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ABSTRACT OF DISSERTATION

NUMERICAL SIMULATION OF GENERAL HYDRODYNAMIC
DISPERSION IN POROUS MEDIUM

A general two-dimensional equation of dispersion in a porous
medium is presented. The second order linear partial differential
equation describing the transient concentration distribution has mixed
partial derivatives which is the result of treating the dispersion
coefficients as second order symmetric tensors.

Using the principles of calculus of variations a ''functional' is
developed for the dispersion equation that has mixed partial deriva-
tives. The two-dimensional region is divided into triangular finite
elements of arbitrary size and shape. The concentration is assumed
to vary linearly over each triangular finite element. Minimization
of the functional in combination with the finite element method leads
to a system of simultaneous, first order, linear, ordinary differential
equations. The matrix differential equation is numerically integrated
using the fourth order Runge-Kutta and Adams-Moulton multistep
predictor-corrector methods.

Before proceeding with the use of the new functional, solutions
were obtained for the dispersion equation with mixed partial deriva-
tives in a rotated coordinate system. The numerical solutions using

the new functional for one- and two-dimensional problems compared
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favourably with the available analytic solutions and the results
obtained by finite element method that use a different functional. It
was shown that the new functional can handle different ratios of lateral
to longitudinal dispersion.

A general stability criteria for the resulting matrix equation is
developed. Stability dependent on the data is discussed in detail with
examples. A brief description of the numerical instability is also
given.

Marappagounder Nalluswami
Department of Civil Engineering
Colorado State University

Fort Collins, Colorado 80521
August, 1971
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CHAPTER I

INTRODUCTION

The ever increasing population of the world requires additional
sources of freshwater for purposes of irrigation, industry and
domestic supply. Freshwater from underground aquifers is one of
the major sources available. The required quantity of this abundant
supply with suitable quality properties is an important aspect to be
considered in the water resources planning of many regions of the
world. Ground water quality change is due to many factors, some of
which are due to salt-water intrusion in coastal aquifers, underground
waste disposal, recharge of surface water into underground storage
and pollution of ground water by infiltration from streams and rivers.
An understanding of the mechanics of ground water flow and the
phenomenon of miscible fluid displacement is essential to make an

estimate of the quantity and quality of the available ground water.

1.1 Description of the problem:

The problem of increasing contamination is becoming more and
more important with regard to the ground water industry. Changes
in ground water quality can be described by the hydrodynamic dis-
persion equation with coefficients depending on the flow and porous

medium as well as on the solvent and solute. Dispersion is an



anisotropic process and the dispersion coefficients should be treated
as second order, symmetric tensors. In a two-dimensional flow
field, this leads to a non-symmetrical, linear partial differential
equation of second order that has mixed partial derivatives represent-

ing the transient concentration distribution.

1::2 Objectives:

A review of the literature on dispersion in ground water and
advances in computer methods indicated it might be possible to
effectively simulate the dispersion process by numerical techniques.
Investigators have used both finite difference and finite element
methods for numerically solving the dispersion equation. The finite
element method is further evaluated in this study.

Finite element method: The concept of the 'finite element"

approach can be used for problems in which the exact solution is
defined as that which minimizes some integral of the unknown function
or of its derivatives. This integral is known as the 'functional' of
the problem (Zienkiewicz and Cheung, 1967). If the unknown function
is defined throughout the region, element by element, in terms of the
values of the function at the node points of the elements, then the
minimization of the functional will result in a series of ordinary
differential equations equal in number to that of the unknown values of

the function at the nodes.



With this background in mind the following objectives were

pursued:

1. Develop a functional to solve by finite element method the
general hydrodynamic dispersion equation in two dimensions
having mixed partial derivatives.

2. Consider the lateral dispersion and molecular diffusion in
computing the tensor of the dispersion coefficients.

3. Evaluate the stability and convergence criteria of the

numerical simulator.

4, Compare the results obtained by the finite element method
with that of the available analytic solutions of the dispersion
equation for simple cases.

5. Compare the results with other finite element solutions that

use different functionals.



CHAPTER II

REVIEW OF LITERATURE

Many investigators have studied the problem of hydrodynamic
dispersion in porous media. These investigations may be divided into
the following categories:

1. Theoretical developments;

2. Analytical results for simple cases;

3. Experimental work to test the validity and limitations of the

theoretical results and to obtain the magnitude of the disper-
sion coefficients;

4. Numerical approximations for both the simple cases and for

more complex geometries and flow situations.

Most of the works assume no interaction between fluid and
porous media, and therefore, the miscible displacement is considered
stable. As water with dissolved salts moves through the porous
medium, the salts in the water will interact with the earth materials
and thus the ground water quality is controlled to some extent by this
hydrochemical phenomenon. Guymon (1970) gives a short review of
the research on hydrochemical phenomena related to ground water

quality.



2.1 Theoretical developments:

In general one is concerned with the variation in concentration
created by both dispersion and diffusion. Diffusion is a direct result
of thermal motion of the individual fluid molecules and takes place
under the influence of a concentration gradient. Dispersion in porous
media is a mechanical or convective mixing process which is the
result of individual fluid particles traveling at variable velocities
through irregular shaped pores and along tortuous microscopic path-
lines (Reddell, 1969). That is, dispersion is the result of convective
mixing on a microscopic scale; not of a concentration gradient.

Investigators proposed different relationships for the diffusion
and dispersion coefficients. Taylor (1953, 1954) used a bundle of
capillaries and investigated the displacement of a fluid from a
straight capillary tube of radius, r , by another fluid miscible with
the first. He found that the tracer was dispersed relative to a plane
moving with velocity, V , as in Fick's first law, but with a diffusion

coefficient:
A
rV
D = —48Dd (2-1)

where Dd = molecular diffusion coefficient. This diffusion coefficient
D (Eq. 2-1) has not been used in solving the dispersion equation.

Scheidegger (1961) suggested that the dispersion coefficient:

V.V
n

B = gy, e (2-2)
1] 1jmn



where: ei'mnis the coefficient of dispersivity, which is a
porous medium property,
V.V
m n

v

is a tensor which represents the linear

influence of velocity,

and Vm' Vn are the components of velocity in the m and

n directions respectively.

He concluded that the coefficient of dispersivity was a fourth rank
tensor with 81 components; but due to certain symmetry properties,
contains only 36 independent components in the general case of an
anisotropic medium. In isotropic media there are only two dispers-
ivity coefficients., From the results of de Josselin de Jong (1958),
Bear (1961a) developed an expression for the dispersion coefficients,
Dij , and implied that it was a second-rank symmetrical tensor
linear in the components of the velocity.

Bachmat and Bear (1964) present the following general equation

of dispersion in homogeneous, isotropic porous media, which results

from the mass balance approach:

8C _ a8C
Bt ox, [Dij ox uiC] {9

where C = Concentration of dispersing mass,

o
"

time,

seepage velocity in the i-direction,

=1
n



x. = Cartesian coordinates,

Dij = components of the coefficient of dispersion, a
second-order symmetric tensor, which does not
include molecular diffusion,

and i, j = index coordinates.
They also express the dispersion equation in curvilinear coordinates
consisting of stream lines, |, and equipotentials, & . The
equation in y - & coordinate system has the advantage of having only
one convective term.
Reddell and Sunada (1970) and De Wiest (1969, Chapter 4)

present a form of Eq. 2-3 which included the effects of molecular

diffusion. The equation is:

oC _ 9 % 0C
ot  ox, |:Dij real J (A-4]
1 J
where D* =D,,+D, T.. (2-5)
i
ij o i d i
In Eq. 2-5, D:‘j = hydrodynamic dispersion coefficients

independent of the concentration C (second
order tensor),

D, = molecular diffusion coefficient (scalar),

Tij = porous medium "tortuosity' (dimensionless
and second order tensor),

and other variables are as defined earlier. Eq. 2-4 is a linear,



non-symmetrical partial differential equation. The non-symmetry is

due to the convective term 8;3— (u:.l C) .
i

2.2 Analytical results:

The analogy between heat conduction and diffusion has been used
to develop analytic solutions for a few simple cases. As the diffusion
equation is similar to the heat flow equation, the solutions are also
similar. Carslaw and Jaegar (1959) and Crank (1956) are two of the
good references for analytical solutions of heat conduction and
diffusion problems respectively. An example of an analytical solution
for the dispersion equation is given below for a problem having steady,
uniform and one-dimensional flow.

Consider a semi-infinite column (x >0) of homogeneous and
isotropic porous media with initial and boundary conditions as shown
in Fig. 2-1. Only longitudinal dispersion will occur and Eq. 2-3

reduces to:

2

aC _ gc aC

Y i T ki~ (2=0)
ox

where DL is the longitudinal dispersion coefficient.

Using Laplace transform, Ogata and Banks (1961) obtained the solution

for Eq. 2-6 as:

G 1 x-ut ux x+ut
Co =3 [erfc( + exp D erfc )] (2-7)

ZVDLt L 2 iDLt

where erfc(w) = 1 - erf(w)



I.C.: -C(x,0) =10 for x>0
B. 0. G0, £) =Co for t>0
C(a,t) =0 for t>0

Fig. 2-1 Semi-infinite column of porous medium.
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This analytic solution enables us to compare the numerical solutions

for similar problems.
When DL < 0.002 ux, the second term in Eq. 2-7 may be

neglected and the maximum error will be less than three percent.

2.3 Experimental work:

In most of the cases, the main purpose of the experiments
have been to verify the theories proposed and to establish relationships
to calculate the dispersion coefficients from media and fluid properties.

Scheidegger's (1961) work indicated that for homogeneous and
isotropic media, the dispersion tensor reduces to two independent
terms: (1) DL , the longitudinal dispersion coefficient, and (2) DT 3
the lateral dispersion coefficient.

The Reynold's number has been used as a parameter to

correlate the dispersion coefficients. Ebach and White (1958) postu-

lated from their experiments that for Reynold's number Rn < 100:

B,y (V.d*)ﬁl
— a
1 v

(2-8)

where V = seepage velocity of fluid,

d*

particle size of the porous media,

and v kinematic viscosity of the fluid.

01 and [31 are experimentally determined coefficients, dependent on

the porous medium and flow regime respectively. Ebach and White

(1958) found a = 1,92 and [31 = 1.06. Harleman and Rumer (1963)

1
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found %y = 0.66 and ﬁl = 1.2. Hoopes and Harleman (1965) found

01 = 1.7 and Bl = 1.2. The variations in these values may be
attributed to the experimental techniques for measuring concentration.

Harleman, et al (1963) correlated longitudinal dispersion with

permeability:

(2-9)

where K is the unit of permeability with dimensions Lz and they
found d 54 for spheres and 88 for sand with B, = 1.2 for both
media.

Using a similar approach to determine the lateral dispersion

coefficient DT , an expression of the form:

D % [33
T _ q (Vd ) (2-10)
v 3\ v

was used by Harleman and Rumer (1963) and they found oy E 0.036
and [33 = 0.7.

Bear (1961b) concluded from his experiments that the dispersion

coefficient, Ds , in the s-direction can be expressed in the form:

D =d|vs| (2=11)

where d is a constant depending on the media characteristics and Vs
is the seepage velocity in the s-direction. Guymon (1970) used this

relationship in his work. Eq. 2-11 treats the dispersion coefficient as
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an isotropic quantity and thus excludes the mixed partial derivatives
from the partial differential equation describing the concentration
distribution.

Bruch (1970) conducted a series of two-dimensional dispersion
experiments and verified some of the theoretical and numerical
results. He treated the dispersion coefficient as an isotropic
quantity, and included the lateral dispersion coefficient. The results
demonstrated the need to consider the combined effect of longitudinal

and lateral dispersion in the analysis.

2.4 Numerical approximations of ground water equations:

Need for a numerical approach: Most of the available analytical

results are based on a set of assumptions which are to a certain
extent at variance. These assumptions are made to simplify the com-
plex mathematics involved in the problem and also because of lack of
accurate data. The quantitative reliability of the results obtained
from these analytical approaches depends on the degree of variance

in the assumptions made. In the experimental work different types

of physical models have been used either to verify or to improve

upon the existing theories of dispersion in ground water flow and to
determine the dispersion coefficients. However, these physical models
do not exactly simulate the field conditions and it is understood that

to date (1971) no laboratory techniques have been developed to

exactly model the complex prototype situations. Because of these
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difficulties, many investigators are using numerical methods to
obtain approximate solutions of the dispersion equation for complex,
prototype problems. The development of high speed computers
enhance such an approach.

Numerical methods have been used for solving both flow
equations and dispersion equations. Solution of the flow equation is
needed to compute the velocity components to be used for solving
the dispersion equation. Investigators have used both the finite

difference and finite element methods.

Finite difference method for solving the flow equation: Numerical

finite difference methods have been very widely used for the case of
immiscible fluid flow through porous media. Many of the reservoir
simulation techniques were developed by the petroleum industry.
Some work has been done in the area of ground water hydrology.
Tyson and Weber (1964) have used computer simulation techniques to
model ground water basins. The zone was divided into polygons and
the unknown function was computed at a finite number of node points
lying within the boundaries of the aquifer. They successfully evolved
and tested a mathematical model of a ground water basin.

Bittinger, et. al. (1967) used the finite difference method for
simulating a mathematical model for better aquifer management.
They used rectangular grids for computing the head at the center of

each grid. The resulting equations have a particularly simple
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symmetrical form. Brutsaert (1970) presented results on an
immiscible fluid flow simulator. He used a fully implicit finite
difference scheme and obtained satisfactory results for an uncon-
fined well flow problem treated as a multiphase flow phenomenon.

Finite element method for solving the flow equation: This

method was originally developed in the field of stress analysis. There
have been some recent publications on the use of the finite element
method for steady state and time dependent fluid flow and heat con-
duction problems. Neuman and Witherspoon (1970b) presented
functionals based on variational principles for confined and unconfined
flow of ground water.

Zienkiewicz and Cheung (1965) used this method for solving
""field problems" which require the solution of a differential equation
throughout a physical region or 'field.' Zienkiewicz, et. al. (1966)
solved an anisotropic, steady state seepage problem. Taylor and
Brown (1967) have used this method for steady state Darcy flow
solutions with a free surface. Neuman and Witherspoon (1970a)
analyzed steady state seepage with a free surface, using the finite
element method and a new iterative approach to obtain rapid con-
vergence. Their method can handle problems where the free surface
is discontinuous and where portions of the free surface are vertical
or near vertical,

Recently the U. S. Army Corps of Engineers (1970) used the

finite element method to solve steady state potential flow problems.
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For a regional ground water problem, they obtained good correlation
between the observed potentiometric surface and the computed values
of the hydraulic head. The results from the problem on axisymmetric
radial flow to a well and that from the problem on steady state seepage
from a ditch considering the effects of capillarity proved the
versatility of the finite element method.

Wilson and Nickell (1966) applied the finite element method for
transient heat conduction analysis of complex solids and concluded
that this method possesses unique advantages as compared to other
numerical approaches with respect to treating variable distribution
of thermal properties, temperature and heat flux boundary conditions
and solids of arbitrary geometric shape. They further said that the
method provides an efficient digital computer approach for a large
class of time dependent problems.

Javandel and Witherspoon (1968), Witherspoon, et. al. (1968),
Javandel and Witherspoon (1969) have solved transient fluid flow in
porous media using the finite element method. They claim that the
generality of this method with respect to arbitrary boundary conditions
and changes in rock properties provides a powe rful new method of
handling problems of fluid flow in complex systems. Very recently.
France,et. al. (1971) solved by the finite element method the three-
dimensional, steady state and transient seepage problems using the
isoparametric concept. According to them, the technique of con-

sidering the time variant problem as a series of steady state solutions
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separated by a small time interval is ideally suited to the digital
computer. They conclude that much work remains to be done in the
field of finite element application to free surface problems in general.

Finite difference method for solving dispersion equation: Some

work has been done on the use of the finite difference method for
solving the hydrodynamic dispersion equation. Peaceman and
Rachford (1962) used Darcy's law for flow and a dispersion equation
in Cartesian coordinates for a two-dimensional case. After computing
pressure distribution at each time step, the velocities are determined.
Using these velocities, the new concentration distribution for the next
time step may be computed from the dispersion equation. Garder,

et. al. (1964) used the method of characteristics for treating com-
bined transport and dispersion to improve the numerical solution of
the problem solved by Peaceman and Rachford (1962). This method
involves, in addition to the usual division of the two-dimensional

space into rectangular grids, the use of a set of moving points. Each
moving point has associated with it a concentration, which varies with
time. This method prevents numerical dispersion although it involves
more computer storage.

Shamir and Harleman (1967) used equipotentials and stream-
lines (3 - ) coordinates as the basis for the numerical scheme to
solve the problems of dispersion in which the miscible fluids have the
same density and viscosity. In this case, the velocity is everywhere

tangential to the streamlines and the equation becomes one-dimensional
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in the convective term. In some of the problems in which the
boundary conditions were constant at a concentration equal to C0 )

the relative concentration C/CO were greater than one (C/CO >1.0)
behind the advancing front. Shamir and Harleman (1967) developed
and tested the numerical scheme for two-dimensional problems and
presented an extension for three-dimensional problems.

Reddell (1969) used the finite difference method for the study of
dispersion in ground water aquifers. He employed an implicit
numerical technique to solve the flow equation for pesssure in an
unsteady, non-uniform flow field with density and viscosity variations
between the two fluids, and the method of characteristics with a tensor
transformation to solve the convective dispersion equation. After
solving for pressures in the flow equation, velocities were computed
using Darcy's law and these velocities were used, after correcting
for porosity of the medium, in solving for the concentration in the
convective dispersion equation. Thus, the solution of the flow
equation and the dispersion equation constitutes one time step. For
the next time step, the new values of the concentrations obtained by
solving the dispersion equation at the end of the previous time step
are used in the flow equation to solve for pressures and the process
repeated. This is known as a ''leap frog'' technique. A salt water
intrusion problém in a coastal aquifer was modeled.

Pinder and Cooper, Jr. (1970) also used the method of charac-

teristics and a simplified flow equation in conjunction with the
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iterative alternating direction implicit procedure for predicting the
movement of the salt water front in coastal aquifers. The method used
by Reddell (1969) is more sophisticated than that of Pinder and Cooper,
Jr. (1970).

Finite element method for solving dispersion equation: More

recently, Guymon (1970) used the finite element method for predicting
the motion of dissolved constituents in ground water aquifers in a
two-dimensional, steady flow field. The dispersion coefficients were
not treated as tensors, Eq. 2-11. Only the longitudinal dispersion
coefficient was considered and he neglected the lateral dispersion
and molecular diffusion. Velocities and saturated thicknesses are
considered as given information. His model deals with only physical
and mechanical aspects of the motion of the dissolved constituents
in ground water flow. The objectives of his research were to pro-
vide the basic mathematical and conceptual frame work to model a
complex multi-aquifer regional ground water basin in order to predict
with a reasonable degree of precision the spatial and time varying
concentrations of selected dissolved salt species pumped from a well,
Though Guymon (1970) was the first to use the finite element
method to solve the dispersion equation, some of his assumptions
could be avoided. For example, the dispersion coefficient may be
treated as an anisotropic quantity which will lead to a partial

differential equation having mixed partial derivatives. In addition,
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the lateral dispersion and molecular diffusion may be included as a

tensor in the dispersion coefficients.

2.5 Further needs for finite element method for solving dispersion

eauation:

In solving the convective dispersion equation using the finite
difference methods, some difficulties have been reported. Subsequent
testing of the method adopted by Peaceman and Rachford (1962) has
shown that for multi-dimensional displacement, their method involved
a numerical dispersion of the same order of magnitude as the physical
dispersion. Numerical dispersion is an effective dispersion caused
by the finite difference approximation and produces dispersion even
when the dispersion coefficients are set equal to zero. Hoopes and
Harleman (1965) used an explicit finite difference method, and in
this, the size of the grid spacing and time increment were restricted
for the explicit scheme because of stability criterion. This pre-
sented some problems because of large amounts of required computer
time. The method of characteristics used by Reddell (1969) involves
the use of '""moving points'', in addition to stationary finite difference
grids and this requires extensive computer storage and execution time.
It is easier to handle the irregular boundary shapes by the finite
element method.

To solve large problems, the required computer storage and
time become important factors. From his experience, Guymon (1970)

concluded that the computer program based on the finite element
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method is more accurate and requires smaller computer storage and
execution times than programs which are based on finite difference
methods for solving the convective dispersion equation; however, he
has not presented any evidence to support this statement. The finite
element method is applicable to irregular basin configurations that
are divided into any selected number of triangular elements of
arbitrary size and shape. This method is particularly suited to
basins having irregular boundaries, i.e., it provides a complete
geometrical flexibility.

If the dispersion coefficient in porous media is treated as a
second rank tensor, the resulting second order linear partial differ-
ential equation has mixed partial derivatives. The dispersion
coefficients as given by Eq. 2-5 are linear functions of the velocity
components and molecular diffusion. The proposed scheme is an
improvement over that of Guymon (1970) in that the basic differential
equation is more general as it includes the mixed partial derivatives.
Also, the dispersion coefficients consist of longitudinal and lateral

dispersion and molecular diffusion.



CHAPTER III

MATHEMATICAL MODEL AND NUMERICAL SIMULATOR

In this chapter, the general form of the hydrodynamic dispersion
equation is presented with the auxiliary equations. A functional is
developed utilizing the variational principles for the two-dimensional
dispersion equation and an extension is suggested for solving the
ground water flow equation. A numerical simulator is developed

using the finite element technique.

3.1 Methods of approach:

The finite element technique is an approximate method of
analysis similar to the finite difference method. The finite element
technique, on the other hand, uses an associated functional instead
of solving directly the differential equation. The approach to the
problem by the finite element technique may be divided as follows:

1) Derive the appropriate differential equation and specify
the necessary boundary conditions;

2) Develop the associated functional and prove the equivalence
between the functional and the differential equation with
suitable boundary conditions;

3) Divide the region into triangles (finite elements) of arbitrary

size and shape;
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4) Minimize the functional for each triangular element using
variational principles;

5) Group the resulting equations from all elements;

6) Modify for constant concentration boundary conditions;

7) Solve the system of equations;

8) Develop the stability criteria for the system of equations.

3.2 Mathematical model:

Dispersion equation: It is generally accepted that the dispersion

equation in Cartesian coordinate system is Eq. 2-3, which is obtained
from the principles of conservation of mass. The equation for the
conservation of mass of the dispersing material in an elementary
control volume is obtained by equating the time rate of accumulation
of mass inside the volume to the net influx of mass through the
boundaries of the element. The net influx is made up of convective
terms and terms involving dispersion. The modified form of the
dispersion coefficients by Reddell and Sunada (1970) are presented

in Eq. 2-5, which includes the longitudinal and lateral dispersion and
molecular diffusion.

Guymon (1970) and Guymon, et. al. (1970) treated the dispersion
coefficients as being isotropic, thus reducing Eq. 2-3 to one without
mixed partial derivatives. They further neglected the lateral dis-
persion and molecular diffusion. The dispersion coefficient given by

Eq. 2-5 is an anisotropic quantity and thus should be treated as a
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second rank tensor. Eq. 2-4 can be written after dropping the super-

scripts ( in two-dimensional Cartesian coordinates) as:

aC 8C 0C 9 9 C 9 C
—_— o e D S
ot * % ox ¥ vy 9x (Dxx X ¥ Xy By)
(3-1)
0 aC aC
* Ty (DYY oy DVX 8X)
where u = seepage velocity in the x-direction,
v = seepage velocity in the y-direction,
and the dispersion coefficients D , D , D , and D are
et y Xy yX
obtained from Eq. 2-5 as follows:
u.2 VZ
D 2 D, =— 4+ D — + DyT
d
XX L VZ T VZ
u2 vz
” o B8 e -2
DYY DT 3 + DL 5+ Dd T (3-2)
A% v
E N o
and DXY = Dyx = {DL - DT) VZ .

In Eq. 3-2, the seepage velocity V 1is defined as Darcy's velocity
divided by the porosity of the medium. Other variables in Egs. 3-1
and 3-2 are as defined earlier.

Because of the symmetric nature of the dispersion coefficients,

D =D __, Eq. 3-1 may be written as
Xy VX
2 2 2
BC+u8C+v8C=D aC+2D 8C+D 9 C
ot ox oy XX axz Xy 0x9y vy 8yz

(3-3)
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Eq. 3-3 describes the transient concentration distribution in a two-
dimensional case.
The types of boundary conditions to be considered to solve

Eq. 3-3 by the finite element method are:

C = Co(x, y) on a portion of the boundary for t> 0, (3-4)
aC o 5
and ool 0 for the remaining portion of the boundary for t> 0,
(3-5)

where n represents the direction normal to the boundary. Eq. 3-4
is called a geometric or fixed boundary condition and Eq. 3-5 would
be a natural or reflective boundary condition (Shamir and Harleman,
1967).

Dispersion equation in rotated coordinate system: It is

possible to account for the mixed partial derivatives of Eq. 3-3 by
rotating the coordinates through an angle 6 . The transformed
axes are orthogonal and denoted by x'y' . In this x'y' coordinate

system, Eq. 3-3 becomes:

2 2
-gi:—— u' g—g + v —E’@g— =D, ,-L (2: B -—‘fi-% (3-6)
ox! ay'
1 ZDxx
% ”
where @ = 3 tan R ;
XX Yy
2 . .2
D,,=D cos 0O 2D sin® cos ® +D sin 0,
x'x XX Xy vy
. 2 _ 2
D, =D sin 0 - 2D sin 8 cos O +D cos 8,
yy XX Xy Yy
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u = (ucos® + vsin9),

and v ==(usin ® - v cos 0).

The proof for Eq. 3-6 is given in Appendix A. Though Eq. 3-6 includes
the effect of the mixed partial derivatives, it has some limitations

which will be explained in Chapter IV,

3.3 Variational principles and proof of equivalence:

""There is an entire class of engineering problems which
pose such questions as what is most...? Where is
minimum...? or How can we best...? In this class of
optimization problems, one finds a sub-class which is
formulated in the language of variational calculus."

(Schechter, 1967)

In many of these problems, the minimization of some integrated
quantity (referred to usually as a '"functional'') and subject to some
boundary conditions results in the exact solution of equations such as
Eq. 3-3. This functional may represent a physically recognizable
variable in some instances. It is then usually associated with con-
cepts of energy or work. For many purposes, however, it is simply
a mathematically defined entity (Zienkiewicz, 1967).

The finite element method of solving problems in ground water
are usually based on variational principles. A variational principle
is a complete representation of the problem in the sense that the
initial and boundary conditions are part of the functional (Neuman and

Witherspoon, 1970b). The basic approach is to replace the boundary
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value problem by an appropriate functional whose minimizing

function is the solution to the problem. If C™ is the exact solution
to the dispersion Eq. 3-3 and if J(C) represents the functional for
Eq. 3-3, then the variational principle states that the functional

J(C) should attain its minimum value at g* ; Among the family of
functions we can find a particular C for which J(C) holds the least
value. Utilizing these basic concepts of the variational principles

and the functional for the associated differential equation, the finite
element method is used to solve the hydrodynamic dispersion equation
in a two-dimensional case.

Many problems in science and engineering involving rates of
change with respect to two or more independent variables, usually
representing time, length or angle can be expressed as partial
differential equation or a set of such equations. Special cases of the
two-dimensional second order equation:

2 2 2
-8——‘5'—+zb 8 ¥ 4 2F +d%+e%w—+fw+g:0 (3-7)
ox 8% 9y 8y &

a

where a, b, ¢, d, e, f and g may be functions of x and vy,
and of the dependent variable w, occur more frequently than any
other because they are often the mathematical form of one of the con-
servation principles. If it is assumed that the coefficients may be
‘fu.nctions of x and y only, Eq. 3-7 becomes linear and is derivable

from a variational problem of the form:
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2 2 2
1 = - =0 (3-
65‘5‘ [2(awx+2.wawY+<:WY fw) gw] A dxdy (3-8)
R
where appropriate boundary conditions are prescribed (Hildebrand,
1965). InEq. 3-8, A = A(x,y) may be termed a reducing factor and
6 denotes a small variation. Eq. 3-8 is to be integrated over the
two-dimensional region R (Fig. 3-1).
In Eq. 3-3 the dispersion coefficients D , D, and D__,
%X Xy vy
and the velocity components u and v are assumed to be functions

of x and y only, and at any instant of time is considered as

at
invariant at any particular point in space. By analogy with Eqs. 3-7

and 3-8, the variational problem for Eq. 3-3 may be written as:
C 2 C C C
4] SI S exp (B) 3 |D (—&—-) +2 D (8_) (_8__)+ D (8—)

BC =
+(at)c dc dy = 0 (3-9)

where exp (B) is the reducing factor and

w . [UXAVy - .
B (DL+ DdT) (3-10)

The proofs for the reducing factor exp(g) and for Eq. 3-10 are given
in Appendix B. Eq. 3-9 is to be integrated over the two-dimensional

region R (Fig. 3-1).
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Fig. 3-1 Division of the two-dimensional region
R into triangular finite elements.
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The appropriate functional J for Eq. 3-3 is:

(3-11)

where B is defined by Eq. 3-10. The proof that this functional is
equivalent to the differential Eq. 3-3 and the boundary conditions
(Egs. 3-4 and 3-5) is shown in Appendix B.

Due to numerical difficulties in solving for the concentration
C, elaborated upon by Guymon, et. al. (1970), a change of variable

is introduced by the transformation:

¢ = C exp (B/2) (3-12)

where ¢ is the new dependent variable. Using this new variable ¢,
and assuming the dispersion coefficients and velocity components as

constants, the original differential Eq. 3-3 is transformed as:

D u2+D VZ—ZD uv 2
¥ . 9w XX xy _p 229
t 2 % = XX 2
9 4D D -D°) 5x
xx yy xy
(3-13)
2 2
oy 3+ 0, Lt
y o

To avoid zero in the denominator of the coefficient of ¢ on the left

hand side of Eq. 3-13, the relationships for the dispersion coefficients,
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Eq. 3-2, may be used and Eq. 3-13 becomes:

2 2 2 2 2
9% [ u +v ‘ 9 ¢ 9 ¢ o ¢
= 4 & = D + 2D + D 2=

2 2
ot 4(DL +Dd & XX - Xy 9X oy vy o7

(3-13a)

The boundary conditions given by Eqs. 3-4 and 3-5 respectively are

transformed as:
¢ = ¢_(x,y) = C_(x,y)exp (B/2) (3-14)
on a portion of the boundary for t> 0,

i 8 Py =
5 8XJ + U‘iz) = 0 (3-15)

and (D

on the remaining portion of the boundary for t > 0.

The functional given by the Eq. 3-11 is transformed as:

5 2 5 2
_ xx (8¢ 9d\[ad yy [8¢
S S‘g 2 (aX) +va(ax)(av)+ 2 (av)

(3-16)
2 2
D u+4D v -2D uv
R e
8(D D -D° ) 9
XX yy Xy

Eq. 3-16 also may be modified to avoid zero in the denominator of the

coefficient of ¢2 on the right hand side. The modified form is:
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D 2 2

r- 51 (32) en, ()2 ()

(3-16a)

2. 2
3 B[] (8] o e

L d
The proof of equivalence of the transformed functional (Eq. 3-16) and
the differential Eq. 3-13 with the corresponding boundary conditions
is given in Appendix B. The functional given by Eq. 3-16a is solved
by the finite element method. If we let ny' = 0 and assume the same
relationships, Eq. 2-11, as used by Guymon (1970) for the dispersion
coefficients, then the transformed functional represented by Eq. 3-16
reduces to the corresponding functional given by Guymeon (1970).

An extension is suggested in Appendix C for solving the ground

water flow equation utilizing the functional developed in this section.

3.4 Numerical approximation by the finite element method:

Consider a two-dimensional region R as shown in Fig. 3-1.
For the purpose of expressing the functional in terms of a finite
number of unknowns, the region R is sub-divided into a network of
small triangular finite elements. In general, one should use the
smallest elements in regions of maximum gradients. The dimensions
of the elements in any one direction should not change abruptly. The
solution for the distribution of the concentration within the region is

determined by minimizing the functional, Eq. 3-16a, by the Ritz
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method. The generalized coordinates are selected as the concentra-
tions at the nodal points of the triangular elements. The greater the
number of the generalized coordinates (nodal points), the more
accurate the result will be.

The minimization process requires the establishment of the
relation for the concentration as a function of position and time. If
the concentration is assumed to vary linearly with respect to the

coordinates x and y over the triangular element, then we have:

§ = 4wty (3-17)

where ¢ is defined by Eq. 3-12 and Ctl, a, and 03 are coefficients
so determined that Eq. 3-17 reduces to the values ¢i, ¢>j and ¢>k

at the nodal points i, j and k (Fig. 3-1) respectively. As an
extension of and improvement over this method other higher-order
polynomials should be investigated.

It is more convenient to introduce local coordinates as shown

in Fig. 3-2 and defined as:

oo SRR 4

—m o=
where x and y ™ are the global coordinates of the centroid of

t
the m ~ triangular element, i.e.:
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Fig. 3-2

Relation between global coordinates and local
coordinates.
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—m
X = (xi+xj+xk)/3
. (3-18)
and ¥ @ = (yi + Yj . Yk)/3.
These local coordinates § and m enable us to use some of the simple

integration formulas defined in Appendix D, The functional given by

Eq. 3-16 is written in terms of these local coordinates as:

xtu 2 8¢
> ¢ +(§—)¢ dg dn  (3-19)

xxyy ~xy

D - _ D 2
re S5 ) e G )

u 9% V-8 v’ 2 8¢
v
+ — — —_— — ————————— i
(z & T2 an) R B o (at)"’ sty
(3-19a)
The concentration given by Eq. 3-17 meets continuity require-

ments over each finite element and the transformed value of the con-

centration ¢ is given by:
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o = [A]{ep}m (3-20)

where [A] is a function of space only. [A] is a row matrix and given
m - -
in Appendix D. The three element vector {¢} is a function of time
only and it represents the concentrations at each node. The super-
. th .

script m denotes the m ~ triangular element.

The nodal values of ¢ define uniquely and continuously the con-
centration throughout the region. The functional J given by
Eq. 3-19a can now be minimized with respect to these nodal values.
The minimization procedure described by Zienkiewicz and Cheung

(1967) is utilized here. This process is best accomplished by

97
896, ’

1

evaluating, first the contributions to each differential such as
from a typical element, then adding all such contributions and equating

to zero. Only the elements adjacent to the node i will contribute to

9J
9 b3

element is obtained by differentiating J given by Eq. 3-19a partially

th
The contribution of the ith node of the m =~ triangular

with respect to ¢i . The complete development is shown in Appendix

D.
™
The final form for the differential -2 is given as Eq. D-15
i
in Appendix D and repeated below :
9 Jm Dxx sz sz
= —— B & o a,. |la,| + a,. |a
a¢.i 4Am 21 [2] 4Am 31[2] 4a™ 21 [3]
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1 1 uz+v2 m
tqz (ufag] +v 3]+ oa™ \D DT [an),] | (&)

ot

AA).
Rl {3¢}m (3-21)

can also be

Similarly two other differentials
8¢’j 8¢*k

evaluated.

Every element thus contributes to three of the differentials
corresponding to the three nodes associated with it. These contribu-

tions are:

R [s]m%[p]{—aﬂ%} (3-22

87

where [SJ and [p] are given in Appendix D as Egs. D-23 and D-24

respectively.

The minimization procedure involves the assembly of all the
differentials of J and equating these to zero. This procedure leads

to the following set of simultaneous, linear, first order differential

equation:
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[5*] {6} + [P*] %}= (@™ (3-23)

where I:S*] is the sum of [5] and EJ*J is the sum of [p] Both
[S*] and I:P*] are N by N banded, symmetric matrices, and {$} ,
{%;i} and {Q*} are N element column matrices. The term N
represents the total number of triangular nodal points over the region
R . When there are no sources or sinks within the region R the
{Q*} matrix is zero. If there are L nodal points with prescribed
geometric boundary conditions, then there will be L corresponding
values ¢ which are known and need not be solved.

The matrix differential equation, Eq. 3-23, is modified to
eliminate the L number of equations corresponding to the geometric
boundary condition nodes. Let q:: , n=12 ...N, be the elements of
the N by one {Q*} matrix in Eq. 3-23. Then the {Q*} matrix is
modified by the rule:

5. g ¢£ (3-24)

£
for each value of n. In Eq. 3-24, s , are the elements of the [SJ
matrix and q represents the elements of the modified, N by one
column matrix {Q*}. Then the rows and columns of the matrices [Sﬂ
* = . :
and ﬁD ] of Eq. 3-23 are set equal to zero on the ¢>L points and also

the L rows of {Q*} matrix are set equal to zero. Finally the matri-

ces [S*], ﬁ:*] and {Q*} of Eq. 3-23 are modified by shifting the lower
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non-zero values up or to the left until the L number of columns and
rows have been eliminated.

Denoting the modified matrices as [S], [P} and {Q}
corresponding to the matrices [S*], [P*], and {Q*} respectively

in Eq. 3-23, the following equation is obtained:
9% o
[s] (63 + [P] {at} - (@} (3-25)

where [S] and P] are (N-L) by (N-L) banded, symmetric matrices
and {¢} , {%2’- and {Q} are (N-L) element column matrices.
The variational principle incorporates the natural boundary conditions
corresponding to Eq. 3-5 in the functional. A proof is given in
Appendix E to show that the system of equations represented by

Eq. 3-22 is independent of the coordinates.

In this chapter, the mathematical model describing the transient
concentration distribution in a two-dimensional case is presented,
Eqs. 3-3, 3-4 and 3-5. Utilizing the variational principles and the
finite element method, a numerical simulator of the mathematical
model is developed, Eq. 3-25. The numerical solutions of the

simulator are given in Chapter IV.



CHAPTER IV

APPLICATION OF THE NUMERICAL SIMULATOR AND
DISCUSSION OF THE RESULTS

The primary objectives of this research were to evaluate the
significance of the mixed partial derivatives in the new functional,
Eq. 3-11, and the use of Eq. 3-2 which treats the hydrodynamic
dispersion as an anisotropic quantity. Solution of the resulting set
of simultaneous, linear, first order differential equations represented
by Eq. 3-25 was obtained in the same manner as described by
Guymon (1970). The following paragraphs describe the procedure
for using the numerical simulator and give an evaluation of the results

obtained.

4.1 Bandwidth of the matrices of the simulator:

The symmetric and banded characters of the matrices [S] and
[P] of Eq. 3-25 are taken advantage of in storing the elements. Only
the upper triangular bands of the matrices are stored to conserve
computer storage. The maximum non-zero elements in any row of
the matrices [S] and [P] will be equal to the adjacent nodes with
which the node corresponding to the row of the matrices is connected
plus one. This indicates that a certain numbering of the nodes will

give the minimum bandwidth. Here, the term '"bandwidth' for any
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row is defined to include the main diagonal and the elements to the
right of the main diagonal including the last non-zero element. This
rule is applied to each row of the matrices and the maximum value
obtained from any one row of the matrices is taken as the bandwidth
for the whole system, Eq. 3-25. Guymon (1970) gives a brief descrip-
tion for the most effective numbering scheme to obtain a minimum

bandwidth.

4.2 Method of solution of the system of linear differential equations:

The simultaneous, linear, first order differential equations

represented by Eq. 3-25 can be written as:

[P] =220 = - [s] (&} + (o (4-1)

Using the initial values of q;i, i=1,2,...(N-L), the right hand side

of Eq. 4-1 can be combined to yield:

99
—L 5 = -2
(7] { = } {F) (4-2)
; )0 .

Eq. 4-2 is solved for the vector ¢ = o using the well known
"Gaussian elimination'' method. The resulting set of first order
differential equations are numerically integrated using a fourth order
Runge-Kutta technique to develop the necessary starting values
followed by the application of the Adams-Moulton multistep predictor-

corrector method. Algorithms for these methods are given in Conte

(1965) and the formulas used in this sirmulator are given in Appendix F.
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The values computed by using the Adams-Moulton multistep
predictor-corrector formulas, Eqs. F-4 and F-5 given in Appendix F,
are used to find the local truncation error {e}nl+ which is calculated

1

as:

B, S ({4»}(” T ) (4-3)

n+1 14 n+l n+l

Depending upon the accuracy required and the type of problem, values
are read in as input data specifying the maximum and minimum

permissible error. If the absolute value of ¢ is greater than the

n+1
specified maximum error, provision is made in the computer program

to automatically reduce the time step size by half. If the maximum

absolute value of ¢

i is less than the specified minimum error,

the time step size is doubled. This adjustment in time step size is
made to reduce computer time.

Solutions for the concentration distribution are repeated for
each time increment until the whole time interval is completed. At
any instant in time, the concentration C may be obtained by taking an
inverse transformation of ¢ using Eq. 3-12.

The computer program: The computer program was written in

Fortran IV language. The program developed in this study has been
adopted from a modification of a previous program reported by
Guymon (1970). It consists of five segments and a number of sub-
routines for solving the system of linear, first order differential

equations. Labeled common blocks are used to conserve storage and



42

to minimize time. A brief description of each of the five segments
is given in Appencix G. A flow chart, method of data preparation and

a listing of the program are also given in Appendix G.

4.3 Results and discussion:

Types of problems solved and means for comparison: The

numerical simulator developed in Chapter III, Eq. 3-25, is capable
of solving a general two-dimensional dispersion equation having mixed
partial derivatives. The simulator was also used to solve a one-
dimensional case, say in the x-direction, assuming the component of
the velocity v and the partial derivatives in the y-direction equal
zero. The one-dimensional equation is similar to Eq. 2-6. The
advantage of transforming the two-dimensional equation into a one-
dimensional form is that we have analytic solutions for the one-
dimensional case, Eq. 2-7, to compare with the numerical results.

The one-dimensional problems were also transformed into two-
dimensional forms by a suitable rotation of axes and coordinates. In
this way the numerical simulator, Eq. 3-25, which is applicable to a
two-dimensional case was used without any modification and the
results compared with the analytical solutions given by Eq. 2-7. The
results were also compared with other finite element solutions using
different functionals.

Comparison of results from previous related work: Guymon

(1970) used the variational principles and the finite element method to
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solve the dispersion equation excluding the mixed partial derivatives

and solved steady flow problems, The problem shown in Fig. 4-1 is
identical to that solved by Guymon (1970). The region was divided

into 16 triangular elements as shown in Fig. 4-2. The analytic results
are presented at selected values of the fractional distance x'/f in
column 2 of Table I.

Results from different computers: Before proceeding with the

use of the new functional, Eq. 3-11, to solve the problem, it was
necessary to evaluate the difference in the résults obtained by solving
the same problem with two different computers. Guymon (1970) solved
the two-dimensional case for the boundary conditions shown in

Fig. 4-1 and for the element configurations shown in Fig. 4-2, using
an IBM 7044 computer. His results are given in column 3 of Table I.
Using Guymon's functional, the same problem was solved using a
CDC 6400 computer and the results are given in column 4 of Table I.
The discrepancy in the two results may be attributed to the fact that
IBM 7044 and CDC 6400, respectively, carry 16 and 29 significant
digits in double precision resulting in different roundoff errors.

Rotation of axes: An attempt was made as shown in Chapter III

to eliminate the mixed partial derivatives from Eq. 3-3 by rotating

the coordinates so that the functional developed by Guymon (1970) could
be utilized. The resulting equation (Eq. 3-6) is in terms of x'y'
coordinates. The problem in Figs. 4-1 and 4-2 was reformulated

utilizing the new coordinates x' and y' as shown in Fig. 4-2. The



44

N NN N NNSUNUOSUNNOUONU NSNS

_—
u=0,1414

miles/year

SOOI RRRRNRNRRNNNAS
L x!
t——— [ = 4 miles —

I.C.: C/CO 0 att=0 for 0 <x' <!

I

B.C.: C/CO=1 att>0 for x' =0

n

C/Co 0.148 at t>0 for x' =14

DL = 470 cmzlsec

Fig. 4-1 One-dimensional column of porous media.
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Fig. 4-2 Two-dimensional grid network
with 16 elements for problem
shown in Fig. 4-1.



TABLE I
VALUES OF C/C0 FOR PROBLEM IN FIGURES 4-1 AND 4-2 AT TIME = 5 YEARS
LONGITUDINAL DISPERSION COEFFICIENT D_ = 470 CMZISEC

L
Fractional Analytical Results Using the Functional Results Using New Functional Including
Distance Solutions Developed by Guymon (1970) Mixed Partial Derivatives
Guymon's Mixed Partials Ratios of Laateral to Longitudinal

x'/1 (Eq. 2-7) Method Eliminated by Dispersion Coefficients

IBM |CDC - | Rotation of Axes s B Py

7044 | 6400 DT/PL“O'U DT/DL—O.OS DT/DL—O. 1.

1 2 3 4 5 6 7 8

0 1.000 1.000| 1. 000 1.000 1. 000 1. 000 1.000
0. 25 0.755 0.787) 0.788 0.750 0.750 0.754 0.757
0.5 0.503 0.526 | 0.527 0.522 0.522 0.522 0.522
0.75 0.294 0.340 | 0. 341 0.298 0.298 0.302 0. 306
1.0 0. 148 0.148 | 0. 148 0.148 0. 148 0.148 0. 148
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nume rical results are given in column 5 of Table I. The coordinate
transformation includes the effect of the mixed partial derivatives

and a comparison of columns 4 and 5 of Table I indicates the contribu-
tion due to the mixed partial terms. For this problem, the results
obtained from Eq. 3-6 which includes the effect of the mixed partial
derivatives appear to be closer to the analytic solutions than that
obtained by using Guymon's (1970) functional. For the type of relation-
ships considered with the dispersion coefficients (Eq. 3-2), this
rotation technique can be used for uniform velocity distributions, but
cannot be used for non-uniform flow patterns. Both steady and unsteady
cases can be handled.

Results using new functional: The new functional, Eq. 3-11,

which includes the mixed partial derivatives, was used to solve the
same problem (Figs. 4-1 and 4-2). Shamir and Harleman (1967)
report that the lateral dispersion coefficient DT is in the range of
(0.05 to 0.1) times the longitudinal dispersion coefficient DL :
Utilizing the new functional, numerical results were computed for
ratios of DT/DL = 0.0, 0.05, and 0.1 as presented in columns 6, 7
and 8 respectively of Table I. Considering the coarse element sizes
and the type of linear approximations used for the concentration, the
numerical results compare favorably with the analytical solutions,

and better than the results obtained by Guymon (1970) using the

functional without the mixed partial derivatives. From the results
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given in Table I, it appears that the lateral dispersion coefficient
DT has very little effect upon the concentration distribution.

The values of the concentration as a function of time for
different values of the fractional distance are plotted in Fig. 4-3.
Three sets of results are plotted on the same figure. In one set, the
concentrations were computed after elimination of the mixed partial
terms by rotation of axes. The lateral dispersion and diffusion were
neglected in this case. In the next two sets ratios of DT/DL = 0,0
and 0. 05 were used and molecular diffusion was neglected. In all
three cases, the dispersion coefficients were computed using the
relationships given by Eq. 3-2. The three sets of results are very
nearly equal.

The following points may be noted. Though there is provision
to include the molecular diffusion Dd in Eq. 3-2, it was assumed to
be negligible in all the problems discussed in this study. The effect
of molecular diffusion is further discussed in section 4.4.

The longitudinal dispersion coefficient, DL , used in Eq. 2-7
by Guymon was about 470 cmzfsec. This value is extremely large
for most porous media (Shamir and Harleman, 1967), but was
probably needed to eliminate stability problems in the numerical tech-
nique used for the solution of Eq. 3-25. This stability problem is
discussed later in section 4.4.

The problem shown in Fig. 4-1 was again solved by dividing

the region into smaller triangles as shown in Fig. 4-4. The solutions



FUNCTIONAL WITH MIXED
PARTIAL (Dp/Dy =0.0 & 0.05)
AND ROTATION OF AXES

g ANALYTIC
A4 SOLUTIONS
EQ. 2-7
4 -
3 -
G
2 -
1 p——
/
0 _— >l
0 1 2 3 4 5

Time in Years

PSPPI PP IEPIIPIIIIIFIIIFIII

AR R R L R AR L S S LR R SRR

~——{ = 4 miles —>

Fig. 4-3 Analytical and numerical results for problem in Fig. 4-2.

6%



50

R xf

--¥—f = 4 miles —={

X

Fig. 4-4 Two-dimensional grid network with
64 elements for problem shown in
Fig. 4-1.
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were obtained in the same manner as described for solving the
problem in Fig. 4-2. The analytic results are given in column 2 of
Table II and the numerical results obtained by Guymon (1970) are
given in column 3. Results were also obtained using Guymon's method
and rotated coordinates to account for the mixed partial derivatives

as given in column 4 of Table II. Numerical results were computed
using the new functional with mixed partial derivatives for ratios of
DT/DL = 0.0 and 0. 05 and are presented in columns 5 and 6 respec-
tively of Table II. For some values of the fractional distance x'/{ ,
the numerical results obtained by using the functional with mixed
partial derivatives are closer to the analytical results than that
reported by Guymon (1970), and for other points not so close. When
stability requirements are satisfied, it appears from this problem
that decreasing the area of the elements does not improve the results
significantly. For stable problems the decrease in the area of the
elements caused by an increase in the number of the nodal points might
introduce greater round-off errors in solving larger matrices.

Observations: The numerical results obtained for the problems

shown in Figs. 4-1, 4-2 and 4-4 indicate that Eq. 3-3 truly represents
the two-dimensional mathematical model for describing the transient
concentration distribution. The lateral dispersion is properly
accounted for by Eq. 3-3. The stability of the system represented by
Eq. 3-25 is an important aspect in obtaining correct solutions. This

stability aspect is discussed in section 4. 4.



TABLE II
VALUES OF C FOR PROBLEM IN FIGURES 4-1 AND 4-4 AT TIME = 5 YEARS

Analvidical Results Using the Functional Results Using New Functional Including
Sollftions Developed by Guymon (1970) Mixed Partial Derivatives
Fractional Guymon's | Mixed Partials Ratios of Lateral to Longitudinal Dispersion
Distance (Eq. 2-7) Method Eliminated by Coefficients
< /2 Rotation of Axes DT/DL:O. 0 DT/DL=0. 05
1 2 3 4 5 6
0 5.0 5.0 5.0 5.0 5.0
0. 125 4.405 4,407 4,373 4.373 4,376
0.25 3. 715 3.723 3.720 3.721 3.721
0..3%5 3.085 3.080 3,017 3.018 3.024
0.5 2.515 2.415 2,421 2,422 2.423
0.625 1. 955 1.909 1.845 1.846 1.853
0.75 1.470 1.430 1.435 1.436 1.436
0.875 1. 065 1.087 1.057 1.057 1. 061
1.0 0,741 0.741 0.741 0.741 0.741

25
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Application of the simulator to column problems: Concentration

distributions in a long column shown in Fig. 4-5 were evaluated using
the analytic solution (Eq. 2-7) and the finite element technique.
Table III and Figs. 4-6 and 4-7 include the results for a column
30 cm long having a steady state seepage velocity of 0.1 cm/sec.
Analytic solutions for concentration at both 10 and 20 seconds after
introducing the tracer are given in columns 2 and 5 respectively of
Table IIIL

The finite element model for the two-dimensional case was used
in two different ways in the solution of this problem. Initially, the
coordinate axes were chosen so that the x'-axis corresponded to the
longitudinal axis of the column and the velocity component and the
dispersion coefficients in the y'-direction were assumed as zero.
This would represent a one-dimensional problem and the results are
given in columns 3 and 6 of Table III, To test the two-dimensional
capabilities of the technique, the coordinate axes were rotated 45°
and the solutions recalculated as tabulated in columns 4 and 7 of
Table III. In this latter case, u=v = V/{2 where V is the seepage
velocity in the column and u and v are the components of seepage
velocity respectively in the x and y directions. Note that the
results in Table III, columns 3 and 4 and also 6 and 7, rounded to two
significant digits are identical for the one and two-dimensional
solutions. The numerical and analytic solutions are quite similar,

as shown graphically in Figs. 4-6 and 4-7, thus verifying the validity
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TABLE III

VALUES OF C/Co FOR PROBLEM IN FIGURE 4-5

£ =30.0 cm; width = 0.1 cm

V =0.1 cm/sec

B, =1.0 cmzlsec

L
%;‘;Zf::l C/C,att = 10 secs C/C, att = 20 secs
Analytical Numerical Numerical Analytical Numerical Numerical
x' /4 (Eq. 2-7) One-Dim. Two-Dim. (Eq. 2-7) One-Dim. Two-Dim.
1 2 3 4 5 6 7
0 1. 00 1.00 1.00 1. 00 1. 00 1. 00
0.1 0.58 0.61 0.61 0.73 0.74 0.74
0.2 0.24 0.31 0.31 0.45 0.49 0.49
0.3 0.07 0.07 0.07 0.24 0. 25 0.25
0.4 0.01 0.02 0.02 0.10 0.12 0.12
0. 0 -0.01 -0.01 0.04 0.03 0.03
0. 0 0 0 0.01 0.01 0.01
0.7 0 0 0 0 0 0
1.0 0 0 0 0 0 0

SG
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1.0
Analytical (Eq. 2-7)
0.8 I~ ® Numerical (One and Two
Dimensional)
0.6
o)
8 Ir t = 10 seconds
Q0.4
0.2
0 e & A ; s 4
0 0.3 0.2 @3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x'/2

Fig. 4-6 Analytic and numeric solutions for problem in
Fig. 4“50
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1.0
Analytical (Eq. 2-7)
Gy ® Numerical (One and Two
B Dimensional)
0.6
o
0 w
B t = 20 seconds
0.4
0,2—
0 l ' S * &
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 4-7 Analytic and numeric solutions for problem in

Fig. 4-5.
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of the finite element technique. For both the 10 and 20-second
solutions, the contaminates have not moved more than two-thirds of
the column length and the exit boundary condition —g—% =0 is
satisfied.

It should be noted in Table III that at x'/£ = 0.5 and t = 10
secs, the value of the concentration is negative. This is a result of
instability in the approximate solution of Eq. 3-16a. The instability
is due to the illconditioned nature of the [S] matrix of Eq. 3-25,

For the type of problems solved, the solutions appear to be stable
when all the elements of the (N-L) by one column matrix {F} on

the right hand side of Eq. 4-2 are positive at the starting time. This
depends upon the off-diagonal elements of the [S*] matrix of Eq. 3-23.
Parameters influencing the element values of this [S*] matrix
include the seepage velocity, grid network layout, and most signifi-
cantly the longitudinal dispersion coefficient DL .

The stability problem is further demonstrated by Figs. 4-9,
4-10 and 4-11 which are solutions to the problem depicted in Fig. 4-8.
The problem, assumed to be one-dimensional, was solved using the
following values for DL : 0,01, 0.20, 0,40, and 6,0 crnz/sec. For
DL = 0.01 cmZ/sec, the solution was unstable because the [S] matrix
of Eq. 3-25 becomes ill-conditioned and instability is introduced in
the numerical solution. The results are given in Appendix H to show

the magnitude of the unstable conditions. Instability also occurred

for both DL = 0,20 and 0.40 cmzlsec as shown by Figs. 4-9 and 4-10
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Analytical (Eq. 2-7)

® Numerical

t = 10 seconds

q
[ ]
L ]
-0.2 | | | | | | 1 = N
6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 6.9 1.0

x /4

Fig. 4-9 Analytic and numeric solu%ions for problem in
Fig. 4-8 for DL = 0.2 cm /sec.
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1.0
Analytical (Eq. 2-7)
0.8 ® Numerical
0.6 I~
t = 10 seconds
0.4
0.2
0+ <
[
-0.2 | | | | | | | | ]
0 0.1 0.2 8.3 0.4 0.5 0.6 0.7 0.8 0.9

x' /1

Fig. 4-10 Analytic and numeric solutions for problem in
Fig. 4-8 for DL = 0.4 cm?/sec.

1.0
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Analytical (Eq. 2-7)
I ® Numerical
t = 10 seconds
l 1 ] l | ] ] I I
0 0.1 0.2 0.3 0.4 0,5 0.6 0.7 0.8 0.9
x'/1
Fig. 4-11 Analytic and numeric solutions for problem in

Fig. 4-8 for DL = 6.0 cm?/sec.

1.0
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where the numerical values oscillate on both sides of the analytic
solutions. Note the oscillations are much less pronounced for

2
DL = 0.40 cm /sec. This, in conjunction with the results shown in
Figs. 4-6 and 4-7 suggests that the numerical solutions converge on
the analytic solutions as the value of DL increased. For

2
DL = 6.0 cm /sec, as shown in Fig., 4-11, the results were stable.
The stability criteria is discussed further later.

The inflow boundaries for the problems in Figs. 4-5 and 4-8
were fixed at a given concentration level. All other boundaries were
o 9C o
treated as natural boundary conditions o5 = 0 and this is referred
n
to as a reflection condition by Shamir and Harleman (1967). The
numerical solutions shown in Fig. 4-11 corresponds to a value of the
2
longitudinal dispersion coefficient DL = 6.0 cm /sec and the contami-
nate has moved the full length of the column in the 10 seconds time.
. : - aC . -

In this case, the exit boundary condition ey = 0 is not satisfied.
Since the functional requires that there be no concentration gradient

i aC i %
across the exit boundary, -y = 0, it is necessary to use the
principles of the method of images to develop the necessary concentra-
tion gradients which can be superimposed resulting in a zero gradient
across the exit boundary. The analytic solution shown in Fig. 4-11 is
the resultant after superimposing the results obtained using Eq. 2-7

for a finite length of the porous medium.

Unsteady and non-uniform flow cases: The generality of the

new functional provides for solution of problems in unsteady and
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/
Vi Oﬁ cm
VI 0.05 cm
‘\\ £ =30 cm
N

L.C.: C/C0 =0 at t=0 for O0<x' <!

B.C.: C/C_ = 1.0at t>0 for x'=0
_8_C_I = 0-at t>0 for x' =14
oxX -

DL = 1.0 cmzfsec

Fig. 4-12 Long narrow column of porous media with

different velocities VI and VII'
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of the seepage velocities in the two parts are different. One way to

have different seepage velocities VI and V__ in parts I and II

i
respectively is to have different values for the porosity of the
materials. The reason to have just two different seepage velocities
is that we can compare the numerical results and the analytic
solutions corresponding to a single uniform velocity for the whole
region equal to the average of VI and VII .

Numerical results were obtained for two cases. In case (1),

the seepage velocity V_ in part I was assumed as 0.08 cm/sec and

I

VII in part Il as 0.12 cm/sec, thus maintaining an average velocity
of 0.1 cm/sec for the whole region. The corresponding velocity
components u and v in the directions x and y respectively were
calculated and used in the computation of the dispersion coefficients
and also used as flow parameters. The numerical results were com-
puted at time levels equal to 10 seconds and 20 seconds and given in
Table IV for various values of y'/b at different points along the
length £ . For both the 10 and 20-second solutions, the exit boundary
condition -g—: = 0. As in the uniform flow case, here also for

t = 10 second solution at x'/£ = 0.5 due to instability, the value of
the concentration is negative.

In case (2), the seepage velocity V_ in part I was assumed as

I

0.05 cm/sec and Vy inpartIlas 0.15 cm/sec thereby maintaining

I

an average velocity of 0.1 cm/sec for the whole region. The



TABLE IV

VALUES OF C/C0 FOR PROBLEM IN FIG. 4-12

Case (1) V

= 0.08 cm/sec;

1I
£ =30.0cm; b=0.1cm; DL = 1.0 cmzlsec

= 0.12 cm/sec

Fractional C/Co att = 10 secs. C/Co at t = 20 secs.,
Distance
x' /4 y'/b y'/b
0 0. 25 0.5 0.75 1.0 0 0.25 0.5 0. 75 1.0
0 1.0 1,0 1: O 1.0 1.0 10 1.0 1.0 1.0 1.0
0.1 0.59 0.62 0.72 0.76
0.2 0.29 0.31 0. 32 0.47 0.49 %51
. 0.07 0.08 0.23 0.27
0.4 0,02 0.02 0.02 0.11 0.12 0.13
<5 0 -0.01 0.03 0.04
0, 0 0 0 0.01 0.01 0.01
0.7 0 0 0 0
0.8 0 0 0 0 0 0
0. 0 0 0 0
1.0 0 0 0 0 0 0

9
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computations were similar to those in case (1) described in the
previous paragraph. The results are given in Table V.

It is to be noted that in both cases, the average value of the
concentration at any value of the fractional distance x'/{ is
approximately equal to the concentration obtained at the corresponding
points in Fig. 4-5 and given in Table III under uniform flow conditions.
This is given as a partial proof of the validity of the results obtained
using different velocity distributions.

In a strictly steady, non-uniform flow the seepage velocity is
the only quantity which varies between different elements, for all
other conditions remaining the same. Corresponding to the seepage
velocity in each finite element, the x and y components can be
computed and read in as data for the numerical simulator. In this
way, the simulator could be used to solve for the concentrations
when the velocity distribution is either uniform or non-uniform.

It should be noted that for unsteady flow, the dispersion
coefficients will change with respect to time. This will involve the
computation of a new I:S:I matrix in Eq. 3-25 for each time step

requiring additional computer time.

4.4 Stability criteria and convergence of the solution:

The finite element method has been very widely used and shown
to be stable and convergent for structural analysis and steady state

problems. In the present study, a stable solution for the time



TABLE V
VALUES OF C/Co FOR PROBLEM IN FIG. 4-12

Case (2) VI = 0. 05 cm/sec; VII = 0.15 cm/sec ,
£ =30cm; b=0.1cm; DL=1.0cm /sec
Fractional C/C att =10 secs. C/C att = 20 secs.
Distance © i
x' /4 y'/b y'/b
0 0.25 0.5 0.75 1.0 0 0.25 0.5 0.75 1.0
0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.1 0.57 0. 65 0.69 0.78
0.2 0.27 0,31 0. 35 0.44 0.49 0.55
0.3 0. 06 0.09 0.20 0.30
0.4 0.01 0.02 0.02 0.10 0:12 0. 15
0.5 0 -0.01 0.02 0.04
0.6 0 0 0 0.01 0.01 0.01
0.7 0 0 0 0
0.8 0 0 0 0 0 0
0.9 0 0 0 0
1.0 0 0 0 0 0 0

69
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dependent concentration distribution is sought by the following approach.
At first we discretize only the space variables by the finite element
method leaving the time variable continuous. The resulting system

of ordinary differential equations can be numerically integrated with
respect to the time variable to obtain the solutions at the end of
discrete time steps. Then the stability criteria of the system of
equations are studied in the semi-discrete form.

Stability of the system: The system of equations to be solved

is represented by Eq. 3-25 which can be written as Eq. 4-1 and

repeated below:
[P] {%} £ -~ [S] {o} + {Q} (4-1)

where ¢ = ¢(t) at any point in space,

Eq. 4-1is comparable to the Eq. 8-8 (page 253) of Varga (1962),
if we assume that the source term S(x, y;t) of the system of
equations given by Varga is time-independent and the vector T (t) is
negligible. In Eq. 4-1, the matrices [P] and [S] are time-independent
entries and the initial values of the concentrations are equal to ¢(0) .
For the general case of a system of differential equations represented
by Eq. 4-1, the matrices [P] and [S] should satisfy certain con-
ditions which are discussed below.

The maximum number of non-zero entries in any row i of the
[P] and [S] matrices of Eq. 4-1 are equal to the number of adjacent

nodal points with which the node corresponding to the row i is
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connected plus one. The [P] matrix should be non-singular and
diagonally dominant with positive diagonal entries.

According to Varga (1962), the (N-L) by (N-L), real,
symmetric [S] matrix of Eq. 4-1 should be irreducibly diagonally
dominant with non-positive off-diagonal entries. The concept of
irreducibility may be interpreted geometrically (Varga, 1962,
Section 1.4). Let [S] = (ai, j) be any square matrix of size nxn
and consider any n distinct points P, P, ..., Pn in the plane

I’ "2

and denote these n points as nodes. For every non-zero entry

a 3 of the [S] matrix, the node Pi may be connected to the node
—

Pj by means of a path Pin, directed from Pi to Pj as shown

in Fig. 4-13. In this way, with every nx n matrix LS] can be

associated a finite directed graph. A directed graph is strongly

connected if, for any ordered pair of nodes P,1 and P, there exists
J

a directed path:

Fig. 4-13. Directed graph from P,1 to Pj "
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]

connecting Pi to Pj where each of the points £ L 12, ceen

may be any one excluding i and j among the n points. The matrix
is irreducible if it has a strongly connected directed graph. For
reducible matrices the associated directed graph is not strongly
connected. Another property is that all the off-diagonal entries of
any row or column of a matrix cannot vanish if the matrix is
irreducible (Varga, 1962).

Varga defines the n x n matrix [S] = (a,i’ j) as irreducibly
diagonally dominant if it is:

i. irreducible as defined above;

J> 2 |a | (4-4)

for all 15 '15 n, with strict inequality in

Eq. 4-4 for at least one i,

In addition to being irreducibly diagonally d ominant, the [S] matrix
should satisfy the conditions:

iii. ai,j <0 for all i # j;
and iv, ai,i>0 forall 1<i<n.
When all the four conditions are satisfied, then [S]_ : > 0 which
means [SJ is non-singular. These are the necessary and sufficient

conditions to be satisfied by the [S] matrix of Eq. 4-1 to obtain a

stable and convergent solution.
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According to Strang (1970) there are two kinds of stability to be
considered. The first kind depends on the data and the second kind of
instability is numerical,

Stability due to data: The stability dependent on the data is

equivalent to convergence and this is what Guymon (1970) shows as an
empirical factor in his convergence analysis. For the two-dimensional
problems solved he assumed the convergence parameter as

\/X(u + v)/(DxX + D'y'y) where A is the area of the triangular finite
element. Referring to Fig. 3 (page 79) of Guymon (1970) it appears
that when the value of the convergence parameter is less than or equal
to about 0.2 the numerical solutions are comparable to the analytic
solutions. Guymon (1970) used values for u and v equal to 0.1

mile /year and the longitudinal dispersion coefficient DL equivalent

to about 470 cmzlsec (0.5656 sq. miles/year).

If DL is less than 470 cmzlsec, say about 1.0 cmz/sec, and
u=v = 0.1 mile/year, the convergence parameter required is about
167 for the size of the finite elements for the problem shown in
Fig. 4-1 and Fig. 4-2. The resulting [S] and [S]_1 matrices and
the unstable numerical solutions for this problem are given in
Appendix H.

On the other hand, for the above problem if the value of

Z
DL = 1,0 cm /sec and u=v = 0.1 mile/year, to obtain a convergence

parameter = 0.2, the area A of the triangular finite element should

be about 0.00000576 sq. mile which is a negligibly small quantity.
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Guymon's empirical relationship for the convergence parameter
cannot be used for the new functional because the dispersion
coefficients, Eq. 3-2, are not compatible.

In light of Varga's (1962) stability criteria and the fact that
Guymon's (1970) convergence parameter developed empirically will
not work in the present study, it was decided to consider the whole
system of simultaneous first order differential equations represented
by Egqs. 3-23 and 3-25 for stability analysis. The elements of the
[S*] matrix of Eq. 3-23 are functions of the finite element network,
node numbering, dispersion coefficients and velocity components.
Elements of the EP*] matrix are functions of the finite element
network and node numbering only. See Appendix .D, Eqs. D-23 and
D-24 for development of these matrices.

For a given network of finite elements and node numbering, the
elements of the [P*] matrix of Eq. 3-23 are constants and elements
of the [S*] matrix depend upon the dispersion coefficients Dxx ,

D , and DXY , and the velocity components u and v . In addition,
when the velocity is steady, u and v are constants and therefore
the elements of the I:S*] matrix of Eq. 3-23 depend only upon the
dispersion coefficients. In a two-dimensional case, when the velocity
components u and v respectively in the x and y directions are

equal, Eq. 3-2 reduces to:
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D D
- — L -—_._.T -
Dxx_Dyy__Z + > +DdT
(4-5)
D. -.D
and D = L L
Xy 2

If DT/DL is taken as a fixed ratio, say 1/10, then DT = 0.1 DL

and Eq. 4-5 may be written as:

D

1

s DYY =055 DL 4 DdT
(4-6)

and D = 0.45 D
xy L

-] -6
Eq. 4-6 shows that Dxx and DYY depend upon DL and Dd for a

constant value of the tortuosity factor T and DXY depends upon

]..
DL only

Normally for liquids the magnitude of the molecular diffusion

coefficient Dd is very small and the tortuosity factor is approxi-

mately equal to 0.5. The preduct of D, and T will be negligible

d

for flow of liquids in porous media. The effect, if any, of the mole-

cular diffusion coefficient D. on the parameters D and D is
d XX vy

only to increase the magnitudes of these by a very small constant.

Instead of using a small value for D the same purpose may be

d 3
achieved by suitably increasing the value of the longitudinal disper-

sion coefficient D The expressions for the dispersion coefficients

L o
(Eq. 3-2), however, have the advantage of accounting for the molecular

diffusion even when the velocity components u and v are both equal
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to zero. The stability of the final system of equations (Eq. 3-25) to
be solved depends upo; the longitudinal dispersion coefficient DL ¥

An investigation of the properties of the [P] and [S] matrices
of Eq. 3-25 for some of the problems solved in this study was under-
taken. The [P] matrix satisfied all the necessary conditions

developed earlier. The [S] matrix satisfied all the conditions except

a, . <0 for all i# j, which was only approximately satisfied. By

this it is meant that for some off-diagonal entries in the [S] matrix

a.i 3 =~ 0 (negligibly small positive values). For example, when

2
DL = 470 cm /sec the values of the elements a3‘ 4’ a.4, 3 a4, 5

and a.5, i of the [S] matrix for the problem shown in Figs. 4-1 and
4-2 are equal to 0.00208. The numerical solutions for these prob-
lems, however, were comparable to the analytic solutions as shown
in Table I.

For the same problem, a lower value for the longitudinal dis-
persion coefficient DL =1.0 cmzlsec was used keeping all other
conditions the same. This resulted in a different [S-J matrix and the
properties of the matrix changed considerably. For example,

[S]-l $ 0 and the condition that a, , <0 for all i # j was not satis-

1, ]

fied. In fact, a, g 0 for all i # j. The numerical solution was

t

-1
highly unstable. The [S] and LS] matrices and the results

obtained are given in Appendix H.

The example problems in the previous paragraphs indicate that

Varga's (1962) stability criteria need not be strictly satisfied for
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obtaining stable solutions in some cases. It appears that in such
problems it is possible to obtain stable solutions when only some of
the sufficient conditions are satisfied. For example, when Eq. 3-23
is modified for the geometric boundary conditions, the rows corre-
sponding to the boundary condition nodes are eliminated from the
system and the column matrix {Q*} on the righthand side of

Eq. 3-23 is modified to {Q} as in Eq. 3-25. If there are no sources
or sinks within the region R, the solution appears to be stable when
all the elements of this column matrix {Q} are > 0. This happens
for each row when the sum of the products of the concentrations at
the geometric boundary condition nodes, ¢k i k=52 e Ly

and the corresponding off-diagonal elements of the [S* matrix of

Eq. 3-23 is negative at the starting time, i.e.,

M

-7
ai,k d:k < 0 (4-7)

b
I

1
for all i values (1 <i < N-L) other than the rows corresponding to
the geometric boundary condition nodes. In the types of problems
solved in this study, it appears that Eq. 4-7 is a sufficient condition
for obtaining stable solutions. For other types of problems such as
slug injection, other sufficient conditions could be developed for
obtaining stable solutions.

These investigations revealed that care should be exercised in
selecting proper sizes and layout of the triangular finite elements,

dispersion coefficients and velocity components, and it is suggested that
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the properties of the matrices [S] and [P] of Eq. 3-25 be evaluated
before starting the numerical sol.ution. For field problems, normally
the seepage velocity depends upon the hydraulic head, and the disper-
sion coefficients depend upon the seepage velocity and the dispersivity
which is a property of the porous medium. In a given problem with
constant velocity distribution the only opportunity that we have is to
choose the shape and size of the triangular elements so that the
matrices [S] and [P] of Eq. 3-25 satisfy the requirements for
obtaining a stable and convergent solution.

Usually in the finite difference method the grids are either
square or rectangular. The stability of the system is specified by the
size of any one grid. In the finite element method the shape and size
of the triangles are chosen arbitrarily., Therefore, the stability of
the system cannot be specified with reference to the size of any one
triangle and hence the necessity to consider the stability of the whole
system of equations, Eq. 3-25.

Stability for unsteady flow: For agiven finite element network

and node numbering, the [S] matrix in Eq. 3-25 will be different for
each time step when the flow is unsteady. The [S] matrix should
satisfy the stability requirements discussed in this section for each
time step.

Numerical stability: The numerical instability is concerned

with the growth of roundoff error. Strang (1970) states that this type

of instability is governed by the condition of the equations to be solved
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and by the precise algoirthms which are used for the solution. It is
suggested that one should use an integrating algorithm which is strongly
stable and convergent to minimize numerical instability.

An attempt was made in this study to minimize the numerical
instability by using double precision and also by automatically con-

trolling the time step size.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

A method has been developed for predicting the concentration of
a dispersing contaminant in a two-dimensional flow field. By dis-
cretizing the space variables of the governing partial differential
equation using the finite element method and leaving the time variable
continuous, the resulting set of linear, first order, ordinary differ-
ential equations was numerically solved for the concentrations at a
discrete number of points in space. Stability criteria were developed

for the resulting matrix set of ordinary differential equations.

5.1 Evaluation of the method and conclusions:

The general partial differential equation for describing the
transient concentration distribution in a two-dimensional flow field
includes the mixed partial derivatives when the dispersion coefficients
are treated as a second order, symmetric tensor. A new functional,
Eq. 3-11, was developed based on variational principles to include
the mixed partial derivatives which were neglected by previous investi-
gators. The method can handle both longitudinal and lateral disper-
sion and molecular diffusion if it is significant. The numerical
simulator developed by the finite element method can handle irregular

boundary shapes very easily.
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The results from the numerical simulator compared favorably
with the analytic solutions. The results from the problems studied
indicate that changes in the data can be easily incorporated in the
method. Because of the particular types of boundary conditions
incorporated in the functional, a procedure was adopted for one prob-
lem using the principles of the method of images to modify the analytic
solutions for handling the time dependent boundary conditions. The
simulator was also used to solve one approximate case of a non-
uniform flow problem and the results appear to agree with the
solutions for a similar problem in which the uniform velocity distribu-
tion was equal to the average of the velocities in the non-uniform
flow case.

The stability criteria requires, that for various input data and
finite element network, the [S] and [P] matrices of the resulting
set of simultaneous, linear, first-order ordinary differential
equations (Eq. 3-25) should satisfy the following sufficient conditions.
The [P] matrix should be non-singular and diagonally dominant with

positive diagonal entries. The n x n matrix [S] = (a.i

¥

j) should be
non-singular, irreducibly diagonally dominant with a, § <0 for all
o . -1
ifij, aii}O for all 1<i<mn and [S] > 0.

One of the advantages of the finite element method is that
arbitrary shapes and sizes of triangles can be used within the limita-

tions of the stability requirements discussed earlier. The property

of the matrices of the resulting system of equations will depend, in
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addition to other data, upon the shapes and sizes of the triangular
elements. The evaluation of the properties of the matrices is an

important aspect before proceeding with the numerical solutions.

5.2 Recommendations for future work:

The assumptions made, the techniques adopted and the results
obtained in this research showed that there are several aspects of the
problem which require further study. The following recommendations
are made for possible future work:

i. It was assumed in Chapter III, for purposes of minimization
of the functional, that the concentration varies linearly with respect
to the coordinates x and y (Eq. 3-17) over the triangular element.
Higher order polynomials could be investigated to see if they improve
the solution.

ii. The properties of the resulting system of first order, linear
ordinary differential equations may be more thoroughly investigated
with regard to stability. The experience gained in this study shows
that the type of data used appear to control to a large extent the
stability of the system. It may be useful to investigate which of the
following data has major influence in controlling the stability of the
system: dispersion coefficient, size and shape of the grids, or

velocity components.
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iii. A method needs to be developed to handle boundary conditions
other than those considered in this work, namely natural or reflective
boundary conditions and geometric or time invariant boundary con-
ditions.

iv. Different numerical methods for solving the system of
ordinary differential equations should be evaluated for computer time
requirements and accuracy.

v. Comparison of solutions of the dispersion equation by the
finite element method and the finite difference method are needed to
define computer storage requirements, computer time and accuracy
of the results,

vi. The numerical simulator should be applied to solve a two-
dimensional field problem wherein the flow may be unsteady and non-
uniform.

vii. As suggested in Appendix C, the functional developed in
this study may be utilized to solve the two-dimensional ground water

flow equation treating the transmissibility as a symmetric tensor.
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APPENDIX A

DISPERSION EQUATION IN ROTATED COORDINATE SYSTEM

Eq. 3-3 represents the mathematical model describing the
transient concentration distribution in a two-dimensional Cartesian
coordinate system x and y . Let x' and y' be another set of
orthogonal Cartesian coordinates rotated through an angle 6 with
respect to the coordinates x and y as shown in Fig. A-1. The

relationships between the two systems are given by

Fig. A-1 Two-dimensional rotation of axes.
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x' =xcos 6 +ysinf
(A-1)
and y' =-xs8inB +ycos 0.
The rotation matrix is
cos 0 sin 0
(A-2)
-sin 6 cos 0
which transforms the dispersion matrix
DXX DX
¥ (A-3)
D D
&Y yy
into a diagonal matrix
D_ iy 0
(A-4)
0 Dy'y'
2 ) 2
where D_, , =D _Cos 8+2D__Sin® Cos® +D__ Sin 6
x'x XX Xy vy
> 5 (A-5)
and D_, ,=D__Sin 6 - 2D__Sin® Cos ® + D__ Cos 6
Yy xx Xy Yy

Similarly, the rotation matrix, Eq. A-2, transforms the con-
vective terms u and v in xy coordinate system into the corres-

ponding terms in x'y' coordinates as

uCos B + v Sin 0

G—-
i

(A-6)
-uSin 6 +vCos 0.

W
o
o
d—-
1l



APPENDIX B

MATHEMATICAL DEVELOPMENTS

Derivation of the reducing factor exp (B) in Eq. 3-9: Eq. 3-3

may be written as

2 2 2
b Sy p LG 5 SC LI BC 2C . §
XX axz Xy 9X9y yy GYZ ox oy ot

(B-1)
It may be assumed that the dispersion coefficients and the velocity
components in Eq. B-1 are constants over the area of a triangular
finite element. If A = A (x,y) is assumed as the reducing factor,
then according to Hildebrand (1965) the reducing factor must satisfy

the simultaneous, first order partial differential equations

A
XX 9x Xy 9y

1l

-u A (B-2)

A A
p 22,p 22 . o4, (B-3)
Xy 9x Yy 8y

Eqs. B-2 and B-3 can be solved simultaneously to obtain

9A -u D_YY + v Dx 9 A
9x |-vD +ubD oY ’ (B-4)
XX Xy

Using the method of separation of variables, it can be proven that the

reducing factor
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A = exp () (B-5)
- D u- Dxx v
where B = =y s ;g x + ny 2 D2 Yo
D - =
XX yY Xy X ¥y Xy

(B-6)
The expression for B, Eq. B-6, may be modified using Eq. 3-2 for
the dispersion coefficients to avoid zero in the denominator. The

modified form is

ux +vy

B:_.
DL+DdT

(B-17)

Eq. B-7 is equivalent to Eq. 3-10.

Proof of equivalence of the functional and the differential

equation: The functional given by Eq. 3-11 is proved to be equivalent
to the differential equation given by Eq. 3-3 with boundary conditions,

Eqs. 3-4 and 3-5. Given the functional, Eq. 3-11,

2

_ 1 9C aC\[(dcC
- 5 crmftf foef s on, (29) (22
1 e
— dx d -8
+Dw(8v)] +(8t)c P il
where g, D__, D and D are applicable to the region R
XX Xy W

(Fig. 3-1), a small variation of the functional may be taken utilising
. .. . 9 C . .
the variational principles and assuming 3¢t 28 invariant at any

instant of time, and equated to zero.
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aC 2] acC\) o
ol F WR xp @) [D,, (‘5;:) x (6C)+ ny(“a?)wfac’
oC | 2 o\ o oc. _
+ ny(—a_}_r_)é—}z— (6C) + DYY (W) 5y (6C) + (8 t ) 5C:| dxdy = 0

(B-9)

Using integration by parts and Green's theorem Eq. B-9 may

be written as

B 8C 5C 9C 9C
6 = g\ exp (B)[(Dxx 5+ D o) dpd (ny el g )dx] 6C

&l 9C 9 aC
- YSR [a_x (exp@Dy 3x )t 3y (*XPRIDLy 5

9 9 C ) 9C oC .
+ 3% (exp(B)ny 9w ¥ + e 7 {e:q:}(B)DYyr _8Y ) - exp(ﬁ)ﬂJGC dxdy=0

(B-10)
where T is the boundary of the region R.
Applying the fundamental lemma of the calculus of variations to

the area integral of Eq. B-10 yields

-58? [exp B) Dxx g—fj + ﬁ—' [exp{[?,) DxY -g—;l] + -E%C—[exp([i) ny g}g]

) 0C

5C .
+ By [eXP B) Dyyw]-exp(ﬁ)—-—i--o (B-11)
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Expanding the above and grouping the terms and dividing out the
exponential terms, the following partial differential equation is
obtained which is equivalent to Eq. 3-3:

2
8C aC 9C 9 C 9 _C 9 C

24, 28, . 2 + D X
ot "% t Yoy “Pxx 7 oD ey

(B-12)
The line integral in Eq. B-10 is to be integrated along the
boundary of the region R in Fig. 3-1. On the portion of the boundary
where the concentration is fixed (Eq. 3-4) &C = 0 and therefore the
line integral is zero. On the remaining portion of the boundary, the
concentration gradient in the outward normal direction -g—i'— =0
corresponding to Eq. 3-5. This means that the dispersive flux across

the boundary is zero, Reddell and Sunada (1970). This is equivalent

to making the integrand of the line integral, namely

3 D %00 a6d (DX—Q—Q-+D 280

(D _
y 9x yy 9y

XX 909X * xy 0y

(B-13)
Therefore, for both types of boundary conditions considered,

the line integral

aC 8 C oC 9 C
Hx . oot —)d C=0
S‘ exp(ﬁ) [(Dxx ox i ny oy Fey+ (ny 0x +Dyy 9y ) x]ﬁ
r
(B-14)
Thus the functional, Eq. 3-11, is equivalent to the differential Eq. 3-3

and the boundary conditions, Eqs. 3-4 and 3-5,
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Proof of equivalence of the functional, Eq. 3-16, and the differ-

ential Eq. 3-13: In this section the functional given by Eq. 3-16 is

proved to be equivalent to the differential equation in terms of the
transformed value of the concentration ¢ (Eq. 3-13) with boundary
conditions, Egs. 3-14 and 3-15. The functional in terms of the trans-

formed value of the concentration ¢ is:

D 2
" ~X= 199 B8\(84 Yy [(9¢ 598 ¥, 9¢
J‘_?S 2 (Bx) +ny(ax)(8y)+ 2 (8y’)+(2 x+2 8y)¢
R

"D u2+Dxxvz-2D uv 2 (56
_l_[ yy a8 & +(—8t)¢ dx dy
8D D = D° )
XX yy Xy

(B-15)

where the dispersion coefficients and the velocity components are

applicable to the region R (Fig. 3-1). Assuming (g—‘t) as invariant

at any particular instant of time and utilising the variational principles

a small variation of the functional is taken and equated to zero.

. ﬂ) B (ﬁ .. 8¢, B
537 SiS\R Dxx(ax 5x (88) + D (53] 557 (88) + D 5= 5= (8¢)
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Using integration by parts and Green's theorem, we get,

) X3 i‘b_) ( 3¢ _8_541)
6J—S‘r|:(Dxxax+ny oy dy + DYY 8Y+DXY 5 x dx | &8¢

+§F (-‘21 ¢ dy + 3 ¢dx)6¢

o _
" (ﬂ) § ¢dx dy = 0 (B-17)

Applying the fundamental lemma of the calculus of variations to the

area integral in Eq. B-17 yields

B (p 28,8 (5 8o\, B (5 286\, b (p 26
9x (Dxx 8x)+ oy (ny BX) t ox (DXY ay : oy DYY'aY

2 2
I:D u +D ¥ ow 2D
v XX x

Yuv
29\ _
4D D -D%) ]“"("5'1?)‘0 (B8
xx yy xy
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Assuming the dispersion coefficients as constants, we have,

2
D u2+D vo- 2D uv
28 Dy ® " P x|,
¢ 4(D D -Dz)
XX yy Xy
2 2 2
-p_ 2% 4+ 20D g¢’+n 24 . (B-19)
xxax Xy O0x3y vy dy

Egq. B-19 is the same as Eq. 3-13.
The line integral in Eq. B-17

29 86 ¢ 29 99 g)
Y [(Dxx e +DXY By +u2)dy+(DYY + D +ve)dx | 66
| B

(B-20)
is to be proved to be equal to zero. On the portion of the boundary
where the concentration is fixed corresponding to the Eq. 3-14,
8¢ = 0 and therefore the line integral is zero. On the remaining por-
tion of the boundary the quantity within the square brackets in Eq.
B-20 should equal zero. This situation corresponds to the natural
boundary condition represented by Eq. 3-15. Utilising the relation-
ships of Eq. B-13 it can be proved that for that portion of the boundary
where 6¢ # 0, the quantity within the square brackets of Eq. B-20 is
zero. Therefore, for both types of boundary conditions under con-
sideration (Egs. 3-14 and 3-15), the line integral is zero. Thus the
functional given by Eq. 3-16 is equivalent to the differential Eq. 3-13

with boundary conditions, Eqs. 3-14 and 3-15.



APPENDIX C

METHOD OF SOLVING THE FLOW EQUATION

Extension of the functional for solving the ground water flow

equation: The functional given by Eq. 3-11 may be utilized for solving
the ground water flow equation, considering the medium as anisotropic
and nonhomogeneous with regard to permeability. Zienkiewicz,
et. al. (1966) solved by the finite element method anisotropic seepage
problem for a steady flow case. Though the permeability was con-
sidered as anisotropic, they made use of a transformation to get rid
of the anti-symmetrical part of the permeability tensor (skew tensor)
thereby reducing the partial differential equation to one without mixed
partial derivatives. In the following procedure no such transforma-
tion is necessary as the proposed functional includes the effect of the
mixed partial derivatives.

The differential equation describing the nonsteady ground water
flow in an anisotropic, nonhomogeneous porous medium can be stated

as (Pinder and Bredehoeft, 1968):

/ H
i (T.. 8 ) - g2 (C-1)
3xi 1] axj ot

where T.,
1)

H

symmetric transmissibility tensor,

1

hydraulic head,
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S

i}

storage coefficient,

and i, j index coordinates.
There is no source or sink term involved in Eq. C-1.
In a two-dimensional case, assuming the medium as anisotropic

and nonhomogeneous with regard to permeability, Eq. C-1 can be

written (in Cartesian coordinates) as:

H
2 (T 3H)+ d (T 8H)+ 9 (T 8H)+ 8 (T 8H)=si—
ox \ xx §x 9x \'xy ay 9y \ yx 9x a0y \'yy oy at

(C+2)

Assuming the transmissibility as constant over any triangular finite

element and using the fact that the transmissibility TxY =T

yx
Eq. C-2 can be written as:
2 2 2
T, 8? + 2T, ;X? + T iﬂz = S_gzli (C-3)
ox : § y Yy oy

In Eq. 3-3 after substituting the convective terms u and v
both equal to zero, if we replace the dependent variable C by the
hydraulic head H and the dispersion tensor Dij by the transmissi-
bility tensor Tij and multiply the time derivative —%% by the
storage coefficient S, KEq. C-3 results. With the above modifica-
tions, the functional (corresponding to the functional given by

Eq. 3-11) for Eq. C-3 may be written as:

2 2
7= (B, (2 »or (oyom), o (_aH)]+(s_aH)H e
n xx \ 9x xy\ ax/\ 9y yy \ oy ot

(C-4)
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because in this case B is zero, and hence the reducing factor
exp (B) = 1.

Eq. C-3 is general and applicable to a porous medium in a
two-dimensional case having anisotropic and nonhomogeneous
permeability. The functional given by Eq. C-4 may be used in con-
junction with the finite element method to solve for the hydraulic

head H in Eq. C-3.



APPENDIX D
FINITE ELEMENT CHARACTERISTICS

Consider a typical triangle i, j, k as shown in Fig. D-1.

The concentration at the point (x,y) within the triangular element is

given by the linear polynomial (Eq. 3-17) as

¢ = a1+a2x+03y . (D-1)

Fig. D-1.

As the plane thus defined has to pass through ¢, when x = x. and

y=y;, we have

T B e Y ]
similarly, ¢j = Cll ¥ szj + G3yj (D-2)
and ¢k = 01 + szk + G3Yk .
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Using Cramer's rule to evaluate the three coefficients 0!1 ,

a, and o, in Eq. D-2 in terms of the coordinates of the nodes and

the corresponding nodal values of ¢ we obtain

[ A
¢i
1
= — > (D-3
b ZAm [(ali+a21x+a3iy), (alj+a2jx+a.3jy), (a1k+a2kx+a3ky)]< ¢:J_ (D-3)
¢k
 ='a R th .
where A is the area of the m triangular element ,
or simply
m
= A., A ., A ] D-4
0= (A Ay Al @ s

in which {qa}m stands for the values of the concentrations character-
istic of the mth element considered. The coefficients in Eq. D-3

are defined as
11 T %k T

%21 Y37 Yk {B-3)

and .'=w.3i = xk = xj

with others following a cyclic, anticlockwise order in i, j and k.
The row matrix in Eq. D-4 is a function of space only and the column
matrix is a function of time only.

In general, ¢ for any particular element m of the system may

be written as

o = [a] (™ (D-6)
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where [A] = [A(i)’ A(j)’ A(k)]

-

and {(6}™ = {o. > .

Eq. D-6 is equivalent to Eq. 3-20.
g .th th ,
The contribution of the i node of the m triangular element

to the differential of the function J is:

S et ) n [ ok (32) 242 24)

i ()2 o (38) + 335 (ol

2 2
u +v 9 99 ) 99
* [4(DL+DdT)J ¢ 86, ki ( dg dn

(D-7)
. th \
where Rm denotes the region of the m triangular element.

The various terms in Eq. D-7 are evaluated from Eq. D-6 as follows:

28 - [4] {—gﬁ-}m (D-8)
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¢ _ 98¢ _ _1 m
el Sl [2,] (&} (D-9)
- a¢)= 1 ) ’
7y (a§ o (aZi (D-10)
9 0 1 m
2 = = a,| {¢} (D-11)
an oy 2A™ [ 3:| ¢
) 9o\ _ _ 1 1
3¢i (81‘])_ ZAm (a3i) (D-12)
9% _ B m
and _8.;: = A(i) = [ali + a,.x + a3iy ] /ZA (D-13)
where [az] = [a21 aZJ aZkJ
[as] - [aSi’ 235 a3k:|
b.
{e} ™ = ¢‘
J
Pr

Using the values from Eqs. D-8 to D-13 in Eq. D-7 we get

5 e (5 ] 0m 2

2A

1 m °3i 1 m C2i
' Dw}r(ZA’”1 [az] (o 2Am+2Am[a3]{¢} ZAm)
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2 2
u +v m
g [4(DL+DdT)] [a] (&) A

m
o)
+ [a] {22 A, SdE d D-14
I: ] {at } (i) € dn ( )
Assuming D , D s B , u and v as constants over a triangular
XX Yy Xy

element and using the integration formulas defined in this section

(Egs. D-16 to D-22) in Eq. D-14, we get,

BJm [Dx-x DXY DXY DYY
= e o s - o - - P I ] s a .[a}
aq:i 4A™ 21[2 aA™ 31[2] 4A™ 21[_3] " 3if 3

16A d
+ M {ﬂ}m (D-15)
aa™ ot
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Integration formulas: The following relationships are used

for deriving Eq. D-15. For a triangle with local coordinates

gi! g.]! gk, ﬂl, T]J and ‘n‘k, we have

3 3
1 gi T1l1
1. gS‘ at dn=-é— 1 &, o | = a™ (D-16)
R_ i
L& m
2. SS‘ € df dn = S‘S‘ n d§ dnq = 0 (D-17)
an Rm
2 AP 2 2. 42
3 SS‘ g df dn = T (§i+§j+§k) (D-18)
Rm
m
4, SS 0 dE dn = A (nf ¥ n? ¥ ni) (D-19)
Rm
Am
5. SS € nd§ dn = T(g],lnihgj ”3+§k“k) (D-20)
Rm
oo 5 [adaean= §§ [ag). a5 4] o an
R R

_ "S‘S' At dn, S‘S A, 48 dn, SIS Ay 46 dn]
e . B R Fm
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1 — —_—
and S‘S‘ A( )d§ dn= ——m SS [a1n+a2n(g +x)+a, (n +y)Jdg dn

R B

Forn=1
S‘g A df;‘.dn:..l_ (x.y ‘XY)+(Y—Y)(X+x+x)l
(1) 2 Tk T 7K Tl Ry r xS
R
+(x 'x)(Y+YJ+Yk)—J
1 x:'L Yl
5 1 x L
6 i 3
1 xk Yk

Similarly for n=j .,k

SS [a] a& an = [1,1,1] —A:l (D-21)
R
m

=3
.

gSR [a] A8 dn - §S (%60 25)" 2a0] A % 9n
Rm

m

[S‘S‘R A(l) ) d§¢ dn, S‘g A{) (@) d§ dnm, SS A(k)A(q) dg de
- R



109

1 — —
g i( Ayt 4 4 T 7o S f 210+ 2206 #0425, (n )]

m Rm

[alq+a2q (& +§)+a3q(1-I +'37)]} d§¢ dn

30 %19 T Bia Yag) (nt+y)

+ (ag Bae + %0y aSq) (E+x) (n+Yy)

s e - 2]
dg d
a, an (E+x) + 2a0 a3q(n+y) g dn
Using the previous integration formulas we get

1 m e m
'S\S\ A(n)A(Q) e = Zm {alnalq At (a2n31q+a1na2q) s
R 4A
m

- m
¥ (a3na1q+a lnaSq) ¥ A

m
—_—— T A
4 (a3na2q + aZnan) [xy AT+ =T (§ ini+gjnj +§k-r~lk)J

-2 m AT 2 2 .2
+a2nan [x A +—E- (gl + 6] +gk):l

+a, a “zAm+—---—-Am 2+ 2.|. 2)
3n%3q |V 1z (ny My T Mg
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T T m {alnalq ¥ B By ¥ Ep oty )X

+ (a3r1 alq + a. a3q) v

.
g R 8 alz,q)[xY 12 (gini+§jnj+gknk)]

2

1 2 2 2
+ aZnan -x * 13 (§.1 +€j +§k)]

¥ 8. B —“2+—1— Dy g 2)
n3q|Y tiz (Mt oyt

Therefore, let ng [a] Ay d6 dn = [(AA)q] (D-22)
- Rm 4A

where

[(an)] = 2™ U SR AiyA(q) 48 90 g g A5y 46 d“’g g A(k)A(q)dgd“}
m Rn R

(@ =1, j, k)

and S‘S A(n) A{q) df dn is as given above.
Rm

Derivation of matrices [s] and [p]: Combining Eq. D- 15

and two other similar differentials, the expressions for the matrices

[s] and [p] of Eq. 3-22 can be written as:



(<]

r-ulﬁ

3]
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3k 92j

(Bgy Byl By 8gy) lag 84l
(355 233) (855 25.) (85, 24)
(9% 235) 18px %g) (855 24
By Byl By Byl (85 Bg)
(Bigy Bayl (g Bigg) lag, Agp)

(By¥as0) (Byhas.) (a5 +as0)

(a2j+a21) (.':1zj +a2j) (a2j+a2k)

By t8g;) (85 1855) (B t2ny)




where

_k33i4'a31) (85t
+ % (a3j+a31) (a3j+a
_fa3k+a3ﬂ (2
u2+v
"\ 3o, *DgT) [¢]
#(AAJiﬂ
[»] = ::; (ah).
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(AA),

3j

)

3j)

(a,.+a

3i 3k

(a3j+a

3k

ait2a;) (Bgtagy

)

)

)

—

(D-23)

(D-24)



APPENDIX E

PROOF OF INDEPENDENCE OF THE SYSTEM
WITH RESPECT TO THE COORDINATES

The set of equations represented by Eq. 3-22 are to be applied
to each triangular finite element separately. The derivations of the
two square, symmetric matrices [s] and [p] of Eq. 3-22 are given
in Appendix D.

The [p] matrix for any element in Eq. 3-22 is only a function
of the space coordinates of the nodal points i, jand k. The
elements of the [p] matrix are computed using a;, a, and ag
coefficients given by Eq. D-5 in Appendix D and space coordinates.

Except a. coefficients, all other quantities are independent of the

1
coordinate system because they are taken as differences of the
coordinates of the nodes.

To check whether those a, coefficients are independent of the
coordinate axis the x and y axis may be shifted by constant values,

say a and b

Let x = X = x+a
new

(E-1)

and vy = yv+b

where a and b are arbitrary constants. Using the relationships

given by Eq. D-5 in Appendix D,



1i
W)
I
Gl

New: Agg 1i ik " ¥k Y

= (xj+a) (yk+b) < (xk+a) (yj+b)
= (xj Vi = ®x Yj) + a(Yk-YJ-) + b(xj-xk)

- - - -l
a,l,1 aaz.l ba?’.1 (E-2)

This transformation is substituted in the expression for computing the
elements of the [p] matrix (Eq. D-22) and the elements are found
to be invariant. The [p] matrix does not change under a coordinate
transformation, and hence independent of the coordinate axis.

The [s] matrix is also given in Appendix D. This [s] matrix

is a function of [p} matrix, a, and a coefficients given by Eq. D-5,

3

dispersion coefficients and velocity components. These a, and ag
coefficients, dispersion coefficients and velocity components are
independent of the coordinate transformations. The [:p:l matrix was
already proven to be independent of the coordinate system.

Thus, the whole system which results from applying Eq. 3-22

to each finite element is independent of the coordinate transformation.



APPENDIX F
NUMERICAL INTEGRATION FORMULAS

The fourth order Runge-Kutta and the Adams-Moulton multistep
predictor-corrector formulas used in the numerical simulator,
Eq. 3-25, are given below (Conte, 1965):

The time derivatives -E-)-?i- from Eq. 4-2 can be written as
dt

o

= £(t ¢) (F-1)

where :1'9, f and ¢ are vectors. The fourth order Runge-Kutta

formulas are

6., = & ot (k| + 2k, + 2k, + k,) (F-2)
where ‘1_51 = ‘f"(tn’ Qn)
R e N
and 54 - ‘-f-(tn+ At $n+ At 1"573)
where At is the time step size. From the initial values of ¢ , four

P

starting derivatives are computed. For subsequent time steps, the

Adams-Moulton predictor formula:
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(0) _ At 9 9 b 24 98¢
{¢}n+1 - {‘"}n t 2% (55{'5?'}11 - 59{'3?}11-1 +37¢ 9t }n_z‘g{ 9 t}n-3)

(F-4)
is used and the derivatives at time level (n+l) are computed. Then
using these derivatives in the Adams-Moulton corrector formula, the

final corrected values of {¢}n+l are obtained as

(1)
}n+1

_ At (o 56,(0) 29, ¢ 80
{¢ —{¢}n+24(9{at} e Rl ey +{8t}n_2)-

n+l 8 tn-1

(F-5)



APPENDIX G

COMPUTER PROGRAM

Description of The Program

The computer program consists of five segments and the function

of each segment is described below:

1,

20

In segment one, input and data checking operations are done.
In segment two, the initial and boundary conditions are read

and transformed using the transformation, Eq. 3-12,
¢ = Cexp (B/2)

where B is computed for any node using the medium and
flow properties of the contributing elements.

In segment three, the matrices [S ] , [P*] and {Q*} are
formed and the matrices are modified for constant concentra-
tion (geometric) boundary conditions.

In segment four, the time domain solution of the system of
first order linear differential equations are obtained.
Numerical integration is performed utilising Runge-Kutta
fourth order method and the Adams-Moulton multistep

predictor-corrector method.
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5. In segment five, the computed values are transformed by
the inverse transformation
C = ¢exp (-B/2)

and these concentration values are printed.



FLOW CHART

‘ Start ’

Read and print
geometric
data

Compute
maximum
band width

Band

No
- width 5_20?

Print "band
width too
large'" & stop

Read and print
initial and
boundary
conditions

}

Compute B
(Subroutine
TRAEX)

Transform
initial and
boundary
conditions:

C~»4¢

t .
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OF THE PROGRAM

;

Compute values for

setting up matrices:
(Subroutines COEFA, CENTER,
XIETA and AREA)

Area of
triangle
negative?

Print element
number & stop

Yes

Set up matrices S , P
and R
RMATRX, SMATRX and ADDIN)

(Subroutines PMATRX,

Modify the matrices to
eliminate boundary con-
dition nodes

Solve the matrix equation
(Subroutines PRESOL,
RUNKUT and AMSOL)

Inverse transform:

¢ > C

Print
output
1
( Stop )
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DATA INPUT FOR THE PROGRAM

Five title cards (16A5)

Any information identifying the problem or blank cards.

First control card (3I5)
Col. 1- 5 Number of nodes - NNOD

Col. 6-10 Number of elements - NE

Col. 11-15 Number of geometric boundary condition nodes - LBC

Second control card (4F 10. 0, I5)
Col., 1-10 Starting time step for numerical integration - T
Col., 11-20 Time segment length - TSEG

Col. 21-30 Lower truncation error limit for numerical
integration - ERRLO

Col. 31-40 Upper truncation error limit for numerical
integration - ERRHI

Col. 41-45 Number of time segments which is equal to total
time period divided by time segment length - ITT

Third control card (3I5)
Col. 1- 5 1 for constant values of u and v and boundary
. conditions for each time segment; any other

number for nonconstant values - KODE1

Col. 6-10 1 for constant u and v over space; any other number
for nonconstant values - KODE2

Col. 11-15 1 for constant initial conditions over space;
any other number for nonconstant values - KODE3
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Element cards (5X, 3I5)

Cards must be arranged in element number sequence and all
cards must have three node numbers. There should be one card
for each element and node numbers must be punched from left to
right in counterclockwise direction around the element.

Col. 1- 5 Element number or may be blank.

Col. 6-10 First node number of element - i

Col, 11-15 Second node number of element - j

Col. 16-20 Third node number of element - k

Node cards (5X, 2F10.0)

These cards contain the x and y coordinates of each node
arranged in node number sequence.

Col. 1- 5 Node number or may be blank.

Col. 6-15 x coordinate of node.

Col. 16-25 y coordinate of node.

Initial conditions (5X, F 10, 0)

Cards must be arranged in node number sequence for all nodes
if the columns 11-15 of third control card contains other than 1.
Otherwise only one card required.

Col. 1- 5 Node number or may be blank

Col. 6-15 Initial conditions.
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Dispersion and diffusion coefficients (4F10. 0)
This card contains the values of the longitudinal and lateral
dispersion coefficients, molecular diffusion coefficient and
tortuosity.

Col. 1-10 Longitudinal dispersion coefficient - D

L

Col. 11-20 Lateral dispersion coefficient - DT

Col. 21-30 Molecular diffusion coefficient - Dd

Col. 31-40 Tortuosity - T

Velocity distribution (5X, 2F10. 0)

These cards must be arranged in element number sequence for
all elements if columns 6-10 of third control card contains other
than 1. Otherwise only one card required.

Col. 1- 5 Element number or may be blank.

Col. 6-15 Component of velocity in x-direction - u

Col. 16-25 Component of velocity in y-direction - v

Boundary conditions (I5, F10. 0)

These cards must be arranged in sequence for the number of
geometric boundary condition nodes (LBC) indicated in the first
control card.

Col. 1- 5 Node number - NBC

Col. 6-15 Geometric boundary condition - BC
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11. Repeat 9 and 10 for each time segment if columns 1-5 of third

control card contains other than 1.

12. Repeat steps 1 through 11 for each additional problem.



FORTRAN IV COMPUTER PROGRAM




OHOHOO0OONOOOO0DN00D

14HN. =«F10,.5/
210%+35HI ATFRAL NTSPFRSTINN COEFFICIENT DT =«F10.5/
310X IAHMOLFCULAR NTFFUSTON COEFFICIENT DD =+F10.5/
410X 1 THTORTUONSTITY TNRT =+F10.5/7)
P6N] FARMAT (9X.25+ LIST VARTARLE IMPUT DATA//)
2602 FNOMAT (10X+T10« P2F11.2)
MAIN PROGRAM 2603 FNRMAT (15.F10.0)
2604 FORMAT (1HN.9X425H LTST BOUMDARY CONDITIONS/)
2605 FNPMAT (15X+15+ F20.5)
P6NA FARMAT (13Y 4 THELFMFMT s 7XePHVX « 9X e 2HVY)

PRAGRAM FINTTFL
1 (IMPUT «NUTPUT« TAPFS=TNPUT« TAPEA=0UTPUT)

. 2611 FOOMAT (1 T7X«4HMANFLPAX« ] 1HROUIIN, CONDL/)
:..‘DG"I.ﬁﬂD'nﬂ“‘“ﬂb‘*‘n"..‘ﬁ“.0"’..."...‘_..".""'.'.: 3]5] rno“‘r tlnx.??HNFﬂﬁTlvE AQEA. FlIF“FNT'IS’
e THTS PRNGRAM SNI VES A TWO=-DIMENSTONAL HYDRONYNAMIC . 400)1 FNRMAT (9X+18H TIMF SEGMENT NO, +I5/9%+17H POSITION IN K ISs
e DISPFRSTON FOUATION WITH MIXFD PARTIAL DERIVATIVES BIRAOR )TN JINE 975 SHEE 29 EADe3L)
- AY FINTTE FLEMENT METHOD TRIANGULAR ELEMENTS a 4007 FNPMAT (1H]«RX«27H LIST RESULTS FOR EACH NODE//)
o ARF USEN, NISPFRSION COEFFTCIENTS ARE TREATED AS  # E ey TR MU T L PR INEA RTINS
©  SFCOND NPDER SYMMFTRIC TENSOR, LONGITUDINAL AND . st i Ml o B /
& LATFRAI DISPERSION COEFFICIEMTS ARF INCLUDED. . 1 «30K 43
s PRAVISTON IS MANE TO INCLUNE MOLECULAR DIFFUSION . & inmAvs
o  COFFFICTENT. * ¢ :
& -
CEpRGCOERO0OOECROREDENORCONERRRERARRORRNNERNORNRRERRRRRRE DNURLFE PRECISTION UT
i COMMON /BLK1/R(25044)
= COMMON ZRLKP/UT (250)
¢ -FORMAT STATFMENTS COMMON /BLK3/S (250 +20)
1001 FNRMAT (16AS/]16AS/16A5/16A5/16A45) COMMON /RLK4/P (250.20)
1002 FNARMAT (3TS/4F1N.041S/7315) CONMON: 781.K5/8 12501
1803 FORUAT (RX4ITSY COMMON ZRLKA/NON (250+3) +X (250) + Y (250)
S04 FARHAT (6%e3F1Ndh COMMON ZBLKR/NXX (P50} «DYY (250) +DXY (250) 2+ VX (250) +VY (250)
1007 FAPMAT (1H1) COMMON ZBLK9/DL +DT DD+ TORT
R EOSMAS TTRE RRUIRES G NOOER ST ik, NTMENSTON NAME (R0) «XLOC(3)»YLOC(3) «ACOF (343) 5
N ks R ki L PNER T At s 1PEL (3431 »SFL (343) «PEL (3) »NRC(100) yRC(100) »
PIPHSTARTING TIMF SOLUTION INCREMENT» E20.5/10Xs 3, ./ SESIEREEERIA
E:Q:Eﬁ:g:: :; I::g ::g:i:;g'lszfg;s’lo" c D L e
. " D L]
S45HUIPPFR AND LOWF® FRROR ROUNDS ON TIME SOLUTIONs € i AR ' .
A PEINL2/7) . 3 ‘n'N
1013 FABPMAT (1NnX.2THNATA FRRNR = EPRILO GE ERRHI/Z/) - g . % INPUT AND DATA CHECKING :
:g:: :2:::; :L:‘;::Hrﬁigk--ITQ:GM$NEO:20E§0295122 :;g;,ELE“ENTS‘ o \‘l....l‘illﬂ!..II.I..II.QI‘II.QIIbDI.ICI.I.I.I.‘.“Q..I...
1016 FNDMAT (1NX+110. PE20.5) ¢
1017 FOPMAT (17X<4HNODF +AX+12HX COORDINATE +8X»12HY COORDINATE/) €, ®  BEAD TRTLES.: CONIROL S+ AND GEGMETRIC. DATA
1301 FOPMAT (1HN+9X+21H LIST = ELEMENT NODES//) € = WRITF TITLES AND CONTROL
1302 FAPMAT (10X<110,3T15) ¢
1303 FARPMAT (17%43HFLF «T7X+SHNONES/) 1000 RFAD_(SsINN1) INANF(S) =1 vRO)
1401 FARMAT (1HN.10%+13HRAND WIDTH [Se15//) WRTTE (6+1007)
1402 FNOMAT (10¥+33HWNATA FRROR = BAND WIDTH TOO LARGE//) READ (5+1002) NNODNE«LRCeT+TSEGIERRLOFRRHI s
2001 FNPMAT (SXF1N.0) 1TTT«KNDEL +KNDF2+KNNF3
2071 FNRMAT (1NYX.37HLIST INTTIAL CONDITIONS FOR EACH NODE/) TFINNND LT 2?50 ANN  NF 1. T 250 AND.LRC.LT.100) GO TO 1090
2072 FOPMAT (10¥.T10s F20.5) NRTIkLE 1Y)
2073 FORMAT (17X<4HNODF +6X+9OHINT. CON./) : ALY 3300
2360 FAPMAT (4F10.0) 1090 RFAN (S«1003) ((NAD(TeJ)eJ=1eT)sI=14NE)
2401 FOOMAT (SX«2F10.0) RFAD (S«1004) (X(.0) <Y (J)+J=1+NNOD)
2520 FORMAT (10X436HLONGITUDINAL DISPERSION COEFFICIENT o s METTE 16210811 (NARE L) . ix1000)

WRITE (A«10NA)Y NNODNE«T+TSEGs ITT+ERRLO+FRRHI
WRTTE (6+1015)

]
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s EeNaBeNe N Ba e Be Re X

1300

1400

2000
20580

2060
2070

2350

PhLan

2450
2500

WRTTE (A«101T)
WOTTF (Ae1N1AR)
IFIFRII N, T.ERFHT)
WRTTF (A«1013)

6o TN 5500

(X (J) Y (J)aJd=1+NNOD)
60 TO 1300

& COMPUTF RAMD WINTH (NCOL)

men) =1

WRTTE (Ae1301)
WOTTF (A.1307)
NN 1400 ti=) oNF
WPTTE (A+1302)
NN 1400 1=143
NA 1600 J=1.3
NNENOD (Mo TY=NOD (N, 1)+ ]
TFINCOL =NNG! To0) NEOL=NN
WRTTF (A1401) NCO|
TEINSAL LLF,20) 6O TN 2000
WRTTF (As1402)

60 TH 581N

Mo (NDDINSNT) «NT=143)

CRAQODIDOHLADRONNBORRCROBNOVERROORBORDEDEDEDERRRACORERORRER

@ SFAMFNT 2

L SFAD AMN THANSFARPM INTTTAL CONDITINNS.

b START ¥ |LNNP WHICH SPANS REMAINNER OF PROGRAM.

o PFAN VAITARIF FI FMFNT NATA FNR K=TH TIME SEGMENT.
L COMBYTE OISPERSTON COEFFTCIEMTS FOR EACH ELEMENT.

LI N

CooOOCODE0DBLRORUECEOBOCRRORORDOOHORSGRRDONDORRLORCERBOREDD

TF(KNNFR.FN_.1)
RFAN (5.2701)
6N T 2070
RFEAD (52701) 1(1)
nn 2640 =1 aNNND
e =il
WRITF (A+20T711)
WRTTF (A.20T%
WETTF (A.2072)
WETTE (A«100T)
K=h

MRAW=NAMAD
K=Fs]

TIM TH=TSER
TEIKONF] LFNL]1JANDK.GTL1) GO TO 4000
PFAN (S+23AN) NL«NTNNWTORT
TFIKNNF2.FN,1) 6N TO 2440

RFAN (S42401) (VX(J)«VY(J)eJ=]1eNE)
GN TN 2800
PFAN (5.2401)
NN P4SN =1 «NF
VX 1 =VX ()

VY L1 =VY (1)
COMT ITMUF

G0 TH 2050
(UL s =1 NNOD)

(Jeli{J) o J=1«NNOD)

VXL1)aVY (1)

C
c
G

[ sz Y NsNzRaNe e

7600

7650

2900

ioon
3100

3150

nn PANN M=1«NE

VEI =SAPT ( (VX (M) BVX (M) )« (VY (N)BVY (NY))

NXX (M)= (D) SYX (M) EUX (M) /VFL®82) + (DTAVY (N) ®VY (N) /VEL®#2)
1+NNeTNRT

NYY(NYS(OTaVX (M) #YX (N) /VEL#e2) + (DLBVY (N) #VY (N) /VEL®®2)
1+DPNeTNRPT

NXY (N)SINL=NT)#VX (N} 8VY (M) /VEL#22

CONT TNLIF

WRTTF (Ae?A01)

WOTTF (A«PS20)1N1 4NT«DNTORT

WRITE (6he?2ANA)
WRTTF (A«?AN2)
ALl TRAEX (NNONNF.
nO 2650 N=1..NNOD
M=t IN)eFXP(RETA(M) /24)

(JeVX 1 o VY (J) s d=1eNF)
RFTA)

o BEAN RNIINDARY CANNTITTONS AND TRANSFORM

RFAN (S42AN3)
WRTTF (As2ANL)
WETTFE (Ae2611)
WRTTF (A«2AD5)
nn 290N N=1.LRC

T=MAC (N}
ACIMI=RC(NIEEXP(RFTAITY /2,10

(NRC(.J)«sBClJ)eJ=1+LRC)

(NRE () «RC(J) e d=1+LRC)
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SEGMENT 3
RUTLD SYSTFM MATRICFS Se P. AND R AND SET
ROINNDARY CONDITTIONS IN MATRICES.

L B
L I B A

CCOROeREOR0ORRERORERDORaREOROCRLOCRREROGLERCRRETURECRREDEE

M =0
nn 3000
R(TY=D.
nn 3000 J = 1.NCOL

S (Ted) = 0.0

P (Ie.) = D0

Moo= Ms)

CALl COFFA (M ACOF)

CAL L CFMTER (Me XRAR. YRAR)

Car) XTFTAIMWXPARCYRARGXLNCYLOC)

CALl ARFA(XLNCYLNC«AM)

TFIAM GT.N.Y 6N TN 315N

WRTTE (A«715]1) M

G0 TO S500

CALL PMATOX (AMLACHF « XHAR S YRARXI. OC YLNCSPEL)
Fapl PMATRY(MLPF| )

CONSS=(( (VX (M)ee2+yY (M) ee2) /(DL+DNeTORTII/4.0)

I = 1«NROW

CALI SMATRY (MeAMaCOMNSSPFL+SELACOF)
CALLL. ADDTN (SEL +PFI «PFL o M)
TF (M LT.NEY GO TO 3100

921



1y Ky |

azno

3210

3220

SET ROUNDARY CANNTTINNS TN MATRICES

nn 3230 1 = 1«1 RC

AN = NBOL(TY
MEC = MEOAL
MR = NN=NC+]

TF (NR LT, 1). GO TO 3210
P (MRY = B (NR) = S "{NRWNCI®*RC (1)

M = MG=]

TF IMC GT. 1) GO TO 3200

s = 1

IR = MM

MR = NR+]

TF (NP ,GT. NROW) GO TO 3230
NG = N

TF (NC JGT. NCOLY GO TO 3230
B (MRY = D (NRY=S  (NN.MCYERC (D)
A0 TN, 3220

A230 COMTTMUF

AN

3240
3250

3260

3270

37ARn

3300

-
L3

REFORM MATRTCES ANN ELIMINATE EQUATIONS

AT BOUMNARY CONDITION NODES

an 330 1 = 14LRC

MM o= WNRC(TI=Ted

MPOAW = MROW=]

TF (NN JGF, NRNW) G0 T 3300
NN 3P4An N7 = NNLNPOW

IHINRY = (MR +1)
B{NR) = PINR+])
NN 240 NC = JaMCOL
€ (KR«MCY = S (MRe]oMC)
P (NBWMC) = P (NRs]sMNC)
SR o= MM
Al = P
MR = wQ=] -
TF (nR LT, 1) GO TN 3300
M o= N+l

TF (N AT, NCOI ) 60 TO 3280
nn 3270 0 = NNCOL

PiND. I=1) = Pty 1)
S(ND4 J=1) = S(MRe )
BI(NDLHMCYM ) = A0
SINQMECAL ) = N0

GN TN APAN
S(MRWMC Y = D0
PINR«NCOL) = 0,0

CONT TMUF

OO ANONONn

a00NND

SN

oo n

CHCOORARADRORDORDRREOCNEANOCORRRORNEdUdRORERRRORRDRREGRDER

e SFOAMFNT & &
L4 TIMF DOMAIN SO UTTAN OF SYSTFY nF FIRST NROER. -
° I.INFAR NRNINARY NIFFFRENTIAL ENUATIONS WITH L
] CONSTANT COFFFTCTIFMTS, SURRNUTINES RUNKUT AND L
e AMSO|. ARF 1JSFN FOR NUMFRICAL IMTEGRATINN SCHEME e
& FNe THF K=TH TIMF SFGMFNT. TIME STEP AUTOMATICALLY #
b4 ADWISTFN FOR NPT TMIM CONVERGENCF .
o L]
™ L ]

PRI Y L T T T T T R T Y R R T T

AL PRFSOL (NROWs NCNL)
4000 11 =0
WRTTF (AeaDN?2)

- COMPHUTF NIIMRER 0F TIME STEPS IN K=TH TIME SEGMENT
b AND ADIST TIMF SIZF AS RENUTREDN.

4100 NSTFP=TIMI TH/T+0.5
STFRP=NSTFP
T=TIM TH/STEP
WRTTE (A«4N01) KoLl »T
TF (NSTFP .GF. &) GN TN 4200
T=T/2.
60 TO 4100

° COMPHTE STARTING VALUFS FOR AMSOL
4200 CALL RUNKUT (U +» NRNWe NCOLs T)

1M =13

® AMSN). CALCS ALL NTHFR VALUFS OF FUNCTION IN K=TH

° TIMF SFEGMENT AND CHECKS MAX, TRUNCATTION ERROR IN

. SYSTEM FNR AUTNMATIC ADJUSTMFNT OF TIME STEP SIZE.
4300 11 =11 + 1}

CALL AMSOL (NPNWs NCOLs ToTRUNK!U)
TF (L1 LT« &)Y GO TO 4400
IF (Telink .GFE. FRRIN +AND, TRUNK .LE. ERRHI) GO TN 4400
TF (TRUNK L|.T. ERRID ) GD TN 4320
L =LL=1
NIFT [M=NSTFP=|L
TIM TH=NTFTIMeT
T=T/7.
&0 TN 4100

4320 NIFTTM=NSTFO=LL
TF (DTFTIM 1T« 16.00005) GO TO 4400
TIM TH=NTFTIMeT
T=Ta2,
NA 4330 T=1«NOOW

4330 DT =UT(T)

g AN TO 4100
4400 TFILL «LT. NSTFP) O TO 4300

Lzl



AN asnn

B L L T T T YT T SUBROUTINE COEFA
- L]
@ CFAUMENT & o CHRROIITINFE COEFA(MLACHF)
e TRANSFNOMS AuD AHTPUTS RFSULTS @ C
¥ ™ C PP ONENRORINBLEDERDIOEROBONLOVOORACRDRDERDBORAVODBOAVATNO,
L E T e R R T T T E T g T T T R g g g g g e gy c @ ®
€ & THTS SHRROUTINF COMPUTFS THF A=CNEFFTCIFENTS o
S00N WRTTE (ASANTY c & Fno THF MATRICFS NF THF M=TH FLFMFNT, A
M=n C = @
1=n c L LT L L R R R R TR R R A T R
AR 5050 T=1.L_R" c .
TT=nRC(T) COMMAM /R KA/NND(250+3) X (250) 2 Y (250)
SO50 ATV =RETT)BFEXP (=RFTA(TT) /24) NTHMFMSTAN ACOF (3e3)
SI0n M=) N=NAN(Me 1)
1= 1+ A2=HNN (M2
N 5200 T=1.LR(C 1=NNN (M)

ACAF (1e1) X{I2) ey (1) =Y (J2)#X(J3)

AT

TF (NRCITY.EN..D U=, 3 &
S rnN:I:ﬂ; EY el ACOF (142) = X(J31eY(J1)h=Y(J3)ex(.I1)
TE (J.6T.000) 60 TO 5300 ACOF (1) = X{1)eY(J2)=Y(J1)aX(J2)
1) T (MY ACOF (1) = YIIP2)=Y (AT
Oy = eEXe (=RETA(N) /2.) ACAF(22) = Y(JVN=Y(J1)
WRTTE (AeS201) Lleli() ACOF(243) = Y(J1)=Y(.12)
TF (NLLT.A2AWY GO TO 5100 ACAF (1) = XLV =X J2)
5300 WRTITF (A.5I01) ACOF(Ra2) = X(J1) =%
TFIXONF].FN,1) GO TN S350 ACAF (343) = X(J2)V=x(J))
60 TO Sann PFTIIRN
5350 NA SIAN =1 ..NOOW Fan
S3AN 11 1=UT LN
540N TF (k. T.TTTY GN Tn 238N
60 TH 1000
ssioh oot SUBROUTINE COMB
Fyn SURRNUTTINF COAMA (Y. NPOWe NCOLs Z)
{5
c wﬂlchlGﬂ.lﬂIllhihilhilo"l!...'hﬁﬂ.l00"'.6‘..!600"0.0‘..
c L e
SUBROUTINE XIETA c ®  T.:TS SURROUTINE MULTIPLYFS SYMMFTRIC MATRIX S ®
c ° TN MATRIX ¥ ANN STORFS THF RFSULT IN Z. \od
SHARANITTHF ATFTA(MJXRARLYHARS XL NCa YL O0) C = °
(‘: GDQﬂﬂ.UHl'OﬂlDblGQGGDIInd-ﬂboilI.QQQﬂbﬂﬂhlil‘ll'ﬂ.llﬁ.!'..'l
COGORICRLOC OV UTUTOOOCRINOBONOOCOOOOCDGRBUBOUDREOORDBLRIES C
H ® COMMON /RLY3/5(250.20)
b THTS SHRQAUT IMFE COMPUTFS THFE |LNCAL CODRDINATES b VIMENSTOMN Y (PSN)+7(250)
2 OF NADFS OM TRTANGIH AP FIEMEMT M - nn 200 T=1.49nw
. - ZiT¥=Y(Td®  S(T.])
PR EB OGN N S AR R OO O N DO ED NGOG0 CORIRRRELORORDERODARDe ro 200 K=2 NGO
| =T=Ks]
ComMans 4 kA /AN (PS0.3) X (PS0) oY (PS0) TF (L «LT. 1) GO TN 100
NIMENSTON X1OC I «YLOCEY) ZITI=ZUT)eYIL)I®  S(l oK)
nno1an 1 =1.3 100 M=Tek=)
T=M0n (M. TF (N.GT. NPOW) GO TO 200
XILAC( Y =X (T)=YhAR ZITISZUT)IeY(NI®  S{].K)
100 ¥YINC(L)=Y (T =YRAR 200 CAMTINUF
PFTHRN PFTIIRN

Fan Fan

871



ADNANDOD

DHDADHDD

SUBROUTINE TRAEX

SUBRNITINE TRAFX (MMNNWNE« RFTA)

B L L g T T T e
® @
L THTS SUARAUTINF COMPUTES THF BETA TRANSFORM FUNCTION ®
:andéauubnnan5#*udoooeﬂﬁgananbonﬁanunﬁnqsadhoniuuonnloho:

COMMAON SRIFA/NON(PS03) X (250) Y (250)
COMMAN /RI KA/NXX (2S0) «DYY (250) «NXY (250) VX (250) VY (250)

roMunm R ¥Q/NL SDT DN TORT
NIMENSTNAN RFTA(2S50)
N 3NN N=TNNOD
nu=n,
wuY=0,
uvyY=n,
an o 2nn 1=1..MF
nno200 1=1.13
TE(MAN(Te 1N ,FNLM) GO TO 100
~0 TO. 200
100 PM=NN+],
YUXSVVX VX T)
VY =VUY+VYI(T)
200 CANTTMUF
HY¥ =YX s
VY =YVY 200
300 PFTA(N)==({VYXeX [N)«VVYRY (N))IZ(NL+NNeTORT)
QETIIRM
END

SUBROUTINE CENTER
SHAROUTINF CENTFR (MeXRAR . YRAR)

CoBBORODBOUGOVOCLODOEUUNRDGRACROOROGRNOOOODOROREORORODORDRD

£ o«
° THTIS SUMRMITIMFE COMPUTFS THE CENTEQ® CNORDINATE -
o NF TR*ANGULAR FI FMFNT M, @
-] -

Ce0e00o0adcROCURtdoRlOdRtOaRROdRdOUERUOReRROREOREOBRRDeRRRE

COMMONM /B wA/MNNI2S0+ ) « X (PS0) oY (250)
T=NON (M, ]
=MNN (M)
W=hNMN (M)
YRAR= (X [(TreX(a)eX(K)) /3.
YRAS=(Y(I)eY L) +¥Y(K)) /3,
RFTIHRN
ENN

OO0 N

OO0 DO0

100

300

SUBROUTINE AREA
SHRROITINE ARFA (X| 0C.YLOCsAM)

400Gt otRAOLOROGRBECRRETOBOOGORRSCOORBRROOROGROOOOOGOORDRDED

L3 -3
& THTS SURRNUTINF CAILCULATES THE AREA NF- Lt
e TRTANMGLH AR FLEMFNT M, ) ®
L a

GO0 edeCOREODECROGaOETOCHONREREOLERCEOORORORRRRGORERRRIORD

RIMENSTON XLOCIN YILACTT)

AM= (X1 OC(P)YeYLNC () =XI NC{RBYLOC(Z2)=XINC(1) =
1 YLOCIA) +XLOC () eYI.0C (1) +XLOC( L) 8YLNC(2)
-l =X OC(PYeYLOCTE1) )22,

RFETIIRN

Fan

SUBROUTINE SMATRX
SHRANITTINF SMATRX (MeAMsCONSS+PFL+SEL«ACOF)
I.l!EIOﬂIll000lhﬂbuIOﬂﬂnﬂiﬂ.lIQOQQQ.I.QIQ‘.DQ.QO.Q*..l*ll.

°

- THTIS SHRENUTIMF COMSTRIICTS THE S MATRIX FOR
™ THFE 4=TH TRTANGIN AP ELFMENT.
L
£
-

621

MATRTX TS SYMMETRICAL.

L

B0 E000II0NOROG000RROUREBORTROERUROHORDERSDRRORIDRDRERE

COMMON /R KA/DXX (PEN) 4 DYY (250) «DXY (250) 4 VX (250) VY (250)
NIMENSTAN PFL (3431 «SEL(343) +ACOF(3+3)

noo1an 1=1.3

no o100 1=l

SFI (T« J¥=0,

roMs] =NXY (M) /(4. NeAM)

FAMSL2=NXY () /(4. NeaAM)

COMS2 =NYY (M) /(4. NeAM)

CAMSIA=VY (V) /]2,

CONSL=VY (M) /12,

nno3Inn 1L=].3

nA ann M=le3
QFI[L-NI=QFL(L.N)rlﬂfﬂf(?-t"ﬂCﬂFI?ON!I‘CQNSI
SFI (L «NI=SFL{L«N)+ [ACOF (341 ) *ACOF (P+N))ECNNSL2
SEI (LeNYSSFI_(LeN) + TACOF (24L ) #ACOF (34N) ) #CONST2
SEL(L«MY=SFL(LaN) ¢+ (ACOF (341 )®ACOF (F4N) ) 2CONS2
QFIlL-NlBQFL(LoN}'IﬂCﬂFt?eLl*ﬂcﬂrla.Nl]'CﬂNS]
SEL (L«NY=SFL (LeN)+ (ACOF (3401 ) *+ACOF (34N ) #CONSSH
SE_(1.«M)I=SFL (L «N) «CONSS®=PEL (LeN)

RFTURN

FND



AODIIOIDNT

MADIOOIODD

SUBROUTINE RMATRX
SHRRNITTMF PMATRX (MeRFL)
T T P T T ey

o -
@ THIS SUHROUTINF CONSTRUCTS THE R MATRIX °
& Fns THFE M=TH F| FMFNT, WHEM THFRF TS N0 SINK THE -
= COFFFICTIFNTS OF R MATRIX ARF ZFR0O e
o L ]
-] -

cocodpdORCoOREUOGAOROOODOEROOORDORROCRODOCROEOODORDREDOORE

NIMENSTAN BFL ()
nno1an J=1.3

100 BF1 { N=0.0

100
200

QFTHIRM
Fun

SUBROUTINE ADDIN
SURRNITTIMNE ANDTY (SFLPELSRFL M)

CRHGOGRBORE R CRBORORORORENORDURACOEROIPNODCRDOBOBOREORROBORES

© *
® THTS SHRROUTTINF CONSTRIICTS THE MAIN SYSTEM MATRICES =
& WHTICH ARF SYMMETRICAL AND TN BAND FORM L]
- L3

CHCROCCERICOOCEOROCORROCRUERORUDERLOCUBCAOUROBOEROBUREROTD

COMMONM /R K/SI250,20)

COMMON /P K4/P 125N e20)

carunsy sR KS/R(P50)

CoMunt /I vAR/NCDI2SN+3) X (250) 4 Y (250)
ATMENSTOM SFI {1+ 3)14PFI (3+3)«REL(3)

nn o200 1=1.3

M2=N0ON(My )

nno1on K=1.1

MEO=MON (MY =R (Mg 1) +]

TFINCLLF.NY GO TO 100
SIMRNC)=  SINReNC)+SFL (JeK)
PINRWMC)=  PINRLMCY+BFL (JeK)

CAMTTMUFE

D MR =RINGY +BFI (J)

RETLIRN

Fan

oo nHn

c
C
c

anon

100

150

200

240

250
260

300

SUBROUTINE PRESOL

SIHRRNIITTINE PRFSOL (NROWe MCOL)

fepOOBECRROSOOUBDOEDOECRURRBTHGOROO DRSSO OOOORORORBRERDED

o -
e THIS SURROUTIMF PRF=TRIAMGLI_ARTZES A SYMMETRIC L
e MATRTX TN BAND FORM FOR SOLUTTAM RY THF GAUSSTAN *
@ FLTMTNATINN MFTHNN. FIHAL SOLUTION IS RY b4
° SURRNUTTNE FINENL., =
o -]
- o

OO0 BOORONEONROTRODOEREOORDOPDRDONROODORREOREURBREEGRDE

COMMON /RLK&/D(P50,20)
NIMENSTAN ST(20)

N=D0

N=M+]

® RENIICE PIVNT FOULIATIONS

TF (N=NROW) 15043004150
NA 200 K=2.MCOL
ST(K)=  P(MeK)
DMK} = BiNK)/S PiMN.1)
° RFNIICE PEMATNING FOUATTIONS

NN P&N |L=2.NCOI

T=m+l =1

IF (NROW=T) PANe240<240

=0

nO 25N K=L«NCOL

NEBES
P(T-0=

CONT TNUF

N TO 100

RFETURN

NN

PITaD=STILI® P(NeK)

ocl



000

(e EsT4 Eal

n ﬁ:ﬂ-ﬁ A0S

SUBROUTINE RUNKUT

SUAROIITTINE DINKIT (lle NHOWs NCOLe TSTEP)

GHEGLBRESRRARBBTRDDOPRHBRRBUBRONLEOOECNBBTUNTOBORLDOODORDEDDU

-
©
°«
=
o
&
e
&
]
&

GOS0 RC LR EROC IS L OB OO RGUGENLEDOOO OGO REROOOOROBODORTRTD

THTS SHUROUTINF TS A& FOURTH NRDFR RUNGF=KUTTA SOLUTTON
FOR AN M=TH NRNFR SYSTFM NF FIIST NRDER EQUATINNS WITH
CONSTANT COFF THAT ARF SYMMETRIC AND TN RAND FNRM,
CA4PITATIONS ASF IN DARTIAL NONRLE PRECTSTON

TH, PPAGRSAM 1S A STARTFR FOR THE ANAMS=MOULTOM METHOD.
THIS SUHBNUTINE SFATRFS SUSROUTINFS CNMR AND FINSOL.
THTIS PONGRAM HES CNMMNM STORAGE.

DOURLF PRECTISINY NVARs UT

COMUNN /R K] /RI2SN.4)

COMMON /EI XK2/0T1PSC)

coMuny /R K3/ (250,20)

COMUMON ) K& /DE2R0,20)

COMMOM  JHI K5 /S (PS0)

NIMENSTNN FI250) 4 111250) «GI250) s A (2S04 3)
noo1on T=1«HROW

100 UTCT) =T

©

nn

ra
no 101

COmPNT, ST..GHF PRECTSINN DERIVATIVES
10NN K=1ae&

COM=S [ile MPOWS NCDL o F)

T=]+MR0OL

101 Femy=si (T =F(T)
CALI FINSOL (Fe NRPOWe NCOI )

nn

102 T=1MRNW

102 Q(TeKAI=F(T)

104

1058

106

107

TF

nn

(K JGF. 4) BFTHPN

CN4PUTF THRFF ADDITINNAL
COFFFICTIFNTS FNR RUNKUT

SINGLE PRECTSION

104 T=1NROW

GITI=T) +R(TK)RTSTFP/2.0
CALl, COME (e HMRNW, MCOL . F)

nn

108 T=1aMROW

FrTi=sl (1v=F (1)

Ay

nn

FINGAL (Fa NROWe MCOL)
106 T=] .m0

AlT<1=F(T

nn

107 T=1aNRMOW

GITYI=H(T)«A(T.))8TSTFO /2.0

CALL COMH

(Ge NROWe NCOLs F)

8 s ¢ % 6 6 % 0 B

[z Ee e

OO0 NON9N

NN 10a T=]NROW

10R FITY=8) (1)=F(T)
CAll FIMSN] (Fe NRPOWs NCOL)
N 109 T=1MROW

109 A(T«2)=F (1)
PR T1N T=].MRANW

110 GET)I=1(T)+A([-P)2TSTFP
raly COMA {Ge NROW. NCQ!. F)
NN 111 T=1.MROW

111 Fery=sI (IY=F(1)
CAaL. FTYSOI, (Fe NRDWe NCOL)
noo112 T=]NROW

112 AT« =FL(T)

° CNMPUTE VALUE NF FUNCTION TN DOUBLF PRFCISION
No 100N T=1«NONW

NVAR=TSTFP# (B(TeK)+2.02(A(Tel)+A(T«2))+A(T«3))/h.0
HTCT)=UT(TY+NVAR

1000 MeTY=UTILTY
Fun

SUBROUTINE PMATRX

SURRNITINF PMATRX (AM4ACOF « XRAR s YHAR « XLOCs YLOC+PEL)

RGO OOOROBLCONOOOCLBOCRUBDRUEGTRODEDOOBBERUBNBLDORBORORDOD

-
» THIS SHARRNUTINF COMSTRIUCTS A SYMMFTRICAL

o » MATRIX FNR THF M=TH TRIANGULAR FI EMENT.
®

-
L 4
°@
-

CeGOEDROROCROOOOCOODEDOOROORBCOOLOULOGRODEORPRUORORBROBODORE

NIMENSTNAN ACOF(343) e X[NCI3) o YILOCI3I)ePFLI(343)

CANS]=XRARSYRAR« (Y| NC(1)@YLOC(1) «XLNC(2)#YLOC(2)

1 «XIOCTVIeYLOCIANI /1P,

CONSP=ARS (YRARO24 (X[ NC(1)#82+XI.NC(2) w02

1 +XIL O 882) /)12.)

CONSI=ARS (YRADSE 2. (YL NC (] )22+ NC(2)aep

1 +YLOC(3)ee2) /12,)

no 200 | =13

nn 200 M=l

OFLIL «NY=[ACOF (] «N)RACOF (1oL )+ (ACNF(2+N)®ACOF (1sL)
*ACOF L1 aNISACOF (2.L) )2 XRAAQ+ (ACOF (JuN) &
ACOF (1« ) +ACOF (1+N)®ACOF (3.1 ) )2YRAR+
(ACOF (3N)SACOF (241 ) *ACOF (24N)®ACOF (34L 1))
BCONST «ACNF (2N)SACDF (241 ) 2#CONS2
*ACOF (3eN)IRACOF (J4L) *CONSTI) / (4o ®AM)

LR VR

200 COMTINUF
RETIRN
Fyn

el
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100

101

102

104

108

106

SUBROUTINE AMSOL

SHRENITINE AMSDL. (Me NCOLs TeTRUNK«HEMD)

COOBRTLCHBBNLBBBELHOOENLIUBBGROTNOARPOSEDBDOOOORDCOOOORROODD

FIPST ORNFR FOUATIONS YTTH CONSTANT COFF TN
METHNN, THIS PROGRAM RFOUTRFS FOUR STARTING

ARATTIOMAL TTIMF STFP,
COMPUTATTIONS ARF M PARTTAL DAOURLE PRFCTISION

THTS PONGRAM HaS COMMON STORAGE REUIRFMENTS.

IR EEE EE R

NAYIRLF PRFCTISTNN NYAR. UT
coMenty /BRI K1 /R(25044)

romens SR K2/0T(P2S0)

CAMMON ZR] K 1/S(2650,20)

AV SR X4 /D (250.20)

FOMMOM SR KS/51 (2SN}

NIMFNETAN HIPSH) «F (250) «UFNDI2SO)
TOIMNK=N 0

nno1on T=14M

HEMDITY=UTL(T)

PTY=HFMDIT) T8 (A(T41)255,-RA(T142)259,.+R(1+3)#37,
1 =8(T«6)89 ) /24,

CALL COMR (e My NCOLe F)

NN 101 Tl

FIMy=Si (DY =FI(T)

FALL FTNST (Fs Ms NCOL)

nnoIne T=la
NVAR=TE(F(T)29 ., +R(Te1)2]19,~R(TeP)#5,+R(Ts3))/24.
NTETI=UTITY +NVAR

NSAVF=UI(T}

HETY=UT (]

FYNR=ARS [V ISAVF=11(T))

TF (FXNPR _AT. TRUNK) TRUNK=EXOR
COMTINUF

CALL COMHE (1, My NCDLs F)
nno104s T=1eM

FIT =S (T11=F (T}

CALL FINSAL (Fe Me NCOL)

nnoIns 1=P.4

nNOINS J=lav

Al 1eT=10=1 Je )

NN INA T=1eM

AIT«4)I=F(T)

TRINK=TRUNK /] 4.

SFTIIRN

Fnn

THTS SHA2NTIMNE S0 VFS AM aTH NRDFR SYSTEM NF
ARAND FROM RY THF ADAMS=MOUL TNN PRENICTOR=CNRRECTOR

NFRIVATIVFS TN RFGTN COMPUTATINNS  FOR A SINGLE

THIS PEAGRAM RFAIIIPES SURRNUITINFS COMA AMND FINSOAL.

CROREROREICRCNB LG BOURDRRTERCROGRTORUOETOOREERADORRODORRD

°
L4
L3
-
=
L4
-
o
-
e
-
-

OO0 N

OO0

(s Nz sl

100

200

inn
aso
37n
4no

500

SUBROUTINE FINSOL
SHARRONTINF FINSOL ( SS« NROWs NCOL)

G"GDBGH&GG#HQHﬂﬁbuﬂtﬁilbGﬂﬁ&ﬂﬂlﬂﬂﬂﬁﬂ!‘&ﬂl'ﬂ'Gﬂn&ﬂlﬂlllllﬂ

e
THIS SURPNUITIMF SOIVFS A SFT OF LTMEAR SIMULTANEOQUS *=
EAATINNG #HNSF COFFFICIFNT MATRIX HAS RFEN L
PRF=TRTIANGAII ARTZFDN RY THF GAIISSTAN FL IMINATION METHOD®
THFE SYSTEM MATRTX IS IN BAND FNPM AMD IS SYMMFTRICAL .*®
S0 UTION TS PLACFN IN THF LOAD MATRIX.

L B

L]
OB BGOOROERORDEREUOLOOREBROOBBTRORORROREOBROREROOEDOCRGRDED

CAMMNN /BLKL/PI25N2N)
NIMFNSTAN SS(250)

e RENICF 1 NAD VARTARLES

no10n NS JNROW

na 100 K=2.NCNL

I =m=Kel

IF (L 1T« 1) GO 7O 100
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APPENDIX H
EXAMPLES TO SHOW INSTABILITY

Results for problem in Fig. 4-8 with DL = 0.01 cmZISec.:

The numerical results for the problem in Fig. 4-8 with the longitudinal
dispersion coefficient DL = 0.01 cmzlsec is given in Table H-I. A

comparison of results in Table H-I and that in Figs. 4-9, 4-10 and

4-11 indicate the influence of the dispersion coefficient DL upon
the stability of the solution.
TABLE H-I
Values of C/Co for problem shown in Fig. 4-8
1=10.0cm
D. =0.01 cmzl
L =0 sec
V =0.1 cm/sec
t = 10,0 secs
Fractional Numerical
Distance Solutions
x'/1 Cc/C
o
0 1.::0
3
0.2 -7.5856 X 10
7

0.4 -2.8267 X 10
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TABLE H-I (Cont'd)

Fractional Numerical
Distance Solutions
11
0.6 8,9563 X 10
0.8 -4,0849 X 1015
1.0 7.8542 X 1019

-1,0212 X 1020

Results for problem in Figs. 4-1 and 4-2: The problem shown

in Figs. 4-1 and 4-2 was solved using the method of Guymon (1970)

and a longitudinal dispersion coefficient D_ = 0.0012 sq. miles/year

L

2
which is equivalent to D_ = 1.0 cm /sec instead of using

L

DL = 0.5656 sq. miles/year.

The [S-J and [S]-l matrices for this case are shown below:

3.93 0 0.981 0.981 0 0 0
0 3.93 0 0.981 0.981 0 0
0.981 0 3.93 0.982 0 0.981 0

[s]=0.981 0.981 0.982 7.86  0.982 0.981 0.981
0 0.981 0 0.982 3.93 0 0.981

0 0 0.981 0.981 0 3.93 0

0 0 0 0.981 0.981 0 3.93
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5T -

0.279 0.00678 -0.068 -0.0317 0.00454 0.0249 0.00678

0.00678 0.279 0.00454 -0.0317 -0.068 0.00678 0.0249
-0.068 0.00454 0.294 -0.0212 0.00304 -0.068 0.00454
-0.0317 -0.0317 -0.0212 0.148 -0.0212 -0.0317 -0.0317

0.00454 -0.068 0.00304 -0.0212 0.294 0.00454 0.068

0.0249 0.00678 -0.068 -0.0317 0.00454 0.279 0.00678

0.00678 0.0249 0.00454 -0.0317 -0.068 0.00678 0.279

The results are shown in Table H-II for the same values of the
fractional distance for which the results are given in Table I. A
comparison of results shown in Tables I and H-II indicate the

influence of the dispersion coefficient DL upon the stability.

TABLE H-II

Values of C/Co for problem in Figs. 4-1 and 4-2 at time = 5 years.

Longitudinal dispersion coefficient DI_. =1.0 cmZ/sec
Fractional Numerical
Distance Solutions

x' /1 Cc/C

o
0 1.0
0. 25 -7.848 X 1035
0.5 -7.994 X I(J68
0.75 6,276 X 10104

1.0 0. 148



APPENDIX I

LIST OF SYMBOLS

Definition
Area of triangular element

A row matrix

Coefficients of [S] matrix used in stability

analysis

Coefficient for deriving [s'] and [p] matrices

Mass concentration of tracer

Reference concentration

Diffusion coefficient

Dispersion coefficient

Total dispersion coefficient
Longitudinal dispersion coefficient
Dispersion coefficient in the s-direction
Lateral dispersion coefficient

Molecular diffusion coefficient
Characteristics of porous medium
Particle size of porous medium
Indicates node; also used as a subscript
Indicates node; also used as a subscript

Index coordinates used to denote tensor

Units

Lz

2. -4
FT L
FTZHA

2 -1
S
LzT-l
LZT'1

2 -1
I

e
LT :

2 -1
|

2 .1
Ty T

L

L
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Definition
Indicates node
Permeability

Number of nodes with geometric
boundary conditions

Length of column of porous medium

Indicates mth finite element; used as a
superscript or subscript

Total number of nodal points

th g i g
Indicates n  node or it may indicate
normal direction

A square, symmetric matrix
A square, symmetric matrix

A square, symmetric submatrix of [P*]

relating to one particular finite element
A column matrix
A column matrix
Elements of the column matrix {Q*}
Elements of the column matrix {Q}
Two-dimensional region
Region of the mth triangular finite element
Radius
A square, symmetric matrix

A square, symmetric matrix

A square, symmetric submatrix of [S*] relating
to one particular finite element



erf

erfc
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Definition
Tortuosity
Time
Seepage velocity in x-direction
Seepage velocity in y-direction
Magnitude of seepage velocity vector

Magnitude of seepage velocity vector in
s-direction

Cartesian space coordinates

Rotated Cartesian space coordinates

Coefficients of linear polynomial in x and y

An argument in the reducing factor exp(g)
Denotes a small variation

Denotes a differential operator

Liocal x-coordinate

Local y-coordinate

Angle through which the x and y axes are
rotated

Transformed C
Transformed Co
Viscosity
Kinematic viscosity
Potential function

Stream function

Error function

Complimentary error function
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