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ABSTRACT OF DISSERTATION 

NUMERICAL SIMULATION OF GENERAL HYDRODYNAMIC 

DISPERSION IN POROUS MEDIUM 

A general two-dimensional equation of dispersion in a porous 

medium is presented. The second order linear partial differential 

equation describing the transient concentration di stribution has mixed 

partial derivatives which is the result of treating the dispersion 

coefficients as second order symmetric tensors. 

Using the principles of cal cul us of variations a "functional" is 

developed for the dispersion equation that has mixed partial deriva -

tives. The two-dimensional region is divided into triangular finite 

elements of arbitrary size and shape. The concentration is assumed 

to vary linearly over each triangular finite element. Minimization 

of the functional in combination with the finite element method leads 

to a system of simultaneous, first order, linear, ordinary differential 

equations. The matrix differential equation is numerically integrated 

using the fourth order Runge-Kutta and Adams-Moulton multistep 

predictor-corrector methods. 

Before proceeding with the use of the new functional, solutions 

were obtained for the dispersion equation with mixed partial deriva-

tives in a rotated coordinate system. The numerical solutions us i ng 

the new functional for one- and two-dimensional problems compared 
iii 



favourably with the available analytic solutions and the results 

obtained by finite element method that use a different functional. It 

was shown that the new fun<;tional can handle different ratios of lateral 

to longitudinal dispersion. 

A general stability criteria for the resulting matrix equation is 

developed. Stability dependent on the data is discussed in detail with 

examples. A brief description of the numerical instability is also 

given. 
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Fort Collins, Colorado 80521 
August, 1971 
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CHAPTER I 

INTRODUCTION 

The ever increasing population of the world requires additional 

sources of freshwater for purpose s of irrigati on, industry and 

domestic supply. Freshwater from underground aquifers :i,s one of 

the major sources available. The requi red quantity of this abundant 

supply with suitable quality properties is an important aspect to be 

considered in the water resources planning of many regions of the 

world. Ground water quality change is due to many factors , some of 

which are due to salt-water intrusion in coastal aquifers , underground 

waste disposal, recharge of surface water into underground storage 

and pollution of ground water by infiltration from streams and rivers. 

An understanding of the mechanics of ground water flow and the 

phenomenon of miscible fluid displacement is essential to make an 

estimate of the quantity and quality of the available ground water. 

1. 1 Description of the problem: 

The problem of increasing contamination is becoming more and 

more important with regard to the ground water industry. Changes 

in ground water quality can be described by the hydrodynamic dis-

persion equation with coefficients depending on the flow and porous 

medium as well as on the solvent and solute. Dispersion is an 
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anisotropic process and the dispersion coefficients should be treated 

as second order, symmetric tensors. In a two-dimensional flow 

field, this leads to a non-symmetrical, linear partial differential 

equation of second order that has mixed partial derivatives represent-

ing the transient concentration distribution. 

1. 2 Objectives: 

A review of the literature on dispersion in ground water and 

advances in computer methods indicated it might be possible to 

effectively simulate the dispersion process by numerical techniques. 

Investigators have used both finite difference and finite element 

methods for numerically solving the dispersion equation. The finite 

element method is further evaluated in this study. 

Finite element method: The concept of the "finite element" 

approach can be used for problems in which the exact solution is 

defined as that which minimizes some integral of the unknown function 

or of its derivatives. This integral is known as the " functional " of 

the problem (Zienkiewicz and Cheung, 1967). If the unknown function 

is defined throughout the region, element by element, in terms of the 

values of the function at the node points of the elements, then the 

minimization of the functional will result in a series of ordinary 

differential equations equal in number to that of the unknown values of 

the function at the nodes. 
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With this backgroun d in mind the following objectives were 

pursued: 

1. Develop a functi on al to solve by finite elemen t method the 

general hydrodynamic dispersion equation in two dimensions 

having m ixed partial derivatives. 

2. Consider the lateral di spersion and molecular diffusion in 

computing the ten s or of the dispersion coefficients. 

3. Evaluate the stability and convergence criteri a of the 

numerical simulator. 

4. Compare the results obtained by the finite element method 

with that of the available analytic solutions of the d i spersion 

equation for simple cases . 

5. Compare the results with other finite element solutions that 

use different functionals. 



CHAPTER II 

REVIEW OF LITERATURE 

Many investigators have studied the problem of hydrodynamic 

dispersion in porous media. These investi gations may be divided into 

the following categories : 

1. Theoretical developments; 

2. Analytical results for simple cases; 

3. Experimental work to test the validity and limitations of the 

theoretical results and to obtain the magnitude of the disper -

sion coefficients; 

4. Numerical approximations for both the simple cases and for 

more complex geometries and flow situations. 

Most of the works assume no interaction between fluid and 

porous media, and therefore, the miscible displacement is considered 

stable. As water with dissolved salts moves through the porous 

medium, the salts in the water will interact with the earth materials 

and thus the ground water quality is controlled to some extent by this 

hydrochemical phenomenon. Guymon ( 1970) gives a short review of 

the research on hydrochemical phenomena related to ground water 

quality. 
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2. 1 Theoretical developments : 

In general one is concerned with the vari ation in concentration 

created by both dispersion and diffusion. Diffusion is a direct result 

of thermal motion of the individual fluid molecule s and takes place 

under the influence of a concentrati on gradient. Dispersion in porous 

media is a mechanical or convective mixing process which is the 

result of individual fluid particles traveling at variable velocities 

through irregular shaped pores and along tortuous m icroscopic path-

lines (Reddell, 1969) , That i s, di spersi on i s the result of convective 

mixing on a microscopi c scale ; not of a concentration gradient . 

Investigators proposed different relationships for the diffusion 

and dispersion coefficients. Tay l or ( 1953, 1954) used a bundle of 

capillaries and investigated the d i splacement of a fluid from a 

straight capillary tube of rad i us, r , by another flui d miscible with 

the first. He found that the tracer was d i sper s e d relative to a plane 

moving with velocity, V , as in F i ck' s fi r s t law, but with a di ffus i on 

coefficient: 

D = 
2 2 

r V 
48Dd 

( 2 - 1) 

where D d = molecular d i ffus i on coeffi cient. Thi s diffus i on coefficient 

D (Eq. 2-1) has not been used in so lv ing the d i spers i on equation. 

Scheidegger ( 1961) suggested that the dispersion coefficien t : 

D . . = 
lJ 

E • • lJmn 

V V m n 

V 
(2 - 2) 
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where: e. . is the coefficient of dispersivity, which is a 
lJmn 

porous medium property, 

V V m n 

V 
is a tensor which represents the linear 

influence of velocity, 

and V , V are the components of velocity in the m and m n 

n directions respective ly. 

He concluded that the coefficient of dis per sivity was a fourth rank 

tensor with 81 components ; but due to certain symmetry properties, 

contains only 36 independent components in the general case of an 

anisotropic medium. In isotropic media there are only two dispers-

ivity coefficients. From the results of de Josselin de Jong (1958), 

Bear ( 196 la) developed an expression for the dispersion coefficients, 

D .. , and implied that it was a second-rank symmetrical tensor 
lJ 

linear in the components of the velocity. 

Bachmat and Bear ( 1964) present the following general equation 

of dispersion in homogeneous, isotropic porous media, which results 

from the mass balance approach: 

ac a 
= at ax . 

1 
[ D . . - u.c] 

lJ ax . 1 
J 

where C = Concentration of dispersing mass, 

t = time, 

u. = seepage velocity in the i-directi on, 
1 

( 2- 3) 
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x. = Cartesian coordinates, 
J 

D.. = components of the coefficient of dispersion, a 
lJ 

second-order symmetric tensor, which does not 

include molecular diffusion, 

and i, j = index coordinates. 

They also express the dispersion equation in curvilinear coordinates 

consisting of stream lines, ljJ , and equipotentials, <I? • The 

equation in ljJ - <I? coordinate system has the advantage of having only 

one convective term. 

Reddell and Sunada ( 1970) and De Wiest ( 1969, Chapter 4) 

present a form of Eq. 2- 3 which included the effects of molecular 

diffusion. The equation is: 

ac 
at 

where 

In Eq. 2-5, 

= a 
ax. 

1 

n >:< = 
ij 

ac 
ax. 

J 

D .. + Dd T .. lJ lJ 

D>:< = hydrodynamic dispersion coefficients 
ij 

(2-4) 

(2 - 5 ) 

· independent of the concentration C (second 

order tens or), 

D d = molecular diffusion coefficient (scalar), 

T.. = porous medium " tortuosity" (dimensionless 
lJ 

and second order tensor), 

and other variables are as defined earlier. Eq. 2- 4 is a linear, 
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non- symmetrical partial differential equation. The non- symmetry is 

due to the convective term a!. ( ui C) 
1 

2. 2 Analytical results: 

The analogy between heat conduction and diffusion has been used 

to develop analytic solutions for a few simple cases. As the diffusion 

equation is similar to the heat flow equation, the solutions are also 

similar. Carslaw and Jaegar (1959) and Crank (1956) are two of the 

good references for analytical solutions of heat conduction and 

diffusion problems respectively. An example of an analytical solution 

for the dispersion equation is given below for a problem having steady, 

uniform and one-dimensional flow. 

Consider a semi-infinite column (x > 0) of homogeneous and 

isotropic porous media with initial and boundary conditions as shown 

in Fig. 2-1. 

reduces to: 

Only longitudinal dispersion will occur and Eq. 2- 3 

ac 
at - u 

ac 
ox (2-6) 

where DL is the longitudinal dispersion coefficient. 

Using Laplace transform, Ogata and Banks ( 1961) obtained the solution 

for Eq. 2-6 as: 

C 
C 

0 

= 
1 
2 

where 

[
erfc ( x-ut ) 

2YDLt 
(2- 7) 

erfc(w) = l - erf(w) . 
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,_)t,r u 

L C. : · C:: (x;, 0) = 0 for x > 0 

B. C.: C (0, t) = C for t > 0 
0 

C (a, t) = 0 for t > 0 

Fig. 2 - 1 Semi - infini te column of porous medium. 
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This analytic solution enables us to compare the numerical solutions 

for similar problems. 

When DL < 0. 002 ux, the second term in Eq. 2- 7 may be 

neglected and the maximum error will be less than three percent. 

2. 3 Experimental work: 

In most of the cases, the main purpose of the experiments 

have been to verify the theories proposed and to establish relationships 

to calc-q.late the disper.sion coefficients from media and fluid properties . 

Scheidegger' s ( 1961) work indicated that for homogeneous and 

isotropic media, the dispersion tensor reduces to two independent 

terms: ( 1) DL , the longitudinal dispersion coefficient, and (2) 

the lateral dispersion coefficient. 

The Reynold's number has been used as a parameter to 

D ' T 

correlate the dispersion coefficients. Ebach and White ( 1958) postu-

lated from their experiments that for Reynold's number R < 100: 
n 

(2-8) 
V 

where V = seepage velocity of fluid, 

d* = particle size of the porous media, 

and v = kinematic viscosity of the fluid. 

a and 
1 ~l are experimentally determined coefficients, dependent on 

the porous medium and flow regime respectively. Ebach and White 

(1958)found a 1 = 1.92 and ~l = 1.06. Harleman and Rumer (1963) 
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found a 1 =0.66 and ~l = 1.2. HoopesandHarleman(l965)found 

a 1 = 1. 7 and ~l = 1. 2. The variations in these values may be 

attributed to the experimental techniques for measuring concentration. 

Harleman, et al ( 1963) correlated longitudinal dispersion with 

permeability: 

= 
V 

a 
2 (2-9) 

2 where K is the unit of permeability with dimensions L and they 

found a 2 = 54 for spheres and 88 for sand with ~2 "' 1. 2 for both 

media. 

Using a similar approach to determine the lateral dispersion 

coefficient DT , an expression of the form: 

= 
V 

was used by Harleman and Rumer ( 1963) and they found 

and 3 = 0. 7. 

(2.:. 10) 

a = 0.036 
3 

Bear ( 196 lb) concluded from his experiments that the dispersion 

coefficient, D , in the s-direction can be expressed in the form: s 

(2-11) 

where d is a constant depending on the media characteristics and Vs 

is the seepage velocity in the s-direction. Guymon ( 1970) used this 

relationship in his work. Eq. 2-11 treats the dispersion coefficient as 
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an isotropic quantity and thus excludes the mixed partial derivatives 

from the partial differential equation describing the concentration 

distribution. 

Bruch ( 1970) conducted a series of two-dimensional dispersion 

experiments and verified some of the theoretical and numerical 

results. He treated the dispersion coefficient as an isotropic 

quantity, and included the lateral dispersion coefficient. The results 

demonstrated the need to cons~der the combined effect of longitudinal 

and lateral dispersio-o. in the analysis. 

2. 4 Numerical approximations of ground water equations: 

Need for a numerical approach: Most of the available analytical 

results are based on a set of assumptions which are to a certain 

extent at variance. These assumptions are made to simplify the com-

plex mathematics involved in the problem and also because of lack of 

accurate data. The quantitative reliability of the results obtained 

from these analytical approaches depends on the degree of variance 

in the assumptions made. In the experimental work differe-o.t types 

of physical models have been used either to verify or to improve 

upon the existing theories of dispersion in ground water flow and to 

determine the dispersion coefficients. However , these physical models 

do not exactly simulate the field conditions and it is understood that 

to date ( 1971) no laboratory techniques have been developed to 

exactly model the complex prototype situations. Because of these 
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difficulties, many investigators are using numerical methods to 

obtain approximate solutions of the dispersion equation for complex, 

prototype problems. The development of high speed computers 

enhance such an approach. 

Numerical methods have been used for solving both flow 

equations and dispersion equations. Solution of the flow equation is 

needed to compute the velocity components to be used for solving 

the dispersion equation. Investigators have used both the finite 

difference and finite element methods. 

Finite difference method for solving the flow equation : Numerical 

finite difference methods have been very widely used for the case of 

immiscible fluid flow through porous media. Many of the reservoir 

simulation techniques were developed by the petroleum industry. 

Some work has been done in the area of ground water hydrology. 

Tyson and Weber ( 1964) have used computer simulation techniques to 

model ground water basins. The zone was divided into polygons and 

the unknown function was computed at a finite number of node points 

lying within the boundaries of the aquifer. They successfully evolved 

and tested a mathematical model of a ground water basin. 

Bittinger, et. al. . ( 1967) used the finite difference method for 

simulating a mathematical model for better aquifer management. 

They used rectangular grids for computing the head at the center of 

each grid. The resulting equations have a particularly simple 
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symmetrical form. Brutsaert ( 1970) presented results on an 

immiscible fluid flow simulator. He used a full.y implicit finite 

difference scheme and obtained satisfactory results for an uncon-

fined well flow problem treated as a multiphase flow phenomenon. 

Finite element method for solving the flow equation: This 

method was originally developed in the field of stress analysis. There 

have been some recent publications on the use of the finite element 

method for steady state and time dependent fluid flow and heat con-

duction problems. Neuman and Witherspoon ( 1970b) presented 

functionals based on variational principles for confined and unconfined 

flow of ground water. 

Zienkiewicz and Cheung ( 1965) used this method for solving 

11 field problems':' which require the solution of a differential equation 

throughout a physical region or 11 field. 11 Zienkiewicz, et. al. ( 1966) 

solved an anisotr()pic, steady state seepage problem. Taylor and 

Brown ( 1967) have used this method for steady state Darcy flow 

solutions with a free surface. Neuman and Witherspoon ( 1970a) 

analyzed steady state seepage with a free surface, using the finite 

element method and a new iterative approach to obtain rapid con-

vergence. Their method can handle problems where the free surface 

is discontinuous and where portions of the free surface are vertical 

or near vertical. 

Recently the U. S. Army Corps of Engineers ( 1970) used the 

finite eler;nent method to solve steady state potential flow problems. 
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For a regional ground water problem, they obtained good correlation 

between the observed potentiometric surface and the computed values 

of the hydraulic head. The results from the problem on ax:isymmetric 

radial flow to a well and that from the prob lem on steady state seepage 

from a ditch considering the effects of capillarity proved the 

versatility of the finite element method. 

Wilson and Nickell ( 1966) applied the finite element method for 

transient heat conduction analysis of complex solids and concluded 

that this method possesses unique advantages as compared to other 

numerical approaches with respect to treating variable distribution 

of thermal properties , temperature and heat flux boundary conditions 

and solids of arbitrary geometric shape. They further said that the 

method provides an efficient digital computer approach for a large 

class of time dependent problems. 

Javandel and Witherspoon ( 1968) , Witherspoon, et. al. ( 1968), 

Javandel and Witherspoon ( 1969) have solved transient fluid flow in 

porous media using the finite element method. They claim that the 

generality of this method with respect to arbitrary boundary conditions 

and changes in rock properties provides a powerful new method of 

handling problems of fluid flow in complex systems. Very recently;. 

France,et. al. ( 1971) solved by the finite element method the three-

dimensional, steady state and transient seepage problems using the 

isoparametric concept. Accordi ng to them, the technique of con-

sidering the time variant problem as a series of steady state solutions 
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separated by a small time interval is ideally suited to the digital 

computer. They conclude that much work remains to be done in the 

field of finite element appl icati on to free surface problems in general. 

Finite difference method for solvi ng di spersion equati,on: Some 

work has been done on the use of the fin ite difference method for 

solving the hydrodynamic d i spersi on equation. Peaceman and 

Rachford ( 1962) used Darcy ' s law for flow and a d ispersi on equati on 

in Cartesian coordinates for a two - d i men s i onal case. After computing 

pressure distribution at each time step, the velocities are determined. 

Using these velocities, the new concentration distribution for the next 

time step may be computed from the dispersion equation. Garder, 

et. al. (1964) used the method of characteristi cs for treating com-

bined transport and dispersion to improve the numerical solution of 

the problem solved by Peaceman and Rachford (196 2) . This method 

involves, in addition to the usual d i v i sion of the two - dimensional 

space into rectangular grid s, the use of a set of moving points . Eac h 

moving point has associated with i t a concen trati on, whi ch vari es with 

time. This method prevents numerical dispersion although it involves 

more computer storage. 

Shamir and Harleman ( 1967 ) used equi potentials and stream-

lines (~ - l.jJ) coordinates as the basis for the numerical scheme to 

solve the problems of dispersion in which the m i scible fluids have the 

same density and viscosity. In this case, the velocity is everywhere 

tangential to the streamlines and the equation becomes one - dimensional 
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in the convective term. In some of the problems in which the 

boundary conditions were constant at a concentration equal to C , 
0 

the relative concentration C/C were greater than one (C/C > 1. 0) 
0 0 

behind the advancing front. Shami r and Harleman ( 1967) developed 

and tested the numerical scheme for two-dimensional problems and 

presented an extension for three -dimensional problems. 

Reddell ( 1969) used the finite difference method for the study of 

dispersion in ground water aquifers. He employed an implicit 

numerical technique to solve the flow equati on for pesssure in an 

unsteady, non-uni form flow field w i th density and viscosity variations 

between the two fluids, and the method of characteristics with a tensor 

transformation to solve the convective dispersion equation. After 

solving for pressures in the flow equation, velocities were computed 

using Darcy ' s law and these velocities were used, after correcting 

for porosity of the medium, in solving for the concentration in the 

convective dispers i on equation. Thus, the solution of the flow 

equation and the dispers i on equation constitutes one time step. For 

the next time step, the new values of the concentrations obtained by 

solving the dispersion equation at the end of the previous time step 

are used in the flow equation to solve for pressures and the process 

repeated . This is known as a "leap frog" techniq ue. A salt water 

intrusion problem in a coastal aquifer was modeled. 

Pinder and Cooper, Jr. ( 1970 ) also used the method of charac-

teristics and a simplified flow equation in conjunction with the 
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iterative alternating direction implicit procedure for predicting the 

movement of the salt water front in coastal aquifers. The method used 

by Reddell ( 1969) is more sophisti cated than that of Pinder and Cooper, 

Jr. (1970). 

Finite element method for solving d i spersion equati on: More 

recently, Guymon ( 1970) used the fin ite element method for predi cting 

the motion of dissolved constituents i n groun d water aqui fers in a 

two-dimensional, steady flow field. The d i spers i on coefficients were 

not treated as tensors, Eq. 2 - 11. Only the longitudinal d i spersion 

coefficient was considered and he neglected the lateral dispersion 

and molecular diffusion. Velocities and saturated thicknesses are 

considered as given information. His model deals with only physical 

and mechanical aspects of the motion of the d i ssolved constituents 

in ground water flow. The objectives of his research were to pro -

vide the basic mathematical and cSnceptual frame work to model a 

complex multi-aquifer regional ground water basin in order to predi ct 

with a reasonable degree of preci si on the spatial and t i me varyin g 

concentrations of selected dissolv ed salt species pumped from a well. 

Though Guymon ( 1970) was the first to use the finite element 

method to solve the dispers i on equati on, some of h is assumptions 

could be avoided. For example, the d i spersion coefficient may be 

treated as an anisotropic quanti ty whi ch will lead to a partial 

differential equation having m ixed parti al derivatives. In addition, 
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the lateral dispersion and molecular diffusion may be included as a 

tensor in the dispersion coefficients. 

2. 5 Further needs for fini te element method for solving dispersion 
equation: 

In solving the convective dispers i on equati on u s ing the finite 

difference methods , some difficulties have been reported. Sub s equent 

testing of the method adopted by Peace man and Rachford ( 1962) ha s 

shown that for multi-dimens i onal displacement, their method involved 

a numerical dispersion of the same order of magni tude as the physical 

dispersion. Numerical dispersion is a n effective d i spersion caused 

by the finite difference approximation and produces d i spers i on even 

when the dispersion coefficients are set equal to zero. Hoopes and 

Harleman ( 1965) used an expl i cit fini te difference method, and in 

this, the size of the grid spacing and time increment were restricted 

for the explicit scheme because of stability cri ter i on. Thi s pre -

sented some problems because of large amounts of required computer 

time. The method of characteristics used by Reddell (1969) involves 

the use of "moving points " , in additi on to stationary finite d i fference 

grids and this requires extensive computer storage and execution time . 

It is easier to handle the irregular boundary shapes by the finite 

element method . 

To solve large problems, the required computer storage and 

time become important factors. From h is experience, Guymon ( 1970) 

concluded that the computer program based on the finite element 
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method is more accurate and requires smaller computer storage and 

execution times · than programs which are based 0n finite difference 

methods for solving the convective dispersion equation; however, he 

has not presented any evidence to support this statement. The finite 

element method is applicable to irregular basin configurations that 

are divided into any selected number of triangular elements of 

arbitrary size and shape. This method is particularly suited to 

basins having irregular boundaries, i.e. , it provides a complete 

geometrical flexibility. 

If the dispersion coefficient in porous media is treated as a 

second rank tensor , the resulting second order linear partial differ-

ential equation has mixed partial derivatives. The dispersion 

coefficients as given by Eq. 2-5 are linear functions of the velocity 

components and molecular diffusion. The proposed scheme is an 

improvement over that of Guymon ( 1970 ) in that the basic differential 

equation is more general as it includes the mixed partial derivatives. 

Also, the dispersion coefficients consist of longitudinal and lateral 

di~persion and molecular diffusion. 



CHAPTER III 

MATHEMATICAL MODEL AND NUMERICAL SIMULATOR 

In this chapter, the general form of the hydrodynamic dispersion 

equation is presented wi th the a uxili ary equations. A functional is 

developed utili zing the variational pr inciples for the two - dimensional 

dispersion equation and an extens i on is suggested for solving the 

ground water flow equation. A numer i cal s i mulator is developed 

using the finite element techni que. 

3. 1 Methods of approach: 

The finite element technique is an approxi mate method of 

analysis similar to the finite difference method. The finite element 

technique, on the other hand, uses an a ss ociated functional instead 

of solving directly the d i fferential equati on. The approach to the 

problem by the finite element technique may be divided as follows : 

1) Derive the appropriate differential equation and specify 

the necessary boundary conditions ; 

2) Develop the associated functional and prove the equivalence 

between the functional and the differential equati on with 

suitable boundary conditions ; 

3) Divide the region into tri angles (finite elements) of arbitrary 

size and shape; 
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4) Minimize the funct i onal for each triangular element using 

variational principles; 

5) Group the resulting equations from all elements; 

6) Modify for constant concentration boundary condi tions; 

7) Solve the system of equations; 

8) Develop the stability criteria for the system of equations. 

3. 2 Mathematical model : 

Dispersion equation: It is generally accepted that the dis pers i on 

equation in Cartesian coordinate system is Eq. 2- 3, which is obtai ned 

from the principles of conservati on of mass. The equati on for the 

conservation of mass of the dispersing material in an elementary 

control volume is obtained by equating the t i me rate of accumulation 

of mass inside the volume to the net influx of mass through the 

boundaries of the element. The net influx is made up of convective 

terms and terms involving dispersion. The modified form of the 

dispersion coefficients by Reddell and Sunad a ( 197 0) are presented 

in Eq. 2-5, which includes the longitudinal and lateral dispersion and 

molecular diffusion. 

Guymon (1970) and Guymon, et. al. (1970) treated the <lispers-ion 

coefficients as being isotropic, thus reducin g Eq. 2- 3 to one without 

mixed partial derivatives. They further neglected the lateral d is-

persion and molecular diffusion. The dispersion coefficient given b y 

Eq. 2- 5 is an anisotropic quantity and thus should be treated as a 



23 

second rank tensor. Eq. 2 -4 can be written after droppi ng the super-

scripts ( in two-dimensional Cartesian coordi nates) as: 

ac ac ac a ( ac D ~) + u-- + v-- = D - + a t ax ay ax XX OX xy ay 

( 3- 1) 
a (n ac D ~) + + ay YY ay yx ax 

where u = seepage velocity in the x-direction, 

V = seepage velocity in the y-d i recti on, 

and the coefficients D D D and D are dispersion xx yy xy yx 

obtained from Eq. 2-5 as follows: 

2 2 
D DL 

u 
DT 

V = + + Dd T xx v2 2 
V 

2 2 
D DT 

u 
DL 

V 
Dd T ( 3-2) = + + yy 2 2 

V V 

and D D (DL - DT) 
UV = = xy yx 2 
V 

In Eq. 3-2, the seepage velocity V is defined as Darcy 's velocity 

divided by the porosity of the medi um. Other variables in Eqs . 3 - 1 

and 3-2 are as defined earlier. 

Because of the symmetric nature of the dispersion coefficients, 

D = D xy yx Eq. 3- 1 may be written as 

ac + u a c + v ac = at ax ay D xx + 2 D xy axay + D 
YY 

a2c 
-2-
8y 

(3 - 3) 
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Eq. 3-3 describes the transient concentration distribution in a two-

dimensional case. 

The types of boundary conditions to be considered to solve 

Eq. 3-3 by the finite element method are : 

C = C (x, y) on a portion of the boundary for t > 0 , 
0 

(3 - 4) 

ac and = 0 for the remaining portion of the boundary for t > 0, an 
( 3 - 5) 

where n represents the direction normal to the boundary. Eq. 3 -4. 

is called a geometric or fixed boundary condition and Eq. 3 - 5 would 

be a natural or reflective boundary condition (Shamir and Harleman, 

1967). 

Dispersion equation in rotated coordinate system: It is 

possible to account for the mixed partial derivatives of Eq. 3-3 by 

rotating the coordinates through an angle 0 • The tran s formed 

axes are orthogonal and denoted by x' y ' . In this x' y ' coord inate 

system, Eq. 3- 3 becomes: 

aC + u' a C + v' aC 
at ax' ay' 

where 0 1 - 1 = 2 tan 

= D 
x'x' 

a2c 
2 

ax ' 
+D I I yy 

( 3-6) 

D 
x'x' = D xx 

2 
cos 0 2 . 2 D sin 0 cos 0 + D sm 0, 

xy YY 

D 
y'y' 

= D xx 
. 2 

sm 0 - 2D xy 
2 

sin 0 cos 0 +D cos 0, 
yy 
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u' = (ucos0 + vsin0) 

and v' =-(u sin 0 - v cos 0). 

The proof for Eq. 3- 6 is given in Appendix A. Though Eq. 3-6 includes 

the effect of the mixed partial derivatives, it has some limitations 

which will be explained in Chapter IV. 

3. 3 Variational principles and proof of equivalence: 

"There is an entire class of engineeri ng problems which 
pose such .questions as what is most. .• ? Where is 
minimum ••• ? or How can we best. •• ? In this class of 
optimization problems, one finds a sub-class which is 
formulated in the language of variational calculus. 11 

(Schechter, 1967) 

In many of these problems, the minimization of some integrated 

quantity (referred to usually as a "functional" ) and subject to some 

boundary conditions results in the exact solution of equations such as 

. Eq. 3-3. This functional may rep re sent a physically recognizable 

variable in some instances. It is then usually associated with con -

cepts of energy or work. For many purposes, however , it is simply 

a mathematically defined entity (Zienkiewicz, 1967 ). 

The finite element method of solving problems in ground water 

are usually based on variational principles. A variational principle 

is a complete representation of the problem in the sense that the 

initial and boundary conditions are part of the functional (Neuman and 

Witherspoon, 197Ob). The basic approach is to replace the boundary 
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value problem by an appropriate functional whose minimizing 

functio'-n is the solution to the problem. If C,:~ is the exact solution 

to the dispersion Eq. 3-3 and if J(C) represents the functional for 

Eq. 3-3, then the variational principle states that the functional 

J(C) should attain its minimum value at c * . Among the family of 

functions we can find a particular C for which J(C) holds the least 

value. Utilizing these basic concepts of the variational principles 

and the functional for the associated differential equation, the finite 

element method is used to solve the hydrodynamic di spersion equation 

in a two-dimensional case. 

Many problems in science and engineering involving rates of 

change with respect to two or more independent variables, us·ually 

representing time, length or angle can be expressed as partial 

differential equation or a set of such equations. Special cases of the 

two-dimensional second order equation : 

2 
'8 w a--+ 

2 
c)X 

2b 
2 aw 

ax aY 

2 aw + C --2-
c)y 

+d c)W +e c)W +fw+g = 0 
ax aY ( 3- 7) 

where a , b , c , d , e , f and g may be functions of x and y , 

and of the dependent variable w , occu.r more frequently than any 

other because they are often the mathematical form of one of the con-

servation principles. If it is assumed that the coefficients may be 

functions of x and y only, Eq. 3- 7 becomes linear and is derivable 

from a variational problem of the form: 
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6 SS [½(aw!+2bwxwytcw:-fw
2
)-gw] Adxdy=0 (3-8) 

R 

where appropriate boundary conditions are pre scribed (Hildebrand, 

1965 ). In Eq. 3-8, A = A(x, y) may be termed a red"1.cing factor and 

6 denotes a small variation. Eq. 3- 8 is to be integrated over the 

two-dimensional region R (Fig. 3- 1). 

In Eq. 3- 3 the dispersion coefficients · D , D , and D ,.-xx xy yy 

and the velocity components u and v are assumed to be functions 

of x and y 0nly, and at any instant of time ac is considered a& at 
invariant at any particular point in space. By analogy with ~qs. 3-7 

and 3-8, the variational problem for Eq. 3-3 may be written as: 

o S S exp 
R 

(~) {.!. [n (~) 2
+ 2 D (~) (~) + D (~)

2

] 2 
XX o X xy . OX O Y YY O Y 

dx dy = 0 ( 3-9) 

where exp (~) is the reducing factor and 

13 = (3-10) 

The proofs for the reducing factor exp(~) and for Eq. 3- 10 are given 

in Appendix B. Eq. 3-9 is to be integrated over the two-dimensional 

regi0n R (Fig. 3-1). 
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y 

X 

Fig. 3 -1 Division of the two - dimensional region 
R into triangular finite elements. 
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The appropriate functional J for Eq. 3-3 is: 

J = s s· 
R 

exp (~) {½ [n (~) 2 
+ 2 D (~) (£) xx ax xy ax ay 

( 3- 11) 

where is defined by Eq. 3- 10. The proof that this functional is 

equivalent to the differential Eq. 3-3 and the boundary conditions 

(Eqs. 3-4 and 3-5) is shown in Appendix B. 

Due to numerical difficulties in solving for the concentration 

C, elaborated upon by Guymon, et. al. ( 197 0), a change of variable 

i$ introduced by the transformation : 

cj> = C exp (~ /2) (3- 12) 

where cj> is the new dependent variable. Using this new variable cj>, 

and assuming the dispersion coefficients and velocity components as 

constants, the original differential Eq. 3- 3 is transformed as: 

2 2 

[ 

D u + D v - 2D UV + yy xx xy 

4(D D D
2 

) 
xx yy xy 

+ 2 D 
2 a cj> 

xy axay 
+ D 

yy 

D 
xx 

2 
_ti 

2 
ay 

2 
_ti 

2 a X 

(3-13) 

To avoid zero in the denominator of the coefficient of cj> on the left 

hand side of Eq. · 3-13, the relationships for the dispersion coefficients, 
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Eq. 3-2, may be used and Eq. 3- 13 becomes: 

a<J> + 
at 

U + V 

[ 
2 2 ] 2 2 2 

D _ti + 2D a <j> + D 
xx 2 xy ax ay yy 2 ax ay 

(3-13a) 

The boundary conditions given by Eqs. 3-4 and 3 - 5 respectively are 

transformed as: 

<l> = <j>
0 

(x,y) = C
0 

(x, y) exp (~/2) ( 3- 14) 

on a portion of the boundary for t 2:_ 0 , 

and a <l> <l> (D .. - . + u. -2 ) = 0 
lJ c)Xj 1 

(3-15) 

on the remaining portion of the boundary for t > 0. 

The functional given by the Eq. 3- 11 is transformed as: 

(3 - 16) 

[
D u

2
+D v

2
- 2D uvl } ll ) <j> + yy xx xy <j> 2 + f. a <j> ) <j> dx d y 

ay s (D D -Dz ) \at 
xx yy xy 

Eq. 3-16 also may be modified to avoid zero in the de :nominator of the 

coefficient of <j> 
2 on the right hand side. The modified form is: 
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+D xy 

D 2 JL(~) 
2 8Y 

(3-16a) 

The proof of equivalence of the transformed functional (Eq. 3- 16) and 

the differential Eq. 3-13 with the corresponding boundary cond i tions 

is give? in Appendix B. The functional given by Eq. 3- 16a is solved 

by the finite element method. If we let D = 0 and assume the same 
xy 

relationships, Eq. 2-11, as used by Guymon (1970) for the dispersion 

coefficients, then the transformed functional represented by Eq. 3- 16 

reduces to the corresponding functional given by Guymon (1970). 

An extension is suggested in Appendix C for solving the ground 

water flow equation utilizing the 'functional developed in this section. 

3. 4 Numerical approximation by the finite element method: 

Consider a two-dimensional region R as shown in Fig. 3- 1. 

For the purpose of expressing the functional in terms of a finite 

number of unknowns, the region R is sub-divided into a network of 

small triangular finite elements. In general, one should use the 

smallest elements in regions of maximum gradients. The dimensions 

of the elements in any one direction should not change abruptly. The 

solution for the distribution of the concentration within the region is 

determined by minimizing the functional, Eq. 3- 16a, by the Ritz 
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method. The generalized coordinates are selected as the concentra-

tions at the nodal points of the triangular elements. The greater the 

number of the generalized coordinates (nodal points), the more 

accurate the result will be. 

The minimization process requires the establishment of the 

relation for the · concentration as a function of position and t i me . If 

the -concentration is assumed to -vary lin early with r e spect to the 

coordinates x and y over the tr iangul ar element, then we have: 

(3 - 17) 

where cj> is defined by · Eq. 3 - 12 an d a a and a are coefficients l ' 2 3 

so determined that Eq. 3-17 reduces to the values cj> . , cj>. and cj>k 
1 J 

at the nodal points i, j and k (Fig . 3 -1) respectively. As an 

extension of and improvement over this method other higher-order 

polynomials should be investigated. 

It is more conven ient to introduce local coordinate s as shown 

in Fig. 3-2 and defined as : 

s _m = X - X 

and 
_ m ,, = y - y 

where x m and ' y m are the gl obal coordinate s of the cen troi d of 

h th . l l . t e m tr1angu ar e ement, 1_. e.: 
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y ri 

I 
I k 

i 

j 

----------------------------------.1-x 

Fig. 3-2 Relation between global coordinates and local 
coordinates. 
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_m 
(x . + x . + xk)/3 X = 

1 J 

(3-18) 
and 

_m 
(y. +y . +yk) / 3 . y = 

1 J 

These l0cal coordinates s an d 17 enable us to use s0me of the simple 

integration formulas defined in Appendix D. The functional given by 

Eq. 3- 16 is written in terms of these local co0rdinates as : 

2 

( !1 ) +D x y 

2 2 

[ 

D u +D v -2D UV 
yy xx xy 

+ 2 
8(D D -D ) 

xx yy xy 

(3-19) 

and similarly Eq. 3- 16a may be written as : 

2 

J = (;!) +D xy 

D 2 

( :: ) ( ;¢,, ) + -p- ( ;~ ) 

(3-19a) 

The concentration given by Eq. 3 -1 7 meets continuity require-

ments over each finite element and the transformed value of the con-

centrati0n ¢ is given by : 
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(3-20) 

where [A] is a function of space only. [A] is a row matrix and given 

m 
in Appendix D. The three element vector {<I>} is a function of time 

only and it represents the concentrations at each node. The super-

. d t h th . 1 1 script m eno es t e m tnangu ar e ement. 

The nodal values of cp define uniquely and continuously the con -

centration throughout the region. The functional J given by 

Eq. 3-19a can now be minimized with respect to these nodal values. 

The minimization procedure described by Zienkiewicz and Cheung 

(1967) is utilized here. This process i·s best accomplished by 

a <1> . , 
1 

evaluating, first the contributions to each d i fferential such as 

from a typical element, then adding all such contributions and equating 

to zero. Only the elements adjacent to the node i will contribute to 

a <l>i 
The -contribution of the i th node of the th m triangular 

element is obtained by differentiating J given by Eq. 3-19a partially 

with respect to cp. • 
1 

The complete development is shown in Appendix 

D. 
m 

The final form for the differential is given as Eq. D-15 
a <I> . 

1 

in Appendix_ D and repeated below: 

( 

D 
xx 

= 4Am 

D 
+ xy 

4Am 

D 
-35Y 
4Am 



D 
+ yy 

4Am 

1 
+ 12 

+ 
4Am 

Similarly two other differenti a ls 

evaluated. 
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1 

16Am 

aJm 
and 

8 cp . 
J 

(3- 21) 

Every element thus contributes to three of the differenti als 

corresponding to the three nodes associated with it. These contribu-

tions are: 

= 

aJ 
a <I> . 

1 

= (3- 22 ) 

where [ s J and [ p] are given in Appendix D as Eqs. D-2 3 a nd D- 24 

respectively. 

The minimization proced~re involves the assembly of all the 

differentials of J and equating these to zero. This procedure leads 

to the following set of simultaneous, lin ear, first order d iffe rential 

equation; 
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[s*] {<1>} + ( 3- 23) 

where [s,:~ is the sum of [s] and ~/:J i s the sum of [P J. Both 

[s>:c] and II,*] are N by N banded, sym metri c matrices , and {cj>} , 

{ !<l>t} and {Q >:c} N 1 t 1 t · The term N u are e emen co umn ma r i ces. 

represents the total number of tr iangular nodal points over the regi on 

R • When there are no sources or sinks within the regi on R the 

{ Q,:c} matrix is zero. If there are L nodal points with pre scri bed 

geometric boundary conditions , then there will be L corresponding 

values <I> which are known and need not be solved. 

The matrix differential equation, Eq. 3-23, is modified to 

eliminate the L number of equati ons corresponding to the geometric 

boundary condition nodes. * Let q , n = 1, 2, • •• N, 
n 

be the elements of 

the N by one { Q,:c} matrix in Eq. 3- 23. Then the { Q,:c} matrix is 

modified by the rule: 

q = q -n n 

L 

i. = 1 

for each value of n . In Eq. 3-24, 

S <p n n , i_ X 
(3- 24) 

s n, i. 
are the elements of the [s*J 

matrix and 4n represents the elements of the modified, N by one 

column matrix {Q ,:c}. Then the rows and columns of the matrice s [sz] 
and ~,1 of Eq. 3 - 23 are set equal to zero on the cj>L points a n d a l so 

the L rows of {Q*} matrix are set equal to zero. Finally the matri -

ces [s,:j, !?*] and {Q*} of Eq. 3-23 are modified by shifting the lower 
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non-zero values up or to the left until the L number of columns and 

rows have been eliminated. 

Denoting the modified matri ces as [ S] , [ P] a n d { Q} 

corresponding to the matrices ~>:c], [P*], and {Q* } respectively 

in Eq. 3- 23, the following equati on is obtained : 

[s] {cp} + {Q} (3 - 25) 

where [ S] and }p J are (N - L) b y (N-L ) banded, symmetri c matrices 

and {cp} , {o<P and {Q} are (N - L ) element column matri ces. at 
The variational principle incorporates the natural boundary conditions 

corresponding to Eq. 3-5 in the functional. A proof is given in 

Appendix E to show that the s y stem of equations represented by 

Eq. 3- 22 is independent of the coordi nates. 

In this chapter, the mathemati cal model descdbin g the transient 

concentration distri bution in a two-di mensional case i s presented, 

Eqs. 3-3, 3-4 and 3-5. Utilizing the variational princip le s and the 

finite element method, a numerical simulator of the mathematical 

model is developed, Eq. 3- 25. The numeri cal solutions of the 

simulator are given in Chapter IV. 



CHAPTER IV 

APPLICATION OF THE NUMERICAL SIMULATOR AND 

DISCUSSI ON OF THE RESULTS 

The pri mary ob jectives of this research were to evaluate the 

significance of the mixed parti al derivatives in the new functional, 

Eq. 3-11, and the use of Eq . 3 - 2 which treats the hydrodynamic 

dispersion as an anis otropic quantity. Soluti on of the resulting set 

of simultaneous, linear, first order differential equations represented 

by Eq. 3-25 was obtained in the same manner as described by 

Guymon ( 1970). The following paragraphs describe the procedure 

for using the numerical simulator and give an evaluation of the results 

obtained. 

4. 1 Bandwidth of the matrices of the simulator: 

The symmetric and banded characters of the matrices [s] and 

[P] of Eq. 3-25 are taken advantage of in storing the elements. Only 

the upper triangular bands of the matrices are stored to conserve 

computer storage. The maxi m um non-zero elements in any row of 

the matrices [s] and [P] will be equal to the adj acent n ode s with 

which the node corresponding to the row of the matrices is connected 

plus one. This indicates that a certain numbering of the nodes will 

give the minimum bandwidth. Here, the term " bandwidth" for any 
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row is de fined to include the m ain d i agon al and the elements to the 

right of the main d iagonal including the last nan-zero element. This 

r u le is applied to each row of the matrices and the maximum value 

obtai ned from any one row of the matrices is taken as the bandwidth 

for the whole system, Eq. 3- 25 . Guymon ( 1970) gives a brief de scrip-

tion for the most effective numbering s cheme to obtain a minimum 

bandwi dth. 

4. 2 · Method of solution. of the system of linear differen t i al equations : 

The s i multaneous, l inear, fi r st order differe n t i al equations 

represented by Eq. 3 -25 can be wri tten as : 

[P] f:;} c - [s] { <j,} + {Q} (4-1) 

Usi ng the initial values of cj> . , i = 1, 2, •.. (N- L ), the :right hand side 
l 

of Eq. 4 - 1 can be combined to y i eld : 

(4-2) 

Eq. -4-2 is solved for the vector using the well known 

"Gaussiah elimination" method. The resulting set of first order 

differential equations are numerically integrated using a fourth order 

Runge-Kutta technique to develop the necessary starting values 

followed by the application of the Adams - Moulton multi s tep. predictor-

corrector method. Algorithms for these methods are given in Conte 

( 1965) and the formula s used in thi s s i mulator are given in Appendix F. 
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The values computed by using the Adams - Moulton multistep 

predictor-corrector formulas, Eqs. F-4 and F-5 given in Appendix F, 

are used to find the local truncati on error { e} 1 whi ch is calculated 
n+ 

as: 

1 
14 ( 

(1) 
{cp}n+l {cp}(O) . ) 

n+l 
(4- 3) 

Depending upon the accuracy required and the type of problem, values 

are read in as input data specifying the maxi mum and mini mum 

permissible error. If the absolute value of e 1 is greater than the 
n+ 

specified maximum error, provision is made in the computer program 

to automatically reduce the time step size by half. If the maximum 

absolute value of e 
1 

i s less than the specified minimum error, 
n+ 

the time step size is doubled. This adjustment in time step size is 

made to reduce computer time. 

Soluti0ns for the concen tration distribution are repeated for 

each time increment until the whole time interval is completed. At 

any instant in time, the concentration C may be obtained by taking an 

inverse transformation of cp using Eq. 3- 12. 

The computer program: The computer program was written in 

Fortran IV language. The program developed in this study has been 

adopted from a modification of a previous program reported by 

Guymon ( 1970). It consists of five segments and a number of sub-

routines for solving the system of linear, first order di fferential 

equations. Labeled common blocks are used to conserve storage and 
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to minimize time. A brief description of each of the five segments 

is given in Appencix G. A flow chart, method of data preparation and 

a listing of the program are also given in Appendix G. 

4. 3 Results and discussion: 

Types of problems solved and me ans for comparison: The 

numerical simulator developed in Chapter III, Eq. 3- 25, is capable 

of solving a general two-di mensional dispersion equation having mixed 

partial derivatives. The simulator was also used to solve a one-

dimensional case, say in the x-di rection, assuming the component of 

the velocity v and the partial derivatives in the y-direction equal 

zero. The one-dimensional equation is similar to Eq. 2-6. The 

advantage of transforming the two-dimensional equation into a one-

dimensional form is that we have analytic solutions for the one-

dimensional case, Eq. 2- 7, to compare with the numerical results. 

The one-dimensional problems were also transformed into two-

dimensional forms by a suitable rotati on of axes and coordinates. In 

this way the numerical simulator, Eq. 3-25, which is applicable to a 

two-dimensional case was used without any modification and the 

results compared with the analytical solutions given by Eq. 2- 7. The 

results were also compared with other finite element solutions using 

different functionals. 

Comparison of re suits from previous related work : Guymon 

( 1970) used the variational principles and the finite element method to 
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solve the dispersion equation excluding the mixed partial derivatives 

and solved steady flow problems. The problem shown in Fig. 4-1 is 

identicaL to that solved by Guymon ( 1970). The region was divided 

into 16 triangular elements as shown in Fig. 4- 2. The analytic results 

are presented at selected values of the fractional distance x' /£ in 

column 2 of Table I. 

Results from different computers: Before proceeding with the 

use of the new functional, Eq. 3- 11, to solve the problem, it was 

necessary to evaluate the difference in the results obtained by solving 

the same problem with two different computers. Guymon ( 1970) solved 

the two-dimensional case for the boundary conditions shown in 

Fig. 4-1 and for the element configurations shown in Fig. 4-2, using 

an IBM 7044 computer. His results are given in column 3 of Table I. 

Using Guymon' s functional, the same problem was solved using a 

CDC 6400 computer and the results are given in column 4 of Table I. 

The discrepancy in the two results may be attributed to ~he fact that 

IBM 7044 and CDC 6400, respectively, carry 16 and 29 significant 

digits in double precision resulting in different roundoff errors. 

Rotation of axes: An attempt was made as shown in Chapter III 

to eliminate the mixed partial derivatives from Eq. 3-3 by rotating 

the coordinates so that the functional developed by Guymon ( 1970) could 

be utilized. The resulting equation (Eq. 3-6) is in terms of x'y ' 

coordinates. The problem in Figs. 4-1 and 4-2 was reformulated 

utilizing the new coordinates x' and y' as shown in Fig. 4- 2. The 
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> x' I -----£ = 4 miles --+f 

C/C = 0 at t = 0 for 0 < x' <£ 
0 

C/C
0 

= 1 at t > 0 for x' = 0 

C/C = o. 148 at t > 0 for ·x' = J. 
0 

DL = 2 
470 cm /sec 

Fig. 4-1 One-dimensional column of porous media. 
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Fig. 4-2 Two-dimensional grid network 
with 16 elements for problem 
shown in Fig. 4-1. 



Fractional 
Dista._nce 

x' /P. 

1 

0 

0.25 

0.5 

0.75 

1.0 

TABLE I 

VALUES OF C/C FOR PROBLEM IN FIGURES 4-1 AND 4-2 AT TIME= 5 YEARS 
0 

LONGITUDINAL DISPERSION COEFFICIENT DL = 470 CM2 /SEC 

Analytical Results Using the Functional Results Using New Functional Including 
Solutions Developed by Guymon ( 1970) Mixed Partial Derivatives 

Guynion's Mixed Partials Ratios of Late r~l to Longitudinal 
(Eq. 2-7) Method Eliminated by Dispersion Coefficients 

IBM CDC · Rotation of Axes 
DT/~L =0. 0 DT/DL =0. 05 D /D =0.1 -7044 6400 T L 

2 3 4 5 "6 7 8 

1.000 1. 000 . 1. 000 1. 000 1.000 1. 0:00 1. 000 
; 

0.755 0.787 0.788 0.750 0.750 0 ;754 0.757 

0.503 0.526 0.527 0.522 0.522 0.522 0.522 

0.294 0.340 o. 341 0.298 0.298 0.302 0.306 

o. 148 0. 148 o. 148 o. 148 o. 148 o. 148 o. 148 

O' 
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numerical results are given in column 5 of Table I. The coordinate 

transformation includes the effect of the mixed partial derivatives 

and a comparison of columns 4 and 5 of Table I indicates the contribu-

tion due to the mixed partial terms. For this problem, the results 

obtained from Eq. 3- 6 which includes the effect of the mixed partial 

derivatives appear to be closer to the analytic solutions than that 

obtained by using Guymon' s ( 1970 ) functi onal. For the type of relation-

ships considered with the dispers i on coefficients (Eq. 3 - 2 ), this 

rotation technique can be used for uniform velocity d is tr i butions, but 

cannot be used for non-uniform flow patterns. Both steady and unsteady 

cases can be handled. 

Results using new functional: The new functional, Eq. 3 - 11, 

which includes the mixed partial derivatives, was used to solve the 

same problem (Figs. 4-1 and 4-2 ). Shamir and Harleman ( 1967) 

report that the lateral dispers i on coefficient D T is in the range of 

(0. 05 to 0. 1) times the longitudinal dispers i on coefficient DL • 

Utilizing the new functional, numerical results were computed for 

ratios of DT/DL = 0. 0, 0. 05, and 0. 1 as presented in columns 6, 7 

and 8 respectively of Table I. Cons i dering the coarse element sizes 

and the type of linear approximations used for the concentration, the 

numerical results compare favorably w i th the analytical s olutions, 

and better than the results obtai ned by Guymon ( 1970 ) using the 

functional without the mixed partial derivatives. From the results 
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g i ven in Table I , i t appear s that the lateral d i s p er sion coe ffici ent 

DT has very little effect upon the concentration distribution. 

The values of the con c e n t rati on a s a func ti on of t ime f or 

different values of the fracti onal di stance are plotted in Fig. 4 - 3. 

Three sets of results are plotted on the same figure. In one set, the 

concentrations were computed after eliminati on of the mixed parti al 

terms by rotation of a x es. The lateral di s pers i on and d i ffusion wer e 

neglected i n thi s cas e . In the nex t two sets rati os of DT/DL = 0. 0 

and 0. 05 were u s ed and molecular diffusi on was neglected . In all 

three cases, the dispersion coefficients were computed using the 

relationships given by Eq. 3-2. The three sets of results are very 

nearly equal. 

The following poi nts may be noted. Though there is provi sion 

to include the molecular di ffus i on D d in Eq. 3- 2, i t was assumed to 

be negligible in all the problems d i scussed in this study. The effect 

of molecular diffusion i s further discussed in section 4. 4. 

The longitudinal dispers i on coe ffi cient , DL, u s ed in Eq. 2 - 7 

2 by Guymon was about 470 cm / sec. This value is extremely large 

for most porous media (Shamir and Harleman, 1967) , but wa s 

probably needed to eliminate stability problems in the numerical tech-

nique u s ed for the solution of Eq. 3- 25. This stability problem i s 

discussed later in section 4. 4. 

The problem shown in Fig . 4 - 1 was again solved by dividing 

the region into smaller triangles as shown in F i g. 4-4. The solutions 
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= 4 miles~ 
X 

Fig. 4-4 Two-dimensional grid network with 
64 elements for problem shown in 
Fig. 4-1. 
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were obtained in the same manner as described for solving the 

problem in Fig. 4-2. The analytic results are given in column 2 of 

Table II and the numerical results obtained by Guymon ( 1970) are 

given in column 3. Results were also obtained using Guymon' s method 

and rotated coordinates to account for the mixed partial derivatives 

as given in column 4 of Table II. Numerical results were computed 

using the new functional with mixed partial derivatives for ratios of 

DT/DL = O. 0 and 0. 05 and are presented in columns 5 and 6 respec-

tively of Table II. For some values of the fractional distance x' / £ , 

the numerical results obtained by using the functional with mixed 

partial derivatives are closer to the analytical results than that 

reported by Guymon ( 1970), and for other points not so close. When 

stability requirements are satisfied, it appears from this problem 

that decreasing the area of the elements does not improve the results 

significantly. For stable problems the decrease in the area of the 

elements caused by an increase in the number of the nodal points might 

introduce greater round-off errors in solving larger matrices. 

Observations: The numerical results obtained for the problems 

shown in Figs. 4-1, 4-2 and 4-4 indicate that Eq. 3-3 truly represents 

the two-dimensional mathematical model for describing the transient 

concentration distribution. The lateral dispersion is properly 

accounted for by Eq. 3- 3. The stabilHy of the system represented by 

Eq. 3-25 is an important aspect in obtaining correct solutions. This 

stability aspect is discussed in section 4, 4. 



Fractional 
Distance 

x' /P. 
1 

0 

o. 125 

0.25 

0.375 

0.5 

0.625 

0.75 

0.875 

1.0 

TABLE II 

VALUES OF C FOR PROBLEM IN FIGURES 4-1 AND 4-4 AT TIME= 5 YEARS 

Analytical 
Results Using the Functional Results Using New Functional Including 

Developed by Guymon ( 1970) Mixed Partial Derivatives Solutions Guymon' s Mixed Partials Ratios of Lateral to Longitudinal Dispersion 

(Eq. 2-7) Method Eliminated by Coefficients 
Rotation of Axes D /D =0. 0 DT/DL =0. 05 T L 

2 3 4 5 6 

5.0 5.0 5. 0 5.0 5. 0 

4.405 4-. 407 4. 373 4.373 4.376 

3.775 3.723 3.720 3.721 3.721 

3.085 3. 080 3.017 3.018 3.024 

2.515 2.415 2.421 2.422 2.423 

1. 955 1. 909 1. 845 1. 846 1. 853 

1. 470 1. 430 1. 435 1.436 1. 436 

1. 065 1. 087 1. 057 1. 057 1. 061 

0.741 0.741 0.741 0.741 o. 741 

I.J1 
N 
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Application of the simulator to column problems : Concentration 

distributions in a long column shown in Fig. 4-5• were evaluated using 

the analytic solution (Eq. 2- 7) and the finite element technique. 

Table UI and Figs. 4-6 and 4- 7 include the results for a column 

30 cm long having a steady state seepage ve l ocity of 0. 1 cm/ sec. 

Analytic solutions for concentration at both 10 and 20 seconds after 

introducing the tracer are given in columns 2 and 5 respectively of 

Table III. 

The finite element model for the two-dimensional case was used 

in two different ways in the solution of this problem. Initially, the 

coordinate axes were chosen so that the x' -axis corresponded to the 

longitudinal axis of the column and the velocity component and the 

dispersion coefficients in the y' -direction were assumed as zero. 

This would represent a one-dimensional problem and the results are 

given i1+ columns 3 and 6 of Table III. To test the two-dimensional 

capabilities of the technique, the coordinate axes were rotated 45 ° 
and the solutions recalculated as tabulated in columns 4 and 7 of 

Table III. In this latter case, u = v = V ;{2 where V is the seepage 

velocity in the column and u and v are the components of seepage 

velocity respectively in the x and y directions. Note that the 

results in Table III, columns 3 and 4 and also 6 and 7, rounded to two 

significant digits are identical for the one and two-dimensional 

solutions. The numerical and analytic solutions are quite similar, 

as shown graphically in Figs. 4-6 and 4- 7, thus verifying the validity 
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B. C.: C/C = 1. 0 at t > 0 for x' = 0 
0 

BC = 0 
8x' 

at t > 0 for x' = £ 

= 1. 0 
2 

DL cm /sec 

Fig. 4 - 5 Long narrow column of porous media. 
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Fractional 
Distance 

x' /1 
1 

0 

o. 1 

0.2 

o. 3 

0.4 

0.5 

0.6 

0.7 

. 

. 
1.0 

TABLE III 

VALUES OF C/C FOR PROBLEM IN FIGURE 4-5 
0 

1 = 30. 0 cm; width = 0. 1 cm V = O. 1 cm/sec 2 DL = 1.0 cm /sec 

C/C at t = 10 secs 
0 

C/C
0 

at t = 20 secs 

Analytical Numerical Numerical Analytical Numerical Numerical 
(Eq. 2-7) One-Dim. Two-Dim. (Eq. 2- 7) One-Dim. Two-Dim. 

2 3 4 5 6 7 

1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 

0.58 0.61 0.61 0.73 0.74 0.74 

0.24 0.31 0.31 0.45 0.49 0.49 

0.07 0.07 0.07 0.24 0.25 0.25 

o.01 0.02 0.02 o. 10 o. 12 o. 12 

0 -0.01 -0.01 0.04 0.03 0.03 

0 0 0 0.01 0.01 0.01 

0 0 0 0 0 0 

. . . . . . 

. . . . . . 
0 0 0 0 0 0 

Ul 
Ul 
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• Numerical (One and Two 
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0.4 0.5 
X I fi_ 
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Fig. 4-6 Analytic and numeric solutions for problem in 
Fig. 4-5. 
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Analytical (Eq. 2 .. 7) 

• Numerical (One and Two 
Dimensional) 

U 0.4 
t = 20 seconds 

0.2 

O 1 __ .L_..L _ _L _ _J_ _ _.!....=:=:::iit::=.-L--..__..._--,-..i 
0 o. 1 o. 2 0.3 0.4 0.5 

x' /P. 
o. 6 o. 7 o. 8 o. 9 1. O 

Fig. 4 - 7 Analytic and numeric solution s for problem in 
Fig. 4 - 5. 
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of the finite element technique. For both the 10 and 20 - second 

solutions, the contaminates have not moved more than two-thirds of 

the column length and the exit boundary condition oC O • - = lS ax' 
satisfied. 

It should be noted in Table III that at x' / P. = 0. 5 and t = 10 

secs, the value of the concentration is negative. This is a result of 

instability in the approximate solution of Eq. 3- 16a. The instability 

is due to the illconditioned nature of the [s] matrix of Eq. 3- 25. 

For the type of problems solved, the solutions appear to be stable 

when all the elements of the (N- L) by one column matrix { F} on 

the right hand side of Eq. 4-2 are positive at the starting time. This 

depends upon the off-diagonal elements of the [s ':<] matrix of Eq. 3-23. 

Parameters influencing the element values of this [s*] matrix 

include the seepage velocity, grid network layout, and most signifi-

cantly the longitudinal dispersion coefficient DL . 

The stability problem is further demonstrated by Figs. 4-9, 

4-10 and 4- 11 which are solutions to the problem depicted in Fig. 4 - 8. 

The problem, assumed to be one-dimensional, was solved using the 

following values for DL: 0.01, 0 . 20, 0.40, and 6.0 cm
2

/sec. For 

D L = 0.01 cm 2 / sec, the solution was unstable because the [s] matrix 

of Eq. 3-25 becomes ill-conditioned and instability is introduced in 

the numerical solution. The results are given in Appendix H to show 

the magnitude of the unstable conditions. Instability also occurred · 

2 
for both DL = 0. 20 and 0. 40 cm / sec as shown by Figs. 4-9 and 4- 10 
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y' 

t -. 
1:::::2~==:::::::::::::J ·l:rx' I -x' I <"' v £ = 10 cm > 

I. C.: C / C c::: 0 at t = 0 for 0 < x' < £ 
0 -

B.C.: C/C =I.Oat t>0 for x'=0 
0 -

ac - = 0 at t > 0 for x' = £ ax' -
2 

DL = 0.01, 0. 2, 0. 4 and 6. 0 cm / sec 

Fig. 4-8 One-dimensional column of porous media. 
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1.0 
Analytical (E.q. 2 - 7) 

0.8 • Numerical 

0.6 
0 t = 10 seconds u - 0.4 u 

0.2 

• 
0 

• 
-0.2 

0 o. 1 0.2 0.3 0.4 0.5 0 . 6 0.7 0.8 0.9 

X' /£ 

Fig. 4-9 Analytic and numeric solllzions for problem in 
Fig. 4-8 for DL = 0. 2 cm. / sec. 

1. 0 
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1. 0 
Analytical (Eq. 2- 7) 

0.8 • Numerical 

0.6 
t = 10 seconds 

0 u U 0.4 

0.2 

• 0 

-0.2 
0 o. 1 o. 2 o. 3 0.4 0.5 0.6 0.7 0.8 0.9 

x' I£ 

Fig. 4- 10 Analytic and numeric solutions for problem in 
Fig. 4-8for DL=0.4cm2 /sec. 
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• 

---- Analytical (Eq. 2- 7) 

• Numerical 

t = 10 seconds o.2-_ ....... __ ......_ __ .....___--1L.-----'----'-----1---L..--.1--~ 
0 o. 1 

Fig. 4-11 

0.2 o. 3 o. 4 

x' /P. 
0.5 0.6 0.7 0.8 0.9 1.0 

Analytic and numeric solutions for problem in 
Fig. 4-8 for DL = 6. 0 cm2 / sec. 
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where the numerical value s o scillate on both sides of the analytic 

solutions. Note the oscillations are much less pronounced for 

2 
DL = 0. 40 cm / sec. Thi s, in conjunction with the results shown in 

Figs. 4-6 and 4- 7 suggests that the numerical solutions converge on 

the analytic solutions as the value of DL increased. For 

DL = 6. 0 cm 2 ; sec, as shown in Fig. 4 - 11, the results were stable . 

The stability criteri a is discussed further later. 

The inflow boundari es for the problems in F i gs. 4-5 and 4-8 

were fixed at a given con centration level. All other boundari es were 

treated as natural boundary condi t i on s ac 
8n 

= 0 and thi s is refer red 

to as a reflection condition by Shamir and Harleman ( 1967 ). The 

numerical solutions shown in Fig. 4- 11 corresponds to a value of the 

2 
longitudinal dispersion coefficient DL = 6. 0 cm /sec and the contami -

nate has moved the full length of the column in the 10 seconds time. 

I h . h . b d d · · 8 C 0 . t t · f . d n t 1s case, t e exit oun ary con 1tion -- = 1s no sa 1s 1e • 8n 

Since the functional requires that there be no concentration gradient 

across the exit boundary, ac 
8n = 0 , it is necessary to use the 

principles of the method of images to develop the nece ss ary concentra-

tion gradients which can be supe r imposed re s ulting in a z e ro gradi ent 

across the exit boundary. The analyti c soluti on shown in F i g. 4 - 1 1 is 

the resultant after superimposing the res ults ob t a ined u sing Eq. 2 - 7 

for a finite length of the porous medi um. 

Unsteady and non- uniform flow case s: The gen erality of the 

new functi onal provi de s for soluti on of problems in unste a dy and 
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Fig. 4-12 Long narrow column of porous media with 
different velocities V 1 and VII. 
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of the seepage velocities in the two parts are differento One way to 

have different seepage velocities VI and VII in parts I and II 

respectively is to have different values for the porosity of the 

materials. The reason to have just two d i fferent seepage velocities 

is that we can compare the numerical resul ts and the analytic 

solutions correspcmding to a s ingle uniform velocity for the whole 

region equal to the average of VI and VII o i 

Numerical results were obtained for two cas eso In case (1), 

the seepage velocity VI in part I was assumed a s 0o 08 cm/ sec a n d 

VII in part II as 0o 12 cm/ sec, thus mainta ining an average velocity 

of 0. l cm/ sec for the whole regiono The corresponding velocity 

components u and v in the directions x and y respectively were 

calculated and used in the computati on of the dispersion coefficients 

and also , used as flow parameterso The num erical results were com-

puted at t i me levels equal to 10 seconds and 2 0 seconds and given in 

Table IV for various values of y ' /b at different point s a long the 

length . P. • For both the 10 and 20-second s olution s , the exi t boundary 

condition ac 
on = 0 o As in the uniform flow case, here also for 

t = 10 second solution at x' / P. = 0o 5 due to instability, the value of 

the concentration is negativeo 

In case (2), the seepage velocity VI i n part I was as sumed as 

0. 05 cm/ sec and VII in part II as 0. 15 cm/ sec thereby mai ntaining 

an ave rage velocity of 0o 1 cm/ sec for the whole regiono The 



Fractional 
Distance 

x' I£ 

0 

0 1.0 

o. 1 

0.2 0.29 

o. 3 

0.4 0.02 

0.5 

o.6 0 

0.7 

0.8 0 

0.9 

1.0 0 

TABLE IV 

VALUES OF C/C FOR PROBLEM IN FIG. 4-12 
0 

Case ( 1) VI = 0. 08 cm/ sec; VII = 0. 12 cm/ sec 
2 

£ = 30. 0 cm; b = 0. 1 cm; DL = l. 0 cm / sec 

C/C at t = 10 secs. C/C at t = 20 secs. 
0 0 

y' /b y i /b 

0.25 0.5 0.75 1.0 0 0.25 0.5 0.75 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0.59 0.62 0.72 0.76 

0,31 0.32 0.47 0.49 

0.07 0.08 0.23 0.27 

0.02 0.02 0. 11 o. 12 

0 - 0.01 0.0 3 0.04 

0 0 o.01 0.01 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1.0 

1.0 

o. 51 

o. 13 

o.01 

0 

0 

0--
-.J 
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computations were . s imilar to thos e in cas e (1) descri bed in the 

previous paragraph. The results are given in Table V. 

It is to be noted that in both cases, the average value of the 

concentration at any value of the fractional distance x ' / P. is 

approximately equal to the concentration obtained at the corresponding 

points in Fig. 4-5 and given in Table III under uniform flow conditions . 

This is given as a partial proof of the validity of the re suits obtained 

using different velocity d i stri b utions. 

In a strictly steady, non-uniform flow the seepage velocity i s 

the only quantity which varies between different elements, for all 

other conditi ons remaining the same. Corresponding to the seepage 

velocity in each finite element, the x and y components can be 

computed and read in as data for the numerical simulator. In this 

way, the simulator could be used to solve for the concentrations 

when the velocity d istributi on is e i ther uniform or non-uniform. 

It should be noted that for uns teady flow, the dispersion 

coefficients will change with respect to time. This will involve the 

computati on of a new [ S] matrix in Eq. 3-25 for each time step 

requiring additional computer time. 

4. 4 Stability criteri a and conv ergence of the solution: 

The finite element method has been very widely used and shown 

to be stable and convergent for s tructural analysis and steady state 

problems. In the present study, a stable solution for the time 



Fractional 
Distance 
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0.2 0.27 
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0 . 4 0.01 
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0.6 0 
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TABLE V 

VALUES OF C/C FOR PROBLEM IN FIG. 4-12 
0 

Case (2) VI = O. 05 cm/ sec; VII = O. 15 cm/ sec · 
2 

f. = 30 cm· b = 0. 1 cm· D = 1. 0 cm / sec ' ' L 

C/C at t = 10 secs. C/C at t = 20 secs. 
0 0 

y' /b y' /b 

0.25 0.5 0.75 1. 0 0 o. 25 0.5 0. 75 

1.0 1.0 1.0 1.0 1.0 1. .() 1.0 1.0 

0.57 0.65 0.69 0.78 

o. 31 0.35 0.44 0.49 

0.06 0.09 0.20 o-. 30 

0.02 0.02 o. 10 o. 12 

0 -0.01 0.02 0.04 

0 0 0.01 0.01 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1. 0 

1.0 

o. 55 

o. 15 

0.01 

0 

0 

a--

'° 



70 

dependent concentration distribution is sought by the following approach. 

At first we discretize only the space variables by the finite element 

method leaving the time variable continuous. The resulting system 

of ordinary differential equations can be numerically integrated with 

respect to the time variable to obtain the solutions at the end of 

discrete time steps. Then the stability criteria of the system of 

equations are studied in the semi-discrete form. 

Stability of the system: The system of equations to be solved 

is represented by Eq. 3-25 which can be written as Eq. 4- 1 and 

repeated below: 

[P] {:;} = - [s] {~} + {Q} (4- 1) 

where cj> = cj>(t) at any point in space. 

Eq. 4-1 is comparable to the Eq. 8-8 (page 25 3) of Varga ( 1962 ), 

if we assume that the source term S(x, y;t) of the system of 

equations given by Varga is time-independent and the vector T (t) is 

negligible. In Eq. 4-1, the matrices [P] and [sl are time-independent 

entries and the initial values of the concentrations are equal to cj>(O) . 

For the general case of a system of differential equations represented 

by Eq. 4- 1, the matrices [P] and [s] should satisfy certain con-

ditions which are discussed below. 

The maximum number of non-zero entries in any row i of the 

[P] and [s] matrices of Eq. 4- 1 are equal to the number of adjacent 

nodal points with which the node corresponding to the row i is 
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connected plus one. The [P] matrix sh0uld be non-singular and 

diagonally dominant with positive diag0nal entries. 

According to Varga ( 1962 ), the (N-L) by (N-L), real, 

symmetric [s] matrix of Eq. 4- 1 should be irreducibly diagonally 

dominant with n0n-positive off- diagonal entries. The concept of 

irreducibility may be interpreted geometrically (Varga, 1962, 

Section 1. 4). Let [sJ = (a .. ) be any square matrix of size n x n 
1, J 

and consider any n d i stinct points P 1, P2, ..• , Pn in the plane 

and denote these n points as nodes. For every non-zero entry 

a. . of the [s] matrix, the node P . may be connected to the node 
1, J 1 

P. by means of a path P. P . , directed from P. to P. as shown 
J 1 J 1 J 

in Fig. 4-13. In this way, with every nx n matrix ls] can be 

associated a finite directed graph. A directed graph is strongly 

connected if, for any ordered pair of nodes P. and P. there exists 
1 J 

a directed path: 

P . Pn , 
1 X. 1 

Fig. 4-13. 

P . 
1 

g • 0 ' pn pn · 
X. X. =J r-1 r 

P . 
J 

Directed graph from P . to P . . 
1 J 
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connecting Pi to Pj where each of the points f. 1, f. 2, .•• , f. r- l 

may be any one excluding i and j among the n points. The matrix 

is irreducible if it has a strongly connected directed graph. For 

reducible matrices the associated directed graph is not strongly 

connected. Another property is that all the off-diagonal entries of 

any row or column of a matrix cannot vanish if the matrix is 

irreducible (Varga, 1962). 

Varga defines the n x n matrix [s] = ( a. . ) as irreducibly 
1, J 

diagonally dominant if it is: 

and 

i. irreducible as defined above; 
n 

ii. la. -1 > 1, 1 -
j= 1 
j;ti 

a . . 
1, J 

for all l <: i _:s n, with strict inequality in 

Eq. 4-4 for at least one i. 

(4-4) 

In addition to being irreducibly diagonally dominant, the [s] matrix 

should satisfy the conditions: 

iii. a. 
1, j <0 for all i ;t j ; 

and iv. a . 
1, i >0 for all 1 < i < n . 

When all the four conditions are satisfied, then [sr l > 0 which 

means [s] is non- singular. These are the necessary and sufficient 

conditions to be satisfied by the [s] matrix of Eq. 4- 1 to obtain a 

stable and convergent solution. 
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According to Strang ( 1970) there are two kinds of stabi lity to be 

• considered. The first kind depends on the data and the second kind of 

instability is numeri cal. 

Stability due to data : The s t ability dependent on the data is 

equivalent to convergence and this is what Guymon ( 1970) shows as an 

empi r ic al factor in h is convergence analysis. For the two-di mensional 

problems solved he ass ume d the convergence parameter as 

YA (u + v) / (D + D ) where A is the area of the triangular finite xx y y 

element. Referring to F i g . 3 (page 79) of Guymon ( 1970) it appear s 

that when the value of the convergence parameter is less than or equal 

to about O. 2 the numerical s olutions are comparable to the analytic 

solutions. Guy mon ( 19 70) used values for u and v equal to O. 1 

mile /year and the longitudinal d i spersion coefficient DL equivalent 

to about 470 cm
2 

/sec (0. 5656 s q . miles/year). 

If DL is less than 4 70 cm 
2 

/ sec, say about 1. 0 cm 
2 

/ sec, and 

u = v = O. 1 mile /year, the convergence parameter required is about 

167 fo r the size of the finite elements for the problem shown in 

Fig . 4-1 and F i g. 4- 2. The resulting [s] and [sr l matrices and 

the unstable numerical soluti ons for thi s problem are given in 

Appendix H. 

On the other hand, for the above problem if the value of 

2 
D = 1. 0 cm / sec and u = v = 0. 1 mile /year , to obtain a convergence L 

parameter = O. 2, the area A of the triangular finite element should 

be about O. 00000576 sq. mile which is a negligi bly small quantity. 
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Guymon' s empirical relationship for the convergence parameter 

cannot be us~d for the new functional because the dispersion 

coefficients, Eq. 3- 2, are not compatible. 

In light of Varga' s ( 1962) stability criteria and the fact that 

Guymon' s ( 1970) convergence parameter developed empirically will 

not work in the pre sent study, it was decided to consider the whole 

system of simultaneous fir st order differential equations represented 

by Eqs. 3-23 and 3-25 for stability analysis . The elements of the 

[s*] matrix of Eq. 3-23 are functions of the finite element network, 

node numbering, dispersion coefficients and velocity components. 

Elements of the [?':'] matrix are functions of the finite element 

network and node numbering only. See Appendix D, Eqs. D-23 and 

D-24 for development of these matrices. 

For a given network of finite elements and node numbering, the 

elements of the [P*] matrix of Eq. 3-23 are constants and elements 

of the [s':'] matrix depend upon the dispersion coefficients D , xx 

D and D , and the velocity components u and v • In addition, 
yy xy 

when the velocity is steady, u and v are constants and therefore 

the elements of the [s*] matrix of Eq. 3-23 depend only upon the 

dispersion coefficients. In a two-dimensional case, when the velocity 

components u and v respectively in the x and y directions are 

equal, Eq. 3-2 reduces to: 
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DL · D 
D D . 

T 
DdT = = -- + + xx yy 2 2 

(D\- DT) 
(4-5) 

and D = xy 

If DT/DL is taken as ·a fixed rati o, say 1/10, then DT = 0. 1 DL 

and Eq. 4 -5 may be written as : 

(4 - 6) 

and D = O. 4 5 D . xy L 

Eq. 4-6 shows that D and D depend upon DL and Dd for a xx yy 

constant value of the tortuosity factor T and D depends upon xy 

DL only. 

Normally for liquids the magnitude of the molecular diffusi on 

coefficient D d is very small and the tortuosity factor is approxi-

mately equal to O. 5. The product of D d and T w i ll be negligible 

for flow of liquids in porous media. The effect, if any, of the mole -

cular diffusion coefficient Dd on the parameters D and D is xx y y 

only to increase the magni tudes of these by a very small constant. 

Instead of using a small value for D d , the same purpose may be 

achieved by suitably increasing the value of the longitudinal <lisper-

sion coefficient DL • The expressions for the dispersion coefficients 

(Eq. 3-2), however , have the advantage of accounting for the molecular 

diffusion even when the velocity components u and v are both equal 
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to zero. The stability of the final system of equations (Eq. 3- 25) to 

be solved depends upon the longitudinal dispersion coefficient DL . 

An investigation of the properties of the [_p] and [s] matrices 

of Eq. 3-25 for some of the problems solved in this study was under-

taken. The [?] matrix satisfied all the necessary conditions 

developed earlier. The [s] matrix satisfied all the conditions except 

a. . 0 for all i -/:- j , which was only approximately satisfied. By 
1, J 

this it is meant that for some off-diagonal entries in the [s] mii,trix 

a .. 0 (negligibly small positive values). For example, when 
l., J 

2 
DL = 470 cm /sec the values of the elements a 3 , a 3 , a , 4 4, 4, 5 

and a 5 of the [s] matrix for the problem shown in Figs. 4-1 and ,4 

4-2 are equal to 0. 00208. The numerical solutions for these prob-

lems, however, were comparable to the analytic solutions as shown 

in Table I. 

For the same problem, a lower value for the longitudinal dis-

2 
per sion. coefficient D L = 1. 0 cm / sec was used keeping all other 

condi~ions the same. This resulted in a different [s] matrix and the 

properties of the matrix changed considerably. For example, 

rsr l :l 0 and the condition that a .. < 0 fer all i -/:- j was not satis-
1,; ·f 1, J -

fied. In fact, a. . > 0 for all i -/:- j • The numerical solution was 
1, J -

rs,] and rsc]- l highly unstable. The I.! L; matri ces and the results 

obtained are given in Appendix H. 

The example problems in the previous paragraphs indicate that 

Varga' s ( 1962) stability criteda need not be strictly satisfied for 
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obtaining stable solutions in some cases. It appears that in such 

problems it is possible to obtain stable solutions when only some of 

the sufficient conditions are satisfied. For example, when Eq. 3-23 

is modified fer the geometric boundary conditions, the r0ws corre-

sponding to the boundary condition nodes are eliminated fr0m the 

system and the column matrix { Q,:' } on the righthand side of 

Eq. 3-23 is modified to {Q} as in Eq. 3 - 25. If there are no sources 

or sinks within the region R , the solution appears to be stable when 

all the elements of this column matrix { Q} are > O. This happens 

for each r0w when the surn of the products of the concentrations at 

the geometric boundary condition nodes, <pk , k::: 1, 2, ••• , L, 

and the corresponding off-diagonal elements of the [s':c] matrix of 

Eq. 3-23 is negative at the starting time, i.e., 

L 

k= 1 
< 0 (4- 7) 

for all i values ( 1 < i _:s N- L) other than the row,s corresponding to 

the geometric boundary condition nodes. In the types of problems 

solved in this study, it appears that Eq. 4- 7 is a sufficient condi tion 

for obtaining stable solutions. For other types of problems such as 

slug injection, other sufficient conditions could be developed for 

obtaining stable solutions. 

These investigations revealed that care should be exercised in 

selecting proper sizes and layout of the triangular finite elements, 

dispersion coefficients and vel0city components, and it is suggested that 
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the properties of the matrices [s] and [P] of Eq. 3- 25 be evaluated 

before starting the numerical solution. For field problems, normally 

the seepage vel0city depends upon the hydraulic head, and the disper -

sion coefficients depend upon the seepage velocity and the dispersivi.ty 

which is a property of the porous medium. In a given problem with 

con.stant velocity distribution the only opportunity that we have is to 

choose the shape and size of the triangular elements so that the 

matrices [s] a-o.d [P] of Eq. 3-25 satisfy the requirements for 

obtaining a stable and convergent solution. 

Usually in the finite difference method the grids are either 

square or ;rectangular. The stability of the system is specified by the 

size of any one grid. In the finite element method the shape and size 

of the triangles are chosen arbitrarily. Therefore, the stability of 

the system cannot be specified with reference to the size of any one 

triangle and hence the n~cessity to consider the stability of the whole 

system of equations, Eq. 3-25. 

Stability for unsteady flow: For a given finite element network 

and node numbering, the [s] matrix in Eq. 3-25 will be different for 

each time step when the flow is unsteady. The [s] matrix should 

satisfy the stability requirements discussed in this section for each 

time step. 

Numerical stability: The numerical instability is concerned 

with the growth of roundoff error. Strang ( 1970) states that this type 

of instability is governed by the condition of the equations to be solved 
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and by the precise algoirthms which are used for the solution. It is 

suggested that one should use an integrating algorithm which is strongly 

stable and convergent to minimize numerical instability. 

An attempt was made in this study to minimize the numerical 

instability by using double precision and also by automatically con-

trolling the time step size. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

A method has been developed for predic ting the concentration of 

a dispersing contaminant in a two - dimensional flow field. By dis -

cretizing the space variables of the governing partial diffe rential 

equation us ing the finite element method and leaving the time variable 

continuous, the resulting set of l inear, first order, ordinary differ-

ential equations was numerically solved for the concentrati on s a t a 

discrete number of poin ts in space. Stability criteria were developed 

for the resulting matrix set of ordinary differential equations. 

5. 1 Evaluation of the method and conclus i ons: 

The general partial differential e q uation for de scribi n g the 

transient concentrat i on distribution in a two - dimensi onal flow field 

includes the mixed partial der ivatives when the disper sion coefficients 

are treated as a second order , symmetric tensor. A new functional, 

Eq. 3- 11, was developed based on variational principles to include 

the mixed partial der ivatives which were neglected by previous investi-

gators. The method can handle both longitudinal and lateral disper-

sion and molecular diffusion if it is significant. The numerical 

simulator developed by the finite element method can handle irregu lar 

boundary shapes very easily. 
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The results from the numeri cal simulator compared favorably 

with the analytic solutions. The results from the problems studied 

indicate that changes in the data can be easily incorporated in the 

method. Because of the particular types of boundary conditions 

incorporated in the functional, a procedure was adopted for one prob-

lem using the principle s of the method of images to modify the analytic 

solutions for handling the time dependent boundary conditions. The 

simulator was also used to solve one approxi mate case of a non-

uni form flow problem and the results appear to agree with the 

solutions for a s i m ilar problem in which the uniform velocity distribu-

tion was equal to the average of the velocities in the non-uniform 

flow case. 

The stability criteria requires, that for various input data and 

finite element network, the [s] and [P] matrices of the resulting 

set of simultaneous, linear, first-order ordinary differential 

equations (Eq. 3- 25) should s atisfy the following sufficient conditions. 

The [P] matrix should be non- singular and diagonally dominant with 

positive diagonal entries. The n x n matrix [s] = (a .. ) should be 
1, J 

non- singular, irreducibly diagonally dominant with a .. < 0 for all 
1, J 

a . . > 0 for all 1 < i < n and [sl 1 > O. 
1, 1 

One of the advantages of the finite element method is that 

arbitrary shapes and sizes of tri angles can be used within the limita-

tions of the stability requirements discussed earlier. The property 

of the matrices of the resulting system of equations will depend, in 
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addition to other data, upon the shapes and sizes of the triangular 

elements. The evaluation of the properties of the matrices is an 

important aspect before proceeding with the numerical solutions. 

5. 2 Recommendations for future work: 

The assumptions made, the techniques adopted and the results 

obtained in this research showed that there are several aspects of the 

problem which require further study . The followi ng recommendati ons 

are made for possible future work : 

i. It was assumed in Chapter III, for purposes of minimi zation 

of the functional, that the concentration varies linearly with respect 

to the coordinates x and y (Eq. 3- 17) over the triangular element. 

Higher order polynomials could be investigated to see if they imp rove 

the solution. 

ii. The properties of the resulting system of first order, linear 

oa:-dinary differential equations may be more thoroughly investi gated 

with regard to stability. The experience gained in this study shows 

that the type of data used appear to control to a large extent the 

stability of the system. It may be useful to investigate which of the 

following data has major influence in controlling the stability of the 

system: dispersion coefficient, size and shape of the grids, or 

velocity components. 
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iii. A method needs to be developed to handle boundary conditions 

other than those considered in this work, namely natural or reflective 

boundary conditions and geometri c or time invariant boundary con-

ditions. 

iv. Different numerical methods for solving the system of 

ordinary differential equations : should be evaluated for computer time 

requirements and accuracy. 

v. Comparison of solutions of the dispersion equation by the 

finite element method and the finite difference method are needed to 

define computer storage requi rements, computer time and accuracy 

of the results. 

v1. The numerical simulator should be applied to solve a two-

dimensional field problem wherein the flow may be unsteady and non-

uniform. 

vii. As suggested in Appendix C, the functional developed in 

this study may be utilized to solve the two - dimensional ground water 

flow equation treating the transmissibility as a symmetric tensor . 
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APPENDIX A 

D ISPERSION EQUATION IN ROTATED COORDINATE SYSTEM 

Eq. 3- 3 represen ts the mathematical model describing the 

transient con centrati on d i stributi on in a two -dimensi onal Cartesi an 

coordinate system x a nd y . Le t x ' and y' be another set of 

orthogonal C ar te sian coordinates rotated through an an gle 0 with 

respect to the coordina te s x a n d y a s shown in Fig. A-1. The 

relationshi ps between the two sys tems are given by 

y 

y l 

Fig . A - 1 Two - d i m ensional rotati on of axes. 
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x 1 = x cos 8 + y sin 8 
(A-1) 

and y 1 = -x sin 8 + y cos 8 • 

The rotation matrix is 

[ 

cos 8 

-sin 8 

sin 0

8

] 

cos 
(A-2) 

which transforms the dispersion matrix 

(A-3) 

into a diagonal matrix 

(A-4) 

where 
2 2 

D = D Cos 8 + 2 D Sin 8 Cos 8 + D Sin 8 x 1x 1 xx xy yy 
. 2 2 (A-5) 

and D = D Sm 8 2D Sin 8 Cos 8 +D Cos 8 y'y' xx xy yy 

Similarly, the rotation matrix, Eq. A-2, transforms the con -

vective terms u and v in xy coordinate system into the corres-

ponding terms in x 1 y 1 coordinates as 

u 1 = u Cos 8 + v Sin 8 
(A- 6) 

and v 1 = -u Sin 8 + v Cos 8 



APPENDIX B 

MATHEMATICAL DEVELOPMENTS 

Derivation of the reducing factor exp(@) in Eq. 3-9: Eq. 3-3 

may be written as 

D xx 

2 
_a.£_ 

2 
ax 

2 
-ac + + 2D 

xy axay 

(B- 1) 

It may be assumed that the dispersion coefficients and the velocity 

componeats in Eq. B-1 are constants over the area of a triangular 

finite element. If A = A (x, y) is assumed as the reducing factor, 

then according to Hildebrand ( 1965) the reducing factor must satisfy 

the simultaneous, first order partial differential equations 

. D aA + D aA = 
xx ax xy a y - u A (B - 2) 

D aA+D aA = 
xy ax YY a Y 

- VA • (B - 3) 

Eqs. B-2 and B-3 can be solved simultaneously to obtain 

(B - 4 ) 

Using the method of separation of variables, it can be proven that the 

reducing factor 
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A = exp (~) (B-5) 

(D v-D u 
) X 

(D u- D v 
) y • where = xy y_y xy xx 

D D - D
2 + 2 

D D -D 
xx yy xy xx yy xy 

(B - 6) 

The expression for , Eq. B - 6, may be modified using Eq. 3-2 for 

the dispersion coefficients to avoid zero in the denominator. The 

modified form is 

(B - 7) 

Eq. B - 7 is equivalent to Eq . 3 - 10. 

Proof of equivalence of the functional and the differential 

equation: The functional given b y Eq. 3- 11 is proved to be equivalent 

to the differential equation given by Eqo 3- 3 with boundary conditions, 

Eqs. 3 - 4 and 3-5. Given the functional, Eq. 3-11, 

2 D (l.Q..) ($.§_) 
xy ax ay 

(J3-8) 

where , D , D and D are applicable to the region R xx xy yy 

(Fig. 3-1), a small variation of the functional may be taken utilising 

the variational principles and assuming ! as invariant at any 

instant of time, and equated to zero. 
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(B-9) 

Using integrati on by parts and Green' s theorem Eq. B - 9 may 

be written as 

[ 
aC aC aC aC ] 6J= ex p(p) (D -n-+D -n-)dy + (D -n-+D -n-)dx 6C • xx v x x y v y xy v x yy v Y 

I' I 

a a C a a C aCJ +-n- (exp(p )D -n-) + -n- (exp(p )D -n-) - exp(p~t 6C dxdy=O 
V X XY O Y V Y YY O Y 0 

(B-10) 

where r is the boundary of the region R. 

Applying the fundamental lemma of the calculus of variations to 

the area integral of Eq. B - 10 yields 

a [ a C] ax exp (p) DXX ax 
a +--ay [ a C] a [ a C] exp(p) Dxy ax + ax exp(p) Dx y ay 

a + 
,aY 

f. a C ] a C Lexp (p) D yy a y - exp ( p) at = 0 
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Expanding the above and grouping the terms and di viding out the 

exponential terms, the following partial differential equation is 

obtained which is equivalent to Eq. 3 - 3 : 

ac 
a t 

ac + u--
ax 

2 a C ac +v--=D ay xx 2 
ax 

2 
+2D a C + 

xy axay 

2 a C D --
YY ay2 

(B - 12) 

The line ,integral in Eq. B-10 is to be integrated along the 

boundary of the region R in Fig. 3 - 1. On the portion of the boundary 

where the concentration is fixed (Eq. 3-4) oC = 0 and therefore the 

line integral is zero. On the remaining portion of the boundary, the 

concentration gradient in the outward normal direction !~ = 0 

corresponding to Eq. 3-5. This means that the dispersive flux across 

the boundary is zero, Reddell and Sunada ( 1970). This is equivalent 

to making the integrand of the line integral, namely 

(D xx ax 
ac + D ac ) = 0 and 

xy ay 
(D xy ax 

ac + D ac)=O 
YY ay 

(B - 13) 

Therefore, for both types of boundary conditions considered, 

the line integral 

S [ ac a C a C a C ] 
exp(~) (DXX ax + Dxy ay )dy + (Dxy ax +Dyy a y) dx oC = 0 

r 
(B- 14) 

Thus the functional, Eq. 3-11, is equivalent to the differential Eq. 3- 3 

and the boundary conditions, Eqs. 3-4 and 3 - 5. 
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Proof of equivalence of the functional, Eq. 3 - 16, and the d i ffer -

ential Eq. 3-13: In this section the functional given by Eq . 3- 16 is 

proved to be equivalent to the differential equati on in terms of the 

transformed value of the concentration cj> (Eq. 3- 13) with boundary 

conditions, Eqs. 3-14 and 3-15. The functional in terms of the trans -

formed value of the concentration cj> i s : 

J = 
D 2 
_.:t.Y(li) + (uli + ~ li) cj> 2 ay 2 ax 2 oy 

r 2 2 } 
+ l D yy u + D xx v - 2D xy u v ] z ( 0 cj> ) 

-- - cj> + a'"t cj> dx dy 
8(D D - D 2 ) xx yy xy 

(B - 15) 

where the dispersion coefficients and the velocity components are 

applicable to the region R (Fig. 3-1). Assuming ( :~) as invariant 

at any particular instant of t i me and utilis ing the vari ati onal principles 

a small variation of the functional is taken and equated to zero . 

Ss{ (a<1>) a (li) a a<1> a 6 J = R D xx ax ax ( 6 cj>) + D xy a x a y ( 6 cj>) + D xy a y ax ( 6 cj> ) 

+ D (a <1>) a (6"') + (~ li + ~) 6"' yy a y ay 't' 2 ax 2 ay 't' 

+ (~ a(6<1>) + a(6<1>) ) 
2 ax 2 ay 

2 2 

[ 
D u +D. v - 2 D u v "' yy xx xy 

't' + 2 
4(D D - D ) x x yy x y 

+ ( ) 6~} dx dy = 0 (B - 16 ) 
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Using integration by parts and Green' s theorem, we get, 

o J = S [(n + D 1..1.) dy + (n + D ! cj> ) dx ] ocj> 
I' XX a X xy a y yy a y xy X 

a + ay 

a + ax 

a 
ay 

(n ~) (~ yy ay - 2 

(
D acj>) 

xy ax 
a +--ax (

D a cj>) 
xy ay 

1..1. V ~) + -ax 2 ay 

2 2 

(~ cp) + a~ (; cp) - yy xx xy cj> [ D U tD V - 2D UV] 
4(D D - D 2 ) xx yy ·xy 

(B -1 7 ) 

Applying the fundament al lemma of the calculus of variations to the 

a rea integral in Eq. B - 17 yields 

a 
ax 

2 2 

a 
ax (n acj>) a 

xy a y + ay 

[ 

D YY u + D xx v - 2D xy u v 

- 4(D D - D 2 ) 
xx yy xy 

]~ -(:n=O 

(
D acj> ) 

YY ay 

(B - 18) 
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Assuming the dispersion coefficients as constants, we have, 

a t 

2 2 

[

D u + D v - 2D uv] + _Y~Y._ ___ x_x ___ 2 __ x~y__ cj> 
4(D D - D ) xx yy xy 

= D 
02 cj> + 2 D a2cj> + 

xx ax 2 xy axay 

Eq. B-19 is the same as Eq. 3-13 . 

The line integral in Eq. B - 17 

2 
D 

2 YY ay 
(B - 19) 

(' [(n + D + u i) d y +(D + D + vi)dx] ocj> 
.) XX OX xy O y 2 yy O y xy OX 2 

r 
(B-20) 

is to be proved to be equal to zero. On the portion of the boundary 

where the concentration is fixed corresponding to the Eq. 3-14, 

ocj> = 0 and therefore the line integral is zero. On the remaining por -

tion of the boundary the quantity within the square brackets in Eq. 

B-20 should equal zero. This situation corresponds to the natural 

boundary condition represented by Eq. 3 - 15. Utilising the relation-

ships of Eq. B-13 it can be proved that for that portion of the boundary 

where ocj> I- 0, the quantity within the square brackets of Eq. B - 20 is 

zero. Therefore, for both types of boundary conditions under con-

sideration (Eqs. 3-14 and 3 - 15), the line integral is zero. Thus the 

functional given by Eq. 3-16 is equivalent to the differential Eq. 3-13 

with boundary conditions, Eqs. 3 - 14 and 3-15. 



APPENDIX C 

METHOD OF SOLVING THE FLOW EQUATION 

Extension of the functional for solving the ground water flow 

equation: The functional g iven by Eq. 3 - 11 may be utilized for solving 

the ground water flow equation, considering the medi um as ani s otropi c 

and nonhomogeneous wi th regard to permeabil i ty. Zien kiewicz, 

et. al. ( 1966) solved by the fin i te element method anisotropic seepage 

problem for a steady flow case. Though the permeability was con-

sidered as anisotropic, they made use of a transformation to get r i d 

of the anti-symmetrical part of the permeability tensor (skew tensor) 

thereby reducing the partial differential equation to one without mixed 

partial derivatives . In the following procedure no such transforma-

tion is necessary as the proposed functional includes the effect of the 

mixed partial derivatives. 

The differential equati on de s cribi ng the nonsteady ground water 

flow in an anisotropic, nonhomogeneous porous medium can be stated 

as (Pinder and Bredehoeft, 1968) : 

_a_ 
ax. 

1 
(T . . ~) = 

lJ c)X. 
J 

S aH 
at 

where T . . = symmetric transmis s i bility tensor , 
lJ 

H = hydraulic he ad, 

(C - 1) 
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S = s t orage coefficient , 

and i, j = index coordinates. 

There is no s ource or sink term involved i n Eq. C - 1. 

In a two - d i mensional case, assuming the medium as anisotropic 

and nonhomogeneous with regard to permeability, Eq. C-1 can be 

written (in Cartesian coordinates) as: 

_a_ (T aH)+-a-(T aH) + -a-(T aH)+-a-(T aH) - S aH 
ax xx ax ax x y ay ay yx ax ay yy ay at 

(C - 2) 

Assuming the transmissibility as constant over any triangular finite 

element and using the fact that the transmissibili ty T = T xy yx 

Eq. C-2 can be wri tten as : 

T xx 

2 

2 
ax 

+ 2T 
2 a H 

xy ax ay 

2 
+T _.L!!_ 

YY ay2 
= S aH 

at 
(C- 3) 

In Eq. 3 - 3 after substituting the convective terms u and v 

both equal to zero, if we replace the dependent vari able C by the 

hyd r aulic head H and the d i spersi on tensor D .. by the tran smis s i-lJ 
bility tensor T .. and multiply the time derivative ac by the 

lJ at 

storage coefficient S , Eq. C - 3 results. With the above modifica -

tions, the functional (c0rresponding to the functional given by 

Eq. 3-11) for Eq. C- 3 may be written, as : 

J = HJh<x ( :~t + ZTxA :~ + Tyy ( ::n + (s ;~)H} dx dy 

(C - 4) 
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because in this -case is zero, and hence the reducing factor 

exp (~) = 1. 

Eq. C-3 is general and applicable to a porous medium in a 

two-dimensional case having anisotr0pic and nonhomogene0us 

permeability. The functional given by Eq. C-4 may be used in con-

junction with the finite element method to solve for the hydraulic 

head H in Eq. C-3. 



APPENDIX D 

FINITE ELEMENT CHARACTERISTICS 

Consider a typical triangle i , j, k as shown in Fig. D- 1. 

The concentrati on at the poi nt (x, y ) wi thi n the tri angular element is 

given by the linear polynomi al (Eq. 3- 17 ) as 

(D - 1) 

y k 

i 

J 
.,_ ____________ _,,,_ X 

F i g . D - 1. 

As the plane thus defined has to pass through cj> . when x = x . and 
1 1 

y = y. , we have 
1 

cj> . = a 1 + 0 i\ + 0 3Yi 1 

similarly, cj> . = a + a-2xj + a 3yj (D - 2) 
J 1 

and cj>k = a + 0 2xk + 0 3Yk 1 
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Using Cramer' s rule to evaluate the three coefficient s o 
1 

, 

o
2 

and o
3 

in Eq. D -2 in terms of the coordinates of the nodes and 

the corre spending nodal values of cj> we obtain . 

cp . 
1 

cp. (D -3 ) 
J 

where Am is the area of the th 
m triangular element , 

or simply 

(D - 4) 

in which {cj>} m stands for the values of the concentrations character -

istic of the m th element considered. The coefficients in Eq. D - 3 

are defined as 

(D-5) 

and 

with others following a cyclic, anticlockwise order in i, j and k • 

The row matrix in Eq. D-4 is a function of space only and the column 

matrix is a function of time only. 

In general, cj> for any particular element m of the system may 

be written as 

cj> = (D - 6) 
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where [Al = [ A(i)' A(j)' A(k)] 

q,. 
1 

and {<j,} m = <j, . 
J 

<j,k 

Eq. D-6 is equivalent to Eq. 3-20. 

h . th th T e contril;>Ution of the 1 node of the m triangular element 

to the differential of the function J is : 

[ 
u2+v2 ] 

+ 4(DL +D d T) <j, 8q,i 

where R m 

(D- 7) 

th denotes the region of the m triangular element. 

The various terms in Eq. D- 7 are evaluated from Eq. D-6 as follows: 

= (D-8) 
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.-21. 1 
[az]{cp}m (D-9) = = 8£ ax 2Am 

_a_ (-!r) = 
1 

(azi) (D-10) c)cp. 2Am 1 

...ful. __M 1 
[a3] 

{cp}m (D- 11) = = aii ay 2Am 

a (_M_)- _l ( a3i) (D-12) 
a cp. 817 2A m 1 

and ...£1. = A(i) = [ali + a2ix + a3iy] /zAm (D-13) c)<p. 
1 

where [az] = [ a2i' a2j1 azkJ 

[a3J = [a3i' a3j' a3k] 

{cp} m 
cp. 

1 = cp. 
J 

cpk 

Using the values from Eqs. D-8 to D-13 in Eq. D .. 7 we get 

+ D -- a {cp} --+-- a cp} --
( 

1 [ ] m a3i 1 [ ] { m . a2i ) 
xy 2Am 2 2Am 2Am 3 2Am 



( 

1 + D --
yy 2Am 

1 

2Am 
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[ a 1 {cj>}m ~) 
3 2Am 

(D-14) 

Assuming D , D , D , u and v as constants over a triangular xx yy xy 

element and using the integration formulas defined in this section 

(Eqs. D-16 to D-22) in Eq. D.-14, we get, 

1 
(u [a2] + v [a 3]) + 12 

( 2 2 ) ] + _l_ u +v · (AA) {cj>} m 
16Am DL+DdT [ iJ 

+ [(AA\] {M__ r} (D-15) 
4Am at 
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Integration formulas:, The following relationships are used 

for deriving Eq. D-15. For a triangle with local coordinates 

S·, S., sk' 11·, TJ. and TJk, we have 
1 J . 1 J 

s.+s . +sk TJ. + TJ . + TJk 
1 J = l J = 0 

3 3 

1 s . Tl· 1 1 

1. ss <ls dTJ 
1 

1 s . 
m 

(D - 16) = - TJ . = A 2 J J 
Rm 

1 sk TJk 

2. (D-17) 

3. S S s z <ls 
Am 

( 2 2 2) dTJ = si+sj+sk 12 
R 

(D- 18) 

m 

4. ss TJ 2 <ls dTJ 
Am 

( TJ~ + 
2 

+ TJ~) = - TJ . 12 J 
(D - 19) 

Rm 

5. ss s 
Rm 

TJ <ls dTJ = Am ( 12 s i TJi + s j TJ j + s k TJ k) (D - 20) 

6. ss [A] ds dTJ ,:: ss [A(i) ' A(j) , A(k)] <ls dTJ 
Rm Rm 



108 

For n ::, i , 

1 x. y . 
1 1 

1 Am 
= 1 x . y . = 6 J J 3 

1 xk yk 

Similarly for n = j , k 

ss A(n) ds d17 
Am 

::; - 3 
Rm 

(D - 21) 

7. ss [A] A(q) <ls d17 = ss [ A(i) , A(j), A(k)] A(q) ds d17 
Rm Rm 

= [ s SR A(i)A(q) di; d17' s s A(i)A(q) ds d17' s s A(k)A(q) ds aj 
m I\n I\n 
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S S { hn + a2n (~ +x)+a3n (,J +Yl] 
Rm 

Using the previous integration formulas we get 

_) s A(n)A(q) ds d17 = 

Rm 

-2 m A 
[ 

m 
+ a2n a2q x A + 12 

_2 m A . 
[ 

m 
+ a3n a3q y A + 12 

2 2 2 ] (s i + s j + s1c ) 
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+ (a3 al + al a3 ) y n q n q 

(D-22) 

where 

d'J, s S/(k)~q)d!;d~ 
m 

(q = i ' j ' k,) 

and s s A(n) A(q) ds dri is as given above . 

Rm 

Derivation 0£ matrices [s] and [p} Combining Eq. D- 15 

and two other similar differentials , the expressions for the matrices 

[s J and [p J of Eq. 3-22 can be written as: 



[s] = 

+ 

+ 

+ 

+ 

D xx 

4Am 

D 
2L 
4Am 

D 
2L 
4Am 

D 
.J.L 
4Am 

u 
12 

(a3i a2i) 

(a3j a2i) 

(a3k a2i) 

(a2i a3i) 

(a2j a3i) 

(a2k a3i) 

(a3i a3i) 

(a3j a3i) 

(a3k a3i) 

111 

(a3i az} (a3i a2k) 

(a3j az} (a3j a2k) 

(a3k az} (a3k a2k) 

(a2i a3.) 
J (a2i a3k) 

(a2j a3} (a2j a3k) 

(a2k a3} (a2k a3k) 

(a3i a3j) (a3i a3k) 

(a3j a3j) (a3j a3k) 

(a3k a3} (a3k a3k) 



where 

V 

+ 12 

u +v 
( 

2 2 ) 

[P] = 
1 

4Am 
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[P] (D - 2 3) 

(AA). 
l 

(AA) . (D - 24) 
J 



APPENDIX E 

PROOF OF INDEPENDENCE OF THE SYSTEM 

WITH RESPECT TO THE COORDINATES 

The set of equations represented by Eq. 3- 22 are to be applied 

to each triangular finite element separately. The derivations of the 

two square, symmetric matrices Ls J and [P] of Eq. 3- 22 are given 

in Appendix D. 

The [P J matrix for any element in Eq. 3-22 is only a function 

of the space coordinates of the nodal points i, j and k . The 

elements of the [P J matrix are computed using a 1 , a 2 and a 3 

coefficients given by Eq. D-5 in Appendix D and space coordinates. 

Except a 1 coefficients, all other quantities are independent of the 

coordinate system because they are taken as differences of the 

coordinates of the nodes. 

To check whether those a 1 coefficients are independent of the 

coordinate axis the x and y axis may be shifted by constant values, 

say a and b • 

Let x = x = x + a new 
(E- 1) 

and ynew = y = y+b 

where a and b are arbitrary constants. Using the relationships 

given by Eq. D- 5 in Appendix D, 
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= 

= 

= 

= a 1. - a a 2 . - b a 3. 
1 1 1 

(E-2) 

This trans formation is substituted in the expression for computing the 

elements of the [P] m atrix (Eq. D - 22 ) and the elements are found 

to be invar i ant. The [P] matrix does not change under a coordinate 

transformation, a n d h ence independent of . the coordinate axis. 

The [ s J matrix is a ls o given i n Appendix D. This [ s] matrix 

is a function of [P] matrix, a 2 and a
3 

coefficients given by Eq. D-5, 

dispersion coefficients and velocity components. These a 2 and a 3 

coefficients, dispers i on coefficients and vel ocity components are 

independent of the coordinate transformations. The [P] matrix was 

already proven to be independent of the coordinate system. 

Thus , the whole system which re sults from applying Eq. 3-22 

to each finite e lement is independent of the coordinate transformation. 



APPENDIX F 

NUMERICAL INTEGRATION FORMULAS 

The fourth order Runge-Kutta and the Adams-Moulton multistep 

predictor~corrector formulas used in the numerical simulator, 

Eq. 3-25, are given below (Conte, 1965 ): 

The time d,erivatives { a <l>} from Eq. 4- 2 can be written as 
Bt 

. 
<l> = f ( t, <l>) (F- 1) ~ ,.., 

where cp , f and cp are vectors. The fourth order Runge-Kutta 

formulas are 

2n+l .Pn + 
b.t (k 1 + 2k2 + 2k3 + k 4 ) = 6 (F-2) 

where t1 = f (t ' 1n) ~ n 

~2 f (t + D.t b.t 
t1) = - +-2-,,., n 2 ' (F- 3) 

13 f (t + b.t 
' <l> + 

b.t 
t2) = --

~ n 2 ~n 2 

and t4 = f(t + b.t' q>. + b.t ~) ~ n ~n 

where b.t is the time step size. From the initial values of 1 , four 

starting derivatives are computed. For sub sequent time steps, the 

Adams-Moulton predictor formula: 
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(0) 
{cj>}n+l = {<1>} + 6 t (ss{ll} - s9{..l...1} + 37{H} -9{~} ) 

n 24 8 t n at n- 1 8 t n-2 8 t n- 3 

(F-4) 

is used and the derivatives at time level (n+ 1) are computed. Then 

us ing these derivatives in the Adams - Moulton corrector formula, the 

final corrected values of {cj>} 
1 

a re obt a ined as 
n+ 

( 1) 
{ cj>} n+ 1 

(F-5) 



APPENDIX G 

COMPUTER PROGRAM 

Description of The Program 

The computer program consis ts of five segments and the function 

of each segment is descr i bed b elow: 

1. In segment one , input an d data checking operations are done. 

2. In segment two, the initial and boundary conditions are read 

and transformed us i ng the transformation, Eq. 3- 12, 

¢ = C exp ( / 2 ) 

where is computed for any node using the medium and 

flow properties of the contributing elements. 

3. In segment three, the matrices [s ':<] , [p':<] and { Q,:<} are 

formed and the matrices are modified for constant concentra-

tion (geometric) bound ary conditi ons. 

4. In segment four, the time domain solution of the system of 

first or.der linear differential equations are obtained. 

Numeri cal integration is performed utilising Runge-Kutta 

fourth order method and the A d ams-Moulton multistep 

predictor-corrector method. 
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5. In segment five , the computed values are transformed by 

the inverse transformation 

C = cj> exp (-~/2) 

and these concentration values are printed. 
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FLOW CHART OF THE PROGRAM 

Start 

Read and print 
geometric 

Print "band 
width too 

data 

Compute 
maximum 

band width 

Yes 

Read and print 
initial and 
boundary 

conditions 

Compute S 
(Subroutine 

TRAEX) 

Transform 
initial and 
boundary 
conditions: 

C -+ <P 

Compute values for 
setting up matrices: 
(Subroutines COEFA, CENTER, 
XIETA and AREA) 

No 
Print element 
number & stop 

Set up matrices S , P 
and R (Subroutines PMATRX, 
RMATRX, SMATRX and ADDIN) 

Modify the matrices to 
eliminate boundary con-
dition nodes 

Solve the matrix equation 
(Subroutines PRESOL, 
RUNKUT and AMSOL) 

Inverse transform: 
<P -+ C 

Print 
output 

Stop 
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DAT A INPUT FOR THE PROGRAM 

1. Five title cards (16A5) 

Any information identifying the problem or blank cards. 

2. Fir st control card ( 315) 

Col. 1- 5 Number of nodes - NNOD 

Col. 6-10 Number of elements - NE 

Col. 11-15 Number of geometric boundary condition nodes - LBC 

3. Second control card ( 4F 10. 0, 15) 

Col. 1-10 Starting time step for numerical integration - T 

Col. 11-20 Time segment length - TSEG 

Col. 21-30 Lower truncation error limit for numerical 
integration - ERRLO 

Col. 31-40 Upper truncati on error limit for numerical 
integration - ERRHI 

Col. 41-45 Number of time segments which is equal to total 
time period divi ded by time segment length - ITT 

4. Third control card ( 315) 

Col. 1- 5 1 for constant values of u and v and boundary 
conditions for each time segment; any other 
number for nonconstant values - KODE 1 

Col. 6-10 1 for constant u and v over space ; any other number 
for nonconstant values - KODE2 

Col. 11- 15 1 for constant initial conditions over space; 
any other number for nonconstant values - KODE3 
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5. Element cards (5X, 315) 

Cards must be arranged in element number sequence and all 

cards must have three node numbers. There should be one card 

for each element and node numbers must be punched from left to 

right in counterclockwise direction around the element. 

Col. 1- 5 Element number or may be blank. 

Col. 6- 10 First node number of element - i 

Col. 11-15 Second node number of element - J 

Col. 16-20 Third node number of element - k 

6. Node cards (5X, 2F 10. 0) 

These cards contain the x and y coordinates of each node 

arranged in node number sequence. 

Col. 1- 5 Node number or may be blank. 

Col. 6-15 x coordinate of node. 

Col. 16-25 y coordinate of node. 

7. Initial conditions (5X, F 10. 0) 

Cards must be arranged in node number sequence for all nodes 

if the columns 11- 15 of third control card contains other than 1. 

Otherwise only one card required. 

Col. 1- 5 Node number or may be blank 

Col. 6- 15 Initial conditions. 
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8. Dispersion and diffusion coefficients (4F10. 0) 

This card contains the values of the longitudinal and lateral 

dispersion coefficients, molecular diffusion coefficient and 

tortuosity. 

Col. 1- 10 Longitudinal dispersion coefficient - DL 

Col. 11-20 Lateral dispersion coefficient - DT 

Col. 21-30 Molecular diffusion coefficient - Dd 

Col. 31-40 Tortuosity - T 

9. Velocity distribution (5X, 2F 10. 0) 

These cards must be arranged in element number sequence for 

all elements if columns 6- 10 of third control card contains other 

than 1. Otherwise only one card required. 

Col. 1- 5 Element number or may be blank. 

Col. 6-15 Component of velocity in x-direction - u 

Col. 16-25 Component of velocity in y-direction - v 

10. Boundary conditions (15, F 10. 0) 

These cards must be arranged in sequence for the number of 

geometric boundary condition nodes (LBC) indicated in the first 

control card. 

Col. 1- 5 Node number - NBC 

Col. 6- 15 Geometric boundary condition - BC 
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11. Repeat 9 and 10 for each time segment if columns 1-5 of third 

control card conta:i,ns other than 1. 

12. Repeat steps 1 through 11 for each additional problem. 



FORTRAN IV COMPUTER PROGRAM 



C 
C 
r. 
C 
C 
C: 
C 
C 
C 
C 
C 
C 
C 
C 

MAIN PROGRAM 
PROc;R~M FTNTTFL 

J ( T•IPUT •OlJTPI IT• T APf'i= INPUT• TAPfl\=0UTPUT l 

.......... ............ ~····~·j······················~-~--• • 
<> THT5 PR0RRAM 501 Vf5 A two-DT"4EN5TONAL HYOPOOYNAMIC • 
• OT<;PFP5TON fQllATlOIII -WTTH MIXFO PARTIAL" OERIVATIVES • 
<> l'IY FTNTTF FI.FMFNT l~ETHOO. TRIANGULAR ELEMENTS • 
<> _ ARF 11srn. nJSPf:R5JON COEFFTCIENTS ARf. TREATEO A·S • 
<> <;F.CONO 0POF.1~ SY!'4MFTRTC TE'N50R. 1,.0NGJTUOINAL ANO • 
<> LATFQAI _ 015PF.RSTON COEFFJCJEHTS ARE INCLUDED • • 
• PP0VJSTON JS MAOf TO INCLUOE MOLECULAR DIFFUSION • 
<> COFFFlfTfNT. - • .. • .... , ....•.....................•...•.. ~·········~········· 

C: <> ·FOP~AT <;TATFMENTS 
C 

)00) F0PMAT (l~AS/)AA5/J~A5/)6A5/l6A5l 
JOO? FOPMAT (3TS/4FlO.O,J5/Jl5l 
1003 FOQ~AT (5X,315l 

· 1004 FnPMAT (51,?FJn.o, 
1007 F0PMAT (!HJ) 
JOOA FllP'IAT (lOX•l5H'JIJURfP OF NOOES,15/IOX, 

J?qH~UMRFR OF TPTANRlJLAP ELFMENTS•IS/lOX, 
?l?H5TARTJ~,r, Tl~'F 'if'ILIJTION TNCREMf.:'Ht f.20,5/l0Xt 
l?JHlf.NRTH OF TlMF SFRM~NTS, F.20,5/!0X, 
4?JHNIIMPFR nF T TMF <;f.GMFNTS ,TS/IO X, 
54<;;11 JP Pf P A,10 LOWF.P FRROR AOIJNOS ON TI•1f. S()LUT.ION, 
A ?.Eln,2//l . _ . 

)OD F"OP"-AT (lf'X,27HOATA fQROR - fPRl.0 (;f. ERRHJ//l , 
1014 FnPMAT (lOX.4lHF.RROP - TOO MANY NODf.S OR TOO MANY ELEMENTS) 
)O)S FOPMAT (qX.J5H l.15T - X ANO Y COOR. FOR EACH NODE/I 
1016 FnP'IAT ()OX,J)O, ?f20,5) 
1017 FOPMAT (17X,4HNOOF.AX•l?.HX COOR01NATE.8X,12HY COORDINATE/) 
1:lOl Fl'PMAT (11-tn,9X,?)H LIST - ELEMENT NODES//) · 
1)0? F"0PMAT r1ox.110.JJ<;) 
J1nJ FOPMAT (17X.J.iFf_F~7X,5HNOOf.5/) 
1401 FOPMAT ()Hn.101,1,HRANO WJOTH rs,JS//) 
140?. Fl'PMAT ()OY,1}"nATA FPPOR - BAND WIDTH TOO LARGE//) 
7.001 FOPMAT (5X,F!0.0) 
2071 F.OPMAT fln~.37.iLt'iT JNTTIAL CONOITJONS FOR EACH NOOE/I 
?.07? FOPMAT ()OX,TIO• F20,51 
7.073 FOP"4AT 117X,4H~OOF.6Xo9HINio CON,/) 
?.360 FnPMAT (4F10.0l 
2401 FOPMAT (5X.?.FJO.Ol 
2520 FOPMAT (10X,36HLONRITIITTTNAL DISPERSION COEFFICIENT, 

l4H01. =•Fl0.5/ 
2IOX,35HI ATF.PAL !'IT~PFR-STON .COEFFTCJfNT OT =,Fl.0.5/ 
31nx,1AHM01..FClJl..AR nTFFlf'iTON COEFFICIF.NT OD =,n0.5/ 
41nX,l7HTOPTll051TY T0RT =,FJO;S//1 

7.601 FOPMAT ·1qx.?.5H Ll5T VAPTARLE INPUT DATA//) 
21\07. FOPMAT l!OX,110• ?Fil,?) 
2601 F"OPMAT (T'i,FIO.O) 
2604 FOPMIIT (1H0,9X•25H L TST AOll"lOARY CONOTTJONS/1 
?1\05 FOPMAT !)5Xol5o F?0.5) -
?6n6 F"OPMAT l)JY.7HfLF._.FNT,7X • ?HVX,QX•?HVY) 
?611 FOP"IAT (17X,41•~1nni:".Px.1 lHROUN. CO"'JO,/) 
3151 FOPMAT llOX.??HNft;ATTVE AP£A, fl .F.~fNT,151 
4001 FOPMAT 19X.IAH TIMF SE(;Mf.NT NO. •J5/9~,17H POSITION INK IS, 

('_ 

l~A/qX • l7H TJMF STFP ~JZF =• flA,8//) 
400? FOPMAT (IHJ.IIX,271' UST RESULTS FOR EACH NODE/II 
5001 FODMAT (IOX,4HNOOF.7X.J3HCONCENTRATION/) 
5?01 FORMAT " 1qx.1s. E20.5) . 
5301 FOPUAT !9X.JOH------------------------------//) 

('. • APDA\'S 
r. 

no11R1.F PRf(:JSJOI\I IJT 
('.OMMON /BLKI/A(?50,4) 
(:OUMON /RLK?/llT(?SO) 
('.OMMON /RLK]/S(?50,?0I 
COMMQN /RLK4/P(?50•20l 
COMMON /81.IC5/P(250) 
COMMON /RLKF./'100(?50,31,X(250).Y(250) 
('.OMM/)N /RLKR/OXX(?50)o0YY(?50),0XY(2501,VX(250),VY(250) 
COMMON /ALKq/01 ,OT.OO,T0RT 
OTMENSION NAMF.IRO),XLOCl31,YLOC(3),ACOF13,3)t 

lPEL(1,31,5fL(3o3l.Pf.L(31,NRCCJOOl,RC(lOOI, 
2lll?SOl,l'lfTA(2501 

C 
C 
C 
r. 
C 
C 

_C ' 
C 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • • • 
, . 
• 

<;Er.MF:NT l 
INPUT ANO DATA CHfCKING 

• • • 
·~························································ 

c-
c 
C 

• • 
Rf.AO TJTLES• CONTROLS, ANO GF.OMETRIC DATA 

WPITF TTTLES ANO CONTROL 

1000 QF"AO (5,)0011 INAMF(Jl,J•l•RO) 
WPTTf. 16•1007) 
RfAO 15•100?.I NNOO • NE,LRC,T,TSEG,ERRLO,FRRHI, 

lTTT,K00El,KODf?.,KOOF3 -
TFINNOO,LT,?50,ANO.Nf.l.T,250,ANO,LRC,LT.1001 
WPTTE'(F.,1014) 
r.o TO 5500 

1090 DfAO (5.1003) IINOO(J,J),J:),31,J:1,NE) 
RFAO (5.10041 IX( ,ll • YIJ) ,J=ltNNOD) 
WRJTE 16,1001) (NAME(J),J:J,801 
WPlTE (6,1008) NNOO,Nf,T,TSEG,JTT,ERRLO,FRRHI 
WRTTE 16,10151 

GO TO 1090 

-N 
lTI 



C 
C 
C 

C 
r 
r 
r. 
r 
C 
C 
C: 
C 
C 
<: 

JJOO 

)400 

1,;,n TF: ( h • 1 0 1 7 l 
1;0TTF (h ·, J Ollil ( .J,~ IJ) ,Y(J) ,J=J ,NNOO) 
!F'(F' RQ I n. 1 T,F.P RHli r.o TO 1300 
.,.,~TTF u .. 1n1J1 
r,o TO 55 01\ 

o ('0'4PIITF' RA •!O W TOTH INCOL l 

,,rn1 =l 
•;of .TF (h.J 101 l 
•;oTTf (h, 11 0 11 
nn 14 0 0 r, => ,N, 
"IPITE Cf» 110?1 O\J, CNOOIN,NI I ,NI=l ,Jl 
l"\<l 140 0 I = l , J 
()())400_!=),1 
'-11\f=NOO(I\I, T l-N ('\<l (N • . ll +) 

. T• CNCl\l - N" , : T , fl > ~11':<lL -=NriJ 
_WOTTF (h, l !,I\) l ,1rn1 
TF'l "JC O! . ·L•.?Ol r,n TO ?(100 
'<I PTTf I'-• ;4021 
r,n Hl 5c;n n 

oooooo~••~ uoooooo•oooo~ooooooooooooooooo•o•••••••••••••••• .. .. 
·-. <:;fr,Mf•JT ? 

of·AO .v •n r;,A'JSF'I\DM TN HI AL Cf1Nf) IT !nlJS • 
START K LOOP WHICH SPA NS PEMAINnER OF PROGRAM, 
P f' AO V!,OTARI f fl FMF'.,,; f l'ATA F'()R K-TH TIME SEG'4f."IT, 
r n i,p, ITF fl! c;~f PC:: TOI\I rnEFF TC IE•JTS F'OR f ACH EL EMF.NT. 

• • • • • • • 
············~··~·················~························ 

?000 TF'CKnnr1.,n.11 r.o TO ?050 
o,an ·(<;,? r. n)) (Ill . JI ,.J=l ,NNOO) 
r.n tn ?0711 

2oc;n oF,,n 1<;. ?r.11 1 > 11c1 i 
nn ;,o,;o .1=1 .N\!nn 

?Of,O 11 I I I =1 I ()) 
?.070 WOTTF (h,?07Jl 

WOTTf. (h,?07)1 
,..OTTF' (h,?0721 (J.tl(J) ,J=J ,NNOO) 
,..OTTf Ch• l 0071 
l(:f'j 

~tO OW='-J "J()I) 
?)5 0 K=I'+) 

Tr,~, TH=r s1-·r; 
TF'IK() nF l,H) .).A'l(),1<,GT,JI f,() TO 4000 
OFAO (5,>'.>AO) n1..nr.nn.TORT 
TFC KOOF';>,,I\,)) (;() TO 2440 
OFAO (5,? t.Ol) CVX(J),VY(J),.J=),NE) 
r,n Tl\ ;,c;n n 

?440 OfAI) CS.?1,1\)) VX()),VY()) 
I"\() ?4SO .I= 1 ,NF 
VX C ll =V~ C 1 l 

?45r VY C. ll=VYl! l 
;,500 r.n••T r,111. 

?.liOO 

?f>SO 
r 
C 
r 

no ?hOO N=l ,NF. 
VF'! :S/'\PT ( ( V X ( •!) •VX (NJ ) + ( VY (Ill) •VY ( 111 I ) ) 
n·o c N l = COi •vx (~I) •vx (N l /VFL <>•2 > • (IH<>VY (Ill) *VY (NI /VEL ••2> 

J+nn•Tl'lP~ · 
OYY(Nl:COTOVXINl•V~lllll/VEL••2l+C0L*VY(lll)•VY(NI/VEL**2l 

1 +nn<>T/'\PT 
OXY(l\ll=IOI.-OT)"VX(N)<>VY(N)/VEL 0 <>2 
('.()MT l '-Jil• 
._,PTTF .CA,?hOl) 
1,1QJTF' c,:,,;,c;;,01n1.,nT,On,ro~T 
'IP!Tf: (/i,?h'l~) 
WPTTF. Ch,?AO?) (.l,VXl .1),VYCJ), ,1:1,Nf) 
("Al I TPAfX (I\IN()n,NF'·• RF.TA) 
no ?650 N=IAI\INOO 
II C•II =II (NI <>FXP (RETA CM) I?. l 

.. Of. an RI\IINOAPY ('/'\NO TT TONS ANO TRANSF'OPM 

PF'AO C5,2h01l CNRC<.J>•BCLJl,J=l,LRCl 
""PTTF' (h,?h04) 
WPTTf Ch,?ftl I) 
WPTTf (h,?ftO<;) . CNRr.U>,RCCJl•,l=l•LRCl 
1)1) ;>QOO 111=1 ,LR(' 
T:NR(:Cllli 
RCINl:Rf'.(l\ll<>F.XP(RF'TACTl/2,> 2900 

r 
C 
C 
C 
C 
C 
C 
C 
C 

••••••••••••••••••••••••••••~••••w•••••~•••••~••••••••••• .. . 
• • 
• 
0 

<:;Er.MF.NT ".'I 
RIITLO <;YSTF'M MATPT(:F'S <;, P, Alolll R ANO SET 
ROIINOAPY CON{)!TJONS TN MATRICES. 

• • • .. 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

.. = 0 
I)() 1000 
PCTJ=O, 

= l ,NPOW 

Oil '3000 J = J,NCOI. 
<; CT• . ll = 0. O 

1000 P Cl, .11 = o.o 
31011 M: M+) 

r.a1 .1 f'.'OF'F'A IM.~COFl 
CAIL C:FNTEP I"• XAAP, YRAP) 
CAI..! . XTF'TAIM,XRAR,YRAP,XLOC,YLOC) 
1'."AI 1. AOF'A(Xl_Ol'.",YLOC,A•~) 
TF'l~M.r.T,O,l f,/'\ TO 1150 
1,/PTT[ (h,1151) M 
r,n TO 551)0 

1150 C::AI. L P"ll\T<>X IAll,AC'.OF',X«AR,YRAR,XI .OC,YLOC,PELl 
l"'A! 1. OMATPX (".PF! l 
C/'\ N<;<;:(((VX(M\<>o?+VY(\l)<>o?)/(OL•lll)oTORTll/4,0) 
CAL! . <;MATPX Cl•,A'-1,C'.ON55,PFL,SEL ,ACOF'J 
l'."AU. A0'1flll CSl:l. ,Pfl. ,P•l ,M) 
TF' (M .LT.NE) r,o Tn 3100 

,_. 
N 
O" 



r. 
r. 
C 

.. <;F,T Al)ll••'1ADV C:,lNO TT TON<; TN .... ATRlCE<; 

nn 1?10 I = I •I RC 
'11\J = NRC: (TI 
"C = -irnL 

3?.0 0 •10 = I\JN - Nr+l 
IF (I\JO .LT. I) GO TO ,3? I 0 
0 ("Pl = 0 ("IQ) - s ( ~JR, NC I <>RC ( Tl 

1?. 1 n ••1r = ,.,r-1 
i F <•'r .c; T • 1) r;n TO 3200 
.. ,r. = I 
~IQ : f'I./•! 

1220 •IP = •JP•l 
IF ( NP .GT. "JP0 ,1 ) C.O TO 3230 
•,IC = "Ir.+ l 
IF ('Jr . C,T • Nrn1 l · GO TO 3?10 
0 (•JR l = p (N;> l -5 (N"'• •IC) <>f>C ! I I 
r.n TO. l?? n 

1?3(1 ".MITT'-III F 
,; 
r: 
r 
C 

.. 
0 

Pf.FORM MATRT rf. c; ANf'I ELTM l NATF. EQUATIONS 
4T R()ll•JnAPV· COMOTTIO•I NOOES 

V4n 
)?50 

1?60 

3?7n 

3?Rn 

nn 1100 I= l•L AC: 
".l!'-1 = 1\/A f: ( T 1-l • l 
,._IPf'I"' = MR :' 1,1 -) 
IF l'l"l • r,~-. "-1Qr, t•I ) r;n ·To· 3100 -
r\l) 1?4 0 N? = ~ N , r<JPO !oJ 

I I( '•JI'/ l = II ,,,o. l) 
ocwn = P fN'1+ I l 

n n ,17.40 "IC = I • "Cnl 
c:; ( "JC, ••IC l = c:; ("P• ! +•Jr) 
p (N<>••ICl = p ! ,,p + I , >1 C l 

'-' 0 = ~J~I ,, = ;> ,,c, = "Q -1 
T ,:- {f\llJ .L T . I l GO Tn ·3300 
"'I = N+ 1 . 
TF IN .r;T. "!COi I r,r, TO 3?.80 
no 1?7n J = N,NC.Ol 

P ("liJ. 1- l l = 
c:; ( "JD, I- ]) : 
O (f\10.t-l( :l f ) 

fN..)•"''(f)I 
r, n TO 1;>,<, 0 

<; 1•10 . ,1 c n1 

· P n•u • . J) 

<; l"R• .l) 
11 .o 
n.n 

p 1 •10 • >Jent. 
3300 rnl\!T J•JIIF 

n.o 
= n.o 

C 
C 
C 
C 
C 
C 
r: 
C 
C 
C 
C 
C 
C 

C 
C 

- C 

000000000000000000000000~000000000000~0000000000000000•000 

.. 0 .. 
0 .. 
0 

0 .. .. 
0 

<; fr,"FNT 4 o 
TIMF nn ... llIN 5011/TTn•, OF <;Y<;Tf!~ nF FTC1ST OROF.R+ 0 

I . T"lf.llP nRnJrvAPV nJFFF.RfMTIAL f.QIIATTmJS WITH .. 
CON<;TANT COFfFTrlF,,TS. SURROUTTNE<; RlmKUT ANO • 
,\M<;O[_ ADF ,,c;ro FOP NIJMFRICAL I•ITF.:C.RATTON SCHEME _ .. 
F()O THF K-TH TTMF Sf.Gl'fNT. Tl"4F. STF.P AUTOMATICALLY • 
o\D ' lll5TFO FOP OPT TMl_l~I C()NVER/;f"JCF. * .. 

0000000000000·0000000000000•~00·00••000•••000••·••00•0_000••·· 

rAt L PRF501 (I\JPOW. I\J COL) 
4000 1.1 = o 

• 
• 

WDTTf 1"-+400?) 

CO.,PIITF Nll"Rf.R nF TTMf 5TEPS INK-TH TIME SEGME"IT 
ANO o\f'\Jll<;T TT"'F. Sl7F AS REQUTRF.:ll. 

C 
4100 I\J<;TFP=Tl~ _TH/T+0.5 

<;TFP=N5TfP 

r 
C 
C 

C 
C 
C 
C 
C 

.. 
4200 

• 
• • 

4300 

T=T Tt~I _ TH/STF.P 
"'PfTE (l,+4001 I K+LI +T 
TF (N<;TFP .c.r. 4) (;() TO 4?.do 
T:T/2. 
r,n TO 4100 

r'.0 '-lPIITF: <;TAPTT~t(i VALUF<; FOO AM<;OL 

CALL PllNKIJT (IJ 

I.I = 1 
, I\IPOW + -NCOL + Tl 

AM<;OI_ <:ALC<; AU !"lTHfR VALUf<; Of Fll"JCTI0'-1 IN K-TH 
TlMf Sf/;MENT A~f) C:HECK<; MAX. T~l"IC~TlON ERROR IN 
<;Y<;T ~M FOP A"I ITfll'ATIC AOJIJST"4FNT Of __ Tl"4E STEP sr'zE. 

1,1 = I.I • 1 
rM_L AM50L (M<>Olil. NCOL+ T+TRUI\Jl(.IJ) 
TF I LL .LT. "-l GO TO 4400 
IF IT'1/IIIJI< .r.f. F'lRI O .A>!ll. TRIII\JK .Lf. • ERRHI) GO TO 4400 
TF (TOIIW( • LT. fRRI O ) r.n to 43?0 
11 =Ll. -1 
nr !CT J••='JSTFP,-L l 
TTMI TH:OTFTIM"T 
T:T /;>-. 
r.n TO 4100 

4]?0 OTFTTM:~ <;TFP-LL 
TF (OTFTIM • LT. 16.00005) GO TO 4400 
TTMI T><=OTFTII-H>T 
T=T•2. 
no 4110 l=loN'lOW 

4330 II! Tl :llT (I l 
r;o TO 4 100 

4400 Tf!LL .LT. NSTfP) r,n TO 4100 

.... 
N 
-J 



C 
r: 
r: 
r: 

~ o oo*o ooo o a ~o o oo *o o o ooooooooooo o oooooooooooooooooooooooooo 

" 
" c:F"r,•.1F" "IT c; 

TPhN <;F n :m s t. \! n n l JTPi.JTS RFS l lL TS 

" " " " 
C 
C 
C 
r: 

~ 000000000 0 0 0 0 0 0 00000000000000000000000•••••••0000 • 0000000 

r: 
r: 
r 
r: 
r 
r 
r: 
r. 

c;ooo wo1 r F: rf., c;nn 1, 
'-1 : t"I 

. 1: n 
n,'\ _c;ns n t= l, t_ Rr 
IT=•·'"(: (I ) 

c; o c;n Ill TT l =RC':( 1 ) <>f XP (-RFTA( Tl)/?.) 
c;J Of' • •= •J•l 

_I = I+ 1 
nl') S?OO 1=1 ,LR C 
IF r•; «C':(Tl, f(l, .1 ) _l= , l•l 

5?00. C': O'ITl'IIIF 
TF 1.I.r;r. ," 0" o n1 r;o TO c; 3 nn 

11 (.I) .: ! 17 Cf- ! ) 
I ll.I) :11( ,Jl " ~-X"(-;lFTh(.J)/?,) 
'•Plfi' (f-, <; -:>OJ) . l,llf-Jl 
T• !IIJ,I.T , >!'>l')lo/1 GO TO 5100 

<;JOO WPTTF (f.,SlOi l 
TFCKOnF1. ~n.1) r;o TO S]50 
r,n rn s4 nn 

c;1c;n l')n Slf.0 J=l,NPn w 
Slf.O Ill J):IITI .Jl 
c;<.O O TF(K,J _T. JT T) r-n Tn ;>]SO 

r,n TO 1 O il~ 
c;soo c;Tm> 

F,In 

SUBROUTINE XIETA 
c;I11=100IITr<J>. XTF T Ar ... x«AP,YfiA~,x1.nc,v1 OC> 

ooooooopoo o ooo o oooooooo o oooooooooooooooooooo~ooooooooooooo 

1 (1 0 

.. .. T"T<; <;!l flOOi' T T'-!F rn '-'PIIH' c; T>'F LOCAL CnOROINATE'i 
l) F ·I\J r. :l F <; o,, TP T hl\JGi II_ AR F t. EOAf'.>IT ", 

• • • 
" o oo oo oo o o o ~ o oo o<t o~ooooooooooooooooooooooooooooooo••••••••• 

('nwin•I / '-' I i< f./ '.J'1 n (?SO, 1), X ( ;>50), Y ( ;>c;o) 
nTMF N<;J n !\; XI 0('(11,YL<lC(l) 
nn 1 n n 1 = 1 • 1 · 
f = t- •nntM. L l 
• 1. nc ( I. ) = X r T )'- Xf- AR 
YI ncr t. l=YIT)-Y A AR 
DFTI 1P,I 
n ,n 

C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C' 
C 
C 
C 

100 

?no 

SUBROUTINE COEFA 
<:;IIAPOII TJIIIF ('() f FA(",ACnFl 

0000000000000000000000000000000 ~ 00000000000000~~••••••••• ~ 

• 0 .. .. .. 
THJ<; <;l(AD0 1.IT!NF cn••PIJTF<; H<• A-('OfFFTCTFNT5 
FOQ THF MATRTCfc; OF THF M-TH FLFMFIIIT, 

.. .. 
" o o o ooooo~oooooo o ooooo~o• * *•••• • {to o o~ o~o•oooooo o ooooooooooo 

rn•-• "1 '1 •I /RI l('f./"'1)1) (?SO, 3), X ( ?50 l, Y ( 2 5 0 I 
nT"FN<;Tl'lN A('OF(l,1) 

11 =Nn'l r", I l 
, l;>:•JOn ( M, ;> l 
Jl:IIJl')I') (M, 1) 
,r·n, r 1 ,J) 
1rnF r 1.;, > 
hrn,(t,•l 
1rnFr;,,1 l 

X ( , I?) oy (J•l-Y(Ji')"X ( . )11 
X( .Jll<>Y( J l l-Y(J))<>)(( . I1 l 

= X(.lll<>Y(J;>)-Y( . l))oX(J2) 
Y(J?)-Y(Jl) 

= Y(J1l-Y(Jl) 1rnF ( ;,, ;>) 
ArnF(;>,1) = YLlll-Y( .I?) 

: X(,11)-X(J?) 
X<Jl)-X(.J]) 

= X (.J?.1-X ( . Jl) 

ArnF(l,1) 
A('n• ( 1, ;>) 
Arl)F(),1) 
PFTJIQIIJ 
F'in 

SUBROUTINE COMB 
<:;IIAPO! IT TNF r:nMA ( Y • NQ(l\,/, NCOL, Z) 

ooooooooooooooooooooooooooo•••••••••••••••••••oooooooooo•• 
• • .. 
" 

T. , Jc; SIJAR(l!ITJN• 1-1111.TIPLTl'S c;yM>,ffTRTC MATRIX S 
rn lo<ATPTX y ANI" 'iT<lRF<; THf RFSlJLT TN z. 

" 
" 
" .. 
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APPENDIX H 

EXAMPLES TO SHOW INSTABILITY 

Results for problem in Fig. 4-8 with DL = 0.01 cm 
2 
/sec.: 

The numerical results for the problem in Fig. 4-8 with the longitudinal 

dispersion coefficient DL = 0.01 cm 
2 

/ sec is given in Table H-I. A 

comparison of results in Table H-I and that in Figs. 4-9, 4-10 and 

4- 11 indicate the influence of the dispersion coefficient DL upon 

the stability of th~ solution. 

TABLE H-I 

Values of C/C for problem shown in Fig. 4-8 
0 

1 = 10. 0 cm 

2 
DL = 0.01 cm /sec 

V= 0 . 1 cm/ sec 

t = 10. 0 secs 

Fractional Numerical 
Distance Solutions 

x' I 1 C/C 
0 

0 1.0 

0.2 - 7. 5856 X 10 3 

0.4 -2.8267X l0
7 
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TABLE H-I (Cont'd) 

Fractional 
Distance 

0.6 

0.8 

1.0 

Numerical 
Solutions 

8. 9563 X 10
11 

-4. 0849 X 10
15 

7. 8542 X 10 19 

-1. 0212 X 10
20 

Results for problem in Figs. 4-1 and 4-2: The problem shown 

in Figs. 4- 1 and 4- 2 was solved using the method of Guymon ( 1970) 

and a longitudinal dispersion coefficient DL = 0. 0012 sq. miles/year 

which is equivalent to DL = 1. 0 cm 
2 

/ sec instead of using 

D = 0. 5656 sq. miles/year. L 

The [ S] and [SJ- 1 matrices for this case are shown below: 

3.93 

0 

o. 981 

[SJ = o. 981 

0 

0 

0 

0 

3.93 

0 

0.981 

0.981 

0 

0 

0.981 

0 

3.93 

0.982 

0 

0.981 

0 

0.981 

0.981 

o. 982 

7.86 

0.982 

0.981 

0.981 

0 

0.981 

0 

0.982 

3.93 

0 

0.981 

0 

0 

o. 981 

0.981 

0 

3.93 

0 

0 

0 

0 

o. 981 

o. 981 

0 

3.93 
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[ s r 1 = 

0.279 0.00678 -0.068 -0.0317 0.00454 0.0249 0.00678 

0.00678 0.279 0.00454 -0.0317 -0.068 0.00678 0.0249 

-0.068 0.00454 o. 294 .. -0.0212 0.00304 -0.068 0.00454 

-0.0317 -0.0317 -0.0212 o. 148 -0.0212 -0.0317 -0.0317 

0.00454 -0.068 0.00304 -0.0212 o. 294 0.00454 0.068 

0 . 0249 0.00678 -0.068 -0.0317 0.00454 0.279 0.00678 

0.00678 0.0249 0.00454 -0.0317 -0.068 0.00678 0.279 

The results are shown in Table H-II for the same values of the 

fractional distance for which the results are given in Table I. A 

comparison of results shown in Tables I and H-II indicate the 

influence of the dispersion coefficient DL upon the stability. 

TABLE H-II 

Values of C/C for problem in Figs. 4-1 and 4-2 at time = 5 years, 
0 . 

Longitudinal dispersion coefficient DL = 1. 0 cm2 /sec 

Fractional Numerical 
Distance Solutions 

x ' /1 C/C 
0 

0 1.0 

0.25 - 7. 848 X 1035 

0.5 - 7. 994 X 1068 

0.75 6. 276 X 10104 

1.0 o. 148 



Symbol 

A 

[A] 

a . . 
1 , J 

C 

C 
0 

D 

D . . lJ 
D ,:< 

ij 

DL 

D . 
s 

i 

j 

APPENDIX I 

LIST OF SYMBOLS 

Definition 

Area of triangular el e ment 

A row matrix 

Coeffi cients of [s] matrix used in stabili ty 
analysis 

Coefficient for deriving [ s'J and [ p] matrices 

Mass concentration of tracer 

Reference concentration 

Diffusion coefficient 

Dispersion coefficient 

Total dispersion co e ffi cient 

Longitudinal dispersion coefficient 

Di spersion coeffi cient in the s-direction 

Lateral dispersion coefficient 

Molecular diffusion coefficient 

Characteristics of porous medium 

Particle s i ze of porous medium 

Indicates node ; also used as a subscript 

Indicates node; also used as a subscript 

i, j Index coordinates used to denote tens or 

Units 

2 -4 
FT L 

FT 2L- 4 

2 -1 
LT 

2 -1 L T 
2 -1 L T 

2 - 1 L T 
2 - 1 L T 
2 -1 L T 
2 - 1 L T 

L 

L 
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k 

K 

L 

1 

m 

N 

n 

{Q} 
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Definition 

Indicates node 

Per me ability 

Number of nodes with geometric 
boundary conditions 

Length of column of porous medium 

I d . th f . . 1 n 1cate s m 1n1te e ement ; us e d as a 
superscript or subscri pt 

Total number of nodal points 

. th Indicates n node or it may indicate 
normal direction 

A square, symmetric matrix 

A square, symmetric matrix 

A square, symmetric submatrix of [P*] 
relating to one particular finite element 

A column matrix 

A column matrix 

Elements of the column matrix {Q,:<} 

qn Elements of the column matrix { Q} 

R 

R m 

r 

Two-dimensi onal region 

Region of the m th triangular finite element 

Radius 

[s ,:'] A square, symme tric matrix 

[s] A square , symmetric matrix 

[s) A square, symmetric submatrix of [ S ,:<] relating 
to one particular finite element 

Units 

L 

L 
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Symbol Definition 

T Tortuosity 

t 

u 

V 

V 

V 
s 

x,y 

x', y' 

al' a 2, a 3 

Time 

Seepage velocity in x-direction 

Seepage velocity in y-direction 

Magnitude of seepage velocity vector 

Magnitude of seepage velocity vector in 
s-direction 

Cartesian space coordinates 

Rotated Cartesian space coordinates 

Coefficients of linear polynomial in x and y 

An argument in the reducing factor exp(13) 

6 

0 

µ 

V 

Denotes a small variation 

Denotes a differential operator 

Local x-coordinate 

Local y-coordinate 

Angle through which the x and y axes are 
rotated 

Transformed C 

Transformed C 
0 

Viscosity 

Kinematic viscosity 

Potential function 

tjJ Stream function 

er£ Error function 

erfc Complimentary error function 

Units 

T 

- 1 LT 

- 1 
LT 

- 1 
LT 

- 1 LT 

L 

L 

L 

L 

2 -4 
FT L 

2 -4 
FT L 

-2 
FTL 

2 - 1 L T 
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