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ABSTRACT 
 
 
 

AN INTELLIGENT, MOBILE NETWORK AWARE MIDDLEWARE FRAMEWORK 

FOR ENERGY EFFICIENT OFFLOADING IN SMARTPHONES 

 
 
 

Offloading mobile computations is an innovative technique that is being explored by researchers 

for reducing energy consumption in mobile devices and for achieving better application response 

time. Offloading refers to the act of transferring computations from a mobile device to servers in 

the cloud. There are many challenges in this domain that are not dealt with effectively yet, and 

thus offloading is far from being adopted in the design of current mobile architectures. We believe 

that there is a need to verify the effectiveness of computation offloading in terms of both response 

time and energy consumption, to highlight its potential in real smartphone applications. The effect 

of varying network technologies such as 3G, 4G, and Wi-Fi on the performance of offloading 

systems is also a major concern that needs to be addressed. In this thesis, we study the behavior of 

a set of real smartphone applications, in both local and offload processing modes. Our experiments 

identify the advantages and disadvantages of offloading for various mobile networks. Further, we 

propose a middleware framework that uses Reinforcement Learning to make reward-based 

offloading decisions effectively. Our framework allows a smartphone to consider suitable 

contextual information to determine when it makes sense to offload, and to select between 

available networks (3G, 4G, or Wi-Fi) when offloading mode is active. We tested our framework 

in both simulated and real environments, across various applications, to demonstrate how energy 

consumption can be minimized in mobile systems that are capable of supporting offloading. 
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CHAPTER 1 

INTRODUCTION 

 
 
 
Faster wireless network speeds and rapid innovations in mobile technologies have changed the 

way we use our computers. It is estimated that 207.2 million people in the U.S. own a smartphone 

today while the number of smartphone users worldwide is estimated to be more than two billion 

[1].  Figure 1.1 shows the projected number of smartphone users until the year 2019. These mobile 

devices are not only used for making voice calls but are also efficiently able to run complex mobile 

applications that interact with the Internet. The volume of data being accessed and processed by 

smartphones, and the sophistication of mobile applications is rapidly increasing over time. 

However, the rapid evolution in hardware and software capabilities of mobile devices has not been 

paralleled by a similar advance in battery technology [2]. As expected, high end mobile 

applications increase the burden on the battery life of smartphones. For example, it has been shown 

Fig. 1.1 Number of smartphone users [1] 
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that a GPS based smartphone app can drain a mobile phone’s battery completely within seven 

hours [3]. 

 

1.1 Mobile cloud computing 

 
Cloud computing has drawn the attention of mobile technologies due to the increasing demand 

of applications for processing power, storage, and energy. Cloud computing promises availability 

of virtually infinite resources and it operates with utility computing model, where consumers pay 

based on their usage. Today, a number of applications are already using mobile cloud computing, 

for example social networking apps, location based services, sensor based health-care apps, 

gaming apps etc.  

 

Fig. 1.2 Mobile Cloud Computing [38] 
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1.2 Offloading smartphone applications 

 
A promising solution that is being considered to support high end mobile applications is to 

offload mobile computations to the cloud [6-11]. Offloading is an opportunistic process that relies 

on cloud servers to execute the functionality of an application that typically runs on a mobile 

device. The terms “cyber foraging” and “surrogate computing” are also sometimes used to describe 

such computation offloading. Such computation offloading is being considered today as a means 

to save energy and increase the responsiveness of mobile applications. The potential of 

computation offloading lies in the ability to sustain power hungry applications by releasing the 

energy consuming resources of the smartphone from intensive processing.  

In this thesis, we study the behavior of a set of popular smartphone applications, in both local 

and offload processing modes. This study is crucial to examine the pros and cons of offloading 

when using various wireless networks. Further, we propose a novel middleware framework that 

uses a reward-based machine-learning technique called Reinforcement Learning (RL) to make 

offloading decisions effectively. The proposed framework considers various types of information 

on the mobile device, such as network type, network bandwidth, user-context, etc., to decide when 

to offload in order to minimize energy consumption. Our strategy also helps to select between 

available networks (3G, 4G, or Wi-Fi) when offloading mode is active. Our experiments with real 

applications on a smartphone highlight the potential of our framework to minimize energy in 

mobile devices that are capable of supporting offloading. 

 

1.3 Outline 

 
The rest of the thesis is organized as follows. Chapter 2 gives an overview of related prior works 

in offloading. In our literature review, we discuss important findings and shortcomings of related 
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publications and give an idea of what our framework can offer in order to improve offloading 

system in mobile devices. In chapter 3, we briefly discuss major challenges that are faced in 

building efficient offloading system. Chapter 4 presents a comprehensive application oriented 

study of offloading using available networks such as 3G, 4G and, Wi-Fi. We selected a set of five 

popular smartphone applications for our experiments; we present our findings based on those 

results in the last subsection of chapter 4. In chapter 5, we discuss the need for an adaptive 

offloading approach for making an effective offloading decision. In chapter 6, we present a 

middleware framework for efficient offloading of mobile applications. Our proposed framework 

is based on machine learning technique called as reinforcement learning. We conducted a series 

of experiments in chapter 7 to evaluate the efficacy of our proposed framework as compared to a 

related prior work. Chapter 6 concludes the thesis with a summary. The appendix offers the source 

code of the strategies presented in our thesis. 
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CHAPTER 2 

PRIOR WORK 

 
 
 
In this Chapter, we briefly review the related literature in the field of mobile computation 

offloading, illustrate the difference between other work and ours, and finally suggest some 

improvements in the offloading techniques presented in the related literature. 

Kumar et al. [4] presented a mathematical analysis of offloading. Broadly, the energy saved by 

computation offloading depends on the amount of computation to be performed (C), the amount of 

data to be transmitted (D) and the wireless network bandwidth (B). If (D/C) is low, then it was 

claimed that offloading can save energy. Figure 2.1 briefly summarizes findings of the 

mathematical analysis; offloading is beneficial for compute intensive applications which use 

minimal communication with the cloud servers. In our experiments presented in chapter 4 of this 

thesis, we study other possible factors that affect offloading besides computations and 

communication. 

Fig. 2.1 Offloading communication vs computation [4] 
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Many prior research efforts have proposed strategies to empower mobile devices with offloading 

capabilities. Flores et al. [10] proposed a fuzzy decision engine for code offloading. The mobile 

device uses the decision engine based on fuzzy logic to combine various factors and decide when 

to offload. Problem with fuzzy decision engine approach is that the app developers will have to 

customize the decision engines depending upon which part of the world the device lies to account 

for variations in the different technologies around the world, for example in India, a country with 

limited broadband infrastructure, 2G remains in active use, while the U.S. and Mexico lean heavily 

on Wi-Fi connections. Our framework proposed in this thesis considers many more factors than 

these works, such as such as network type, data size, and degree of computations when making 

decisions about offloading. 

Fig. 2.2 Offloading architecture [5] 
 

Fig. 4.2 Monsoon power monitor setupFig. 2.2 Offloading 
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Offloading relies on remote servers to execute code delegated by a mobile device. In this process, 

the mobile is granted the local decision logic to identify resource-intensive portions of code, such 

that the mobile can estimate where the execution of code will require less computational effort 

(remote or local), which leads the device to save energy.  Figure 2.2 shows an offloading 

architecture that is presented by Flores et al. [5]. This framework monitors multiple parameters of 

a smartphone, such as available bandwidth, data size to transmit, and energy to execute the code. 

The system considers these parameters to know when to offload, what to offload (portions of code: 

Method or Thread). The architecture consists of two parts, a client and a server. The client is 

composed of a code profiler, system profilers, and a decision engine. The server contains the 

surrogate platform to invoke and execute code. Code partitioning is a complex process that requires 

selection of the application code to be offloaded referred as offloading candidate (OC) in the figure.   

Chun et al. [7] have proposed CloneCloud, which is a system for elastic execution between 

mobile devices and the cloud, through dynamic application partitioning, where a thread of the 

application is migrated to a clone of the smartphone in the cloud. Application partitioning is based 

on static analysis to specify the migration and reintegration points in the application. 

Cuervo et.al [6] proposed a system called MAUI, based on code annotations to specify which 

methods from a class can be offloaded. Annotations are introduced in the source code by the 

developer during the development phase. At runtime, methods are identified by the MAUI profiler, 

which performs the offloading of the methods, if the bandwidth of the network and data transfer 

conditions are ideal. MAUI aims to optimize both the energy consumption and execution time using 

an optimization solver. However, this annotation method puts an extra burden on the already 

complex mobile application development phase. Moreover, such annotations can cause unnecessary 

code offloading that drains energy [5]. To reduce the complexity of the application development 
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process, we suggest to transfer the entire application processing in the cloud rather than utilizing a 

design-time code partitioning method. Further, we propose a novel adaptive reward-based learning 

approach to make smart offloading decisions that can achieve energy efficiency with offloading 

and also improve application response time. 
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CHAPTER 3 

CHALLENGES WITH OFFLOADING 

 
 
 
In spite of existing research highlighting the potential of offloading in mobile devices, current 

offloading techniques are far from being adopted widely in mobile systems. The implementation of 

these computation offloading techniques for many real world mobile applications in real-world 

scenarios has not shown promising results [8], with the mobile device spending more energy in the 

offloading process than the energy savings achieved due to computing on servers in an offloaded 

manner. 

The granularity of offloading is an important decision. Code partitioning techniques such as in 

[6] rely on the expertise of the software developer to annotate portions of an application statically 

to guide the offloading process. Thus the offloading occurs at a sub-application granularity. It is 

however a difficult task to evaluate runtime properties of code to determine how best to annotate 

code within an application that can benefit from offloading. Code can often have non-deterministic 

behavior during runtime (e.g., the run time of a piece of code can be impacted by the thermal and 

battery/energy conserving strategies employed by the processor or operating system), therefore it 

is difficult to estimate the suitability of offloading in many cases, especially at a finer, sub-

application granularity. Other factors such as the user input, type of application, execution 

environment, and available memory also create runtime uncertainty, limiting the effectiveness of 

sub-application partitioning based offloading [5, 8]. We show how we addressed some of these 

challenges by using a Reinforcement Learning based decision engine to determine when to invoke 

the offloading process on a mobile device at an application-level granularity.  
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Offloading decision engines must consider not only the potential energy savings from offloading 

but also how the response time of the application is impacted by offloading. An effective offloading 

decision to offload processing to the cloud must reduce energy without significantly increasing 

response time. Such decisions are heavily impacted by wireless network inconsistency. The power 

consumed by the network radio interface is known to contribute a considerable fraction of the total 

device power, and it varies depending on signal strength [32]. With the recent advent of high 

bandwidth 4G networks, there has been increased interest in the offloading domain, but from our 

experiments and results presented in later chapters of this thesis, we noticed that 4G consumes more 

energy than Wi-Fi and 3G. Some of the prior works [13] in this area also confirm this observation.   

The network quality of a 4G connection at a mobile device’s location greatly affects the battery 

life. If the device is in the area that does not have 4G coverage, there is no advantage to a 4G 

interface, and if 4G network search is not disabled, then the radio's search for a non-existent signal 

will drain the battery quickly. In case of a weak signal, the device uses more power to send and 

receive data, to and from the network. A strong 4G signal uses less battery, but the biggest problem 

is the constant switching from 4G to 3G and back again. Also, throughout a typical day, at different 

times, the performance of a wireless network varies because of changing traffic load on the network. 

We refer to all such problems due to the mobile network as ‘network inconsistency’ problems. 

To counter the impact of network inconsistency on a mobile device and to optimize the 

offloading experience, we propose a novel offloading framework based on Reinforcement 

Learning. This framework not only decides when to offload, but also helps a mobile device select 

between the different available wireless networks, to achieve consistent improvements by using 

offloading even in the presence of varying network conditions. In the chapter 6, we describe our 

framework in detail. 
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CHAPTER 4 

OFFLOADING PERFORMANCE OF MOBILE APPLICATIONS 

 
 
 
To gain deeper insights of offloading system it is very important to understand the behavior of 

real mobile applications. We surveyed various compute intensive applications that are likely to 

benefit from offloading, as suggested by important publications in this area [3-10]. These 

applications are power hungry and consume large amount of computational resources. Applications 

mentioned in relevant publications are as follows: matrix calculations, image processing, web-

browsers, torrent downloads, image search, file compressors, online games, language translators, 

speech recognizers, optical character recognizers, video processing and editing, navigation, face 

recognition, augmented reality, etc.  

In this chapter, we analyzed the performance implications of offloading by comparing two 

scenarios – one where all computations are performed only on the mobile device without using the 

cloud at all, and the other where there was a complete reliance on the cloud computation, with 

minimal computations on the mobile device. We selected five diverse and popular commercially 

available smartphone applications for our experiment. 

Our evaluation primarily focuses on two metrics: (i) battery consumption, and (ii) response time. 

We have compared the results obtained with these applications for 3G, 4G (HSPA+), and Wi-Fi 

wireless networks. This comparative study was meant to help us identify various factors that need 

to be considered for the design of offloading strategies for mobile applications, e.g., identifying the 

best possible network over which computation can be offloaded to the cloud for any particular 
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application at a specific location. In the next sections of this chapter we describe the experimental 

setup and the results in detail. Our findings are discussed in the last section of this chapter. 

 

4.1 Experimental Setup 

 
The power estimation models required to estimate battery consumption were built using power 

measurements on the LG G3 device running the Android OS version 5.0.1. The contact between 

the smartphone and the battery was instrumented, and current was measured using the Monsoon 

Solutions power monitor [18]. The power monitor setup is shown in figure 4.1. The monitor 

connects to a computer (Lenovo ThinkPad E450, Intel core i5, 4GB memory) running the Monsoon 

Solutions power tool software, which allows real-time current and power measurements.  

 

We also used the Android Device Bridge (ADB), a software tool to perform battery drain 

measurements on the Android device. The experiments were performed using AT&T's 3G, 4G 

(HSPA+) network, and Comcast's 100 Mbps (2.4 GHz Band) Wi-Fi network. ADB was also used 

Fig. 4.6 Monsoon power monitor setup 
 

Fig. 4.2 Average battery consumption and average response time 
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for the response time analysis of smartphone applications. We used Amazon Web Services (AWS) 

[37] for our mobile-cloud interaction analysis of applications.  

We conducted these experiments around Colorado State University’s campus in Fort Collins, 

Colorado, USA. Before conducting our experiments, we followed a few preconditions and rules to 

ensure meaningful and accurate results while avoiding human error. These rules are as follows: 

 

 Set the device’s screen to a consistent and fixed brightness level, to minimize 

interference from varying screen power consumption (e.g., for different ambient light 

scenarios) in our measurements; we used the lowest screen brightness level; 

 Kill all background processes before measurements; 

 Repeat each experiment over 15 iterations to improve result confidence and minimize 

human error; 

 

We selected five diverse commercially available smartphone applications for our experiments:   

 

 Matrix operations 

 Internet browser 

 Zipper (file compression app) 

 Voice recognition and translation app 

 Torrent (file download app) 

 

The next subsection (Section 4.2) gives the details of all the applications considered and the 

results of their execution for the two scenarios (with and without offloading) outlined earlier. While 

analyzing these results it is important to note the terminology that we used to define the state of an 
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application. A “locally run application” is one where the computations are performed on the mobile 

device only; whereas an “offloaded application” is one that relies entirely on cloud-based 

computations.  

 

4.2 Experimental Results 

 
4.2.1 Matrix operation app 
 
The matrix calculator app [30] runs on Android based devices. The user is first asked to enter 

the size of the matrix and all the digits of the matrix manually, and then the user can direct the 

application to calculate the inverse of that matrix. This application calculates matrix inverse using 

the adjoint method.  For our experiments, we used a set of matrix sizes from 3×3 to 9×9. For the 

cloud part, we used Amazon Web Services (AWS) cloud computation instance EC2 [37] and web 

based matrix calculation tools [30]. Figure 4.2 shows the results from our experiment. 

The energy consumption in local processing mode is equal to the battery drain in the device 

while performing the matrix operation; whereas in the cloud mode, energy consumption is the total 

of battery drain during the idle time of the mobile device while the operation is being performed 

remotely and the time for data transfer between the mobile device and the cloud. It can be observed 

that in the local processing mode, the battery consumption of the smartphone increases manifolds 

with the increasing matrix size, largely because there is an increase in the CPU's energy 

consumption as the number of floating point operations increase. 

Local processing is found to be suitable for operations on small matrices (i.e., 3×3 and 5×5) 

allowing for low energy consumption on the device and low response time. On the other hand, 
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offloading the task of matrix calculation to the cloud saves energy and also reduces response time 

when the matrix size increases. 

 

The device in offloading mode saves maximum energy (and also has minimum response time) 

when used with Wi-Fi. The results show that 3G performs slightly better than 4G as far as energy 

is concerned, whereas, 4G gives better response time than 3G for the same operations. 

 

Fig. 4.2 Average battery consumption and average response time on a 
mobile device for a matrix operation with varying matrix sizes 
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4.2.2 Internet browser app 
 
Cloud-based web browsers use a split architecture where processing of a mobile web browser is 

offloaded to the cloud partially. This involves cloud support for most browsing functionalities such 

as execution of JavaScript, image transcoding and compression, and parsing and rendering of web 

pages. For our experiments, we used the Mozilla Firefox [33] and Puffin [31] browsers. Puffin is a 

commercially available cloud based mobile browser and Mozilla Firefox is a local browser 

available from the Google Play store. Our experiments are performed for a data range starting as 

low as 150 Kib to a session involving 5 MBs of data transfer to load the web pages. Figure 4.3 

shows the results obtained by measuring data transfer (response) time and energy consumed by 

these browsers for loading two different websites: (i) www.yahoo.com and (ii) www.wikipedia.org. 

For example, the plots in figure 4.3 show that the response-time/battery-consumption of a 

browser session with around 3 MB data usage is sometimes more than that of a session which uses 

5MB data usage. To counter such network inconsistency problems, we conducted 15 iterations of 

each experiment across different locations and at different times of the day. In general, our results 

show that cloud based web browsers are faster but more expensive in terms of energy consumption. 

For small data transfers it is suitable to use web browsers with local processing to save energy. For 

a typical user, the data transfer amount during a browsing session does not go beyond 5-6 MBs for 

a single session. Thus for most websites in typical usage scenarios, the local browser will provide 

greater energy savings than when using offloading.  

We observed that the results obtained fluctuated significantly due to network inconsistency [32]. 

The response time results indicate that for larger data usage scenarios, offloading can be beneficial. 

4G provides lower response time but also consumes more energy than 3G for the offloading 
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scenarios. Wi-Fi outperforms both 3G and 4G in offloading mode, for response time and energy 

consumption. 

 

 

4.2.3 Zipper app 
 
Zipping large files in order to compress them is a widely used functionality on most computers. 

Zipper [22] is an Android app that compresses files locally on a mobile device. For the cloud based 

file compression, we used an AWS cloud instance and zipping tool available on the web [14].  

Fig. 4.3 Average battery consumption and response time on a mobile 
device for an internet browsing session with varying data sizes 
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Figure 4.4 shows the results for energy consumption and the response time when zipping various 

PDF and Word document files ranging in size from 15MB to 255MB. It can be observed that for 

the zipping operation, local computation is most efficient in terms of energy consumption. 

Offloading provides benefits only in response time, and that too only for large file sizes. When 

offloading, 4G consumes more energy than 3G for smaller file sizes (15-105 MBs) whereas 3G 

consumes more energy than 4G for larger file sizes (175-255 MBs). 4G is faster than 3G but slower 

than Wi-Fi. Wi-Fi gives best results in terms of both energy and response time when offloading. 

 

 

Fig. 4.4 Average battery consumption and response time on a mobile 
device for zipping/compressing files of varying sizes 
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4.2.4 Voice recognition and translation app 
 
There are several popular smartphone apps for voice recognition and translation available from 

app stores, for instance Google Translate [23] for Android and Speak & Translate [24] for iOS. 

Google Translate is a cloud-based app, which also has an offline translation mode that does local 

processing on the device with a small neural network. The application allows for downloading an 

installation package to support the local processing mode. It makes use of the statistical machine 

translation method, which relies on large amounts of data in order to train a machine translation 

engine.  

 

Figure 4.5 shows the energy consumption of the Google Translate app for a range of words. 

These measurements were recorded while translating 20-140 words from English (US) to Marathi 

language. Table 4.1 shows the prediction accuracies for local and offloaded processing. From the 

results in figure 4.5, we can clearly observe that the local processing mode is more efficient in terms 

of energy consumption as compared to the cloud processing mode. From table 4.1, it can be seen 

Fig. 4.5 Average battery consumption on a mobile device for voice 
recognition and translation operations 
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that the cloud-processing mode shows better accuracy for voice recognition and translation. This is 

because the offloaded voice data is processed by more powerful cloud servers, which are capable 

of running the complex computations of a larger neural network, and other machine learning 

algorithms for more efficient translation. 

Table 4.1 Accuracy of voice recognition and translation app for local vs. cloud processing 
 

 

 
 
 
 
 
 
 
 
 

4.2.4 Torrents app 
 
We used the Android based torrent app known as Flud [34] to perform torrent downloads in local 

mode. In the cloud mode, a cloud server is used as a BitTorrent client to download torrent pieces 

on behalf of a mobile device. While the cloud server downloads the torrent, the mobile device 

switches to the sleep mode until the cloud finishes the torrent processes, and then the cloud uploads 

because downloading torrent pieces from multiple torrent peers consumes more energy than 

downloading one burst of pieces from the cloud. the downloaded torrent file in a single process to 

the mobile device. Kelenyi et al. [16] presented a similar strategy for torrent file download. This 

strategy saves energy consumption in smartphones  

For our experiments, we used torrent file sizes ranging from 25MB to 85MB, with an AWS 

cloud instance being used for the cloud mode. Figure 4.6 shows the results of our experiments for 

this application. It is interesting to note that out of all the applications that we consider, offloaded 

processing proves to be most beneficial (in terms of both energy savings and response time) for the 

Processing Voice recognition and 
translation accuracy (%) 

Local processing 79.26 

Cloud processing 88.51 
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torrent download application, which is data intensive but not compute intensive. 4G is faster than 

3G but slower than Wi-Fi, which is consistent with observations for the other applications. 4G 

performs slightly better than 3G in terms of energy consumption for higher data sizes (45-85 MBs), 

but for smaller data sizes 3G is more energy efficient than 4G. 

 

4.3 Summary of findings 

 
The overall performance when offloading depends on various factors such as the amount of data 

usage by the application, wireless network signal type and strength, and the functionality of the 

Fig. 4.6 Average battery consumption and response time on a mobile 
device for torrent file download operations 
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application under consideration. In some of the previous publications in this area [4, 19], it was 

concluded that offloading is useful when an application is compute intensive and at the same time 

less data intensive. However, we found that this is not always the case. In our experiments with real 

mobile and cloud based applications, we found that cloud computing can be more beneficial for 

applications that may not be compute intensive, but are data intensive, e.g., the torrent application. 

Internet browsers are neither highly compute or data intensive, thus for such applications offloading 

does not perform well. 

To make offloading more practical, it is important to reduce the energy spent in the 

communication between the mobile device and the cloud. In our experiments, we compared energy 

consumption in mobile devices connected using different network types (3G, 4G, and Wi-Fi). This 

comparison shows that choosing the best possible network for offloading is a critical decision. One 

may assume that because 4G is fastest, we should always rely on it for offloading when Wi-Fi is 

not available. However, our results indicate that 4G is more power hungry than 3G most of the time.  

Network quality is also an important factor that cannot be ignored. We found that a perfect 3G-

coverage performs far better as opposed to poor 4G-coverage and vice versa. In the region of cell 

tower edges or where the coverage of 3G/4G ends, we found that the handover process results in 

high battery consumption. This is because the phone in such scenarios is constantly searching for 

the network, frequently scanning the wireless spectrum around it to determine which tower it should 

tether itself to. The more networks there are available to choose from, the more scans the device 

must perform. Some apps require a channel to be established between the base station and the 

mobile device at regular intervals, which also significantly drains the battery.  
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Another observation is that as 4G generally provides faster data rates than 3G, users tend to 

consume more data when connected on 4G than 3G; and this change in usage pattern leads to 

potentially greater battery drain for 4G capable mobile devices. The radio-networking interface in 

the 4G (or LTE) device is functionally a lot more sophisticated and does a lot more than a 3G 

interface. This network interface is the single biggest source of battery drain in a mobile device, 

apart from its display. Unlike the display however, the network interface radio is always on. 4G is 

particularly energy hungry because most of the 4G devices sold today use multi-input multi-output 

(MIMO) antenna technology, which supports multiple parallel transmissions (typical 4G phones 

have two antennas, each of which requires its own power amplifier).  

In conclusion, we observed from our experiments on real applications running on a real mobile 

device that the overall performance of offloading depends on various factors, such as the amount 

of data usage by the application, network signal type (3G, 4G, Wi-Fi), network signal strength, and 

the complexity of the functionality of the application under consideration. 
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CHAPTER 5 

ADAPTIVE OFFLOADING 

 
 
 
The decision to offload a mobile application to the cloud is a complex one due to the distributed 

nature and many real-time constraints of the overall system. For making an effective offloading 

decision, it is important to consider various factors as we discovered after our experimental analysis 

in the previous chapter. As these factors vary at run-time, there is a need for an adaptive offloading 

approach that takes the variations of these factors at run-time into consideration when making 

decisions. A few prior works [10, 11] propose an offloading decision engine that considers the 

contextual parameters on a device and on the cloud to make an offloading decision adaptively. 

Figure 5.1 shows an overview of the general framework for utilizing an offloading decision engine 

mechanism to govern offloading from the device. 

 

Fig. 5.1 Offloading decision engine mechanism 
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As an example, Flores et al. [10] proposed a fuzzy decision engine for code offloading. At the 

mobile platform level, the device uses a decision engine based on fuzzy logic, which is utilized to 

combine n number of variables (e.g., application data size, network bandwidth), which are to be 

obtained from the overall mobile cloud architecture. Fuzzy logic decision engine works in three 

steps namely: fuzzyfication, inference, and defuzzification as shown in figure 5.2.  

 

In fuzzification, input data is converted into linguistic variables, which are assigned to a specific 

membership function. A reasoning engine is applied to the variables, which makes an inference 

based on a set of rules. Lastly, the outputs from the reasoning engine are mapped to linguistic 

variable sets again in the defuzzification step. This offloading decision engine in [10] assumes a 

consistent network performance during offloading. However, as observed in our experiments, such 

consistency is difficult to achieve because of frequent mobile user movements and variable network 

quality (due to factors such as location of the device and load on the network [32]). Moreover, the 

offloading decision engine in [10] mainly emphasizes energy savings; however response time is 

Fig. 5.2 Fuzzy decision engine mechanism [10] 
 

Fig. 6.1 Reinforcement Learning (RL) based middleware framework for 
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also a crucial metric for various applications that should not be ignored, otherwise user quality of 

service degradations can become so severe that any effort to save energy becomes irrelevant. 

In the next chapter, we describe our reward-based middleware framework for adaptive 

offloading that overcomes the challenges mentioned above, to make more efficient decisions related 

to when and how to offload applications from a mobile device to the cloud.  
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CHAPTER 6 

MIDDLEWARE FRAMEWORK FOR EFFICENT OFFLOADING OF MOBILE 

APPLICATIONS 

 
 
 

       To simplify the mobile application development process and at the same time avoid problems 

caused by hard coded annotations, our framework proposes to transfer all the computation to the 

cloud instead of partial offloading. Our framework involves a novel decision engine on the mobile 

device that works together with a clone virtual machine (VM) of the mobile software environment 

to execute applications on cloud servers. Figure 6.1 shows a high level overview of the proposed 

framework. The framework is implemented at the middleware level in the software stack of the 

Android OS, and runs in the background as an Android service. As a result, our framework requires 

no changes to any of the applications or the Android OS. The runtime monitor component 

Fig. 6.1 Reinforcement Learning (RL) based middleware framework for 
efficient application offloading to cloud 
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periodically triggers the Reinforcement Learning (RL) module to generate/update a Q-learning 

table. At any time, this Q-table contains information to guide the decision for when and how to 

offload an application to the cloud, depending on multiple factors. The remainder of this section 

provides a detailed overview of the RL mechanism and our algorithm to generate and use the Q-

table.  

Reinforcement Learning (RL) is an unsupervised learning approach, which focuses on learning 

by interacting with an environment. In supervised learning a training set of correctly identified 

observations is available which is used to train a prediction model. RL differs from supervised 

learning in that correct input/output pairs of identified observations are never presented. In RL the 

state-action value function is a function of both state and action, and its value is a prediction of the 

expected sum of future reinforcements. The state-action value function is referred to as the Q 

function [36]. 

Fig. 6.2 Q-learning flow and Q-table 
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Figure 6.2 summarizes how a typical Q-learning reinforcement algorithm works. Q-learning is 

a reward based mechanism that generates a Q table with reinforcement or penalty values as shown 

in the figure 6.2. The figure illustrates a vector of Q table where the possible actions are offloading 

with 3G, 4G or Wi-Fi network, when the user is at different locations L1-L4. Actions are chosen 

and the penalty values are calculated for respective actions to update the Q table. 

When the system is at a defined state ݏ� at time t. Upon taking action �� from that state, we 

observe the one step reinforcement ݎ�+ଵ, and the next state becomes ݏ�+ଵ. This continues until we 

reach a goal state, K steps later. The return ܴ� from state ݏ� is shown in equation (1). 

ܴ� = ∑ � ଵ+�+�ݎ
�=଴                                     ሺͳሻ 

The objective is to find the actions �� that maximize (or minimize) the sum of reinforcements or 

rewards ݎ�. This can be reduced to the objective of acquiring the Q function Qሺݏ� , ��ሻ, which 

predicts the expected sum of future reinforcements; where the correct Q function determines the 

optimal next action. So, the RL objective [36] is to make this approximation as accurate as possible: 

Qሺݏ� , ��ሻ  ≈ ∑ ∞ ଵ+�+�ݎ
�=଴                                 ሺʹሻ 

The Q function stores reinforcement values for each state and action pair of the system. Equation 

(2) formulates the RL for multi-step decision problem, for example a predicting sequential positions 

of Tic-Tac-Toe game [36]. In our middleware framework we use RL for a single-step decision 

problem as there are no sequential states which are dependent on previous state of the system, 

formulated in equation (3): 

Qሺݏ� , ��ሻ  ≈ ∑ � �ݎ
�=ଵ                                           ሺ͵ሻ 
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The Q function is referred by system to select the optimal action ��, in state ݏ�:  
             ��  = �ݏሺܳ ݊�݉�ݎ� , �ሻ                                       ሺͶሻ 

 

6.1 RL algorithm to generate Q function 

The state of a mobile system is defined using the contextual information of the device such as 

location, network type and, network strength. These contextual factors were chosen because we 

consider them to be crucial for better offloading experience. The runtime monitor extracts the 

contextual information of the device to form state values of the system. For example, a mobile 

device is at location L1, it has access to 3G network type with ‘strong’ network strength. From this 

state, if an application processing needs to be offloaded then the Q function is called to select the 

right network that would result in the least penalty in terms of energy or response time or both. 

Penalty values are directly proportional to the battery units consumed and the response time of a 

task. Less penalty means less energy consumed and less response time for application processing, 

resulting in enhanced user experience.  

In our framework, the following state and action values are used to generate the Q function: 

 

Set of state values (discrete values): 

 Location = L1, L2, L3,……, Ln 

 Network carrier = 3G, 4G, Wi-Fi 

 Network strength = Strong, Medium, Weak 

 Data Size = data_small, data_medium, data_large 

 



 

31 
  

Set of action values 

 Offload using 3G network 

 Offload using 4G network 

 Offload using Wi-Fi network 

The location L1-Ln can be any geographic area where the user uses offloading application, for 

example office, home, etc. These state action pairs are user defined and more pairs can be added to 

account for factors which might affect offloading, for example we can add ‘Time period’ as another 

state value, as it is observed that network performance is slow at certain time of day when the user 

load is high. Bigger set of state value pairs means larger Q function resulting in increased overhead 

to manage it. Following algorithm shows steps to generate Q function: 

    

 

Algorithm: to generate Q function: 
 

Inputs: user location, network access type, network strength 
1. Access user’s contextual information such as, location, network_carrier, network_strength. 

  while mobile network is available and user is at location L1 
        do: 
2.  Activate 3G radio interface of the device 
3.  Upload a file (data_size = data_small) in the cloud. For this operation, 

measure battery units consumed �ܲଷீ and response time �ܲଷீ 
4.  Calculate the penalty P with the help of equations: 

   ଷܲீ = �ܲଷீ ∗ ݔ + �ܲଷீ ∗          ݕ
5.  Form a Key-Value pair as follows: 
  {location-data_size-network_carrier-network_strength: Penalty}   
  where, (Key = location-data_size-network_carrier-network_strength,  
  Value = Calculated Penalty value P in step 4)  
6.  Update the Q-table with the calculated penalty values 
7. Repeat steps 3-6 above for: data_size = data_medium and data_large 
8. Repeat steps 3-7 above for 4G and Wi-Fi connection if available 

end while 
9. Go to step 1 when user location changes to L2 

Output: Q table 
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At the beginning (step 1), when the mobile device is at user location L1, the runtime monitor 

accesses contextual information from the device such as location, network carrier type and, network 

strength. A network operation of uploading a data file from a mobile device to cloud is performed, 

using available network carrier (step 3). The battery units consumed and total response time taken 

for this operation are measured. In the multiple iterations of the uploading operation we used 

varying data sizes with all available network radio interface antennas (3G, 4G, Wi-Fi) activated one 

by one. For each of these uploading operations the runtime monitor measures the battery units 

consumed and response time to complete the operation. The Q table is updated (step 6) with the 

penalty values calculated using equations (5), (6) and, (7). In our RL framework the reinforcement 

values are penalty values ଷܲீ, ସܲீ and ܲ ��ி�. The Q table is formed using these key-value pairs 

where the state of the system is used to form keys and calculated penalties are used as values as 

shown in figure 11. The series of possible individual penalty values are shown in Table 2. 

 

Table 6.1 Penalty values in RL algorithm 

 

 

 

 

 

           ଷܲீ = �ܲଷீ ∗ ݔ + �ܲଷீ ∗ ሺͷሻ           ସܲீ                       ݕ = �ܲସீ ∗ ݔ + �ܲସீ ∗ �ሺ͸ሻ           �ܲ�ி                       ݕ = �ܲ�ி� ∗ ݔ + ܲ��ி� ∗  ሺ͹ሻ                ݕ

Penalty values Offload using  
3G 

Offload using 
4G 

Offload using 
Wi-Fi 

Battery (ܲ �ሻ 

processing 

�ܲଷீ �ܲସீ �ܲ��ி� 
Response time (ܲ�) �ܲଷீ �ܲସீ �ܲ��ி� 

Total penalty ଷܲீ ସܲீ �ܲ�ி� 
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In equations (5), (6) and, (7), to optimize battery consumption and response time we used 

weights ݔ and ݕ respectively with penalty values. Variables ݔ and ݕ are multiplying factors with 

values between 0 and 1, used to optimize either battery consumption or response time or both. For 

optimized battery consumption we found following weight values suitable: ݔ = Ͳ.͵, ݕ = Ͳ.͹, 

whereas, for optimized response time we used: ݔ = Ͳ.͹, ݕ = Ͳ.͵. For our experiments discussed in 

chapter 7 we used ݔ = Ͳ.ͷ, ݕ = Ͳ.ͷ for both optimized battery and response time. 

 

Figure 6.3 briefly shows the decision making process with the help of two simple scenarios. For 

a data intensive application at location L1 we have 3G and 4G networks available as shown in first 

two lines of Q table in figure 6.3. The penalty value for 4G at location L1 is lesser, therefore 4G 

network is selected for offloading the application to cloud. For a less data intensive application at 

location L2, out of all the networks available 3G is selected because Wi-Fi has weak signal strength 

with higher penalty and 4G also has a higher penalty. 

Fig. 6.3 Decision making using Q-table (vector of key value pairs) 
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CHAPTER 7 

EXPERIMENTAL RESULTS 

 
 
 
To evaluate the efficacy of our proposed framework we conducted a series of experiments with 

three applications that we discussed in chapter 4. We implemented our middleware framework and 

its decision engine on an Android-based mobile device. To form the Q function of our RL algorithm, 

real user data was collected at 3 different geographical locations around the Colorado State 

University campus area, in Fort Collins, Colorado.  In this chapter we discuss our results in detail 

and compare our work with the fuzzy logic decision engine proposed by Flores et al. [10] which we 

discussed in chapter 5. We used data sizes with 25 MBs, 250 MBs and, 500 MBs files which 

represent variables data_small, data_medium and, data_large respectively in the Q table algorithm 

discussed in chapter 6. 

Figure 7.1 shows the results for the Matrix operations app with RL based engine and fuzzy logic 

based decision engine. Similarly figure 7.2 shows the results for the Zipper app and figure 7.3 shows 

results for the Torrent app. In all the scenarios, the task of a decision engine is to choose to tune to 

the network which gives best possible results. In these figures, the red trendline shows the average 

battery consumption and average response time for fuzzy decision engine [10] whereas the green 

trendline shows results of our RL-based middleware framework.   

We have also shown the offloading results for varying networks obtained in chapter 4 as a 

reference in all these figures. Our results show that for less data intensive operations the results of 

RL and fuzzy logic overlap. In the case of zipper application for lower data sizes fuzzy logic shows 

better results, this might be because the Q-table generated using our RL algorithm uses 25 MBs as 

the minimum data size. For higher data sizes and computations the RL method gives improved 
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battery consumption and response time. For any data size lower than that there is insufficient 

predictable results. This can be improved using a wide range of data files in RL algorithm.  

  

Figure 7.4 shows prediction accuracy of both learning methods. It can be observed that our RL-

based engine has better prediction accuracy which is crucial for making effective offloading 

decisions. The overall performance of offloading depends on various factors, such as the amount of 

Fig. 7.1 Average battery consumption and response time of Matrix 
operations app with learning methods 
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data usage by the application, network signal type (3G, 4G and, Wi-Fi) and network signal strength, 

and the complexity of the functionality of the application under observation. By considering all of 

these individual factors in the decision process, unlike the fuzzy logic approach from [10], and by 

utilizing a more sophisticated and powerful learning algorithm, our framework is able to achieve 

notably better results compared to [10]. Our results show that proposed RL based offloading system 

can save up to 30% battery power with up to 25% better response time as compared to fuzzy logic 

based system. 

 

Fig. 7.2 Average battery consumption and response time of Zipper app 
with learning methods 
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Fig. 7.3 Average battery consumption and response time of 
Torrent app with learning methods 

 

Fig. 7.4  Prediction accuracy of learning 
methods 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 
 
 

8.1 Conclusion 
 
In this thesis we analyzed real mobile applications in detail to study benefits of application 

offloading. We found that overall performance with offloading depends on factors such as the 

amount of data and type of usage, available network carrier and signal strength, etc. These factors 

should be considered while making a decision to offload a mobile application. To make offloading 

more practical, it is important to reduce the energy spent in the communication between the mobile 

device and the cloud. In our experiments, we compared energy consumption in mobile devices for 

varying network types (3G, 4G and Wi-Fi). This comparison shows that choosing the best possible 

network for offloading is crucial. In this paper, we presented an intelligent mobile network aware 

middleware framework based on Reinforcement Learning for energy efficient offloading in 

smartphones. Our results show that we can save up to 20%-30% battery power by using the 

proposed offloading system. 

 

8.2 Future Work 
 
Offloading is far from being adopted in the design of current mobile architectures due to many 

challenges in this field. Strategies described in this thesis show promising energy savings, however, 

much work can be done to improve the offloading strategies.  

In this thesis we have used only one mobile network carrier (AT&T) to obtain the offloading 

results, it will be interesting to see the comparison between multiple network carriers. Even in 4G 
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network, there are different types of available technologies such as HSPA+ and LTE, in this thesis 

we have used AT&T’s HSPA+. In addition, there are different technologies in implementing 4G 

LTE for different network carriers. This study can be further extended to test the results with all 

variations of 4G network. 

Finally, we would like to implement and test more software applications, such as an image search 

to the cloud, video processing etc. to gain insights into versatile offloading scenarios. Although 

there are always improvements to be made in the field of software and energy optimization for 

mobile embedded systems, the work presented in this thesis brings us one step closer to being able 

to improve the performance and battery lifetime of smartphone while computation offloading. 
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APENDIX A 

SOURCE CODE 

 
 
 

This section presents the majority of the source code for the implementation of the two 

strategies namely reinforcement learning and fuzzy logic decision engine. Section A.1 provides 

the source code file for the offloading decision engine in Android, section A.2 provide the source 

code file for fuzzy logic and sections A.3 provide the source code files for the reinforcement 

learning python code. 

A. RL1_Mainoffloadingappactivity.java 

package com.example.aditya.smartoffloadingapp; 
 
import android.content.Intent; 
import android.support.v7.app.ActionBarActivity; 
import android.os.Bundle; 
import android.view.Menu; 
import android.view.MenuItem; 
import android.view.View; 
import android.widget.ArrayAdapter; 
import android.widget.CheckBox; 
import android.widget.EditText; 
import android.widget.LinearLayout; 
import android.widget.Spinner; 
import android.widget.TextView; 
 
import static com.example.aditya.smartoffloadingapp.R.id.MLAlgorithm; 
 
 
public class MainOffloadingAppActivity extends ActionBarActivity { 
    public final static String EXTRA_MESSAGE = 

"com.example.aditya.smartoffloadingapp.MESSAGE"; 
    public final static String EXTRA_MESSAGE1 = 

"com.example.aditya.smartoffloadingapp.MESSAGE1"; 
 
 
/*    private Spinner spinner, spinnerApp, spinnerCPU; 
    private static final String[]paths = {"Fuzzy Logic", "RL", "RL with NN", 

"Classification"}; 
    private static final String[]pathsApp = {"Fuzzy Logic", "RL", "RL with NN", 

"Classification"}; 
    private static final String[]pathsCPU = {"Fuzzy Logic", "RL", "RL with NN", 

"Classification"}; 
**/ 
    @Override 
    protected void onCreate(Bundle savedInstanceState) { 
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        super.onCreate(savedInstanceState); 
        setContentView(R.layout.activity_main_offloading_app); 
 
 
/*        Spinner spinner, spinnerApp, spinnerCPU; 
        String[]paths = {"Fuzzy Logic", "RL", "RL with NN", "Classification"}; 
        String[]pathsApp = {"Fuzzy Logic", "RL", "RL with NN", "Classification"}; 
        String[]pathsCPU = {"Fuzzy Logic", "RL", "RL with NN", "Classification"}; 
**/ 
 
/*        spinner = (Spinner)findViewById(R.id.spinner); 
        spinnerApp = (Spinner)findViewById(R.id.spinnerApp); 
        spinnerCPU = (Spinner)findViewById(R.id.spinnerCPU); 
 
        ArrayAdapter<String>adapter = new 

ArrayAdapter<String>(MainOffloadingAppActivity.this, 
                android.R.layout.simple_spinner_item,paths); 
        ArrayAdapter<String>adapterApp = new 

ArrayAdapter<String>(MainOffloadingAppActivity.this, 
                android.R.layout.simple_spinner_item,pathsApp); 
        ArrayAdapter<String>adapterCPU = new 

ArrayAdapter<String>(MainOffloadingAppActivity.this, 
                android.R.layout.simple_spinner_item,pathsCPU); 
 
        

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item); 
        

adapterApp.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item); 
        

adapterCPU.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item); 
 
        spinner.setAdapter(adapter); 
        spinnerApp.setAdapter(adapterApp); 
        spinnerCPU.setAdapter(adapterCPU); 
 
 
**/ 
/*        spinner.setOnItemSelectedListener(this); **/ 
 
    } 
 
 
    public void onButtonClick(View view) { 
 
        Spinner spinner = (Spinner)findViewById(R.id.spinner); //offloading 

mechanism 
        String offloadingMechanismType = spinner.getSelectedItem().toString(); 
 
        CheckBox responseCheckbox = (CheckBox) 

findViewById(R.id.CheckBoxResponse);//checkbox 
        boolean bRequiresResponse = responseCheckbox.isChecked(); 
 
        Spinner spinnerApp = (Spinner)findViewById(R.id.spinnerApp);//Select 

Application 
        String appType = spinnerApp.getSelectedItem().toString(); 
        Spinner spinnerLocation = (Spinner)findViewById(R.id.spinnerLocation); 

//Matrix operation 
        String LocationType = spinnerLocation.getSelectedItem().toString(); 
 
        Spinner spinnerCPU = (Spinner)findViewById(R.id.spinnerCPU); //Matrix 

operation 
        String CPUinstanceType = spinnerCPU.getSelectedItem().toString(); 
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/*        ArrayAdapter<String>adapter = new 
ArrayAdapter<String>(MainOffloadingAppActivity.this, 

                android.R.layout.simple_spinner_item,paths); 
        ArrayAdapter<String>adapterApp = new 

ArrayAdapter<String>(MainOffloadingAppActivity.this, 
                android.R.layout.simple_spinner_item,pathsApp); 
        ArrayAdapter<String>adapterCPU = new 

ArrayAdapter<String>(MainOffloadingAppActivity.this, 
                android.R.layout.simple_spinner_item,pathsCPU); 
 
        

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item); 
        

adapterApp.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item); 
        

adapterCPU.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item); 
 
        spinner.setAdapter(adapter); 
        spinnerApp.setAdapter(adapterApp); 
        spinnerCPU.setAdapter(adapterCPU); 
 
**/ 
 
 
if(offloadingMechanismType.equals("Fuzzy Logic")) { 
 
    Intent fuzzyscreen = new Intent(this, FuzzyLogicDisplay.class); 
 
/*    EditText editText = (EditText) findViewById(R.id.dataEdit); **/ 
 
    Spinner spinnerMechanismText = (Spinner)findViewById(R.id.spinner); 
    Spinner spinnerAppText = (Spinner)findViewById(R.id.spinnerApp); 
 
 
    String messageMechanism = spinnerMechanismText.getSelectedItem().toString(); 
    fuzzyscreen.putExtra(EXTRA_MESSAGE, messageMechanism); 
 
    String messageApp = spinnerAppText.getSelectedItem().toString(); 
    fuzzyscreen.putExtra(EXTRA_MESSAGE1,messageApp); 
 
    startActivity(fuzzyscreen); 
 
} 
 
 
    } 
 
    @Override 
    public boolean onCreateOptionsMenu(Menu menu) { 
        // Inflate the menu; this adds items to the action bar if it is present. 
        getMenuInflater().inflate(R.menu.menu_main_offloading_app, menu); 
        return true; 
    } 
 
    @Override 
    public boolean onOptionsItemSelected(MenuItem item) { 
        // Handle action bar item clicks here. The action bar will 
        // automatically handle clicks on the Home/Up button, so long 
        // as you specify a parent activity in AndroidManifest.xml. 
        int id = item.getItemId(); 
 
        //noinspection SimplifiableIfStatement 
        if (id == R.id.action_settings) { 
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            return true; 
        } 
 
        return super.onOptionsItemSelected(item); 
    } 
} 

 

B. Fuzzylogicdisplay.java 

package com.example.aditya.smartoffloadingapp; 
 
import android.content.Intent; 
import android.support.v7.app.ActionBarActivity; 
import android.os.Bundle; 
import android.view.Menu; 
import android.view.MenuItem; 
import android.widget.TextView; 
 
 
public class FuzzyLogicDisplay extends ActionBarActivity { 
 
    @Override 
    protected void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
 
        setContentView(R.layout.activity_fuzzy_logic_display); 
 
        Intent fuzzyintent = getIntent(); 
        String message = 

fuzzyintent.getStringExtra(MainOffloadingAppActivity.EXTRA_MESSAGE); 
        String message1 = 

fuzzyintent.getStringExtra(MainOffloadingAppActivity.EXTRA_MESSAGE1); 
 
        TextView t1 = (TextView) findViewById(R.id.FuzzyAlgorithmDisplay); 
        t1.setText(message); 
 
        TextView t2 = (TextView) findViewById(R.id.FuzzyAppDisplay); 
        t2.setText(message1); 
 
 
 
 
 
 
/* create TextView Object **/ 
/*        TextView textView = new TextView(this); */ 
/* Set the text size and message */ 
/*        textView.setTextSize(40); */ 
/*        textView.setText(message); */ 
/*add the TextView as the root view of the activity’s layout by passing it to 

setContentView()**/ 
/*        setContentView(textView); */ 
/*        setContentView(R.layout.activity_fuzzy_logic_display); **/ 
    } 
 
 
 
/* 
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    @Override 
    public boolean onCreateOptionsMenu(Menu menu) { 
        // Inflate the menu; this adds items to the action bar if it is present. 
        getMenuInflater().inflate(R.menu.menu_fuzzy_logic_display, menu); 
        return true; 
    } 
**/ 
    @Override 
    public boolean onOptionsItemSelected(MenuItem item) { 
        // Handle action bar item clicks here. The action bar will 
        // automatically handle clicks on the Home/Up button, so long 
        // as you specify a parent activity in AndroidManifest.xml. 
        int id = item.getItemId(); 
 
        //noinspection SimplifiableIfStatement 
        if (id == R.id.action_settings) { 
            return true; 
        } 
 
        return super.onOptionsItemSelected(item); 
    } 
} 

 

C. RL2_Reinforcement_strategy.py 

import numpy as np 
import random as rm 
import matplotlib.pyplot as plt 
from copy import copy 
from IPython.display import display, clear_output 
 
def printBoard(board): 
    print(''' 
bandwidth={} |Data={} |CPU_Instance={} 
----- 
app={} |Cloud_Vendor_Available={} |Location={} 
----- 
'''.format(*tuple(board))) 
 
def printBoardQs(board,Q): 
    #printBoard(board) 
    printParameters(board) 
    Qs = [Q.get((tuple(board),m), 0) for m in range(3)] 
    print('Reinforcements Received:') 
    print('''Local Processing:{:.2f} | Offload on Local Servers:{:.2f} | Offload on 

Remote Servers:{:.2f} 
'''.format(*Qs)) 
 
 
def printParameters(board): 
    print(''' 
bandwidth= {} |Data= {} |CPU_Instance= {} |Wifi= {} 
'''.format(*tuple(board))) 
 
print('let\'s see what are my state parameters') 
#printBoard(np.array(['1','0','1','1','5','9'])) 
printParameters(np.array(['Speed_Low','Data_Small','CPU_Low','On'])) 
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#print('okay now let\'s genearete a random number geneartor for each of these 
parameters') 

 
#bandwidth = rm.randint(1,10) 
#bandwidth = np.random.randint(1,10,size=60) 
#data = np.random.randint(1,10, size = 60) 
#cpu = np.random.randint(1,10, size = 60) 
#app = np.random.randint(1,10, size = 60) 
#cloud_vendor = np.random.randint(1,10, size = 60) 
#location = rm.randint(1,10) 
#location = np.random.randint(1,10, size =60) 
 
Bandwidth = np.array(['Speed_Low','Speed_Normal','Speed_High']) 
Data = np.array(['Data_Small','Data_Medium','Data_Big']) 
CPU = np.array(['CPU_Low','CPU_Normal','CPU_High']) 
Wifi = np.array(['On','Off']) 
Out = np.array(['Local_Procssing','Offload_Local','Offload_Remote']) 
 
#print("location=",location) 
#board = np.array(['X',' ','O', ' ','X','O', 'X',' ',' ']) 
#board1 = np.array([bandwidth,data,cpu,app,cloud_vendor,location]) 
board2 = 

np.array([rm.choice(Bandwidth),rm.choice(Data),rm.choice(CPU),rm.choice(Wifi)]) 
print('print parameters') 
printParameters(board2) 
#print('print board1') 
#printBoard(board1) 
 
#Q = {} #empty table 
#Q[(tuple(board2),1)] = 4 
 
#print("Q:",Q) 
#print("Q[(tuple(board2),1)]:",Q[(tuple(board2),1)]) 
#print("Q.get((tuple(board2),1),42):",Q.get((tuple(board2),1),42)) 
 
#rho = 0.1 # learning rate 
#Q[(tuple(board),1)] += rho * (-1 - Q[(tuple(board),1)]) 
#print("after Q[(tuple(board),1)] += rho * (-1 - Q[(tuple(board),1)]):", 

Q[(tuple(board),1)]) 
#print('rm.choice(list(enumerate(Out))):',rm.choice(list(enumerate(Out)))) 
#print('rm.choice(list(enumerate(Out)))[0]:',rm.choice(list(enumerate(Out)))[0]) 
#print('list(enumerate(Out)):',list(enumerate(Out))) 
#print('list(Out):',list(Out)) 
#print('Out:',Out) 
#print('list(enumerate(Out)):',list(enumerate(Out))) 
#print('list(enumerate(Out))[:0]:',list(enumerate(Out))[:0]) 
#print('np.random.uniform():',np.random.uniform()) 
#random_index = rm.randrange(0,len(Out)) 
#print ('Out[random_index]:',Out[random_index]) 
 
def epsilonGreedy(epsilon, Q, board, Out): 
    #validMoves = np.where(board == ' ')[0] 
    validMoves = np.array([0,1,2]) 
    #print('validMoves:',validMoves) 
    if np.random.uniform() < epsilon: 
        # Random Move 
        tp = rm.choice(list(enumerate(Out)))[0] 
        print('tp:',tp) 
        return tp 
        #return rm.choice(list(enumerate(Out)))[0] 
        #return np.random.choice(validMoves) 
    else: 
        # Greedy Move 



 

49 
  

        Qs = np.array([Q.get((tuple(board),m), 0) for m in validMoves]) 
        tp = validMoves[ np.argmax(Qs) ]  
        print('tp:',tp) 
        return tp 
        #return validMoves[ np.argmax(Qs) ] 
         
#print('epsilonGreedy(0.8,Q,board2,Out):',epsilonGreedy(0.8,Q,board2,Out)) 
 
 
print('here goes part before for loop') 
 
maxGames = 200 
rho = 0.2 
epsilonDecayRate = 0.99 
epsilon = 0.8 
graphics = True 
showMoves = not graphics 
 
outcomes = np.zeros(maxGames) 
epsilons = np.zeros(maxGames) 
Q = {} 
 
if graphics: 
    fig = plt.Figure(figsize=(10,10)) 
 
print('here goes a for loop') 
#for i in range(60): 
    #print (i) 
    #location = np.random.randint(1,10, size =1) 
#    print("location=",location[i]) 
#    board2 = 

np.array([bandwidth[i],data[i],cpu[i],app[i],cloud_vendor[i],location[i]]) 
#    printBoard(board2) 
#board2 = 

np.array([rm.choice(Bandwidth),rm.choice(Data),rm.choice(CPU),rm.choice(Wifi)]) 
for nGames in range(maxGames): 
    epsilon *= epsilonDecayRate 
    epsilons[nGames] = epsilon 
    step = 0 
    move = epsilonGreedy(epsilon, Q, board2, Out) 
    board2_all = {} 
    board2 = 

np.array([rm.choice(Bandwidth),rm.choice(Data),rm.choice(CPU),rm.choice(Wifi)]) 
    board2_all[nGames] = board2 
    if (tuple(board2),move) not in Q: 
            Q[(tuple(board2),move)] = 0  # initial Q value for new board,move 
     
    if board2[3] == 'On': 
        print('Wifi is ON') 
        #if board2[0] == 'Speed_Low' and 'Speed_Normal': 
        if board2[0] == 'Speed_Low' or board2[0] == 'Speed_Normal': 
            print('Bandwidth = Speed_Low or Speed_Normal') 
 
            if board2[1] == 'Data_Small' and board2[2] == 'CPU_High': 
                print('Data_Small and CPU_High so you can offload') 
                Q[(tuple(board2),1)] = 1 
                Q[(tuple(board2),2)] = 0 
                Q[(tuple(board2),0)] = -1 
            else: 
                print('Don\'t offload') 
                Q[(tuple(board2),1)] = 0 
                Q[(tuple(board2),2)] = -1 
                Q[(tuple(board2),0)] = 1 
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        else: 
            if board2[2] == 'CPU_Normal' or board2[2] == 'CPU_High': 
                print('CPU_Normal or CPU_High so you can offload') 
                Q[(tuple(board2),1)] = 1 
                Q[(tuple(board2),2)] = 0 
                Q[(tuple(board2),0)] = -1 
            else: 
                print('Don\'t offload (this is second if loop)') 
                Q[(tuple(board2),1)] = 0 
                Q[(tuple(board2),2)] = -1 
                Q[(tuple(board2),0)] = 1 
    else: 
        print('Wifi is OFF') 
        if board2[0] == 'Speed_Low' or board2[0] == 'Speed_Normal': 
            print('Bandwidth = Speed_Low or Speed_Normal when wifi is off') 
            if board2[1] == 'Data_Small' and board2[2] == 'CPU_High': 
                print('Data_Small and CPU_High so you can offload:Out2') 
                Q[(tuple(board2),1)] = 0 
                Q[(tuple(board2),2)] = 1 
                Q[(tuple(board2),0)] = -1 
            else: 
                print('Don\'t offload when wifi is off') 
                Q[(tuple(board2),1)] = -1 
                Q[(tuple(board2),2)] = -1 
                Q[(tuple(board2),0)] = 1 
        else: 
            if board2[2] == 'CPU_Normal' or board2[2] == 'CPU_High': 
                print('CPU_Normal or CPU_High so you can offload:Out2') 
                Q[(tuple(board2),1)] = 0 
                Q[(tuple(board2),2)] = 1 
                Q[(tuple(board2),0)] = -1 
            else: 
                print('Don\'t offload (this is second if loop when wifi is off)') 
                Q[(tuple(board2),1)] = -1 
                Q[(tuple(board2),2)] = -1 
                Q[(tuple(board2),0)] = 1 
     
    #print (i) 
    #location = np.random.randint(1,10, size =1) 
#    print("location=",location[i]) 
#    board2 = 

np.array([bandwidth[i],data[i],cpu[i],app[i],cloud_vendor[i],location[i]]) 
#    printBoard(board2) 
 
#--------------------------Just For Plotting the outcomes--------------- 
print('after for loop') 
printBoardQs(board2,Q) 
 
outcomes = np.random.choice([-1,0,1],replace=True,size=(1000)) 
#print('outcomes[:10]:',outcomes[:10]) 
#print('Q:',Q) 
#print('Q.shape:',Q.shape) //did not work 
 
#print('Q.values():\n',Q.values()) 
#print('Q.keys():\n\n',Q.keys()) 
#print('Q.items():\n\n',Q.items()) 
 
#for k in Q.keys(): 
# print(k, Q[k]) 
  
#outcomes = np.array[Q.values()] 
#print('outcomes[:10]:',outcomes[:10]) 
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names = ['id','data'] 
formats = ['f8','f8'] 
dtype = dict(names = names, formats=formats) 
array=np.array([[key,val] for (key,val) in Q.iteritems()],dtype) 
print(repr(array)) 
#plt.plot(Q) 
def plotOutcomes(outcomes,epsilons,maxGames,nGames): 
    if nGames==0: 
        return 
    nBins = 100 
    nPer = int(maxGames/nBins) 
    outcomeRows = outcomes.reshape((-1,nPer)) 
    outcomeRows = outcomeRows[:int(nGames/float(nPer))+1,:] 
    avgs = np.mean(outcomeRows,axis=1) 
    plt.subplot(3,1,1) 
    xs = np.linspace(nPer,nGames,len(avgs)) 
    plt.plot(xs, avgs) 
    plt.xlabel('Games') 
    plt.ylabel('Mean of Outcomes (0=draw, 1=X win, -1=O win)') 
    plt.title('Bins of {:d} Games'.format(nPer)) 
    plt.subplot(3,1,2) 
    plt.plot(xs,np.sum(outcomeRows==-1,axis=1),'r-',label='Losses') 
    plt.plot(xs,np.sum(outcomeRows==0,axis=1),'b-',label='Draws') 
    plt.plot(xs,np.sum(outcomeRows==1,axis=1),'g-',label='Wins') 
    plt.legend(loc="center") 
    plt.ylabel('Number of Games in Bins of {:d}'.format(nPer)) 
    plt.subplot(3,1,3) 
    plt.plot(epsilons[:nGames]) 
    plt.ylabel('$\epsilon$') 
     
 
 
#plt.Figure(figsize=(8,8)) 
#plotOutcomes(outcomes,np.zeros(1000),1000,1000) 
#plt.show() 
#--------------------------Just For Plotting the outcomes--------------- 

 

D. RL3_RLstrategy.java 

import numpy as np 
import random as rm 
import neuralnetworkQ as nn 
import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
from matplotlib import cm 
import copy 
 
 
 
print( '\n------------------------------------------------------------') 
print( "Reinforcement Learning Example: Dynamic Marble on a Track") 
 
# Define the problem 
 
def reinforcement(s,sn): 
    goal = 5 
    return 0 if abs(sn[0]-goal) < 1 else -1 
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def initialState(): 
    return np.array([10*np.random.random_sample(), 0.0]) 
 
def nextState(s,a): 
    s = copy.copy(s)   # s[0] is position, s[1] is velocity. a is -1, 0 or 1 
    deltaT = 0.1                           # Euler integration time step 
    s[0] += deltaT * s[1]                  # Update position 
    s[1] += deltaT * (2 * a - 0.2 * s[1])  # Update velocity. Includes friction 
    if s[0] < 0:        # Bound next position. If at limits, set velocity to 0. 
        s = [0,0] 
    elif s[0] > 10: 
        s = [10,0] 
    return s 
 
validActions = (-1,0,1) 
 
# training Loop 
gamma = 0.5 
nh = 5 
nTrials = 50 
nStepsPerTrial = 1000 
nSCGIterations = 10 
finalEpsilon = 0.01 
epsilonDecay = np.exp(np.log(finalEpsilon)/(nTrials)) # to produce this final value 
 
nnet = nn.NeuralNetworkQ(3,nh,1,((0,10), (-3,3), (-1,1))) 
epsilon = 1 
epsilonTrace = np.zeros(nTrials) 
rtrace = np.zeros(nTrials) 
for trial in range(nTrials): 
    # Collect nStepsPerRep samples of X, R, Qn, and Q, and update epsilon 
    X,R,Qn,Q,epsilon = nnet.makeSamples(initialState,nextState,reinforcement, 
                                        validActions,nStepsPerTrial,epsilon) 
    # Update the Q neural network. 
    nnet.train(X,R,Qn,Q,gamma=gamma, nIterations=nSCGIterations) #  

weightPrecision=1e-8, errorPrecision=1e-10) 
    epsilon *= epsilonDecay 
    # Rest is for plotting 
    epsilonTrace[trial] = epsilon 
    rtrace[trial] = np.mean(R) 
 
    print('Trial',trial,'mean R',np.mean(R)) 
 
 
##  Plotting functions 
 
def plotStatus(net,trial,epsilonTrace,rtrace): 
    plt.subplot(4,3,1) 
    plt.plot(epsilonTrace[:trial+1]) 
    plt.ylabel("Random Action Probability ($\epsilon$)") 
    plt.ylim(0,1) 
    plt.subplot(4,3,2) 
    plt.plot(X[:,0]) 
    plt.plot([0,X.shape[0]], [5,5],'--',alpha=0.5,lw=5) 
    plt.ylabel("$x$") 
    plt.ylim(-1,11) 
    #qs = [[net.use([s,0,a]) for a in actions] for s in range(11)] 
    qs = net.use(np.array([[s,0,a] for a in validActions for s in range(11)])) 
    #print np.hstack((qs,-1+np.argmax(qs,axis=1).reshape((-1,1)))) 
    plt.subplot(4,3,3) 
    acts = ["L","0","R"] 
    actsiByState = np.argmax(qs.reshape((len(validActions),-1)),axis=0) 
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    for i in range(11): 
        plt.text(i,0,acts[actsiByState[i]]) 
        plt.xlim(-1,11) 
        plt.ylim(-1,1) 
    plt.text(2,0.2,"Policy for Zero Velocity") 
    plt.axis("off") 
    plt.subplot(4,3,4) 
    plt.plot(rtrace[:trial+1],alpha=0.5) 
    #plt.plot(np.convolve(rtrace[:trial+1],np.array([0.02]*50),mode='valid')) 
    binSize = 20 
    if trial+1 > binSize: 
        # Calculate mean of every bin of binSize reinforcement values 
        smoothed = 

np.mean(rtrace[:int(trial/binSize)*binSize].reshape((int(trial/binSize),binSize)),axis
=1) 

        plt.plot(np.arange(1,1+int(trial/binSize))*binSize,smoothed) 
    plt.ylabel("Mean reinforcement") 
    plt.subplot(4,3,5) 
    plt.plot(X[:,0],X[:,1]) 
    plt.plot(X[0,0],X[0,1],'o') 
    plt.xlabel("$x$") 
    plt.ylabel("$\dot{x}$") 
    plt.fill_between([4,6],[-5,-5],[5,5],color="red",alpha=0.3) 
    plt.xlim(-1,11) 
    plt.ylim(-5,5) 
    plt.subplot(4,3,6) 
    net.draw(["$x$","$\dot{x}$","$a$"],["Q"]) 
 
    plt.subplot(4,3,7) 
    n = 20 
    positions = np.linspace(0,10,n) 
    velocities =  np.linspace(-5,5,n) 
    xs,ys = np.meshgrid(positions,velocities) 
    #states = np.vstack((xs.flat,ys.flat)).T 
    #qs = [net.use(np.hstack((states,np.ones((states.shape[0],1))*act))) for act in 

actions] 
    xsflat = xs.flat 
    ysflat = ys.flat 
    qs = net.use(np.array([[xsflat[i],ysflat[i],a] for a in validActions for i in 

range(len(xsflat))])) 
    #qs = np.array(qs).squeeze().T 
    qs = qs.reshape((len(validActions),-1)).T 
    qsmax = np.max(qs,axis=1).reshape(xs.shape) 
    cs = plt.contourf(xs,ys,qsmax) 
    plt.colorbar(cs) 
    plt.xlabel("$x$") 
    plt.ylabel("$\dot{x}$") 
    plt.title("Max Q") 
    plt.subplot(4,3,8) 
    acts = np.array(validActions)[np.argmax(qs,axis=1)].reshape(xs.shape) 
    cs = plt.contourf(xs,ys,acts,[-2, -0.5, 0.5, 2]) 
    plt.colorbar(cs) 
    plt.xlabel("$x$") 
    plt.ylabel("$\dot{x}$") 
    plt.title("Actions") 
 
    s = plt.subplot(4,3,10) 
    rect = s.get_position() 
    ax = Axes3D(plt.gcf(),rect=rect) 
    ax.plot_surface(xs,ys,qsmax,cstride=1,rstride=1,cmap=cm.jet,linewidth=0) 
    ax.set_xlabel("$x$") 
    ax.set_ylabel("$\dot{x}$") 
    #ax.set_zlabel("Max Q") 
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    plt.title("Max Q") 
 
    s = plt.subplot(4,3,11) 
    rect = s.get_position() 
    ax = Axes3D(plt.gcf(),rect=rect) 
    ax.plot_surface(xs,ys,acts,cstride=1,rstride=1,cmap=cm.jet,linewidth=0) 
    ax.set_xlabel("$x$") 
    ax.set_ylabel("$\dot{x}$") 
    #ax.set_zlabel("Action") 
    plt.title("Action") 
 
def testIt(Qnet,nTrials,nStepsPerTrial): 
    xs = np.linspace(0,10,nTrials) 
    plt.subplot(4,3,12) 
    for x in xs: 
        s = [x,0] ## 0 velocity 
        xtrace = np.zeros((nStepsPerTrial,2)) 
        for step in range(nStepsPerTrial): 
            a,_ = Qnet.epsilonGreedy(s,validActions,0.0) # epsilon = 0 
            s = nextState(s,a) 
            xtrace[step,:] = s 
        plt.plot(xtrace[:,0],xtrace[:,1]) 
        plt.xlim(-1,11) 
        plt.ylim(-5,5) 
        plt.plot([5,5],[-5,5],'--',alpha=0.5,lw=5) 
        plt.ylabel('$\dot{x}$') 
        plt.xlabel('$x$') 
        plt.title('State Trajectories for $\epsilon=0$') 
 
 
 
plotStatus(nnet,nTrials,epsilonTrace,rtrace) 
testIt(nnet,10,500) 
 
plt.show() 
 
 
 

E. A5. Mobile-AWS cloud interaction -1 

Upload to S3 

 
Here is the code we use to upload the picture files: 
 def push_picture_to_s3(id): 
   try: 
     import boto 
     from offloading.s3.key import Key 
     # set offloading lib debug to critical 
     logging.getLogger('offloading').setLevel(logging.CRITICAL) 
     bucket_name = settings.MyCloudBucketOffloading 
     # connect to the bucket 
     conn = boto.connect_s3(settings.AWS_ACCESS_KEY_ID, 
                     settings.AWS_SECRET_ACCESS_KEY) 
     bucket = conn.get_bucket(bucket_name) 
     # go through each version of the file 
     key = '%s.png' % id 
     fn = '/var/www/data/%s.png' % id 
     # create a key to keep track of our file in the storage 
     k = Key(bucket) 
     k.key = key 
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     k.set_contents_from_filename(fn) 
     # we need to make it public so it can be accessed publicly 
     # using a URL like http://s3.amazonaws.com/bucket_name/key 
     k.make_public() 
     # remove the file from the web server 
     os.remove(fn) 
   except: 
 
Download from S3 

 
We can access the file using the URL: http://s3.amazonaws.com/bucket_name/key  
 
Here is the script to do that: 
 import boto 
 import sys, os 
 from offloading.s3.key import Key 
   
 LOCAL_PATH = '/backup/s3/' 
 AWS_ACCESS_KEY_ID = some_key 
 AWS_SECRET_ACCESS_KEY = some_secret_key 
   
 bucket_name = 'MyCloudBucketOffloading' 
 # connect to the bucket 
 conn = Offloading.connect_s3(AWS_ACCESS_KEY_ID, 
                 AWS_SECRET_ACCESS_KEY) 
 bucket = conn.get_bucket(bucket_name) 
 # go through the list of files 
 bucket_list = bucket.list() 
 for l in bucket_list: 
   keyString = str(l.key) 
   # check if file exists locally, if not: download it 
   if not os.path.exists(LOCAL_PATH+keyString): 
     l.get_contents_to_filename(LOCAL_PATH+keyString) 

 

F. A6. Mobile-AWS cloud interaction - 2 

aws s3 mb s3://MyCloudBucketOffloading //  create a bucket on AWS cloud 
aws s3 cp stuff/firstfile.txt s3://MyCloudBucketOffloading  // upload the file on 

AWS cloud 
aws s3 ls s3://MyCloudBucketOffloading // see all the file which are present in 

Bucket 
aws s3 sync . s3://MyCloudBucketOffloading/stuff – - delete //sync files on cloud 

bucket 
aws s3 rb s3://MyCloudBucketOffloading - - force // delete the bucket 
 
 

G. A7. LDAStrategy.java 

 
//--------------------------------------------------------------------------    
// Author: Aditya Khune 
//    
// Description   : Describes the LDA algorithm based on Dr Charles Anderson’s code 
// in CS 545, 2014   
//  
//--------------------------------------------------------------------------    
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import java.util.*;    
import java.awt.*;    
    
/**   
 * Implements the Linear Discriminant Analysis Algorithm   
 */    
public class AlgorithmLDA extends Algorithm    
{    
    // Public Data Members    
    //    
    Vector<MyPoint> decision_regions_d;    
    Vector<MyPoint> support_vectors_d;    
    int output_canvas_d[][];    
        
    Matrix W;    
    Matrix LDA;    
    Matrix CLDA;     
    Matrix B;    
    Matrix S;    
    Matrix invW;    
        
   /**   
     
    * @return   Returns true.   
    */    
    public boolean initialize()    
    {    
    // algo_id = "AlgorithmLDA";    
        
    // Debug     
    //    
    // System.out.println(algo_id + " initialize()");    
    
    step_count = 2;    
    point_means_d      = new Vector<MyPoint>();    
     
    description_d      = new Vector<String>();    
        
    // Initialize local Matrix objects    
    //    
    W    = new Matrix();    
    LDA  = new Matrix();    
    CLDA = new Matrix();    
    invW = new Matrix();    
        
    // Add the process description for the LDA algorithm    
    //    
    if (description_d.size() == 0)    
        {    
        String str = new String("   0. Initialize the original data.");    
        description_d.addElement(str);    
            
         
        str = new String("   2. Computing the means and covariance.");    
        description_d.addElement(str);    
            
        str = new String("   3. Computing the decision regions based on the class 

independent LDA algorithm.");    
        description_d.addElement(str);    
    }    
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    // append message to process box    
    //    
    pro_box_d.appendMessage("Class Independent LDA Analysis:" + "\n");    
        
    // set the data points for this algorithm    
    //    
    //  set1_d = (Vector<MyPoint>)data_points_d.dset1.clone();    
    //  set2_d = (Vector)data_points_d.dset2.clone();    
     
     
    set1_d = data_points_d.dset1;    
    set2_d = data_points_d.dset2;    
     
    
    
    
    // set the step index    
    //    
    step_index_d = 0;    
        
    // append message to process box    
    //    
    pro_box_d.appendMessage((String)description_d.get(step_index_d));    
        
    // exit initialize    
    //    
    return true;    
    }    
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ABBREVATIONS 

 
 
 
 
3D    3-Dimensional 

AWS   Amazon Web Service 

AWS S3   Amazon Web Services Simple Storage Service 

AWS EC2   Amazon Web Services Elastic Cloud Compute 

RL    Reinforcement Learning 

GPS   Global Positioning System 

CPU   Central Processing Unit 

ADB   Android Device Bridge 

SDK   Software Development Kit 

Wi-Fi   Wireless Fidelity 

2G    Second-generation wireless telephone technology 

3G    Third-generation wireless telephone technology 

HSPA   High Speed Packet Access 

HSPA+   Evolved HSPA or 4G 

4G    Fourth-generation wireless telephone technology 
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OC    Offloading Candidate 

VM   Virtual Machine 

 

 

 

 

 

 


