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ABSTRACT 
 

 

 

ESTIMATING VARIABILITY ACROSS NUMERIC AND SPATIAL INFORMATION 

 
 
 

Research has demonstrated the difficulty of estimation and prediction, particularly in 

complex and uncertain conditions. Specifically, humans lack precision or are biased in making 

estimates of variability from continuously distributed stimuli, such as hurricane trajectories 

(spatial information) or sets of random numbers (numeric information). Conversely, people tend 

to provide calibrated estimates of average behavior for both spatial and numeric stimuli. Using 

either spatial or numeric stimuli, past studies noted that people tend to underestimate variability 

but provide accurate mean estimates. Nonetheless, no experiments have utilized both spatial and 

numeric stimuli to identify the extent to which people estimate variability, and to a lesser extent, 

mean behavior, across different types of information. This individual differences perspective 

holds significant implications for training and support in making calibrated decisions under 

uncertainty. 

The current study addressed this gap by presenting participants with a spatial task and a 

numeric task, each of which assessed knowledge and calibration to variability and means. Using 

cross-task correlational analyses, this study explored the extent to which similar mechanisms 

might underlie performance in both domains of stimuli. During the spatial task, participants 

learned the location of varying trajectories, and then reported on the likelihood of possible 

trajectory endpoints (spatial variability) and the average trajectory. During the numeric task, 

participants viewed lists of random numbers, and estimated the mean and spread of these lists 

(numeric variability). A correlational analysis revealed that participants who gave more accurate 
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estimates of variability on the spatial task were not necessarily more accurate when estimating 

numeric variability. Such findings indicate that different cognitive processes likely support the 

understanding of variability for different types of information. Additional research is necessary 

to elucidate which cognitive mechanisms are involved; possible systems include working 

memory and numeracy. 

Participants expressed a similar overestimation bias to variability across both tasks. This 

bias trend does not replicate prior literature for either spatial or numeric information, and future 

studies will focus on how to induce participants to change their response biases. Finally, mean 

estimation performance correlated across tasks, meaning that those who were more accurate 

when estimating spatial means were more likely to accurately estimate numeric means. 
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CHAPTER 1 - INTRODUCTION 

 

 

 

 Humans constantly make “best guess” judgements or decisions with limited information. 

Take, for example, the outcome of the Kentucky Derby. This racing event draws viewers 

worldwide, with audiences wagering a large amount of money on the outcome. For example, 

viewers wagered approximately $138 million on the lineup in 2016 (Isidore, 2016). Given that 

the event outcome is far from guaranteed, viewers rely on limited cues to decide which horse 

will come out on top. Even the best gamblers understand that such situations include significant 

uncertainty: the weather, track conditions, injuries, prior wins, starting positions, jockey choice, 

and temperament all play some role in whether a horse will win such a race.  

 Gambling is only one example of high-stakes decisions based on limited information. 

Weather forecasters make predictions based on a limited number of cues, and those expert 

predictions are assessed based on their accuracy (i.e., did the predicted weather come to pass?). 

Actuarial weather judgements come largely from climate models and mathematics (Tyszka & 

Zielonka, 2002), and while prediction error has decreased significantly with the advent of new 

technologies and probabilistic models, uncertainty in prediction still remains an issue (Alley, 

Emanuel, & Zhang, 2019). For example, the rate of error for predicting tropical storms in the 

Atlantic for the 2015 hurricane season ranged between about 45 nautical miles (n mi) for a 24-

hour forecast and 340 n mi for a 120-hour forecast (National Oceanic and Atmospheric 

Administration [NOAA], 2017). While this forecast error isn’t ostensibly alarming, particularly 

for shorter time intervals, the overall time-accuracy tradeoff can lead to serious safety 

implications. If an initial 120-hour forecast led people to think that they are safely outside a 

hurricane trajectory, they may not have time to evacuate come the 24-hour forecast, which shows 
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them right in the path of the oncoming storm. These domains are just two examples of many 

areas in which humans must make judgements in the face of environmental uncertainty, and due 

to the often high-stakes outcomes within such judgements, it is important to understand the 

cognitive processes at play when making these decisions. 

 Kahneman (2011), Silver (2012), Tetlock (2005), and others fueled academic interest in 

the process and accuracy of human prediction under environmental uncertainty (i.e., when 

exhaustive data are not available). Indeed, the need for, and application of, prediction presents 

itself on a daily basis, ranging from simple tasks with mild consequences (e.g., at what time will 

traffic on a route dissipate?) to major decisions with global impact (e.g., should New Orleans 

evacuate due to a severe hurricane?). Generally, predictions are hard, and humans often 

demonstrate overconfidence in the accuracy of their predictions (Einhorn & Hogarth, 1978; 

Kahneman, 2011). Specifically, regarding the prediction of continuous dynamic trends (e.g., 

changes in economic indicators, the trend of a hurricane, or uncertain trajectory of an aircraft), 

humans tend to accurately identify average trends, but underestimate trend variability (Herdener, 

Wickens, Clegg & Smith, 2016; Pugh, Wickens, Herdener, Clegg, & Smith, 2018). Prior 

research supports this generalization; studies focused on estimating average behavior are very 

consistent, concluding that typically, such estimates are precise, regardless of the stimuli. 

Conclusions about variability estimation, however, are they, themselves, variable. Less is known 

about how people estimate variability, and the extent to which estimation performance is the 

same across different stimuli (e.g., spatial versus numeric trends). 

 Research on how humans estimate characteristics of continuously distributed stimuli 

(Hofstatter, 1939; Beach & Swenson, 1966; Beach and Scopp, 1968; Peterson and Beach, 1967; 

Lathrop; 1967; Herdener et al., 2016; Herdener et al., 2017; Pugh et al., 2018; Herdener et al., 
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2018; Herdener et al., 2019) demonstrate that the type of information presented may impact 

responses. Primarily, though, this literature does address how people estimate trends across 

different types of stimuli; participants in these previous studies have either worked with spatial 

or numeric stimuli, but not both. No one has yet identified how the same participants estimate 

variability and means across more than one type of information – for example, if one is accurate 

when estimating the variability of spatial trajectories, are they also accurate when estimating the 

variability in a number list? 

Variability, Means, or Both?  

This project is part of a series on human responses to environmental uncertainty. The 

paradigms we developed to study responses to uncertainty include measures of mean and 

variability. While responses to both distribution characteristics are consequently examined here, 

our dominant focus is on variability, given that it most closely corresponds to uncertainty (i.e., 

presenting variable information naturally conveys a level of uncertainty). Furthermore, existing 

studies suggest that it is still unclear how people estimate variability and if performance changes 

based on the stimuli used. Conversely, trends in mean estimation are much more consistent, and 

need little new empirical attention. Thus, hereafter, the emphasis will be placed on how humans 

estimate variability. 

Significance of the Current Study 

Understanding the extent to which people respond similarly to spatial and numeric 

variability has clear implications for both theory and application. Regarding theoretical 

implications, the current study represents a broadening of perspective compared to other 

literature in this area using an individual differences approach. As mentioned above, most studies 

only focused on one type of stimuli, so conclusions about the underlying processes are 
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restrictive. This is a major limitation for creating overarching cognitive theories about how 

humans understand uncertainty. 

Cognitive abilities are commonly described as either unidimensional/global or 

multidimensional/specific, and our understanding of these cognitive processes oscillates between 

the two perspectives. As one example, the concept of working memory experienced a similar 

shift, moving from a single storage mechanism in Shiffrin and Atkinson’s (1969) model of 

memory to the active multifaceted system in Baddeley’s (2001) model, responsible for 

information integration. Opposite trends occur as well, with researchers demonstrating that 

concepts previously considered completely different actually have shared variance in 

performance, like working memory capacity and attention resources (Engle, 2018). New ways of 

assessing these major cognitive constructs led to significant reorganization of their research 

structure (Matthews, Davies, Westerman, & Stammers, 2013). This type of empirical evolution 

alters the nature of subsequent predictions and overarching theories about cognition. 

The pre-existing literature on variability in particular is largely disparate, having 

participants estimate characteristics of only one type of stimuli using different response methods. 

Studies that utilize only one type of stimuli may note accurate trends, but they are consequently 

domain specific. For example, Herdener and colleagues (2016) found clear evidence that people 

underestimate spatial variability (i.e., responses to variability are much smaller than the true level 

of variability). While this robust trend speaks to how people understand varied spatial 

information, one cannot draw any conclusions about how people process other types of 

variability (e.g., numeric). Having participants estimate characteristics of both spatial and 

numeric stimuli will address whether humans have global abilities to understand variable 

behavior. 
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Changes in theory like the examples above have a domino effect when applying research 

outside of the laboratory. For example, human factors psychology focuses on how to best utilize 

research and improve human performance (Wickens, Hollands, Banbury, & Parasuraman, 2013), 

commonly through training and visualizations. If the understanding of average and variable 

behavior is a unitary cognitive process, then having people train to make better judgements with 

spatial stimuli should lead to benefits when making that same judgement with numeric stimuli. 

Conversely, if cognitive comprehension changes with different stimuli, then training must be 

done using both types of stimuli.  

Thus, the current study addresses this gap by focusing on the individual differences in 

how people estimate variability, specifically identifying the extent to which absolute error/biases 

expressed when estimating from spatial stimuli will be similar to those seen with numeric 

stimuli. The following sections provide a foundation of relevant background literature regarding 

the estimation of 1) Spatial variability, 2) Spatial means, 3) Numeric variability, and 4) Numeric 

means. 
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CHAPTER 2 – BACKGROUND LITERATURE 

 

 

 

Spatial Stimuli 

 Making predictions using spatial stimuli (i.e., non-numeric information) is necessary for a 

number of daily activities. For example, when choosing where to merge into traffic, one must 

estimate the proper space between cars in an adjacent lane. Viewing weather trajectories on a 

map is another example of spatial information from which people make predictions. This 

information cannot easily be represented by numbers, but one can still describe its behavior in 

terms of variability and means. Empirical trends suggest that people struggle when estimating 

spatial variability, demonstrating significant underestimation compared to the true values 

(Herdener et al., 2016) and decision-making heuristics may influence this underestimation. 

Conversely, people seem to accurately predict spatial means (Herdener et al., 2016). 

Estimating spatial variability. The variability in a spatial distribution conveys important 

information; for example, in a hurricane “cone of uncertainty,” the visualization only 

encompasses two-thirds of past forecast modeling errors (NOAA, 2019), meaning that there is a 

one-third chance that the storm will fall outside the cone. Clearly, proper understanding of spatial 

variability is an important area of study to change public behavior. 

Early studies that probed the cognitive understanding of spatial variability focused on 

how the average of a distribution influences variability estimates. Using bundles of sticks with 

variable lengths, Hofstatter (1939) had participants make judgements about the variability of 

lengths in each bundle. These judgements increased as the true variability increased, as expected, 

demonstrating sensitivity to changing variability. Interestingly, though, when the mean of the 

distribution increased, variability judgements were suppressed. This suggests that participants 
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underestimated variability when the distribution had a larger mean (Brunswick, 1956). 

Importantly, this early study showed that people were not blind to changes in true variability, but 

also that the magnitude of the distribution mean influenced performance when estimating that 

variability. 

 Peterson and Beach (1967) interpreted this finding, suggesting that the distribution mean 

exerted a suppressive influence on variability judgements, a phenomenon that they compared to 

the Weber Fraction. The Weber Fraction, used primarily in psychophysics, suggests that the 

perceived change in a stimulus follows a ratio with the initial intensity of that stimulus, where 

incremental intensity judgements are lower when the initial stimulus starts higher (Norwich, 

1987). In a bright room, it is harder to perceive an incremental change in the intensity of lighting 

compared to being in a dark room. The initial stimulus intensity serves as an anchor, and when 

that anchor starts high, people struggle to notice subsequent small adjustments. Applied to 

Hofstatter (1939), the distribution’s mean anchor disproportionately influenced participants to 

underestimate variability. This phenomenon is the same as Tversky and Kahneman’s (1974) 

anchoring and adjustment heuristic, wherein the conclusions drawn from information (i.e., 

variability judgement) favor the initial, and often strongest, data (i.e., mean).  

 Lathrop (1967) replicated the Hofstatter (1939) study using cards that contained 

distributions of lines with different length means, variability, and sequencing. Participants 

responded by ranking the distributions in order by variability. Echoing the results above, 

distributions with a larger mean were thought to have a lower overall variability. Moreover, the 

sequence of lines within the distributions also influenced perceived variability. Specifically, 

variability judgements were most accurate as the sequence of lines increased and decreased, as in 

a normal distribution. Peterson and Beach (1967) pointed out that the sequencing effect works as 
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follows: to make judgements about variability, participants must assess the deviation of each 

instance from the group mean, and when these discrepancies are large, people tend to 

underestimate the overall variability. In a normal distribution, most values are positioned close to 

the mean, overall deviations from the mean are small, and thus, variability judgements are 

generally accurate. When distributions are non-normal and contain many extreme values (e.g., a 

saddle-shaped distribution), participants would be more likely to underestimate variability, as 

demonstrated by Lathrop (1967). Conclusions from Hofstatter (1939) and Peterson and Beach 

(1967) could work in synergy: if participants cannot perceive smaller deviations when the 

distribution has a larger mean, then they may focus more on the extreme values. As seen in 

Lathrop (1967), this often leads to the underestimation of variability.  

 Using a paradigm that presents numerous, variable hurricane track-like spatial trends, 

Herdener and colleagues (2016) also assessed the understanding of variability in two different 

ways, with similar results to those studies discussed above. In the paradigm, participants would 

see the location of trajectories at two time points (e.g., T0, T1), representing movement through 

space. They were then asked to predict the most likely location of T3 and size a circle that 

captured 70% of the possible trajectory endpoints, based on the distribution of all prior 

trajectories (Herdener et al., 2018, 2019; see Figure 1). After viewing and predicting sets of 20 

spatial trends, participants were asked to provide numeric point estimates of variability (e.g., 

50%, 70%) at different points within the distribution. These variability response methods are 

perceptual adjustment and numeric assessment, respectfully. Significant underestimation of 

variability occurred with both types of response probes. Underestimation was more extreme, 

however, for the numeric estimates compared to the spatial adjustments. Implications of this 

finding will be discussed below in the theoretical framework section. 
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Figure 1. SPUN Diagram. This figure presents a schematic diagram the SPUN paradigm which 
has participants predict the most likely location of T3 in a trajectory and then size a circle that 
captures 70% of the possible trajectory endpoints. 

 

 Taken together, the above studies suggest that people do not make unbiased judgements 

of spatial variability; indeed, the trend of underestimation was robustly noted, and was often 

influenced by the mean and sequence of stimuli. Importantly, this response bias occurred via 

three different types of variability probes: point estimates (Hofstatter, 1939; Herdener et al., 

2016, 2018), “more or less variable” judgements (Lathrop, 1967), and perceptual adjustment 

(Herdener et al., 2018). This means that these results are not just an artifact of the response 

methods used; people show a pervasive bias to underestimate variability. 

 Kareev, Arnon, & Horowitz-Ziegler (2002) examined why people underestimate the 

variability of a distribution. This group posited that when people make inferences about a 

population’s variability, they use a small, biased sample of information. Given that variability in 

the population is larger than that of a sample, if participants use a sample of information, they 

naturally underestimate the true variability. Indeed, this is why we apply a correction when 
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calculating sample statistics (unlike population statistics). For example, a sample variance 

requires division by N - 1, as opposed to the population variance, which requires division by the 

full sample size N. Kareev, Arnon, & Horowitz-Ziegler point out that, people, when making 

estimates about the population, do not intuitively correct for this downward-biased phenomenon, 

resulting in the empirical trends seen above. Indeed, in a series of experiments with non-numeric 

stimuli, they again found underestimation of the population variability based on how participants 

sampled information. 

 This explanation suggests that responses to variability occur via the representative 

heuristic, or cognitive shortcut, often used when situations are uncertain (Tversky & Kahneman, 

1973). Given a sample of information, participants respond to variability as if that sample 

perfectly represented the population of interest. Doing so can evoke an underestimation bias 

when making such judgements (Hansson, Juslin, & Winman, 2007). 

Estimating spatial means. Prior research suggests that people can accurately predict the  

mean from a series of spatial trajectories. Using the same paradigm described above, Herdener 

and colleagues (2016) asked participants to learn the average behavior of continuously presented 

spatial trends. Again, after viewing the location of trajectories at two time points (e.g., T0, T1), 

participants were then asked to predict the most likely location of T3. This response requires an 

understanding and extrapolation of average trend behavior (see Figure 1). In Herdener et al., 

(2016), these estimated locations were compared to the true trajectory model means. Importantly, 

for each successive mean estimate, participants were given feedback on the true trajectory mean, 

providing an opportunity to learn average behavior. 

 These researchers found that participants could accurately predict a mean trajectory after 

four or five trials within a block. These mean estimates were more accurate for linear trajectories 
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compared to curvilinear trajectories (Pugh et al., 2018). Overall, people rapidly oriented to 

spatial mean information and adopted an optimal strategy to predict such an average. These 

findings have been consistently replicated (Herdener et al., 2018, 2019). 

 To summarize, a variety of research has examined how people estimate numeric means 

and variability, leading to the following key trends: 

A. Distribution characteristics (i.e., mean, sequence) influence estimates of variability; 

B. Participants consistently underestimate spatial variability. This occurs with different 

response methods; 

C. Biases in variability judgements may come from decision making heuristics; and 

D. Participants tend to give accurate estimates of the mean of spatial trajectories. 

 Are these trends unique to spatial stimuli, or do they generalize to other types of 

information? As discussed next, similar performance patterns have been observed with numeric 

stimuli. 

Numeric Stimuli 

 Humans are surrounded by numbers. For example, people track the rise and fall of the 

stock market. Others weigh themselves each morning and track the weight they lose over time. 

Meteorologists quantify the likelihood of temperatures and laypeople use this information to 

dress appropriately. Due to the abundance of numeric information in the world, a large body of 

research has focused on how people estimate the characteristics of number sets, including 

variability and means. 

Estimating numeric variability. As discussed above, people struggle to accurately 

estimate numeric variability (Pollard, 1984). Beach and Scopp (1968) demonstrated this 

observation using four decks of cards, each containing 20 numbers. The decks had the same 
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mean, but different variances. Participants viewed pairs of decks, with the numbers presented 

sequentially, and were asked to state which deck had the higher variance. After making these 

judgements, half of the participants returned and viewed the same decks, this time to estimate the 

ratio of the larger variance to the smaller variance. Results suggest that, while participants 

accurately judged which deck had the higher variance, their ratio responses were systematically 

smaller than the true ratios. This means that they judged the variability of the larger deck much 

smaller than it truly was, relative to the variability of the smaller deck. This trend shows that, 

while people demonstrate sensitivity to higher versus lower variability, they still tend to 

underestimate the magnitude of that variability. Furthermore, this estimated ratio did not increase 

linearly with the true ratio, indicating that participants were less than fully sensitive to changes in 

variability 

 In a similar study, Henrion & Fischoff (1985) examined how scientists represented error 

in measurement, or systematic variability, in their estimates of physical constructs (e.g., the 

speed of light, Avogadro’s Number). These researchers point out that estimating such constants 

is akin to making judgements under uncertainty; consequently, they hypothesized that even 

highly trained scientists demonstrate an underestimation of variability surrounding their numeric 

predictions. Such measurement error around a numeric point estimate (i.e., a confidence interval) 

conceptualizes an estimate of numeric variability. Henrion & Fischoff (1985) retrospectively 

examined how both point estimates and confidence intervals of physical constructs changed from 

1958 to 1973. As one would expect, across time, measurement accuracy of point estimates 

increased, but interestingly, the confidence intervals around each point estimate were small. 

Often, when a construct was measured, re-evaluated, and published with a new “best-guess” 
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estimate, the new value was well outside of the previous measurement’s confidence interval, 

meaning that the confidence interval for the initial estimate was likely too small. 

 Henrion & Fischoff (1985) interpreted this finding as overconfidence in scientific 

estimates and associated confidence intervals. In terms of variability, too-narrow confidence 

intervals suggest the people underestimated the numeric variability surrounding their 

measurements. While the authors suggested that the small intervals could have resulted from the, 

“…difficulty of thinking of reasons why one’s best guess might be wrong (pg. 796),” perhaps the 

phenomenon is better explained in terms of Tversky & Kahneman’s (1974) anchoring and 

adjustment hypothesis: these scientists anchor on their point estimate and do not adjust their 

interval sufficiently enough to accommodate all possible sources of error. In sum, this key study 

demonstrated that even highly trained individuals tend to underestimate numeric variability. 

 In another study concerning numeric intervals, Laestadius (1970) showed their 

participants sets of numbers and asked for estimates of confidence intervals around a mean. 

Some of these number lists had low variability and others had high variability. No biases were 

assessed in this study, but results indicated that intervals for high variability lists were 

significantly larger than those for the low variability lists, suggesting some sensitivity to 

increasing variability. 

 Finally, Hansson, Juslin, & Winman (2008) created an experiment during which 

participants estimated the mean income of various fictitious countries with feedback on these 

estimates. After estimating the means, participants were given the true mean income for other 

countries and were asked to provide numeric confidence intervals around those new provided 

means. In three different experiments, results demonstrated that the participant-generated 
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intervals were grossly smaller than the true intervals. Such findings correspond to those 

discussed above: people tend to underestimate numeric variability. 

 While few studies have examined how people estimate numeric variability, the results 

presented above clearly demonstrate that people show some sensitivity to increasing variability, 

and that often they underestimate that variability. 

Estimating numeric means. A similar parallel occurs between research on the 

estimation of numeric and spatial means; people tend to provide accurate estimates of numeric 

means. Further, across multiple studies, characteristics of numeric distributions can influence 

these judgements. Spencer (1961) published the earliest study examining how people intuitively 

estimated numeric averages. In this study, people accurately estimated average values, but error 

increased when the variability of numbers around the mean also increased. This trend suggests 

that some information not directly relevant to the mean can nonetheless influence mean 

judgments. Beach and Swenson (1966) corroborated these findings using lists of 3, 5, and 7 

numbers. Their participants estimated numeric means with the low average estimation error of 

3.51 digits, but overall error increased as the variability between numbers increased. These 

findings suggest that, as numbers further away from a list mean are presented to participants (i.e., 

the list had higher variability), it is more difficult to weight the deviations, and hence, accurately 

estimate the mean. No consistent directional biases occurred: in two of the three mean estimation 

conditions, participants slightly underestimated the mean, and in the final condition, slightly 

overestimated the mean. In sum, these studies suggest that people can often reliably estimate a 

mean, but error increases as list variability increases. 

 The Laestadius (1970) study introduced above also examined how list variability 

influenced participant generated mean estimates. This study found that high variability number 
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lists elicited more error in mean estimates compared to the low variability lists, echoing Spencer 

(1961) and Beach and Swenson (1966). 

 Overall, these studies demonstrate that, while people accurately estimate numeric means, 

absolute error increased as variability increased. This means that there is a link between numeric 

variability and estimating a mean, but none of these studies clearly discussed the bias expressed 

by participants. This missing aspect of performance will be examined in the current study. 

 In conclusion, the studies discussed above include the following general observations: 

A. Participants demonstrate sensitivity to higher or lower numeric variability, but they still 

underestimate that variability. This underestimation also occurs with highly trained 

scientists; 

B. Variability underestimation may occur due to anchoring on a point estimate, or mean, and 

insufficiently adjusting their interval when estimating variability; 

C. People tend to be accurate when they estimate numeric means, but this accuracy 

decreases as variability increases. 

The summary points for spatial and numeric stimuli are consistent, but this has not been 

verified through a within-subjects design. Examining judgements across stimuli will identify the 

extent to which similar cognitive processes govern the understanding of variability (and to a 

lesser extent, means). The current study addresses this literature gap, using the Model of 

Variability Estimation (MOVE) as a theoretical framework. 

MOVE: A Model Of Variability Estimation 

 Wickens, Clegg, Witt, Smith, Herdener, and Spahr (2020) presents a theoretical 

framework of variability estimation, tying together many of the findings presented above. This 

model describes the cognitive processes involved in variability estimation, suggests estimation 
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performance metrics, and provides a structure for interpreting findings from studies focused on 

variability. 

Cognitive processes of variability estimation. MOVE argues that four main cognitive 

processes facilitate the creation of a mental model of variability within a set of continuous 

stimuli. This mental model, in turn, influences responses to variability. 

 Encoding. When people create a mental model of variability, they must have been 

exposed to multiple instances of continuously distributed stimuli. This exposure, referred to as 

encoding, is shaped by experimental variables such as presentation speed, familiarity of stimuli, 

attention paid to the stimuli, and stimuli order. 

 Retention interval. Retention interval, or the time between encoding and an individual’s 

response, also impacts performance. Without active rehearsal, information decays from short 

term memory quickly, so with a longer retention interval, responses to variability will be less 

accurate. 

 Biases. These phenomena describe systematic errors that occur during encoding and/or 

the retention interval. Examples of biases at play here include anchoring and adjustment 

(Tversky & Kahneman, 1974), and primacy or recency effects. Primacy refers to remembering 

the first instances of a set better compared to others in the set. Recency, conversely, refers to 

remembering the final instances of a set better than other instances. Prior research has 

hypothesized about how such biases influence responses to variability. For example, Herdener et 

al. (2018) found that the mean of a spatial distribution functioned as an anchor and influenced 

judgements of variability. In another experiment, participants drew samples from a distribution 

of colored beads, and subsequently predicted the variability of the population. In this study, 
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participants overwhelmingly based their variability predictions on the first ten items they saw, 

suggesting a primacy effect (Kareev, Arnon, Horowitz-Zeliger, 2002). 

 Response methodology. Research suggests that the probes used for people to respond to 

variability will influence performance as well. As described above, our lab has used both 

adjustment of a confidence interval (i.e., a circle to encompass the variability of encountered 

instances) and estimation of variability (i.e., “what percentage of the stimuli you just saw fell 

within this circle of fixed size?”). We have generally found that adjustment produces less bias 

(either over- or underestimation) than estimation (Herdener et al., 2019). In this same study, 

participants also demonstrated more sensitivity to increasing variability using adjustment 

compared to estimation. 

Quantifying responses to variability. To a certain extent, how people understand 

variability is based upon how we quantify participants’ responses. MOVE describes the 

following three ways to do so: 1) sensitivity, 2) bias, and 3) precision (absolute estimation error). 

Each computation captures unique information about responses to variability (see Figure 2).  

  
Figure 2. Quantifying responses to variability in the MOVE Model. This diagram presents three 
methods to assess responses to variability, including sensitivity, bias, and precision. 
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 In these diagrams, estimated variability is plotted as a function of true probability, and 

this linear function can be compared to the perfect calibration dashed diagonal line (i.e., 

representing perfect responses – as true variability increases by a set amount, estimated 

variability increases by that same amount). 

 Represented by the slope of the response line, sensitivity is essentially a psychophysical 

function that refers to how well people, shown different sets of stimuli whose variability differs, 

can notice these differences (see the leftmost panel in Figure 2). This slope matters, because if 

participants are blind to variability (top line), it makes any bias expressed less meaningful as the 

entire measure of bias will depend only on the level of true variability presented. The positive 

slope of the low sensitivity line demonstrates some sensitivity to changes in true variability, but 

less than optimal. We classify the high sensitivity line as well-calibrated because it has a nearly 

identical slope compared to the perfect calibration dashed line. 

 Bias, or the signed difference between true and estimated variability, represents the extent 

to which participants over- or underestimate variability (see the middle panel in Figure 2). 

Variability responses above the dashed calibration line correspond to overestimation, and values 

under the dashed line correspond to underestimation. Finally, precision refers to the absolute 

error for estimated variability (see the rightmost panel in Figure 2). While MOVE uses the term 

“precision”, from here onward, this study will use the term “absolute error” for ease of 

interpretation. The performance metrics of sensitivity, bias, and absolute error will be utilized 

throughout this study. 

Individual Differences 

 People vary on ability and performance. Individual differences studies investigate these 

variations in performance to understand, predict, and create theories as to why this occurs 
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(Sternberg, 1999, Matthews et al., 2013). Individual differences in cognitive abilities may 

account for the empirical variability trends noted above.  

 Some interpret the general tendency to underestimate variability as overconfidence in the 

estimation of the mean (Henrion & Fischoff, 1985; Wickens et al., 2020). As estimates of 

variability represent environmental uncertainty, providing an overtly small estimate regarding 

the variability in a distribution suggests that people have a larger-than-warranted confidence in 

their mental model. Using an individual differences factor analysis, Pallier and colleagues (2002) 

found evidence of a confidence trait which correlated with other general cognitive abilities. For 

example, those with lower intelligence (captured via cognitive testing) tended to express more 

overconfidence. Further, both the traits of proactiveness and activity positively correlated with 

confidence biases, suggesting a relationship between specific personality traits and expression of 

overconfidence. Experimenters did not assess estimation of variability in this factor analysis, but 

nonetheless, they did demonstrate individual differences in the expression of confidence biases. 

To extend this finding, as underestimating variability corresponds to overconfidence, individual 

differences in overconfidence could also motivate estimates of variability. Individual differences 

in variability estimations have been concretely addressed by a few studies. 

 Kareev, Arnon, & Horwitz-Zeliger (2002) tested differences in participants’ working 

memory capacity (WMC) and correlated those results with predictions about the variability in 

the composition of an unknown population. They found evidence that variability predictions 

were correlated with the amount of information considered (i.e., sample), and how much 

information people could consider correlated with WMC. In this way, differences in WMC, a 

cognitive “ability” or trait, connects indirectly to variability estimates. Similarly, Hansson, 

Juslin, & Winman (2008) correlated performance on WMC measures with estimated numeric 
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confidence intervals of the income for fictitious companies. These researchers found that, while 

people provided interval estimates that were too small compared to the true intervals (i.e., 

underestimating variability), confidence intervals estimated by those with low WMC were 

significantly smaller than those with high WMC. Thus, two studies have clearly demonstrated a 

relationship between individual differences in working memory capacity with variability 

estimation performance. 

 We posit that some underlying cognitive ability is responsible for how people understand 

and respond to variability. Like Kareev, Arnon, and Horowitz-Ziegler (2002) suggested, this 

underlying ability could be working memory, since the number of “instances” in a distribution 

that one can hold in working memory will strongly influence understanding of the distribution as 

a whole. Even still, this study only addressed spatial stimuli, representing a part of how people 

encounter environmental variability. For example, numeracy, or a person’s general mathematical 

ability, correlates with providing more accurate probability estimates for normal distributions 

(Rinne & Mazzocco, 2013). Even still, it is too early to probe exactly which underlying cognitive 

construct(s) may be responsible for the ability to understand and estimate variability, since no 

studies have examined the extent to which people show similar performance when making these 

variability judgements across different stimuli. The current study addresses this disparity.  
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CHAPTER 3 – PURPOSE AND RESEARCH QUESTIONS 

 

 

 

 Overall, prior research reveals that people often demonstrate sensitivity, albeit 

diminished, to different levels of variability. Further, responses to variability are typically less 

than the true amount, signifying underestimation. Researchers argue that factors such as 

anchoring and adjustment, sequencing of deviations from the distribution mean, and the amount 

of information sampled could all contribute to these trends. Cognitive factors implicated when 

estimating variability include how the information is encoded, the retention interval between 

encoding and response, cognitive biases, and the response methodology.  

 No studies have examined responses to variability across different types of stimuli in a 

repeated measures fashion. It is important for both theory and application to determine if, for the 

same individual, responses to variability are similar across stimuli. This empirical gap will 

provide evidence of the extent to which similar cognitive abilities may be responsible for a 

domain-general sense of variability, or if different cognitive abilities contribute to responses for 

specific stimuli. For example, if responses to numeric variability do not correlate with responses 

to spatial variability, then perhaps cognitive numeracy is responsible for the former, and spatial 

working memory for the latter. 

 The current experiment directly filled this gap by having participants estimate the 

variability and mean from multiple sets of continuous spatial and numeric instances. These 

responses were assessed for sensitivity, bias, and absolute error to identify whether the empirical 

trends presented above held in a within-participant design. To accomplish this, we used the 

SPUN spatial trajectory task and a new numeric variability estimation task called DigiVar, 

developed to be analogous to SPUN, but using continuously presented numeric stimuli. 
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Participants were recruited from Amazon Mechanical Turk (MTurk) to complete both tasks. 

During the SPUN task, we varied the speed and heading of the trajectories presented. Similarly, 

in DigiVar, we manipulated the mean and variability of number lists. To identify general, within-

task trends, we examined average performance with changes in each manipulated variable. 

Subsequently, we correlated average performance across tasks to assess if there was a shared 

individual difference in the ability to estimate variability and means across the two modalities. 

Hypotheses central to the current study included: 

• Hypothesis 1A. A significant between-task correlation will occur between the sensitivity 

of variability estimations1; 

• Hypothesis 1B. A significant between-task correlation will occur between variability bias 

(signed error) performance; 

• Hypothesis 1C. A significant between-task correlation will occur between estimation 

error of the mean; 

• Hypothesis 2. No significant within-task correlations will occur between variability 

sensitivity and estimation error of the mean; and 

• Hypothesis 3. DigiVar task performance will reflect underestimation of variability. 

  

 
1 Initially this hypothesis was stated as so: “A significant between-task correlation will occur between the absolute 

error of variability estimations.” Variability sensitivity, however, is a more robust way to assess understanding of 

variability across multiple levels compared to absolute error. In light of this, we have updated the hypothesis. 
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CHAPTER 4 – GENERAL METHODS 

 

 

 

This experiment was done in two parts. The first set of data collected was considered a 

pilot study, in which 31 participants completed the SPUN task (Spatial Prediction with 

Uncertainty) and then the DigiVar (Digit Variability) task. Data from this pilot experiment were 

presented at the Human Factors and Ergonomics Society’s 2018 Annual Conference (Spahr, 

Wickens, Clegg, Smith, & Williams, 2018). Given the results of the pilot experiment, the thesis 

committee suggested a follow-up experiment to counterbalance the two tasks, which would 

identify if any trends experienced a task order effect. See Appendix A for details about the thesis 

proposal. 

Power Analysis 

A power analysis was conducted to identify a proper sample size for the follow up 

experiment. This was based on the smallest meaningful effect size from the repeated measures 

ANOVA in the pilot study (hp2 = 0.222), which corresponds to a large effect size. These cutoffs 

are based on the University of Cambridge’s (2018) guidelines for the magnitude of multivariate 

eta squared effect sizes3. A power analysis at a = .05 and a power of 0.95 revealed that 16 

participants were needed to achieve a large effect (Faul, Erdfelder, Buchner, & Lang [G*Power], 

2009). The pilot study had 31 participants total; to properly counterbalance the two tasks, another 

31 participants were recruited to complete the experiment with the tasks in the opposite order, 

making the total sample of 62 participants. 

 
2 This effect size occurred for the interaction of heading and speed on participants bias to 

variability (Wilk's Λ = 0.78, F(1, 30) = 8.30, p = .01, hp2 = 0.22). 
 
3 In a 2X2 repeated measures ANOVA, the multivariate eta squared equals the partial eta squared 

value [𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒	h! = 1 − Λ]	, where Λ is Wilk’s Lambda (Horn, 2006). 
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Participants 

 All participants were recruited from Amazon Mechanical Turk (MTurk). For completing 

the study, they were compensated a base $6.00, with up to a $4.00 bonus for performance on 

specific SPUN trials. Participants were paid only if they completed both tasks; this was clearly 

stated in the instructions. 

Analysis Plan 

 We first analyzed and presented the main effects of within-task manipulations using 

repeated measures ANOVAs. This was chosen for the ability to directly compare to other SPUN 

studies conducted by our lab (Herdener et al., 2016, 2017, 2018a, 2019a, 2019b). Task order was 

included in each ANOVA as a between-subjects variable. 

To address each hypothesis, non-parametric tests were used when the variables failed to 

meet appropriate assumptions. For Hypotheses 1A, 1B, 1C, and 2, we utilized a Spearman’s rho 

correlation technique. Hypothesis 3 was tested via a one-sample t-test. Analyses were conducted 

using SPSS (IBM, 2017) and R Studio (R Studio Team, 2015). 
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CHAPTER 5 – METHODS: SPUN 

 

 

 

Participants completed a version of the SPUN task (Spatial Prediction with Uncertainty) 

with one practice block and four experimental blocks. Each experimental block consisted of two 

phases in which they encountered and predicted the mean and variability of spatial trajectories. 

These trajectories were built by a dot moving across the screen over three time points (See 

Figure 3).  

 
Figure 3. SPUN Trajectories. Trajectories for the SPUN paradigm are built by a location point 
moving across the screen over three time points. Participants predict the most likely location of 
T3. 
 

Phase 1 

Phase 1 (mean and variability prediction). During Phase 1 in each block, participants 

predicted the mean location of 20 trajectories. For each trajectory, participants first saw the 

initial position of a target, which we refer to as Time 0 [T0], and the position of that same target 

at a set duration later, referred to as Time 1 [T1]. These two positions represented the target 

moving from T0 to T1. Participants were then instructed to predict where the target would be at 

Time 3 [T3] by using the mouse to place the center of a circle at that point. This required 
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respondents to extrapolate and make an implicit judgement where the target may be at Time 2 

[T2], the location of which was not provided. After explicitly placing the circle where they 

believed the trajectory would be at T3, participants were instructed to adjust the diameter of that 

circle until it encompassed where they believed the target would be 75% of the time, given all 

trajectories that they had experienced up to that time within the block. This was an assessment of 

the Phase 1 variability of the trajectory endpoints in each block. 

The 20 trajectories in each block were generated from the same underlying model, with a 

set speed (distance the dot could travel), and angle (potential for a heading change). When 

predicting the T3 location of the dot, a straight linear extrapolation of the first two points did not 

provide the correct answer. Instead, since those trajectories varied over trials, representing some 

degree of uncertainty, the best answer was one weighted by both the current trajectory points, 

and the centroid of the end of previously seen trajectories. 

Phase 1 feedback. After estimating the mean T3 location and variability of possible T3 

endpoints, participants received feedback on their performance. Specifically, they saw where the 

true T2 and T3 were for that single trajectory. This feedback was designed to help participants 

build a mental model of the trajectory variability behavior within each block, which they could 

then use to make more accurate predictions of both mean and variability during subsequent trials. 

After completing the set of 20 trajectories in Phase 1, participants moved onto Phase 2, which 

also asked for predictions of variability. 

Phase 1 variables. Phase 1 assessed four key variables. First, for each single trial, we 

measured the distance between the actual T3 location and the participant’s T3 prediction. This 

distance captured participants’ absolute spatial mean error. To assess variability estimation 

performance, for each trial in each block, we measured how close participants’ adjusted circle 
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size was to the circle size that truly contained 75% of T3 locations. The adjusted circle size could 

be larger than the true size, calibrated, or smaller than the true size. For each block, we assessed 

variability sensitivity by subtracting the average estimate at low, from that at high variability. 

Finally, we distinguished between Phase 1 variability bias (the signed value of the difference; 

e.g., did participants overestimate or underestimate the circle size) and absolute Phase 1 

variability error (e.g., overall, how accurate was the participants’ given circle size).  

Phase 2 

Phase 2 (variability prediction). During Phase 2, participants again saw positions at T0 

and then T1, followed by a circular, shaded area of fixed diameter and location, centered around 

the model T3 mean. Participants predicted the probability that the target was within that shaded 

area at T3. The underlying distribution did not change between Phase 1 and Phase 2, so the 

mental model that they constructed and received feedback on in Phase 1 applied for Phase 2 as 

well. Participants received no feedback during Phase 2 to avoid a confound of learning over both 

blocks. Participants estimated 20 probabilities during each Phase 2 block. 

Phase 2 variables. Variables of interest in Phase 2 included variability sensitivity, bias, 

and absolute error. As with Phase 1, we obtained a Phase 2 variability sensitivity measure by 

subtracting average variability estimation (points in the circle) of large variability blocks from 

small variability blocks. The signed difference of [estimated probability – true probability] is an 

assessment of variability estimation bias. Positive values indicate that the participant 

overestimated variability, whereas negative values mean that the participant underestimated 

variability. Taking the absolute difference of this bias variable yields a measure of absolute 

variability estimation error; that is, how good participants were overall at estimating variability 

during Phase 2. No absolute error always implies no bias, however, low or zero bias does not 
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necessarily imply no absolute error, as zero bias could result from the mean of both positive and 

negative bias trials. Figure 4 presents an overview of both SPUN phases with key characteristics 

of each listed. 

 
Figure 4. Overview of the SPUN Task. The SPUN Task includes a Phase 1 and Phase 2. In 
Phase 1, participants predict the mean locations and variability of trajectories. In Phase 2, 
participants are shown a shaded circle and they predict the probability that the trajectory will be 
in that shaded area at T3. 

 

Financial incentives. Based on circle adjustment performance in Phase 1, participants 

were able to earn up to $4.00 of financial compensation across the four SPUN blocks. 

Specifically, participants were informed that on the last four trials of each block, the closer 

participants adjusted to the true 70% variability of T3 points, the more bonus compensation they 

received. This bonus system was employed to encourage attention to the task. 

SPUN Trajectories 

Trajectories for both phases were drawn from an underlying model with a normally 

distributed angle and speed. We manipulated the parameters in each Phase1 - Phase2 trajectory 
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model such that participants experienced four total 2-way combinations of high or low angle 

variability and high or low speed variability. These conditions naturally contributed to 

differences in the dispersion of T3 points between blocks (see Figure 5). The four blocks were 

presented in random order, and the conditions are henceforth labeled: 

•  HA HS (high angle variability, high speed variability), 

•  HA LS (high angle variability, low speed variability), 

• LA HS (low angle variability, high speed variability), and 

• LA LS (low angle variability, low speed variability). 

 
Figure 5. SPUN Distributions. The shaded areas exemplify different distributions of T3 locations 
given combinations of angle and speed. 
 

SPUN Methods Summary 

In each of 4 Phase 1 - Phase 2 blocks, participants viewed the beginning of 20 semi-

random spatial trajectories, wherein a dot moved from T0 to T1. In Phase 1, participants 

estimated the average location of the dot at T3 for each trial, and then estimated the 75% 

variability in T3 locations by sizing a circle around their provided average location. In Phase 2, 

the location of the dot was presented at T0 and T1, plus a shaded circle of fixed diameter. 

Participants estimated the likelihood of the dot falling in that circle at T3, again assessing 
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trajectory variability. As described earlier, there was a between-participant manipulation of task 

order. If applicable, this will be discussed at the end of the presentation of each dependent 

variable. 
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CHAPTER 6 - RESULTS: SPUN 

 

 

 

Variability Estimation 

One of the main outcomes from this experiment was estimates of spatial variability. Regarding 

these estimations, we derived measures of sensitivity, bias, and absolute error during SPUN 

Phase 1 and Phase 2. In all graphs, the intervals around each point represent the standard error of 

the mean. 

Distribution of responses: Circle size. For Phase 1, participants responded to spatial 

variability by sizing a circle to capture 75% of all trajectory endpoints. Figure 6 presents the 

distribution of average circle sizes across all conditions. The histogram reveals that most 

frequently, average circle sizes ranged between 80 pixels and 110 pixels, with no apparent 

outliers.  

 
Figure 6. Histogram of Circle Sizes (Pixels). This histogram shows participants’ average given 

circle size across all conditions. 
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Phase 1 variability sensitivity: Circle size.  Examining the size of circles for each 

condition identifies the extent to which participants were sensitive to spatial variability in Phase 

1. If average circle sizes at all increased as the amount of true variability increased, we can say 

that participants were at least somewhat sensitive to variability. Figure 7 presents both the true 

and participant estimated average adjusted circle size as a function of speed and angle variability. 

The true circle sizes are represented by the thicker lines, and the participant estimated circle sizes 

are represented by the thinner two lines. 

 
Figure 7. Phase 1 Variability Sensitivity [Average Adjusted Circle Size]. On average, the circle 
sizes increased as true variability increased, suggesting that participants were somewhat sensitive 
to true variability. 
  

Figure 7 shows that with increasing true angle variability, participants gave slightly 

larger circle size responses (exemplified by the positive slope of the two lines), meaning that 

they were somewhat sensitive to increasing angle variability. Similarly, the difference between 
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the low- and high-speed lines suggests that participants were also somewhat sensitive to 

increasing speed variability. 

A 2X2 MANOVA supported these observations, with both a significant main effect of 

angle variability [Wilk's Λ = 0.90, F(1, 60) = 7.02, p = .01, hp2 = 0.11] and speed variability 

[Wilk's Λ = 0.84, F(1, 60) = 11.72, p < .01, hp2 = 0.16] on participant’s average adjusted circle 

size. The interaction between speed and angle was not significant [Wilk's Λ = 0.99, F(1, 60) = 

0.23, p = .64, hp2 = 0.00]. There were no significant order effects noted for average adjusted 

circle size. 

 Degree of sensitivity. We quantified the amount of sensitivity shown in Phase 1 by 

creating a ratio of estimated to true variability using the difference in the lowest variability 

condition (low-speed, low-angle) to the highest variability condition (high-speed, high-angle). 

The average estimated circle size was 88.17 pixels for low variability and 96.17 pixels for high 

variability, for a difference of 8.24 pixels. The true circle size was 39 pixels for low variability 

and 102 pixels for high variability, with a difference of 63 pixels. Consequently, the difference 

ratio of estimated to true variability for Phase 1 was 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦"# =
$.!&

'(
. 

Phase 1 variability bias. We calculated variability bias by subtracting the true circle size 

for each condition from the average Phase 1 estimated circle size. Positive values signify average 

overestimation of variability, and negative values signify average underestimation of variability. 

Zero corresponds to no bias. Figure 8 presents the average bias to variability for each condition. 
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Figure 8. Phase 1 Average Variability Bias. On average, participants’ responses became less 
biased as true variability increased. 

 

Figure 8 shows that participants on average, overestimated spatial variability on three out 

of four conditions. For the high-speed and high-angle condition, participants slightly 

underestimated variability. The negative slope of the lines suggests that estimates were less 

biased as variability increased. 

A 2X2 MANOVA revealed a significant, large, main effect of true angle variability 

[Wilk's Λ = 0.07, F(1, 60) = 756.54, p < .01, hp2 = 0.93] and a large, significant, main effect of 

true speed variability [Wilk's Λ = 0.36, F(1, 60) = 108.70, p = .01, hp2 = 0.64] on average 

participant Phase 1 variability bias. The interaction between speed and angle variability was also 

significant [Wilk's Λ = 0.75, F(1, 60) = 19.75, p < .01, hp2 = 0.25]. No significant order effects 

occurred for this variable. 

Absolute Phase 1 variability error. Absolute variability error was calculated by taking 

the absolute value of Phase 1 bias. Smaller values correspond to less overall error, or more 
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precise responses to variability. Figure 9 presents participant’s average absolute variability error 

for each of the four conditions. The negative slope means that, for both low-speed and high-

speed variability, as angle variability increased, average absolute error decreased. 

 
Figure 9. Absolute Phase 1 Variability Error. For both low-speed and high-speed variability, as 
true angle variability increased, participants’ average absolute error decreased. 

 

A 2X2 MANOVA revealed a significant main effect of true angle variability [Wilk's Λ = 

0.29, F(1, 60) = 145.55, p < .01, hp2 = 0.71] and large, significant, main effect of true speed 

variability [Wilk's Λ = 0.80, F(1, 60) = 14.93, p < .01, hp2 = 0.20] on average absolute error. The 

interaction between speed and angle variability was not significant [Wilk's Λ = 0.96, F(1, 60) = 

0.87, p = .35, hp2 = 0.01]. No significant order effects occurred for this variable. 

Distribution of responses: Estimated variability. For Phase 2, participants responded 

to spatial variability by providing a percentage of T3 points they believed would fall in a circle 

of fixed diameter. Figure 10 presents the distribution of estimated percentages, averaged across 
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all conditions. The histogram reveals that most frequently, average estimates ranged between 0.1 

and 0.5. 

 
Figure 10. Histogram of Probability Estimates. In this histogram, responses for each participant 
were averaged across conditions. Most frequently, these estimates ranged from 0.1 to 0.5. 

 

Phase 2 variability sensitivity: Estimated percentage within the circle. Using the 

estimated probability variable, we derived the Phase 2 equivalent of variability sensitivity. 

Figure 11 presents both the true and average estimated T3 probability for each condition, and 

suggests that, as angle variability increased, participants’ average probability estimates 

decreased. As such, participant’s responses were slightly sensitive to changes in true angle 

variability. 

A 2X2 MANOVA revealed a significant main effect of true angle variability [Wilk's Λ = 

0.58, F(1, 60) = 43.24, p < .01, hp2 = 0.71] on average variability assessments. The main effect of 

true speed variability [Wilk's Λ = 0.96, F(1, 60) = 2.54, p = .12, hp2 = 0.04] and the interaction 
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between speed and angle variability [Wilk's Λ = 0.99, F(1, 60) = 0.33, p = .57, hp2 = 0.01] were 

both not significant. 

 
Figure 11. Phase 2 Sensitivity to Variability [Estimated Percentage in Circle]. As angle 
variability increased, participants’ average probability estimates decreased. This suggests that 
participants were slightly sensitive to changes in true angle variability. 
 
 Phase 2 variability assessment and task order. The only significant interaction with task 

order was again with the speed manipulations [Wilk's Λ = 0.93, F(1, 60) = 4.67, p = .04, hp2 = 

0.07]. Because speed did not have a main effect on responses, we did not interpret this 

interaction. 

 Degree of sensitivity. We again created a ratio of estimated to true variability to quantify 

the amount of sensitivity shown in Phase 2.  The average estimated probabilities in Phase 2 were 

0.43 for low variability and 0.30 for high variability, leading to a probability difference of 0.13. 

The true probability values were 0.89 for low variability and 0.27 for high variability, with a 
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difference of 0.62. The difference ratio of estimated to true for Phase 2 was 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦"! =

).#(
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Phase 2 variability bias. Figure 12 presents the Phase 2 average bias across conditions. 

Positive values signify average overestimation of variability, negative values signify average 

underestimation of variability, and zero corresponds to no bias.  

 
Figure 12. Phase 2 Average Variability Bias. On average, as true speed and angle variability 
increased, responses became less biased. 
 

Figure 12 suggests that, as with the Phase 1 variability estimations, in three out of four 

conditions, on average, participants overestimated variability. For the high-speed, high-angle 

condition, participants were very nearly calibrated, but slightly underestimated variability. A 

2X2 MANOVA revealed a significant main effect of true speed variability [Wilk's Λ = 0.36, F(1, 

60) = 107.56, p < .01, hp2 = 0.64] and true angle variability [Wilk's Λ = 0.13, F(1, 60) = 391.87, 
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p < .01, hp2 = 0.87] on participant Phase 2 variability bias. The interaction between speed and 

angle variability was not significant [Wilk's Λ = 0.99, F(1, 60) = 0.08, p = .77, hp2 = 0.00]. 

 Phase 2 variability bias and task order. The only significant interaction with task order 

was again with the true speed conditions [Wilk's Λ = 0.90, F(1, 60) = 6.93, p = .01, hp2 = 0.10]. 

Collapsed across angle conditions, participants that completed the SPUN task first had an 

average overestimation bias of 0.31 (SD = 0.16) for the low-speed condition and an 

overestimation bias of 0.16 (SD = 0.15) for the high-speed condition. Conversely, the 

participants who completed the DigiVar task first had an average probability of 0.24 (SD = 0.17) 

for the low-speed condition and an average probability of 0.15 (SD = 0.16) for the high-speed 

condition. The difference between the low-speed and high-speed condition for participants who 

completed the SPUN task first was 0.15, whereas the difference between speed conditions for 

participants who completed the SPUN task second was 0.09.  

Absolute Phase 2 variability error. Similar to Phase 1, we determined absolute Phase 2 

variability error by taking the absolute value of bias. Figure 13 presents the absolute error for all 

four conditions. For both speed conditions, average absolute error decreased as true angle 

variability increased. A 2X2 MANOVA suggested a significant main effect of true angle 

variability [Wilk's Λ = 0.28, F(1, 60) = 158.35, p < .01, hp2 = 0.73] and true speed variability 

[Wilk's Λ = 0.52, F(1, 60) = 55.06, p < .01, hp2 = 0.48]. Further, the interaction between speed 

and angle variability was also significant [Wilk's Λ = 0.83, F(1, 60) = 12.27, p < .01, hp2 = 0.17]. 

No significant order effects occurred for this variable. 
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Figure 13. Absolute Phase 2 Variability Error. On average, as true angle and speed variability 
increased, participants’ absolute response error decreased. 
 
Mean Estimation 

Distribution of responses: Mean prediction error. During Phase 1, participants 

predicted the trajectory mean locations. Mean prediction error was computed by taking the 

absolute distance between the estimated and true mean location. Figure 14 presents the 

distribution of mean error averaged across all conditions. The histogram reveals that most 

frequently, average estimates ranged between 50 pixels and 110 pixels. 
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Figure 14. Histogram of Spatial Mean Error. In this histogram, responses from each participant 
were averaged across conditions. Most frequently, these estimates ranged from 0.1 to 0.5. 
 

Spatial mean prediction error. On each trial participants predicted the T3 mean 

location. Mean prediction error was computed by taking the absolute distance between the 

estimated and true mean location. Larger values correspond to more error. Perfect mean 

precision (i.e., 0 error) is impossible in this task because of underlying variability in the 

trajectories. Figure 15 presents the average spatial mean absolute prediction error across the four 

conditions. 

Average spatial mean prediction error increased as true angle variability increased. 

Similarly, the difference between the low speed (i.e., dashed green line) and high speed (i.e., 

solid black line) conditions suggest that spatial prediction error increased as speed variability 

increased. 
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Figure 15. Absolute Spatial Mean Error. On average, participants’ spatial mean prediction error 
increased as true angle and true speed variability increased. 
  

 A 2X2 MANOVA revealed both a significant main effect of true angle variability [Wilk's 

Λ = 0.44, F(1, 60) = 77.02, p < .01, hp2 = 0.56] and true speed variability [Wilk's Λ = 0.70, F(1, 

60) = 26.16, p < .01, hp2 = 0.30] on participant’s spatial mean prediction error. The interaction 

between speed and angle was not significant, exemplified by the relatively parallel low- and 

high-speed condition lines [Wilk's Λ = 0.98, F(1, 60) = 1.23, p = .26, hp2 = 0.02]. 

 Mean prediction and task order. The only significant interaction with task order was 

with the true speed conditions [Wilk's Λ = 0.89, F(1, 60) = 7.45, p = .01, hp2 = 0.11]. Collapsed 

across angle conditions, participants who completed the SPUN task first had a spatial mean 

prediction error of 77.49 (SD = 42.74) for the low speed condition and a spatial mean prediction 

error of 84.55 (SD = 30.72) for the high-speed condition. Conversely, the participants who 

completed the DigiVar task first had a spatial mean prediction error of 72.93 (SD = 28.75) for 
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the low speed condition and a spatial mean prediction error of 96.17 (SD = 34.55) for the high-

speed condition. 

 Since the lower speed conditions led to less spatial mean prediction error, we computed a 

“low speed advantage” by subtracting the error for the low speed condition from the error at high 

speed. When SPUN was first, the low speed advantage was 7.06 pixels and when SPUN was 

second, the low speed advantage was 23.24 pixels. This suggest that there was less of a 

difference between the low- and high-speed conditions when participants completed SPUN first. 
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CHAPTER 7 - DISCUSSION: SPUN 

 

 

 
Results from the SPUN task revealed a number of empirical trends regarding how 

participants estimated spatial variability and means. 

Task Order 

While some interactions occurred between task order and true speed variability, in these cases, 

the main effect of speed itself was relatively small or entirely non-significant (i.e., Phase 2 

variability sensitivity, mean prediction error). These trends imply that completing SPUN first 

versus second had only a small effect on overall performance. 

Sensitivity to Spatial Variability 

The difference ratio of estimated to true variability for Phase 1 was 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦"# =
$.!&

'(
. This 

suggests that participants were sensitive to changing variability, as seen through the positive 

denominator, but the amount of sensitivity was much lower than calibration (8.24 compared to 

63). For Phase 2 the sensitivity ratio was 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦"! =
).#(

).'!
. 0.21Similar to the interpretation 

for Phase 1, this ratio demonstrates that participants were sensitive to changing variability, but 

again, much lower than calibration (0.13 compared to 0.62).  

Figure 16 below presents a conceptual diagram of the sensitivity demonstrated in both 

Phase 1 (gold) and Phase 2 (green) with the black diagonal line representing perfect calibration 

(estimated variability = true variability). This figure demonstrates that in both phases, 

participants did change their responses to variability appropriately, seen through the positive 

slopes of the Phase 1 and Phase 2 lines, but responses were under-sensitive (both had a flatter 

slope compared to the black line). Participants demonstrated better sensitivity to variability in 

Phase 2 compared to Phase 1. 
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Figure 16. SPUN Sensitivity Diagram. This diagram shows how estimated variability changed as 
a function of true variability for both Phase 1 and Phase 2. As true variability increased, 
estimations of variability became more calibrated. 
 

Speed and angle sensitivity. Additional sensitivity trends can be gleaned from the effect 

sizes of angle and speed on Phase 1 and Phase 2 sensitivity measurements. Specifically, the 

partial eta-squared effect sizes for speed and angle include the following: 

• Sensitivity to angle variability: hp2 = 0.11 (Phase 1) and hp2 = 0.71 (Phase 2) 

• Sensitivity to speed variability: hp2 = 0.16 (Phase 1) and hp2 = 0.04 (Phase 2). 

During Phase 1, there was a larger effect size for speed variability compared to angle 

variability (hp2 = 0.16 versus 0.11), suggesting that participants responded with more sensitivity 

to speed changes. This trend was reversed in Phase 2, with a much larger effect size for angle 

compared to speed variability (hp2 = 0.71 versus 0.04). Such results suggest a dissociation 

between the sensitivity when responding via an interval estimation as in Phase 1, and making a 
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probability estimate as in Phase 2. The MOVE model indeed incorporates response methodology 

as a key component of variability estimation, with sizing an interval relying on perceptual 

abilities and providing a probability judgement relying more on memory systems. 

Hypothetically, it was easier for participants to perceptually notice changes in speed variability 

compared to angle variability, because speed changes vary on only one dimension, distance, 

whereas angle changes involve both distance and direction changes. Further, The Phase 1 

response is fixed as a circle, with the only changes possible including increasing or decreasing 

the diameter. As such, it is easier to incorporate changes in the distribution of T3 locations in 

terms of speed/distance, but harder in terms of angle, since the circle shape cannot change. 

 In Phase 2, changes in true angle variability led to a much larger effect size, suggesting 

that the translation from a perceptual to a memory-based response system made angle changes 

much more salient to participants. Angle changes can be more easily visualized compared to 

speed changes, as the latter requires more mental calculation (Herdener, et al., 2016). Given that 

the probability estimates required in Phase 2 already forced mental operations for any response, 

participants could have simply been left more sensitive to angle changes when making their 

estimates. 

Variability Bias 

 Another important aspect of variability estimation is the bias expressed by participants, 

that is, whether they over- or underestimated variability. For both Phase 1 and Phase 2, 

participants overestimated variability in all conditions except high-angle and high-speed. 

Overestimating variability corresponds to participants responding as if the dispersion of T3 

points is larger than it really is; in Phase 1, this is expressed as sizing a larger circle than 

calibrated, and in Phase 2, this is expressed as estimating a smaller probability of T3 falling in 
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the circle than optimal. To aid discussion of the variability bias expressed in both phases, we 

calculated the average percent variability bias (overestimated variability [OEV] and 

underestimated variability [UEV]) for all conditions based on the true values, presented in Table 

1.  

Table 1. Variability Bias Across Phases 

Condition Phase 1 Phase 2 

Low-Speed, Low-Angle 126% OEV  108% OEV 

Low-Speed, High-Angle 16% OEV 27% OEV 

High-Speed, Low-Angle 82% OEV 85% OEV 

High-Speed, High-Angle 5.5% UEV 7.4% UEV 

Overall Average 54.63% OEV 53.15% OEV 

 

Across all conditions, participants overestimated variability by 54.63% on Phase 1 and 

53.15% in Phase 2. As true variability increased, the magnitude of overestimation decreased. In 

the highest variability condition, participants, on average, slightly underestimated variability. 

These findings are completely opposite our previous SPUN studies (Herdener et al., 2016, 2017, 

2018, 2018a, 2019b; Pugh et al., 2018) which each found clear underestimation of variability. 

 The trends of variance overestimation represent a failure to replicate not only past SPUN 

experiments, but also other non-numeric studies discussed above which noted a general 

underestimation of variability (Hofstatter, 1939; Lathrop, 1967). This observation could have a 

number of explanations. First, the SPUN task used here differed in some key ways from the task 

as used in previous studies. In Herdener et al. (2016), during Phase 1, participants only placed a 

circle at the estimated T3 location, without making a variability judgement. During the current 

SPUN paradigm, we ask participants to assess the mean location and variability concurrently 

(i.e., by positioning and sizing the circle at the same time). This additional variability judgement 

not only provided additional practice making such assessments, which may have influenced the 
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shift in results compared to Herdener et al. (2016). Furthermore, making variability judgement 

across both phases creates a stronger, ongoing memory of variability than was the case in the 

prior paradigm in which only Phase 2 variability was assessed (i.e., after all instances had been 

encountered). This ongoing memory of variability, reinforced by continuous responses, best 

explains why the Phase 1 and Phase 2 variability results were so similar, with clear 

overestimation of variability for all conditions except high-speed, high-angle, during which 

participants provided almost calibrated responses. 

Memory encoding theory, or the process of creating memories, can partially explain these 

results (Wickens et al., 2013). While participants in the current study and in Herdener et al. 

(2016) were exposed to the same amount of variability through Phase 1 and Phase 2, in the latter, 

they were only required to respond to that variability during Phase 1. Conversely, responding to 

variability throughout each phase of the task, as required in the present study, may have 

encouraged participants to differentially consider and encode patterns of variability, leading to 

the reversal of results seen here. It is important to note that this increase in the repetition of 

responding to variability didn’t make participants remember that behavior more accurately than 

that in Herdener et al. (2016). Indeed, as repetition alone doesn’t improve memory (Roediger, 

2008), it makes sense that we didn’t see participants becoming less biased with more chances to 

response. Instead, they simply changed the directionality of bias to be one of over- rather than 

under-estimation. 

An additional difference between this study and others we have run focuses on financial 

incentive. In this study, participants could earn a bonus for properly calibrated responses during 

the last four trials of Phase 1, a fact stressed during instructions and on the screen for each 

possible bonus trial. Such incentives may have reinforced an “inclusive” cognitive strategy to 
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absolutely make sure and capture 70% of the T3 endpoints. Such a strategy would force an 

overestimation of variability to at least hit 70%, but often overshooting this value, particularly 

when the T3 endpoints were less dispersed (Low-Speed and Low-Angle conditions). While this 

specifically concerned Phase 1, such a strategy could have an echo effect through to Phase 2, 

leading to the same outcome phenomenon. 

Estimating Spatial Means 

In the current study, participants estimated the mean T3 trajectory location by placing the 

center of a circle on the most likely location for T3. Performance for this prediction was 

expressed through the distance between the predicted and actual T3 location. Overall, prediction 

error increased as true variability (both speed and angle) increased. This suggests that 

participants, on average, were better at predicting the mean trajectory when variability was 

lower. Across all conditions, average mean prediction error was 82.79 pixels (SE = 3.65). 

 Performance on mean estimation in the present study are similar to those from past SPUN 

studies using an analogous methodology. In Herdener et al. (2016), average mean error was 

96.02 pixels (SE = 1.71) collapsed across all levels of heading and speed variability; authors 

noted that this average performance was still significantly higher than the optimal performance 

of an average error of 73 pixels. As noted in the results above, participants in the present study 

made significantly better mean predictions compared to Herdener et al. (2016), but the average 

mean error was still significantly greater than the optimal 73 pixels.  

The major difference between the SPUN methodology used here and the one in Herdener 

et al. (2016) was the addition of the Phase 1 variability measure (i.e., having participants size 

their circle in Phase 1 to capture 70% of the T3 endpoints). While this was indeed a change in 

Phase 1 that could have influenced overall performance, it seems unlikely that an additional step 
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that had participants focus on variability would have made their average mean estimation 

significantly better than was noted in Herdener et al. (2016). While other studies published by 

our research team have used the SPUN task to examine mean estimations, they incorporated 

significant deviations from the methodology used here, including using curved trajectories 

(experiment 2 in Herdener et al., 2016), adding background visualizations such as “variability 

clouds” (Pugh et al., 2018, Herdener et al., 2019), and emphasizing specific parts of the 

instructions (Herdener et al., 2018). As such, additional comparisons are not valid here. 

Overall, while average performance when estimating spatial means still was not at an 

optimal level based on the underlying mathematics inherent to the SPUN paradigm, participants 

in the current study did reach a better level of performance compared to the most closely related 

SPUN study. Overall, the spatial mean results presented here support the conclusion that people 

can accurately learn and respond to average spatial trends, but error does increase with angle and 

speed variability. 
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CHAPTER 8 - METHODS: DIGIVAR 

 

 

 
To assess understanding of numeric means and variability, we developed DigiVar to 

incorporate procedures analogous to those of SPUN but by using semi-randomized lists of 

numbers as stimuli. Experimenters administered this task through Qualtrics (2019). The task was 

structured with one practice block and four experimental blocks. In each experimental block, 

participants viewed twenty semi-random two-digit numbers and estimated an ongoing mean after 

each number. At the end of each number list, participants estimated the variability of all list 

numbers (See Figure 17). 

 
Figure 17. DigiVar Example. The DigiVar paradigm presents 20 semi-random two-digit 
numbers, and the participant estimates an ongoing mean after each number. 
 

Mean Estimation 

 During every experimental block, participants saw twenty numbers, each presented for 2 

seconds. After each number was presented, participants estimated the mean of all numbers they 

had seen in that set (i.e., that number and all previous numbers in that list). Participants only 

viewed each number once. As such, they were required to build an accurate, but estimated, mean 

over all 20 numbers in each list. Each mean estimation in DigiVar was analogous to each mean 

trajectory estimation in SPUN. The total time for the 20 trials of Phase 1 was approximately 40 

seconds, given the 2 second presentation, and approximately 2 seconds taken to type in the 2-

digit response. 
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Variability Estimation 

 After viewing all 20 numbers and estimating the final average, participants were 

immediately asked to consider all numbers they had seen in the current list. Using two sliding 

number scales, each bounded by 1 and 100, participants were instructed to provide a range of 

numbers (minimum and maximum) that encompassed approximately 70% of the numbers they 

had seen in that list (See Figure 18). This exercise probed participants’ implicit understanding of 

the numeric variability in each list and is directly analogous to the adjusted circle employed in 

Phase 1 of SPUN, which probed spatial variability. 

 
Figure 18. DigiVar Range Estimation. After estimating 20 means, participants provide a 
minimum and a maximum that captures approximately 70% of the numbers in the list. 
 
Key Variables 

Participants estimated variability by providing a number range that captured 70% of the 

numbers they saw. We calculated how many numbers from each list fell into participant’s 

estimated ranges and treated this as a singular variability estimate. Regarding sensitivity to 

numeric variability, we subtracted the average numbers in range for the low-mean low-

variability condition from the high-mean high-variability condition. Numeric variability bias was 

obtained by subtracting the true digits in range from the estimated digits in range. Because each 

list contained 20 numbers, the true digits in range was a constant 14 digits. Perfect calibration to 
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variability occurred if participants reported intervals that contained 14 list numbers. Positive bias 

values suggest overestimation of numeric variability, whereas negative bias values suggest 

underestimation of numeric variability. Like above, absolute numeric variability error was the 

absolute value of bias. 

Regarding estimated averages, we again derived a measure of absolute mean error; this is 

the absolute value of the difference between participants’ estimated averages and the true 

averages in their final mean estimate for each list.  

Number Lists 

 Four lists of twenty numbers were each generated with differences in mean and 

variability (i.e., standard deviation). All digits ranged from 1 to 100. Participants saw the four 

lists in a fixed order, but numbers were presented randomly. We manipulated the mean and 

standard deviation of each list such that participants experienced all combinations of high-low 

mean and high-low variability. The conditions are henceforth labeled: 

•  HM HV (high mean [M = 61.35], high variability [s = 22.19]),  

•  HM LV (high mean [M = 71.40], low variability [s = 9.85]),  

•  LM HV (low mean [M = 41.10], high variability [s = 17.63]), and 

•  LM LV (low mean [M = 52.20], high variability [s = 14.49]).  
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CHAPTER 9 - RESULTS: DIGIVAR 

 

 

 

Variability Estimation 

Distribution of responses: Numeric variability. Participants responded to numeric 

variability by providing a minimum and a maximum value that encompassed what they judged to 

be 70% of the numbers they saw. From this minimum and maximum, we calculated a range for 

each condition, and then calculated how many numbers in each list fell within participant’s given 

ranges (i.e., digits in given range). Figure 19 presents the distribution of the digits in given range 

variable. Responses for each participant were averaged across conditions. The histogram reveals 

that most frequently, average estimates ranged between 5 and 20 digits in range. 

 
Figure 19. Histogram of Digits in Range. Responses for each participant were averaged across 
conditions. Average estimates ranged between 5 and 20 digits in range. 
 

Numeric variability sensitivity. Participants responded to numeric variability by 

providing a minimum and a maximum value that encompassed what they judged to be 70% of 
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the numbers they saw. From this minimum and maximum, we calculated a range for each 

condition, and then calculated how many numbers in each list fell within participant’s given 

ranges (i.e., digits in given range). In each of the four manipulated conditions, the true, sensitive, 

70% range would have contained 14 numbers, since there were 20 presented. Figure 20 presents 

the average estimated and true digits in given range each condition. 

 
Figure 20. Sensitivity to Numeric Variability [Digits in Range]. On average, the digits in given 
range variable were similar across all conditions. 
 

A 2X2 MANOVA indicated that neither the main effect of true list mean [Wilk's Λ = 

0.99, F(1, 60) = 0.1, p = .75, hp2 = 0.002], list variability [Wilk's Λ = 0.99, F(1, 60) = 0.09, p 

= .76, hp2 = 0.002], nor their interaction had a significant effect [Wilk's Λ = 0.99, F(1, 60) = 

0.08, p = .77, hp2 = 0.01] on average digits in given range were significant. No order effects were 

noted for this variable. 

Numeric variability bias. To determine participant bias to numeric variability, we 

subtracted the true constant of 14 digits from each participant’s digits in given range variable. 
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This operation produces a signed bias variable that identifies the extent to which participants 

overestimated variability (i.e., participant’s ranges encompassed more than 14 numbers) or 

whether they underestimated variability (i.e., participant’s ranges encompassed less than 14 

numbers). Figure 21 presents the average numeric bias for participants for all conditions. 

 
Figure 21. Numeric Variability Bias. On average, participants overestimated numeric variability 
for all conditions. 
 

Figure 21 shows that for all conditions, participants, on average, overestimated numeric 

variability. A 2X2 MANOVA indicated that neither the main effect of true list mean [Wilk's Λ = 

0.99, F(1, 60) = 0.1, p = .75, hp2 = 0.002], list variability [Wilk's Λ = 0.99, F(1, 60) = 0.09, p 

= .76, hp2 = 0.002], nor the interaction [Wilk's Λ = 0.99, F(1, 60) = 0.08, p = .77, hp2 = 0.01] was 

significant. 

Given prior literature which detailed how people typically underestimate numeric 

variability, Hypothesis 3 posited that they would do so on this task as well. Clearly, participants 

overestimated variability, but to test this, we ran a one-sample t-test on average numeric bias 
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using a test value of zero (no bias). Results confirmed that participants, on average, significantly 

overestimated variability [t(61) = 3.05, p < .01, d = 0.38]. 

 Variability estimates by block. We also examined whether any differences occurred 

between participants’ variability bias between trials. Figure 22 shows the average bias for each 

trial. 

 
Figure 22. Numeric Variability Bias by Trials. This figure shows how average bias to numeric 
variability changed across trials. No significant differences occurred between trials. 
 
This figure demonstrates the similar bias expressed in each block. No significant differences 

occurred between average bias in each trial (p > .05). 

 Numeric variability bias and task order. Regarding the effect of task order on bias, no 

effects were significant except the three-way interaction between list mean, list variability, and 

task order [Wilk's Λ = 0.92, F(1, 60) = 5.31, p = .03, hp2 = 0.08]. Figure 23 presents the average 

numeric variability bias for those participants who completed the SPUN task first and Figure 24 

presents the average numeric variability bias those who completed the DigiVar task first. 
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Figure 23. Numeric Variability Bias for those participants who completed the SPUN Task first. 
When the SPUN task was first, higher true variability with a lower mean led to less numeric 
variability overestimation. 
 

 
Figure 24. Numeric Variability Bias for those participants who completed the DigiVar Task first. 
When the DigiVar task was first, higher true variability with a lower mean led to more numeric 
variability overestimation. 
 

This interaction reveals that when the SPUN task was first, higher variability with a 

lower mean led to less numeric overestimation, but when the DigiVar task was first, this 

estimated variability pattern reverses, which cannot be easily explained. 

Absolute numeric variability error. Figure 25 presents the numeric absolute variability 

error across conditions. Larger values suggest more error. 
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Figure 25. Absolute Numeric Variability Error. On average, as true list variability increased, 
absolute numeric variability also increased. 
 

As seen above, as true list variability increased, absolute numeric variability also 

increased. This effect was more pronounced for the high mean condition. A 2X2 MANOVA 

revealed a significant main effect of list variability on estimated variability precision [Wilk's Λ = 

0.90, F(1, 60) = 6.98, p = .01, hp2 = 0.10], an effect that is most meaningfully interpreted in the 

context of the significant interaction between list mean and variability [Wilk's Λ = 0.91, F(1, 60) 

= 5.71, p = .02, hp2 = 0.09]. Specifically, when the list had a high mean, an increase in variability 

led to an increased absolute error when estimating list variability. This variable was not affected 

by task order. 

Mean Estimation 

Distribution of responses: Numeric mean error. Similar to SPUN, we calculated 

participants’ absolute numeric mean estimation error. Figure 26 presents the frequency of mean 
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error averaged across all conditions. The histogram reveals that most frequently, numeric mean 

error ranged from 0 to 20. 

 
Figure 26. Numeric Mean Error. This figure presents participants’ numeric mean error, averaged 
across participants. Most frequently, numeric mean error ranged from 0 to 20. 
 

Absolute numeric mean error. Similar to SPUN, we calculated participants’ absolute 

numeric mean estimation error. Across all conditions, average absolute error was 6.45 (SD = 

5.61), meaning that, on average, participants’ mean estimates were approximately 6.5 digits 

deviant from the true mean. Figure 27 presents this variable for each condition. 

Data in Figure 27 demonstrate that, as true list variability increased, absolute mean 

estimation error increased. This trend was more pronounced for the high mean conditions 

compared to the low mean conditions. 
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Figure 27. Absolute Numeric Mean Error. As true list variability increased, absolute mean 
estimation error increased. 
 

A 2X2 MANOVA revealed that the main effect of list mean was not statistically 

significant [Wilk's Λ = 0.96, F(1, 60) = 2.52, p = .12, hp2 = 0.04]. The main effect of list 

variability was trending towards significance [Wilk's Λ = 0.95, F(1, 60) = 3.16, p = .08, hp2 = 

0.05]. Moreover, the interaction between list mean and list variability was also trending towards 

significance [Wilk's Λ = 0.95, F(1, 60) = 3.03, p = .09, hp2 = 0.05], as seen by the divergence of 

the low mean (i.e., dotted green) and high mean (i.e., solid black) lines in Figure 27. No 

significant order effects were noted for this variable.  
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CHAPTER 10 - DISCUSSION: DIGIVAR 

 

 

 

Task Order 

As in the SPUN analyses, a task order variable was included in the MANOVAs. The only 

significant effect involving task order was a three-way interaction with true list mean and 

variability on participants’ numeric variability bias. The lack of significant task order main 

effects suggests that completing the DigiVar task first made little impact on performance. This is 

the extent to which we will discuss the influence of task order on DigiVar results. 

Sensitivity to Numeric Variability 

The conceptual diagram Figure 28 below presents trends in estimated and true variability 

in the DigiVar task. The x-axis represents true variability, and the y-axis represents estimated 

variability. The black line represents perfect calibration, and the dotted green line represents the 

average responses to variability. We did not calculate a sensitivity ratio for DigiVar because 

perfect calibration corresponded to 14 digits both at low list variability and high list variability 

(leading to a denominator of zero in a ratio). This figure demonstrates that participants were 

sensitive to changes in variability, seen through the similar positive slopes of the green dotted 

line and the solid black line. These findings of proper sensitivity to true variability are contrary 

to the variability sensitivity presented in Beach and Scopp (1968); in their experiment, at low 

levels of true variability, participants were actually slightly hypersensitive. At higher levels of 

true variability, participants were hyposensitive. This study, conversely, found that participants 

showed fairly calibrated sensitivity; at both low and high list variability participants gave similar, 

if overestimated estimates of variability (see Figure 21). These findings suggest that participants 
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were somewhat aware of the changing variability between numbers in the lists, and they adjusted 

their 70% intervals accordingly. 

 
Figure 28. DV Sensitivity Diagram. This diagram shows how estimated variability changed as a 
function of true variability in DigiVar. Participants showed fairly calibrated sensitivity; at both 

low and high list variability participants gave similar, if overestimated estimates of variability. 

Variability Bias 

For each condition in DigiVar, calibrated variability would be providing a range of 14 

numbers, which means that participants slightly overestimated variability (seen by the green 

dotted line being slightly higher than the black calibration line). Participants overestimated 

variability at a similar level for all conditions, with an average of 9.1%. Such a low amount of 

overestimation suggests that participants were fairly well calibrated to numeric variability. This 

trend could be due, in part, to the familiarity of numeric stimuli, a tenant of the MOVE model. 

The level of stimuli familiarity primarily impact encoding of variability, with more familiar 
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material leading to more accurate mental models of that stimuli. The high familiarity of numbers 

is without question; indeed, evolutionary research suggests that “numerical competencies” are 

preverbal, with infants responding to differently to varying number arrays in habituation 

paradigms (Tosto et al., 2014). Arguably, then, the high familiarity of numeric stimuli ease 

encoding of numeric variability, leading to mostly calibrated estimates found here. 

 The overestimation of variability noted here contrasts with a key finding from Beach and 

Scopp (1968), one of the few studies to examine estimates of numeric variability. These 

researchers found that participants underestimated the variability of normal distributions; they 

subsequently hypothesized that because most deviations in such a distribution are close to the 

mean, participants emphasize these small deviations and thus underestimate variability. 

Furthermore, using various stimuli, multiple studies noted that estimates of variability decrease 

as the mean of the sample increases (Hofstatter, 1939; Lathrop, 1967; Beach and Scopp 1968). 

These experimenters, however, had participants make single judgements (e.g., “more variable” 

versus “less variable”) as opposed to providing a point estimate or range for variability, as was 

done in the present study. This difference in the response methodologies is also an integral part 

of the MOVE model, and certainly may account for the bias dissimilarity noted between this 

study and others that note underestimation of variability. 

 Another plausible explanation for the clear overestimation of variability comes from the 

instructions for participants to respond to variability. After estimating all means for each list, 

participants were given the following directions: “Consider all of the numbers that you saw from 

this group. Please provide a range numbers (minimum and maximum) that encompasses 

approximately 70% of the numbers you saw.” In retrospect, participants could have approached 

the task with the goal of at least capturing 70% of the numbers they saw but giving slightly 
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larger estimates to be positive that they provided a large-enough range. Additional research 

needs to follow up on this aspect of the DigiVar task, exploring different response techniques 

and their impact on variability judgements. 

Estimating Numeric Means 

For each 20-digit number list, participants estimated a “running” mean after each number. 

For every list, we examined the bias and precision of the final estimated mean to identify if these 

estimates were influenced by the magnitude of the true list mean and variability. Results suggests 

that participants’ mean estimates were sensitive to changes in both the true list mean and 

variability. 

The precision results presented above are best compared to existing literature focused on 

the estimation of numeric means. Beach and Swenson (1966)’s subjects provided highly accurate 

estimates of numeric means, with an average absolute error of 3.51 digits. Further, as the number 

of list numbers in the lists increased, mean estimates became less precise. Across all conditions, 

participants in the current study had an average absolute mean estimation error of 6.45 (SD = 

5.61), and while this average is greater than Beach and Swenson, they had a maximum number 

of seven digits in their lists, where we had 20 in each list. As Beach and Swenson suggest that 

more numbers in the list lead to increased error, it stands to reason that we found a higher 

average estimation error. 

 Beach and Swenson (1966) also found that increasing the variability within the number 

lists corresponded to less precise mean estimates. While the main effect of list variability was 

only trending towards significance (see Figure 27), average absolute mean estimation error did 

increase as variability increased. Finally, Taken together, these results suggest that when 

estimating a numeric mean, as the variability between numbers or numbers in the list increased, 
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participants had a more difficult time accurately updating their mental model of the average. 

Moreover, knowing that they would be required to provide an estimation of variability at the end 

of each list may have encouraged them to attend to the variability, at the expense of the mean 

estimates. 
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CHAPTER 11 - METHODS: CORRELATIONAL ANALYSES 

 

 

 

The main aim of this project was to identify the extent to which participants expressed 

similar variability estimation performance across numeric and spatial stimuli. Initially, we had 

thought to correlate bias and precision, but have since determined that sensitivity, rather than 

precision, better captures the ability to estimate different levels of variability. This is because 

precision, as a variable, is confounded by sensitivity: if a participant shows no sensitivity to 

variability, a precision value can still be calculated, but its value will depend entirely on the level 

of variability assessed and on the underlying bias (See Figure 2). As such, we revised this 

section to include correlations using sensitivity to variability, as opposed to precision. 

The three key variables used in these correlations include variability sensitivity, 

variability bias, and error in estimating or predicting the mean. For the correlations, sensitivity is 

the same as above; that is, the variable was calculated by subtracting the estimated variability at 

low true variability from that at high true variability. To correlate bias, we calculated an average 

bias expressed by participants across the conditions in each task (low and high variability for 

speed and angle in SPUN, and low and high mean and variability in DigiVar). A similar average 

variable was calculated for mean estimation error.  

The parametric assumptions of linearity and normality were checked prior to running 

these analyses. We utilized the Pearson’s Product-Moment Correlation when variables met all 

the parametric assumptions, and when they did not, we utilized Spearman’s Rho. To evaluate the 

strength of the correlations, we used the effect size cutoffs presented in Cohen (1992). 
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CHAPTER 12 - RESULTS: CORRELATIONAL ANALYSES 

 

 

 

Variability Sensitivity 

 No significant between-task correlations occurred for variability sensitivity variables. 

This was true for both the correlations of SPUN Phase 1 and DigiVar sensitivity (rs = -0.03, p 

= .81) and SPUN Phase 2 and DigiVar sensitivity (rs = -0.08, p = .52). These correlations suggest 

that the ability to perceive variability in the spatial domain is unrelated to perceiving variability 

in the numeric domain. 

The correlation between variability sensitivity measures in SPUN Phase 1 and SPUN 

Phase 2 was statistically significant (rs = -0.28, p = .03); while this is a negative correlation, 

because of the way Phase 1 and Phase 2 were measured, it means that those who were more 

sensitive in Phase 1 were also more sensitive in Phase 2. As such, there is some evidence that 

Phase 1 and Phase 2 assess a commonality in the ability to perceive and respond to spatial 

variability. This will be discussed further below. 

Variability Bias 

A moderate, positive, significant correlation (rs = +0.30, p = .02) occurred between 

average SPUN Phase 1 and DigiVar variability biases, suggesting that those who demonstrated a 

bias when adjusting a circle also demonstrated a similar bias when adjusting a numeric interval. 

The correlation between SPUN Phase 2 and DigiVar variability biases was not 

statistically significant (rs = +0.22, p = .09) and the correlation between SPUN Phase 1 and 

SPUN Phase 2 variability biases was not significant (rs = -0.03, p = .80). 

Estimation Error of the Mean 
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A large, significant, positive correlation (rs = +0.44, p < .01) occurred between estimation 

error of the mean in the SPUN task and the DigiVar task. This suggests that those who estimated 

spatial means with more error also estimated numeric means with more error. 

Estimation Error of the Mean and Variability Sensitivity 

For the SPUN task, the correlation between participant’s average estimation error of the 

mean and Phase 1 variability sensitivity was moderate and significant (rs = -0.38, p < .01). This 

means that those participants who estimated spatial means with less error were more sensitive to 

spatial variability. The correlation of average mean estimation error and Phase 2 variability 

sensitivity was not significant (rs = +0.22, p = .09). 

For the DigiVar task, the correlation of participant’s average estimation error of the mean 

and variability sensitivity was not significant (rs = +0.10, p = .43). 
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CHAPTER 13 - DISCUSSION: CORRELATIONAL ANALYSES 

 

 

 

Correlations between key variables formed the core of this series of experiments. The 

following discusses implications of these relationships. 

Variability Sensitivity 

For sensitivity correlations, the only significant relationship occurred between sensitivity 

measures in SPUN Phase 1 and Phase 2. Of note, how we manipulated variability across the two 

Phases was comparatively opposite. For example, sensitive responses to large true variability in 

Phase 1 would result in a larger circle but would result in a smaller estimated variability in 

Phase 2. If trajectory endpoints are highly variable, then a smaller percentage fall in the fixed 

circle probe. The derived variability sensitivity measures for each participant in Phase 1 and 

Phase 2 retain this opposite valence. Thus, we can interpret the significant negative correlation as 

so: those individuals who demonstrated more sensitivity to variability in Phase 1 also 

demonstrated more sensitivity in Phase 2. This suggests that, to a small extent, Phase 1 and 

Phase 2 assessed a similar sensitivity to spatial variability unrelated to the response method (i.e., 

adjustment versus assessment). This finding supports the perspective of individual differences in 

sensitivity to spatial variability – some participants demonstrated more sensitivity in both SPUN 

Phases but did not retain this performance for numeric stimuli as well. The almost absent 

correlations between variability sensitivity measures in SPUN and DigiVar means that 

participants did not demonstrate domain-general sensitivity to variability.  

Variability Bias 

A moderate, positive, significant correlation occurred between biases in SPUN Phase 1 

and DigiVar, meaning that those participants who gave larger circle sizes in SPUN also gave 
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larger numeric intervals in DigiVar. This correlation calls out the analogous response 

methodology used for both probes was analogous: that of adjusting a subjective confidence 

interval.  

Correlations involving the direct estimate of spatial variability in SPUN Phase 2 were not 

statistically significant. This could have been due to the difference in response methodologies – 

the SPUN Phase 1 and DigiVar adjustment does not correspond to the direct assessment of 

variability used in SPUN Phase 2. These findings provide evidence for the effect of response 

methodology on variability bias as described by MOVE (Wickens et al., 2020). Herdener et al., 

(2019) noted a similar dissociation between adjustment and assessment in SPUN. 

Estimation Error of the Mean 

 A large, significant, positive correlation occurred between mean estimation error in 

DigiVar and SPUN, suggesting that those individuals who estimated spatial means with more 

error also did so with numeric means. This implies a general ability of individuals to estimate 

average behavior across stimuli. 

Individual differences in the ability to estimate such central tendencies could be due to 

various factors. Those people who are exposed to more average behavior (e.g., average spatial 

weather patterns, baseball batting averages, average earnings per year) and who have more 

practice making average estimates may have developed a general, cross-stimuli ability to make 

such estimates. Additionally, insofar as estimating averages is a form of categorization (e.g., 

classifying new instances based on averaging features; Smith, Zakrzewski, Johnson, Valleau, & 

Church, 2016), those people better at categorization may retain an advantage when estimating 

any average behavior. Indeed, individual differences have been noted in studies of 

categorization, with a link to working memory capacity as a mediating factor (Lewandowsky, 
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2011). Additional research is needed to identify why people differ in the error of their average 

estimates.  

Estimation Error of the Mean and Variability Sensitivity 

Regarding the relationship between estimation error of the mean and variability 

sensitivity, those individuals that estimated means with less error demonstrated more sensitivity 

to variability in SPUN Phase 1. This was not anticipated – using the SPUN paradigm, Herdener 

et al. (2019) found an attentional tradeoff, where individuals who estimated means with more 

error were more accurate when estimating variability, as if they could attend to either estimating 

the mean, or estimating variability, but not both. 

This finding can be explained in at least two respects. First, this could suggest a common 

spatial ability, such that individuals show similar performance for spatial probes throughout the 

task. While the correlation between estimation error of the mean in Phase 1 and spatial 

variability assessment in Phase 2 was only marginally significant, coupled with the significant 

Phase 1 mean and variability sensitivity correlation, evidence exists of general individual 

differences in spatial ability. 

Participant’s level of attention to the task could have also influenced these results. If 

some participants attended more to the SPUN task, then they would be more likely to perform 

well compared to others who didn’t focus as much. Indeed, this is certainly a risk for MTurk 

samples, as researchers cannot control the experimental environment. Additional laboratory 

research is needed to see if attention plays a significant role in these findings. 
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CHAPTER 14 – GENERAL DISCUSSION 

 

 

 

The current study utilized an individual differences approach to investigate the extent to 

which people have a domain general ability to understand the variability and average behavior of 

continuously distributed stimuli. Using SPUN and a newly developed analogous numeric task, 

we assessed sensitivity to different levels of variability and bias/precision of responses to 

variability/means. Here, we briefly discuss the magnitude of support for each hypothesis. 

Hypothesis 1A. A significant between-task correlation will occur between the sensitivity 

of variability estimations. No significant correlations occurred between variability sensitivity in 

SPUN and DigiVar – those who were more sensitive to different levels of spatial variability did 

not retain this sensitivity for numeric variability. This suggest that multiple cognitive 

processes/systems likely contribute to the understanding and estimation of variability for 

different types of stimuli. 

We can interpret the lack of between-task correlations in terms of storage in different 

memory systems. For instance, while some researchers have found a significant correlation 

between individual’s spatial and verbal working memory (Unsworth, Brewer, & Spillers, 2009), 

this still leaves some differences unaccounted for in storage capacity. Perhaps sensitivity to 

variability in different types of stimuli are served by different subsystems of working memory: 

numeric variability by verbal working memory and spatial variability by spatial working 

memory. 

Another possible factor for the failure to find between-task correlations lies in the amount 

of variability manipulated in DigiVar versus SPUN. More total variability was manipulated in 

SPUN, meaning that the sensitivity measure covered a larger amount of variability as well. 
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Additional research that equivalates the amount of variability manipulated within-tasks will 

elucidate the extent to which this explains the current findings. This will be discussed further in 

the limitations and future directions section below. Overall, this hypothesis was not supported. 

Hypothesis 1B: A significant between-task correlation will occur between variability bias 

(signed error) performance. The correlation of average variability bias in SPUN and DigiVar 

tasks was positive and significant only when using adjustment as a response method. This is an 

important distinction, because adjustment taps into more of the perceptual response to variability, 

as in the System 1 quick, heuristic responding. Perception occurs more automatically and can be 

seen as a part of System 1 cognition. The slower, System 2 cognitive process is responsible for 

responses like variability assessment, because such responses necessitate careful conversion 

from viewed variability to a numeric form (Kahneman, 2011). Evidence from this study suggests 

that variability bias may stem primarily from the perceptual-cognitive adjustment of spatial or 

numeric intervals. This hypothesis was partially supported. 

Hypothesis 1C: A significant between-task correlation will occur between estimation 

error of the mean. Correlation results suggest that those who estimated spatial means with more 

error also estimated numeric means with more error. Participants varied in their amount of 

estimation error. Possible drivers of the individual differences noted here include working 

memory capacity and the ability to categorize. Exposure to, and practice estimating, average 

trends in continuous stimuli behavior likely also plays a role in making such judgments. 

Additional research is needed to clarify why people demonstrate similar bias across tasks. This 

hypothesis was supported. 

Hypothesis 2: No significant within-task correlations will occur between the variability 

sensitivity and estimation error of the mean. The correlation between estimation error of the 
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mean in SPUN Phase 1 and variability sensitivity in SPUN Phase 1 (adjustment) was significant, 

suggesting that those participants who estimated spatial means with less error were more 

sensitive to spatial variability. This was unanticipated based on our research group’s prior 

studies, which noted a possible attentional tradeoff between mean and variability probes in Phase 

1 (Herdener et al., 2018, 2019). 

For DigiVar, the correlation between absolute variability and estimation error of the 

mean was not significant, suggesting that people who were more accurate on mean estimates 

were not more accurate with their variability estimates. This was likely not due to an attentional 

tradeoff, as mean and variability estimates occurred sequentially. Additional research is needed 

to identify why the numeric task did not result in the similar trends seen in the spatial task. This 

hypothesis was partially supported. 

Hypothesis 3: DigiVar task performance will reflect underestimation of variability. In the 

in the DigiVar task, participants significantly overestimated variability via their number ranges. 

This was inconsistent with prior literature (Beach & Scopp, 1968; Henrion & Fischoff, 1985; 

Hansson, Juslin, & Winman, 2008), but may have been due, in part, to interpretation of the 

instructions. This will be discussed further in the limitations and future directions section. 

Individual Differences 

Estimation bias. While they focused on overconfidence, Pallier and colleagues (2002) 

did find individual differences in the accuracy of confidence judgements. Trends in the current 

study also suggests a role of individual differences in bias to variability, but the bias elicited was 

overestimation of variability. We didn’t test any possible mediators of the ability to estimate 

variability, but this is an important next step. As described in MOVE (Wickens et al., 2020), 

possible abilities that may drive a similar bias to spatial and numeric variability include 
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personality traits towards being over- or under-confident (Pallier et al., 2002). If underestimation 

of variability is overconfidence in the estimation of the mean (Henrion & Fischoff, 1985; 

Wickens et al., 2020), then the converse implies that overestimation of variability is 

underconfidence in the estimation of the mean. This possibility needs additional exploration. 

Other cognitive mediators that could influence these results include working memory (Hansson 

et al., 2008), and numeracy (Rinne & Mazzaco, 2013). 

This evidence of individual differences in variability bias has important implications for 

human factors applications. The same bias was elicited across stimuli, and thus similar 

interventions may be used to help reduce bias. Identifying when biases are most likely to occur 

will allow for proper human factors interventions, such as visualizations and training on domains 

that include uncertainty, such as extreme weather patterns. 

 This study affords some interesting caveats to the MOVE model of variability estimation 

(Wickens et al., 2020). For one, the SPUN task, which influenced much of the model 

consistently demonstrated that people overwhelmingly underestimated variability. Findings 

presented here demonstrate that this bias can apparently be pushed to general overestimation for 

both spatial AND numeric stimuli. The differences that could have caused this change in SPUN 

were the simultaneous mean/variability judgements in Phase 1, and the bonus incentive to attend 

to variability. This was the first time that the DigiVar task was tested, so additional experiments 

are needed to identify if this overestimation of variability can be manipulated. 

Estimation error of the mean. Individual differences were also noted for estimation 

error of the mean across SPUN and DigiVar. While these trends were noted, people did not all 

perform in a similar manner; some people showed less estimation error of the mean, and others 

showed more estimation error of the mean across tasks. These individual differences suggest the 



 77 

potential role of mediating cognitive abilities that support estimation of average behaviors but 

could also imply varied levels of attention to the task – more versus less engagement throughout 

the tasks can lead to similar results. 

Individual differences in mean estimation also have implications for human factors 

applications. In the realm of decision making, people often make “pseudo-average” estimations 

by aggregating cues and sets of information. For example, when estimating whether a sports 

team will win a game is dependent on various sources of data, each which must be aggregated to 

arrive at a “mean” estimate of likelihood. Additional research is needed to identify the extent to 

which the ability to estimate averages in this study (e.g., averages from continuously presented 

numeric/spatial stimuli) are similar to the ability to make discrete outcome estimates from 

aggregate, or averaging, data. Nonetheless, with similar error elicited across stimuli in the 

current study, interventions to help people those who struggle more with estimating the mean 

may help general performance when making such judgments. 

Observed Power Analysis 

Table 2 presents each of the key between and within-task correlations discussed above 

and the achieved power for each analysis. These post-hoc power analyses were conducted using 

G*Power (Faul, Erdfelder, Buchner, & Lang, 2009). These findings demonstrate that the 

correlations in this study ranged in observed power, with only the two largest correlations 

achieving adequate power above 0.8.  

Table 2. Observed Power Analysis 

Correlation Correlation Coefficient (rs) Achieved Power 

SPUN Phase 1 and DigiVar Sensitivity -0.03 0.06 

SPUN Phase 1 and 2 Bias -0.03 0.06 

SPUN Phase 2 and DigiVar Sensitivity -0.08 0.09 

DigiVar Sensitivity and Mean 
Estimation 

0.10 0.12 
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SPUN Phase 2 Sensitivity and Mean 
Estimation 

0.22 0.41 

SPUN Phase 2 and DigiVar Bias 0.22 0.41 

SPUN Phase 1 and 2 Sensitivity -0.28* 0.61 

SPUN Phase 1 and DigiVar Bias 0.30* 0.67 

SPUN Phase 1 Sensitivity and Mean 
Estimation 

-0.38** 0.87 

SPUN and DigiVar Mean Estimation 0.44** 0.95 
*: Significant at p < .05; **: Significant at p < .01. 

 

While the correlations between SPUN Phase 1 and Phase 2 Sensitivity and between SPUN Phase 

1 and DigiVar Bias were both under-powered, they were still both statistically significant at an 

alpha level of .05. As such, while a larger sample size may have resulted in more adequate power 

for these correlations, the interpretation would likely not change much from that stated above. 

Limitations and Future Directions 

 Taken together, these findings provided some evidence that similar cognitive constructs 

contribute to variability bias across stimuli. Even still, some factors limited these experiments. 

Levels of manipulated variability. While participants demonstrated limited sensitivity 

to increasing variability, only two levels were manipulated in both SPUN and DigiVar. Adding 

more than two levels of variability in both tasks will be necessary to identify a fuller range of 

sensitivity to variability across stimuli. Further, the amount of manipulated variability was 

conceptually different in the two tasks. The SPUN trajectories characterized variability in terms 

of speed and angle, which created four different distributions of spatial variability. Conversely, 

in DigiVar, numeric variability was manipulated based on the variability of the number lists, 

which had two levels. This means that the SPUN task covered a wider total range of variability 

than did DigiVar. Increasing the range of manipulated variability in DigiVar could lead to a 

different pattern of results – not just stable overestimation of variability (see Figure 21). 
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Financial incentives. Financial incentives also likely influenced the results in this study. 

As discussed above, this was one of the first SPUN experiments to financially incentivize people 

(via a bonus) to give calibrated circle sizes in the final four trials of each block. Participants were 

told that they could earn a bonus during these trials for providing accurate circle sizes, which 

may have encouraged a different level of processing variability throughout the task. Since 

participants were only bonused during SPUN and not DigiVar, however, it would be unlikely 

that this is the driving factor behind a shift from under- to overestimation of variability. 

 Further experiments should focus on the extent to which financial incentives influence 

responses to variability, and moreover, if this is a function of attending to the stimuli 

characteristics underlying that bonus (i.e., participants knew they were going to be bonused for 

giving accurate responses to variability, so they attend and encode that information better). 

Latent model of variability estimation. This study provided some evidence of 

variability bias across stimuli, specifically when using adjustment as a response technique. Other 

relationships were not found, suggesting that the ability to understand environmental variability 

is complex. One future direction for this research is to develop a latent variable model of 

variability estimation, to see if different patterns emerge from a large-scale set of data. For 

instance, one could use a latent profile analysis to identify if sets of people aggregate in their 

abilities to estimate variability (Oberski, 2016). This would facilitate hypotheses like the 

following: Are there multiple distributions of variability estimation in the population? Does one 

distribution perform much better on variability estimations than another? Additional grouping 

variables could be added to such a model that hypothetically explain differences in variability 

estimation, including numeracy, working memory, and fluid intelligence. 
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Refining DigiVar. This was the first study to use the newly developed task, DigiVar. 

This task was developed to be analogous to SPUN, and in some ways, it was (e.g., using the 

technique of adjustment for variability estimation maps onto the Phase 1 variability probe in 

SPUN). In future experiments, we will continue testing DigiVar to determine the malleability of 

responses. For instance, the numbers generated for the lists were semi-random and 

approximately normally distributed. Using different types of numerical distributions (e.g., highly 

skewed distributions, saddle-shaped distributions) could make the task more difficult and lead to 

a different pattern of results. Other ways to change the stimuli in DigiVar could be to 

significantly increase or decrease the presentation speed, use three- or four-digit numbers, or use 

negative numbers. These changes will help identify how different characteristics of numbers and 

distributions influence overall results. Finally, the instructions in DigiVar could have been 

misinterpreted to provide “at least 70%” of the numbers in each list, leading to the findings of 

variability overestimation. These instructions should be refined and tested, to ensure that 

participants accurately understand that the goal is to provide a sensitive range as close to 70% as 

possible. 
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CONCLUSION 

 

 

 

The ability to estimate variability of continuously distributed stimuli is an often-

overlooked and under-researched skill. For example, when purchasing a home, buyers often 

track the current state of the market, and hope to buy when the prices are low. Financial trends, 

however, are subject to numeric variability, and buyers who accurately understand the amount of 

variability in the market will likely walk away satisfied. Overestimating the amount of numeric 

variability, as seen in this study, may negatively influence such major decisions to buy and sell. 

If one thinks that prices are likely to be more variable in the future (overestimating variability), 

they may make different decisions in the present (i.e., if a consumer thinks that a low current 

price will radically change in the future, they may be more inclined to buy right away before that 

anticipated change).  

The understanding of spatial variability can also be applied to a number of real-world 

situations. Trajectory of weather patterns are the common application; while the most likely 

location of a storm may be easy to understand, the amount of variability represented by weather 

graphics are unintuitive and adversely impact decisions to evacuate during a severe storm. 

Consequently, proper estimations of variability hold significant implications for both 

performance and safety. 

This study investigated the extent to which participants estimated variability for spatial 

and numeric information; results suggest that different cognitive mechanisms likely support the 

understanding and estimation of different types of information (i.e., people who accurately 

estimate spatial variability were not necessarily more likely to accurately estimate numeric 

variability), but that a similar bias may occur across stimuli (i.e., overestimation of variability). 
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Additional research is needed to continue elucidating the mechanisms involved in these mental 

operations and how we can help people become better calibrated to variability. 
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APPENDIX A 

 

 

 

A power analysis was performed to estimate a proper sample size for the follow-up study, 

based on the correlation findings in Experiment 14 (r = 0.23, p = .21). This correlation is 

considered a moderate effect size using Cohen’s (1992) guidelines. With a conservative ES = 

0.20, alpha = .05, and power = 0.80, the minimum sample size required was 193 participants 

(Faul, Erdfelder, Buchner, & Lang [G*Power], 2009). This was proposed as part of the thesis, 

but such a large sample size comes with drawbacks, particularly when using Amazon 

Mechanical Turk (MTurk). In Experiment 1, participants were paid between $6.00 and $10.00, 

based on performance. With the minimum-powered sample size of 193 participants, the follow-

up experiment would cost between $1,158.00 and $1,930.00 in compensation.  

Due to these issues, the committee suggested a change in perspective and reduced scope 

for the remainder of this project. Specifically, this meant to just counterbalance the two tasks. 

This is an important next step, because if participants show a different pattern of results when the 

tasks are counterbalanced, this means that the order of the tasks influenced performance. This 

change in focus still answers the original research question (i.e., how do people understand mean 

and variability in spatial versus numeric stimuli?). 

 
4 The driving focus of this project was whether participants would show the same patterns of 
performance when responding to numeric and spatial variability (see Experiment 1, Hypothesis 
1A). Results from Experiment 1 suggested a positive, moderate correlation (r = 0.23, p = .21) 
between numeric and spatial variability (Phase 1) estimates. Because of the importance of this 
correlation, this correlation coefficient was used as the parameter for the power analysis for the 
original Experiment 2. 


