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ABSTRACT

AN INTELLIGENT, MOBILE NETWORK AWARE MIDDLEWARE FRAMEWORK

FOR ENERGY EFFICIENT OFFLOADINGN SMARTPHONES

Offloading mobile computations is an innovative technique that is being explored by researcher
for reducing energy consumption in mobile devices and for achieving better application response
time. Offloading refers to the act of transferring computations from a mobile device to servers in
the cloud. There are many challenges in this domain that are not dealt with effectively yet, and
thus offloading is far from being adopted in the design of current mobile architectures. We believe
that there is a need to verify the effectiveness of computation offloading in terms of both response
time and energy consumption, to highlight its potential in real smartphone applications. The effect
of varying network technologies such as 3G, 4G, and Wi-Fi on the performance of offloading
systems is also a major concern that needs to be addressed. In this thesis, we study the behavior of
a set of real smartphone applications, in both local and offload processing modes. Our experiments
identify the advantages and disadvantages of offloading for various mobile networks. Further, we
propose a middleware framework that uses Reinforcement Learning to make reward-based
offloading decisions effectively. Our framework allows a smartphone to consider suitable
contextual information to determine when it makes sense to offload, and to select between
available networks (3G, 4G, or Wi-Fi) when offloading mode is active. We tested our framework
in both simulated and real environmgraicross various applications, to demonstrate how energy

consumption can be minimized in mobile systems that are capable of supporting offloading.
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CHAPTER1

INTRODUCTION

Faster wireless network speeds and rapid innovations in mobile technologies have changed the
way we use our computers. It is estimated that 207.2 million people in the U.S. own a smartphone
today while the number of smartphone users worldwide is estimated to be more than two billion
[1]. Figure 1.1 shows the projected number of smartphone users until the year 2019. These mobile
devices are not only used for making voice calls but are also efficiently able to run complex mobile
applications that interact with the Internet. The volume of data being accessed and processed by
smartphones, and the sophistication of mobile applications is rapidly increasing over time.
However, the rapid evolution in hardware and software capabilities of mobile devices has not been

paralleled by a similar advance in battery technology BE& expected, high end mobile

Number of smartphone users in the U.S. from 2010 to
2019 (in millions)
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Fig. 1.1 Number of smartphone users [1]

applications increase the burden on the battery life of smartphones. For example, it has been shown



that a GPS based smartphamp@ can drain a mobile phone’s battery completely within seven

hours[3].

1.1 Mobile cloud computing

Cloud computing has drawn the attention of mobile technologies due to the increasing demand
of applications for processing power, storage, and energy. Cloud computing promises availability
of virtually infinite resources and it operates with utility computing model, where consumers pay
based on their usage. Today, a number of applications are already using mobile cloud computing,
for example social networking apps, location based services, sensor based health-care apps,

gaming apps etc.

Fig. 1.2 Mobile Cloud Computing [38]



1.2 Offloading smartphone applications

A promising solution that is being considered to support high end mobile applications is to
offload mobile computations to the cloud [6-11]. Offloading is an opportunistic process that relies
on cloud servers to execute the functionality of an application that typically runs on a mobile
device. The terms “cyber foraging” and “surrogate computing” are also sometimes used to describe
such computation offloading. Such computation offloading is being considered today as a means
to save energy and increase the responsiveness of mobile applications. The potential of
computation offloading lies in the ability to sustain power hungry applications by releasing the

energy consuming resources of the smartphone from intensive processing.

In this thesis, we study the behavior of a set of popular smartphone applications, in both local
and offload processing modes. This study is crucial to examine the pros and cons of offloading
when using various wireless networks. Further, we propose a novel middieware framework that
usesa reward-based machine-learning technique called Reinforcement Learning (RL) to make
offloading decisions effectively. The proposed framework considers various types of information
on the mobile device, such as network type, network bandwidth, user-context, etc., to decide when
to offload in order to minimize energy consumption. Our strategy also helps to select between
available networks (3G, 4G, or Wi-Fi) when offloading mode is active. Our experiments with real
applications on a smartphone highlight the potential of our framework to minimize energy in

mobile devices that are capable of supporting offloading.

1.3 Outline

The rest of the thesis is organized as follows. Chapter 2 gives an overview of related prior works

in offloading. In our literature review, we discuss important findings and shortcomings of related



publications and give an idea of what our framework can offer in order to improve offloading
system in mobile devices. In chapter 3, we briefly discuss major challenges that are faced in
building efficient offloading system. Chapter 4 presents a comprehensive application oriented
study of offloading using available networks such as 3G, 4GVEné). We selected a set of five
popular smartphone applications for our experiments; we present our findings based on those
results in the last subsection of chapter 4. In chapter 5, we discuss the need for an adaptive
offloading approach for making an effective offloading decision. In chapter 6, we present a
middleware framework for efficient offloading of mobile applications. Our proposed framework

is based on machine learning technique called as reinforcement ledairggpnducted a series

of experimentsn chapter 7 to evaluate the efficacy of our proposed framework as compared to a
related prior work. Chapter 6 concludes the thesis with a summary. The appendix offers the source

code of the strategies presented in our thesis.



CHAPTER2

PRIORWORK

In this Chapter, we briefly review the related literature in the fi¢ldhobile computation
offloading, illustrate the difference between other work and camg, finally suggest some

improvements in the offloading techniques presented in the reledure.

Kumar et al. [4] presented a mathematical analysis of offloading. Brdbd energy saved by
computation offloading depends on the amount of computation tatoemped (C), the amount of
data to be transmitted (D) and the wireless network bandwidth (B)/d) is low, then it was
claimed that offloading can save energy. Figure 2.1 briefly summeafindings of the
mathematical analysis; offloading is beneficial for compute intensivécappns which use
minimal communication with the cloud servers. In our experimentsrgessen chapter 4 of this

thesis, we study other possible factors that affect offloadingldé® computations and

communication.

Depends
on
bandwidth
B

Communication D —»

Computation { —P»

Fig. 2.1 Offloading communication vs computation [4]



Many prior research efforts have proposed strategies to empower gdebdes with offloading
capabilities. Flores et all()] proposed a fuzzy decision engine for code offloading. Tokilm
device uses the decision engine based on fuzzy logic tbicemarious factors and decide when
to offload. Problem with fuzzy decision engine approach is thaapgpedevelopers will have to
customize the decision engines depending upon which part of tleethe device lies to account
for variations in the different technologies around the woddekample in India, a country with
limited broadband infrastructure, 2G remains in active use, whild.theand Mexico lean heavily
on Wi-Fi connections. Our framework proposed in this thesis congitiamg more factors than
these works, such as such as network type, data sizeegrekdf computations when making

decisions about offloading.
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Fig. 2.2 Offloading architecture [5]




Offloading relies on remote servers to execute code delegaseahblyile device. In this process,
the mobile is granted the local decision logic to identify resountegsive portions of code, such
that the mobile can estimate where the execution of codeeailire less computational effort
(remote or local), which leads the device to save energy. reFigi2 shows an offloading
architecture that is presented by Flores d6&l.This framework monitors multiple parameters of
asmartphone, such as available bandwidth, data size to traashignergy to execute the code.
The system considers these parameters to know when to offloadpwfidoad (portions of code:
Method or Thread). The architecture consists of two parts, it @@ a server. The client is
composed of a code profiler, system profilers, and a decisidneenthe server contains the
surrogate platform to invoke and execute code. Code partitiséngomplex process that requires

selection of the application code to be offloaded referrefflasding candidate (OC) in the figure

Chun et al. [Y have proposed CloneCloud, which is a system for elastic exedgioreen
mobile devices and the cloud, through dynamic application ipaitiy, where a thread of the
application is migrated to a clone of the smartphone in the cloud. Apphigartitioning is based

on static analysis to specify the migration and reintegration paitiie application.

Cuervo et.al [6] proposed a system called MAbHsed on code annotations to specify which
methods from a class can be offloaded. Annotations are intmbdncie source code by the
developer during the development phase. At runtime, methods atiedery the MAUI profiler,
which performs the offloading of the methods, if the bandwidth eitwork and data transfer
conditions are ideal. MAUI aims to optimize both the energy consumgtid execution time using
an optimization solver. However, this annotation method puts aa bxtden on the already
complex mobile application development phase. Moreover, suchaions can cause unnecessary

code offloading that drains energy [5]. To reduce the complexiteobpplication development



process, we suggest to transfer the entire application prag@ssire cloud rather than utilizing a
design-time code partitioning method. Further, we propose & adaptive reward-based learning
approach to make smart offloading decisions that can achievgyeefficiency with offloading

and also improve application response time.



CHAPTERS

CHALLENGESWITH OFFLOADING

In spite of existing research highlighting the potential of offlogdinmobile devicescurrent
offloading techniques are far from being adopted widely in mop#tess The implementation of
these computation offloading techniques for many real world ma@lgplications in real-world
scenarios has not shown promising results [8], with the mobilealspending more energy in the
offloading process than the energy savings achieved due fwutgagon servers in an offloaded

manner.

The granularity of offloading is an important decision. Code partitipteénhniques such as in
[6] rely on the expertise of the software developer to annotate modfcan application statically
to guide the offloading procesBhus the offloading occurs at a sub-application granularity. It is
however a difficult task to evaluate runtime properties of codketermine how best to annotate
code within an application that can beng&fiim offloading Codecanoften have non-deterministic
behavior during runtime (e.g., the run time of a piece of cadebe impacted by the thermal and
battery/energy conserving strategies employed by the processperating system), therefore it
is difficult to estimate the suitability of offloading in many casespecially at a finer, sub-
application granularity Other factors such as the user input, type of application, &xecu
environment, and available memory also create runtime uncertinmtyng the effectivenessfo
sub-application partitioning based offloading . We show how we addressed some of these
challenges by using a Reinforcement Learning based decision enginertoide when to invoke

the offloading process on a mobile device at an applicationgeapularity.



Offloading decision engines must consider not only the potential esavagygs from offloading
but also how the response time of the application is impacted by afiipad effective offloading
decision to offload processing to the cloud must reduce energyuvsgignificantly increasing
response time. Such decisions are heavily impacted by wirgygsrk inconsistency. The power
consumed by the network radio interface is known to contribubesiderable fraction of the total
device power, and it varies depending on signal strejfd@h With the recent advent of high
bandwidth 4G networks, there has been increased interest inltedwf§ domain, but from our
experiments and results presented in later chapters of this thesisticed that 4G consumes more

energy than Wi-Fi and 3G. Some of the prior wdik3 in this area also confirm this observation

The network quality o8 4G connection at a mobilievice’s location greatly affects the battery
life. If the device is in the area that does not have 4G coverage, ithno advantage to a 4G
interface, and if 4G network search is not disabled, then thésadi@rch for a non-existent signal
will drain the battery quickly. In case of a weak signal, the device meee power to send and
receive data, to and from the network. A strong 4G signal uselsdésry, but the biggest problem
is the constant switching from 4G to 3G and back again. Also,ghout a typical day, at different
times, the performance of a wireless network varies becausarafinh traffic loascnthe network.

We refer to all such problems due to the mobile netweofketwork inconsistency’ problems.

To counter the impact of network inconsistency on a mobile eeard to optimize the
offloading experience, we propose a novel offloading framewodedan Reinforcement
Learning. This framework not only decides when to offload, but allps laemobile device select
between the different available wireless networks, to achieve cartsisigrovements by using
offloading even in the presence of varying network conditibnthe chapter 6, we describe our

framework in detail.
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CHAPTERA4

OFFLOADINGPERFORMANCEOFMOBILE APPLICATIONS

To gain deeper insights of offloading system it is very important terstahd the behavior of
real mobile applications. We surveyed various compute intenpplecations that are likely to
benefit from offloading, as suggested by important publicationshi; area [3-10]. These
applications are power hungry and consume large amount of compata¢isources. Applications
mentioned in relevant publications are as follows: matrix calomstiimage processing, web-
browsers, torrent downloads, image search, file compressonse galimes, language translators,
speech recognizers, optical character recognizers, video gireg@sd editing, navigation, face

recognition, augmented reality, etc.

In this chapter, we analyzed the performance implications of dffigaby comparing two
scenarios- one where all computations are performed only on the mobile dsitlegut using the
cloud at all, and the other where there was a complete relemtee cloud computation, with
minimal computations on the mobile device. We selected fivasivand popular commercially

available smartphone applications for our experiment.

Our evaluation primarily focuses on two metrics: (i) battery copsiom, and (ii) response time.
We have compared the results obtained with these applicatinB&f 4G (HSPA+), and Wi-Fi
wireless networks. This comparative study was meant to hed@ntfy various factors that need
to be considered for the design of offloading strategies for mapplications, e.g., identifying the

best possible network over which computation can be oflbéal the cloud for any particular

11



application at a specific location. In the next sections ofctiepter we describe the experimental

setup and the results in detail. Our findings are discussed iaghsection of this chapter.

4.1 Experimental Setup

The power estimation models required to estimate battery cotisarnmere built using power
measurements on the LG G3 device running the Android OS versidn Bt@ contact between
the smartphone and the battery was instrumented, and currembegsured using the Monsoon
Solutions power monitor [18]. The power monitor setup is showngurdi4.1l. The monitor
connects to a computer (Lenovo ThinkPad E450, Intel core i5&Bory) running the Monsoon

Solutions power tool software, which allows real-time current ameep measurements.

Fig. 4.6 Monsoon power monitor setup

We also used the Android Device Bridge (ADB), a software togdeidorm battery drain
measurements on the Android device. The experiments were performgdAlgii's 3G, 4G

(HSPA+) network, and Comcast's 100 Mbps (2.4 GHz Band) Witkiank. ADB was also used

12



for the response time analysis of smartphone applications. We usedikiveb Services (AWS)

[37] for our mobile-cloud interaction analysis of applications.

We conducted these experiments around Colorado State University’s campus in Fort Collins,
Colorado, USA. Before conducting our experiments, we followed a fevopdédions and rules to

ensure meaningful and accurate results while avoiding human erese Tules are as follows:

e Set the device’s screen to a consistent and fixed brightness level, to minimize
interference from varying screen power consumption (e.g., for diff@ambient light
scenarios) in our measurements; we used the lowest screen bri¢gnress

¢ Kill all background processes before measurements;

e Repeat each experiment over 15 iterations to improve result enoéicand minimize

human error;

We selected five diverse commercially available smartphone apptisdtir our experiments:

e Matrix operations

e Internet browser

e Zipper (file compression app)

e Voice recognition and translation app

e Torrent (file download app)

The next subsection (Sectidn?) gives the details of all the applications considered and the
results of their execution for the two scenarios (with and witbfflaiading) outlined earlier. While

analyzing these results it is important to note the terminology thatedetaisiefine the state of an
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application. A “locally run application” is one where the computations are performed on the mobile
device only; whereas an “offloaded application” is one that relies entirely on cloud-based

computations.

4.2 Experimental Results

4.2.1 Matrix operation app
The matrix calculator app [30] runs on Android based devidas.uSer is first asked to enter
the size of the matrix and all the digits of the matrix manuallgl,than the user can direct the
application to calculate the inverse of that matrix. This appdicatalculates matrix inverse using
the adjoint method. For our experiments, we used a set of matsxfine 3x3 to 9x9. For the
cloud part, we used Amazon Web Services (AWS) cloud computatitance EC2 [37] and web

based matrix calculation tools [30]. Figut2 shows the results from our experiment.

The energy consumption in local processing mode is equal tattexybdrain in the device
while performing the matrix operation; whereas in the cloud n@usgy consumption is the total
of battery drain during the idle time of the mobile device while tleradjon is being performed
remotely and the time for data transfer between the mobile dawitthe cloud. It can be observed
that in the local processing mode, the battery consumption of gmp$ione increases manifolds
with the increasing matrix size, largely because there is an iecieathe CPU's energy

consumption as the number of floating point operations increase.

Local processing is found to be suitable for operations on smaicas(i.e., 3x3 and 5x5)

allowing for low energy consumption on the device and low respome. On the other hand,
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offloading the task of matrix calculation to the cloud savesgnand also reduces response time

when the matrix size increases.
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Fig. 4.2 Average battery consumption and average response time
mobile device for a matrix operation with varying matrix sizes

The device in offloading mode saves maximum energy (and atsmindanmum response time)
when used with Wi-Fi. The results show that 3G performs sjidiigtiter than 4G as far as energy

is concerned, whereas, 4G gives better response time than 8@ $ame operations.
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4.2.2 Internet browser app

Cloud-based web browsers use a split architecture where prooafsaingbile web browser is
offloaded to the cloud partially. This involves cloud support fostbrowsing functionalities such
as execution of JavaScript, image transcoding and compressibpaesing and rendering of web
pages. For our experiments, we used the Mozilla Firefox [33Paffth [31] browsers. Puffin is a
commercially available cloud based mobile browser and Mozillefdxris a local browser
available from the Google Play store. Our experiments are peddona data range starting as
low as 150 Kib to a session involving 5 MBs of data transféodd the web pages. Figude3
shows the results obtained by measuring data transfer (reppiomseand energy consumed by
these browsers for loading two different websites: (i) www.yahoo.confiagmww.wikipedia.org.

For example, the plots in figure 4.3 show that the response-tinegjbatinsumption of a
browser session with around 3 MB data usage is sometimes mothahaha session which uses
5MB data usage. To counter such network inconsistency problsmsonducted 15 iterations of
eachexperiment across different locations and at different timeseaddl. In general, our results
show that cloud based web browsers are faster but more expemn&rms of energy consumption.
For small data transfers it is suitable to use web browserdosdhprocessing to save energy. For
a typical user, the data transfer amount during a browsing se&ss not go beyond 5-6 MBs for
a single session. Thus for most websites in typical usage scerhedocal browser will provide

greater energy savings than when using offloading.

We observed that the results obtained fluctuated significantliochetwork inconsistency [32].
The response time results indicate that for larger data usagesseoifloading can be beneficial.

4G provides lower response time but also consumes more energy thimn 8@ offloading
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scenarios. Wi-Fi outperforms both 3G and 4G in offloading mfmieresponse time and energy

consumption.
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4.2.3 Zipper app
Zipping large files in order to compress them is a widely usedifuradity on most computers.
Zipper [22] is an Android app that compresses files locally on alemnbvice. For the cloud based

file compression, we used an AWS cloud instance and zipping taidlate on the web [14].
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Figure 4.4 shows the results for energy consumption and the resipgmgéren zipping various
PDF and Word document files ranging in size from 15MB to 255MB. Iteaabserved that for
the zipping operation, local computation is most efficient in term&nargy consumption.
Offloading provides benefits only in response time, and thabmbp for large file sizes. When
offloading, 4G consumes more energy than 3G for smaller file 52305 MBs) whereas 3G
consumes more energy than 4G for larger file sizes (175-255 MBg) fd§ier than 3G but slower

than Wi-Fi. Wi-Fi gives best results in terms of both energy an@mnssptime when offloading.
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Fig. 4.4 Average battery consumption and response time on a mc
device for zipping/compressing files of varying sizes
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4.2.4 Voice recognition and translation app
There are several popular smartphone apps for voice recogmitibinanslation available from
app stores, for instance Google Translate [23] for Android aedkSg@ Translate [24] for iOS.
Google Translate is a cloud-based app, which also haslare d¢féinslation mode that does local
processing on the device with a small neural network. The appticataws for downloading an
installation package to support the local processing mode. Banae of the statistical machine
translation method, which relies on large amounts of data in twdeain a machine translation

engine.
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Fig. 4.5 Average battery consumption on a mobile device for v
recognition and translation operations

Figure4.5 shows the energy consumption of the Google Translate apprdoge of words.
These measurements were recorded while translating 20-140fwardEnglish (US) to Marathi
language. Tabld.1 shows the prediction accuracies for local and offloaded proce&somg.the
results in figuret.5, we can clearly observe that the local processing mode isffiorent in terms

of energy consumption as compared to the cloud processing Rrodetable4.1, it can be seen
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that the cloud-processing mode shows better accuracy for voagmitan and translation. This is
because the offloaded voice data is processed by more pbueletid servers, which are capable
of running the complex computations of a larger neural network,oivet machine learning

algorithms for more efficient translation.

Table 4.1 Accuracy of voice recognition and translation app for local vs. cloud processing

Processing Voice recognition and
translation accuracy (%)

Local processing 79.26

Cloud processing 88.51

4.2.4 Torrents app

We used the Android based torrent app known as Flud [34}torm torrent downloads in local
mode. In the cloud mode, a cloud server is used as a BitTorrerttoli@ownload torrent pieces
on behalf of a mobile device. While the cloud server downloagdattient, the mobile device
switches to the sleep mode until the cloud finishes the torrent pesc@sd then the cloud uploads
because downloading torrent pieces from multiple torrent peesum@s more energy than
downloading one burst of pieces from the cloud. the downloaded toiteeimt & single process to
the mobile device. Kelenyi et al. [16] presented a similar strategpri@nt file download. This

strategy saves energy consumption in smartphones

For our experiments, we used torrent file sizes ranging from 25MB tB8%Mh an AWS
cloud instance being used for the cloud mode. Figure 4.6 showestlits of our experiments for
this application. It is interesting to note that out of all the apftins that we consider, offloaded

processing proves to be most beneficial (in terms of both enavigygs and response time) for the
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torrent download application, which is data intensive but nopotenintensive. 4G is faster than
3G but slower than Wi-Fi, which is consistent with observationghe other applications. 4G
performs slightly better than 3G in terms of energy consumption foehdata sizes (45-85 MBs),
but for smaller data sizes 3G is more energy efficient than 4G.
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Fig. 4.6 Average battery consumption and response time on a mc
device for torrent file download operations

4.3 Summary of findings

The overall performance when offloading depends on varioug$asioh as the amount of data

usage by the application, wireless network signal type aadgitr, and the functionality of the
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application under consideration. In some of the previous publisaiiothis area [4, 19], it was
concluded that offloading is useful when an application is coeiptensive and at the same time
less data intensive. However, we found that this is not alwaysifige In our experiments with real
mobile and cloud based applications, we found that cloaogpbabng can be more beneficial for
applications that may not be compute intensive, but are data intemgivehe torrent application.
Internet browsers are neither highly compute or data intensive, thusfosplications offloading

does not perform well.

To make offloading more practical, it is important to reduce the gnspgnt in the
communication between the mobile device and the cloud. Inxperienents, we compared energy
consumption in mobile devices connected using different netwpes §8G, 4G, and Wi-Fi). This
comparison shows that choosing the best possible network fordifitpia a critical decision. One
may assume that because 4G is fastest, we should always liefpiooffloading when Wi-Fi is

not available. However, our results indicate that 4G is more powgnhtinan 3G most of the time.

Network quality is also an important factor that cannot be ignoredow that a perfect 3G-
coverage performs far better as opposed to poor 4G-coverageanersa. In the region of cell
tower edges or where the coverage of 3G/4G ends, we founithéhaandover process results in
high battery consumption. This is because the phone in senhrsus is constantly searching for
the network, frequently scanning the wireless spectrum aroundateamine which tower it should
tether itself to. The more networks there are available to choosetirermore scans the device
must perform. Some apps require a channel to be establistveeebethe base station and the

mobile device at regular intervals, which also significantly draiedéitery.
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Another observation is that as 4G generally provides faster dasathate 3G, users tend to
consume more data when connected on 4G than 3G; and #mgecin usage pattern leads to
potentially greater battery drain for 4G capable mobile devidesradio-networking interface in
the 4G (or LTE) device is functionally a lot more sophisticated ass @ lot more than a 3G
interface. This network interface is the single biggest sourcetiipalrain in a mobile device,
apart from its display. Unlike the display however, the network axterfadio is always on. 4G is
particularly energy hungry because most of the 4G devices salg tigd multi-input multi-output
(MIMO) antenna technology, which supports multiple parallel trassions (typical 4G phones

have two antennas, each of which requires its own power amplifier)

In conclusion, we observed from our experiments on real applicationsig on a real mobile
device that the overall performance of offloading depends on vdsaot®'s, such as the amount
of data usage by the application, network signal type (3GWE)), network signal strength, and

the complexity of the functionality of the application under @eration.
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CHAPTERS

ADAPTIVE OFFLOADING

The decision to offload a mobile application to the clowmcemplex one due to the distributed
nature and many real-time constraints of the overall systerm&king an effective offloading
decision, it is important to consider various factors as we désedafter our experimental analysis
in the previous chapter. As these factors vary at run-times ith@ need for an adaptive offloading
approach that takes the variations of these factors at runfttmeonsideration when making
decisions. A few prior workslp, 11] propose an offloading decision engine that considers the
contextual parameters on a device and on the cloud to makiiaaudiaog decision adaptively
Figure5.1shows a oveview of the general framework for utilizing an offloading decisingiee

mechanismo govern offloading from the device.

Local computation Offloading computation in Cloud

I Cloud
Smartphone | Smartphone )
I T
Mobile | Mobile | A
applications | | applications | ¥| Clone VM
Offloading | | Offloading
OS decision | OS decision
engine engine
|
Hardware | | Hardware gtﬂfagi +
m
| _Compute
|
|
I

Fig. 5.1 Offloading decision engine mechanism
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As an example, Flores et al. [10] proposed a fuzzy decisginefor code offloading. At the
mobile platform level, the device uses a decision engine lmas@dzy logic, which is utilized to
combinen number of variables (e.g., application data size, network bandywdtiich are to be
obtained from the overall mobile cloud architecture. Fuzzy logicsidecengine works in three

steps namely: fuzzyfication, inference, and defuzzification asrshofigure 5.2

If-then-else

Crisp inputs @ Crisp outputs

Fuzzifier Defuzzifier
A

—
Reasoning Engine

Fuzzy input set Fuzzy output set

Fig. 5.2 Fuzzy decision engine mechanism [10]

Fia. 6.1 Reinforcement Learnina (RL) based middleware framewor

In fuzzification, input data is converted into linguistic variabldsch are assigned to a specific
membership function. A reasoning engine is applied to the Vesialvhich makes an inference
based on a set of rules. Lastly, the outputs from the reasomgngeeare mapped to linguistic
variable sets again in the defuzzification step. This offloadingidacehgine in [10] assumes a
consistent network performance during offloading. However, as @gberour experiments, such
consistency is difficult to achieve because of frequent mabde movements and variable network
quality (due to factors such as location of the device anddpdlde network [32]). Moreover, the

offloading decision engine in [10] mainly emphasizes energy ssivitayvever response time is
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also a crucial metric for various applications that should aeogihored, otherwise user quality of

service degradations can become so severe that any efforeterssrgy becomes irrelevant.

In the next chapter, we describe our reward-based middlefreamework for adaptive
offloading that overcomes the challenges mentioned above, ®mmle efficient decisions related

to when and how to offload applications from a mobile devicegeltud.

26



CHAPTERG
MIDDLEWARE FRAMEWORKFOREFFICENTOFFLOADING OFMOBILE

APPLICATIONS

To simplify the mobile application development process and aathe §me avoid problems
caused by hard coded annotations, our framework proposesdtetrall the computation to the
cloud instead of partial offloading. Our framework involves a novel decisgineonn the mobile
device that works together with a clone virtual machifd Y of the mobile software environment
to execute applications on cloud servers. Figure 6.1 shduwghdevel overview of the proposed
framework. The framework is implemented at the middleware level in thease stack of the
Android OS, and runs in the background as an Android servicerésilt, our framework requires

no changes to any of the applications or the Android OS. rliheme monitor component

Mobile applications A
r—
O0EEE O
Middleware ‘

l_ Runtime monitor —1

RL mechanism —»| Q-learning table CLOUD
Operating system (Android) 3 J

|

Wireless
CPU radios

Hardware

Sensors

Fig. 6.1 Reinforcement Learning (RL) based middleware framewor
efficient application offloading to cloud
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periodically triggers the Reinforcement Learning (RL) module to gerepafgte a Q-learning
table. At any time, this Q-table contains information to guidedgwsion for when and how to
offload an application to the cloud, depending on multiple facidrs.remainder of this section
provides a detailed overview of the RL mechanism @undhalgorithm to generate and use the Q-

table.

Reinforcement Learning (RL) is an unsupervised learning approach, whictes on learning
by interacting with an environment. In supervised learning a traimhgfscorrectly identified
observations is available which is used to train a predictioem®&L differs from supervised
learning in that correct input/output pairs of identified obsermatare never presented. In RL the
state-action value function is a function of both state and aetnohits value is a prediction of the

expected sum of future reinforcements. The state-action valgécdiuns referred to as the Q

Ch tion from Q i
—’[ 0ose action from ] Actions Remforcementll Penalty values

l 3

1
[ Perform action ] °fﬂ°adwifhWi-V 2.4 / 1.9 / 21 / 14

Oﬁloadwithy 24 32 / 34 / 26 /
34 33

Offload with 3G 31 24

function [36].

[ Measure Reward/Penalty

L1 L2 L3 L4

| J
|
States (Locations)

Fig. 6.2 Q-learning flow and Q-table
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Figure 6.2 summarizes how a typical Q-learning reinforcement algowitbrks. Q-learning is
a reward based mechanism that generates a Q table with reinforcepemaloy values as shown
in the figure 6.2The figure illustratea vector of Q table where the possible actions are offloading
with 3G, 4G or Wi-Fi network, when the user is at different locatioh-L4. Actions are chosen

and the penalty values are calculated for respective actiopsiabe the Q table.

When the system is at a defined stgtat time t. Upon taking actiom, from that statewe
observe the one step reinforcement, and the next state beconsgs, . This continues until we
reach a goal state, K steps later. The reRjrfiom states; is shown in equation (1).

K
R, = 2 Tt+k+1 (1)
k=0

The objective is to find the actiong that maximize (or minimize) the sum of reinforcements or
rewardsr;. This can be reduced to the objective of acquiring the QtiumQ(s;, a;), which
predicts the expected sum of future reinforcements; where the corfenti@n determines the

optimal next action. So, the RL objective [36] is to make this aqupedion as accurate as possible:

[00]

Qs @) = ) Terns @)

k=0
The Q function stores reinforcement values for each statectiod pair of the system. Equation
(2) formulates the RL for multi-step decision problem, for exampkhedicting sequential positions
of Tic-Tac-Toe game [36]. In our middleware framework we usefdla single-step decision
problem as there are no sequential states which are depender@vimus state of the system,

formulated in equation §3

n

Q(spyar) = z Tt (3)

t=1
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The Q function is referred by system to select the optimal agtian states,:

a; = argmin Q(s;, a) (4)

6.1RL algorithm to generate Q function

The state of a mobile system is defined using the contexfoamation of the device such as
location, network type and, network strength. These contextuak$awere chosen because we
consider them to be crucial for better offloading experience.rlihiéme monitor extracts the
contextual information of the device to form state values of yee®. For example, a mobile
device is at location L1, it has access to 3G network type with ‘strong’ network strength. From this
state, if an application processing needs to be offloadsdttie Q function is called to select the
right network that would result in the least penalty in terms of energgsponse time or both.
Penalty values are directly proportional to the battery unitswooed and the response time of a
task. Less penalty means less energy consumed and less eggperfer application processing,

resulting in enhanced user experience.

In our framework, the following state and action values seglto generate the Q function:

et of state values (discrete values):

e Location=11,L2,L3,......,Ln

e Network carrier = 3G, 4G, WH

e Network strength = Strong, Medium, Weak

e Data Size = data_small, data_medium, data_large
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Sat of action values

Offload using 3G network
Offload using 4G network

Offload using Wi-Fi network

The location L1-Ln can be any geographic area where the user uses dfflaaglication, for

example office, home, etc. These state action pairs are (iserddend more pairs can be added to

account for factors which might affect offloadirig; example we can add ‘Time period’ as another

state value, as it is observed that network performance is slowahdegne of day when the user

load is high. Bigger set of state value pairs means larger @dnmesulting in increased overhead

to manage it. Following algorithm shows steps to generate Q function:

Algorithm: to generate Q function:

Inputs: user location, network access type, network strength

1

6.
. Repeat steps 3-6 above for: data_size = data_medium and data_large
. Repeat steps 3-7 above for 4G and Wi-Fi connection if available

7
8

9

. Access user’s contextual information such as, location, network_carrier, network_strength.

while mobile network is available and user is at location L1
do:
Activate 3G radio interface of the device
Upload a file (data_size = data_small) in the cloud. For this operati
measure battery units consunigd,; and response tin@;,
Calculate the penalty P with the help of equations:
P3g = Pp3g * X + P3g *y
Form a Key-Value pair as follows:
{location-data_size-network_carrier-network_strength: Penalty}
where, (Key = location-data_size-network_carrier-network_strength,
Value = Calculated Penalty value P in step 4)
Update the Q-table with the calculated penalty values

end while

. Go to step 1 when user location changes to L2

Output: Q table
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At the beginning (step 1), when the mobile device is at user ladatipthe runtime monitor
accesses contextual information from the device aadbcation, network carrier type and, network
strength. A network operation of uploading a data file from a mobileeléwv cloud is performed,
using available network carrier (step 3). The battery units consantetbtal response time taken
for this operation are measured. In the multiple iterations of theadiplgp operation we used
varying data sizes with all available network radio interface aage(8G, 4G, Wi-Fi) activated one
by one. For each of these uploading operations the runtime mamtasures the battery units
consumed and response time to complete the operation. ThéeQstapdated (step 6) with the
penalty values calculated using equations (5), (6) and, (7). Rlotramework the reinforcement
values are penalty valu®s;, P,; andPy ;. The Q table is formed using these key-value pairs
where the state of the system is used to form keys and calcuéateltigs are used as values as

shown in figure 11. The series of possible individual penaltyegadme shown in Table 2.

Table 6.1 Penalty values in RL algorithm

Penalty values Offload using | Offload using | Offload using
3G 4G Wi-Fi
Battery ;) Pp3¢ Ppac Ppwiri
Response time?) P36 Prag Pewirr
Total penalty P Py Pyirr
P3¢ = Ppzg * X + Pi3g * y ()
Py = Ppag * X + Prag *y (6)
Pwirr = Pwipr * X + Pyipp * ¥y (7)
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In equations (5), (6) and, (7), to optimize battery consumptiohresponse time we used
weightsx andy respectively with penalty valuegariablesx andy are multiplying factors with
values between 0 and 1, used to optimize either batterymmgti®nor response time or both. For
optimized battery consumption we found following weight valuesallatx = 0.3, y = 0.7,
whereas, for optimized response time we used:0.7, y = 0.3. For our experiments discussed in

chapter 7 we used = 0.5, y = 0.5 for both optimized battery and response time.

[LI-data_largc-3(i-$tmng:3.2 ] X

L1
;L l—data__lar.g.c—dlC}—Stmng: 22

L1-data_medium-3G-Strong: 2.0

iL2—dala__smalI—3G—Stronlg;. 1.2

L2 \L2—data_small-éiG—Stmng: I.5] X

L2-data_small-Wi-Fi-Weak: 2.0| X

| I J
Key Value (Penalty P)

(Location - data_size - network_carrier - network_strength)

Fig. 6.3 Decision making using @ble (vector of key value pairs)

Figure 6.3 briefly shows the decision making process with theoiélg simple scenariogor
a data intensive application at location L1 we have 3G ante#@orks available as shown in first
two lines of Q table in figure 6.3. The penalty value for 4G at locatibrs lesser, therefore 4G
network is selected for offloading the application to cloud. Hess data intensive application at
location L2, out of all the networks available 3G is selecteduimse Wi-Fi has weak signal strength

with higher penalty and 4G also has a higher penalty.
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CHAPTER7

EXPERIMENTALRESULTS

To evaluate the efficacy of our proposed framework we conducted a sengeoiments with
three applications that we discussed in chaptérelimplemented our middleware framework and
its decision enginenanAndroid-based mobile devic€o form theQ function of our RL algorithm,
real user data was collected at 3 different geographical locagiansd the Colorado State
University campus area, in Fort Collins, Colorado. In this chayediscuss our results in detail
and compare our work with the fuzzy logic decision engine profdmsgtbres et al. [10] which we
discussed in chapter. BVe used data sizes with 25 MBs, 250 MBs and, 500 MBs \fileish
represent variables data_small, data_medium and, data_large wedpactihe Q table algorithm
discussed in chapter 6.

Figure 7.1 shows the results for the Matrix operations app withaRed engine and fuzzy logic
based decision engine. Similarly figure 7.2 shows the resultisé Zipper app and figure 7.3 shows
results for the Torrent app. In all the scenarios, the task of a deangjime és to choose to tune to
the network which gives best possible results. In these figures, the theesmows the average
battery consumption and average response time for fuzzy decigime ¢h0] whereas the green
trendline shows results of our RL-based middleware framework.

We have also shown the offloading results for varying networkairaa in chapter 4 as a
reference in all these figures. Our results show that for Iéadrdansive operations the results of
RL and fuzzy logic overlap. In the case of zipper applicdbotower data sizes fuzzy logic shows
better results, this might be because the Q-table generated using our Rhralgsgs 25 MBs as

the minimum data size. For higher data sizes and computationd thetRod gives improved
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battery consumption and response time. For any data size loavethht there is insufficient

predictable results. This can be improved using a wide ranggafilés in RL algorithm.
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Figure 7.4 shows prediction accuracy of both learning method# blecabserved that our RL-
based engine has better prediction accuracy which is cruciahdking effective offloading

decisions. The overall performance of offloading depends onugafiagtors, such as the amount of
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data usage by the application, network signal type (3G, 4GNiriEi) and network signal strength,
and the complexity of the functionality of the application urakeervation. By considering all of
these individual factors in the decision process, unlike treyfiagic approach from [10], and by
utilizing a more sophisticated and powerful learning algorithm, @mésvork is able to achieve
notably better results compared to [10]. Our results show thatggditl based offloading system
can save up to 30% battery power with up to 25% better response time as compareyllbgic

based system.
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w= Reinforcement engine
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CHAPTERS

CONCLUSIONAND FUTUREWORK

8.1 Conclusion

In this thesis we analyzed real mobile applications in detail to diedgfits of application
offloading. We found that overall performance with offloading depemd$actors such as the
amount of data and type of usage, available network carrier arad siggngth, etc. These factors
should be considered while making a decision to offload a majgkcation. To make offloading
more practical, it is important to reduce the energy spent in thengoioation between the mobile
device and the cloud. In our experiments, we compared enangyroption in mobile devices for
varying network types (3G, 4G and Wi-Fi). This comparison shbatschoosing the best possible
network for offloading is crucial. In this paper, we presentephitiigent mobile network aware
middleware framework based on Reinforcement Learning for energy effidiéfodding in
smartphones. Our results show that we can save up to 20%&@éty power by using the

proposed offloading system.

8.2 Future Work
Offloading is far from being adopted in the design of current maldbkitectures due to many
challenges in this field. Strategies described in this thesg gfomising energy savings, however,

much work can be done to improve the offloading strategies.

In this thesis we have used only one mobile network carrier {AT& obtain the offloading

results, it will be interesting to see the comparison betwedlipfaunetwork carriers. Even in 4G
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network, there are different types of available technologies suchR&H&Ehd LTE, in this thesis
we have used AT&T’s HSPA+. In addition, there are different technologies in implementing 4G
LTE for different network carriers. This study can be further @ddrto test the results with all

variations of 4G network.

Finally, we would like to implement and test more software applicasoieh, as an image search
to the cloud, video processing etc. to gain insights into verséfiitb@ding scenarios. Although
there are always improvements to be made in the field of sofavarenergy optimization for
mobile embedded systems, the work presented in this thesis lginge step closer to being able

to improve the performance and battery lifetime of smartphone wdmigutation offloading.
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APENDIX A

SOURCECODE

This section presents the majority of the source code for the implementation of the two
strategies namely reinforcement learning and fuzzy logic decision engine. Section A.1 provides
the source code file for the offloading decision engine in Android, section A.2 provide the source
code file for fuzzy logic and sections A.3 provide the source code files for the reinforcement

learning python code.

A. RL1 Mainoffloadingappactivity.java

package com.example.aditya.smartoffloadingapp;

import android.content.Intent;
import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;

import android.view.Menu;

import android.view.Menultem;
import android.view.View;

import android.widget.ArrayAdapter;
import android.widget.CheckBox;
import android.widget.EditText;
import android.widget.LinearLayout;
import android.widget.Spinner;
import android.widget.TextView;

import static com.example.aditya.smartoffloadingapp.R.id.MLAlgorithm;

public class MainOffloadingAppActivity extends ActionBarActivity {

public final static String EXTRA MESSAGE =
"com.example.aditya.smartoffloadingapp.MESSAGE";
public final static String EXTRA MESSAGEL =

"com.example.aditya.smartoffloadingapp.MESSAGEL";

/* private Spinner spinner, spinnerApp, spinnerCPU;
private static final String[]lpaths = {"Fuzzy Logic", "RL", "RL with ©NN",
"Classification"};
private static final String[lpathsApp = {"Fuzzy Logic", "RL", "RL with NN",
"Classification"};
private static final String[lpathsCPU = {"Fuzzy Logic", "RL", "RL with NN",
"Classification"};
**/
@Override

protected void onCreate (Bundle savedInstanceState) {
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super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main offloading app):;

/* Spinner spinner, spinnerApp, spinnerCPU;
String[]lpaths = {"Fuzzy Logic", "RL", "RL with NN", "Classification"};
String[]pathsApp = {"Fuzzy Logic", "RL", "RL with NN", "Classification"};
String[]pathsCPU = {"Fuzzy Logic", "RL", "RL with NN", "Classification"};
**/
/* spinner = (Spinner)findViewById(R.id.spinner);
spinnerApp = (Spinner)findViewById(R.id.spinnerApp) ;
spinnerCPU = (Spinner)findViewById(R.id.spinnerCPU) ;
ArrayAdapter<String>adapter = new

ArrayAdapter<String> (MainOffloadingAppActivity.this,
android.R.layout.simple spinner item,paths);
ArrayAdapter<String>adapterApp =
ArrayAdapter<String> (MainOffloadingAppActivity.this,
android.R.layout.simple spinner item,pathsApp);
ArrayAdapter<String>adapterCPU = new
ArrayAdapter<String> (MainOffloadingAppActivity.this,
android.R.layout.simple spinner item,pathsCPU);

new

adapter.setDropDownViewResource (android.R.layout.simple spinner dropdown item);

adapterApp.setDropDownViewResource (android.R.layout.simple spinner dropdown item);

adapterCPU.setDropDownViewResource (android.R.layout.simple spinner dropdown item);
spinner.setAdapter (adapter) ;

spinnerApp.setAdapter (adapterApp) ;
spinnerCPU.setAdapter (adapterCPU) ;

**/
/* spinner.setOnItemSelectedListener (this); **/

public void onButtonClick (View view) {

Spinner spinner = (Spinner) findViewById (R.id.spinner) ; //offloading
mechanism

String offloadingMechanismType = spinner.getSelectedItem() .toString();

CheckBox responseCheckbox = (CheckBox)
findViewById (R.id.CheckBoxResponse) ;//checkbox

boolean bRequiresResponse = responseCheckbox.isChecked() ;

Spinner spinnerApp = (Spinner) findViewById(R.id.spinnerApp);//Select
Application

String appType = spinnerApp.getSelectedItem() .toString();

Spinner spinnerLocation = (Spinner) findViewById(R.id.spinnerLocation) ;
//Matrix operation

String LocationType = spinnerlLocation.getSelectedItem() .toString();

Spinner spinnerCPU = (Spinner) findvViewById(R.id.spinnerCPU) ; //Matrix
operation

String CPUinstanceType = spinnerCPU.getSelectedItem() .toString()
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/* ArrayAdapter<String>adapter
ArrayAdapter<String> (MainOffloadingAppActivity.this,
android.R.layout.simple spinner item,paths);
ArrayAdapter<String>adapterApp =
ArrayAdapter<String> (MainOffloadingAppActivity.this,
android.R.layout.simple spinner item,pathsApp);
ArrayAdapter<String>adapterCPU =
ArrayAdapter<String> (MainOffloadingAppActivity.this,
android.R.layout.simple spinner item,pathsCPU);

adapter.setDropDownViewResource (android.R.layout.simple spinner dropdown item);

adapterApp.setDropDownViewResource (android.R.layout.simple spinner dropdown item);

adapterCPU.setDropDownViewResource (android.R.layout.simple spinner dropdown item);

spinner.setAdapter (adapter) ;
spinnerApp.setAdapter (adapterApp) ;
spinnerCPU.setAdapter (adapterCPU) ;

**/

if (offloadingMechanismType.equals ("Fuzzy Logic")) {
Intent fuzzyscreen = new Intent(this, FuzzylLogicDisplay.class);
/* EditText editText = (EditText) findViewById(R.id.dataEdit); **/

Spinner spinnerMechanismText = (Spinner)findViewById(R.id.spinner);
Spinner spinnerAppText = (Spinner)findViewById(R.id.spinnerApp) ;

String messageMechanism = spinnerMechanismText.getSelectedItem().toString();

fuzzyscreen.putExtra (EXTRA MESSAGE, messageMechanism);

String messageApp = spinnerAppText.getSelectedItem() .toString() ;
fuzzyscreen.putExtra (EXTRA MESSAGEl,messageApp) ;

startActivity(fuzzyscreen) ;

@Override
public boolean onCreateOptionsMenu (Menu menu) {

// Inflate the menu; this adds items to the action bar if it is present.

getMenuInflater().inflate(R.menu.menu main offloading app, menu);
return true;

}

@Override

public boolean onOptionsItemSelected (Menultem item) {
// Handle action bar item clicks here. The action bar will
// automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.
int id = item.getItemId();

//noinspection SimplifiableIfStatement
if (id == R.id.action_settings) ({
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return true;

return super.onOptionsItemSelected (item) ;

B. Fuzzylogicdisplay.java

package com.example.aditya.smartoffloadingapp;

import android.content.Intent;

import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;

import android.view.Menu;

import android.view.Menultem;

import android.widget.TextView;

public class FuzzyLogicDisplay extends ActionBarActivity {
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity fuzzy logic display);

Intent fuzzyintent = getIntent();

String message =
fuzzyintent.getStringExtra (MainOffloadingAppActivity.EXTRA MESSAGE) ;
String messagel =

fuzzyintent.getStringExtra (MainOffloadingAppActivity.EXTRA MESSAGEL) ;

TextView tl = (TextView) findViewById(R.id.FuzzyAlgorithmDisplay) ;
tl.setText (message) ;

TextView t2 = (TextView) findViewById(R.id.FuzzyAppDisplay):;
t2.setText (messagel) ;

/* create TextView Object **/

/* TextView textView = new TextView (this); */
/* Set the text size and message */

/* textView.setTextSize (40); */

/* textView.setText (message); */

/*add the TextView as the root view of the activity’s layout by passing it to
setContentView () **/

/* setContentView (textView); */

/* setContentView (R.layout.activity fuzzy logic_display); **/
}

/*
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@Override

public boolean onCreateOptionsMenu (Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater () .inflate (R.menu.menu fuzzy logic display, menu);
return true;

}

**/

@Override

public boolean onOptionsItemSelected (Menultem item) {
// Handle action bar item clicks here. The action bar will
// automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.
int id = item.getItemId();

//noinspection SimplifiableIfStatement
if (id == R.id.action settings) ({
return true;

}

return super.onOptionsItemSelected(item) ;

C. RL2_Reinforcement_strategy.py

import numpy as np

import random as rm

import matplotlib.pyplot as plt

from copy import copy

from IPython.display import display, clear output

def printBoard (board) :
print ("""
bandwidth={} |Data={} |CPU Instance={}

app={} |Cloud Vendor Available={} |Location={}

"' format (*tuple (board)))

def printBoardQs (board, Q) :
#printBoard (board)
printParameters (board)

Q0s = [Q.get ((tuple(board),m), 0) for m in range(3)]
print ('Reinforcements Received:')
print('''Local Processing:{:.2f} | Offload on Local Servers:{:.2f} | Offload on

Remote Servers:{:.2f}
""" format (*Qs))

def printParameters (board):

print ("""’
bandwidth= {} |Data= {} |CPU_Instance= {} |Wifi= {}
""" .format (*tuple (board)))

print ('let\'s see what are my state parameters')

#printBoard (np.array(['1l','0"','1"','1"','5"','9"']))
printParameters (np.array(['Speed Low', 'Data Small', 'CPU Low',6'On']))
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#print ('okay now let\'s genearete a random number geneartor for each of these
parameters')

#bandwidth = rm.randint (1,10)
#bandwidth = np.random.randint (1,10,size=60)

#data = np.random.randint (1,10, size = 60)

#cpu = np.random.randint (1,10, size = 60)

#app = np.random.randint (1,10, size = 60)

#cloud vendor = np.random.randint (1,10, size = 60)
#location = rm.randint (1,10)

#location = np.random.randint (1,10, size =60)

Bandwidth = np.array(['Speed Low', 'Speed Normal', 'Speed High'])

Data = np.array(['Data Small', 'Data Medium', 'Data Big'])

CPU = np.array(['CPU Low', 'CPU Normal', 'CPU High'])

Wifi = np.array(['On','Off'])

Out = np.array(['Local Procssing','Offload Local', 'Offload Remote'])

#print ("location=", location)

#board — np.array([lxl,l I,IOI, |l I,IXI,IOI, IXI,I l,l l])
#boardl = np.array([bandwidth,data, cpu,app,cloud vendor, location])
board2 _

np.array([rm.choice (Bandwidth) ,rm.choice (Data),rm.choice (CPU), rm.choice (Wifi)])
print ('print parameters')
printParameters (board?2)
#print ('print boardl"')
#printBoard (boardl)

#0 = {} #empty table
#QO[ (tuple (board2),1)] = 4

#print ("Q:",Q)
#print ("Q[ (tuple (board2),1)]1:",Q[ (tuple (board2),1)])
#print ("Q.get ((tuple (board2),1),42):",Q.get ((tuple (board2),1),42))

#rho = 0.1 # learning rate
#Q[ (tuple (board),1)] += rho * (-1 - QI (tuple(board),1)])
*

#print ("after Q[ (tuple(board),1)] += rho (-1 - Q[ (tuple(board),1)1):",
Q[ (tuple (board),1)])

#print ('rm.choice (1list (enumerate (Out))) :',rm.choice (list (enumerate (Out))))

#print ('rm.choice (list (enumerate (Out))) [0]:',rm.choice (list (enumerate (Out))) [0])

#print ('list (enumerate (Out)) :',list (enumerate (Out)))

#print ('list (Out):',list (Out))

#print ('Out:',Out)

#print ('list (enumerate (Out)) :',list (enumerate (Out)))

#print ('list (enumerate (Out)) [:0]:',list (enumerate (Out)) [:0])

#print ("'np.random.uniform() :',np.random.uniform())

#random_ index = rm.randrange (0,len (Out))
#print ('Out[random index]:',Out[random index])

def epsilonGreedy(epsilon, Q, board, Out):
#validMoves = np.where(board == ' ') [0]
validMoves = np.array([0,1,2])
#print ('validMoves:',validMoves)
if np.random.uniform() < epsilon:
# Random Move
tp = rm.choice(list (enumerate (Out))) [0]
print('tp:', tp)
return tp
#return rm.choice (list (enumerate (Out))) [0]
#return np.random.choice (validMoves)
else:
# Greedy Move
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Qs = np.array([Q.get ((tuple (board),m), 0) for m in validMoves])
tp = validMoves|[ np.argmax(Qs) ]

print('tp:', tp)

return tp

#return validMoves[ np.argmax (Qs) ]

#print ('epsilonGreedy (0.8,Q,board2,0ut) :',epsilonGreedy (0.8, Q,board2,0ut))

print ('here goes part before for loop')

maxGames = 200

rho = 0.2
epsilonDecayRate = 0.99
epsilon = 0.8

graphics = True

showMoves = not graphics
outcomes = np.zeros (maxGames)
epsilons = np.zeros (maxGames)
Q = {}

if graphics:
fig = plt.Figure(figsize=(10,10))

print ('here goes a for loop')
#for 1 in range (60):

#print (1)
#location = np.random.randint (1,10, size =1)
# print ("location=",location[i])
# board2
np.array ([bandwidth[i],data[i],cpuli],app[i],cloud vendor[i],location[i]])
# printBoard (board?2)
#board?2

np.array([rm.choice (Bandwidth) ,rm.choice (Data), rm.choice (CPU), rm.choice (Wifi)])
for nGames in range (maxGames) :
epsilon *= epsilonDecayRate
epsilons[nGames] = epsilon
step = 0
move = epsilonGreedy(epsilon, Q, board2, Out)
board2 all = {}
board2
np.array([rm.choice (Bandwidth) ,rm.choice (Data), rm.choice (CPU), rm.choice (Wifi)])
board2 all[nGames] = board2
if (tuple(board2),move) not in Q:

Q[ (tuple (board2),move)] = 0 # initial Q value for new board,move
if board2[3] == 'On':
print ('Wifi is ON')
#if board2[0] == 'Speed Low' and 'Speed Normal':
if board2[0] == 'Speed Low' or board2[0] == 'Speed Normal':

print ('Bandwidth = Speed Low or Speed Normal')

if board2[1l] == 'Data Small' and board2[2] == 'CPU High':
print ('Data Small and CPU High so you can offload')
Q[ (tuple (board2),1)] =1

Q[ (tuple (board2),2)] = 0

Q[ (tuple (board2),0)] = -1
else:

print ("Don\'t offload')

Q[ (tuple (board2),1)] = 0

Q[ (tuple (board2),2)] = -1

Q[ (tuple (board2),0)]

49



else:
if board2[2] 'CPU Normal' or board2[2]
print ('CPU Normal or CPU High so you can

Q[ (tuple (board2),1)] =1
Q[ (tuple (board2),2)] =0
Q[ (tuple (board2),0)] = -1

else:
print ('Don\'t offload
Q[ (tuple (board2),1)]
Q[ (tuple (board2),2)]
Q[ (tuple (board2),0)]

(this is second if
=0
-1

else:
print ('Wifi is OFF')
if board2[0] == 'Speed Low' or board2[0]
print ('Bandwidth

Speed Low or Speed Normal

'CPU_High':
offload’")

loop) ")

== 'Speed Normal':

when wifi is off"'")

if board2[1] == 'Data Small' and board2[2] == 'CPU High':
print ('Data Small and CPU _High so you can offload:0ut2')
Q[ (tuple(board2),1)] = 0
Q[ (tuple (board2),2)] =1
Q[ (tuple(board2),0)] = -1

else:
print ('Don\'t offload when wifi is off'")

Q[ (tuple (board2),1)] = -1
Q[ (tuple (board2),2)] = -1
Q[ (tuple (board2),0)] =1

else:
if board2[2] 'CPU Normal'
print ('CPU Normal or

or board2[2]
CPU_High so you can

Q[ (tuple (board2),1)] =0
Q[ (tuple(board2),2)] =1
Q[ (tuple (board2),0)] = -1

else:

print ('Don\'t offload (this is second if

Q[ (tuple (board2),1)] = -1
Q[ (tuple (board2),2)] = -1
Q[ (tuple (board2),0)] =1
#print (1)
#location = np.random.randint (1,10, size =1)
# print ("location=",location[i])
#

"CPU_High':
offload:0ut2")

loop when wifi is off)"')

board2

np.array ([bandwidth[i],data[i],cpuli],app[i],cloud vendor[i],location[i]])

# printBoard (board2)

print ('after for loop')
printBoardQs (board2, Q)

outcomes = np.random.choice([-1,0,1],replace=True,size=(1
#print ('outcomes[:10]:',outcomes[:10])
#print ('Q:"',Q)

#print ('Q.shape:',Q.shape) //did not work
#print ('Q.values () :\n',Q.values())

#print ('Q.keys () :\n\n',Q.keys ())

#print ('Q.items () :\n\n',Q.items ())

#for k in Q.keys():

# print(k, Q[k])

#outcomes = np.array[Q.values()]

#print ('outcomes[:10]:',outcomes[:10])
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names = ['id', 'data']
formats = ['f8','f8"']
dtype = dict(names = names, formats=formats)
array=np.array([[key,val] for (key,val) in Q.iteritems()],dtype)
print (repr (array))
#plt.plot(Q)
def plotOutcomes (outcomes, epsilons, maxGames,nGames) :
if nGames==0:

return
nBins = 100
nPer = int (maxGames/nBins)
outcomeRows = outcomes.reshape((-1,nPer))
outcomeRows = outcomeRows|[:int (nGames/float (nPer))+1, :]
avgs = np.mean (outcomeRows,axis=1)
plt.subplot(3,1,1)
xs = np.linspace (nPer,nGames, len (avgs))

plt.plot(xs, avgs)

plt.xlabel ('Games"')

plt.ylabel ('Mean of Outcomes (0=draw, 1=X win, -1=0 win)'"')
plt.title('Bins of {:d} Games'.format (nPer))
plt.subplot(3,1,2)

plt.plot (xs,np.sum(outcomeRows==-1,axis=1), 'r-',label="Losses"')
plt.plot (xs,np.sum(outcomeRows==0,axis=1), 'b-',label="Draws')
plt.plot (xs,np.sum(outcomeRows==1,axis=1), 'g-',label="Wins")
plt.legend(loc="center")

plt.ylabel ('Number of Games in Bins of {:d}'.format (nPer))
plt.subplot (3,1, 3)

plt.plot (epsilons|:nGames])

plt.ylabel ('$S\epsilons$")

#plt.Figure (figsize=(8,8))
#plotOutcomes (outcomes, np.zeros (1000),1000,1000)
#plt.show ()

D. RL3_RLstrategy.java

import numpy as np

import random as rm

import neuralnetworkQ as nn

import numpy as np

import matplotlib.pyplot as plt

from mpl toolkits.mplot3d import Axes3D
from matplotlib import cm

import copy

print( '"\N===—=— ")
print ( "Reinforcement Learning Example: Dynamic Marble on a Track")

# Define the problem
def reinforcement (s, sn):

goal = 5
return 0 if abs(sn[0]-goal) < 1 else -1
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def initialState():
return np.array([10*np.random.random sample(), 0.0])

def nextState(s,a):

S = copy.copy(s) # s[0] is position, s[l] is velocity. a is -1, 0 or 1
deltaT = 0.1 # Euler integration time step
s[0] += deltaT * s[1] # Update position
s[1l] += deltaT * (2 * a - 0.2 * s[1]) # Update velocity. Includes friction
if s[0] < O: # Bound next position. If at limits, set velocity to O.
s = [0,0]
elif s[0] > 10:
s = [10,0]

return s
validActions = (-1,0,1)

# training Loop

gamma = 0.5

nh = 5

nTrials = 50
nStepsPerTrial = 1000
nSCGIterations = 10
finalEpsilon = 0.01

epsilonDecay = np.exp(np.log(finalEpsilon)/ (nTrials)) # to produce this final value

nnet = nn.NeuralNetworkQ(3,nh,1, ((0,10), (=3,3), (=1,1)))

epsilon = 1
epsilonTrace = np.zeros (nTrials)
rtrace = np.zeros(nTrials)

for trial in range(nTrials):
# Collect nStepsPerRep samples of X, R, QOn, and Q, and update epsilon
X,R,0n,Q,epsilon = nnet.makeSamples (initialState,nextState,reinforcement,
validActions,nStepsPerTrial,epsilon)
# Update the Q neural network.
nnet.train (X,R,Qn, Q, gamma=gamma, nIterations=nSCGIterations)

weightPrecision=1le-8, errorPrecision=1le-10)

epsilon *= epsilonDecay

# Rest 1s for plotting
epsilonTrace[trial] = epsilon
rtrace[trial] = np.mean(R)

print('Trial',trial, 'mean R',np.mean(R))

## Plotting functions

def plotStatus(net,trial,epsilonTrace,rtrace):
plt.subplot(4,3,1)
plt.plot (epsilonTrace[:trial+1l])
plt.ylabel ("Random Action Probability ($\epsilon$)"™)
plt.ylim(0,1)
plt.subplot(4,3,2)
plt.plot(X[:,0])
plt.plot ([0,X.shapel0]], [5,5],'--',alpha=0.5,1w=5)
plt.ylabel ("$xS$")
plt.ylim(-1,11)
#gs = [[net.use([s,0,a]) for a in actions] for s in range(1l1l)]
gs = net.use(np.array([[s,0,a] for a in validActions for s in range(1l1l)]))
#print np.hstack((gs,-l+np.argmax (gs,axis=1) .reshape((-1,1))))
plt.subplot (4, 3, 3)
acts = ["L","0","R"]
actsiByState = np.argmax(gs.reshape((len(validActions),-1)),axis=0)
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for i in range(11):
plt.text (i,0,acts[actsiByState[i]])
plt.xlim(-1,11)
plt.ylim(-1,1)
plt.text(2,0.2,"Policy for Zero Velocity")
plt.axis ("off")
plt.subplot(4,3,4)
plt.plot(rtracel[:trial+l],alpha=0.5)
#plt.plot (np.convolve (rtrace[:trial+l],np.array([0.02]*50),mode="valid"))
binSize = 20
if trial+l > binSize:
# Calculate mean of every bin of binSize reinforcement values

smoothed =
np.mean (rtrace[:int (trial/binSize) *binSize] .reshape ((int(trial/binSize),binSize)),axis
=1)
plt.plot (np.arange (1, 1+int (trial/binSize))*binSize, smoothed)

plt.ylabel ("Mean reinforcement")

plt.subplot(4,3,5)

plt.plot (X[:,0],X[:,1])

plt.plot (X[0,0],X[0,1],"'0")

plt.xlabel ("S$x$")

plt.ylabel ("$\dot{x}$")

plt.fill between([4,6],[-5,-5],[5,5],color="red",alpha=0.3)

plt.xlim(-1,11)

plt.ylim(-5,5)

plt.subplot (4, 3,6)

net.draw (["$xS$","$\dot{x}$","Sas$"], ["Q"])

plt.subplot(4,3,7)

n = 20

positions = np.linspace(0,10,n)

velocities = np.linspace(-5,5,n)

xs,ys = np.meshgrid(positions,velocities)

#states = np.vstack((xs.flat,ys.flat)).T

#gs = [net.use(np.hstack((states,np.ones((states.shape[0],1))*act))) for act in
actions]

xsflat = xs.flat

ysflat = ys.flat

gs = net.use(np.array([[xsflat[i],ysflat[i],a]l] for a in validActions for 1 in
range (len(xsflat))]))

#gs = np.array(gs) .squeeze().T

gs = gs.reshape((len(validActions),-1)).T

gsmax = np.max(gs,axis=1) .reshape (xs.shape)

cs = plt.contourf (xs,ys,gsmax)

plt.colorbar (cs)

plt.xlabel ("$x$")

plt.ylabel ("S$\dot{x}s")

plt.title("Max Q")

plt.subplot (4,3, 8)

acts = np.array(validActions) [np.argmax (gs,axis=1)].reshape (xs.shape)
cs = plt.contourf (xs,ys,acts,[-2, -0.5, 0.5, 2])
plt.colorbar (cs)

plt.xlabel ("$x$")

plt.ylabel ("$\dot{x}$")

plt.title ("Actions")

s = plt.subplot(4,3,10)

rect = s.get position()

ax = Axes3D(plt.gcf(),rect=rect)

ax.plot surface(xs, ys,gsmax,cstride=1,rstride=1,cmap=cm.jet, linewidth=0)
ax.set xlabel ("$x3$")

ax.set_ylabel ("$\dot {x}$")

#ax.set zlabel ("Max Q")
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plt.title("Max Q")

s = plt.subplot(4,3,11)

rect = s.get position()

ax = Axes3D(plt.gcf (), rect=rect)

ax.plot surface(xs,ys,acts,cstride=1,rstride=1, cmap=cm.jet, linewidth=0)
ax.set xlabel ("$x$")

ax.set ylabel ("$\dot{x}$")

#ax.set zlabel ("Action")

plt.title("Action")

def testIt (Qnet,nTrials,nStepsPerTrial):
xs = np.linspace(0,10,nTrials)
plt.subplot(4,3,12)
for x in xs:
s = [x,0] ## 0 velocity
xtrace = np.zeros((nStepsPerTrial, 2))
for step in range (nStepsPerTrial):
a, = Qnet.epsilonGreedy(s,validActions,0.0) # epsilon = 0
s = nextState(s,a)
xtrace[step,:] = s
plt.plot (xtrace[:,0],xtrace[:,1])
plt.xlim(-1,11)
plt.ylim(-5,5)
plt.plot ([5,5]1,[-5,5],"'--"',alpha=0.5, 1w=5)
plt.ylabel ('$\dot{x}$")
plt.xlabel ('$x$")
plt.title('State Trajectories for $\epsilon=0$")

plotStatus (nnet,nTrials,epsilonTrace, rtrace)
testIt (nnet,10,500)

plt.show()

E. A5. Mobile-AWS cloud interaction -1

Upload to S3

Here is the code we use to upload the picture files:
def push picture to s3(id):
try:
import boto
from offloading.s3.key import Key
# set offloading lib debug to critical
logging.getLogger ('offloading') .setlevel (logging.CRITICAL)
bucket name = settings.MyCloudBucketOffloading
# connect to the bucket
conn = boto.connect s3(settings.AWS ACCESS KEY ID,
settings.AWS SECRET ACCESS KEY)

bucket = conn.get bucket (bucket name)
# go through each version of the file
key = '$s.png' % id
fn = '/var/www/data/%$s.png' % id
# create a key to keep track of our file in the storage
k = Key (bucket)
k.key = key
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.set _contents from filename (fn)
we need to make it public so it can be accessed publicly
using a URL like http://s3.amazonaws.com/bucket name/key
.make public()
remove the file from the web server

os.remove (fn)
except:

T

Download from S3

We can access the file using the URL: http://s3.amazonaws.com/bucket name/key

Here is the script to do that:
import boto
import sys, os
from offloading.s3.key import Key

LOCAL PATH = '/backup/s3/'
AWS ACCESS KEY ID = some key
AWS SECRET ACCESS KEY = some secret key

bucket name = 'MyCloudBucketOffloading'
# connect to the bucket
conn = Offloading.connect s3(AWS ACCESS KEY ID,
AWS_SECRET ACCESS_KEY)
bucket = conn.get bucket (bucket name)
# go through the list of files
bucket list = bucket.list()
for 1 in bucket list:
keyString = str(l.key)
# check if file exists locally, if not: download it
if not os.path.exists (LOCAL PATH+keyString):
l.get contents to filename (LOCAL PATH+keyString)

F. A6. Mobile-AWS cloud interaction - 2

aws s3 mb s3://MyCloudBucketOffloading // create a bucket on AWS cloud
aws s3 cp stuff/firstfile.txt s3://MyCloudBucketOffloading // upload the file on

AWS cloud
aws s3 1s s3://MyCloudBucketOffloading // see all the file which are present in

Bucket

aws s3 sync . s3://MyCloudBucketOffloading/stuff - - delete //sync files on cloud
bucket
aws s3 rb s3://MyCloudBucketOffloading - - force // delete the bucket

G. A7. LDAStrategy.java

// Author: Aditya Khune

// Description : Describes the LDA algorithm based on Dr Charles Anderson’s code
// in CS 545, 2014



import java.util.*;
import java.awt.*;

/**
* Implements the Linear Discriminant Analysis Algorithm
*/
public class AlgorithmLDA extends Algorithm
{
// Public Data Members
//
Vector<MyPoint> decision regions d;
Vector<MyPoint> support vectors d;
int output canvas d[][];

Matrix
Matrix
Matrix
Matrix
Matrix

W;
LDA;
CLDA;
B;

S;

Matrix invW;

/**

* @return Returns true.
*/
public boolean initialize()

{

// algo_id = "AlgorithmLDA";

// Debug

//

// System.out.println(algo id + " initialize()");

step count = 2;

point means d

new Vector<MyPoint>();

description d new Vector<String>();

// Initialize local Matrix objects

//
W = new Matrix();
LDA = new Matrix();
CLDA = new Matrix();
inviW = new Matrix () ;
// Add the process description for the LDA algorithm
//
if (description d.size() == 0)
{
String str = new String (" 0. Initialize the original data.");
description d.addElement (str);
str = new String(" 2. Computing the means and covariance.");

description d.addElement (str);

str new String (" 3.
independent LDA algorithm.");

description d.addElement (str);

Computing the decision regions based on the class

}
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// append message to process box
//
pro box d.appendMessage ("Class Independent LDA Analysis:" + "\n");

// set the data points for this algorithm

//
// setl d = (Vector<MyPoint>)data points d.dsetl.clone();
// set2_d = (Vector)data points d.dset2.clone();

setl d = data points d.dsetl;
set2 d = data points d.dset2;

// set the step index
//
step index d = 0;

// append message to process box
//
pro_box d.appendMessage ( (String)description d.get(step index d));

// exit initialize
//
return true;

}
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3D

AWS

AWS S3

AWS EC2

RL

GPS

CPU

ADB

SDK

Wi-Fi

2G

3G

HSPA

HSPA+

4G

ABBREVATIONS

3-Dimensional

Amazon Web Service

Amazon Web Services Simple Storage Service

Amazon Web Services Elastic Cloud Compute

Reinforcement Learning

Global Positioning System

Central Processing Unit

Android Device Bridge

Software Development Kit

Wireless Fidelity

Second-generation wireless telephone technology

Third-generation wireless telephone technology

High Speed Packet Access

Evolved HSPA or 4G

Fourth-generation wireless telephone technology

58



oC

VM

Offloading Candidate

Virtual Machine
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