km² area (Elder et al., 1991, Hiemstra et al. 2006). The effect of wind in snow accumulation and erosion could be seen in SD along a 50m transect next to Joe Wright SNOTEL (Figure 4-5). Snow tended to erode in the SNOTEL station site and accumulate from 25 to 40m of the station and SD of this transect was generally higher than SD of SNOTEL station. Personal observation showed wind direction is south to north at Joe Wright station, which caused deposit from road, snow plow activity, or intercepted snow deposit on the open pace next to this station.

Musselman *et al.* (2008) found tree trunk and land cover made inconsistent snow accumulation under canopy density and open-space. SNOTEL station hardware, neighboring trees, or open-space may generate varying snow accumulation patterns around a SNOTEL stations. This means that snow depth could vary in small scale like a sampling spot or a small distance from SNOTEL station. This could make a potential error for SD sensor to overestimate or underestimate the snow depth. Rice and Bales (2010) designed an embedded-sensor network to measure SD of the area surrounding a SNOTEL station. They found that a network of 4 or 5 sensors place in an optimal location is sufficient to measure SD the 1km^2 spatial mean within ± 20 to $\pm 25\%$ error. Thus it is a good idea to increase the number of sensors within the study area. Neumann *et al.* (2006) found snow depth one fixed-measurement of snow depth did not statistically represent the SD of a particular area even for uniform snow cover. They also recommended using multiple automated point depth sensors is practical to decrease uncertainty of SD measurement by SD sensor for the region which manual snow survey is not practical.

Beyond using an embedded-sensor network, we also recommend measuring snow depth around each ultra-sonic depth sensor at the SNOTEL. We found snow depth difference within 3m surrounding area of the SD sensor at the Joe Wright station to be up to 40cm (Figures 4-6 and 4-7) but this was not consistent with direction. Thus snow depth variation in a small scale (sampling spot) can also be important to how a SNOTEL site represents SD of its surrounding area. For example, if SD sensor of Joe Wright Station was established anywhere in its 0 to 3m surrounding area of it, this station could possibly underestimate, estimate, or overestimate the SD average of the 1km² surrounding area. In this regard, we recommend having more than one SD sensor at a SNOTEL station.

It is important to note that error in snow depth measurement by SD sensor is part of SD measurement and which made by several factors. Ryan *et al.* (2008a) found SD sensor measured SD accurately beneath the sensor, but the sensor underestimated the surrounding area. They also found several factors may affect SD sensor performance including snow crystal type, blowing or drifting snow, intense snowfall, wind speed, and uneven snow surface. It is difficult to know

what factor was responsible for the and how to alleviate the error (Ryan *et al.* 2008a and b), thus we need to consider a reasonable error (e.g. 5% or 10%) for snow measurement studies.

Figure 4-1 aspect distribution of the 1km² of studied SNOTEL station

Figure 4-2 SD averages of main aspects for 1km² area of Dry Lake SNOTEL on March/28/2009 and number of sampling spots at each aspect

Figure 4-3 SD averages of main aspects for 1km^2 area of Joe Wright SNOTEL on May/02/2009 and number of sampling spots at each aspect

Figure 4-4 Daily solar radiation for transects 1 to 8 versus transects 9 to 10 of Dry Lake SNOTEL station

Figure 4-5 SD of a 50m transect next to the Joe Wright SNOTEL versus SD of this station (S stands for SNOTEL)

Figure 4-6 SD measurement in the adjacent of the SD sensor on June/02/2011

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

Results of statistical analyses showed SD averages of various sampling methods for a particular transect or surrounding box were mostly not significantly different at the 95 percent confidence level. Transects were used as a tool for SD measurement studies, and it is we recommended to incorporate an efficient sampling method to consider sampling constraints such as time, safety, labor, and sampler experience. For instance, 3 to 5 SD measurements at each spot at 100m intervals apparent to be a suitable method for SD sampling. It is essential to explore the physical characteristics of the area surrounding a SNOTEL station before SD sampling to know sources of differences to guide the selection of sampling strategies in particular sampling method and the number of transects needed.

Snow depth varied within the 1km² surrounding area of the studied SNOTEL station due to the interaction of wind and solar radiation on snow influenced by physiographic and vegetation properties. The surrounding 1km² area was not large enough to generate a snowpack with significant SD difference. Therefore, it is necessary to increase the study area to investigate how these environmental components modify snow properties spatially and temporally.

The interaction of the environmental factors in a small scale (6m distance) led to some SNOTEL stations overestimating SD compare to their surrounding area, yet it does not mean SD average of SNOTEL station versus 1km² were significantly different. The reason likely a combination of location of a SNOTEL station with respect to its surroundings such as a tree, open-space, human artifacts (road), vegetation density, wind snow erosion and deposition, and possible errors of the SD sensor. It is complicated to determine which of these factors is responsible for the SNOTEL differences because even though all stations use the SD sensor each station established has been
in a unique location. Therefore, it is recommended to measure SD around the sensor. Furthermore, it is important to note that snow properties change spatially and temporally. Thus for snow studies should consider a level of error of 5 to 10 percent. To decrease the uncertainty, we recommend using multiple SD sensors rather than one, yet this may not be practical. Instead, measuring SD around a sensor, as we and NRCS did on June/2011, could be a practical way to calibrate the SD sensor or studying the SD sensor performance.

This research focused on SD variation in a 1km² area surrounding SNOTEL stations in mostly forested environment. Future work at these and other stations could also consider wind, effects, such as in more open environments or areas and other physiographic drives, such as steep slope.

Field measurements provided insight into the SD variation of the 1km² area, whether the studied SNOTEL station represented the SD average of their 1km² surrounding area at a specific confidence level, and introduced practical SD sampling strategies. For future SD measurement around SNOTEL stations, these results insight for choosing a convenient sampling method. The selection of a sampling method depends on the purpose of the study, for example, interpolation of SD requires an intensive dataset. However, for a similar research, such intensive data collection is not necessary.

- Bales R.C., Molotch N.P., Painter T.H., Dettinger M.K., Rice R., and Dozier J. 2006. Mountain hydrology of the Western United States. *Water Resources Research*, 42, 1-13.
- Blumberg, E.J., 2012. Spatial Variability of Snow Depths Measurements at Two Mountain Pass Snow Telemetry Stations. Unpublished M.S. thesis, Department of Geosciences, Colorado State University, Fort Collins, Colorado, USA, 53pp.
- Chang A.T.C., Kelly R.E.J., Josberger E.G., Armstrong R.L., Foster J.L., and Mognard N.M. 2004. Analysis of ground-measured and passive-microwavederived snow depth variations in midwinter across the northern Great Plains. *Journal of Hydrometeorology*, 6, 20-33.
- Creswell, J.W. 2011. Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research (4th edition). Addison Wesley, 672pp.
- Davis R.E., Hardy J.P., Ni W., Woodcock C., McKenzie J.C., Jordan R., Li X. 1997. Variation of snow cover ablation in the boreal forest: A sensitivity study on the effects of conifer canopy. *Journal of Geophysical Research*, 102, 29389-29395.
- de Jong C., Collins D., and Ranzi R. 2005. *Climate and Hydrology in Mountain Areas.* John Wiley & Sons Ltd., West Sussex, England, 338pp.
- Dickinson W.T., and Whiteley H.R. 1972. A sampling scheme for shallow snowpacks. Bulletin of the International Association of Hydrological Sciences, 17(3), 247-258.
- Dong J., Walker J.P., and Houser P.R. 2005. Factors affecting remotely sensed snow water equivalent uncertainty. *Remote Sensing of Environment*, 97, 68-82.
- Dong J., Walker J.P., Houser P.R., and Sun C. 2007. Scanning Multichannel microwave radiometer snow water equivalent assimilation. *Journal of Geophysical Research*, 112, 1-16.
- Dozier J., and Painter T.H. 2004. Multispectral and hyperspectral remote sensing of alpine Snow properties. Annual Review of Earth and Planetary Science, 32, 465-495.
- Elder K., Dozier J., and Michaelsen J. 1991. Snow accumulation and distribution in an Alpine Watershed. *Water Resources Research*, 27, 1541-1552.

- Elder K., Rosenthal W., and Davis R.E. 1998. Estimating the spatial distribution of snow water equivalence in a mountain watershed. *Hydrological Processes*, 12, 1793-1808.
- Erxleben J., Elder K., and Davis R. 2002. Comparison of spatial interpolation methods for estimation snow distribution in the Colorado Rocky Mountains. *Hydrological Processes*, 16, 3627-3649.
- Faria D.A., Pomeroy J.W., and Essery R.L.H. 2000. Effect of covariance between ablation and snow water equivalent on depletion of snow-covered area in a forest. *Hydrological Processes*, 14, 2683-2695.
- Fassnacht S.R., Dressler K.A., and Bales R.C. 2003. Snow water interpolation for Colorado River basin from snow telemetry (SNOTEL) data. Water Resources Research, 39(9), 1208-1217.
- Fassnacht, S.R., Heun C.M., López-Moreno J.I., and Latron J.B.P. 2010. Variability of Snow Density Measurements in the Rio Esera Vally, Pyrenees Mountains, Spain. Cuadernos de Investigación Geográfica (Journal of Geographical Research), 36(1), 59-72.
- Gliner J.A., Morgan G.A., and Leech N.L. 2009. Research Methods in Applied Settings: An Integrated Approach to Design and Analysis (2nd edition). Routledge Academic, New York. 488pp.
- Hardy J.P., Davis R.E., Jordan R., Li X., Woodcock C., Woodcock C., McKenzie J.C. 1997. Snow ablation modeling at the stand scale in a boreal jack pine forest. *Journal of Geophysical Research*, 102(D24), 29397-29405.
- Hall D.K., Riggs G.A., Salomonson V.V., DiGirolamo N.E., and Bayr K.J. 2002. MODIS snow-cover products. *Remote Sensing of Environment*, 83, 181-194.
- Hiemstra C.A., Liston G.E., and Reiners W.A. 2006. Observing, modeling, and validation snow redistribution by wind in a Wyoming upper treeline landscape. *Ecological Modeling*, 197, 35-51.
- Hua S., Yang Z.L., Niu G.Y., and Dickinson R.E. 2008. Enhancing the estimation of continental-scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter. *Journal of Geophysical Research*, 113, 1-12.
- Hultstrand, D.M., Fassnacht S.R., and Stednick J.D. 2006. Geostatistical Methods for Estimating Snowmelt Contribution to an Alpine Water Balance. *Proceedings of the Western Snow Conference*, Las Cruces, NM, 74, 149-155.
- Link T., and Marks D. 1999. Distributed simulation of snow cover mass- and energy-balance in the boreal forest. *Hydrologic Processes*, 13, 2439-2452.

- López-Moreno J.I., Fassnacht S.R., Beguería S., and Latron J.B.P. 2011. Variability of snow depth at the plot scale: implication for mean depth estimation and sampling strategies. *The Cryosphere*, 5, 617-629 [doi 10.5194/tc-5].
- Molotch N.P., and Bales R.C. 2005. Scaling snow observation from the point to the grid element: Implication for observation network design. *Water Resources Research*, 41, 1–16.
- Musselman K.N., Molotch N.P., and Brooks P.D. 2008. Effects of vegetation on snow accumulation and ablation in a mid-latitude sub-alpine forest. *Hydrological Processes*, 22, 2767–2776.
- Neumann N.N., Derksen C., Smith C., and Goodison B. 2006. Characterizing local scale snow cover using point measurements during the winter season. *Atmosphere-Ocean*, 44(3), 257-259.
- Ott R.L., and Longnecker M. 2001. An Introduction to Methods and Data Analysis. Wadsworth Group, Pacific Grover, CA, 1152pp.
- Rice R., and Bales R.C. 2010. Embedded-sensor network design for snow cover measurements around snow course site in the Sierra Nevada of California. *Water Resources Research*, 46, 1-13 [doi:10.1029/2008WR007318].
- Ryan W.A., Doesken N.J., and Fassnacht S.R. 2008. Preliminary results of ultrasonic snow depth sensor testing for National Weather Service (NWS) snow measurements in the US. *Hydrological Processes*, 22, 2748–2757 [doi: 10.1002/hyp.7065].
- Ryan W.A., Doesken N.J., and Fassnacht S.R. 2008. Evaluation of Ultrasonic Snow Depth Sensors for U.S. Snow Measurements. *Journal of Atmospheric and Oceanic Technology*, 35, 667-684, [doi: 10.1175/2007JTECHA947.1].
- Serreze M.C., Clark M.P., Armstrong R.L., McGinnis D.A., and Pulwarty R.S. 1999. Characteristics of the western United States snowpack form snowpack telemetry (SNOTEL) data. *Water Resources Research*, 35, 2145-2160.
- Skoog D.A., West D.M, and Holler F.J. 1996. Fundamentals of Analytical Chemistry (7th ed.). Saunders College Publishing, Harcourt Brace and Company, Orlando, FL 1176pp.
- Tarboton D.G., Bloschl K., Cooley K., Kirnbauer R., and Luce C. 2000. Spatial snow cover processes at Kuhtai and Reynolds Creek. In Spatial Patterns in Catchment Hydrology: Observation and Modeling (edited by Grayson R. and Bloschl K), p158-186, Cambridge University Press, New York.
- Trujillo E., Ramírez J.A., and Elder K.J. 2007. Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of

snow depth fields. *Water Resources Research*, 43, 1-17, [doi:10.1029/2006WR005317].

- United States Department of Agriculture, 2012a. Geospatial Data Gateway (Internet). Available at: http://datagateway.nrcs.usda.gov/, Natural Resources Conservation Service.
- United States Department of Agriculture, 2012b. National Water and Climate Center (Internet). Available at: http://www.wcc.nrcs.usda.gov/, Natural Resources Conservation Service.
- United States Department of the Interior, 2012a. National Atlas of the United States (Internet). Available at: http://www.nationalatlas.gov/>.
- United States Department of the Interior, 2012b. Multi-Resolution Land Characteristics Consortium – National Land Cover Database (Internet). Available at: ">http://www.mrlc.gov/>.
- Viviroli D., Dürr H.H., Messerli B., and Meybeck M. 2007. Mountains of the world, water towers for humanity: Topology, mapping, and global significance. *Water Resources Research*, 43, W07447, [doi:10.1029/2006WR005653].
- Winstral A., Elder K., and Davis R.E. 2002. Spatial snow modeling of windredistributed snow using terrain-based parameters. *Journal of Hydrometeorology*, 3, 524-538.
- Xiaobing Z., Hongjie X., and Hendrickx J.M.H. 2005. Statistical evaluation of remotely sensed snow-cover products with constraints from stream flow and SNOTEL measurement. *Remote Sensing of Environment*, 94, 214-231.

Appendix A: Naming convention for sampling patterns with various spacing

Abbreviated name	Explanation
С	One point for center of a spot
А	Average for five point in a spot, sampling could be in row or star
F	Average for three points in a row, distance of each points and center is 5m
Р	Average for three point which are perpendicular to transect
Т	Average for three points in row, distance of each point and center is 2 or 3m
050	Distance between each spot (m)
100	Distance between each spot (m)
200	Distance between each spot (m)
For example: C050 means of	one sample in the center of a spot and spacing between spots along transect is 50m

 Table A-1 Naming convention for sampling patterns with various spacing,

Appendix B: Physiographic and land cover properties of surrounding 1km² of studied SNOTEL stations

Figure B-1 Elevation distributions of the 1km² areas of surrounding SNOTEL stations, data were obtained from USDA Geospatial Data Gate Way web site (http://datagateway.nrcs.usda.gov/)

Figure B-2 Slope distributions of the 1km² areas of surrounding SNOTEL stations, Data were obtained from USDA Geospatial Data Gate Way web site (<u>http://datagateway.nrcs.usda.gov/</u>)

Figure B-3 aspect distributions of the 1km² areas of surrounding SNOTEL stations, data were obtained from USDA Geospatial Data Gate Way web site (<u>http://datagateway.nrcs.usda.gov/</u>)

Figure B-4 land cover distributions of the 1km² areas of surrounding SNOTEL stations, data were obtained from USDA Geospatial Data Gate Way web site (http://datagateway.nrcs.usda.gov/)

Figure B-5 canopy density distributions of the 1km² areas of surrounding SNOTEL stations, data were obtained from National Land Cover Database (<u>http://www.epa.gov/mrlc/nlcd-2001.html</u>)

Figure C-1 Conducted transect in each SNOTEL station

Figure C-2 surrounding boxes around SNTOEL station, **b** concentric boxes each color represent once concentric box

Appendix D: Sampling transects and spots

Figure D-1 Sampling spots at April/04/2008 of Dry Lake SNOTEL Station

Figure D-2 Sampling spots at May/02/2008 of Dry Lake SNOTEL Station

Figure D-3 Sampling spots at February/28/2009 of Dry Lake SNOTEL Station

Figure D-4 Sampling spots at March/28/2009 of Dry Lake SNOTEL Station

Figure D-5 Sampling spots at April/03/2008 for Joe Wright SNOTEL station

Figure D-6 Sampling spots at May/01/2008 for Joe Wright SNOTEL station

Figure D-7 Sampling spots at January/31/2009 for Joe Wright SNOTEL station

Figure D-9 Sampling spots at May/02/2009 for Joe Wright SNOTEL station

Figure D-11 Sampling spots at March/17/2008 for Lizard Head Pass SNOTEL station

Figure D-12 Sampling spots at April/07/2008 for Niwot SNOTEL station

Figure D-13 Sampling spots at May/05/2008 for Niwot SNOTEL station

Figure D-14 Sampling spots at March/06/2009 for Niwot SNOTEL station

Figure D-15 Sampling spots at April/03/2009 for Niwot SNOTEL station

Figure D-16 Sampling spots at April/05/2008 for South Brush Creek SNOTEL station

Figure D-17 Sampling spots at March/01/2009 for South Brush Creek SNOTEL station

Figure D-18 Sampling spots at March/29/2009 for South Brush Creek SNOTEL station

Figure D-19 Sampling spots at March/17/2009 for Togwotee Pass SNOTEL station

Appendix E: Dry Lake SNOTEL station statistical analyses results

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	158.75 ± 1.34		158.75 ± 1.34		-	-	158.75 ± 1.34		-	-
C050 ^b	153.95 ± 22.24		151.70 ± 18.79		-	-	167.55 ± 18.26		-	-
C100	152.10 ± 15.83		152.30 ± 19.84		-	-	167.70 ± 16.62		-	-
C200	147.40 ± 26.67		150.60 ± 17.92		-	-	161.00 ± 12.17		-	-
F050	152.46 ± 18.84		151.13 ± 16.25		-	-	167.80 ± 17.45		-	-
F100	149.83 ± 17.57		148.47 ± 16.09		-	-	164.08 ± 16.81		-	-
F200	143.27 ± 15.86		147.33 ± 15.11		-	-	158.00 ± 16.76		-	-
	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Transect 6 Mean ± STD (cm)	SID	Transect 7 Mean ± STD (cm)	SID	Transect 8 Mean ± STD (cm)	SID	Transect 9 Mean ± STD (cm)	SID	Transect 10 Mean ± STD (cm)	SID
SNOTEL	Transect 6 Mean ± STD (cm)	SID -	Transect 7 Mean ± STD (cm) 158.75 ± 1.34	SID	Transect 8 Mean ± STD (cm) 158.75 ± 1.34	SID	Transect 9 Mean ± STD (cm) 158.75 ± 1.34	SID	Transect 10 Mean ± STD (cm) 158.75 ± 1.34	SID
SNOTEL C050	Transect 6 Mean ± STD (cm)	SID - -	Mean ± STD (cm) 158.75 ± 1.34 163.39 ± 31.94	SID	Mean ± STD (cm) 158.75 ± 1.34 166.75 ± 17.79	SID	Mean ± STD (cm) 158.75 ± 1.34 144.37 ± 11.85	SID	Mean ± STD (cm) 158.75 ± 1.34 134.35 ± 11.69	SID
SNOTEL C050 C100	Transect 6 Mean ± STD (cm) - -	SID - - -	Mean \pm STD (cm) 158.75 \pm 1.34 163.39 \pm 31.94 160.89 \pm 40.81	SID	Mean ± STD (cm) 158.75 ± 1.34 166.75 ± 17.79 165.09 ± 19.62	SID	Mean ± STD (cm) 158.75 ± 1.34 144.37 ± 11.85 142.4 ± 9.14	SID SNOTEL SNOTEL	Mean ± STD (cm) 158.75 ± 1.34 134.35 ± 11.69 130.70 ± 15.30	SID SNOTEL SNOTEL
SNOTEL C050 C100 C200	Transect 6 Mean ± STD (cm) - - -	SID - - - -	Transect 7 Mean \pm STD (cm) 158.75 \pm 1.34 163.39 \pm 31.94 160.89 \pm 40.81 164.40 \pm 31.19	SID	Transect 8 Mean \pm STD (cm) 158.75 \pm 1.34 166.75 \pm 17.79 165.09 \pm 19.62 161.40 \pm 15.73	SID	Transect 9 Mean \pm STD (cm) 158.75 \pm 1.34 144.37 \pm 11.85 142.4 \pm 9.14 149.00 \pm 3.32	SID SNOTEL SNOTEL	Mean ± STD (cm) 158.75 ± 1.34 134.35 ± 11.69 130.70 ± 15.30 140.80 ± 13.44	SID SNOTEL SNOTEL SNOTEL
SNOTEL C050 C100 C200 F050	Transect 6 Mean ± STD (cm)	SID - - - -	$\begin{tabular}{ c c c c } \hline Transect 7 \\ \hline \hline Mean \pm STD \\ \hline (cm) \\ \hline 158.75 \pm 1.34 \\ \hline 163.39 \pm 31.94 \\ \hline 160.89 \pm 40.81 \\ \hline 164.40 \pm 31.19 \\ \hline 161.43 \pm 25.19 \\ \hline \end{tabular}$	SID	Mean ± STD (cm) 158.75 ± 1.34 166.75 ± 17.79 165.09 ± 19.62 161.40 ± 15.73 165.65 ± 16.99	SID	Transect 9 Mean \pm STD (cm) 158.75 \pm 1.34 144.37 \pm 11.85 142.4 \pm 9.14 149.00 \pm 3.32 143.23 \pm 10.44	SID SNOTEL SNOTEL SNOTEL	$\begin{tabular}{ c c c c } \hline Transect 10 \\ \hline \hline Mean \pm STD \\ \hline (cm) \\ \hline 158.75 \pm 1.34 \\ \hline 134.35 \pm 11.69 \\ \hline 130.70 \pm 15.30 \\ \hline 140.80 \pm 13.44 \\ \hline 132.78 \pm 10.94 \\ \hline \end{tabular}$	SID SNOTEL SNOTEL SNOTEL SNOTEL
SNOTEL C050 C100 C200 F050 F100	Mean ± STD (cm) - - - - - - - - - - - - - - - -	SID - - - - -	Transect 7 Mean \pm STD (cm) 158.75 \pm 1.34 163.39 \pm 31.94 160.89 \pm 40.81 164.40 \pm 31.19 161.43 \pm 25.19 162.29 \pm 21.59	SID	Transect 8 Mean \pm STD (cm) 158.75 \pm 1.34 166.75 \pm 17.79 165.09 \pm 19.62 161.40 \pm 15.73 165.65 \pm 16.99 165.03 \pm 15.96	SID	Transect 9 Mean \pm STD (cm) 158.75 \pm 1.34 144.37 \pm 11.85 142.4 \pm 9.14 149.00 \pm 3.32 143.23 \pm 10.44 141.57 \pm 11.13	SID SNOTEL SNOTEL SNOTEL SNOTEL	Transect 10 Mean \pm STD (cm) 158.75 \pm 1.34 134.35 \pm 11.69 130.70 \pm 15.30 140.80 \pm 13.44 132.78 \pm 10.94 132.30 \pm 12.66	SID SNOTEL SNOTEL SNOTEL SNOTEL SNOTEL

Table E-1 snow depth of field measurement analyzing of transects versus snow depth of Dry Lake SNOTEL station for April/04/2008 in 5 percent confidence limit

a Values represent mean \pm Standard Deviation

b Refer to Table A-1 for clarification of abbreviations

Figure E-1 snow depth field measurement of transects versus snow depth of Dry Lake SNOTEL station for April/04/2008 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	-	-	158.75 ± 1.34		158.75 ± 1.34		158.75 ± 1.34		158.75 ± 1.34	
C050 ^b	-	-	163.13 ± 31.17		161.61 ± 25.25		158.20 ± 22.51		155.96 ± 22.15	
C100	-	-	165.67 ± 18.81		161.33 ± 19.41		157.45 ± 20.25		154.63 ± 19.77	
C200	-	-	169.25 ± 8.77		157.55 ± 17.75		159.04 ± 19.04		154.60 ± 18.31	
F050	-	-	164.38 ± 26.37		162.49 ± 21.69		157.68 ± 20.52		155.89 ± 20.73	
F100	-	-	165.56 ± 22.97		162.19 ± 18.59		156.82 ± 18.99		154.15 ± 19.14	
F200	-	-	174.42 ± 8.61		162.30 ± 14.66		159.58 ± 16.94		154.60 ± 16.95	

Table E-2 snow depth field measurement analysis of surrounding boxes versus snow depth of Dry Lake SNOTEL for April/04/2008 in 95 percent confidence limit

Table E-3 snow depth field measurement analysis of concentric boxes versus snow depth of DryLake SNOTEL for April/04/2008 in 95 percent confidence limit

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	-	-	158.75 ± 1.34		158.75 ± 1.34		158.75 ± 1.34		158.75 ± 1.34	
C050 ^b	-	-	163.13 ± 31.17		160.50 ± 20.64		152.96 ± 21.53		153.77 ± 22.30	
C100	-	-	165.67 ± 18.81		158.08 ± 20.03		154.54 ± 20.72		151.00 ± 18.76	
C200	-	-	169.25 ± 8.77		150.86 ± 18.52		160.31 ± 20.70		149.52 ± 16.44	
F050	-	-	164.38 ± 26.38		161.12 ± 18.10		154.30 ± 19.14		150.70 ± 19.03	
F100	-	-	165.56 ± 22.97		159.67 ± 15.12		152.80 ± 18.60		153.75 ± 20.91	
F200	-	-	174.42 ± 8.61		155.38 ± 12.94		157.28 ± 18.94		148.90 ± 15.42	

b Refer to Table A-1 for clarification of abbreviations

Figure E-2 snow depth field measurement analysis of surrounding boxes versus snow depth of Dry Lake SNOTEL for April/04/2008 (Refer to Table A-1 for clarification of abbreviations)

Figure E-3 snow depth field measurement analysis of Concentric boxes versus snow depth of Dry Lake SNOTEL for April/04/2008 (Refer to Table A-1 for clarification of abbreviations)

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	149.23 ± 1.61		149.23 ± 1.61		149.23 ± 1.61		149.23 ± 1.61		149.23 ± 1.61	
C050 ^b	151.3 ± 20.31		145.35 ± 26.23		145.37 ± 23.64		146.55 ± 25.24		146.47 ± 22.28	
C100	147.80 ± 22.01		147.60 ± 25.77		145.50 ± 26.15		142.70 ± 30.59		139.60 ± 20.33	
C200	131.40 ± 8.08		145.20 ± 20.00		147.20 ± 32.58		126.20 ± 16.13		141.00 ± 14.88	
F050	151.07 ± 18.38		140.98 ± 21.79		146.18 ± 21.55		141.23 ± 22.34		145.24 ± 18.54	
F100	146.97 ± 17.72		142.87 ± 19.01		144.30 ± 23.57		138.70 ± 28.86		144.30 ± 18.86	
F200	136.53 ± 11.29		139.07 ± 12.58		141.93 ± 26.30		122.80 ± 13.51		145.73 ± 19.34	
	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Transect 6 Mean ± STD (cm)	SID ^c	Transect 7 Mean ± STD (cm)	SID	Transect 8 Mean ± STD (cm)	SID	Transect 9 Mean ± STD (cm)	SID	Transect 10 Mean ± STD (cm)	SID
SNOTEL	Transect 6 Mean ± STD (cm) 149.23 ± 1.61	SID ^c	Transect 7 Mean ± STD (cm) 149.23 ± 1.61	SID	Transect 8 Mean ± STD (cm) 149.23 ± 1.61	SID	Transect 9 Mean ± STD (cm) 149.23 ± 1.61	SID	Transect 10 Mean ± STD (cm) 149.23 ± 1.61	SID
SNOTEL C050	Mean ± STD (cm) 149.23 ± 1.61 155.68 ± 22.15	SID ^c	Mean ± STD (cm) 149.23 ± 1.61 146.70 ± 32.45	SID	Mean ± STD (cm) 149.23 ± 1.61 139.60 ± 24.57	SID	Mean ± STD (cm) 149.23 ± 1.61 113.85 ± 15.49	SID SNOTEL	Mean ± STD (cm) 149.23 ± 1.61 96.65 ± 18.61	SID SNOTEL
SNOTEL C050 C100	Mean ± STD (cm) 149.23 ± 1.61 155.68 ± 22.15 150.44 ± 15.30	SID ^c	Mean ± STD (cm) 149.23 ± 1.61 146.70 ± 32.45 146.10 ± 33.68	SID	Mean ± STD (cm) 149.23 ± 1.61 139.60 ± 24.57 137.80 ± 17.83	SID	Mean ± STD (cm) 149.23 ± 1.61 113.85 ± 15.49 115.50 ± 14.45	SID SNOTEL SNOTEL	Mean ± STD (cm) 149.23 ± 1.61 96.65 ± 18.61 94.40 ± 24.05	SID SNOTEL SNOTEL
SNOTEL C050 C100 C200	$\begin{tabular}{ c c c c c } \hline Transect 6 \\ \hline Mean \pm STD \\ \hline (cm) \\ \hline 149.23 \pm 1.61 \\ \hline 155.68 \pm 22.15 \\ \hline 150.44 \pm 15.30 \\ \hline 150.20 \pm 16.35 \\ \hline \end{tabular}$	SID ^c	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SID	$\begin{tabular}{ c c c c c } \hline Transect 8 \\ \hline Mean \pm STD \\ \hline (cm) \\ \hline 149.23 \pm 1.61 \\ \hline 139.60 \pm 24.57 \\ \hline 137.80 \pm 17.83 \\ \hline 134.40 \pm 20.51 \end{tabular}$	SID	$\begin{tabular}{ c c c c } \hline Transect 9 \\ \hline Mean \pm STD \\ \hline (cm) \\ \hline 149.23 \pm 1.61 \\ \hline 113.85 \pm 15.49 \\ \hline 115.50 \pm 14.45 \\ \hline 118.60 \pm 15.45 \end{tabular}$	SID SNOTEL SNOTEL SNOTEL	Mean \pm STD (cm) 149.23 \pm 1.61 96.65 \pm 18.61 94.40 \pm 24.05 95.00 33.08	SID SNOTEL SNOTEL SNOTEL
SNOTEL C050 C100 C200 F050	$\begin{tabular}{ c c c c c c c }\hline Transect 6 \\\hline Mean \pm STD \\(cm) \\\hline 149.23 \pm 1.61 \\\hline 155.68 \pm 22.15 \\\hline 150.44 \pm 15.30 \\\hline 150.20 \pm 16.35 \\\hline 155.44 \pm 18.41 \\\hline \end{tabular}$	SID ^e	Transect 7 Mean \pm STD (cm) 149.23 \pm 1.61 146.70 \pm 32.45 146.10 \pm 33.68 142.60 \pm 26.05 147.78 \pm 26.25	SID	Mean \pm STD (cm) 149.23 \pm 1.61 139.60 \pm 24.57 137.80 \pm 17.83 134.40 \pm 20.51 139.02 \pm 23.97	SID	Mean \pm STD (cm) 149.23 \pm 1.61 113.85 \pm 15.49 115.50 \pm 14.45 118.60 \pm 15.45 111.23 \pm 12.83	SID SNOTEL SNOTEL SNOTEL SNOTEL	Mean \pm STD (cm) 149.23 \pm 1.61 96.65 \pm 18.61 94.40 \pm 24.05 95.00 33.08 97.03 \pm 17.83	SID SNOTEL SNOTEL SNOTEL SNOTEL
SNOTEL C050 C100 C200 F050 F100	$\begin{tabular}{ c c c c c } \hline Transect 6 \\ \hline Mean \pm STD \\ \hline (cm) \\ \hline 149.23 \pm 1.61 \\ \hline 155.68 \pm 22.15 \\ \hline 150.44 \pm 15.30 \\ \hline 150.20 \pm 16.35 \\ \hline 155.44 \pm 18.41 \\ \hline 152.15 \pm 12.77 \\ \hline \end{tabular}$	SID ^e	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SID	Mean \pm STD (cm) 149.23 \pm 1.61 139.60 \pm 24.57 137.80 \pm 17.83 134.40 \pm 20.51 139.02 \pm 23.97 135.77 \pm 21.43	SID	$\begin{tabular}{ c c c c } \hline Transect 9 \\ \hline Mean \pm STD \\ \hline (cm) \\ \hline 149.23 \pm 1.61 \\ \hline 113.85 \pm 15.49 \\ \hline 115.50 \pm 14.45 \\ \hline 118.60 \pm 15.45 \\ \hline 111.23 \pm 12.83 \\ \hline 113.67 \pm 11.75 \end{tabular}$	SID SNOTEL SNOTEL SNOTEL SNOTEL SNOTEL	Mean \pm STD (cm) 149.23 \pm 1.61 96.65 \pm 18.61 94.40 \pm 24.05 95.00 33.08 97.03 \pm 17.83 94.33 \pm 20.03	SID SNOTEL SNOTEL SNOTEL SNOTEL SNOTEL

Table E-4 snow depth field measurement analyzing of transects versus snow depth of Dry Lake SNOTEL station for May/02/2008 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure E-4 snow depth field measurement analyzing of transects versus snow depth of Dry Lake SNOTEL station for May/02/2008 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	149.23 ± 1.61		149.23 ± 1.61		149.23 ± 1.61		149.23 ± 1.61		149.23 ± 1.61	
C050 ^b	144.13 ± 21.94		148.52 ± 27.69		145.38 ± 26.20		141.08 ± 26.10		138.59 ± 29.04	
C100	134.00 ± 25.23		141.73 ± 28.10		141.11 ± 23.64		138.60 ± 23.66		136.61 ± 28.44	
C200	-		149.25 ± 21.60		141.22 ± 21.79		153.63 ± 17.70		133.18 ± 25.30	
F050	145.67 ± 16.95		146.97 ± 22.63		144.54 ± 22.98		139.46 ± 23.44		$137.35 ~\pm~ 26.76$	
F100	141.92 ± 20.80		143.49 ± 21.94		141.51 ± 21.75		138.31 ± 21.98		135.80 ± 26.20	
F200	-	-	148.96 ± 21.75		138.74 ± 20.91		137.73 ± 21.94		132.05 ± 23.53	

Table E-5 snow depth field measurement analysis of surrounding boxes versus snow depth of Dry Lake SNOTEL for May/02/2008 in 95 percent confidence limit

Table E-6 snow depth field measurement analysis of concentric boxes versus snow depth of Dry Lake SNOTEL for May/02/2008 in 95 percent confidence limit

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	149.23 ± 1.61		149.23 ± 1.61		149.23 ± 1.61		149.23 ± 1.61		149.23 ± 1.61	
C050 ^b	144.13 ± 21.94		150.04 ± 29.71		142.82 ± 25.01		135.79 ± 25.20		134.28 ± 33.31	
C100	134.00 ± 25.23		144.55 ± 29.70		140.65 ± 20.43		135.46 ± 23.73		133.11 ± 35.41	
C200	-	-	150.00 ± 23.41		134.80 ± 20.77		138.14 ± 23.43		121.28 ± 26.67	SNOTEL
F050	145.67 ± 16.95		147.42 ± 24.62		142.55 ± 23.38		133.20 ± 22.65	SNOTEL	133.69 ± 31.55	
F100	141.92 ± 20.80		144.06 ± 23.30		140.03 ± 22.06		134.31 ± 21.99		131.40 ± 32.16	
F200	-	-	148.45 ± 22.56		130.57 ± 17.06		136.43 ± 23.94		121.96 ± 23.44	SNOTEL

b Refer to Table 1-2 for clarification of abbreviation

Figure E-5 snow depth field measurement analysis of the surrounding boxes versus snow depth of Dry Lake SNOTEL for May/02/2008 (Refer to Table A-1 for clarification of abbreviations)

Figure E-6 snow depth field measurement analysis of the concentric boxes versus snow depth of Dry Lake SNOTEL for May/02/2008(Refer to Table A-1 for clarification of abbreviations)

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^C	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	160.78 ± 2.41		160.78 ± 2.41		160.78 ± 2.41		160.78 ± 2.41		160.78 ± 2.41	
C050 ^b	148.45 ± 17.82	SNOTEL	148.40 ± 17.61		164.00 ± 14.62		161.33 ± 23.64		148.89 ± 21.50	
C100	153.20 ± 9.92		147.60 17.54		161.56 ± 15.88		159.20 ± 23.04		149.89 ± 24.02	
C200	155.17 ± 12.43		143.50 ± 21.71	SNOTEL	158.00 ± 18.71		152.17 ± 15.61		155.17 ± 22.60	
A050	147.78 ± 12.87	SNOTEL	148.79 ± 15.06		160.56 ± 13.45		161.07 ± 19.78		146.48 ± 19.12	
A100	148.10 ± 4.31	SNOTEL	147.04 ± 15.70		160.47 ± 10.75		159.68 ± 20.67		148.91 ± 18.89	
A200	152.13 ± 12.90		142.67 ± 17.12	SNOTEL	161.32 ± 13.33		152.10 ± 16.49		150.50 ± 19.82	
F050	147.35 ± 14.13	SNOTEL	148.92 ± 17.07		160.28 ± 14.70		160.17 ± 21.41		147.02 ± 20.83	
F100	149.07 ± 10.08	SNOTEL	147.87 ± 19.60		158.74 ± 13.08		159.70 ± 20.80		148.81 ± 21.69	
F200	152.67 ± 15.27		141.89 ± 21.70	SNOTEL	158.47 ± 15.67		153.72 ± 14.88		151.06 ± 24.25	
P050	148.43 ± 14.80	SNOTEL	148.53 ± 14.41		161.98 ± 13.08		162.06 ± 20.87		146.74 ± 18.04	
P100	148.83 ± 6.55	SNOTEL	146.40 ± 12.78	SNOTEL	162.55 ± 10.39		159.50 ± 22.49		149.33 ± 17.89	
P200	152.61 ± 14.92		143.72 ± 15.08	SNOTEL	163.07 ± 12.33		150.50 ± 19.34		151.50 ± 16.30	

Table E-7a snow depth field measurement analyzing of transects versus snow depth of Dry Lake SNOTEL station for February/28/2009 (Transects 1 to 5) in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm) _a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	160.78 ± 2.41		160.78 ± 2.41		160.78 ± 2.41		-	-	160.78 ± 2.41	
C050 ^b	161.11 ± 21.99		154.40 ± 21.45		150.35 ± 17.20		-	-	121.20 ± 16.48	SNOTEL
C100	162.00 ± 24.74		149.90 ± 22.67		152.40 ± 19.66		-	-	120.7 ± 18.56	SNOTEL
C200	165.50 ± 26.73		153.17 ± 19.75		152.00 21.28		-	-	128.17 ± 15.44	SNOTEL
A050	157.88 ± 19.76		152.61 ± 18.62		151.43 ± 15.24		-	-	122.38 ± 11.66	SNOTEL
A100	157.56 ± 19.28		148.84 ± 19.06		153.38 ± 17.53		-	-	121.62 ± 12.22	SNOTEL
A200	160.13 ± 24.17		151.27 ± 21.21		152.20 ± 20.34		-	-	124.57 ± 12.55	SNOTEL
F050	157.75 ± 21.15		155.30 ± 19.46		151.10 ± 16.12		-	-	123.50 ± 11.25	SNOTEL
F100	158.47 ± 21.31		150.27 ± 19.93		152.17 ± 19.41		-	-	123.27 ± 11.41	SNOTEL
F200	163.56 ± 25.31		151.61 ± 22.24		151.00 23.10		-	-	125.22 ± 12.07	SNOTEL
P050	159.09 ± 19.44		150.52 ± 18.84		151.40 ± 15.65		-	-	120.86 ± 13.65	SNOTEL
P100	158.14 ± 19.56		147.77 ± 19.42		154.27 ± 16.70		-	-	119.67 ± 15.20	SNOTEL
P200	158.50 ± 23.91		151.55 ± 19.64		153.33 ± 18.37		-	-	125.11 ± 14.32	SNOTEL

Table E-7b snow depth field measurement analyzing of transects versus snow depth of Dry Lake SNOTEL station for February/28/2009 (Transects 6 to 10) in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure E-7 snow depth field measurement analyzing of transects versus snow depth of Dry Lake SNOTEL station for February/28/2009 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	160.78 ± 2.41		160.78 ± 2.41		160.78 ± 2.41		160.78 ± 2.41		160.78 ± 2.41	
C050 ^b	144.13 ± 18.80	SNOTEL	155.17 ± 22.44		154.10 ± 20.05		154.28 ± 20.14		150.67 ± 22.39	
C100	152.75 ± 13.40		155.17 ± 22.44		155.49 ± 21.97		153.59 ± 20.52		150.60 ± 22.50	
C200	-	-	164.50 ± 21.78		154.76 ± 20.34		153.63 ± 20.32		151.30 ± 20.78	
A050	140.88 ± 17.76	SNOTEL	146.41 ± 32.30		152.13 ± 17.71		153.27 ± 17.46		$149.69~\pm~19.45$	
A100	146.50 ± 15.29		151.89 ± 19.64		154.14 ± 18.49		153.43 ± 17.01		149.39 ± 19.03	
A200	-	-	158.23 ± 18.91		150.95 ± 17.89		152.44 ± 17.49		149.43 ± 19.55	
F050	139.79 ± 19.57	SNOTEL	151.92 ± 21.34		152.14 ± 18.81		153.46 ± 18.56		149.97 ± 20.25	
F100	146.42 ± 15.10		151.92 ± 21.34		154.29 ± 19.84		153.67 ± 18.36		$149.73\ \pm\ 20.12$	
F200	-	-	161.83 ± 21.72		151.29 ± 20.71		153.12 ± 19.61		$149.75 ~\pm~ 21.17$	
P050	143.04 ± 16.89	SNOTEL	152.94 ± 20.11		152.78 ± 18.14		153.42 ± 17.75		149.73 ± 20.13	
P100	148.67 ± 14.85		152.94 ± 20.11		154.44 ± 18.75		153.24 ± 17.20		149.46 ± 19.71	
P200	-	-	156.71 ± 17.46		151.88 ± 16.51		152.16 ± 16.74		149.74 ± 19.08	

Table E-8 snow depth field measurement analysis of surrounding boxes versus snow depth of

 Dry Lake SNOTEL for February/28/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	160.78 ± 2.41		160.78 ± 2.41		160.78 ± 2.41		160.78 ± 2.41		160.78 ± 2.41	
C050 ^b	144.13 ± 18.80	SNOTEL	159.18 ± 22.68		153.24 ± 18.15		154.59 ± 20.56		145.04 ± 24.62	SNOTEL
C100	152.75 ± 13.40		161.08 ± 26.66		152.53 ± 20.39		150.11 ± 17.54		145.85 ± 24.91	
C200	-	-	171.67 ± 19.96		146.11 ± 15.28		151.70 ± 21.21		148.88 ± 21.38	
A050	140.88 ± 17.76	SNOTEL	155.89 ± 19.10		152.34 ± 16.24		155.23 ± 17.06		144.10 ± 21.16	
A100	146.50 ± 15.29		158.37 ± 20.93		153.08 ± 17.71		152.11 ± 14.24		142.99 ± 20.52	SNOTEL
A200	-	-	165.27 ± 14.43		144.49 ± 15.08	SNOTEL	154.98 ± 17.42		146.31 ± 21.38	SNOTEL
F050	139.79 ± 19.57	SNOTEL	156.33 ± 20.61		152.65 ± 16.66		155.72 ± 18.14		144.54 ± 21.67	SNOTEL
F100	146.42 ± 15.10		160.11 ± 22.21		153.70 ± 17.29		152.51 ± 15.72		143.47 ± 21.45	SNOTEL
F200	-	-	170.39 ± 16.36		147.59 ± 15.31	SNOTEL	156.23 ± 18.20		146.24 ± 22.53	
P050	143.04 ± 16.89	SNOTEL	156.55 ± 20.31		152.32 ± 16.79		152.63 ± 18.00		143.98 ± 22.29	SNOTEL
P100	148.67 ± 14.85		157.53 ± 22.67		152.28 ± 19.07		154.53 ± 17.23		143.46 ± 22.11	SNOTEL
P200	-	-	162.28 ± 14.96		141.93 ± 15.34		151.04 ± 14.10		147.23 ± 21.28	

Table E-9 snow depth field measurement analysis of concentric boxes versus snow depth of Dry

 Lake SNOTEL for February/28/2009 in 95 percent confidence limit

a Values represent mean ± Standard Deviation

b Refer to Table A-1 for clarification of abbreviations

Figure E-8 snow depth field measurement analysis of surrounding boxes versus snow depth of Dry Lake SNOTEL for February/28/2009 (Refer to Table A-1 for clarification of abbreviations)

Figure E-9 snow depth field measurement analysis of donuts versus snow depth of Dry Lake SNOTEL for February/28/2009

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm)	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	147.57 ± 0.80		147.57 ± 0.80		147.57 ± 0.80		147.57 ± 0.80		147.57 ± 0.80	
C050 ^b	144.70 ± 20.69		147.89 ± 26.40		148.95 ± 20.47		130.10 ± 21.14	SNOTEL	144.44 ± 24.93	
C100	143.10 ± 25.97		141.11 ± 31.77		151.60 ± 18.88		121.40 ± 17.64	SNOTEL	143.89 ± 18.16	
C200	151.67 ± 8.52		144.83 ± 26.95		154.67 ± 20.54		124.00 ± 16.25	SNOTEL	146.83 ± 15.73	
A050	145.06 ± 17.98		143.63 ± 22.30		145.56 ± 20.49		132.35 ± 17.72	SNOTEL	143.92 ± 25.65	
A100	141.52 ± 21.52		137.69 ± 26.74		149.54 ± 19.23		127.64 ± 12.84	SNOTEL	149.16 ± 21.53	
A200	148.43 ± 11.37		143.40 ± 20.36		150.63 ± 18.64		123.47 ± 8.27	SNOTEL	152.93 ± 20.45	
F050	$146.30 \pm \! 18.07$		145.09 ± 21.38		144.45 ± 21.49		132.28 ± 17.60	SNOTEL	143.50 ± 26.68	
F100	142.97 ± 21.61		140.19 ± 26.09		148.23 ± 21.63		128.37 ± 12.22	SNOTEL	147.96 ± 21.95	
F200	148.06 ± 8.89		145.00 ± 19.17		148.83 ± 19.50		125.56 ± 11.46	SNOTEL	151.39 ± 18.36	
T050	143.70 ± 18.64		143.60 ± 24.63		147.80 ± 19.71		131.67 ± 19.07	SNOTEL	144.52 ± 24.40	
T100	140.60 ± 22.79		136.34 ± 29.06		151.53 ± 17.07		124.84 ± 11.97	SNOTEL	148.59 ± 19.74	
T200	149.89 ± 12.63		142.28 ± 24.20		153.78 ± 18.74		121.56 ± 9.40	SNOTEL	152.44 ± 21.04	

Table E-10 a snow depth field measurement analyzing of transects versus snow depth of DryLake SNOTEL station for March/28/2009 (Transects 1 to 5) in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm)	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	147.57 ± 0.80		147.57 ± 0.80		147.57 ± 0.80		147.57 ± 0.80		147.57 ± 0.80	
C050 ^b	158.95 ± 32.63		157.95 ± 24.33		143.90 ± 27.45		130.40 ± 15.84	SNOTEL	110.79 ± 23.30	SNOTEL
C100	154.70 ± 33.82		150.50 ± 15.59		147.80 ± 29.72		125.10 ± 17.99	SNOTEL	108.11 ± 22.13	SNOTEL
C200	155.83 ± 40.53		155.00 ± 26.40		144.83 ± 36.93		131.17 ± 23.40	SNOTEL	117.67 ± 24.01	SNOTEL
A050	162.29 ± 26.51		157.29 ± 25.15		145.00 ± 19.15		127.86 ± 13.04	SNOTEL	109.27 ± 20.95	SNOTEL
A100	159.44 ± 26.79		151.84 ± 21.49		145.64 ± 19.75		123.16 ± 14.92	SNOTEL	106.80 ± 22.51	SNOTEL
A200	160.63 ± 32.38		155.70 ± 30.15		143.83 ± 24.07		128.90 ± 17.53	SNOTEL	121.77 ± 15.89	SNOTEL
F050	162.07 ± 27.51		156.32 ± 25.68		144.40 ± 20.50		127.00 ± 14.19	SNOTEL	108.97 ± 20.40	SNOTEL
F100	159.17 ± 26.01		149.73 ± 21.59		144.40 ± 22.73		122.87 ± 16.85	SNOTEL	107.30 ± 22.83	SNOTEL
F200	162.56 ± 35.24		152.83 ± 30.96		143.56 ± 25.57		127.50 ± 19.31	SNOTEL	121.61 ± 18.72	SNOTEL
T050	161.40 ± 27.64		158.48 ± 24.50		145.23 ± 20.63		129.57 ± 13.48	SNOTEL	110.09 ± 22.52	SNOTEL
T100	158.14 ± 29.49		153.50 ± 19.81		147.60 ± 21.11		124.10 ± 14.53	SNOTEL	106.74 ± 22.27	SNOTEL
T200	157.11 ± 32.68		158.33 ± 28.46		144.45 ± 26.54		131.06 ± 17.24	SNOTEL	120.56 ± 17.86	SNOTEL

Table E-10 b snow depth field measurement analyzing of transects versus snow depth of DryLake SNOTEL station for March/28/2009 (Transects 6 to 10) in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure E-10 snow depth field measurement analyzing of transects versus snow depth of Dry Lake SNOTEL station for March/28/2009 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	147.57 ± 0.80		147.57 ± 0.80		147.57 ± 0.80		147.57 ± 0.80		147.57 ± 0.80	
C050 ^b	123.13 ±23.15	SNOTEL	138.75 ± 25.25		143.55 ± 26.37		143.66 ± 25.79		141.90 ± 27.19	
C100	121.25 ± 5.38	SNOTEL	137.69 ± 19.27		141.83 ± 23.86		140.54 ± 25.44		138.99 ± 26.91	
C200	-	-	143.50 ± 19.42		140.17 ± 23.02		141.47 ± 26.41		$142.65\ \pm\ 26.96$	
A050	125.48 ± 26.92	SNOTEL	139.94 ± 25.08		143.71 ± 24.29		142.90 ± 23.22		141.39 ± 25.11	
A100	127.55 ± 16.84		140.18 ± 20.31		143.91 ± 21.73		140.89 ± 22.64		139.59 ± 24.91	
A200	-	-	144.63 ± 24.78		140.56 ± 22.15		141.51 ± 23.40		142.97 ± 23.48	
F050	123.46 ± 28.49		139.50 ± 25.28		142.73 ±25.03		142.50 ± 23.67		141.21 ± 25.51	
F100	126.42 ± 16.50	SNOTEL	139.44 ± 18.52		142.67 ± 21.85		140.78 ± 22.84		139.48 ± 25.01	
F200	-	-	143.58 ± 22.39		139.07 ± 20.60		141.28 ± 23.24		142.87 ± 24.21	
T050	126.71 ± 23.57	SNOTEL	139.99 ±24.51		144.64 ± 24.20		143.56 ± 23.69		141.73 ± 25.47	
T100	126.59 ± 12.14		140.08 ± 19.90		144.46 ± 21.67		140.87 ± 23.14		139.50 ± 25.34	
T200	-	-	145.29 ± 24.75		141.91 ± 23.47		141.72 ± 24.53		142.96 ± 24.14	

 Table E-11 snow depth field measurement analysis of surrounding boxes versus snow depth of

 Dry Lake SNOTEL for March/28/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	0-200m		400-400m		600-600m		800-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	147.57 ± 0.80		147.57 ± 0.80		147.57 ± 0.80		147.57 ± 0.80		147.57 ± 0.80	
C050 ^b	123.13 ± 23.15	SNOTEL	143.96 ± 24.15		147.49 ± 26.93		143.80 ± 25.27		138.79 ± 29.43	
C100	121.25 ± 5.38	SNOTEL	143.17 ± 19.16		145.15 ± 27.01		138.81 ± 27.77		136.20 ± 29.56	
C200	-	-	151.50 ± 14.69		137.50 ± 26.27		143.14 ± 31.06		144.00 ± 28.00	
A050	125.48 ± 26.92	SNOTEL	144.77 ± 23.03		146.81 ± 23.49		141.86 ± 21.93		138.70 ± 28.12	
A100	127.55 ± 16.85		144.38 ± 20.19		146.90 ± 22.88		136.85 ± 23.61		137.26 ± 28.74	
A200	-	-	152.40 ± 23.49		137.30 ± 20.56		142.73 ± 25.73		144.64 ± 23.87	
F050	123.46 ± 28.49		144.85 ± 22.25		145.38 ± 24.83		142.21 ± 22.01		138.93 ± 28.52	
F100	126.42 ± 16.50	SNOTEL	143.78 ± 17.64		145.25 ± 24.36		138.27 ± 24.28		137.14 ± 28.71	
F200	-	-	150.50 ± 21.30		135.47 ± 19.48		144.12 ± 26.79		144.69 ± 25.58	
Т050	126.71 ± 23.57	SNOTEL	144.42 ± 23.64		148.46 ± 23.57		142.16 ± 23.17		138.49 ± 28.24	
P100	126.59 ± 12.14		144.58 ± 20.28		147.97 ± 22.88		136.09 ± 24.56		137.03 ± 29.07	
P200	-	-	154.00 ± 21.94		139.20 ± 23.37		141.48 ± 26.72		144.38 ± 24.05	

Table E-12 snow depth field measurement analysis of concentric boxes versus snow depth of Dry Lake SNOTEL for March/28/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure E-11 snow depth field measurement analysis of surrounding boxes versus snow depth of Dry Lake SNOTEL for March/28/2009 (Refer to Table A-1 for clarification of abbreviations)

Figure E-12 snow depth field measurement analysis of concentric boxes versus snow depth of Dry Lake SNOTEL for March/28/2009(Refer to Table A-1 for clarification of abbreviations)

	4/4/2008		5/2/2008	
	Mean \pm STD (cm) ^a	SID ^b	Mean ± STD (cm)a	SIDb
Transect 1	152.47 ± 18.85	T10	151.07 ± 18.38	T9, T10
Transect 2	151.13 ± 16.25	T4, T8, T9, T10	140.98 ± 21.79	T6, T9, T10
Transect 3	****	****	146.18 ± 21.55	T9, T10
Transect 4	167.80 ± 17.45	T1, T2, T9,T10	141.23 ± 22.34	T6, T9, T10
Transect 5	****	****	145.25 ± 18.54	T9, T10
Transect 6	****	****	155.44 ± 18.41	T2, T4, T8, T9, T10
Transect 7	161.43 ± 25.20	T4, T8, T9, T10	147.78 ± 26.25	T9, T10
Transect 8	165.65 ± 16.99	T1, T2, T9,T10	139.02 ± 23.97	T9, T10
Transect 9	143.23 ± 10.44	T4, T4,T8	111.23 ± 12.83	T1, T2, T3, T4, T5, T6, T7, T8, T10
Transect 10	132.78 ± 10.94	T1, T2, T4, T7,T10	97.03 ± 17.83	T1, T2, T3, T4, T5, T6, T7, T8, T9
	2/28/2009		3/28/2009	
	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
Transect 1	147.35 ± 14.13	T3, T10	146.30 ± 18.07	T4, T9, T10
Transect 2	149.02 . 17.07			
	148.92 ± 17.07	T3, T10	145.48 ± 20.89	T6, T9, T10
Transect 3	148.92 ± 17.07 160.28 ± 14.70	T3, T10 T1, T2, T5, T10	$\begin{array}{c} 145.48 \pm 20.89 \\ \\ 144.45 \pm 21.49 \end{array}$	T6, T9, T10 T6, T9, T10
Transect 3 Transect 4	148.92 ± 17.07 160.28 ± 14.70 160.17 ± 21.41	T3, T10 T1, T2, T5, T10 T1, T5, T10	145.48 ± 20.89 144.45 ± 21.49 132.28 ± 17.60	T6, T9, T10 T6, T9, T10 T1,T6, T7, T10
Transect 3 Transect 4 Transect 5	148.92 ± 17.07 160.28 ± 14.70 160.17 ± 21.41 147.02 ± 20.83	T3, T10 T1, T2, T5, T10 T1, T5, T10 T3,T4	145.48 ± 20.89 144.45 ± 21.49 132.28 ± 17.60 143.50 ± 26.68	T6, T9, T10 T6, T9, T10 T1,T6, T7, T10 T6, T9, T10
Transect 3 Transect 4 Transect 5 Transect 6	148.92 ± 17.07 160.28 ± 14.70 160.17 ± 21.41 147.02 ± 20.83 157.75 ± 21.15	T3, T10 T1, T2, T5, T10 T1, T5, T10 T3,T4 T10	145.48 ± 20.89 144.45 ± 21.49 132.28 ± 17.60 143.50 ± 26.68 162.07 ± 27.51	T6, T9, T10 T6, T9, T10 T1,T6, T7, T10 T6, T9, T10 T1, T2, T3, T4, T5, T8, T9, T10
Transect 3 Transect 4 Transect 5 Transect 6 Transect 7	148.92 ± 17.07 160.28 ± 14.70 160.17 ± 21.41 147.02 ± 20.83 157.75 ± 21.15 155.30 ± 19.46	T3, T10 T1, T2, T5, T10 T1, T5, T10 T3,T4 T10 T10	145.48 ± 20.89 144.45 ± 21.49 132.28 ± 17.60 143.50 ± 26.68 162.07 ± 27.51 156.32 ± 25.68	T6, T9, T10 T6, T9, T10 T1,T6, T7, T10 T6, T9, T10 T1, T2, T3, T4, T5, T8, T9, T10 T4, T9, T10
Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8	148.92 ± 17.07 160.28 ± 14.70 160.17 ± 21.41 147.02 ± 20.83 157.75 ± 21.15 155.30 ± 19.46 151.10 ± 16.12	T3, T10 T1, T2, T5, T10 T1, T5, T10 T3,T4 T10 T10 T10	145.48 ± 20.89 144.45 ± 21.49 132.28 ± 17.60 143.50 ± 26.68 162.07 ± 27.51 156.32 ± 25.68 144.40 ± 20.50	T6, T9, T10 T6, T9, T10 T1,T6, T7, T10 T6, T9, T10 T1, T2, T3, T4, T5, T8, T9, T10 T4, T9, T10 T6, T9, T10
Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9	148.92 ± 17.07 160.28 ± 14.70 160.17 ± 21.41 147.02 ± 20.83 157.75 ± 21.15 155.30 ± 19.46 151.10 ± 16.12 *****	T3, T10 T1, T2, T5, T10 T1, T5, T10 T3,T4 T10 T10 T10 ******	145.48 ± 20.89 144.45 ± 21.49 132.28 ± 17.60 143.50 ± 26.68 162.07 ± 27.51 156.32 ± 25.68 144.40 ± 20.50 127.00 ± 14.19	T6, T9, T10 T6, T9, T10 T1,T6, T7, T10 T6, T9, T10 T1, T2, T3, T4, T5, T8, T9, T10 T4, T9, T10 T6, T9, T10 T1, T2, T3, T5, T6, T7, T8, T10

 Table E-13 statistical analyses of transects versus transects of each specific day for Dry Lake

 SNOTEL station in 95 percent confidence limit

b Significant difference, blank column mean there is no significant difference

T is transect

	4/4/2008		5/2/2008		2/28/2009		3/28/2009	
	Mean ± STD (cm) ^a	SID ^b	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
200*200m	****	****	145.67 ± 16.95		139.79 ± 19.57	-	123.46 ± 28.49	B600, B800, B1000
400*400m	164.38 ± 26.38		146.97 ± 22.63	B ^C 1000	151.92 ± 21.34		139.50 ± 25.28	
600*600m	162.49 ± 21.69		144.54 ± 22.98	B1000	152.14 ± 18.81		142.73 ± 25.03	B200
800*800m	157.68 ± 20.52		139.46 ± 23.44		153.46 ± 18.56		142.50 ± 23.67	B200
1000*1000m	155.89 ± 20.73		137.35 ± 26.76	B400, B600	149.97 ± 20.25		141.21 ± 25.51	B200

Table E-14 statistical analyses of surrounding boxes versus surrounding boxes of each specific day for Dry Lake SNOTEL station in 95 percent confidence limit

b Significant difference, blank column mean there is no significant difference

c Surrounding boxes

Table E-15 statistical analyses of concentric boxes versus concentric boxes of each specific day for Dry Lake SNOTEL station in 95 percent confidence limit

	4/4/2008		5/2/2008		2/28/2009		3/28/2009	
	Mean ± STD (cm) ^a SID ^b		Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
0-200m	****	*****	142.19 ± 14.91		139.79 ± 19.57		123.46 ± 28.49	CB400, CB600
200-400m	164.38 ± 26.38		147.42 ± 24.62	CB ^c 800, CB 1000	156.33 ± 20.61	CB800, CB1000	144.85 ± 22.25	CB200
400-600m	161.12 ± 18.10		142.55 ± 23.38		152.32 ± 16.79		145.38 ± 24.83	CB200
600-800m	154.30 ± 19.14		133.20 ± 22.65	CB400	155.72 ± 18.14	CB400,CB1000	142.21 ± 22.01	
800-1000m	153.75 ± 20.91		133.69 ± 31.55	CB400	144.54 ± 21.67	CB400, CB800	138.93 ± 28.52	

a Values represent mean \pm Standard Deviation

b Significant difference, blank column mean there is no significant difference

c Concentric Boxes

Figure E-13 SD difference between transects and SD of Dry lake SNOTEL station (F050 minus SNOTEL)

Figure E-14 SD difference between surrounding boxes and SD of Dry lake SNOTEL station (F050 minus SNOTEL)

Figure E-15 SD difference between concentric boxes and SD of Dry lake SNOTEL station (F050 minus SNOTEL)

Table E-16 statistical analyses of SD averages of 3, 5, and 10 transects versus Dry Lake SNOTEL station in 95 percent confidence level

	May/02/2008		Feb/28/2009		Mar/28/2009		
	Mean \pm STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	
SNOTEL	149.23 ± 1.61	thr	160.78 ± 2.41	thr	147.57 ± 0.80		
10 transects (all)	137.35 ± 26.76		149.97 ± 20.25^{d}		141.21 ± 25.51	thr	
Transects 2, 4 , 6, 8, 10 (even)	144.03 ± 22.31	thr	147.94 ± 21.75	thr	138.94 ± 27.50		
Transects 1, 3, 5, 7, 9 (odd)	140.19 ± 24.59	thr	-	thr	143.51 ± 23.23	thr	
Transects 1, 5, 10 (thr)	130.88 ± 30.41	SNOTEL, even, odd	139.02 ± 19.16	SNOTEL, even, odd	132.97 ± 27.48	odd, all	

b Refer to Table A-1 for clarification of abbreviations

c Significant difference, blank column means there is no significant difference

d nine transects

Figure E-16 SD averages of 3, 5, and 10 transects versus Dry Lake SNOTEL station (refer to column 1 of Table E-16 for definition)

Table E-17 statistical analyses of inter and intra annual for sampling dates of Dry Lake SNOTE

 in 95 percent confidence level

	04/04/2008 and 05/02/2008	
	Mean ± STD (cm) ^a	SID ^c
4/4/2008	153.50 ± 20.47	5/2/2008
5/2/2008	132.60 27.83	4/4/2008
	02/28/2009 and 03/28/2009	
	Mean ± STD (cm)	SID
2/28/2009	150.00 ± 20.25	3/28/2009
3/28/2009	142.80 ± 26.02	2/28/2009
	04/04/2008 and 03/28/2009	
	Mean ± STD (cm)	SID
4/4/2008	153.50 ± 20.47	3/28/2009
3/28/2009	137.50 ± 24.27	4/4/2008

Figure E-17 SD difference between field sampling and Dry Lake SNOTEL station for different sampling date

Appendix F: Joe Wright SNOTEL station statistical analyses results

	Transect 1		Transect 2	-	Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID						
SNOTEL	****		187.96 ± 0.00		187.96 ± 0.00		187.96 ± 0.00		187.96 ± 0.00	
C050 ^b	****		186.94 ± 28.49		189.24 ± 54.18		160.20 ± 34.93	SNOTEL	171.93 ± 36.58	
C100	****		188.44 ± 35.35		188.11 ± 60.83		170.80 ± 23.23		185.57 ± 38.20	
C200	****		198.60 ± 40.92		209.60 ± 46.38		****		185.00 ± 49.77	
A050	****		183.72 ± 31.69		188.22 ± 49.38		160.38 ± 24.97	SNOTEL	169.67 ± 30.66	
A100	****		187.40 ± 37.51		185.47 ± 57.00		162.16 ± 24.41		176.57 ± 33.91	
A200	****		198.96 ± 43.34		202.00 ± 40.25		****		176.75 ± 41.83	
F050	****		184.86 ± 29.88		188.61 ± 51.72		159.23 ± 27.78	SNOTEL	170.87 ± 31.18	
F100	****		187.82 ± 34.68		185.96 ± 59.70		163.20 ± 24.62		179.24 ± 35.69	
F200	****		197.87 ± 39.71		202.47 ± 45.76		****		179.33 ± 42.60	
P050	****		183.65 ± 32.42		188.18 ± 48.49		161.47 ± 24.53	SNOTEL	169.22 ± 32.19	
P100	****		187.33 ± 39.64		185.85 ± 55.49		164.00 ± 23.23		176.90 ± 34.56	
P200	****		199.93 ± 46.02		204.07 ± 36.45		****		176.92 ± 44.26	

Table F-1 a snow depth of field measurement analyzing of transects versus snow depth of Joe Wright SNOTEL station for April/03/2008 in 95 percent confidence limit

a Values represent mean ± Standard Deviation

b Refer to Table A-1 for clarification of abbreviations

Table F-1 b snow depth of field measurement analyzing of transects versus snow depth of Joe Wright SNOTEL station for April/03/2008 in 95 percent confidence limit

	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	187.96 ± 0.00		187.96 ± 0.00		****		****		****	
C050	163.94 ± 26.05	SNOTEL	159.67 ± 24.55	SNOTEL	****		****		****	
C100	162.22 ± 27.86	SNOTEL	158.56 ± 24.23	SNOTEL	****		****		****	
C200	163.40 ± 25.56		152.00 ± 30.39	SNOTEL	****		****		****	
A050	156.36 ± 22.96	SNOTEL	156.56 ± 20.11	SNOTEL	****		****		****	
A100	154.38 ± 22.10	SNOTEL	158.58 ± 18.14	SNOTEL	****		****		****	
A200	155.92 ± 24.86	SNOTEL	156.36 ± 24.21	SNOTEL	****		****		****	
F050	159.27 ± 23.02	SNOTEL	157.11 ± 21.46	SNOTEL	****		****		****	
F100	158.26 ± 24.14	SNOTEL	156.93 ± 22.56	SNOTEL	****		****		****	
F200	154.87 ± 22.77	SNOTEL	151.67 ± 28.66	SNOTEL	****		****		****	
P050	155.98 ± 25.12	SNOTEL	157.04 ± 21.71	SNOTEL	****		****		****	
P100	153.11 ± 24.02	SNOTEL	160.22 ± 17.16	SNOTEL	****		****		****	
P200	159.47 ± 27.32	SNOTEL	159.60 ± 24.05	SNOTEL	****		****		****	

a Values represent mean \pm Standard Deviation

b Refer to Table A-1 for clarification of abbreviations

Figure F-1 snow depth field measurement of transects versus snow depth of Joe Wright SNOTEL station for April/03/2008(Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	187.96 ± 0.00		187.96 ± 0.00		187.96 ± 0.00		187.96 ± 0.00		****	
C050 ^b	182.86 ± 42.82		167.75 ± 31.96		171.11 ± 41.89		173.16 ± 36.89		****	
C100	184.33 ± 62.52		171.57 ± 33.56		173.67 ± 44.03		175.60 ± 38.41		****	
C200	****		162.14 ± 42.38		180.07 ± 46.07		180.08 ± 40.64		****	
A050	176.46 ± 41.11		160.81 ± 27.23	SNOTEL	167.52 ± 37.03		170.09 ± 33.93		****	
A100	173.53 ± 54.28		160.40 ± 27.54	SNOTEL	166.98 ± 39.63		171.23 ± 36.28		****	
A200	****		156.89 ± 35.64	SNOTEL	174.66 ± 39.78		176.94 ± 37.52		****	
F050	177.62 ± 45.71		164.02 ± 27.15	SNOTEL	168.99 ± 37.87		171.08 ± 34.60		****	
F100	178.22 ± 52.06		165.12 ± 29.29		169.14 ± 41.20		172.32 ± 37.31		****	
F200	****		157.09 ± 37.09		175.07 ± 41.79		176.26 ± 38.71		****	
P050	177.43 ± 37.73		159.92 ± 29.02	SNOTEL	167.25 ± 37.70		170.12 ± 34.39		****	
P100	172.45 ± 59.93		159.41 ± 28.47	SNOTEL	167.05 ± 39.87		171.60 ± 36.40		****	
P200	****		158.43 ± 36.45	SNOTEL	176.05 ± 40.03		178.67 ± 37.69		****	

 Table F-2 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for April/03/2008 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

 Table F-3 snow depth field measurement analysis of concentric boxes versus snow depth of Joe

 Wright SNOTEL for April/03/2008 in 95 percent confidence limit

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	187.96 ± 0.00		187.96 ± 0.00		187.96 ± 0.00		187.96 ± 0.00		****	
C050 ^b	182.86 ± 42.82		162.71 ± 26.88	SNOTEL	174.88 ± 51.24		176.03 ± 28.79		****	
C100	184.33 ± 62.52		168.09 ± 24.90	SNOTEL	175.92 ± 54.49		178.10 ± 30.59		****	
A050	176.46 ± 41.11		155.60 ± 19.48	SNOTEL	175.02 ± 45.01		173.68 ± 29.15		****	
A100	173.53 ± 54.28		156.82 ± 18.19	SNOTEL	174.06 ± 49.76		176.70 ± 31.55		****	
F050	177.62 ± 45.71		159.56 ± 22.01	SNOTEL	174.55 ± 47.09		174.01 ± 29.67		****	
F100	178.22 ± 52.06		161.54 ± 22.53	SNOTEL	173.46 ± 52.06		176.41 ± 32.14		****	
P050	177.43 ± 37.73		154.02 ± 19.07	SNOTEL	175.45 ± 44.72		174.14 ± 29.16		****	
P100	172.45 ± 59.93		155.85 ± 16.45	SNOTEL	175.28 ± 49.23		177.46 ± 31.36		****	

b Refer to Table A-1 for clarification of abbreviations

Figure F-2 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for April/03/2008 (Refer to Table A-1 for clarification of abbreviations)

Figure F-3 snow depth field measurement analysis of Concentric boxes versus snow depth of Joe Wright SNOTEL for April/03/2008 (Refer to Table A-1 for clarification of abbreviations)

Table F-4 si	now depth	of field n	neasurement	analyzing	of transects	versus	snow	depth	of J	oe
Wright SNO	TEL station	n for May/	01/2008 in 95	5 percent co	onfidence lin	nit				

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	182.37 ± 8.64		182.37 ± 8.64		182.37 ± 8.64		182.37 ± 8.64		182.37 ± 8.64	
C050 ^b	161.40 ± 33.97		146.89 ± 24.49	SNOTEL	165.57 ± 55.24		169.05 ± 44.94		171.20 ± 41.20	
C100	157.90 ± 39.42		145.50 ± 31.58	SNOTEL	164.27 ± 51.45		173.91 ± 53.01		176.36 ± 51.50	
C200	165.67 ± 54.58		155.77 ± 18.21	SNOTEL	175.00 ± 68.35		155.17 ± 18.76		177.33 ± 34.54	
F050	162.18 ± 20.20		150.50 ± 19.88	SNOTEL	170.27 ± 46.70		152.33 ± 19.71		167.68 ± 36.06	
F100	160.50 ± 25.31		151.74 ± 22.41	SNOTEL	170.64 ± 49.00		165.56 ± 34.28		173.79 ± 44.14	
F200	165.00 ± 32.62		151.90 ± 27.19	SNOTEL	175.95 ± 66.13		167.42 ± 36.06		174.67 ± 31.06	
	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	182.37 ± 8.64		182.37 ± 8.64		182.37 ± 8.64		182.37 ± 8.64		182.37 ± 8.64	
C050	155.00 ± 41.53	C200	153.05 ± 35.53	SNOTEL,C200	155.81 ± 33.74		166.30 ± 31.89		169.24 ± 26.27	
C100	166.27 ± 52.01		167.73 ± 34.51		152.91 ± 39.71	SNOTEL	165.10 ± 13.36		165.00 ± 26.37	
C200	192.33 ± 55.83	C050	186.50 ± 35.88	C050	175.83 ± 34.33		169.00 ± 7.91		156.67 ± 31.33	
F050	159.83 ± 24.86		152.73 ± 32.29	SNOTEL, A200	157.32 ± 26.47	SNOTEL	165.77 ± 29.16		167.56 ± 27.92	
F100	166.03 ± 30.18		166.15 ± 32.88		157.48 ± 28.89	SNOTEL	165.77 ± 16.19		165.39 ± 21.60	
F200	179.67 ± 35.16		183.67 ± 35.49	A050	168.28 ± 29.03		167.87 ± 5.44		160.00 ± 24.80	

b Refer to Table A-1 for clarification of abbreviations

Figure F-4 snow depth field measurement of transects versus snow depth of Joe Wright SNOTEL station for May/01/2008 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	182.37 ± 8.64		182.37 ± 8.64		182.37 ± 8.64		182.37 ± 8.64		182.37 ± 8.64	
C050 ^b	182.57 ± 60.49		174.77 ± 51.68		163.87 ± 43.04		159.74 ± 39.84	SNOTEL	161.91 ± 37.73	
C100	193.50 ± 80.39		190.44 ± 63.43		168.69 ± 49.18		165.67 ± 41.90		164.30 ± 40.19	
C200			200.50 ± 44.09		179.39 ± 36.86		173.34 ± 36.38		169.92 ± 40.57	
F050	185.48 ± 46.05		171.99 ± 39.91		162.79 ± 33.48		161.03 ± 29.87		162.54 ± 30.57	
F100	193.67 ± 62.13		182.94 ± 48.40		167.75 ± 37.32		165.98 ± 31.23		164.52 ± 31.52	
F200			192.96 ± 37.46		174.70 ± 32.39		170.22 ± 28.44		167.42 ± 33.30	

Table F-5 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for May/01/2008 in 95 percent confidence limit

Table F-6 snow depth field measurement analysis of concentric boxes versus snow depth of Joe Wright SNOTEL for May/01/2008 in 95 percent confidence limit

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	182.37 ± 8.64		182.37 ± 8.64		182.37 ± 8.64		182.37 ± 8.64		182.37 ± 8.64	
C050 ^b	182.57 ± 60.49		172.39 ± 49.98		155.70 ± 33.63	SNOTEL	154.39 ± 34.92	SNOTEL	165.28 ± 34.17	
C100	193.50 ± 80.39		189.42 ± 60.98		151.30 ± 23.73	SNOTEL	161.63 ± 30.01	SNOTEL	162.34 ± 37.99	
C200	****		208.17 ± 45.19		162.50 ± 18.49		165.57 ± 35.53		165.85 ± 45.41	
F050	185.48 ± 46.05		167.88 ± 38.02		155.88 ± 26.16	SNOTEL	158.75 ± 24.55	SNOTEL	164.88 ± 31.67	
F100	193.67 ± 62.13		179.36 ± 45.67		155.60 ± 19.15	SNOTEL	163.62 ± 20.99		162.43 ± 32.17	
F200	****		198.67 ± 40.29		160.10 ± 18.90		164.45 ± 22.21		164.11 ± 38.59	

b Refer to Table A-1 for clarification of abbreviations

Figure F-5 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for May/01/2008 (Refer to Table A-1 for clarification of abbreviations)

Figure F-6 snow depth field measurement analysis of Concentric boxes versus snow depth of Joe Wright SNOTEL for May/01/2008 (Refer to Table A-1 for clarification of abbreviations)

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	133.10 ± 1.31		133.10 ± 1.31		133.10 ± 1.31		133.10 ± 1.31		****	
C050 ^b	123.95 ± 32.73		135.09 ± 15.24		123.48 ± 28.12		127.80 ± 26.91		****	
C100	122.91 ± 24.50		142.17 ± 12.99		124.09 ± 25.96		128.30 ± 30.01		****	
C200	121.17 ± 31.13		145.14 ± 12.84		117.50 ± 28.65		128.80 ± 7.66		****	
A050	128.77 ± 27.33		133.64 ± 14.57		123.60 ± 27.17		126.93 ± 17.99		****	
A100	127.11 ± 30.76		138.93 ± 14.93		123.16 ± 26.82		129.60 ± 23.19		****	
A200	121.37 ± 41.38		140.94 ± 17.35		118.67 ± 29.80		128.60 ± 8.62		****	
F050	128.44 ± 30.87		134.74 ± 14.10		123.68 ± 27.34		125.67 ± 21.00		****	
F100	128.91 ± 31.95		139.83 ± 13.49		125.91 ± 22.46		127.77 ± 23.00		****	
F200	121.56 ± 42.33		142.19 ± 16.36		123.78 ± 27.28		124.74 ± 6.07		****	
P050	127.49 ± 25.37		133.02 ± 15.54		123.48 ± 29.33		128.48 ± 19.43		****	
P100	123.91 ± 26.84		139.11 ± 16.09		120.73 ± 32.58		131.00 ± 26.72		****	
P200	121.11 ± 35.74		141.10 ± 16.72		113.17 ± 32.35		132.53 ± 13.61		****	

Table F-7 a snow depth of field measurement analyzing of transects versus snow depth of Joe Wright SNOTEL station for January/31/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	****		133.10 ± 1.31		133.10 ± 1.31		133.10 ± 1.31		133.10 ± 1.31	
C050	****		118.43 ± 38.62		142.57 ± 25.90		116.52 ± 15.82	SNOTEL	136.00 ± 27.94	
C100	****		131.09 ± 48.90		144.09 ± 26.91		114.00 ± 17.17	SNOTEL	136.82 ± 30.03	
C200	****		131.67 ± 66.21		160.33 ± 27.07	SNOTEL	115.00 ± 17.74	SNOTEL	129.33 ± 23.93	
A050	****		117.10 ± 28.99		132.51 ± 19.58		118.22 ± 17.71	SNOTEL	134.29 ± 25.16	
A100	****		125.56 ± 36.13		134.47 ± 21.54		123.15 ± 22.20		132.85 ± 25.34	
A200	****		129.77 ± 49.64		144.47 ± 23.29		119.93 ± 15.73		123.83 ± 15.63	
F050	****		119.19 ± 31.55		134.16 ± 19.40		118.44 ± 15.74	SNOTEL	136.00 ± 29.75	
F100	****		128.48 ± 39.52		134.30 ± 20.86		121.36 ± 19.06		133.09 ± 29.59	
F200	****		133.39 ± 52.12		145.06 ± 22.48		118.28 ± 16.17		124.00 ± 13.59	
P050	****		115.44 ± 30.31		134.22 ± 22.29		117.43 ± 15.86	SNOTEL	133.14 ± 22.72	
P100	****		124.48 ± 38.01		137.85 ± 23.53		121.88 ± 19.24		133.94 ± 23.48	
P200	****		126.78 ± 52.79		149.17 ± 24.44		119.95 ± 15.63		125.50 ± 20.62	

Table F-7 b snow depth of field measurement analyzing of transects versus snow depth of Joe

 Wright SNOTEL station for January/31/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure F-7 snow depth field measurement of transects versus snow depth of Joe Wright SNOTEL station for January/31/2009 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	****		133.10 ± 1.31		133.10 ± 1.31		133.10 ± 1.31		133.10 ± 1.31	
C050 ^b	****		130.49 ± 30.14		126.91 ± 25.82		125.41 ± 21.44		126.92 ± 23.27	
C100	****		139.63 ± 39.65		127.98 ± 30.80		128.95 ± 23.98		129.46 ± 25.27	
C200	****		148.30 ± 46.63		132.71 ± 38.27		132.10 ± 27.44		128.70 ± 27.93	
A050	****		133.25 ± 39.87		128.70 ± 32.61		127.27 ± 26.34		128.02 ± 28.13	
A100	****		145.38 ± 50.51		131.83 ± 39.75		130.74 ± 30.34		130.59 ± 29.18	
A200	****		155.50 ± 55.46		134.45 ± 50.23		131.96 ± 35.76		131.46 ± 32.62	
F050	****		131.94 ± 32.00		127.16 ± 26.25		125.79 ± 22.01		127.60 ± 24.93	
F100	****		140.75 ± 42.20		129.49 ± 31.31		129.26 ± 24.36		130.09 ± 25.58	
F200	****		146.75 ± 51.72		132.88 ± 39.19		132.42 ± 28.33		129.49 ± 28.09	
P050	****		129.96 ± 32.26		127.26 ± 28.32		125.65 ± 23.39		126.61 ± 23.68	
P100	****		140.42 ± 41.85		127.75 ± 33.97		129.23 ± 26.79		129.20 ± 26.37	
P200	****		152.25 ± 45.76		133.12 ± 42.20		131.73 ± 29.98		128.84 ± 29.28	

Table F-8 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for January/31/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	****		133.10 ± 1.31		133.10 ± 1.31		133.10 ± 1.31		133.10 ± 1.31	
C050 ^b	****		133.25 ± 39.87		126.35 ± 28.62		125.88 ± 18.50		129.00 ± 30.46	
C100	****		145.38 ± 50.51		124.60 ± 32.34		129.71 ± 18.11		130.41 ± 28.15	
C200	****		155.50 ± 55.46		122.43 ± 46.95		129.67 ± 15.88		131.00 ± 30.17	
A050	****		130.49 ± 30.14		125.06 ± 23.61		123.95 ± 16.22		128.88 ± 25.47	
A100	****		139.63 ± 39.65		121.77 ± 24.21		129.88 ± 15.53		130.05 ± 26.96	
A200	****		148.30 ± 46.63		123.80 ± 33.15		131.53 ± 13.17		125.58 ± 28.58	
F050	****		131.94 ± 32.00		124.69 ± 22.93		124.46 ± 17.07		129.94 ± 28.27	
F100	****		140.75 ± 42.20		123.49 ± 23.21		129.04 ± 15.79		131.05 ± 27.18	
F200	****		146.75 ± 51.72		124.95 ± 31.95		132.00 ± 14.42		126.79 ± 28.17	
P050	****		129.96 ± 32.26		125.87 ± 26.52		124.08 ± 17.44		127.87 ± 24.17	
P100	****		140.42 ± 41.85		121.00 ± 28.23		130.65 ± 18.10		129.17 ± 26.22	
P200	****		152.25 ± 45.76		122.19 ± 39.22		130.45 ± 13.24		126.19 ± 28.98	

Table F-9 snow depth field measurement analysis of concentric boxes versus snow depth of JoeWright SNOTEL for January/31/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure F-8 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for January/31/2009 (Refer to Table A-1 for clarification of abbreviations)

Figure F-9 snow depth field measurement analysis of Concentric boxes versus snow depth of Joe Wright SNOTEL for January/31/2009 (Refer to Table A-1 for clarification of abbreviations)

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	152.91 ± 3.93		152.91 ± 3.93		152.91 ± 3.93		152.91 ± 3.93		****	
C050 ^b	153.05 ± 21.38		140.84 ± 26.22		146.38 ± 32.60		141.05 ± 32.03		****	
C100	158.36 ± 18.40		152.10 ± 21.18		150.73 ± 34.52		135.60 ± 37.32		****	
C200	159.50 ± 21.72		145.00 ± 24.69		136.00 ± 33.22		145.60 ± 25.13		****	
A050	148.22 ± 17.27		139.45 ± 23.22		139.55 ± 27.88		133.38 ± 22.51		****	
A100	151.93 ± 18.89		146.20 ± 21.33		142.20 ± 29.97		127.42 ± 25.26	SNOTEL	****	
A200	154.27 ± 24.73		139.36 ± 24.87		127.73 ± 31.13		134.16 ± 15.40		****	
F050	151.55 ± 21.99		138.11 ± 20.86		141.84 ± 30.41		136.81 ± 24.34		****	
F100	156.52 ± 21.72		144.37 ± 21.24		145.88 ± 29.20		130.00 ± 27.01	SNOTEL	****	
F200	162.45 ± 27.67		137.47 ± 24.58		131.11 ± 26.49		135.40 ± 19.22		****	
P050	146.50 ± 14.36		141.26 ± 26.89		139.54 ± 27.56		132.51 ± 25.13	SNOTEL	****	
P100	149.49 ± 17.35		150.00 ± 21.86		141.37 ± 32.15		127.57 ± 28.87	SNOTEL	****	
P200	147.83 ± 21.56		143.13 ± 25.44		127.11 ± 35.95		136.73 ± 17.44		****	

Table F-10 a snow depth of field measurement analyzing of transects versus snow depth of Joe

 Wright SNOTEL station for February/27/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID						
SNOTEL	152.91 ± 3.93		****		152.91 ± 3.93		152.91 ± 3.93		152.91 ± 3.93	
C050	143.15 ± 31.16		****		147.19 ± 21.44		136.67 ± 18.50	SNOTEL	154.29 ± 29.03	
C100	146.90 ± 37.40		****		142.73 ± 20.17		136.18 ± 17.44	SNOTEL	153.64 ± 31.92	
C200	149.83 ± 45.93		****		147.17 ± 17.68		132.67 ± 12.86	SNOTEL	144.33 ± 30.08	
A050	139.31 ± 24.55		****		146.26 ± 15.80		134.81 ± 17.60	SNOTEL	147.60 ± 25.91	
A100	143.92 ± 26.07		****		144.35 ± 16.68		134.11 ± 15.09	SNOTEL	145.93 ± 28.83	
A200	144.37 ± 33.44		****		148.77 ± 13.41		131.50 ± 12.94	SNOTEL	137.17 ± 25.40	
F050	137.25 ± 25.07		****		149.90 ± 17.18		135.43 ± 16.80	SNOTEL	149.63 ± 26.20	
F100	141.80 ± 22.87		****		148.73 ± 18.31		135.42 ± 15.57	SNOTEL	145.57 ± 27.03	
F200	140.28 ± 28.76		****		152.11 ± 17.51		131.50 ± 12.03	SNOTEL	137.61 ± 23.40	
P050	142.65 ± 28.95		****		142.92 ± 18.12		134.81 ± 18.79	SNOTEL	147.79 ± 27.52	
P100	147.03 ± 33.72		****		139.42 ± 17.70		133.49 ± 14.96	SNOTEL	148.85 ± 31.78	
P200	150.28 ± 42.47		****		144.89 ± 13.50		131.89 ± 12.57	SNOTEL	139.11 ± 28.82	

Table F-10 b snow depth of field measurement analyzing of transects versus snow depth of Joe Wright SNOTEL station for February/27/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure F-10 snow depth field measurement of transects versus snow depth of Joe Wright SNOTEL station for February/27/2009 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	152.91 ± 3.93		152.91 ± 3.93		152.91 ± 3.93		152.91 ± 3.93		152.91 ± 3.93	
C050 ^b	125.50 ± 11.68	SNOTEL	137.53 ± 28.64		145.24 ± 25.19		143.29 ± 26.92		145.43 ± 26.93	
C100	****		131.29 ± 36.46		139.57 ± 27.20		145.70 ± 29.83		147.11 ± 28.21	
C200	****		149.00 ± 23.41	SNOTEL	143.58 ± 21.74		148.67 ± 27.69		145.00 ± 27.14	
A050	119.40 ± 11.04	SNOTEL, P050	128.81 ± 20.93	SNOTEL	139.94 ± 20.38		139.31 ± 21.06		141.17 ± 22.32	
A100	****		127.60 ± 27.38	SNOTEL	138.20 ± 21.64		141.11 ± 22.69		142.11 ± 23.46	
A200	****		137.95 ± 17.81		140.02 ± 14.83		142.63 ± 21.36		139.79 ± 23.68	
F050	111.08 ± 21.15	SNOTEL	129.58 ± 27.10		141.51 ± 23.26		140.34 ± 21.82		142.72 ± 23.56	
F100	****		126.86 ± 27.96		139.52 ± 23.10		142.24 ± 23.03		143.71 ± 23.53	
F200	****		138.50 ± 16.84	SNOTEL	141.11 ± 17.65		142.37 ± 21.01		141.19 ± 23.70	
P050	129.75 ± 16.33	SNOTEL, A050	130.96 ± 21.88		140.15 ± 21.27		139.61 ± 23.59		141.05 ± 23.84	
P100	****		129.57 ± 30.85	SNOTEL	137.33 ± 23.15		141.52 ± 25.61		142.17 ± 25.78	
P200	****		141.09 ± 24.49		140.11 ± 17.02		144.90 ± 24.96		140.13 ± 25.87	

Table F-11 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for February/27/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	152.91 ± 3.93		152.91 ± 3.93		152.91 ± 3.93		152.91 ± 3.93		152.91 ± 3.93	
C050 ^b	125.50 ± 11.68	SNOTEL	141.91 ± 32.07		148.97 ± 22.92		141.42 ± 28.62		148.35 ± 26.87	
C100	****		****		143.19 ± 22.52		151.58 ± 31.60		148.84 ± 26.36	
C200	****		****		140.88 ± 21.96		153.75 ± 32.77		141.00 ± 26.58	
A050	119.40 ± 11.04	SNOTEL, P050	132.24 ± 22.99		145.33 ± 18.08		138.71 ± 21.88		143.71 ± 23.86	
A100	****		****		142.84 ± 17.65		143.91 ± 23.78		143.33 ± 24.62	
A200	****		****		141.05 ± 14.35		145.25 ± 26.81		136.69 ± 26.13	
F050	111.08 ± 21.15	SNOTEL	136.30 ± 26.59		147.28 ± 19.05		139.22 ± 20.53		145.96 ± 25.54	
F100	****		****		145.06 ± 19.03		144.85 ± 23.15		145.52 ± 24.32	
F200	****		****		142.42 ± 19.03		143.64 ± 24.65		139.89 ± 26.78	
P050	129.75 ± 16.33	SNOTEL, A050	131.39 ± 24.28	SNOTEL	144.59 ± 19.82		139.10 ± 25.84		143.01 ± 24.22	
P100	****		****		140.73 ± 19.10		145.53 ± 27.66		142.98 ± 26.31	
P200	****		****		139.63 ± 14.04		149.69 ± 31.04		134.93 ± 26.40	

Table F-12 snow depth field measurement analysis of concentric boxes versus snow depth of JoeWright SNOTEL for February/27/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure F-11 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for February/27/2009 (Refer to Table A-1 for clarification of abbreviations)

Figure F-12 snow depth field measurement analysis of Concentric boxes versus snow depth of Joe Wright SNOTEL for February/27/2009 (Refer to Table A-1 for clarification of abbreviations)

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	170.94 ± 2.41		170.94 ± 2.41		170.94 ± 2.41		170.94 ± 2.41		170.94 ± 2.41	
C050 ^b	162.33 ± 24.88		153.22 ± 23.74	SNOTEL	147.45 ± 30.69	SNOTEL	155.90 ± 31.08		162.16 ± 26.72	
C100	163.82 ± 27.56		152.09 ± 21.58	SNOTEL	143.90 ± 36.70	SNOTEL	156.80 ± 29.67		165.64 ± 23.38	
C200	172.50 ± 17.90		160.00 ± 17.03		135.80 ± 38.21	SNOTEL	170.40 ± 29.77		165.67 ± 23.79	
A050	164.04 ± 19.18		156.83 ± 14.45	SNOTEL	145.91 ± 22.79	SNOTEL	154.49 ± 22.09		158.05 ± 23.94	
A100	168.38 ± 20.88		155.44 ± 9.79	SNOTEL	144.20 ± 26.29	SNOTEL	153.42 ± 19.63		162.02 ± 24.25	
A200	174.50 ± 24.09		156.03 ± 10.88		138.00 ± 26.21	SNOTEL	157.80 ± 10.79		157.43 ± 19.32	
F050	162.10 ± 18.06		156.87 ± 14.32	SNOTEL	146.93 ± 22.14	SNOTEL	154.70 ± 21.57		156.68 ± 20.92	
F100	164.46 ± 19.72		154.15 ± 10.60	SNOTEL	144.60 ± 24.77	SNOTEL	152.03 ± 16.77		159.64 ± 20.82	
F200	170.72 ± 19.71		155.11 ± 11.33		139.93 ± 25.14	SNOTEL	151.60 ± 8.01		155.83 ± 16.85	
Т050	165.41 ± 22.01		155.59 ± 17.65	SNOTEL	145.40 ± 26.17	SNOTEL	154.75 ± 26.41		160.79 ± 27.40	
T100	170.79 ± 23.07		155.61 ± 12.22	SNOTEL	143.70 ± 31.43	SNOTEL	155.93 ± 25.55		165.61 ± 26.70	
T200	177.61 ± 26.22		158.28 ± 13.51		135.33 ± 31.21	SNOTEL	168.20 ± 20.41		161.78 ± 23.54	

Table F-13 a snow depth of field measurement analyzing of transects versus snow depth of Joe Wright SNOTEL station for May/02/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	170.94 ± 2.41		170.94 ± 2.41		170.94 ± 2.41		170.94 ± 2.41		170.94 ± 2.41	
C050	151.90 ± 12.39	SNOTEL	135.05 ± 35.45	SNOTEL	163.38 ± 45.69		148.63 ± 25.85	SNOTEL	170.14 ± 32.45	
C100	149.91 ± 9.13	SNOTEL	142.00 ± 39.14	SNOTEL	148.64 ± 39.06		152.44 ± 20.40	SNOTEL	157.55 ± 21.53	
C200	152.83 ± 5.64	SNOTEL	152.50 ± 46.53		139.00 ± 45.25		161.00 ± 18.92		148.50 ± 26.37	
A050	147.91 ± 10.28	SNOTEL	145.00 ± 26.20	SNOTEL	164.11 ± 35.89		147.02 ± 21.71	SNOTEL	167.79 ± 25.37	
A100	151.27 ± 11.07	SNOTEL	149.09 ± 27.03		154.51 ± 31.00		151.29 ± 13.94	SNOTEL	157.96 ± 18.31	
A200	156.00 ± 6.09	SNOTEL	156.37 ± 33.61		148.00 ± 36.62		156.50 ± 14.47		153.27 ± 19.57	
F050	150.68 ± 8.22	SNOTEL	144.77 ± 28.60	SNOTEL	165.40 ± 36.78		148.42 ± 20.33	SNOTEL	166.98 ± 27.40	
F100	151.39 ± 8.86	SNOTEL	148.49 ± 30.72		156.06 ± 29.68		151.93 ± 14.43	SNOTEL	155.94 ± 21.50	
F200	153.89 ± 9.24	SNOTEL	155.22 ± 39.08		150.06 ± 35.36		158.67 ± 13.47		150.22 ± 24.63	
Т050	146.47 ± 15.18	SNOTEL, T200	141.91 ± 27.23	SNOTEL	162.59 ± 38.59		146.16 ± 24.50	SNOTEL	169.38 ± 25.37	
T100	150.70 ± 14.40	SNOTEL	147.33 ± 28.14		151.00 ± 35.04		151.04 ± 15.73	SNOTEL	159.85 ± 15.42	
T200	157.06 ± 7.07	SNOTEL, T050	156.22 ± 32.65		142.95 ± 40.81		155.84 ± 17.35		154.72 ± 16.70	

Table F-13 b snow depth of field measurement analyzing of transects versus snow depth of JoeWright SNOTEL station for May/02/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure F-13 snow depth field measurement of transects versus snow depth of Joe Wright SNOTEL station for May/02/2009 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	170.94 ± 2.41		170.94 ± 2.41		170.94 ± 2.41		170.94 ± 2.41		170.94 ± 2.41	
C050 ^b	151.33 ± 22.84		162.48 ± 29.92		154.37 ± 29.83		152.42 ± 31.72	SNOTEL	155.29 ± 31.02	
C100	160.25 ± 23.30		165.25 ± 30.34		152.40 ± 30.40		150.94 ± 27.61	SNOTEL	153.35 ± 28.12	SNOTEL
C200	-		179.25 ± 31.16		157.00 ± 38.18		153.43 ± 31.13		155.73 ± 29.76	
A050	152.37 ± 34.61		156.98 ± 27.27		153.53 ± 24.95		152.81 ± 25.07	SNOTEL	155.33 ± 24.13	
A100	164.65 ± 36.38		160.76 ± 27.32		153.01 ± 24.92		153.22 ± 20.82	SNOTEL	154.94 ± 21.47	
A200	-		165.68 ± 23.02		154.76 ± 26.46		153.39 ± 21.70		155.62 ± 22.47	
F050	153.78 ± 26.87		158.83 ± 25.82		154.90 ± 24.05		153.91 ± 24.70	SNOTEL	155.56 ± 23.89	
F100	162.25 ± 29.76		160.31 ± 25.67		153.25 ± 23.55		152.87 ± 19.98	SNOTEL	154.01 ± 20.87	SNOTEL
F200	-		162.75 ± 26.32		153.37 ± 26.27	SNOTEL	152.84 ± 21.67		154.26 ± 22.43	
Т050	150.61 ± 38.44		156.97 ± 30.75		152.43 ± 28.05		151.57 ± 27.89	SNOTEL	155.08 ± 26.89	
T100	165.59 ± 38.89		162.71 ± 30.49		152.57 ± 28.42		152.81 ± 23.88	SNOTEL	155.33 ± 24.30	
T200	-		173.13 ± 23.38		156.90 ± 31.11		153.94 ± 25.44		157.01 ± 25.51	

Table F-14 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for May/02/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations
	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	170.94 ± 2.41		170.94 ± 2.41		170.94 ± 2.41		170.94 ± 2.41		170.94 ± 2.41	
C050 ^b	151.33 ± 22.84		165.39 ± 31.28		148.18 ± 28.62	SNOTEL	149.90 ± 34.12	SNOTEL	159.61 ± 29.61	
C100	160.25 ± 23.30		166.92 ± 33.09		141.58 ± 26.61	SNOTEL	149.04 ± 23.96	SNOTEL	156.75 ± 28.79	
C200	****		186.83 ± 32.90		137.22 ± 33.63	SNOTEL	148.77 ± 18.89	SNOTEL	158.38 ± 28.47	
A050	152.37 ± 34.61		158.18 ± 25.83		150.89 ± 23.05	SNOTEL	151.88 ± 25.42	SNOTEL	159.13 ± 22.27	
A100	164.65 ± 36.38		159.47 ± 25.49		146.48 ± 21.26	SNOTEL	153.50 ± 14.33		157.35 ± 22.36	
A200	****		170.70 ± 24.28		145.07 ± 26.68	SNOTEL	151.58 ± 14.09	SNOTEL	158.19 ± 23.50	
F050	153.78 ± 26.87		160.15 ± 25.99		151.90 ± 22.50	SNOTEL	152.63 ± 25.69	SNOTEL	158.06 ± 22.54	
F100	162.25 ± 29.76		159.67 ± 25.59		147.30 ± 20.43	SNOTEL	152.38 ± 14.50	SNOTEL	155.61 ± 22.20	
F200	****		167.61 ± 28.92		145.04 ± 24.65	SNOTEL	152.15 ± 14.61		155.90 ± 23.60	
T050	150.61 ± 38.44		158.62 ± 29.22		148.97 ± 25.68	SNOTEL	150.47 ± 27.91	SNOTEL	160.37 ± 24.55	
T100	165.59 ± 38.89		161.75 ± 29.18		144.04 ± 24.14	SNOTEL	153.12 ± 16.76	SNOTEL	158.89 ± 24.73	
T200	****		179.17 ± 23.75		142.48 ± 30.98	SNOTEL	150.08 ± 15.65	SNOTEL	160.55 ± 25.62	

Table F-15 snow depth field measurement analysis of concentric boxes versus snow depth of Joe Wright SNOTEL for May/02/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure F-14 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for May/02/2009 (Refer to Table A-1 for clarification of abbreviations)

Figure F-15 snow depth field measurement analysis of Concentric boxes versus snow depth of Joe Wright SNOTEL for May/02/2009 (Refer to Table A-1 for clarification of abbreviations)

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	173.23 ± 2.88		173.23 ± 2.88		173.23 ± 2.88		173.23 ± 2.88		173.23 ± 2.88	
C050 ^b	153.76 ± 23.85	SNOTEL	152.00 ± 15.41	SNOTEL	159.60 ± 27.54		133.24 ± 36.07	SNOTEL	145.38 ± 23.31	SNOTEL
C100	151.45 ± 22.72	SNOTEL	150.45 ± 18.00	SNOTEL	164.10 ± 23.83		141.73 ± 30.83	SNOTEL	145.55 ± 27.83	SNOTEL
C200	147.67 ± 22.49	SNOTEL	160.33 ± 14.11		168.40 ± 26.18		135.67 ± 23.52	SNOTEL	140.83 ± 29.01	SNOTEL
A050	160.58 ± 18.69		152.25 ± 14.57	SNOTEL	158.59 ± 27.91		135.60 ± 25.72	SNOTEL	139.96 ± 20.71	SNOTEL
A100	162.93 ± 19.85		149.27 ± 17.14	SNOTEL	161.96 ± 23.16		140.75 ± 19.74	SNOTEL	140.71 ± 23.33	SNOTEL
A200	163.83 ± 14.41		155.90 ± 13.05	SNOTEL	164.60 ± 26.02		139.03 ± 21.72	SNOTEL	139.67 ± 22.74	SNOTEL
F050	160.24 ± 17.38		150.10 ± 15.23	SNOTEL	156.45 ± 25.36		135.90 ± 26.97	SNOTEL	140.36 ± 21.53	SNOTEL
F100	161.91 ± 17.99		147.39 ± 18.11	SNOTEL	157.90 ± 20.76		140.15 ± 24.89	SNOTEL	142.57 ± 25.46	SNOTEL
F200	161.50 ± 15.28		152.06 ± 11.64	SNOTEL	159.13 ± 22.73		138.11 ± 22.21	SNOTEL	142.33 ± 25.02	SNOTEL
T050	158.65 ± 21.99		154.32 ± 15.01	SNOTEL	161.07 ± 30.86		134.51 ± 27.99	SNOTEL	141.36 ± 20.72	SNOTEL
T100	160.12 ± 22.91		151.55 ± 17.84	SNOTEL	166.73 ± 26.39		141.67 ± 19.11	SNOTEL	140.45 ± 22.57	SNOTEL
T200	160.78 ± 18.13		161.22 ± 12.61		171.33 ± 30.65		138.83 ± 22.50	SNOTEL	137.39 ± 22.43	SNOTEL

Table F-16 a snow depth of field measurement analyzing of transects versus snow depth of Joe Wright SNOTEL station for May/01/2010 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	173.23 ± 2.88		173.23 ± 2.88		173.23 ± 2.88		173.23 ± 2.88		173.23 ± 2.88	
C050	145.55 ± 36.17	SNOTEL	151.00 ± 24.42	SNOTEL	148.25 ± 27.87	SNOTEL	149.47 ± 28.06		164.29 ± 35.04	
C100	147.55 ± 41.17		164.71 ± 21.94		145.73 ± 28.30	SNOTEL	154.86 ± 32.04		166.33 ± 39.32	
C200	151.00 ± 46.78		164.67 ± 32.08		142.33 ± 29.60	SNOTEL	155.40 ± 38.22		157.00 ± 36.15	
A050	143.85 ± 27.18	SNOTEL	152.59 ± 11.80	SNOTEL	151.71 ± 18.62	SNOTEL	150.65 ± 29.50		165.41 ± 23.95	
A100	143.45 ± 30.65	SNOTEL	155.03 ± 8.80	SNOTEL	149.47 ± 17.10	SNOTEL	157.31 ± 35.74		164.71 ± 27.66	
A200	148.30 ± 37.00		152.67 ± 14.46		150.17 ± 15.95	SNOTEL	154.84 ± 43.44		160.37 ± 18.63	
F050	145.03 ± 29.18	SNOTEL	151.18 ± 15.28	SNOTEL	150.00 ± 16.89	SNOTEL	150.35 ± 28.15		163.63 ± 24.58	
F100	142.82 ± 33.64	SNOTEL	155.00 ± 6.27	SNOTEL	147.64 ± 14.37	SNOTEL	156.29 ± 32.99		161.41 ± 28.14	
F200	150.45 ± 43.84		157.67 ± 7.31		148.50 ± 12.44	SNOTEL	155.67 ± 40.33		156.22 ± 19.11	
T050	143.23 ± 30.32	SNOTEL	153.47 ± 13.52	SNOTEL	152.27 ± 24.56	SNOTEL	150.55 ± 30.65		166.82 ± 26.76	
T100	145.46 ± 35.70		158.29 ± 16.99		150.06 ± 25.17	SNOTEL	157.52 ± 37.44		168.56 ± 29.86	
T200	147.06 ± 37.78		151.67 ± 26.46	SNOTEL	149.22 ± 26.99	SNOTEL	154.20 ± 45.25		163.39 ± 22.22	

Table F-16 b snow depth of field measurement analyzing of transects versus snow depth of Joe

 Wright SNOTEL station for May/01/2010 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure F-16 snow depth field measurement of transects versus snow depth of Joe Wright SNOTEL station for May/01/2010 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m	600*600m		800*800m		
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	173.23 ± 2.88		173.23 ± 2.88		173.23 ± 2.88		173.23 ± 2.88		173.23 ± 2.88	
C050 ^b	159.14 ± 29.80		150.03 ± 36.75	SNOTEL	147.27 ± 30.41	SNOTEL	145.75 ± 28.79	SNOTEL	149.94 ± 28.88	SNOTEL
C100	176.50 ± 28.87		158.87 ± 35.12		149.88 ± 31.75	SNOTEL	148.11 ± 28.13	SNOTEL	152.34 ± 29.26	SNOTEL
C200	-		147.29 ± 39.54	SNOTEL	147.06 ± 34.84	SNOTEL	145.79 ± 29.07	SNOTEL	151.31 ± 29.95	SNOTEL
A050	146.11 ± 27.35		146.44 ± 28.26	SNOTEL	145.59 ± 26.25	SNOTEL	146.48 ± 24.54	SNOTEL	150.78 ± 23.80	SNOTEL
A100	154.90 ± 32.96		148.05 ± 27.64	SNOTEL	146.39 ± 25.13	SNOTEL	146.45 ± 23.61	SNOTEL	151.93 ± 23.77	SNOTEL
A200	-		139.60 ± 31.87	SNOTEL	145.91 ± 28.90	SNOTEL	146.18 ± 26.27	SNOTEL	152.71 ± 24.17	SNOTEL
F050	143.72 ± 29.93	SNOTEL	146.81 ± 30.46		144.75 ± 26.52	SNOTEL	145.54 ± 24.44	SNOTEL	150.02 ± 23.58	SNOTEL
F100	151.17 ± 37.72		147.82 ± 31.30	SNOTEL	145.22 ± 26.23	SNOTEL	145.51 ± 24.22	SNOTEL	150.69 ± 23.84	SNOTEL
F200	-		141.05 ± 36.12	SNOTEL	145.63 ± 29.43	SNOTEL	145.79 ± 26.13	SNOTEL	151.67 ± 24.03	SNOTEL
Т050	152.86 ± 29.63		147.28 ± 29.97	SNOTEL	146.98 ± 28.03	SNOTEL	147.17 ± 26.32	SNOTEL	151.27 ± 26.14	SNOTEL
T100	165.83 ± 34.06		151.89 ± 29.39		148.72 ± 27.95	SNOTEL	147.94 ± 25.80	SNOTEL	153.31 ± 26.46	SNOTEL
T200	-		140.71 ± 32.41	SNOTEL	146.58 ± 31.97	SNOTEL	146.44 ± 28.52	SNOTEL	153.27 ± 27.27	SNOTEL

Table F-17 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for May/01/2010 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	0-200m	200-400m		400-600m		600-800m	600-800m			
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	173.23 ± 2.88		173.23 ± 2.88		173.23 ± 2.88		173.23 ± 2.88		173.23 ± 2.88	
C050 ^b	159.14 ± 29.80		147.14 ± 38.87	SNOTEL	145.11 ± 24.67	SNOTEL	143.78 ± 26.71	SNOTEL	156.39 ± 28.00	SNOTEL
C100	176.50 ± 28.87		152.45 ± 36.15		142.39 ± 27.41	SNOTEL	145.57 ± 22.39	SNOTEL	157.86 ± 30.11	
C200	****		144.40 ± 46.78		146.89 ± 33.21	SNOTEL	144.08 ± 20.35	SNOTEL	157.04 ± 30.31	
A050	146.11 ± 27.35		146.55 ± 29.18	SNOTEL	144.92 ± 24.94	SNOTEL	147.64 ± 22.34	SNOTEL	157.41 ± 21.10	
A100	154.90 ± 32.96		145.56 ± 26.80	SNOTEL	145.00 ± 23.56	SNOTEL	146.53 ± 21.81	SNOTEL	159.07 ± 22.28	
A200	****		142.84 ± 34.80		150.82 ± 27.25		146.53 ± 23.54	SNOTEL	159.47 ± 20.08	
F050	143.72 ± 29.93	SNOTEL	147.79 ± 31.26	SNOTEL	143.14 ± 23.28	SNOTEL	146.57 ± 21.67	SNOTEL	156.91 ± 20.50	SNOTEL
F100	151.17 ± 37.72		146.61 ± 30.64		143.06 ± 21.84	SNOTEL	145.91 ± 21.58	SNOTEL	157.43 ± 21.80	
F200	****		144.87 ± 35.87		149.18 ± 24.76	SNOTEL	146.00 ± 22.24	SNOTEL	157.78 ± 20.36	
T050	152.86 ± 29.63		145.50 ± 30.54	SNOTEL	146.76 ± 26.83	SNOTEL	147.42 ± 24.20	SNOTEL	157.57 ± 24.74	
T100	165.83 ± 34.06		146.82 ± 27.49		146.07 ± 27.26	SNOTEL	146.83 ± 22.91	SNOTEL	160.30 ± 25.97	
T200	****		141.33 ± 39.17		151.15 ± 32.78		146.25 ± 24.57	SNOTEL	160.36 ± 24.43	

Table F-18 snow depth field measurement analysis of concentric boxes versus snow depth of Joe Wright SNOTEL for May/01/2010 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure F-17 snow depth field measurement analysis of surrounding boxes versus snow depth of Joe Wright SNOTEL for May/01/2010 (Refer to Table A-1 for clarification of abbreviations)

Figure F-18 snow depth field measurement analysis of Concentric boxes versus snow depth of Joe Wright SNOTEL for May/01/2010 (Refer to Table A-1 for clarification of abbreviations)

	April/03/2008		May/01/2008		January/31/2009	
	Mean ± STD (cm) ^a	SID ^b	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
Transect 1	****	****	162.18 ± 20.20		128.44 ± 30.87	
Transect 2	184.86 ± 29.88	T6, T7	155.77 ± 18.21		134.74 ± 14.10	T7, T9
Transect 3	188.61 ± 51.72	T4, T6, T7	170.27 ± 46.70		123.68 ± 27.34	
Transect 4	159.23 ± 27.78	T3	165.56 ± 34.28		125.67 ± 21.00	
Transect 5	170.87 ± 31.18		167.68 ± 36.06		****	****
Transect 6	159.27 ± 23.02	T2, T3	159.83 ± 24.86		****	****
Transect 7	157.11 ± 21.46	T2, T3	152.73 ± 32.29		119.19 ± 31.55	T2, T10
Transect 8	****	****	157.32 ± 26.47		134.16 ± 19.40	T9
Transect 9	****	****	165.77 ± 29.16		118.44 ± 15.74	T2,T8, T10
Transect 10	****	****	167.56 ± 27.92		136.00 ± 29.75	T7, T9
	February/27/2009		May/02/2009		May/01/2010	
	February/27/2009 Mean ± STD (cm)	SID	May/02/2009 Mean ± STD (cm)	SID	May/01/2010 Mean ± STD (cm)	SID
Transect 1	Mean ± STD (cm) 151.49 ± 21.44	SID T4, T9	May/02/2009 Mean ± STD (cm) 162.10 ± 18.06	SID T3, T7	May/01/2010 Mean ± STD (cm) 160.24 ± 17.38	SID T4, T5, T6
Transect 1 Transect 2	February/27/2009 Mean ± STD (cm) 151.49 ± 21.44 138.11 ± 20.86	SID T4, T9	May/02/2009 Mean ± STD (cm) 162.10 ± 18.06 156.87 ± 14.32	SID T3, T7	May/01/2010 Mean ± STD (cm) 160.24 ± 17.38 150.10 ± 15.23	SID T4, T5, T6 T4
Transect 1 Transect 2 Transect 3	February/27/2009 Mean ± STD (cm) 151.49 ± 21.44 138.11 ± 20.86 141.84 ± 30.41	SID T4, T9	May/02/2009 Mean ± STD (cm) 162.10 ± 18.06 156.87 ± 14.32 146.93 ± 22.14	SID T3, T7 T1, T8, T10	May/01/2010 Mean ± STD (cm) 160.24 ± 17.38 150.10 ± 15.23 156.45 ± 25.36	SID T4, T5, T6 T4 T4, T5
Transect 1 Transect 2 Transect 3 Transect 4	February/27/2009 Mean ± STD (cm) 151.49 ± 21.44 138.11 ± 20.86 141.84 ± 30.41 136.81 ± 24.34	SID T4, T9	May/02/2009 Mean ± STD (cm) 162.10 ± 18.06 156.87 ± 14.32 146.93 ± 22.14 154.70 ± 21.57	SID T3, T7 T1, T8, T10	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SID T4, T5, T6 T4 T4, T5 T1, T2, T3, T7, T8, T10
Transect 1 Transect 2 Transect 3 Transect 4 Transect 5	February/27/2009 Mean ± STD (cm) 151.49 ± 21.44 138.11 ± 20.86 141.84 ± 30.41 136.81 ± 24.34 ******	SID T4, T9	May/02/2009 Mean ± STD (cm) 162.10 ± 18.06 156.87 ± 14.32 146.93 ± 22.14 154.70 ± 21.57 156.68 ± 20.92	SID T3, T7 T1, T8, T10	May/01/2010 Mean \pm STD (cm) 160.24 \pm 17.38 150.10 \pm 15.23 156.45 \pm 25.36 135.90 \pm 26.97 140.36 \pm 21.53	SID T4, T5, T6 T4 T4, T5 T1, T2, T3, T7, T8, T10 T1, T3, T10
Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6	February/27/2009 Mean ± STD (cm) 151.49 ± 21.44 138.11 ± 20.86 141.84 ± 30.41 136.81 ± 24.34 ***** 137.25 ± 25.07	SID T4, T9 ***** T9	May/02/2009 Mean ± STD (cm) 162.10 ± 18.06 156.87 ± 14.32 146.93 ± 22.14 154.70 ± 21.57 156.68 ± 20.92 150.68 ± 8.22	SID T3, T7 T1, T8, T10 T8, T10	May/01/2010 Mean \pm STD (cm) 160.24 \pm 17.38 150.10 \pm 15.23 156.45 \pm 25.36 135.90 \pm 26.97 140.36 \pm 21.53 145.03 \pm 29.18	SID T4, T5, T6 T4 T4, T5 T1, T2, T3, T7, T8, T10 T1, T3, T10 T1
Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7	February/27/2009 Mean ± STD (cm) 151.49 ± 21.44 138.11 ± 20.86 141.84 ± 30.41 136.81 ± 24.34 ***** 137.25 ± 25.07 ******	SID T4, T9 ***** T9 *****	May/02/2009 Mean ± STD (cm) 162.10 ± 18.06 156.87 ± 14.32 146.93 ± 22.14 154.70 ± 21.57 156.68 ± 20.92 150.68 ± 8.22 144.77 ± 28.60	SID T3, T7 T1, T8, T10 T8, T10 T1, T8, T10	May/01/2010 Mean \pm STD (cm) 160.24 \pm 17.38 150.10 \pm 15.23 156.45 \pm 25.36 135.90 \pm 26.97 140.36 \pm 21.53 145.03 \pm 29.18 151.18 \pm 15.28	SID T4, T5, T6 T4 T4, T5 T1, T2, T3, T7, T8, T10 T1, T3, T10 T1 T4
Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8	February/27/2009 Mean ± STD (cm) 151.49 ± 21.44 138.11 ± 20.86 141.84 ± 30.41 136.81 ± 24.34 ***** 137.25 ± 25.07 ***** 149.90 ± 17.18	SID T4, T9 ***** T9 ***** T9	May/02/2009 Mean ± STD (cm) 162.10 ± 18.06 156.87 ± 14.32 146.93 ± 22.14 154.70 ± 21.57 156.68 ± 20.92 150.68 ± 8.22 144.77 ± 28.60 165.40 ± 36.78	SID T3, T7 T1, T8, T10 T8, T10 T1, T8, T10 T1, T8, T10 T3, T6, T7, T9	May/01/2010 Mean \pm STD (cm) 160.24 \pm 17.38 150.10 \pm 15.23 156.45 \pm 25.36 135.90 \pm 26.97 140.36 \pm 21.53 145.03 \pm 29.18 151.18 \pm 15.28 150.00 \pm 16.89	SID T4, T5, T6 T4 T4, T5 T1, T2, T3, T7, T8, T10 T1, T3, T10 T1 T4 T4, T10
Transect 1 Transect 2 Transect 3 Transect 4 Transect 5 Transect 6 Transect 7 Transect 8 Transect 9	February/27/2009 Mean ± STD (cm) 151.49 ± 21.44 138.11 ± 20.86 141.84 ± 30.41 136.81 ± 24.34 ***** 137.25 ± 25.07 ***** 149.90 ± 17.18 135.43 ± 16.80	SID T4, T9 ***** T9 ***** T9 T1, T8, T10	May/02/2009 Mean ± STD (cm) 162.10 ± 18.06 156.87 ± 14.32 146.93 ± 22.14 154.70 ± 21.57 156.68 ± 20.92 150.68 ± 8.22 144.77 ± 28.60 165.40 ± 36.78 148.42 ± 20.33	SID T3, T7 T1, T8, T10 T8, T10 T1, T8, T10 T3, T6, T7, T9 T8, T10	May/01/2010 Mean \pm STD (cm) 160.24 \pm 17.38 150.10 \pm 15.23 156.45 \pm 25.36 135.90 \pm 26.97 140.36 \pm 21.53 145.03 \pm 29.18 151.18 \pm 15.28 150.00 \pm 16.89 150.35 \pm 28.15	SID T4, T5, T6 T4 T4, T5 T1, T2, T3, T7, T8, T10 T1, T3, T10 T1 T4 T4, T10

 Table F-19 statistical analyses of transects versus transects of each specific sampling date for

 Joe Wright SNOTEL station in 95 percent confidence level

b Significant difference, blank column mean there is no significant difference

T is transect

	April/03/2008		May/01/2008		January/31/2009	
	Mean ± STD (cm) ^a	SID ^b	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
Box 200	177.62 ± 45.71		185.48 ± 46.05	B800	****	****
Box 400	164.02 ± 27.15		171.99 ± 39.91		131.94 ± 32.00	
Box 600	168.99 ± 37.87		162.79 ± 33.48		127.16 ± 26.25	
Box 800	171.08 ± 34.60		161.03 ± 29.87	B200	125.79 ± 22.01	
Box 1000	****	****	162.54 ± 30.57		127.60 ± 24.93	
	February/27/2009		May/02/2009		May/01/2010	
	February/27/2009 Mean ± STD (cm) ^a	SID ^b	May/02/2009 Mean ± STD (cm)	SID	May/01/2010 Mean ± STD (cm)	SID
Box 200	February/27/2009 Mean ± STD (cm) ^a 111.08 ± 21.15	SID ^b B600, B800, B1000	May/02/2009 Mean ± STD (cm) 153.47 ± 30.03	SID	May/01/2010 Mean ± STD (cm) 143.72 ± 29.93	SID
Box 200 Box 400	February/27/2009 Mean ± STD (cm) ^a 111.08 ± 21.15 129.58 ± 27.10	SID ^b B600, B800, B1000 B1000	May/02/2009 Mean ± STD (cm) 153.47 ± 30.03 158.83 ± 25.82	SID	May/01/2010 Mean ± STD (cm) 143.72 ± 29.93 146.81 ± 30.46	SID
Box 200 Box 400 Box 600	February/27/2009 Mean ± STD (cm) ^a 111.08 ± 21.15 129.58 ± 27.10 141.51 ± 23.26	SID ^b B600, B800, B1000 B1000 B200	May/02/2009 Mean ± STD (cm) 153.47 ± 30.03 158.83 ± 25.82 154.90 ± 24.05	SID	May/01/2010 Mean ± STD (cm) 143.72 ± 29.93 146.81 ± 30.46 144.75 ± 26.52	SID
Box 200 Box 400 Box 600 Box 800	February/27/2009 Mean ± STD (cm) ^a 111.08 ± 21.15 129.58 ± 27.10 141.51 ± 23.26 140.34 ± 21.82	SID ^b B600, B800, B1000 B1000 B200 B200	May/02/2009 Mean ± STD (cm) 153.47 ± 30.03 158.83 ± 25.82 154.90 ± 24.05 153.91 ± 24.70	SID	May/01/2010 Mean ± STD (cm) 143.72 ± 29.93 146.81 ± 30.46 144.75 ± 26.52 145.54 ± 24.44	SID

Table F-20 statistical analyses of surrounding boxes versus surrounding boxes of each specific sampling date for Joe Wright SNOTEL station in 95 percent confidence level

b Significant difference, blank column mean there is no significant difference

B is the surrounding boxes

	April/03/2008		May/01/2008		January/31/2009	
	Mean ± STD (cm) ^a	SID ^b	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
Concentric box 200	177.43 ± 37.73	-	185.48 ± 46.05	B600, B800	****	****
Concentric box 400	159.56 ± 22.01		167.88 ± 38.02		131.94 ± 32.00	
Concentric box 600	174.55 ± 47.09		155.88 ± 26.16		124.69 ± 22.93	
Concentric box 800	174.01 ± 29.67		158.75 ± 24.55		124.46 ± 17.07	
Concentric box 1000	****	****	164.88 ± 31.67		129.94 ± 28.27	
	February/27/2009		May/02/2009		May/01/2010	
	February/27/2009 Mean ± STD (cm) ^a	SID ^b	May/02/2009 Mean ± STD (cm)	SID	May/01/2010 Mean ± STD (cm)	SID
Concentric box 200	February/27/2009 Mean ± STD (cm) ^a 111.08 ± 21.15	SID ^b CB600, CB800, CB1000	May/02/2009 Mean ± STD (cm) 153.78 ± 26.87	SID	May/01/2010 Mean ± STD (cm) 143.72 ± 29.93	SID
Concentric box 200 Concentric box 400	February/27/2009 Mean ± STD (cm) ^a 111.08 ± 21.15 136.30 ± 26.59	SID ^b CB600, CB800, CB1000	May/02/2009 Mean ± STD (cm) 153.78 ± 26.87 157.35 ± 22.79	SID	May/01/2010 Mean ± STD (cm) 143.72 ± 29.93 147.79 ± 31.26	SID
Concentric box 200 Concentric box 400 Concentric box 600	February/27/2009 Mean ± STD (cm) ^a 111.08 ± 21.15 136.30 ± 26.59 147.28 ± 19.05	SID ^b CB600, CB800, CB1000 CB200	May/02/2009 Mean ± STD (cm) 153.78 ± 26.87 157.35 ± 22.79 151.90 ± 22.50	SID	May/01/2010 Mean ± STD (cm) 143.72 ± 29.93 147.79 ± 31.26 143.14 ± 23.28	SID CB800, CB1000
Concentric box 200 Concentric box 400 Concentric box 600 Concentric box 800	February/27/2009 Mean ± STD (cm) ^a 111.08 ± 21.15 136.30 ± 26.59 147.28 ± 19.05 139.22 ± 20.53	SID ^b CB600, CB800, CB1000 CB200 CB200	May/02/2009 Mean ± STD (cm) 153.78 ± 26.87 157.35 ± 22.79 151.90 ± 22.50 152.63 ± 25.69	SID	May/01/2010 Mean ± STD (cm) 143.72 ± 29.93 147.79 ± 31.26 143.14 ± 23.28 152.65 ± 21.55	SID CB800, CB1000 CB600

Table F-21 statistical analyses of concentric boxes versus concentric boxes of each specific sampling date for Joe Wright SNOTEL station in 95 percent confidence level

b Significant difference, blank column mean there is no significant difference

CB is the surrounding boxes

Figure F-19 SD difference between transects and Joe Wright SNOTEL station in each sampling date (F050 minus SNOTEL)

Figure F-20 SD difference between surrounding boxes and Joe Wright SNOTEL station in each sampling date (F050 minus SNOTEL)

Figure F-21 SD difference between concentric boxes and Joe Wright SNOTEL station in each sampling date (F050 minus SNOTEL)

	May/01/2008		Jan/31/209		Feb/272009	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	182.37 ± 8.64		133.10 ± 1.31		152.91 ± 3.93	
10 transects (all)	162.54 ± 30.57	odd, even, thr	127.60 ± 24.93^{d}		142.72 ± 23.56^{g}	
Transects 2, 4, 6, 8, 10 (even)	178.79 ± 43.77	all, thr	132.75 ± 21.71^{e}	odd	142.59 ± 23.32	
Transects 1, 3, 5, 7, 9 (odd)	183.59 ± 51.94	all, thr	$122.44 \pm 26.93^{\rm f}$	even	-	
Transects 1, 5, 10 (thr)	198.62 ± 52.95	all, odd, even	-		146.27 ± 24.73^{h}	
	May/02/2009		May/01/2010			
	May/02/2009 Mean ± STD (cm)	SID	May/01/2010 Mean ± STD (cm)	SID		
SNOTEL	May/02/2009 Mean ± STD (cm) 170.94 ± 2.41	SID odd	May/01/2010 Mean ± STD (cm) 173.23 ± 2.88	SID All, even, odd, thr		
SNOTEL 10 transects (all)	May/02/2009 Mean ± STD (cm) 170.94 ± 2.41 155.56 ± 23.89	SID odd	May/01/2010 Mean ± STD (cm) 173.23 ± 2.88 150.02 ± 23.58	SID All, even, odd, thr SNOTEL		
SNOTEL 10 transects (all) Transects 2, 4 , 6, 8, 10 (even)	May/02/2009 Mean ± STD (cm) 170.94 ± 2.41 155.56 ± 23.89 159.11 ± 24.56	SID odd odd	May/01/2010 Mean ± STD (cm) 173.23 ± 2.88 150.02 ± 23.58 148.37 ± 24.33	SID All, even, odd, thr SNOTEL SNOTEL		
SNOTEL 10 transects (all) Transects 2, 4 , 6, 8, 10 (even) Transects 1, 3, 5, 7, 9 (odd)	May/02/2009 Mean ± STD (cm) 170.94 ± 2.41 155.56 ± 23.89 159.11 ± 24.56 151.94 ± 22.75	SID odd odd SNOTEL, thr, even	May/01/2010 Mean ± STD (cm) 173.23 ± 2.88 150.02 ± 23.58 148.37 ± 24.33 151.76 ± 22.76	SID All, even, odd, thr SNOTEL SNOTEL SNOTEL		

Table F-22 statistical analyses of SD average of 3, 5, and 10 transects versus SD of Joe Wright SNOTEL station in 95 percent confidence level

a Values represent mean \pm Standard Deviation

b Refer to Table A-1 for clarification of abbreviations

c Significant difference, blank column means there is no significant difference

d transects 1, 2, 3, 4, 7, 8, 9, 10

e transects 2, 4, 8, and 10

f transects 1, 3, 7, and 9

g transects 1, 2, 3, 4, 6, 8, 9, and 10

h transect 1, 6, and 10

Figure F-22 SD average of 3, 5, and 10 transects versus SD of Joe Wright SNOTEL station (refer to column 1 of Table F-22 for definition)

TableF-23	statistical	analyses	of	inter	and	intra	annual	for	sampling	dates	of	Joe	Wright
SNOTEL in	95 percent	confidence	ce le	evel									

	04/03/2008 versus 5/1/2008	
	Mean ± STD (cm) ^a	SID ^c
4/3/2008	171.10 ± 34.59	5/1/2008
5/1/2008	162.10 ± 33.39	4/3/2008
	1/312009, and 2/27/2009, versus 5/2/	2009
	Mean ± STD (cm) ^a	SID ^c
1/31/2009	128.80 ± 23.73	2/27/2009, 5/2/2009
2/27/2009	143.48 ± 23.32	1/31/2009, 5/2/2009
5/2/2009	157.57 ± 24.76	1/31/2009, 2/27/2009
	5/1/2008, and 5/2/2009, versus 5/1/2	010
	Mean ± STD (cm) ^a	SID ^c
5/1/2008	162.54 ± 30.57	5/2/2009, 5/1/2010
5/2/2009	155.56 ± 23.89	5/1/2008, 5/1/2010
5/1/2010	150.02 ± 23.58	5/1/2008, 5/2/2009

b Refer to Table A-1 for clarification of abbreviations

Figure F-23 frequency of the SD difference between field sampling and SD of the Joe Wright SNOTEL station for each sampling date

Appendix G: Lizard Head SNOTEL station statistical analyses results

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	164.08 ± 1.78		164.08 ± 1.78		164.08 ± 1.78		164.08 ± 1.78		164.08 ± 1.78	
C050 ^b	142.57 ± 33.56		157.38 ± 27.56		161.45 ± 22.42		159.02 ± 21.48		159.89 ± 22.01	
C100	161.67 ± 43.62		162.71 ± 24.40		163.92 ± 20.75		161.87 ± 20.54		160.85 ± 20.97	
C200	****		159.71 ± 25.82		160.80 ± 19.62		158.48 ± 20.57		159.38 ± 22.23	
A050	140.40 ± 29.63		155.45 ± 24.27		159.98 ± 20.46		157.90 ± 19.99		158.80 ± 20.15	
A100	158.27 ± 38.80		159.49 ± 20.54		161.78 ± 18.90		160.05 ± 19.36		159.48 ± 19.18	
A200	****		154.86 ± 19.75		159.12 ± 16.01		157.05 ± 18.22		158.95 ± 20.27	
F050	138.67 ± 30.24		156.36 ± 24.55		160.68 ± 20.46		158.16 ± 20.18		159.15 ± 20.34	
F100	160.22 ± 37.92		161.50 ± 21.09		163.22 ± 18.67		160.84 ± 19.40		160.06 ± 19.28	
F200	****		157.19 ± 22.54		160.88 ± 16.80		158.23 ± 19.03		159.89 ± 21.01	
P050	142.86 ± 31.44		155.18 ± 25.76		159.77 ± 21.38		158.02 ± 20.52		158.82 ± 21.01	
P100	157.44 ± 41.48		158.55 ± 21.47		161.05 ± 19.69		159.88 ± 19.76		159.35 ± 20.24	
P200	****		154.14 ± 19.17		157.92 ± 16.30		156.35 ± 18.14		158.16 ± 20.81	

Table G-1 snow depth field measurement analysis of surrounding boxes versus snow depth of

 Lizard Head SNOTEL for April/05/2008 in 95 percent confidence limit

a Values represent mean ± Standard Deviation

b Refer to Table A-1 for clarification of abbreviations

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	164.08 ± 1.78		164.08 ± 1.78		164.08 ± 1.78		164.08 ± 1.78		164.08 ± 1.78	
C050 ^b	142.57 ± 33.56		162.09 ± 24.39		164.26 ± 17.88		154.22 ± 18.86		162.07 ± 23.40	
C100	161.67 ± 43.62		163.00 ± 19.82		164.65 ± 18.75		157.67 ± 20.00		158.39 ± 22.25	
C200	****		163.83 ± 25.65		161.38 ± 16.58		153.33 ± 22.87		161.00 ± 25.60	
A050	140.40 ± 29.63		160.24 ± 20.86		163.10 ± 16.97		153.81 ± 18.63		161.05 ± 20.61	
A100	158.27 ± 38.80		159.82 ± 15.71		163.17 ± 18.16		156.51 ± 20.37		158.10 ± 19.11	
A200	****		158.70 ± 18.55		161.42 ± 13.95		152.44 ± 22.78		162.40 ± 23.78	
F050	138.67 ± 30.24		161.98 ± 20.12		163.66 ± 16.76		153.19 ± 18.91		161.64 ± 20.76	
F100	160.22 ± 37.92		161.85 ± 17.02		164.26 ± 17.45		155.94 ± 20.50		158.22 ± 19.30	
F200	****		161.39 ± 21.49		162.87 ± 13.43		152.33 ± 23.26		162.90 ± 24.56	
P050	142.86 ± 31.44		159.11 ± 23.15		162.94 ± 17.37		154.56 ± 18.51		160.80 ± 22.33	
P100	157.44 ± 41.48		158.85 ± 15.95		162.58 ± 18.86		157.46 ± 20.24		158.09 ± 21.74	
P200	****		157.72 ± 18.26		159.95 ± 14.97		152.85 ± 22.38		161.44 ± 25.26	

Table G-2 snow depth field measurement analysis of concentric boxes versus snow depth of

 Lizard Head SNOTEL for April/05/2008 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure G-1 snow depth field measurement analysis of surrounding boxes versus snow depth of Lizard Head SNOTEL for April/05/2008 (Refer to Table A-1 for clarification of abbreviations)

Figure G-2 snow depth field measurement analysis of Concentric boxes versus snow depth of Lizard Head SNOTEL for April/05/2008 (Refer to Table A-1 for clarification of abbreviations)

Table G-3 statistical analyses of surrounding boxes versus surrounding boxes of April/05/2008 for Lizard Head SNOTEL station in 95 percent confidence level

	Mean ± STD (cm) ^a	SID ^b
200*200m	140.17 ± 32.84	B600, B800, b1000
400*400m	156.36 ± 24.55	
600*600m	160.68 ± 20.46	B200
800*800m	158.16 ± 20.18	B200
1000*1000m	159.15 ± 20.34	B200

a Values represent mean \pm Standard Deviation

b Significant difference, blank column mean there is no significant difference

B is surrounding box

Table G-4 statistical analyses of concentric boxes versus concentric boxes of April/05/2008 for Lizard Head SNOTEL station in 95 percent confidence level

Mean ± STD (cm)	SID ^b
0-200m 140.17 ± 32.84	CB400, CB600, CB1000
$200\text{-}400m \qquad \qquad 161.98 \pm 20.12$	CB200
$400\text{-}600m \qquad \qquad 163.66 \pm 16.76$	CB200, CB800
600-800m 153.19 ± 18.91	CB600
$800\text{-}1000m \qquad \qquad 161.64 \pm 20.76$	CB200

a Values represent mean ± Standard Deviation

b Significant difference, blank column mean there is no significant difference

CB is concentric box

Figure G-3 SD difference between surrounding boxes and Lizard Head SNOTEL station (F050 minus SNOTEL)

Figure G-4 SD difference between surrounding boxes and Lizard Head SNOTEL station (F050 minus SNOTEL)

Figure G-5 frequency of the SD difference between field sampling and SD of the Lizard Head SNOTEL station for March/17/2009

Appendix H: Niwot SNOTEL station statistical analyses results

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm) SID (cm) Mean ± STD (cm) SID		Mean ± STD (cm)	SID	Mean ± STD (cm)	SID		
SNOTEL	125.73 ± 2.74		125.73 ± 2.74		125.73 ± 2.74		125.73 ± 2.74		125.73 ± 2.74	
С050 ^ь	114.00 ± 21.63		121.72 ± 15.90		122.35 ± 19.20		108.00 ± 32.93		125.16 ± 35.41	
C100	113.00 ± 14.12		125.11 ± 17.90		121.50 ± 24.78		103.90 ± 33.75		128.80 ± 30.17	
C200	114.33 ± 11.06		121.20 ± 19.07		125.33 ± 27.38		106.67 ± 47.11		122.00 ± 51.33	
F050	114.98 ± 17.95		121.68 ± 10.25		121.47 ± 12.87		109.37 ± 28.44		119.11 ± 34.02	
F100	117.40 ± 19.10		122.93 ± 11.55		119.92 ± 15.69		107.80 ± 30.56		121.67 ± 27.51	
F200	118.00 ± 18.23		121.67 ± 10.36		120.39 ± 17.71		102.39 ± 42.00		112.50 ± 45.42	
	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	125.73 ± 2.74	-	125.73 ± 2.74	-	125.73 ± 2.74		125.73 ± 2.74		125.73 ± 2.74	-
С050 ^ь	123.11 ± 36.90		125.44 ± 40.52		112.44 ± 22.41		121.33 ± 9.74		118.75 ± 12.21	
C100	110.80 ± 40.61		137.33 ± 40.45		106.33 ± 27.89	SNOTEL	123.56 ± 12.63		117.83 ± 14.86	
C200	110.00 ± 41.47		142.60 ± 44.68		103.40 ± 13.54	SNOTEL	121.20 ± 7.69		124.00 ± 20.30	
F050	118.26 ± 34.74		119.28 ± 27.63		111.65 ± 17.10		119.94 ± 6.83		120.03 ± 9.69	
F100	111.97 ± 43.68		131.96 ± 24.82		108.59 ± 21.56		120.89 ± 8.48		120.22 ± 9.43	
F200	113.94 ± 49.23		125.93 ± 24.77		110.87 ± 15.29		121.13 ± 5.34		121.11 ± 14.24	

Table H-1 snow depth of field measurement analyzing of transects versus snow depth of NiwotSNOTEL station for April/07/2008 in 95 percent confidence limit

a Values represent mean ± Standard Deviation

b Refer to Table A-1 for clarification of abbreviations

Figure H-1 snow depth field measurement of transects versus snow depth of Niwot SNOTEL station for April/07/2008 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	125.73 ± 2.74		125.73 ± 2.74		125.73 ± 2.74		125.73 ± 2.74		125.73 ± 2.74	
C050 ^b	129.25 ± 17.47		123.47 ± 25.41		121.76 ± 27.29		121.71 ± 25.75		119.22 ± 27.27	
C100	136.50 ± 17.82		121.06 ± 26.01		120.34 ± 30.79		120.31 ± 26.79		118.61 ± 28.63	
C200	****		110.00 ± 18.75		121.94 ± 26.30		120.22 ± 29.47		118.57 ± 32.35	
F050	125.67 ± 17.46		122.26 ± 23.72		120.16 ± 21.80		119.40 ± 20.23		117.44 ± 22.64	
F100	137.00 ± 14.27		120.27 ± 22.08		119.82 ± 22.78		119.50 ± 20.42		118.09 ± 24.31	
F200	****		108.08 ± 20.06		119.07 ± 21.30		117.78 ± 22.71		116.31 ± 28.13	

Table H-2 snow depth field measurement analysis of surrounding boxes versus snow depth of Niwot SNOTEL for April/07/2008 in 95 percent confidence limit

 Table H-3 snow depth field measurement analysis of concentric boxes versus snow depth of Niwot SNOTEL for April/07/2008 in 95 percent confidence limit

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	125.73 ± 2.74		125.73 ± 2.74		125.73 ± 2.74		125.73 ± 2.74		125.73 ± 2.74	
C050 ^b	129.25 ± 17.47		121.54 ± 27.61		120.36 ± 28.99		121.64 ± 23.90		112.78 ± 30.21	
C100	136.50 ± 17.82		115.92 ± 26.84		119.74 ± 35.02		120.26 ± 21.08		114.86 ± 32.54	
C200	****		103.83 ± 13.14		131.50 ± 28.38		118.00 ± 34.02		116.05 ± 36.91	
F050	125.67 ± 17.46		121.13 ± 25.70		118.43 ± 20.23		118.45 ± 18.19		112.34 ± 27.52	
F100	137.00 ± 14.27		114.69 ± 21.77		119.44 ± 23.95		119.07 ± 17.31		114.99 ± 31.47	
F200	****		101.67 ± 18.13		127.87 ± 18.72		116.12 ± 25.12		114.08 ± 35.36	

b Refer to Table A-1 for clarification of abbreviations

Figure H-2 snow depth field measurement analysis of surrounding boxes versus snow depth of Niwot SNOTEL for April/07/2008 (Refer to Table A-1 for clarification of abbreviations)

Figure H-3 snow depth field measurement analysis of Concentric boxes versus snow depth of Niwot SNOTEL for April/07/2008 (Refer to Table A-1 for clarification of abbreviations)

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	73.91 ± 1.87		73.91 ± 1.87		73.91 ± 1.87		73.91 ± 1.87		73.91 ± 1.87	
C050 ^b	80.38 ± 35.69		67.95 ± 25.00		87.50 ± 14.56	SNOTEL	68.00 ± 26.47		74.71 ± 31.15	
C100	77.09 ± 47.04		67.64 ± 26.12		85.82 ± 14.16	SNOTEL	61.00 ± 19.14		76.82 ± 26.70	
C200	64.17 ± 30.22		69.17 ± 29.22		79.33 ± 16.13		54.67 ± 21.16		76.83 ± 22.48	
F050	72.89 ± 24.13		69.48 ± 16.20		88.36 ± 11.85	SNOTEL	75.22 ± 22.88		77.19 ± 29.15	
F100	68.12 ± 28.91		70.24 ± 19.69		86.97 ± 13.67	SNOTEL	71.79 ± 24.05		81.64 ± 26.27	
F200	65.45 ± 23.42		64.94 ± 23.37		81.67 ± 14.67		66.17 ± 31.98		85.95 ± 15.62	
	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	73.91 ± 1.87	-	73.91 ± 1.87	-	73.91 ± 1.87		73.91 ± 1.87		73.91 ± 1.87	
C050	63.19 ± 37.32		82.42 ± 21.05		78.86 ± 18.69		89.19 ± 21.40	SNOTEL	86.00 ± 24.04	
C100	71.27 ± 38.99		88.60 ± 24.31		74.64 ± 22.41		92.91 ± 16.07	SNOTEL	88.45 ± 31.93	
C200	69.33 ± 27.97		99.80 ± 18.73	SNOTEL	74.00 ± 24.57		93.67 ± 20.00	SNOTEL	86.33 ± 43.55	
F050	66.92 ± 34.71		91.72 ± 19.47	SNOTEL	82.40 ± 18.25		87.41 ± 21.67		86.37 ± 19.24	
F100	76.55 ± 35.63		95.07 ± 19.98	SNOTEL	79.91 ± 23.93		90.09 ± 13.08	SNOTEL	84.54 ± 24.02	

Table H-4 snow depth of field measurement analyzing of transects versus snow depth of Niwot SNOTEL station for May/05/2008 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure H-4 snow depth field measurement of transects versus snow depth of Niwot SNOTEL station for May/05/2008 (Refer to Table A-1 for clarification of abbreviations)

	200*200m 400*400m		400*400m		600*600m		800*800m			
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	73.91 ± 1.87		73.91 ± 1.87		73.91 ± 1.87		73.91 ± 1.87		73.91 ± 1.87	
C050 ^b	78.63 ± 15.68		82.94 ± 24.65		81.36 ± 23.20		83.76 ± 21.29		77.82 ± 27.29	
C100	78.25 ± 20.79		90.13 ± 22.02	SNOTEL	85.50 ± 19.34		86.36 ± 19.90		78.33 ± 28.95	
C200	****		88.13 ± 13.74		82.78 ± 18.38		87.09 ± 18.66		76.34 ± 27.63	
F050	84.13 ± 12.72		85.95 ± 20.63		84.04 ± 20.69		85.41 ± 18.79		79.72 ± 23.57	
F100	80.75 ± 17.36		92.00 ± 20.00	SNOTEL	88.41 ± 15.76	SNOTEL	88.68 ± 17.03	SNOTEL	80.36 ± 24.33	
F200	****		90.21 ± 8.45		88.67 ± 10.06		92.18 ± 12.69	SNOTEL	79.33 ± 25.15	

Table H-5 snow depth field measurement analysis of surrounding boxes versus snow depth ofNiwot SNOTEL for May/05/2008 in 95 percent confidence limit

Table H-6 snow depth field measurement analysis of concentric boxes versus snow depth of Niwot SNOTEL for May/05/2008 in 95 percent confidence limit

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	73.91 ± 1.87		73.91 ± 1.87		73.91 ± 1.87		73.91 ± 1.87		73.91 ± 1.87	
C050 ^b	78.63 ± 15.68		84.38 ± 27.13		80.10 ± 22.20		86.89 ± 18.25	SNOTEL	68.63 ± 32.65	
C100	78.25 ± 20.79		94.08 ± 21.79	SNOTEL	81.80 ± 16.55		87.46 ± 20.91	SNOTEL	66.91 ± 35.53	
C200	****		86.33 ± 13.26		78.50 ± 21.10		92.64 ± 18.17	SNOTEL	63.59 ± 31.24	
F050	84.13 ± 12.72		86.56 ± 22.87		82.52 ± 20.87		87.21 ± 15.98	SNOTEL	70.91 ± 27.35	
F100	80.75 ± 17.36		95.75 ± 20.05	SNOTEL	85.53 ± 11.05		89.04 ± 18.82	SNOTEL	68.52 ± 28.17	
F200	****		90.50 ± 8.83		87.44 ± 11.48		96.69 ± 14.58	SNOTEL	64.11 ± 27.85	

b Refer to Table A-1 for clarification of abbreviations

Figure H-5 snow depth field measurement analysis of surrounding boxes versus snow depth of Niwot SNOTEL for May/05/2008 (Refer to Table A-1 for clarification of abbreviations)

Figure H-6 snow depth field measurement analysis of Concentric boxes versus snow depth of Niwot SNOTEL for May/05/2008 (Refer to Table A-1 for clarification of abbreviations)

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	70.87 ± 0.80		70.87 ± 0.80		****		****		70.87 ± 0.80	
C050 ^b	52.39 ± 24.38		60.24 ± 13.77	SNOTEL	****		****		41.38 ± 22.94	SNOTEL
C100	48.70 ± 31.87	SNOTEL	58.73 ± 10.57	SNOTEL	****		****		44.09 ± 18.38	SNOTEL
C200	43.33 ± 34.43	SNOTEL	57.00 ± 9.63	SNOTEL	****		****		34.50 ± 19.50	SNOTEL
F050	56.28 ± 22.14		63.81 ± 7.79		****		****		47.19 ± 21.03	SNOTEL
F100	50.90 ± 22.03		62.21 ± 6.45	SNOTEL	****		****		48.45 ± 17.51	SNOTEL
F200	49.83 ± 25.53		60.67 ± 5.45	SNOTEL	****		****		42.33 ± 22.28	SNOTEL
	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Transect 6 Mean ± STD (cm) ^a	SID ^c	Transect 7 Mean ± STD (cm)	SID	Transect 8 Mean ± STD (cm)	SID	Transect 9 Mean ± STD (cm)	SID	Transect 10 Mean ± STD (cm)	SID
SNOTEL	Mean ± STD (cm) ^a 70.87 ± 0.80	SID ^c	Transect 7 Mean ± STD (cm) 70.87 ± 0.80	SID	Transect 8 Mean ± STD (cm) 70.87 ± 0.80	SID	Transect 9 Mean ± STD (cm) 70.87 ± 0.80	SID	Transect 10 Mean ± STD (cm) *****	SID
SNOTEL C050 ^b	Mean ± STD (cm) ^a 70.87 ± 0.80 58.90 ± 31.17	SID ^c SNOTEL, C200	Mean ± STD (cm) 70.87 ± 0.80 66.76 ± 25.43	SID	Mean ± STD (cm) 70.87 ± 0.80 54.67 ± 19.47	SID SNOTEL	Mean ± STD (cm) 70.87 ± 0.80 61.95 ± 16.71	SID	Transect 10 Mean ± STD (cm) ****** *****	SID
SNOTEL C050 ^b C100	Mean \pm STD (cm) ^a 70.87 \pm 0.80 58.90 \pm 31.17 74.36 \pm 25.77	SID ^e SNOTEL, C200	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SID	Mean ± STD (cm) 70.87 ± 0.80 54.67 ± 19.47 60.18 ± 10.25	SID SNOTEL	Transect 9 Mean ± STD (cm) 70.87 ± 0.80 61.95 ± 16.71 61.27 ± 20.75	SID	Transect 10 <u>Mean ± STD</u> (cm) ***** ***** *****	SID
SNOTEL C050 ^b C100 C200	Transect 6 Mean \pm STD (cm) ^a 70.87 \pm 0.80 58.90 \pm 31.17 74.36 \pm 25.77 86.50 \pm 30.00	SID ^e SNOTEL, C200	$\begin{tabular}{ c c c c } \hline Transect 7 \\ \hline Mean \pm STD \\ \hline (cm) \\ \hline 70.87 \pm 0.80 \\ 66.76 \pm 25.43 \\ \hline 66.73 \pm 33.54 \\ \hline 55.50 \pm 27.76 \\ \hline \end{tabular}$	SID	$\begin{tabular}{ c c c c c } \hline Transect 8 \\ \hline Mean \pm STD \\ \hline (cm) \\ \hline 70.87 \pm 0.80 \\ 54.67 \pm 19.47 \\ \hline 60.18 \pm 10.25 \\ \hline 60.33 \pm 12.32 \\ \hline \end{tabular}$	SID SNOTEL	Mean \pm STD (cm) 70.87 ± 0.80 61.95 ± 16.71 61.27 ± 20.75 57.17 ± 19.03	SID	Transect 10 Mean ± STD (cm) ***** ***** *****	SID
SNOTEL C050 ^b C100 C200 F050	Transect 6 Mean \pm STD (cm) ^a 70.87 \pm 0.80 58.90 \pm 31.17 74.36 \pm 25.77 86.50 \pm 30.00 47.29 \pm 22.74	SID ^e SNOTEL, C200 C050 SNOTEL	Mean \pm STD (cm) 70.87 ± 0.80 66.76 ± 25.43 66.73 ± 33.54 55.50 ± 27.76 62.00 ± 28.19	SID	Mean \pm STD (cm) 70.87 \pm 0.80 54.67 \pm 19.47 60.18 \pm 10.25 60.33 \pm 12.32 54.67 \pm 19.47	SID SNOTEL SNOTEL	Transect 9 Mean \pm STD (cm) 70.87 \pm 0.80 61.95 \pm 16.71 61.27 \pm 20.75 57.17 \pm 19.03 58.71 \pm 11.47	SID SNOTEL	Transect 10 <u>Mean ± STD</u> (cm) ***** ***** ***** ***** *****	SID
SNOTEL C050 ^b C100 C200 F050 F100	Transect 6 Mean \pm STD (cm) ^a 70.87 \pm 0.80 58.90 \pm 31.17 74.36 \pm 25.77 86.50 \pm 30.00 47.29 \pm 22.74 61.00 \pm 22.94	SID ^e SNOTEL, C200 C050 SNOTEL	Mean \pm STD (cm) 70.87 \pm 0.80 66.76 \pm 25.43 66.73 \pm 33.54 55.50 \pm 27.76 62.00 \pm 28.19 62.24 \pm 22.92	SID	$\begin{tabular}{ c c c c c } \hline Transect 8 \\ \hline Mean \pm STD \\ \hline (cm) \\ \hline 70.87 \pm 0.80 \\ 54.67 \pm 19.47 \\ \hline 60.18 \pm 10.25 \\ \hline 60.33 \pm 12.32 \\ \hline 54.67 \pm 19.47 \\ \hline 58.97 \pm 9.94 \\ \hline \end{tabular}$	SID SNOTEL SNOTEL	Transect 9 Mean \pm STD (cm) 70.87 \pm 0.80 61.95 \pm 16.71 61.27 \pm 20.75 57.17 \pm 19.03 58.71 \pm 11.47 59.57 \pm 8.02	SID SNOTEL	Transect 10 Mean ± STD (cm) ***** ***** ***** ***** *****	SID

Table H-7 snow depth of field measurement analyzing of transects versus snow depth of Niwot SNOTEL station for March/06/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure H-7 snow depth field measurement of transects versus snow depth of Niwot SNOTEL station for March/06/2009 (Refer to Table A-1 for clarification of abbreviations)

Table H-8 snov	w depth	field	measurement	analysis	of sur	ounding	boxes	versus	snow	depth	of
Niwot SNOTEI	for Ma	rch/06	5/2009 in 95 p	bercent co	nfidenc	ce limit					

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	70.87 ± 0.80		70.87 ± 0.80		70.87 ± 0.80		70.87 ± 0.80		70.87 ± 0.80	
C050 ^b	52.63 ± 15.29	SNOTEL	53.33 ± 18.02	SNOTEL	53.98 ± 21.19	SNOTEL	55.64 ± 20.64	SNOTEL	56.70 ± 23.41	SNOTEL
C100	59.25 ± 14.31	SNOTEL	59.75 ± 14.63		60.58 ± 18.49		59.25 ± 19.66		59.29 ± 24.14	
C200	****		63.17 ± 19.49		58.08 ± 16.18		54.63 ± 18.94	SNOTEL	56.33 ± 26.44	SNOTEL
F050	52.63 ± 5.36	SNOTEL	54.65 ± 13.64	SNOTEL	54.11 ± 14.91	SNOTEL	55.55 ± 15.58	SNOTEL	56.13 ± 17.26	SNOTEL
F100	54.67 ± 6.24	SNOTEL	58.47 ± 7.37	SNOTEL	59.36 ± 10.79		58.07 ± 15.04	SNOTEL	57.71 ± 17.14	
F200	****		60.89 ± 8.70		58.25 ± 9.44		54.24 ± 14.84	SNOTEL	56.81 ± 18.24	

b Refer to Table A-1 for clarification of abbreviations

c Significant difference, blank column means there is no significant difference

 Table H-9 snow depth field measurement analysis of concentric boxes versus snow depth of

 Niwot SNOTEL for March/06/2009 in 95 percent confidence limit

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	70.87 ± 0.80		70.87 ± 0.80		70.87 ± 0.80		70.87 ± 0.80		70.87 ± 0.80	
C050 ^b	52.63 ± 15.29	SNOTEL	53.69 ± 19.71	SNOTEL	54.63 ± 24.33	SNOTEL	57.29 ± 20.16	SNOTEL	58.83 ± 28.28	
C100	59.25 ± 14.31	SNOTEL	60.00 ± 15.76		61.42 ± 22.35		57.92 ± 21.08		59.36 ± 30.76	
C200	****		64.25 ± 22.71		53.00 ± 11.59		51.17 ± 21.49	SNOTEL	58.61 ± 34.51	
F050	52.63 ± 5.36	SNOTEL	55.67 ± 16.39	SNOTEL	53.57 ± 16.36	SNOTEL	56.98 ± 16.25	SNOTEL	57.31 ± 20.33	
F100	54.67 ± 6.24	SNOTEL	60.38 ± 7.50		60.25 ± 13.69		56.78 ± 18.50	SNOTEL	57.10 ± 20.52	
F200	****		62.92 ± 8.86		55.61 ± 10.17		50.22 ± 18.33	SNOTEL	60.24 ± 21.97	

a Values represent mean ± Standard Deviation

b Refer to Table A-1 for clarification of abbreviations

Figure H-8 snow depth field measurement analysis of surrounding boxes versus snow depth of Niwot SNOTEL for March/06/2009 (Refer to Table A-1 for clarification of abbreviations)

Figure H-9 snow depth field measurement analysis of Concentric boxes versus snow depth of Niwot SNOTEL for March/06/2009(Refer to Table A-1 for clarification of abbreviations)

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	84.58 ± 2.09		84.58 ± 2.09		84.58 ± 2.09		84.58 ± 2.09		84.58 ± 2.09	
C050 ^b	85.95 ± 27.68		72.56 ± 20.50		68.90 ± 24.22		78.90 ± 15.10		77.60 ± 30.51	
C100	94.82 ± 21.58		68.67 ± 26.58		72.00 ± 19.25		79.55 ± 17.63		72.18 ± 27.95	
C200	92.00 ± 25.84		66.20 ± 19.58		69.17 ± 24.81		81.33 ± 15.64		79.83 ± 35.34	
A050	85.73 ± 25.26		72.31 ± 17.66		71.76 ± 23.11		81.21 ± 12.51		75.70 ± 24.09	
A100	94.80 ± 21.20		68.82 ± 22.66		73.96 ± 19.42		81.84 ± 13.98		72.96 ± 22.56	
A200	92.53 ± 26.03		68.12 ± 13.65		68.67 ± 21.35		81.80 ± 13.90		75.37 ± 28.84	
F050	85.21 ± 25.92		72.24 ± 17.22		71.60 ± 23.27		80.02 ± 11.37		75.90 ± 24.58	
F100	93.39 ± 21.05		68.52 ± 22.44		74.24 ± 20.30		80.67 ± 13.23		73.06 ± 24.92	
F200	91.61 ± 25.79		68.67 ± 11.43		67.89 ± 20.67		80.61 ± 12.84		74.95 ± 31.97	
T050	86.33 ± 25.95		72.46 ± 19.58		70.97 ± 23.68		81.64 ± 13.29		76.13 ± 26.11	
T100	96.21 ± 21.48		69.07 ± 24.61		73.03 ± 18.86		82.24 ± 13.58		72.61 ± 22.65	
T200	93.28 ± 26.23		66.93 ± 17.99		69.61 ± 22.95		82.84 ± 12.67		77.28 ± 28.94	

Table H-10 a snow depth of field measurement analyzing of transects versus snow depth of Niwot SNOTEL station for April/03/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	84.58 ± 2.09		84.58 ± 2.09		84.58 ± 2.09		84.58 ± 2.09		84.58 ± 2.09	
C050 ^b	60.86 ± 35.01	SNOTEL	78.10 ± 22.27		76.59 ± 10.57	SNOTEL	71.95 ± 21.10		69.38 ± 27.18	
C100	67.36 ± 38.55		66.64 ± 21.04	SNOTEL	80.44 ± 12.10		70.18 ± 21.71		64.00 ± 27.14	SNOTEL
C200	77.83 ± 41.06		63.33 ± 19.12	SNOTEL	80.33 ± 14.21		75.33 ± 20.18		54.17 ± 32.82	SNOTEL
A050	60.84 ± 23.37	SNOTEL	79.09 ± 18.20		78.91 ± 7.03		74.25 ± 15.92		70.74 ± 19.21	
A100	67.33 ± 20.63		75.73 ± 19.53		78.13 ± 8.86		74.04 ± 19.33		66.73 ± 21.22	
A200	62.00 ± 26.09		70.27 ± 24.51		77.27 ± 8.58		79.53 ± 11.97		59.97 ± 26.95	SNOTEL
F050	60.11 ± 22.89	SNOTEL	77.52 ± 16.61		79.24 ± 7.61		73.97 ± 16.72		73.19 ± 20.47	
F100	64.67 ± 21.21		73.30 ± 17.24		79.56 ± 9.98		74.48 ± 20.12		69.46 ± 21.17	
F200	62.00 ± 26.30		67.50 ± 20.03		78.95 ± 10.61		79.22 ± 13.75		64.00 ± 27.05	
T050	61.57 ± 26.62	SNOTEL	80.32 ± 20.99		77.80 ± 7.25		73.76 ± 16.85		67.84 ± 23.19	
T100	70.00 ± 24.99		75.12 ± 23.22		77.48 ± 8.60		72.30 ± 19.02		63.09 ± 24.35	SNOTEL
T200	67.28 ± 32.67		70.72 ± 30.37		76.61 ± 8.28		78.44 ± 12.85		54.00 ± 29.21	SNOTEL

 Table H-10 b
 snow depth of field measurement analyzing of transects versus snow depth of

 Niwot SNOTEL station for April/03/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure H-10 snow depth field measurement of transects versus snow depth of Niwot SNOTEL station for April/03/2009 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID	Mean ± STD (cm)	SID						
SNOTEL	84.58 ± 2.09		84.58 ± 2.09		84.58 ± 2.09		84.58 ± 2.09		84.58 ± 2.09	
C050 ^b	69.25 ± 33.41		78.88 ± 28.80		76.29 ± 24.60		74.10 ± 23.76		74.03 ± 24.97	
C100	66.00 ± 32.95		79.13 ± 27.98		78.38 ± 21.84		73.31 ± 23.39		73.55 ± 25.00	
C200	****		85.00 ± 28.50		82.22 ± 22.94		73.94 ± 24.29		74.08 ± 26.39	
A050	77.83 ± 11.00		77.52 ± 17.77		76.03 ± 18.82		75.02 ± 18.37		75.01 ± 20.26	
A100	73.25 ± 8.37		76.49 ± 14.13		77.89 ± 14.24		75.33 ± 17.20		75.51 ± 20.25	
A200	****		77.45 ± 16.92		76.62 ± 16.66		72.34 ± 18.68		73.64 ± 21.90	
F050	76.92 ± 13.54		77.31 ± 17.87		76.27 ± 18.85		74.62 ± 18.54		74.85 ± 20.27	
F100	72.08 ± 13.07		76.90 ± 14.88		78.28 ± 14.82		75.00 ± 18.42		75.18 ± 20.37	
F200	****		79.42 ± 17.10		78.09 ± 16.88		72.32 ± 19.92		73.62 ± 21.60	
T050	75.88 ± 15.88		78.18 ± 20.83		75.87 ± 20.30		75.12 ± 19.81		74.85 ± 22.04	
T100	72.00 ± 13.40		76.96 ± 17.78		77.66 ± 15.72		74.98 ± 17.88		75.19 ± 21.75	
T200	****		78.00 ± 20.64		77.02 ± 18.64		72.89 ± 19.62		73.81 ± 24.13	

Table H-11 snow depth field measurement analysis of surrounding boxes versus snow depth of Niwot SNOTEL for April/03/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations
	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	84.58 ± 2.09		84.58 ± 2.09		84.58 ± 2.09		84.58 ± 2.09		84.58 ± 2.09	
C050 ^b	69.25 ± 33.41		82.08 ± 27.12		74.00 ± 20.30		71.43 ± 22.63		73.94 ± 26.94	
C100	66.00 ± 32.95		83.50 ± 26.22		77.72 ± 15.31		67.14 ± 24.11	SNOTEL	73.89 ± 27.38	
C200	****		86.67 ± 33.03		80.00 ± 18.71		63.29 ± 22.40	SNOTEL	74.26 ± 29.16	
A050	77.83 ± 11.00		77.42 ± 19.72		74.71 ± 19.86		73.80 ± 17.90		75.00 ± 23.08	
A100	73.25 ± 8.37		77.57 ± 15.76		79.13 ± 14.62		72.22 ± 20.06		75.76 ± 24.12	
A200	****		77.67 ± 19.48		75.96 ± 17.34		66.83 ± 20.28	SNOTEL	75.19 ± 25.47	
F050	76.92 ± 13.54		77.44 ± 19.36		75.35 ± 19.88		72.60 ± 18.13		75.22 ± 22.86	
F100	72.08 ± 13.07		78.50 ± 15.62		79.52 ± 15.08		71.01 ± 21.64		75.42 ± 23.06	
F200	****		78.72 ± 19.97		77.03 ± 17.56		64.90 ± 21.64	SNOTEL	75.16 ± 23.73	
T050	75.88 ± 15.88		78.95 ± 22.48		73.82 ± 19.89		74.21 ± 19.34		74.43 ± 25.32	
T100	72.00 ± 13.40		78.61 ± 19.24		78.28 ± 14.14		71.74 ± 20.01		75.47 ± 26.49	
T200	****		79.61 ± 23.23		76.24 ± 17.98		67.57 ± 20.24	SNOTEL	74.91 ± 28.93	

Table H-12 snow depth field measurement analysis of concentric boxes versus snow depth of Niwot SNOTEL for April/03/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure H-11 snow depth field measurement analysis of surrounding boxes versus snow depth of Niwot SNOTEL for April/03/2009 (Refer to Table A-1 for clarification of abbreviations)

Figure H-12 snow depth field measurement analysis of Concentric boxes versus snow depth of Niwot SNOTEL for April/03/2009 (Refer to Table A-1 for clarification of abbreviations)

	4/7/2008		5/5/2008		3/6/2009		4/3/2009	
	Mean ± STD (cm) ^a	SID ^b	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
Transect 1	114.98 ± 17.95		72.89 ± 24.13	T3, T7, T9	54.26 ± 17.57		85.21 ± 25.92	T2, T3, T6, T10
Transect 2	121.68 ± 10.25		69.48 ± 16.20	T3, T7, T9, T10	62.17 ± 8.32	T5, T6	$72.24 \hspace{.1in} \pm \hspace{.1in} 17.22$	T1
Transect 3	121.47 ± 12.87		88.36 ± 11.85	T1, T2, T4	****	****	71.60 ± 23.27	T1
Transect 4	109.37 ± 28.44		75.22 ± 22.88	T7	****	****	80.02 ± 11.37	T6
Transect 5	119.11 ± 34.02		77.19 ± 29.15	T7	44.75 ± 18.20	T2, T7, T8, T9	75.90 ± 24.58	Τ6
Transect 6	118.26 ± 34.74		66.92 ± 34.71	T3, T7, T8, T9, T10	51.70 ± 25.34	T2, T7	60.11 ± 22.89	T1, T4, T5, T7, T8, T9, T10
Transect 7	119.28 ± 27.63		91.72 ± 19.47	T1, T2, T4, T6, T8	63.84 ± 17.94	T5, T6	77.52 ± 16.61	Τ6
Transect 8	111.65 ± 17.10		82.40 ± 18.25	T6	56.22 ± 13.72	T5	$79.24 ~\pm~ 7.61$	Τ6
Transect 9	119.94 ± 6.83		87.41 ± 21.67	T1, T2, T4	59.73 ± 6.34	T5	73.97 ± 16.72	T6
Transect 10	120.03 ± 9.69		86.37 ± 19.24	T2, T6	****	****	73.19 ± 20.47	T1, T6

 Table H-13 statistical analyses of transects versus transects of each specific sampling date for

 Niwot SNOTEL station in 95 percent confidence level

b Significant difference, blank column mean there is no significant difference

T is transect

	4/7/2008		5/5/2008	5/5/2008		3/6/2009		
	Mean ± STD (cm) ^a	SID ^b	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
200*200m	125.67 ± 17.46		84.13 ± 12.72		$52.63~\pm~5.36$	_	76.92 ± 13.54	
400*400m	122.26 ± 23.72		85.95 ± 20.63		54.65 ± 13.64		77.31 ± 17.87	
600*600m	120.16 ± 21.80		84.04 ± 20.69		54.11 ± 14.91		76.27 ± 18.85	
800*800m	119.40 ± 20.23		85.41 ± 18.79	B1000	55.55 ± 15.58		74.62 ± 18.54	
1000*1000m	117.44 ± 22.64		79.72 ± 23.57	B800	56.13 ± 17.26		$74.85 ~\pm~ 20.27$	

Table H-14 statistical analyses of surrounding boxes versus surrounding boxes of each specific sampling date for Niwot SNOTEL station in 95 percent confidence level

b Significant difference, blank column mean there is no significant difference

B is surrounding box

Table H-15 statistical analyses of concentric boxes versus concentric boxes of each specific sampling date for Niwot SNOTEL station in 95 percent confidence level

	4/7/2008		5/5/2008		3/6/2009		4/3/2009	
	Mean ± STD (cm) ^a SID ^b		Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
0-200m	125.67 ± 17.46		84.13 ± 12.72		52.63 ± 5.36		76.92 ± 13.54	
200-400m	121.13 ± 25.70		86.56 ± 22.87	CB1000	55.67 ± 16.39		77.44 ± 19.36	
400-600m	118.43 ± 20.23		82.52 ± 20.87	CB1000	53.57 ± 16.36		75.35 ± 19.88	
600-800m	118.45 ± 18.19		87.21 ± 15.98	CB1000	56.98 ± 16.25		72.60 ± 18.13	
800-1000m	112.34 ± 27.52		70.91 ± 27.35	CB400, CB600, CB800	57.31 ± 20.33		75.22 ± 22.86	

a Values represent mean \pm Standard Deviation

b Significant difference, blank column mean there is no significant difference

CB is concentric box

Figure H-13 SD difference between transects and Niwot SNOTEL station in each sampling date (F050 minus SNOTEL)

Figure H-14 SD difference between surrounding boxes and Niwot SNOTEL station in each sampling date (F050 minus SNOTEL)

Figure H-15 SD difference between concentric boxes and Niwot SNOTEL station in each sampling date (F050 minus SNOTEL)

Table H-16 statistical analyses of SD averages of 3, 5, and 10 transect versus SD of Niwot SNOTEL station in 95 percent confidence level

	April/07/2008		May/05/2008	May/05/2008		
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	125.73 ± 2.74		73.91 ± 1.87		84.58 ± 2.09	•
10 transects (all)	117.44 ± 22.64		79.72 ± 23.57		74.85 ± 20.27	
Transects 2, 4, 6, 8, 10 (even)	115.88 ± 23.29		76.08 ± 23.95	odd	72.72 ± 18.33	
Transects 1, 3, 5, 7, 9 (odd)	118.93 ± 22.02		83.40 ± 22.71	even	76.85 ± 21.83	
Transects 1, 5, 10 (thr)	117.82 ± 23.97		78.81 ± 24.77		78.13 ± 23.94	

b Refer to Table A-1 for clarification of abbreviations

Figure H-16 SD averages of 3, 5, and 10 transect versus SD of Niwot SNOTEL station (Refer to column 1 of Table H-16 for definitions)

	2008 versus 2008	
	Mean ± STD (cm) ^a	SID ^b
4/7/2008	117.40 ± 22.64	5/5/2008
5/5/2008	79.72 ± 23.15	4/7/2008
	2009 versus 2009	
	Mean ± STD (cm)	SID
3/6/2009	56.13 ± 17.25	4/3/2009
4/3/2009	74.81 ± 20.83	3/6/2009
	2008 versus 2009	
	Mean ± STD (cm)	SID
4/7/2008	117.40 ± 22.64	4/3/2009
4/3/2009	74.85 ± 20.26	4/7/2008

Table H-17 statistical analyses of inter and intra annual for sampling dates of Niwot SNOTEL in

 95 percent confidence level

Figure H-17 frequency of the SD difference between field sampling and SD of the Niwot SNOTEL station for each sampling date

Appendix I: South Brush Creek SNOTEL station statistical analyses results

Table I-1 snow depth field measurement analysis of surrounding boxes versus snow depth ofSouth Brush Creek SNOTEL for April/05/2008 in 95 percent confidence limit

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	115.82 ± 3.43		115.82 ± 3.43		115.82 ± 3.43		115.82 ± 3.43		****	
C050 ^b	89.25 ± 10.69	SNOTEL	89.21 ± 23.54	SNOTEL	96.33 ± 22.84	SNOTEL	97.09 ± 20.06	SNOTEL	****	
C100	****		92.38 ± 10.54	SNOTEL	96.05 ± 19.30	SNOTEL	96.80 ± 18.08	SNOTEL	****	
F050	90.75 ± 3.82	SNOTEL	87.67 ± 21.01	SNOTEL	95.74 ± 19.05	SNOTEL	96.87 ± 16.48	SNOTEL	****	
F100	****		90.58 ± 5.95	SNOTEL	95.36 ± 15.05	SNOTEL	96.54 ± 13.72	SNOTEL	****	

Table I-2 snow depth field measurement analysis of concentric boxes versus snow depth of South Brush Creek SNOTEL for April/05/2008 in 95 percent confidence limit

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	115.82 ± 3.43		115.82 ± 3.43		115.82 ± 3.43		115.82 ± 3.43		****	
C050 ^b	89.25 ± 10.69	SNOTEL	89.20 ± 27.61	SNOTEL	100.15 ± 21.96	SNOTEL	98.32 ± 14.90	SNOTEL	****	
C100	****		96.00 ± 9.57		98.14 ± 23.00	SNOTEL	98.08 ± 16.48	SNOTEL	****	
F050	90.75 ± 3.82	SNOTEL	86.43 ± 25.04	SNOTEL	100.09 ± 16.75	SNOTEL	98.68 ± 11.35	SNOTEL	****	
F100	****		91.45 ± 6.61	SNOTEL	98.09 ± 18.03	SNOTEL	98.54 ± 11.39	SNOTEL	****	

a Values represent mean ± Standard Deviation

b Refer to Table A-1 for clarification of abbreviations

Figure I-1 snow depth field measurement analysis of surrounding boxes versus snow depth of South Brush Creek SNOTEL for April/05/2008 (Refer to Table A-1 for clarification of abbreviations)

Figure I-2 snow depth field measurement analysis of concentric boxes versus snow depth of South Brush Creek SNOTEL for April/05/2008 (Refer to Table A-1 for clarification of abbreviations)

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	92.46 ± 2.14		92.46 ± 2.14		92.46 ± 2.14		92.46 ± 2.14		92.46 ± 2.14	
C050 ^b	78.38 ± 13.79	SNOTEL	88.52 ± 15.03		85.58 ± 10.85	SNOTEL	87.50 ± 11.32		84.05 ± 18.76	
C100	76.60 ± 13.00	SNOTEL	83.80 ± 15.98		87.18 ± 10.48		87.73 ± 7.40		88.18 ± 16.84	
C200	83.86 ± 10.46		91.71 ± 15.17		80.00 ± 7.90	SNOTEL	80.71 ± 7.20	SNOTEL	80.43 ± 26.48	
A050	79.87 ± 12.73	SNOTEL	86.25 ± 11.62		84.86 ± 8.77	SNOTEL	86.09 ± 10.27		83.78 ± 13.97	
A100	78.74 ± 10.52	SNOTEL	83.72 ± 12.96		86.76 ± 7.02		86.16 ± 7.08		85.58 ± 13.77	
A200	84.26 ± 12.30		88.00 ± 11.33		78.97 ± 8.82	SNOTEL	79.43 ± 8.40	SNOTEL	80.86 ± 20.15	
F050	80.38 ± 12.48	SNOTEL	87.17 ± 12.30		85.21 ± 9.02	SNOTEL	87.41 ± 10.22		84.21 ± 12.63	
F100	80.13 ± 10.95	SNOTEL	84.13 ± 12.92		87.09 ± 6.98		86.61 ± 6.91		85.36 ± 12.50	
F200	83.76 ± 12.76		90.00 ± 11.57		79.24 ± 8.83	SNOTEL	81.00 ± 7.05	SNOTEL	81.43 ± 18.21	
P050	78.86 ± 13.59	SNOTEL	86.08 ± 12.12		84.76 ± 8.93	SNOTEL	85.24 ± 11.23	SNOTEL	83.44 ± 16.84	
P100	76.64 ± 11.18	SNOTEL	83.33 ± 14.05		86.58 ± 7.74		86.24 ± 7.76		86.66 ± 15.91	
P200	84.62 ± 11.34		87.24 ± 12.69		79.05 ± 8.74	SNOTEL	78.28 ± 10.96	SNOTEL	80.14 ± 24.16	

Table I-3 a snow depth of field measurement analyzing of transects versus snow depth of SouthBrush Creek SNOTEL station for March/01/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	92.46 ± 2.14		92.46 ± 2.14		92.46 ± 2.14		92.46 ± 2.14		92.46 ± 2.14	
C050 ^b	87.48 ± 14.65		76.65 ± 10.67	SNOTEL	78.23 ± 12.36	SNOTEL	87.14 ± 15.27		82.95 ± 13.77	SNOTEL
C100	91.64 ± 13.73		77.27 ± 10.90	SNOTEL	77.27 ± 14.23	SNOTEL	82.36 ± 8.63		82.09 ± 8.75	SNOTEL
C200	96.43 ± 13.26		75.00 ± 11.19	SNOTEL	79.14 ± 10.51	SNOTEL	92.00 ± 19.24		91.00 ± 9.47	
A050	86.30 ± 12.78		77.54 ± 9.72	SNOTEL	78.78 ± 9.01	SNOTEL	87.53 ± 11.48		83.42 ± 10.95	SNOTEL
A100	89.95 ± 12.39		77.58 ± 10.08	SNOTEL	76.53 ± 10.87	SNOTEL	84.11 ± 7.16		83.98 ± 11.25	
A200	92.97 ± 11.81		78.23 ± 9.81	SNOTEL	77.97 ± 9.82	SNOTEL	87.89 ± 15.29		89.46 ± 4.29	
F050	85.51 ± 12.86		76.97 ± 9.81	SNOTEL	79.58 ± 8.11	SNOTEL	86.75 ± 10.14		83.48 ± 10.39	SNOTEL
F100	89.67 ± 12.77		77.45 ± 11.15	SNOTEL	78.00 ± 10.03	SNOTEL	84.24 ± 6.11		83.15 ± 8.70	SNOTEL
F200	93.00 ± 12.37		79.83 ± 10.98	SNOTEL	78.24 ± 10.41	SNOTEL	89.71 ± 12.09		86.76 ± 5.22	
P050	87.48 ± 13.92		77.82 ± 11.40	SNOTEL	77.80 ± 10.83	SNOTEL	88.19 ± 14.13		83.21 ± 12.94	SNOTEL, P200
P100	90.79 ± 12.49		77.61 ± 10.67	SNOTEL	75.30 ± 12.96	SNOTEL	83.39 ± 8.95		84.18 ± 13.46	
P200	94.10 ± 12.62		75.56 ± 9.25	SNOTEL	78.10 ± 9.30	SNOTEL	87.43 ± 19.88		92.67 ± 5.07	P050

Table I-3 b snow depth of field measurement analyzing of transects versus snow depth of South Brush Creek SNOTEL station for March/01/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure I-3 snow depth field measurement of transects versus snow depth of South Brush Creek SNOTEL station for March/01/2009 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	92.46 ± 2.14		92.46 ± 2.14		92.46 ± 2.14		92.46 ± 2.14		92.46 ± 2.14	
C050 ^b	80.13 ± 10.76	SNOTEL	79.44 ± 12.10	SNOTEL	82.51 ± 13.44	SNOTEL	83.28 ± 12.76	SNOTEL	83.79 ± 14.08	SNOTEL
C100	75.25 ± 10.40	SNOTEL	82.25 ± 10.61	SNOTEL	83.03 ± 11.55	SNOTEL	82.79 ± 11.00	SNOTEL	83.47 ± 12.82	SNOTEL
C200	****		77.38 ± 12.15	SNOTEL	79.94 ± 12.59	SNOTEL	82.13 ± 12.24	SNOTEL	85.17 ± 14.93	
A050	79.18 ± 11.51	SNOTEL	80.58 ± 9.30	SNOTEL	82.47 ± 10.83	SNOTEL	83.05 ± 10.53	SNOTEL	83.54 ± 11.42	SNOTEL
A100	78.65 ± 14.14	SNOTEL	83.06 ± 9.68	SNOTEL	83.11 ± 10.04	SNOTEL	82.73 ± 10.20	SNOTEL	83.35 ± 10.92	SNOTEL
A200	****		78.70 ± 11.70	SNOTEL	79.07 ± 12.28	SNOTEL	81.20 ± 10.75	SNOTEL	83.88 ± 12.28	SNOTEL
F050	81.84 ± 10.90	SNOTEL	81.51 ± 9.65	SNOTEL	83.16 ± 10.83	SNOTEL	83.53 ± 10.64	SNOTEL	83.80 ± 11.14	SNOTEL
F100	79.42 ± 13.25	SNOTEL	83.83 ± 9.17	SNOTEL	83.72 ± 10.03	SNOTEL	83.11 ± 10.28	SNOTEL	83.61 ± 10.45	SNOTEL
F200	****		79.46 ± 11.30	SNOTEL	80.50 ± 11.95	SNOTEL	82.82 ± 10.96	SNOTEL	84.36 ± 11.79	
P050	76.84 ± 11.99	SNOTEL	79.26 ± 10.40	SNOTEL	81.79 ± 12.12	SNOTEL	82.65 ± 11.44	SNOTEL	83.37 ± 12.90	SNOTEL
P100	76.75 ± 13.96	SNOTEL	82.02 ± 10.88	SNOTEL	82.46 ± 10.69	SNOTEL	82.38 ± 10.53	SNOTEL	83.13 ± 12.26	SNOTEL
P200	****		77.50 ± 12.69	SNOTEL	77.93 ± 13.38	SNOTEL	79.88 ± 11.50	SNOTEL	83.84 ± 14.05	SNOTEL

Table I-4 snow depth field measurement analysis of surrounding boxes versus snow depth of South Brush Creek SNOTEL for March/01/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	92.46 ± 2.14		92.46 ± 2.14		92.46 ± 2.14		92.46 ± 2.14		92.46 ± 2.14	
C050 ^b	80.13 ± 10.76	SNOTEL	79.23 ± 12.67	SNOTEL	84.82 ± 14.07		84.33 ± 11.79	SNOTEL	84.63 ± 16.07	
C100	75.25 ± 10.40	SNOTEL	84.58 ± 10.00		83.65 ± 12.50		82.48 ± 10.43	SNOTEL	84.42 ± 15.09	
C200	****		79.17 ± 11.96	SNOTEL	82.00 ± 13.19		83.91 ± 11.93	SNOTEL	89.38 ± 17.35	
A050	79.18 ± 11.51	SNOTEL	81.01 ± 8.74	SNOTEL	83.90 ± 11.76	SNOTEL	83.84 ± 10.13	SNOTEL	84.35 ± 12.79	
A100	78.65 ± 14.14	SNOTEL	84.53 ± 7.99		83.14 ± 10.56		82.23 ± 10.58	SNOTEL	84.22 ± 11.92	
A200	****		81.40 ± 10.31	SNOTEL	79.36 ± 13.36	SNOTEL	82.95 ± 9.23	SNOTEL	87.59 ± 13.44	
F050	81.84 ± 10.90	SNOTEL	81.41 ± 9.47	SNOTEL	84.41 ± 11.59		84.02 ± 10.46	SNOTEL	84.24 ± 11.96	
F100	79.42 ± 13.25	SNOTEL	85.31 ± 7.57		83.63 ± 10.90		82.28 ± 10.73	SNOTEL	84.32 ± 10.76	
F200	****		82.22 ± 10.53	SNOTEL	81.33 ± 13.00	SNOTEL	84.73 ± 9.95		86.48 ± 12.73	
P050	76.84 ± 11.99	SNOTEL	80.01 ± 10.00	SNOTEL	83.70 ± 13.07	SNOTEL	83.82 ± 10.44	SNOTEL	84.54 ± 15.01	
P100	76.75 ± 13.96	SNOTEL	83.78 ± 9.73	SNOTEL	82.82 ± 10.80	SNOTEL	82.26 ± 10.51	SNOTEL	84.19 ± 14.41	
P200	****		79.83 ± 11.25	SNOTEL	78.27 ± 14.58	SNOTEL	81.49 ± 9.73	SNOTEL	89.29 ± 15.55	

Table I-5 snow depth field measurement analysis of concentric boxes versus snow depth of South Brush Creek SNOTEL for March/01/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure I-4 snow depth field measurement analysis of surrounding boxes versus snow depth of South Brush Creek SNOTEL for March/01/2009 (Refer to Table A-1 for clarification of abbreviations)

Figure I-5 snow depth field measurement analysis of concentric boxes versus snow depth of South Brush Creek SNOTEL for March/01/2009 (Refer to Table A-1 for clarification of abbreviations)

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	96.52 ± 2.39		96.52 ± 2.39		96.52 ± 2.39		96.52 ± 2.39		96.52 ± 2.39	
C050 ^b	91.65 ± 13.44		94.35 ± 23.94		89.63 ± 12.92		84.25 ± 17.98	SNOTEL	84.05 ± 18.76	
C100	93.09 ± 12.93		94.18 ± 20.83		90.40 ± 9.51		86.40 ± 16.44		84.00 ± 21.21	
C200	94.00 ± 14.95		84.17 ± 13.17		93.80 ± 11.56		82.50 ± 16.99		86.00 ± 27.64	
A050	87.34 ± 15.78		87.76 ± 19.36		92.38 ± 14.35		84.70 ± 15.78		83.78 ± 13.97	
A100	88.38 ± 16.46		87.42 ± 15.90		90.54 ± 13.76		86.02 ± 13.28		82.69 ± 16.04	
A200	91.20 ± 14.73		80.17 ± 8.61		91.20 ± 19.87		81.33 ± 16.38		84.43 ± 19.72	
F050	87.35 ± 16.84		87.77 ± 20.09		92.89 ± 15.38		84.10 ± 16.56	SNOTEL	84.21 ± 12.63	
F100	91.18 ± 16.97		85.40 ± 15.74		90.50 ± 13.80		85.17 ± 12.97		83.09 ± 14.66	
F200	96.28 ± 15.41		77.89 ± 11.95		91.47 ± 19.51		81.45 ± 15.11		84.44 ± 18.09	
T050	88.77 ± 15.80		89.95 ± 20.88		90.95 ± 13.02		85.15 ± 16.08		83.44 ± 16.84	SNOTEL
T100	87.15 ± 17.16		91.70 ± 18.84		90.53 ± 12.20		87.00 ± 14.60		82.73 ± 18.90	
T200	87.06 ± 18.31		83.78 ± 9.92		91.80 ± 17.41		81.61 ± 18.65		84.94 ± 23.59	

Table I-6 a snow depth of field measurement analyzing of transects versus snow depth of South

 Brush Creek SNOTEL station for March/29/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	96.52 ± 2.39		96.52 ± 2.39		96.52 ± 2.39		96.52 ± 2.39		96.52 ± 2.39	
C050 ^b	87.48 ± 14.65		86.95 ± 20.18		84.48 ± 10.77	SNOTEL	81.00 ± 18.33	SNOTEL	87.32 ± 17.11	
C100	92.00 ± 13.41		87.00 ± 19.80		87.18 ± 12.71	SNOTEL	80.70 ± 18.60	SNOTEL	89.55 ± 19.17	
C200	88.83 ± 14.91		92.50 ± 20.37		90.00 ± 12.23		79.17 ± 23.74	SNOTEL	81.67 ± 20.79	
A050	86.30 ± 12.78	SNOTEL	85.82 ± 16.81		88.59 ± 9.28	SNOTEL	82.05 ± 14.12	SNOTEL	85.26 ± 15.15	
A100	90.82 ± 11.13		87.95 ± 19.00		88.69 ± 8.68		83.46 ± 14.35		87.35 ± 16.85	
A200	88.13 ± 11.10		96.27 ± 13.70		92.07 ± 6.21		80.10 ± 16.26	SNOTEL	81.30 ± 19.65	
F050	85.51 ± 12.86	SNOTEL	84.98 ± 15.42		88.71 ± 9.50	SNOTEL	82.46 ± 14.13	SNOTEL	84.12 ± 15.77	
F100	90.27 ± 11.83		86.79 ± 17.35		88.15 ± 8.68	SNOTEL	83.73 ± 14.18		85.67 ± 17.87	
F200	86.78 ± 11.55		93.94 ± 12.80		91.06 ± 5.31		80.89 ± 15.96		79.17 ± 21.20	SNOTEL
T050	87.48 ± 13.92		87.03 ± 19.46		87.10 ± 8.51	SNOTEL	81.30 ± 15.36	SNOTEL	87.09 ± 15.31	
T100	91.76 ± 11.43		88.79 ± 21.08		88.73 ± 8.89		82.27 ± 15.74	SNOTEL	89.76 ± 16.75	
T200	89.72 ± 12.19		97.33 ± 17.88		92.39 ± 6.82		79.00 ± 18.77	SNOTEL	83.56 ± 18.42	

Table I-6 b snow depth of field measurement analyzing of transects versus snow depth of South

 Brush Creek SNOTEL station for March/29/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure I-6 snow depth field measurement of transects versus snow depth of South Brush Creek SNOTEL station for March/29/2009 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID						
SNOTEL	96.52 ± 2.39		96.52 ± 2.39		96.52 ± 2.39		96.52 ± 2.39		96.52 ± 2.39	
C050 ^b	80.13 ± 10.76	SNOTEL	81.13 ± 14.87	SNOTEL	84.84 ± 15.46	SNOTEL	85.73 ± 17.70	SNOTEL	87.11 ± 17.23	
C100	75.25 ± 10.40	SNOTEL	81.87 ± 15.17	SNOTEL	85.86 ± 13.02	SNOTEL	87.03 ± 16.39		88.52 ± 16.70	
C200	****		87.00 ± 7.58		86.18 ± 9.82	SNOTEL	84.39 ± 16.23	SNOTEL	87.15 ± 17.71	
A050	79.18 ± 11.51	SNOTEL	81.24 ± 12.76	SNOTEL	85.89 ± 13.42	SNOTEL	85.71 ± 14.73	SNOTEL	86.37 ± 14.83	
A100	78.65 ± 14.14	SNOTEL	82.13 ± 14.62	SNOTEL	86.67 ± 12.25	SNOTEL	86.64 ± 13.41		87.35 ± 14.43	
A200	****		87.08 ± 8.26		88.35 ± 9.04		84.79 ± 13.35	SNOTEL	86.54 ± 15.07	SNOTEL
F050	81.84 ± 10.90	SNOTEL	81.72 ± 12.94	SNOTEL	85.61 ± 13.66	SNOTEL	85.68 ± 14.84	SNOTEL	86.17 ± 15.06	
F100	79.42 ± 13.25	SNOTEL	82.67 ± 13.84	SNOTEL	86.17 ± 11.88	SNOTEL	85.89 ± 13.02	SNOTEL	87.01 ± 14.31	
F200	****		86.79 ± 9.85		87.22 ± 9.92		83.81 ± 13.17	SNOTEL	86.25 ± 15.33	
Т050	76.84 ± 11.99	SNOTEL	80.72 ± 13.30	SNOTEL	85.83 ± 13.96	SNOTEL	85.74 ± 15.76	SNOTEL	86.82 ± 15.73	SNOTEL
T100	76.75 ± 13.96	SNOTEL	81.51 ± 15.37	SNOTEL	86.90 ± 12.67	SNOTEL	87.52 ± 14.82		88.08 ± 15.65	
T200	****		87.33 ± 6.62		88.76 ± 8.27		85.63 ± 14.69	SNOTEL	87.04 ± 16.41	

Table I-7 snow depth field measurement analysis of surrounding boxes versus snow depth ofSouth Brush Creek SNOTEL for March/29/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	96.52 ± 2.39		96.52 ± 2.39		96.52 ± 2.39		96.52 ± 2.39		96.52 ± 2.39	
C050 ^b	80.13 ± 10.76	SNOTEL	81.48 ± 16.26	SNOTEL	87.79 ± 15.45	SNOTEL	86.85 ± 20.29		89.29 ± 16.33	
C100	75.25 ± 10.40	SNOTEL	84.27 ± 16.31	SNOTEL	88.85 ± 10.57		88.56 ± 20.11		90.58 ± 17.09	
C200	****		89.83 ± 5.81		85.44 ± 11.89		82.21 ± 21.91	SNOTEL	90.21 ± 19.04	
A050	79.18 ± 11.51	SNOTEL	81.96 ± 13.34	SNOTEL	89.59 ± 12.92		85.47 ± 16.38		87.43 ± 15.02	
A100	78.65 ± 14.14	SNOTEL	83.40 ± 15.25	SNOTEL	90.08 ± 9.08		86.59 ± 15.03		88.33 ± 15.83	
A200	****		87.20 ± 8.80		89.49 ± 10.04		80.46 ± 16.55	SNOTEL	88.49 ± 16.80	
F050	81.84 ± 10.90	SNOTEL	81.68 ± 13.80	SNOTEL	88.69 ± 13.59		85.78 ± 16.35		86.94 ± 15.46	
F100	79.42 ± 13.25	SNOTEL	83.85 ± 14.49	SNOTEL	88.80 ± 9.72		85.52 ± 14.58		88.55 ± 15.94	
F200	****		86.50 ± 10.76		87.59 ± 10.57	SNOTEL	79.67 ± 15.66	SNOTEL	88.95 ± 17.26	
Т050	76.84 ± 11.99	SNOTEL	82.07 ± 13.72	SNOTEL	89.90 ± 13.27		85.62 ± 17.93		88.54 ± 15.62	
T100	76.75 ± 13.96	SNOTEL	83.24 ± 16.12	SNOTEL	90.95 ± 8.54		88.32 ± 17.44		88.85 ± 16.87	
T200	****		88.78 ± 6.20		90.04 ± 9.72		81.83 ± 19.63	SNOTEL	88.60 ± 18.28	

Table I-8 snow depth field measurement analysis of concentric boxes versus snow depth ofSouth Brush Creek SNOTEL for March/29/2009 in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure I-7 snow depth field measurement analysis of surrounding boxes versus snow depth of South Brush Creek SNOTEL for March/29/2009 (Refer to Table A-1 for clarification of abbreviations)

Figure I-8 snow depth field measurement analysis of Concentric boxes versus snow depth of South Brush Creek SNOTEL for March/29/2009 (Refer to Table A-1 for clarification of abbreviations)

	4/5/2008		3/1/2009		3/29/2009	
	Mean \pm STD (cm) ^a	SID ^b	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
Transect 1	****	*****	80.38 ± 12.48	T2, T4	87.35 ± 16.84	
Transect 2	****	*****	87.17 ± 12.30	T1, T7, T8	87.77 ± 20.09	
Transect 3	****	****	85.21 ± 9.02	T7	92.89 ± 15.38	T9
Transect 4	****	****	87.41 ± 10.22	T1, T7, T8	84.10 ± 16.56	
Transect 5	****	****	84.21 ± 12.63	T7	84.21 ± 12.63	
Transect 6	****	****	85.51 ± 12.86	T7	85.51 ± 12.86	
Transect 7	****	****	76.97 ± 9.81	T2, T3, T4, T5, T6, T9	84.98 ± 15.42	
Transect 8	****	****	79.58 ± 8.11	T2, T4, T9	88.71 ± 9.50	
Transect 9	****	****	86.75 ± 10.14	T7, T8	82.46 ± 14.13	T3
Transect 10	****	****	83.48 ± 10.39		84.12 ± 15.77	

Table I-9 statistical analyses of transects versus transects of each specific sampling date for South Brush Creek SNOTEL station in 95 percent confidence level

T is transect

Table I-10 statistical analyses of surrounding boxes versus surrounding boxes of each specific sampling date for South Brush Creek SNOTEL station in 95 percent confidence level

	4/5/2008		3/1/2009		3/29/2009	
	Mean ± STD (cm) ^a	SID ^b	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
200*200m	90.75 ± 3.82		81.84 ± 10.90		81.84 ± 10.90	
400*400m	87.67 ± 21.01		81.51 ± 9.65		81.72 ± 12.94	
600*600m	95.74 ± 19.05		83.16 ± 10.83		85.61 ± 13.66	
800*800m	96.87 ± 16.48		83.53 ± 10.64		85.68 ± 14.84	
1000*1000m	****	****	83.80 ± 11.14		86.17 ± 15.06	

B is surrounding box

Table I-11 statistical analyses of concentric boxes versus concentric boxes of each specific sampling date for South Brush Creek SNOTEL station in 95 percent confidence level

	4/5/2008		3/1/2009		3/29/2009	
	Mean ± STD (cm) ^a	SID ^b	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
0-200m	90.75 ± 3.82		81.84 ± 10.90	-	81.84 ± 10.90	
200-400m	86.43 ± 25.04	CB600, CB800	81.41 ± 9.47		81.68 ± 13.80	
400-600m	100.09 ± 16.75	CB400	84.41 ± 11.59		88.69 ± 13.59	
600-800m	98.68 ± 11.35	CB400	84.02 ± 10.46		85.78 ± 16.35	
800-1000m	****	****	84.24 ± 11.96		86.94 ± 15.46	

a Values represent mean \pm Standard Deviation

b Significant difference, blank column mean there is no significant difference

CB is concentric box

Figure I-9 SD difference between transects and South Brush Creek SNOTEL station in each sampling date (F050 minus SNOTEL)

Figure I-11 SD difference between concentric boxes and South Brush Creek SNOTEL station in each sampling date (F050 minus SNOTEL)

Table I-12 Statistical analyses of average SD of 3, 5, and 10 transects versus SD of South Brush Creek SNOTEL station in 95 percent confidence level

	3/01/2009		Mar/29/2009	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID
SNOTEL	92.46 ± 2.14	all, even, odd, thr	96.52 ± 2.39	all, even, odd, thr
10 transects (all)	83.80 ± 11.14	SNOTEL	86.17 ± 15.06	SNOTEL
Transects 2, 4 , 6, 8, 10 (even)	84.71 ± 11.05	SNOTEL	86.03 ± 15.13	SNOTEL
Transects 1, 3, 5, 7, 9 (odd)	82.87 ± 11.20	SNOTEL	86.32 ± 15.05	SNOTEL
Transects 1, 5, 10 (thr)	82.69 ± 11.80	SNOTEL	85.17 ± 14.99	SNOTEL

a Values represent mean \pm Standard Deviation

b Refer to Table A-1 for clarification of abbreviations

Figure I-12 average SD of 3, 5, and 10 transects versus SD of South Brush Creek SNOTEL station (Refer to column 1 of Table I-12 for definitions)

Table I-13 statistical analyses of intra annual for sampling dates of South Brush Creek SNOTEL
 in 95 percent confidence level

	2009 versus 2009	
	Mean ± STD (cm) ^a	SID ^b
3/1/2009	83.79 ± 11.14	
3/29/2009	86.16 ± 15.06	
	2008 versus 2009	
4/5/2008	96.87 ± 16.47	3/29/2009
3/29/2009	86.89 ± 14.47	4/5/2008

a Values represent mean \pm Standard Deviation

Figure I-13 frequency of the SD difference between field sampling and SD of the South Brush Creek SNOTEL station for each sampling date

Appendix J: Togwotee Pass SNOTEL station statistical analyses results

	Transect 1		Transect 2		Transect 3		Transect 4		Transect 5	
	Mean ± STD (cm) ^a	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	****		****		205.99 ± 0.80		205.99 ± 0.80		205.99 ± 0.80	
C050 ^b	****		****		179.25 ± 37.98	SNOTEL	170.93 ± 32.11	SNOTEL	144.06 ± 53.09	SNOTEL
C100	****		****		183.22 ± 39.43		166.00 ± 41.67	SNOTEL	146.33 ± 58.43	SNOTEL
C200	****		****		186.80 ± 15.61		173.80 ± 26.77	SNOTEL	141.00 ± 47.90	SNOTEL
A050	****		****		181.30 ± 26.38	SNOTEL	165.75 ± 22.54	SNOTEL	142.49 ± 45.87	SNOTEL
A100	****		****		181.73 ± 28.69		158.53 ± 27.20	SNOTEL	147.18 ± 47.65	SNOTEL
A200	****		****		179.28 ± 22.59		162.56 ± 14.04	SNOTEL	146.32 ± 45.98	SNOTEL
F050	****		****		181.86 ± 26.80	SNOTEL	166.13 ± 28.51	SNOTEL	142.58 ± 46.53	SNOTEL
F100	****		****		183.11 ± 28.63		153.54 ± 32.42	SNOTEL	145.52 ± 49.80	SNOTEL
F200	****		****		183.60 ± 16.54		156.20 ± 10.16	SNOTEL	144.13 ± 46.82	SNOTEL
P050	****		****		180.06 ± 31.04	SNOTEL	167.09 ± 24.36	SNOTEL	142.92 ± 49.22	SNOTEL
P100	****		****		180.85 ± 32.89		166.00 ± 29.36	SNOTEL	148.55 ± 49.04	SNOTEL
P200	****		****		177.47 ± 28.49		172.67 ± 24.04	SNOTEL	146.73 ± 45.52	SNOTEL

Table J-1 a snow depth of field measurement analyzing of transects versus snow depth of Togwotee Pass SNOTEL station for March/17/2009in 95 percent confidence limit

a Values represent mean ± Standard Deviation

b Refer to Table A-1 for clarification of abbreviations

	Transect 6		Transect 7		Transect 8		Transect 9		Transect 10	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	205.99 ± 0.80		205.99 ± 0.80		205.99 ± 0.80		205.99 ± 0.80		****	
C050 ^b	187.12 ± 37.72		178.59 ± 16.69	SNOTEL	178.69 ± 30.59	SNOTEL	192.67 ± 49.53		****	
C100	184.33 ± 24.47		176.56 ± 19.26	SNOTEL	177.11 ± 35.97	SNOTEL	195.50 ± 59.07		****	
C200	187.00 ± 25.83		172.60 ± 21.98		174.80 ± 43.83		****		****	
A050	174.73 ± 24.91	SNOTEL	170.75 ± 34.63	SNOTEL	171.53 ± 26.53	SNOTEL	189.64 ± 34.36		****	
A100	175.64 ± 25.24	SNOTEL	169.27 ± 44.18	SNOTEL	170.04 ± 32.27	SNOTEL	199.30 ± 29.06		****	
A200	178.24 ± 31.64		186.32 ± 37.91		167.92 ± 40.76	SNOTEL	****		****	
F050	176.02 ± 27.24	SNOTEL	173.55 ± 25.92	SNOTEL	174.04 ± 25.59	SNOTEL	189.19 ± 38.03		****	
F100	177.07 ± 22.18	SNOTEL	170.89 ± 31.04	SNOTEL	171.41 ± 30.08	SNOTEL	192.50 ± 39.04		****	
F200	176.33 ± 28.50		181.60 ± 32.89		171.13 ± 38.30	SNOTEL	****		****	
P050	177.57 ± 27.54	SNOTEL	170.57 ± 35.90	SNOTEL	171.40 ± 31.33	SNOTEL	191.11 ± 35.46		****	
P100	177.11 ± 29.19	SNOTEL	170.07 ± 46.77	SNOTEL	171.04 ± 37.88	SNOTEL	204.84 ± 28.30		****	
P200	183.07 ± 33.45		186.47 ± 37.10		167.00 ± 45.83	SNOTEL	****		****	

Table J-1 b snow depth of field measurement analyzing of transects versus snow depth of Togwotee Pass SNOTEL station for March/17/2009in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure J-1 snow depth field measurement of transects versus snow depth of Togwotee Pass SNOTEL station for March/17/2009 (Refer to Table A-1 for clarification of abbreviations)

	200*200m		400*400m		600*600m		800*800m		1000*1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	205.99 ± 0.80		205.99 ± 0.80		205.99 ± 0.80		205.99 ± 0.80		****	
C050 ^b	184.63 ± 16.78	SNOTEL	159.75 ± 40.44	SNOTEL	170.50 ± 40.62	SNOTEL	174.97 ± 39.14	SNOTEL	****	
C100	175.75 ± 13.84	SNOTEL	163.75 ± 42.02	SNOTEL	171.45 ± 43.86	SNOTEL	174.00 ± 40.44	SNOTEL	****	
C200	****		166.00 ± 32.55	SNOTEL	173.50 ± 38.93	SNOTEL	175.72 ± 34.79	SNOTEL	****	
A050	184.93 ± 20.17	SNOTEL	158.08 ± 36.71	SNOTEL	164.53 ± 36.96	SNOTEL	169.73 ± 33.32	SNOTEL	****	
A100	172.40 ± 19.74	SNOTEL	160.16 ± 33.99	SNOTEL	163.40 ± 39.55	SNOTEL	169.48 ± 35.90	SNOTEL	****	
A200	****		166.13 ± 30.63	SNOTEL	168.15 ± 34.67	SNOTEL	172.29 ± 33.70	SNOTEL	****	
F050	186.33 ± 17.60	SNOTEL	159.57 ± 37.28	SNOTEL	165.91 ± 37.57	SNOTEL	170.88 ± 33.45	SNOTEL	****	
F100	173.50 ± 13.58	SNOTEL	159.06 ± 35.18	SNOTEL	163.02 ± 39.23	SNOTEL	168.95 ± 35.04	SNOTEL	****	
F200	****		163.29 ± 33.05	SNOTEL	165.13 ± 36.28	SNOTEL	171.07 ± 32.25	SNOTEL	****	
P050	183.42 ± 23.63	SNOTEL	157.14 ± 39.34	SNOTEL	165.13 ± 39.34	SNOTEL	170.33 ± 35.87	SNOTEL	****	
P100	172.42 ± 27.45	SNOTEL	162.46 ± 37.00	SNOTEL	166.46 ± 41.98	SNOTEL	171.51 ± 38.42	SNOTEL	****	
P200	****		168.92 ± 29.41	SNOTEL	172.96 ± 35.35	SNOTEL	174.66 ± 36.03	SNOTEL	****	

 Table J-2 snow depth field measurement analysis of surrounding boxes versus snow depth of

 Togwotee Pass SNOTEL for March/17/2009in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

	0-200m		200-400m		400-600m		600-800m		800-1000m	
	Mean ± STD (cm) ^a	SID ^c	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID	Mean ± STD (cm)	SID
SNOTEL	205.99 ± 0.80		205.99 ± 0.80		205.99 ± 0.80		205.99 ± 0.80		****	
C050 ^b	184.63 ± 16.78	SNOTEL	151.46 ± 42.80	SNOTEL	181.97 ± 38.19		181.27 ± 36.47	SNOTEL	****	
C100	175.75 ± 13.84	SNOTEL	159.75 ± 47.81	SNOTEL	179.67 ± 45.71		177.04 ± 36.58	SNOTEL	****	
C200	****		159.17 ± 35.16	SNOTEL	181.00 ± 45.39		177.94 ± 31.23	SNOTEL	****	
A050	184.93 ± 20.17	SNOTEL	149.13 ± 36.85	SNOTEL	171.41 ± 36.59	SNOTEL	177.06 ± 26.04	SNOTEL	****	
A100	172.40 ± 19.74	SNOTEL	156.08 ± 37.37	SNOTEL	166.85 ± 45.71		176.72 ± 30.16	SNOTEL	****	
A200	****		158.57 ± 32.11	SNOTEL	170.18 ± 40.35	SNOTEL	176.44 ± 33.29	SNOTEL	****	
F050	186.33 ± 17.60	SNOTEL	150.65 ± 38.04	SNOTEL	172.67 ± 37.31	SNOTEL	177.88 ± 25.37	SNOTEL	****	
F100	173.50 ± 13.58	SNOTEL	154.25 ± 39.20	SNOTEL	167.24 ± 43.98	SNOTEL	176.03 ± 28.43	SNOTEL	****	
F200	****		156.39 ± 36.02	SNOTEL	166.96 ± 41.49	SNOTEL	177.02 ± 27.52	SNOTEL	****	
P050	183.42 ± 23.63	SNOTEL	148.37 ± 39.94	SNOTEL	173.67 ± 38.15	SNOTEL	177.64 ± 29.22	SNOTEL	****	
P100	172.42 ± 27.45	SNOTEL	159.14 ± 40.17	SNOTEL	170.73 ± 47.66	SNOTEL	177.53 ± 33.49	SNOTEL	****	
P200	****		160.95 ± 29.75	SNOTEL	177.00 ± 42.15		176.35 ± 37.77	SNOTEL	****	

 Table J-3 snow depth field measurement analysis of concentric boxes versus snow depth of

 Togwotee Pass SNOTEL for March/17/2009in 95 percent confidence limit

b Refer to Table A-1 for clarification of abbreviations

Figure J-2 snow depth field measurement analysis of surrounding boxes versus snow depth of Togwotee Pass SNOTEL for March/17/2009 (Refer to Table A-1 for clarification of abbreviations)

Figure J-3 snow depth field measurement analysis of Concentric boxes versus snow depth of Togwotee Pass SNOTEL for March/17/2009 (Refer to Table A-1 for clarification of abbreviations)

Table J-4 statistical analyses of transects versus transects of March/17/2009 sampling date for Togwotee Pass SNOTEL station in 95 percent confidence level

	Mean ± STD (cm) ^a	SID ^b
Transect 1	****	****
Transect 2	****	****
Transect 3	181.86 ± 26.80	T5
Transect 4	166.13 ± 28.51	T5
Transect 5	142.58 ± 46.53	T3, T4, T6, T7, T8, T9
Transect 6	176.02 ± 27.24	T5
Transect 7	173.55 ± 25.92	T5
Transect 8	174.04 ± 25.59	Т5
Transect 9	189.19 ± 38.03	Т5
Transect 10	****	****

a Values represent mean ± Standard Deviation

b Significant difference, blank column mean there is no significant difference

T is transect

Table J-5 statistical analyses of surrounding boxes versus surrounding boxes of March/17/2009 for Togwotee Pass SNOTEL station in 95 percent confidence level

	Mean \pm STD (cm) ^a	SID ^b
200*200m	186.33 ± 17.60	
400*400m	159.57 ± 37.28	
600*600m	165.91 ± 37.57	
800*800m	170.88 ± 33.45	
1000*1000m	****	****

a Values represent mean ± Standard Deviation

b Significant difference, blank column mean there is no significant difference

Table J-6 statistical analyses of concentric boxes versus concentric boxes of March/17/2009 for Togwotee Pass SNOTEL station in 95 percent confidence level

	Mean \pm STD (cm) ^a	SID ^b		
0-200m	186.33 ± 17.60	CB400 ^c		
200-400m	150.65 ± 38.04	CB200, CB600, CB600		
400-600m	172.67 ± 37.31	CB400		
600-800m	177.88 ± 25.37	CB400		
800-1000m	****	****		

a Values represent mean \pm Standard Deviation

b Significant difference, blank column mean there is no significant difference

CB is a concentric box

Figure J-4 SD difference between transects and Togwotee Pass SNOTEL station in March/17/2009 (F050 minus SNOTEL)

Figure J-5 SD difference between surrounding boxes and Joe Togwotee Pass station in March/17/2009 (F050 minus SNOTEL)

Figure J-6 SD difference between concentric boxes and Togwotee Pass SNOTEL station in March/17/2009 (F050 minus SNOTEL)

Figure J-7 frequency of the SD difference between field sampling and SD of the Togwotee Pass SNOTEL station for March/17/2009