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Abstract. This paper presents a practical method to manage soil salinity and yield in order to 
obtain maximum economic benefits. The method was applied to a study area located in the 
south eastern part of the Arkansas River Basin in Colorado where soil salinity is a problem in 
some areas. The following were the objectives: 1) generate classified maps and the 
corresponding zones of uncertainty of expected yield potential for the main crops grown in the 
study area; 2) compare the expected potential productivity of different crops based on the soil 
salinity conditions; 3) assess the expected net revenue of multiple crops under different soil 
salinity conditions. Different scenarios of crops and salinity levels were evaluated. Indicator 
kriging was applied to each scenario to generate maps that show the expected percent yield 
potential areas and the corresponding zones of uncertainty for each of the different classes. The 
results of this study show that indicator kriging can be used to generate guidance maps that 
divide each field into areas of expected percent yield potential based on soil salinity thresholds 
for different crops. Zones of uncertainty can be quantified by indicator kriging and therefore it 
can be used for risk assessment of the percent yield potential. Wheat and sorghum show the 
highest expected yield potential based on the different soil salinity conditions that were 
evaluated. Expected net revenue for alfalfa and corn are the highest under the different soil 
salinity conditions that were evaluated. 

 
 

1. Introduction 
Soil salinity refers to the presence in the soil and water of various electrolytic 

mineral solutes in concentrations that can be harmful to many agricultural crops (Hillel 
2000). Salts decrease the availability of water to plants due to increase osmotic 
potential, and have direct adverse effects on the plant metabolism (Douaik, 2003; 
Greenway and Munns, 1980). Increasing soil salinity is offsetting a good portion of the 
increased productivity achieved by expanding irrigation (Postel 1999). On average, 
20% of the world's irrigated lands are affected by salts, but this figure increases to more 
than 30% in countries such as Egypt, Iran and Argentina (Ghassemi et al. 1995). Crop 
yield reduction in fields in the Lower Arkansas Valley due to salinization is estimated 
to be 0 to 75% with a total revenue loss ranging from $0-$750/ha based on 1999 crop 
prices (Gates et al., 2002).  

Indicator kriging (IK) provides a non-parametric distribution estimated directly at 
fixed thresholds by considering indicator transforms of conditioning data in the form of 
cumulative distribution functions (Richmond 2001). The power of multi-variable 
indicator kriging as a tool is that it is flexible and can be modified to fit specific 
management or research goals by modifying the critical threshold criteria (Smith et al., 
1993). Indicator kriging makes no assumptions on the underlying invariant distribution, 
and 0:1 indicator transformation of the data makes the predictor robust to outliers 
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(Cressie, 1993). At an unsampled location, the values estimated by indicator kriging 
represent a probability that the value is less than a specified threshold. That is, the 
expected value at the location derived from indicator data is equivalent to the 
cumulative distribution function of the variable (Smith et al., 1993). Mapping of 
uncertainty zones for individual phases is one advantage of using a geostatistical 
approach to characterize the morphology of quantitative variables (Soares 1992). 
Smoothing effects occurring around zero thickness investigation sites can be reduced 
significantly by the use of a combined ordinary-indicator kriging approach (Marinoni, 
2002). Solow et al. (1986) used simple indicator kriging to estimate the conditional 
probability that a sample point is one type or other given the types of sample points. 
Their results show that simple indicator kriging perform well, and in some cases can be 
exact. 

The geostatistical approach presented in this paper uses indicator kriging to provide 
growers with a tool to evaluate options for obtaining the maximum economic benefit 
under the current conditions of their fields. For each combination of crops and fields, 
the soil salinity data for each field was classified into different thresholds to produce 
the following crop yield potentials: 100%, 90%, 75%, 50%, < 50% & > 0 %, and 0%. 
Multiphase-variograms were constructed for each of the scenarios and indicator kriging 
was applied to each scenario to generate maps that show the expected percent yield 
potential as well as zones of uncertainty for different parts of each field. Expected crop 
net economic revenue for each scenario was calculated. The expected yield potential 
maps can be used by growers to determine which crop would maximize the yield and 
the economic benefits of their fields under the current soil salinity conditions. 

 
2. Data and methodology 

Study Area and Data Collection 
The study area is located in the southeastern part of the Arkansas River Basin in 

Colorado near the cities of Rocky Ford and La Junta (Fig. 1). Farmers in this area are 
facing decreasing crop yields due in part to high levels of salinity in their irrigation 
water. In some areas, land is being taken out of production due to unsustainable crop 
yields. Several fields were selected to carry out the soil salinity assessment in the study 
area. Soil salinity data was collected using an EM-38 electromagnetic probe and a 
global position systems (GPS) unit. The EM-38 provides vertical and horizontal 
readings while the GPS unit provides the X and Y coordinates of each collected point. 
A calibrated equation which was developed for the study area by Wittler et al. (2006) 
was used to convert the EM-38 readings to EC (dS/m). Soil moisture content and soil 
temperature were used for the calibration equation. A detailed description of using the 
EM-38 in combination with GPS in collecting soil salinity and the developed equation 
can be found in Eldeiry and Garcia (2008) and Eldeiry et. al. (2008). Six fields were 
selected to represent the different soil salinity ranges: low, moderate, and high. 

Table 1 shows a description of the fields used in this study. The table contains the 
area, number of samples, minimum, maximum, and mean of the soil salinity samples. 
Soil salinity is an important factor which can significantly affect crop yield; therefore, 
these fields were selected to represent different soil salinity ranges: low, moderate, and 
high. Table 1 shows that the selected fields represent a wide range of soil salinity levels 
from 1.57 to 41.23 dS/m. 



Using a Geo-statistical Approach for Soil Salinity and Yield Management 

148 

 
Figure 1: The study area in the southeastern part of the Arkansas River Basin in Colorado. 

 
Table 1: Description of the fields of the study area 

Field Area 
(ha) 

Number of 
Samples 

Min. Max. Mean 

US01 16.20 318 2.38 7.19 3.32 
US04 93.19 316 2.38 41.23 8.41 
US09 28.92 369 1.57 3.49 2.30 
US10 4.19 132 3.04 31.26 6.82 
US14 12.73 254 2.66 11.26 4.45 
US80 11.26 178 2.86 12.33 4.21 

 
Soil Salinity Classification 
Table 2 shows the percent yield potential and the corresponding soil salinity EC 

(dS/m) for alfalfa, corn, sorghum, and wheat (adapted from Ayers and Westcot, 1976). 
The crops shown in Table 2 were sorted based on their tolerance to soil salinity from 
low to high: corn, alfalfa, sorghum, and wheat. Under the same soil salinity conditions 
wheat has a 100% yield potential at a soil salinity of 6 dS/m while corn has a 50% yield 
potential at a soil salinity of 5.9 dS/m. This shows how crops with different soil salinity 
tolerances have significantly different crop yield potential under the same soil salinity 
conditions. Therefore, depending on the soil salinity conditions of each field, some 
crops will have higher yields than others. A classified map of expected yield potential 
based on soil salinity thresholds of each crop can help in selecting the appropriate crop 
that maximizes the potential yield for a specific area. 
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Table 2: Yield potential and the corresponding soil salinity (dS/m) for selected crops (adapted from 
Ayers and Westcot, 1976) 

Yield Potential %, Soil Salinity (dS/m) Crop 
100% 90% 75% 50% 0% 

Alfalfa 2.0 3.4 5.4 8.8 16.0 
Corn  1.7 2.5 3.8 5.9 10.0 
Sorghum 4.0 5.1 7.2 11.0 18.0 
Wheat 6.0 7.4 9.5 13.0 20.0 
 
Preparing the data 
 The soil salinity data for each field was sorted and classified into different 

thresholds to produce the following crop yield potentials: 100%, 90%, 75%, 50%, < 
50% & > 0 %, and 0%. For each of the six fields, the classification was done for each 
of the four selected crops. For high tolerance crops such as wheat or sorghum in fields 
with low soil salinity levels such as US09; there is no need for indicator kriging since 
the whole field can produce 100% of the expected yield potential. However, with the 
same crops in fields with moderate soil salinity levels, crops can reach high yield 
potential from 100% to 75% while all classes from 100% to 0% can be represented in 
the fields with high soil salinity levels. For moderate and low tolerance crops, alfalfa 
and corn, a wide range of yield potentials is represented.  

 
Constructing the multi-phase variograms 
From the data combinations of the selected four crops and six fields, twenty four 

scenarios are created. For each scenario, data is formatted to be able to be read in the 
S+ statistical software package and the different phases of the variograms are decided 
based on the number of classes or thresholds of yield potential for each scenario. For 
example the scenario of planting alfalfa in field US04 has five classes: 90%, 75%, 50%, 
<50% & > 0%, and 0% of percent of yield potential. The best model variogram among 
the Exponential, Gaussian, and Spherical is chosen based on the smallest Akaike 
Information Corrected Criteria (AICC) statistical parameter. Multiphase-variograms 
were constructed for each of the scenarios using the model with the smallest AICC 
value. Each phase of the variograms represents one class of percent yield potential. The 
multi-phase variograms contain six phases or less depending on the tolerance of the 
crop and the soil salinity in the field. The multi-phase variogram (Soares, 1992) is 
defined as the probability that  and  belong to different classes , 

 

  (1) 

 
where:  and , represent a pair of sample locations separated by distance  and 

 is the number of  classes of soil salinity. 
 
Applying Indicator Kriging 
IK was applied to each scenario to generate classified maps that show the expected 

percent yield potential. The number of classes in each map depends on the number of 
phases of the indicator variograms of that scenario. One of the advantages of IK is that 
it has the power to quantify the zones of uncertainty for different parts of each field. 
Zones of uncertainty exist around the borders of classes and these areas have the 
probability of belonging to either of the classes. Assessing zones of uncertainty can be 
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very beneficial for the accuracy of the generated maps since it can produce more 
information about the risk assessment. The essence of the indicator approach is the 
binomial coding of soil salinity data into either 1 or 0 depending upon its relationship to 
the thresholds of soil salinity for each crop.  For a given value of : 

 

         (2) 

 
where  is the soil salinity threshold for a specific crop (Lyon et. al., 2006).  More 
detailed description of IK can be found in Soares (1992).  

 
Zones of Uncertainty 
The indicator variable can be described as the probability of exceeding a given 

threshold. Therefore, the estimation of the indicator variable at unsampled locations 
produces probability maps (Reis et. Al. 2005b). Zones of uncertainty between soil 
salinity classes can be obtained by identifying locations with low probability, for a 
given threshold, of belonging to a specific soil salinity level. For example we can 
define a zone of uncertainty as being the lowest 25% of the probabilities of belonging 
to a particular soil salinity level. To generate a map of uncertainty, the first thing to do 
is to obtain some information regarding the distribution of probabilities associated with 
each soil salinity class, such as identifying the threshold representing the lowest 25% of 
the probabilities.  

Consider an attribute Z that must be conditionally simulated and the information 
available consists of z values at n locations xi, z(xi), i = 1, 2, ... , n. The uncertainty 
about the soil salinity value at an unsampled location x is modeled by the conditional 
cumulative distribution function (ccdf) of the random variable Z(x):  

 
        (3) 

 
The function F(.) gives the probability that the unknown soil salinity does not 

exceed a threshold z. The ccdfs are modeled using a non-parametric (IK) approach, 
which estimates the probability for a series of K threshold values zk discretizing the 
range of variation of Z (Reis et al., 2005a): 
 

      (4) 
 

where k is the number of samples within a specific class K. 
The calculated probabilities are recoded into 0 and 1 in order to obtain binary maps 

with two levels, the areas with uncertainty and the areas without uncertainly, while 
considering a confidence interval. 

 
Net revenue 
Expected crop net economic revenue for each scenario was calculated based on 

Colorado State University Extension (Agriculture and Business Management) 2007 
crop budget estimates. The total revenue includes the final revenue of the crop without 
taking into account the costs. The costs include the operations associated with pre-
harvest, harvest, property ownership and cost, and for some crops a factor payment. Net 
revenue is the revenue after the costs are taken into account. The expected crop net 
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economic revenue can be used as guidance for the growers to determine which crop 
would maximize the economic benefits of their fields under the current soil salinity 
conditions. 

 
Model Performance 
Indicator kriging performance with the different crops and fields is measures by the 

following criteria: 
1. Model precision: The RMSE is used to measure the prediction precision 

(Dobermann et. al., 2006; Triantafilis et. al., 2001) and is defined as: 

  (5) 

where  is the observed value of the ith observation,  is the predicted value 
of the ith observation, and n is the number of collected points. 
The RMSE tends to place more emphases on larger errors and, therefore, gives 
a more conservative measure than the mean absolute error MAE. 

2. Smoothing effect: Interpolation usually leads to a smoothing of the observations 
and thus to a loss of variance. To assess the ability of the interpolation method 
to preserve the variance, the ratio of the variance of the estimated values to the 
variance of the observed values is used (Haberlandt, 2006), 

 

  (6) 

 
The closer RVar approaches 1, the better the ability of the interpolation method 
to preserve the observed variance. 

3. Model effectiveness: The effectiveness of the model was evaluated using a 
goodness-of-prediction statistic, G (Agterberg 1984; Kravchenko and Bullock 
1999; Guisan and Zimmermann 2000; Schloeder et al. 2001).  The G-value 
measures how effective a prediction might be relative to that which could have 
been derived by using the sample mean (Agterberg 1984), 

 

    (7) 

 
is the sample mean.  A G-value equal to 1 indicates perfect prediction, a 

positive value indicates a more reliable model than if the sample mean had been 
used, a negative value indicates a less reliable model than if the sample mean 
had been used, and a value of zero indicates that the sample mean should be 
used. 

 
3. Results 

This section presents the process of selecting the multi-phase variograms of 
indicator kriging based on the Akakie Information Corrected Criteria (AICC) statistical 
parameter. Examples of indicator kriging maps for different scenarios of crops and 
fields are provided. Examples of zones of uncertainty are presented to quantify the risk 
associated with each of these zones. Finally, an estimate of the net economic revenue 
for each of the scenarios is provided. 
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Figure 2 shows an example of the multi-phase variograms for field US04 for a 
scenario of planting alfalfa. The Gaussian model value has the smallest AICC value; 
and therefore it was used to construct the multi-phase variogram by sorting the 
collected soil salinity data for that field from low to high. Then five classes were 
assigned to the sorted soil salinity data according to the percent yield potential of 
alfalfa to represent the following yield potentials: 90%, 75%, 50%, < 50% ~ > 0%, and 
0%. 

 
Figure 2: Example of multi-phase variograms for field US04 for alfalfa. 

 
Table 3 shows the yield potential areas of each class and the corresponding zones of 

uncertainty for all the scenarios of the selected crops and fields. Table 3 shows that 
fields with low soil salinity ranges (US01 and US09) can reach the maximum 
production for all crops. However, with moderate and high salinity fields sorghum and 
wheat start with 100% yield potential areas. Alfalfa has good production and in most 
scenarios, it starts with 90% yield potential areas. Corn has moderate production and in 
most cases, it starts with 75% yield potential areas. 

Figure 3 shows indicator kriging maps for field US04, with high soil salinity range 
when the scenarios of planting alfalfa, corn, sorghum, and wheat are applied. Even 
though field US04 has relatively high soil salinity, the expected production of wheat is 
relatively high with a large percent of the area represented by 100% and 90% of yield 
potential. Sorghum and alfalfa expected productions are moderate where the production 
of sorghum covers all the areas between 100% and 0% while alfalfa covers the areas 
between 90% and 0% of yield potential. Corn expected production is poor where a few 
areas are represented by 75% and the majority of areas are represented by 50% or less 
of yield potential. 

Figure 4 shows an example of zones of uncertainty for field US14 when the 
scenario of planting alfalfa is applied. One of the advantages of indicator kriging is that 
it can provide a risk-assessment tool of high-risk regions in the field. Both figure 4 and 
table 4 show how these areas can be quantified. As shown in table 4, the areas of zones 
of uncertainty vary between 0% and 35% of the class area. 
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Table 3: Different classes and zones of uncertainty for the selected fields planted with different scenarios 
of growing alfalfa, corn, sorghum, and wheat were evaluated  
 US01  US04  US09  US10  US14  US80  
YP A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc A(ha) Unc 
 Alfalfa 
100%     3.83 0       
90% 11.68 0.24 18.10 0.21 25.53 0.07 1.92 0.24 3.01 0.22 7.08 0.16 
75% 4.30 0.27 11.57 0.28   0.66 0.32 7.48 0.24 3.25 0.23 
50% 0.22 0.17 32.56 0.17   0.57 0.38 2.04 0.28 0.53 0.20 
<50%   20.54 0.17   0.72 0.23 0.20 0.32 0.40 0.25 
0%       0.33 0     
 Corn 
100%     1.98 0.15       
90%     16.89 0.17       
75% 5.98 0.20 20.56 0.20 10.04 0.17 2.33 0.25 5.29 0.26 8.57 0.15 
050% 8.04 0.19 18.54 0.15   0.43 0.27 6.11 0.18 2.08 0.21 
<50% 2.18 0.18 29.74 0.19   0.43 0.27 1.34 0.13 0.61 0.22 
0%   24.34 0   1.00 0     
 Sorghum 
100% 15.66 0.03 25.08 0.24 28.92 0 2.42 0.25 7.28 0.25 9.52 0.20 
90% 0.35 0.25 4.40 0.35   0.15 0.32 3.27 0.25 0.71 0.23 
75% 0.19 0.20 20.96 0.21   0.34 0.35 1.40 0.25 0.61 0.25 
50%   24.80 0.22   0.44 0.21 0.79 0.32 0.32 0.28 
<50%   10.85 0.18   0.72 0.24   0.09 0.29 
0%   7.09 0.24   0.11 0.30     
 Wheat 
100% 16.20 0 40.66 0.29 28.92 0 2.87 0.23 12.28 0.18 10.98 0.21 
90%   12.48 0.25   0.11 0.24 0.01 0 0.15 0.19 
75%   13.32 0.26   0.11 0.16 0.34 0.26 0.13 0.18 
50%   11.84 0.25   0.54 0.22 0.11 0.23   
<50%   9.06 0.28   0.56 0.24     
0%   5.83 0.22         
YP: Yield potential; Unc.: Zone of Uncertainty percentage. 
 

 

 
Figure 3: Indicator kriging maps for field US04 (high soil salinity range) when different crops are 

evaluated. 
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Figure 4: Zones of uncertainty for field US14 for alfalfa. 

 
Table 4 shows the total revenue, cost, and net revenue for alfalfa, corn, sorghum, 

and wheat based on Colorado State University Extension (Agriculture and Business 
Management) 2007 crop budget estimates. The total revenue includes the final revenue 
of the crop without taking into account the costs. The costs include the operations 
associated with pre-harvest, harvest, property ownership and cost, and for some crops a 
factor payment. Net revenue is the revenue after the costs are taken into account. The 
net revenue and costs of alfalfa and corn are high while both are low for sorghum and 
wheat. For one hectare of alfalfa, in order to gain a net revenue of $1,028, a grower 
needs to spend $751 while they need to spend only $161 for sorghum in order to gain a 
net revenue of $220. 

 
Table 4: Total revenue, cost, and net revenue per hectare of alfalfa, corn, sorghum, and wheat 
Crop Alfalfa Corn Sorghum Wheat 
Total revenue 1,780 1,780 381 863 
Cost 751 724 161 403 
Net Revenue 1,028 1,055 220 460 
 
Table 5 shows the adjusted net revenue according to the categorical kriging maps of 

yield potential of each crop based on the soil salinity thresholds of each field. The 
adjusted net revenue was calculated as follows, 

 

     (8) 
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where n represents the number of different yield potentials classes, i.e. n represents five 
classes when field US04 is planted with alfalfa. 

 
Table 5: Adjusted net revenue of alfalfa, corn, sorghum, and wheat under the different conditions of soil 
salinity at the selected fields. 

Crop Alfalfa Corn Sorghum Wheat 
US01 878 589 219 460 
US04 511 364 141 346 
US09 937 902 220 460 
US10 658 522 169 380 
US14 758 609 201 455 
US80 837 714 211 458 
 
The net revenue of the different crops has the following order: alfalfa, corn, wheat, 

and sorghum. The net revenue of alfalfa and corn are highly affected by the soil salinity 
levels while sorghum and wheat are slightly affected. Table 3 shows that there is a 
slight difference between the net revenue of alfalfa and corn while Table 4 shows that 
there is a significant difference in the adjusted net revenue for alfalfa and corn among 
different fields due to the tolerance of these crops to salinity and the salinity level for 
each field. The difference between the net revenue of alfalfa and corn is significant in 
all fields except for field US09. That is due to the fact that soil salinity in this field 
allows for 100% of yield potential for corn and there is a big portion of 90% of yield 
potential for corn while the salinity levels in other fields allows only for 75% or less of 
yield production for corn. 

Table 6 shows the performance parameters values of indicator kiging when 
evaluating alfalfa, corn, sorghum, and wheat as possible crops under the soil salinity 
conditions of different fields. NA means that the whole field can produce 100% of yield 
potential which applies to the crops with high tolerance to soil salinity when planted in 
the fields with low soil salinity levels. The G values are positive for the fields with high 
and moderate range of soil salinity (US04, US10, US14, and US80) while it getting 
worse in fields with low range of soil salinity (US01 and US09). In some cases the G 
value reach 1 or close to 1 which means that the model is perfect such as corn and 
wheat in US04 and corn in US09. The RVar values are closest to 1 in fields with a high 
range of soil salinity (US04 and US10). In cases where the RVar values are small such 
as wheat in US14 and US80, this means that the model was not able to overcome the 
effects of smoothing. The RMSE values are reasonable acceptable in all fields since all 
values are equal or less than 1. 

 
4. Conclusions 

Soil salinity has the potential to significantly impact crop production. However, soil 
salinity reclamation is expensive and leached salts may reach ground and surface 
waters and contribute to pollution. Many growers cannot afford the reclamation costs 
and sometimes end up having to abandon some fields due to low crop productivity. The 
findings of this study provide a tool for growers that could help them identify soil 
salinity problems and assist them in determining what crops to grow based on the soil 
salinity conditions in order to maximize the economic benefits from their field. 
Different interpolation techniques such as inverse distance weight, ordinary kriging, 
simple kriging cannot be utilized to generate categorical maps that show specific areas 
according to soil salinity thresholds. Indicator kriging can provide this tool where the 
maps generated can be utilized for any number of specified soil salinity thresholds 
according to the yield potential of specific crops. Another advantage of indicator 
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kriging is that it has the power to quantify the zones of uncertainty for different parts of 
each field. Assessing zones of uncertainty can add a great benefit to the accuracy of the 
generated maps since it can produce more information about the risk assessment. 
Indicator kriging can be used as a successful tool for agricultural producers to estimate 
their yield based on soil salinity conditions. Yield production and net revenue are not in 
a linear relation due to the significant differences in crop and production prices. Some 
crops can reach a high yield production under high soil salinity conditions but the net 
revenue can be low due to the low price of these crops. Some other crops can provide 
high net revenue with lower yield productivity due to the high price of these crops. 
Therefore, the approach presented in this study provides growers with a tool to help 
them decide based on the soil salinity conditions of their fields and their budget what 
crops they should consider growing. 

 
Table 6: Performance parameters: RMSE, Rvar, and G values of categorical kriging when evaluating 
alfalfa, corn, sorghum, and wheat as possible crops. 

 RMSE Rvar G RMSE Rvar G 
 US01 US04 
Alfalfa 0.59 0.95 -0.12 0.78 1.05 0.61 
Corn 0.85 0.82 -0.49 0.06 1.00 1.00 
Sorghum 0.46 0.54 0.02 1.00 1.04 0.57 
Wheat NA NA NA 0.06 1.00 1.00 
 US09 US10 
Alfalfa 0.60 0.40 -0.44 0.45 1.05 0.89 
Corn 0.36 0.99 0.64 0.33 1.04 0.93 
Sorghum NA NA NA 0.44 1.03 0.93 
Wheat NA NA NA 0.61 1.06 0.84 
 US14 US80 
Alfalfa 0.49 0.77 0.57 0.49 0.90 0.62 
Corn 0.40 0.87 0.64 0.44 0.70 0.61 
Sorghum 0.73 0.77 0.45 0.69 0.79 0.47 
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