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ABSTRACT OF THESIS 

CHANGES IN THE DISTRIBUTION AND PREDICTIVE MODELING OF DOWNY 

BROME (BROMUS TECTORUM L.) AT HIGH ELEVATIONS 

 

Downy brome (Bromus tectorum L.), an invasive winter annual grass, may be 

increasing in extent and abundance at high elevations in the western United States.  This 

may pose a threat to high elevation plant communities and resources.  Anecdotal 

information suggested this range expansion in the Rocky Mountains, but data to confirm 

it was limited. 

 The initial goal of my project was to examine whether downy brome was 

increasing at elevations above its typical range of up to 2440 m by resampling prior field 

studies.  I further expanded my goals to make predictions about future range expansion 

using Maxent, a habitat matching model.  I also evaluated how well the model predicted 

the future distribution of downy brome through additional field sampling. 

 Two vegetation surveys in Rocky Mountain National Park (RMNP) conducted in 

1993 and 1999 were resampled in 2007.  Although these surveys were not initially 

established to examine downy brome specifically, they were useful in tracking changes in 

downy brome presence, abundance, and distribution.  Statistical analyses were used to 

examine presence and abundance of downy brome, while the predictive modeling 

explored the potential distribution throughout RMNP.  Stratified random sampling 



 

 iv

throughout RMNP in 2008 was used to validate how well the model predicted the 

distribution of downy brome. 

  Results of the studies confirm suspicions that downy brome is spreading within 

RMNP.  Analyses of the field sampling indicate that expansion of downy brome is likely 

occurring both in abundance and frequency at elevations ranging from 2470 m to 3080 m.  

Predictive modeling also indicates that further range expansion is likely within RMNP as 

new incidence of downy brome tend to be found within areas with a high predicted 

probability of occurrence.  The stratified random points sampled throughout RMNP 

confirmed that the model performed well over a larger spatial scale despite the limited 

extent of the initial samples. 

 Because downy brome appears to be increasing, managers of high elevation lands 

may need to consider taking a more active role in preventing further spread.  The accurate 

model predictions made with a relatively small sample size indicate that Maxent can be 

an extremely useful tool for land managers who have limited time and resources.  

Predictive models, however, are just one of many types of information to be considered 

in making management decisions and should be used in conjunction with other resources.  

 

James Bromberg 
Graduate Degree Program in Ecology 

Colorado State University 
Fort Collins, CO 80523 

Summer 2010 
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Abstract 

Downy brome (Bromus tectorum L.), an invasive winter annual grass, may be increasing 

in extent and abundance at high elevations in the western United States. This would pose 

a great threat to high elevation plant communities and resources.  However, data to track 

this species in high elevation environments are limited. To address changes in the 

distribution and abundance of downy brome and the factors most associated with its 

occurrence, I used field sampling and statistical methods, and niche modeling. I re-

sampled plots from two vegetation surveys established in 1993 and 1996 in Rocky 

Mountain National Park (RMNP) for presence and cover of downy brome.  While not all 

comparisons between years demonstrated significant changes in downy brome 

abundance, its mean cover increased nearly five-fold from 1993 (0.7%) to 2007 (3.6%) in 

one of the two vegetation surveys (P=0.06).  The average cover of downy brome within a 

second survey more than doubled from 1996 (0.5%) to 2007 (1.2%), although this change 

was not statistically significant (P=0.24).  Downy brome was present in 50% more plots 

in 1999 than in 1993 (P=0.02) in the first survey. In the second survey, downy brome was 

present in 30% more plots in 2007 than in 1996 (P=0.08).  Maxent, a species-

environmental matching model, was generally able to predict occurrences of downy 

brome, as new locations were in the ranges predicted by models generated earlier. The 

model found that distance to roads, elevation and vegetation community influenced the 

predictions most.  The strong response of downy brome to interannual environmental 

variability makes detecting change challenging, especially with small sample sizes. 

However, results suggest that the area in which downy brome occurs is likely increasing 



 

 3

in RMNP.  Field surveys along with predictive modeling will be vital in directing efforts 

to manage this highly invasive species. 
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Introduction 

Invasive species have altered ecosystem function and vastly changed vegetation 

communities worldwide (Hobbs and Mooney 1986; Mack and D’Antonio 1998; Dukes 

and Mooney 1999; Sax et al. 2007).  The ranges of many invasive species have continued 

to expand as environmental conditions change.  Most studies have examined biological 

invasions at lower elevations where anthropogenic influences on disturbance and seed 

dispersal are greatest (Dietz and Edwards 2006).  High elevation habitats may now be at 

increased risk of invasion due to climate change and the increased use of mountain ranges 

by human populations (Pauchard et al. 2009).   

Downy brome (Bromus tectorum L.) is one species that may be increasing in 

abundance at high elevation in the Rocky Mountains.  It has spread rampantly and altered 

ecosystems throughout the western United States (Morrow and Stahlman 1984; Knapp 

1996; Evans et al. 2001).  It is a winter annual grass that takes advantage of the autumn 

rains for germination.  Since it germinates before the winter arrives, it is much farther 

along in its growth by the time cool season native perennial seedlings emerge in the 

spring, which gives it a competitive advantage in its introduced range (Harris 1967).  

Downy brome has been present in the United State since the late nineteenth 

century and is thought to have reached its 1981 distribution by around 1928 (Mack 1981).  

During the early 1900s, the species’ range expanded so rapidly that it had become the 

dominant grass in much of the arid west (Mack and Pyke 1983; Mack 1981).  More 

recent studies have shown the potential for further range expansion of downy brome 

throughout the western United States (Bradford and Lauenroth 2006; Bradley 2009).  The 
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grass may continue to expand its range in the United States at both high elevations and 

latitude (Rice and Mack 1991a).  Although Chambers et al. (2007) reported that downy 

brome is limited by low temperatures at high elevation, land managers have recently 

observed it increasing in these habitats (J. Connor, Rocky Mountain National Park, pers. 

Comm.; Ramakrishnan et al. 2006).  Because of the rate with which this species grows 

and alters ecosystem function (Rummell 1946; Melgoza et al. 1990; Humphrey and 

Schupp 2004; Sperry et al. 2006), concerns have surfaced that downy brome may 

threaten high elevation plant communities. 

With the continued spread of downy brome into novel habitats, there is an urgent 

need to model its potential distribution (Stohlgren and Schnase 2006) to direct 

management efforts.  Often the potential distribution of a species has been determined by 

pairing the habitats in which it currently occurs with those that have similar 

characteristics, but have not yet been invaded (Mack 1996; Stohlgren et al. 2005).  This 

approach of matching habitats by modeling ecological niches has become more prevalent 

in predicting the potential ranges of invasive species in recent years (Peterson 2003).  

Statistical models, such as logistic regression, boosted regression trees, and classification 

regression trees (Friedman et al. 2000; Hastie et al. 2001; Elith et al. 2008), have also 

been used to predict species distributions.  They use presence and absence data for a 

species, but predictions may be biased since absence points do not preclude that the 

species could occur there.  Presence only models, such as the genetic algorithm for rule-

set production (GARP) (Stockwell and Noble 1992; Stockwell and Peters 1999) and 

Maxent (Phillips et al. 2006), have demonstrated an increased ability to predict a species 



 

 6

range since they allow the possibility of occurrence of a species even where it has not 

been found (Evangelista et al. 2008; Kumar et al. 2009).   

 In its native range of Eurasia, downy brome occurs from sea level up to 1525 m 

(Young 2000).  Studies in the United States have shown it occurring from near sea level 

to about 1220 m in California (Rice and Mack 1991b) and occurring at the highest 

densities between 1220 m and 1525 m in the Great Basin (Hunter 1991).  Records from 

the Rocky Mountain Herbarium in Wyoming show downy brome occurring in Colorado 

from 1370 m to near 2990 m throughout the 1990s, with most accessions collected 

between 1525 m and 2440 m.  An accession of the Rocky Mountain Herbarium was 

collected from 3050 m in 2004.  There are limitations to herbaria data since the locations 

from which specimens came are often not verified.  Additionally, herbaria specimens are 

often concentrated in locations that botanists frequent, and thus such specimens may not 

be a representative sample of that species’ distribution.   

Few quantitative datasets exist on the abundance and distribution of downy brome 

over time and at high elevations.  Since little has been done to document possible 

changes, I investigated the anecdotal accounts of its spread at high elevation and at 

multiple scales as proposed in the comprehensive research agenda of Pauchard et al. 

(2009).  First, I examined whether downy brome has increased in either cover or 

frequency, or both, within Rocky Mountain National Park, a high elevation region of the 

southern Rocky Mountains.  Second, I predicted the potential range of downy brome in 

the Park using the environmental matching model Maxent.  Third, I examined what 

environmental variables were most strongly associated with the occurrence of downy 

brome within the study region.  Knowing where downy brome is spreading and where it 
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will likely invade in the future will help land managers at the Park and other high 

elevation areas make informed decisions on management of this invasive grass. 

 

Methods and Materials 

Study area.  The study was conducted in Rocky Mountain National Park, which sits 

above the Colorado Front Range in the southern region of the Rocky Mountains.  The 

elevation ranges from approximately 2300 m in Estes Park to over 4300 m on Longs 

Peak.  The Park is situated at latitudes of approximately 40°10´N to 40°32´N, which 

influence the range of many species occurring in the park along with elevation, 

temperature and precipitation.  One main road transverses the park generally from east to 

west, while additional roads run along the eastern border of the park.  Three hundred and 

fifty nine miles of trails provide backcountry access as they meander throughout the park.  

Grasslands, shrublands and forested communities are all included in the study region.  All 

of the study sites occurred within the eastern region of the park with elevation ranging 

from 2470 m to 3080 m. 

The region near Estes Park at the east entrance of Rocky Mountain National Park 

typically experiences an arid climate with average annual precipitation of approximately 

35.6 cm.  The growing season is short with snow often occurring into early June and 

returning in September, and there is the potential for snow any month of the year.  

Average high temperatures in July are 25.7 °C with lows around 7.8 °C.  Average 

temperatures for the month of January range from -8.7 °C to 3.5 °C.  Extremely rapid 

changes in weather are a common occurrence in Rocky Mountain National Park. 
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Field Methods.  Two previously developed surveys were re-sampled for the current 

study.  These surveys were chosen because they each contained data on all plant species 

that occurred within the plots, including downy brome, if it was present.  They also are 

two of the few long-term vegetation surveys available to resample in Rocky Mountain 

National Park.  One of the surveys was originally set up to study secondary successional 

changes in vegetation.  Plots were paired such that each plot within a disturbed site had a 

corresponding nearby site in an undisturbed similar vegetation community.  This will be 

referred to as the Succession Study.  The other study was originally set up to look at 

forest ecotones.  Each site consisted of three plots along an elevation gradient, such that 

the middle plot was positioned on the border between two forest types.  This will be 

referred to as the Ecotone Study.  Both of these studies were incorporated into the current 

study to examine changes in the distribution of downy brome at these high elevation 

sites. 

The Succession Study plots were re-sampled as close as possible to the original 

sampling design (Elzinga et al. 1998; McLendon and Redente 1993; Zadeh 2001).  This 

study consisted of 17 sites in previously disturbed areas, with all but one having a 

corresponding reference site in undisturbed vegetation for a total of 33 plots.  Because 

plots had been marked with rebar, a global positioning unit was used to relocate all of the 

plots based on previously recorded UTM coordinates in NAD83 datum.  Each plot started 

from a coordinate from which a base line ran.  A baseline extended from a coordinate that 

marked the plot location.  Multiple transects extended perpendicular from the baseline at 

1 meter intervals, and were 6 m to 13 m in length.  Depending on the particular plot, data 

were collected every 1 to 2 m along each transect for the length of each plot.  A pointer 
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was placed vertically at each location along the transect and all vegetation in contact with 

the pointer was recorded. 

The Ecotone Study plots were also re-sampled as closely as possible to the 

original study design.  These consisted of 14 randomly selected transects along which 

three plots were located for a total of 42 plots (Stohlgren et al. 2000).  These plots were 

set up using a modified Whittaker design (Stohlgren et al. 1995; Barnett and Stohlgren 

2003) with the lengthwise direction of the 1000 m2 plots heading uphill and three plots 

positioned along a transect such that the middle plot fell within the forest ecotone.  Plots 

were relocated using a global positioning unit based on previously recorded UTM 

coordinates in NAD27 datum.  The UTM coordinate represented the lower right corner of 

the plot from which measuring tapes extended 20 m to the left and 50 m uphill.  Ocular 

estimates of cover classes used in the initial survey (Stohlgren et al. 2000) were recorded 

for all plant species present within the 1m2 subplots.  Data on cover of all species present 

within ten 1 m2 subplots were recorded.  Species presence for all species within two 10 

m2 subplots, one 100 m2 subplot and the entire 1000 m2 plot was also recorded.  

Statistical Analyses of Field Data.  I initially combined field data from the two surveys 

to see if I could increase the sample size when analyzing the data set.  Only plots from 

each survey in which downy brome occurred in at least one of the sampling periods were 

included in the analysis.  This eliminated skewing the data too strongly with the 

abundance of absence records.  These preliminary analyses suggested that the survey 

being examined had a significant effect on the cover of downy brome (F1,29=4.39 

P=0.045) as well as on the frequency of downy brome (F1,29=4.45 P=0.044).  

Furthermore, the variance of the two surveys differed drastically: covariance parameter 
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estimates of cover were 3.2 for the Ecotone Study compared to 15.9 for the Succession 

Study, nearly five times greater variance.  I therefore could not legitimately combine the 

analysis of the Succession Study plots and the Ecotone study plots without violating the 

assumption of equal variances, and analyzed the two surveys separately.  Separate 

analyses were also more appropriate due to differences in data collection methods and the 

number of plots in each of the two surveys. 

I used analysis of variance (ANOVA) to examine the effect of year on frequency 

of downy brome using PROC GLIMMIX (SAS 9.2, SAS Institute Inc., Cary, NC, USA) 

and on cover using PROC MIXED on each individual survey.  The year of sampling and 

the survey sampled were fixed effects, while plots within each survey were random 

effects.  I used paired t-tests of least square means to analyze cover and frequency of 

downy brome between specific years using these same two procedures in SAS.  

Potential Distribution Modeling. Potential distribution of downy brome was predicted 

using Maxent (Phillips et al. 2006), a species environmental matching model.  I chose to 

use Maxent because it has been found to perform best among many other modeling 

techniques (Elith et al. 2006; Evalgelista et al. 2008; Ortega-Huerta and Peterson 2008; 

Kumar et al. 2009) and can handle both continuous and categorical variables, incorporate 

interactions, and model non-linearities (Phillips et al. 2006). Field-collected occurrence 

data for downy brome from three time periods (1993, 1999 and 2007) were transferred 

from GPS to Excel (Microsoft 2007) spreadsheets and used in Maxent modeling to test 

how the additional data in each new time period affected the predictions of the model.  

Environmental variables that could potentially affect downy brome occurrence were 

gathered in GIS (geographic information system) Grid format (30 m spatial resolution) 
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and included topographic (slope, aspect, and elevation), anthropogenic (e.g., distance 

from roads), and remotely sensed (e.g., Normalized Difference Vegetation Index 

[NDVI]) variables that were chosen based on their use in previously published studies 

(e.g., Rew et al. 2005; Kumar et al. 2006; Evangelista et al. 2008; Mortensen et al. 2009).  

Downy brome occurrence data were integrated with these environmental variable layers 

using Maxent to generate potential distribution maps.  The three models generated with 

data from the three time periods were compared to one another based on the top 

environmental predictors and the area covered by each of the predicted probability levels.  

I also examined how many of the new downy brome locations were predicted by the 

models generated from earlier time periods.  I used the three Maxent generated 

predictions to determine whether the models indicated a changing distribution of downy 

brome over time.   

 A two-tailed Wilcoxon-signed rank test (Randin et al. 2006; Phillips et al. 2009) 

was used to test whether the probability of occurrence values for downy brome predicted 

by the Maxent model for three different time periods differed from each other.  One 

thousand random points throughout the Park were generated and the probability values of 

each were extracted from the three models to run the above test. 

 

Results 

Field sampling.  The frequency of downy brome within plots was variable from year to 

year.  Only plots in which downy brome was currently present or had been present at one 

time were used for analyses, because other plots may had been unsuitable habitat.  In the 

14 Succession Study plots used for analysis, downy brome occurred within 29% of the 
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plots in 1993 and increased to 79% of the plots in 1999 (P=0.02) (Figure 1a).  In 2007, 

downy brome occurred in 50% of the Succession Study plots. Although it occurred in 

more plots than the original survey, this was not a significant increase from 1993 

(P=0.26).  There was also no detectable change in the frequency of downy brome when 

evaluating the observational period from 1999 to 2007 (P=0.13).   

In the 17 Ecotone Study plots analyzed (Figure 1b), there was a marginally 

significant increase in the frequency of downy brome between 1996 and 2007 (P=0.08).  

Downy brome occurred within 58% of these plots in 1996 and 88% of the plots in 2007.  

Thus, the only significant differences in the frequency of downy brome were an increase 

from 1993 to 1999 in the Succession Study plots and a marginally significant increase 

from 1996 to 2007 in the Ecotone Study plots.  All other differences in frequency of 

downy brome, whether in an increasing or decreasing direction, were not significant. 

 Cover of downy brome within plots consistently increased from 1993 to 2007.  

The average cover of downy brome in the Succession Study plots in 1993 was 0.7% 

(Figure 2a), and in 1999 was 1.0%, however this was not a significant increase (P=0.88).  

Average cover further increased to 3.6% within these plots in 2007.  This was a 

marginally significant increase from both 1993 (P=0.06) and 1999 (P=0.08).  The 

maximum cover in any of our high elevation plots was 20.4%, but cover was generally 

much lower than that. 

The Ecotone Study plots showed a similarly increasing trend (Figure 2b).  Cover 

of downy brome was 0.5% in 1996 and increased to 1.2% in 2007.  Although cover more 

than doubled, this was not statistically significant (P=0.24) because of the variance in 

cover within the same plots across the two years and the small sample sizes.  
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Distribution modeling.  The area predicted to have probabilities of downy brome 

occurrence of 30 to 50%, 50 to 80% and 80 to 100% increased by only 1 to 2 km2 

between the 1996 and 2007 models (Figure 3).  The predicted area of the lowest 

probability class (less than 10%) also increased from 984 km2 in 1996 to 997 km2 in 

2007.  Only the 10 to 30% probability class demonstrated a decrease in predicted area 

from 59 km2 in 1996 to 43 km2 in 2007.  The areas determined to fall within probability 

classes by the Maxent model cannot be compared by statistical tests in the software 

package.  It appears that there were only minimal changes in the predicted areas from the 

model, and thus the general predicted area of downy brome seems consistent over the 

modeling periods.  However, the model predictions based on data from 1996, 1999, and 

2007 were significantly different from each other after Bonferroni correction for multiple 

comparisons (P<0.001, two tailed Wilcoxon-signed rank test, paired by model). 

 The environmental variables that were most influential in predicting the 

occurrence of downy brome for all three models were the distance of the sampling site 

from the nearest road, the elevation of the sampling site, and the vegetation community 

within the sampling site (Table 1).  However, the relative importance of these three 

environmental variables shifted among the models (Table 1).  The vegetation community 

was the most influential predictor variable in the model in 1996 accounting for 40.4% of 

the predicted occurrence of downy brome.  This dropped to 23.5% in 1999 and 17.7% in 

2007.  Distance to the nearest road was the next most influential predictor variable in the 

1996 model accounting for 23.6% of the predicted occurrences.  Distance to the nearest 

road was the most influential variable in 1999, accounting for 31.8%, and increased 

further to account for 35.9% of the variation in the 2007 model.  Elevation was the third 
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most influential predictor variable in the 1996 model accounting for 15.2% of the 

variation in the predicted range.  This variable also increased in influence accounting for 

24% in the 1999 model and 29.1% in the 2007 model. 

 I compared 1996 and 1999 model predictions with the 2007 model predictions to 

evaluate whether including more data points to parameterize the model improved its 

predictive ability.  The threshold for predicting downy brome was set at greater than 10% 

because I found downy brome in the field only in areas with this probability classification 

and higher.  I determined that a predicted probability above 10% coincided with the 

potential for downy brome occurrence.  A predicted probability below 10% in the model 

was considered to have a very low likelihood of downy brome occurrence.  Forty percent 

of the field-sampled downy brome locations in 2007 were predicted by the model based 

on 1996 and earlier data.  Using 1999 and earlier data, 60% of the same 2007 downy 

brome locations were predicted by the model.  Thus, most new downy brome locations 

using this model are occurring where the models predicted high habitat suitability.  

Because the 2007 model was generated using the new 2007 sample locations, all points 

where downy brome was found in 2007 were predicted to occur by the 2007 model, as 

would be expected. 

 

Discussion 

The results indicate that downy brome likely increased in cover and frequency in 

Rocky Mountain National Park over the decade and a half between 1993 and 2007.  

Although not all comparisons between years showed an increase, all significant and 

marginally significant differences were in an increasing direction.  Because this species 
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shows annual variability in its distribution due to interannual environmental variability, 

we would expect to see decreases in downy brome some years and increases in other 

years.  It is remarkable that only increases in both cover and frequency were detected 

given this annual variability.  In addition to the increases in downy brome, it is also worth 

mentioning that average cover more than doubled in the Ecotone Study plots from 1996 

to 2007.  However, this is not statistically significant and a change in cover from 0.5% to 

1.2% may also have little ecological significance.  Cover at high elevations was still 

relatively low in most plots; the greatest average cover of downy brome was 3.6% in the 

Succession Study plots in 2007, with the greatest cover of nearly 20% found in an 

individual plot in that same year.  For comparison, downy brome has the potential for 

much greater cover as demonstrated in a study conducted in the Great Basin where nearly 

100% cover was found (Booth et al. 2003). 

Sample sizes of the two surveys were small because I was limited to using plots 

established for previous studies.  However, even with these small sample sizes and great 

variability within and between plots, I was able to demonstrate an increase in downy 

brome at high elevations.  It is likely that had the sample sizes been larger, I would have 

seen an even more significant increase in cover and frequency of downy brome.  

However, considering that many of the plots were in disturbed sites and not a random 

sampling of the entire Park, this may have also skewed the study towards areas of greater 

likelihood of downy brome occurrence.  The increased disturbance present in the 

Succession Study plots may also explain why significant increases in cover were only 

seen in this study and not in the Ecotone Study plots.  I was unable to detect an increase 

in suitable habitat of downy brome from the different years’ model predictions, which 
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may be because Maxent is able to make predictions of species habitat based on fewer 

points. 

 Each model generated using Maxent included additional sample locations to 

address the second study question of whether including more data changed the predicted 

distribution of downy brome.  Chronological model predictions from 1996, 1999 and 

2007 were significantly different from each other in terms of the distribution of suitable 

habitat for downy brome, but did not demonstrate increases in the areas predicted to have 

high suitability.  Approximately the same acreage was predicted to be infested with 

downy brome in all three of the models.  Minor changes in the location of the predicted 

areas and the probability of occurrence existed, but were of little consequence.  Six of the 

ten new occurrences of downy brome found in 2007 field samples were predicted by the 

1999 model.  Downy brome mostly increased within the area of probable occurrence 

predicted by the earlier models.  Because more than half of the new locations found were 

predicted by the earlier models, the models with fewer data points were able to predict 

the potential range reasonably well, although far from perfectly.  It appears that only a 

small sample of presence locations is necessary to generate a model prediction using 

Maxent, because the model prediction changed minimally as new sample points were 

added.  My results are consistent with other small sample studies using Maxent (Kumar 

and Stohlgren 2009).  One such study used a sample size of four geckos to successfully 

predict where the fifth one would likely occur (Pearson et al. 2007).  With each 

successive study, modelers are gaining confidence that Maxent works well with small 

sample sizes. 
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 The final research objective was to determine what factors were most associated 

with the occurrence of downy brome in the Park.  Elevation, distance to roads, and the 

vegetation community were the most influential environmental variables in predicting 

where downy brome would occur.  Downy brome probability of occurrence was highest 

in shrublands and grasslands, and decreased with elevation and the distance away from 

roads and trails.  Even using the smallest data-set, these same three environmental 

variables were identified as being the most correlated with occurrence of downy brome.  

However, the environmental variables shifted in their relative importance as I added more 

data to the models.  I do not believe that the shift was due to actual changes in the 

influence of these environmental factors.  A more likely explanation is that adding more 

data allowed the model to identify stronger relationships to these environmental factors 

simply due to the larger sample size.  It was not at all surprising that these three 

environmental factors were determined to be highly correlated with downy brome 

occurrence.  Downy brome has previously been shown to occur at specific elevation 

ranges.  A study in the Great Basin showed downy brome occurring only up to 1900 m 

(Hunter 1991).  I found it occurring at 2884 m in 2008 which is the highest known 

occurrence within Rocky Mountain National Park.  Roads have been identified as a 

common pathway of dispersal and are disturbed sites that support many invasive plant 

species (Getz and Baker 2008).  Downy brome in particular is common in disturbed areas 

such as roadways and pastures (Upadhyaya et al. 1986).  The grass can colonize both 

steppe and forest vegetation communities even with vast differences in soil type, climate, 

and community structure (Daubenmire 1968).  However, it is more likely to occur in 

grass and shrubland communities than in forested areas (Pierson et al. 1990).  The limited 
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tolerance of downy brome to shade influences what vegetation types can support this 

grass.  Forests with more open canopies, either naturally or due to disturbance, are more 

likely to support downy brome than closed canopy forests due to amounts of light 

available on the forest floor (Pierson et al. 1990), although neither forest type supports it 

in great abundance.  

 Many mechanisms for the increase in distribution and abundance of downy brome 

have been proposed.  Factors such as propagule pressure, local adaptation, and 

environmental change have been suggested as means of range expansion for invasive 

species.   

Often a species may not occupy an area with suitable growing conditions simply 

due to absence of propagules (Richardson et al. 2000).  The chance dispersal of downy 

brome seed appears to be high within the Park due to the presence of roads and 

abundance of wildlife that regularly transport seeds (Pierson and Mack 1990).  Although 

the grass seems to have the potential for dispersal throughout the Park, environmental 

restrictions may still limit its range at these high elevations (Pierson and Mack 1990).   

Local adaptation of downy brome has also been proposed as a mechanism for the 

expansion into high elevation communities.  Great genetic variation has been found in 

downy brome both within and among populations in the intermountain region (Rice and 

Mack 1991a).  However, the genetic variation between high and low elevation 

populations of the Rocky Mountain Front Range appears limited (Kao et al. 2008).  The 

limited traits that have been examined do not indicate that local adaptation to high 

elevation conditions has occurred in this region, but this mechanism for range expansion 

cannot be ruled out.   
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 Climate change is having ecological impacts on ecosystems world wide (Walther 

et al. 2002) and may play a role in the spread of downy brome at high elevations.  It is 

one of the major driving factors expected to decrease biodiversity over the next century 

with shifts in species distributions and abundance (Sala et al. 2000; Thomas et al. 2004).  

It is also expected to lead to shifts in altitude and latitude of species ranges (McCarty 

2001).  The atmospheric carbon dioxide concentration is increasing, temperatures are 

increasing, and the timing and intensity of precipitation are being altered (IPCC 2001).  

These changes can facilitate the spread of invasive species such as downy brome.  

Growth rates of downy brome have been shown to increase under elevated carbon 

dioxide levels (Smith et al. 1987; Smith et al. 2000), which has been seen with many 

other non-native invaders as well (Sasek and Strain 1988; Sasek and Strain 1991).  

Temperature and precipitation patterns also greatly affect the growth and distribution of 

downy brome (Bradley 2009).  It is not clear how these environmental factors will 

change to impact the distribution of downy brome.  Major concern exists due to the 

potential spread of downy brome under certain climatic scenarios (Bradley 2009). 

 Nitrogen deposition in the Rocky Mountains is likely another environmental 

change encouraging the range expansion of downy brome.  Nitrogen deposition has been 

correlated with increased fire frequency, habitat alteration, and increased invasion of non-

native plant species (Fenn et al. 2003).  The addition of nitrogen to soils can tip the 

balance toward an abundance of non-native species because native species are often 

adapted to lower levels of nutrients (Ostertag and Verville 2002; Brooks 2003).  Nitrogen 

addition has been shown to increase the competitive effects of downy brome (Lowe et al. 

2003), and reducing nitrogen in the soil can limit growth of downy brome (Beckstead and 
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Augspurger 2004).  The Rocky Mountains receive elevated levels of nitrogen (Williams 

et al. 1996), which has been more pronounced on the east side of the mountain range than 

the west (Baron et al. 2000).  Increased nitrogen in the Colorado Rocky Mountains is 

likely contributing to the range expansion of downy brome that I have documented. 

 With the potential spread of downy brome throughout the Rocky Mountains, it is 

imperative that land managers be able to make quick and effective use of the available 

information.  I have documented that downy brome is likely expanding into these high 

elevation communities.  The Maxent model also indicates that there is the potential for 

much greater expansion at high elevation.  I detected new locations of downy brome 

occurring where the model predicted it might be found, demonstrating that it may be 

filling in the areas predicted by the model to have medium to high probabilities of 

occurrence.  If all of the predicted areas within Rocky Mountain National Park become 

infested with downy brome, there is a much larger problem on their hands.  Without 

management, downy brome has the potential to contribute to the loss of native plant 

communities by increasing fire frequency and resultant further invasions (Beatley 1966; 

Yensen 1981; Knapp 1996).  Further exacerbating the issue is devastating lodgepole pine 

mortality caused by mountain pine beetles in the Rocky Mountains (Jenkins et al. 2008), 

which creates the potential for much more habitat to become vulnerable to downy brome 

invasion.   

 My study indicates that downy brome is likely increasing in cover, and that the 

model informs us where continued range expansion is likely to occur.  Land managers 

can use the model predictions in developing their management plans for the control of 

invasive species.  The models inform managers where species are likely to occur.  With 



 

 21

the limited resources of time and money available to most land managers, models will 

help them focus and prioritize their efforts to areas where these resources are needed 

most.  There are many benefits of such environmental matching models to land 

managers.  First, there is no need to waste efforts looking for a species where it is very 

unlikely to occur.  Second, model predictions will hone in on areas with likely occurrence 

of a species where it is not yet present.  Monitoring and management of invasive plant 

species will be of the utmost importance in these areas to prevent invasions into new 

habitats.  Third, early control before invasion occurs will reduce the financial burden and 

resource input of land managers.  One final benefit to managers is that even a very small 

number of samples can be used to develop a fairly accurate prediction model with 

Maxent (Pearson et al. 2007; Wisz et al. 2008; Kumar and Stohlgren 2009) provided the 

samples capture the environmental variation associated with the species occurrence.  Few 

land managers have the resources to conduct a thorough survey on which to base 

management decisions.  With models like Maxent, managers may not need to conduct a 

thorough survey of an invasive species on their land to predict its likely future 

occurrence.  A little data may go a long way toward increasing the efficacy of invasive 

plant management efforts. 
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Interpretive Summary 

The data from field study plots sampled over the last 15 years suggest that downy 

brome is spreading at high elevations in Rocky Mountain National Park.  I applied a 

model that used environmental conditions where downy brome is found in the Park to 

predict where the plant was likely to spread.  All three generated models showed a similar 

predicted distribution that was greater than the current distribution of downy brome in 

Rocky Mountain National Park.  Many of the new locations of downy brome occurred 

where the earlier models predicted they would occur.  This indicates that downy brome 

may likely continue spreading within this high elevation region. 

The models suggest that areas close to roads and trails, at lower elevations, and in 

shrubland plant communities in the park are most likely to be invaded by downy brome.  

Knowledge of both the high risk areas and environmental factors that support the growth 

and spread of downy brome can greatly increase the effectiveness of management efforts.  

Land managers generally have limited time and money available for on-the-ground 

management.  Because Maxent is a geospatial model, its mapping images can help focus 

weed management and control on areas with a high probability of spread as well as areas 

of high resource value.  Using this or similar models can reduce the time and effort 

managers spend searching for weeds in areas of high priority but low probability of 

occurrence, thus more effectively using their limited resources. 
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Table 1.1. Contribution of the top environmental variables to the predicted distribution of downy brome in  
the three prediction years.         

 
Prediction 
Year   Effect 

Environmental variable 1996 1999 2007  
          
Distance to nearest road 23.6% 31.8% 35.9% Negative* 
     
Elevation 15.2% 24.0% 29.1% Negative* 
     
Vegetation community 40.4% 23.5% 17.7% Shrublands and grasslands were most invaded 
     
* Probability of occurrence decreased with increasing distance from roads/trails and increasing elevation 
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Figure 1.1. The mean frequency of downy brome in (A) the Succession Plots and (B) the 
Ecotone Plots over the course of the study.  Error bars are the standard error of the means 
(α=0.05). 
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Figure 1.2. The mean cover of downy brome expressed as a percentage of the area 
sampled in (A) the Succession Plots and (B) the Ecotone Plots over the course of the 
study.  Error bars are the standard error of the means (α=0.05). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Year sampled

1993 1999 2007

M
ea

n 
pe

rc
en

t c
ov

er

1

2

3

4

6

0

5

Year sampled

1996 2007

M
ea

n 
pe

rc
en

t c
ov

er

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

a a 

b 

a 

a 
A B 



 

 34

 
 
 
 

 
Figure 1.3. Predicted probabilities of downy brome occurrence in Rocky Mountain 
National Park using data from (a) 1996 and earlier, (b) 1999 and earlier, and (c) 2007 and 
earlier.  Black indicates a high predicted probability of downy brome occurrence.  Lighter 
shades of grey indicate a decreased probability of occurrence of downy brome.   
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CHAPTER II 

 

Maxent Model Validation Using Random Stratified Field Locations in Rocky Mountain 

National Park 
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Abstract 

Researcher and land managers need tools available to them to easily access the 

potential distributions of species such as those that are either rare or invasive.  Maxent is 

one such predictive tool that has become more widely used in the last five years.  

Predictive models have internal mechanisms for determining accuracy. However, little 

work has been done to field-test these models, especially when making predictions at a 

different scale than the training data used in building the model.  Based on predictions of 

downy brome distribution using Maxent, I sampled random points throughout Rocky 

Mountain National Park that were stratified among influential predictor variables and 

probability classes.  Ninety three sites were evaluated for presence or absence of downy 

brome.   

 Logistic regression confirmed that the most influential predictor variables in the 

model including elevation, distance to roads and trails, and vegetation type, strongly 

influenced the distribution of downy brome.  Further results showed that the probabilities 

of downy brome occurrence matched the proportion of occurrences found in the field.  

Proportions were generally on the lower side of the probability classes probably because 

downy brome has not yet reached its full potential range.  Field sampling also detected 

occurrences of downy brome in Lumpy Ridge and Wild Basin.  Both areas were 

predicted to have a high likelihood of downy brome, but it was previously not known to 

occur there. 

 With field validation, it is evident how well the model predicted downy brome 

occurrence in Rocky Mountain National Park.  If this model can perform as well with 
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other species, it has the potential to be very useful not only to researchers, but to land 

managers as well.  Although predictive models should not be the sole guide for 

management decisions, they can help to focus management efforts in the areas of greatest 

need and to allocate limited time and resources most effectively.  
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Introduction 

The importance of predicting species distributions is increasing, especially with 

rapid environmental change.  Scientists and land managers may need to locate and protect 

populations of a rare species or identify habitat that may be threatened by an invasive 

species.  These are merely two of many reasons accurate predictive tools are important.  

Distributions of species vary according to an array of biological and physical conditions.  

Scientists often attempt to predict the ranges of species based on various environmental 

factors known to be associated with particular species.   

Many models have been used to predict species ranges.  A species’ potential 

distribution has frequently been determined by locating habitats similar to those in which 

the species occurs (Mack 1996; Stohlgren et al. 2005).  This approach of modeling 

ecological niches has become more prevalent in predicting the potential ranges of 

invasive species in recent years (Peterson 2003; Stohlgren et al. 2010).  Models that use 

known locations of a species (i.e., presence-only models), such as DOMAIN (Carpenter 

et al. 1993), genetic algorithm for rule-set production (GARP) (Stockwell and Noble 

1992; Stockwell and Peters 1999), and Maxent (Phillips et al. 2006), have demonstrated 

improved ability to predict a species’ range over models that use both locations where the 

species is known to occur and known not to occur (i.e., presence-absence models).  

Presence only models do not assume that absence precludes the possibility of occurrence 

(Evangelista et al. 2008; Kumar et al. 2009).  Much uncertainty exists with absences, 

because they may indicate either unsuitable habitat or suitable habitat into which the 

species has not yet dispersed.  
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Although many of these models effectively predict where species are likely to 

occur, they may not be rigorously validated.  Many species habitat models use a subset of 

the original data to validate the model (Fielding and Bell 1997; Elith et al. 2006).  In such 

cases, the data are partitioned into training data to generate model predictions and testing 

data that are used to assess the accuracy of the model predictions.  If the testing data are 

sufficiently predicted correctly by the model, then the model is considered to accurately 

predict the species’ range.  Because the testing data are a random sub-sample of the 

original data-set, information can not be obtained on the accuracy of the model when 

applied to a larger region than that from which the original data came.  Improved model 

evaluation can be obtained by incorporating independent field-based presence and 

absence data, but this method is rarely used (see Costa et al. 2010 for a recent example 

using this method with reptiles). 

 Model comparisons are often used to determine which model is the best predictor 

of a species’ range.  The area under the curve (AUC) is often used for comparisons of 

species presence and absence data (Elith 2006; Evangelista 2008), although there are 

other criteria that are useful for this purpose.  The AUC of a receiver operating curve 

explains how different the data are from random by discriminating between the likelihood 

that the model will predict higher probabilities in presence locations than in absence 

locations (Hosmer and Lemeshow 2000).  Models with a higher AUC are generally 

considered to have greater predictive power because more of the distribution of the data 

is explained by variation in the factors affecting the data.  However, the use of AUC has 

its drawbacks.  A low AUC value may indicate low discrimination between presences 

and absences even with a model that fits the data accurately (Lobo et al. 2008).  AUC 
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values also provide no information on the spatial distribution of incorrectly predicted 

presences and absences of a species (Lobo et al. 2008).  Thus, AUC is useful in 

measuring how well presence locations can be discriminated from absences based on 

predictor variables, while providing little information about how well the model 

predictions fit the species distribution. 

Although AUC provides the ability of a model to discriminate between presences 

and “current” absences, calibration gives additional information about the numerical 

accuracy of the predictions (Harell et al. 1996).  Calibration quantifies the real chance of 

occurrence of a species at different predicted probabilities.  Thus, it examines how 

accurately the model is predicting the likelihood of occurrence.  Studies rarely quantify 

the calibration of predictions (Caroll et al. 1999; Vaughan and Ormerod 2005), providing 

limited information about the accuracy of models.  

The focus of this study was to examine how well an environmental matching 

model predicted the distribution of a species.  I modeled the distribution of downy brome 

because of the concern land managers have about spread of this non-native species 

throughout high elevation plant communities (see Chapter 1).  Although modeling 

potential ranges of other species may be of interest as well, downy brome was of high 

priority to land managers.  I used Maxent for modeling this species because it is 

considered to have high predictive capabilities with small sample sizes (Phillips et al. 

2006).  Comparison studies with other similar models such as GARP, DOMAIN and 

regression trees have found Maxent to be one of the top performing models (Elith et al. 

2006; Evangelista et al. 2008).  However, these studies draw their main conclusions of 

model performance based on the AUC values without considering other criteria that 
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provide further information on predictive capabilities.  A combination of variance 

analysis, discriminatory analysis (AUC values), and model calibration were examined in 

my study to determine Maxent’s efficacy in predicting the downy brome distribution in 

Rocky Mountain National Park.  Of interest to me was whether the predicted model 

probabilities were strong indicators of where downy brome would occur in previously 

unsurveyed areas.  I also wanted to confirm that the top environmental predictors 

determined by the model were the most influential variables on the distribution on downy 

brome.  Applying an independent field sample to the Maxent model predictions will bring 

forth new information that can not be obtained from partitioning the original data into 

training and testing subsets. 

 

Methods and Materials 

Study area.  The model validation study was conducted in Rocky Mountain National 

Park, which sits above the Colorado Front Range in the southern region of the Rocky 

Mountains.  The elevation of the Park ranges from approximately 2,300 m (7,500 ft) in 

Estes Park to over 4,300 m (14,100 ft) on Longs Peak.  The Park is situated at latitudes of 

approximately 40°10´N to 40°32´N and longitude of 105°31’W to 105°41’ W (Peet 

1981).  One main road traverses the park running generally east to west, and additional 

roads run along the eastern border of the park.  The backcountry is accessible through 

three hundred fifty nine miles of trails as they meander throughout the park.  Grasslands, 

shrub lands, and forests as well as rocky, non-vegetated areas were included in the study 

region.  All of the sampling sites occurred within Rocky Mountain National Park and 

ranged in elevation from 2490 m to 3540 m. 
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Rocky Mountain National Park experiences an arid climate east of the continental 

divide with average annual precipitation of approximately 400 mm in Estes Park at the 

east side of the park (WRCC 2009).  Approximately 480 mm of precipitation fall 

annually in Grand Lake at the west side of the Park (WRCC 2009).  Most of the total 

precipitation comes in the form of summer rain although the west side of the park 

receives much more winter snow fall (WRCC 2009).  The growing season is short with 

snow often occurring into early June and returning in September and the potential for 

snow any month of the year.  Average high temperatures in July are 25.7 °C with lows 

around 7.8 °C (WRCC 2009).  Average temperatures for the month of January range 

from a high of 3.5 °C to a low around -8.7 °C (WRCC 2009).  Extremely rapid changes 

in weather are a common occurrence in Rocky Mountain National Park. 

Field Methods.  Random UTM coordinates were generated in ArcGIS 9.2 (ESRI Inc., 

Redlands, CA, USA) and stratified among five probability classes (<0.1, 0.1-0.3, 0.3-

0.5,0.5-0.8, and ≥0.8) of downy brome occurrence.  The probabilities of occurrence were 

generated in Maxent, a species environmental matching model (Phillips et al. 2006), 

using downy brome occurrence data in Rocky Mountain National Park collected between 

1993 and 2007.  The coordinates were also stratified among vegetation communities and 

elevation, which were two of the most influential environmental predictors from the 2007 

Maxent model of downy brome.  Distance to the nearest road, which also included 

distance to trails, was also one of the most influential environmental predictors, but was 

not used for stratifying sample locations.  An array of distances from roads and trails 

would automatically be captured in the randomness of the stratified sampling.  Elevation 

was grouped into six classes (<2500 m, 2500- 2700 m, 2700- 2900 m, 2900- 3100 m, 
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3100- 3300 m, >3300 m) for the purpose of stratifying site locations.  Elevation of 

randomly generated sites ranged from 2396 m to 4023 m.  Sites actually visited ranged 

from 2490 m to 3540 m in elevation.  Missing occurrences of downy brome at higher 

elevations was not a concern, because the highest recorded specimen in Colorado was 

collected in 2004 at approximately 3050 m (Rocky Mountain Herbarium).  That is 

substantially lower in elevation than many of the highest sites visited in this study.  

Distance to the nearest road or trail of randomly generated sites ranged from 30 m to 

12046 m with the farthest site visited at 8574 m from a road or trail.  The sites were 

stratified among six vegetation communities, which included non-vegetated, shrubland, 

grassland, deciduous forest, coniferous forest, and tundra.   

 Sites were visited in the summer of 2008 from early July to early September.  

Although over 200 random sites within Rocky Mountain National Park were generated as 

potential locations to visit for ground truthing the model, I was only able to visit 93 sites 

during the summer of 2008.  Time constraints and difficultly of access such as steep cliffs 

prevented me from visiting all possible sites.  Although many of the randomly generated 

sites were never surveyed, I made certain that I visited at least some sites within all 

probability classes.  Each site required hiking along trails or roads to get as close to the 

location as possible and then navigating to the exact site location.  I used a Garmin ETrex 

Vista GPS unit to navigate to the UTM coordinates using NAD83 datum to match the 

reference system in which the locations were originally generated.  Once at a particular 

UTM coordinate, I searched for any downy brome within a 30 x 30 meter area because 

that was the resolution of the environmental variable layers used in Maxent to generate 

the 2007 model.  I spent approximately 10 to 20 minutes at each plot to thoroughly scour 
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for signs of downy brome within the plot.  Sites with minimal vegetation required less 

time to search for the grass than those is dense grasslands and shrub lands.  Plots 

significantly infested with downy brome also required much less time to determine if the 

grass was present.  Because the Maxent model generates the probability of occurrence of 

species, I recorded the presence or absence of downy brome, but not abundance at each 

site. 

Analysis. I compared the probability of occurrence generated by the 2007 Maxent model 

to the actual occurrences I found in the field within each probability class in 2008.  This 

allowed me to examine the numbers and percentages of occurrences of downy brome in 

2008 that fell within each probability class from the 2007 model.  This provided a general 

calibration of the model in predicting occurrences at various probabilities. 

 Using Proc GLIMMIX (SAS 9.2., SAS Institute Inc., Cary, NC, USA), I 

regressed the predicted model probabilities against the 2008 occurrences of downy 

brome.  I used this method to access the influence of predicted probabilities on 

determining true occurrences. 

To examine the effect of each of the top environmental predictor variables 

(elevation, distance to roads/trails, and vegetation community) on downy brome 

occurrence, I conducted ANOVA using the procedure GLIMMIX (SAS 9.2, SAS 

Institute Inc., Cary, NC, USA).  Because these environmental variables were predicted to 

have the greatest influence on predicting downy brome occurrence, I looked for 

relationships between occurrence of downy brome and each of these environmental 

variables.  One location occurred in the tundra vegetation community and was removed 

from the analysis because variance cannot be determined without replication.  In addition, 
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it was known that downy brome is highly unlikely to occur in this vegetation type due to 

the extreme elevation of tundra communities.  Thus, it was ecologically appropriate to 

remove this visited location from the analysis.  

I ran logistic regressions using the procedure GLIMMIX (SAS 9.2, SAS Institute 

Inc., Cary, NC, USA) to determine the best model of the top three environmental 

variables to fit the Maxent predictions.  I removed the single tundra location from the 

analyses for the same reasons I did with the ANOVAs.  Several combinations of the 

variables and their interaction terms were examined.  I compared type III tests of fixed 

effects and Akaike's information criterion (AIC) to find the best logistic model.  To be 

certain the model chosen was the best fit, I also conducted a backwards model selection 

using PROC LOGISTIC (SAS 9.2, SAS Institute Inc., Cary, NC, USA) including all 

environmental variables that made up the Maxent predictions (see Table 1).  This model 

should be the same as the one selected using PROC GLIMMIX. 

Using the procedure LOGISTIC (SAS 9.2, SAS Institute Inc., Cary, NC, USA), I 

generated a receiver operating curve (ROC) to examine how well the logistic regression 

models were correctly predicting true occurrences of downy brome.  The area under the 

ROC curve (AUC) is often used as a measure of the overall accuracy of the model 

(Fielding and Bell 1997; Manel et al. 2008).  An AUC value ≥0.9 is an indication of 

extremely high model performance (Swets 1988), and lower values indicate less optimal 

predictive capabilities of a model.  I used the AUC value to access the performance level 

of the best fit logistic regression.  
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Results 

 More occurrences of downy brome were detected in 2008 in locations predicted 

by the 2007 Maxent model to have higher probabilities of occurrence.  The number of 

occurrences increased consistently with each successive probability class (Figure 2.1A).  

Even though the lowest probability class (<0.1) was more thoroughly sampled than others 

(Figure 2.1A), no occurrences of downy brome were found within the random stratified 

sampling points for this probability class.  In the highest probability class (≥0.8), a total 

of 13 occurrences were detected, which was the most out of any probability class.  The 

proportion of sites visited within each probability class showed a very similar trend.  As 

probabilities increased by class, the proportion of plots containing downy brome also 

increased (Figure 2.1B).   

 Elevation, distance to roads and trails, and vegetation type all strongly affected 

where downy brome occurred in 2008.  Elevation was the strongest effect when 

conducting ANOVA and logistic regression analysis (AIC=68.99, F1,90=17.56, 

P<0.0001).  Distance to roads was the next most influential predictor of the occurrence of 

downy brome (AIC=100.11, F1,90=7.86, P=0.006).  Vegetation community, still 

significantly influential on downy brome occurrence, was a weaker effect than the other 

two predictor variables tested (AIC=111.92, F4, 87=2.78, P=0.032). 

 Logistic regression of 2008 downy brome occurrence demonstrated that 2007 

predicted probabilities strongly influenced where downy brome occurred (AIC=84.88, 

F1,90=22.76, P<0.0001).  The ROC analysis gave an area under the curve of 0.86.  From 

the characteristics table generated in the statistical output, a threshold probability of 
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approximately 0.31 would predict the most correct presences and absences of downy 

brome.  This threshold is determined by the value at which sensitivity (the percent of 

correctly predicted occurrences) and specificity (the percent of correctly predicted 

absences) are equal. 

 Logistic regressions of the top environmental predictors resulted in a best fit 

model including the variables for elevation and distance to roads and trails as well as the 

interaction between distance and elevation (Figure 2.2).  This model had an AIC value of 

69.13, which was the lowest AIC value of any logistic regression model tested, except for 

testing elevation alone (AIC= 68.99).  All effects were significant in this model: elevation 

(parameter estimate=-0.018, F1,89=14.55, P=0.0003), distance to roads and trails 

(parameter estimate=-0.011, F1, 89=4.22, P=0.043), and the interaction between elevation 

and distance to roads and trails (parameter estimate=3.62E-6, F1, 89=4.26, P=0.042).  

Figure 2.2 depicts the relationship of the regressed variables with respect to the 

probability of downy brome occurrence.  An ROC analysis generated from the logistic 

regression resulted in an AUC of 0.92 (Figure 2.3).  The backwards model selection 

including all possible environmental variables (Table 2.1) confirmed that the logistic 

regression with elevation, distance from roads, and the interaction between the two was 

in fact the best fit model to the data. 

 The 2008 random stratified points generated for validating the 2007 Maxent 

model covered a much greater extent in Rocky Mountain National Park than the locations 

sampled in 2007 and earlier.  New regions of the park where data had not previously been 

collected were predicted to have high probability of downy brome occurrence.  As 

predicted, downy brome was found in many of these high probability regions sampled in 
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2008.  Two new regions predicted to have high probabilities of occurrence were Lumpy 

Ridge north of the Estes Park entrance and the Wild Basin entrance, both on the east side 

of the park.  I found downy brome in both of these regions (Figure 2.4).  A third area that 

was predicted to have a high probability of occurrence was the Kawauneechee Valley on 

the west side of the park, but I did not find downy brome at any of the random stratified 

points from the survey in 2008.  However, park staff found downy brome within the west 

side high probability area of the Park near the Kawauneechee Visitor Center (pers 

comm., Dyan Hardin, Rocky Mountain National Park, 13T 0428662 4457565 NAD83). 

 

Discussion 

 After testing the accuracy of the Maxent model, the downy brome predictions 

were generally quite good.  More occurrences of downy brome were found at higher 

probabilities using the random stratified design, which was an initial indication that 

higher predicted probabilities do in fact correlate with greater likelihood of occurrence.  

A higher proportion of sites visited with downy brome occurred at higher probabilities, 

also providing evidence that increased predicted probabilities indicate a realized 

increased chance of occurrence on the ground.  The calibration of the data demonstrated 

that the proportions of sites visited containing downy brome in fact matched the expected 

ranges within each probability class.  The only exception was in the highest probability 

class in which the proportion of sites found to have downy brome was slightly lower than 

the expected probability range.  It is likely that downy brome has not yet fully expanded 

into its suitable habitat range at Rocky Mountain National Park, which resulted in lower 

occurrences than expected.   
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 The environmental predictor variables that Maxent chose as most influential on 

downy brome distribution were also the strongest variables based on the field validation 

data collected.  The Maxent model identified elevation, distance to nearest road, and 

vegetation type as being influential on predicting where downy brome would occur.  All 

of these variables did have strong effects on the occurrence of downy brome when using 

other analysis methods as well.  When including all of the environmental variables from 

the Maxent model used, backward model selection also chose two of those top three 

environmental variables in the best logistic model explaining the distribution of downy 

brome.  Regression analysis and the Maxent model predictions thus came up with very 

similar outcomes in what variables to use to predict downy brome occurrence.   It is 

possible that limiting the Maxent model to only these most influential variables may still 

have generated accurate predictions (Parolo et al. 2008).  Because the area under the 

ROC curve was very high (>0.9), this validated the strength of these variables in 

predicting occurrence. 

 Stratified random sampling was useful for the field validation because it allowed 

for sampling a much larger area than from where the original data were collected.  

Because the Maxent predictions were projected at a larger spatial scale, it was critical that 

the field sampling captured the range of areas within the projection.  Scaling issues could 

arise in the initial model, because the survey data used to generate the Maxent predictions 

may not have captured the environmental variability of the entire Park.  My random 

stratified sampling was designed to capture that variability.  Most species distribution 

models partition the original data into training data to make model predictions and test 

data to assess the predictive accuracy.  Spatial autocorrelation also inflates the model 
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accuracy when using data from a non-independent sample to test the model (Veloz 2009).  

Because the random stratified sampling covered a much greater extent of the Park, it 

picked up occurrences in areas of the Park where downy brome was not previously 

known to occur, but where the model predicted it would be.  Although the Maxent 

predictions may have had spatial autocorrelation and scaling issues, field validation using 

the random stratified sampling indicated that the model still performed well for the entire 

Park. 

Stratified sampling methods did not work perfectly.  Some of the areas of the Park 

with a high predicted probability of downy brome occurrence were not found to have 

downy brome.  This may have either been due to scaling issues with the model not being 

able to predict areas far from the initial survey area, or simply lower propagule pressure 

and dispersal in these areas.  The western road corridor in the park was predicted to have 

high occurrence of downy brome.  Most of the downy brome in the Colorado Rockies 

appears to be spreading into the Park from the foothills and plains to the east.  It may not 

have reached the western side of the park yet, where only one occurrence of downy 

brome was found (Figure 2.4).  Although the sample size was not small, a larger sample 

may have been able to detect more downy brome occurrences throughout the Park.  

Thorough mapping of downy brome along roads and trails picked up additional 

occurrence locations that the random stratified sampling did not detect (Appendix A).   

 Although Maxent has been used by researchers to make predictions about species 

distributions, it can be a valuable tool for land managers.  Maxent predicted the 

likelihood of occurrence for downy brome based on a small initial set of data.  The field 

validation of the model demonstrated that the predictions were quite good from this 
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initial small data set.  With the limited time and resources that land managers often have 

for data collection, Maxent may help them determine species ranges based on a quick 

initial assessment of a species.  For downy brome, land managers can make inferences 

about occurrence based on model probabilities and environmental factors such as 

elevation.  Such information is useful to managers in helping prioritize the allocation of 

time and resources.   There are always uncertainties in any model predictions, which is 

evident from the probability classes and proportions of sites found with downy brome in 

those classes.  With such uncertainties, land managers should not solely base their 

decisions on models, but rather use them to help guide their management efforts. 

Maxent predictions have been made for other species, but similar field based 

validations have not been performed.  It is possible that other species with widespread 

distributions but apparent environmental constraints may also be predicted well by the 

model, but this information is not known.  Prior studies have compared species with 

limited distributions to those that can thrive in a greater range of environmental 

conditions (Evangelista et al. 2008; Hernandez et al. 2008).  Even a widespread species 

such as downy brome will have constrained distributions in less desirable environments.  

Downy brome is widespread throughout the Great Basin (Mack 1981; Knapp 1996), but 

it appears to be more constrained in a high elevation range such as Rocky Mountain 

National Park.  The model should be validated in various physical and climatic conditions 

to see if it can consistently make correct predictions in numerous types of environments.  

In addition to testing the model in different environments, other similar generalist as well 

as specialist species should be included in model validations to determine what types of 

species best fit the model predictions.    
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Table 2.1.  Environmental variable GIS layers included in the Maxent analysis of downy brome in Rocky 
Mountain National Park 
   
Environmental Variable Spatial resolution Data Source 
      
Elevation (DEM)* 30m NED seamless data 
Slope 30m Derived from the DEM 
Eastness 30m Derived from the DEM 
Northness 30m Derived from the DEM 
Flow accumulation 30m Derived from the DEM 
Flow direction 30m Derived from the DEM 
Geologic type 30m USGS 
Geologic age 30m USGS 
Soil type 30m Soil data mart ** 
Vegetation type 30m Landfire data ** 
NDVI (2001)*** 30m Landsat ETM+ (GLCF) 
Brightness Index (2001) 30m Landsat ETM+ (GLCF) 
Greenness Index (2001) 30m Landsat ETM+ (GLCF) 
Moistness Index (2001) 30m Landsat ETM+ (GLCF) 
Wetness  30m   
Mean MODIS EVI **** 250m NASA 
Peak MODIS EVI 250m NASA 
Range in MODIS EVI 250m NASA 
Distance from Roads***** 30m created in ArcGIS 
Distance from Streams***** 30m created in ArcGIS 
Overland distance to water***** 30m Flows Tools (Theobald et al. 2006) 
Radiation***** 30m created in ArcGIS 
Snow potential index***** 30m created in ArcGIS 
   
   
* Digital Elevation Model (NED or National Elevation Dataset is the primary elevation dataset used by 
the USGS, http://ned.usgs.gov/) 
**  Soil data mart is online data accessible through the Natural Resources Conservation Service (NRCS), 
http://soildatamart.nrcs.usda.gov/ 
     Landfire data is online data provided by the United States Geological Survey (USGS), 
http://www.landfire.gov/datatool.php 
*** NDVI (Normalized Difference Vegetation Index) is a measure between -1.0 and +1.0 based on ratios 
of spatial reflectances in the infrared  
     and near infrared light frequencies. Sourced from Landsat Enhanced Thematic Mapper Plus,  
     
http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/
ETM  
**** Moderate Resolution Imaging Spectroradiometer, 
http://modis.gsfc.nasa.gov/  
***** variables created in GIS based on spatial data layers provided by Rocky Mountain National Park 
   
(table adapted from information provided by Dr. Sunil Kumar, NREL, Colorado State University, 2009) 
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Figure 2.1.  (A) Bars represent the number of sites visited within each probability class 
from the 2008 random stratified sampling that had downy brome present.  Probability 
classes were generated from the probabilities of the 2007 Maxent model.  The numbers 
above each bar are the number of sites visited within each probability class. (B) Bars 
represent the proportion of sites with downy brome present within each probability class.  
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Figure 2.2.  The regressed relationship of elevation and distance to roads and trails.  
Based on the regression model that best fit the 2008 presence and absence data for downy 
brome, probability classes are plotted with respect to these environmental variables.  
Very high probabilities of occurrence occur at lower elevations and closer to roads and 
trails.  Very low probabilities of occurrence occur at higher elevations and farther from 
roads and trails.  
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Figure 2.3.  Receiver Operating Curve (ROC) for the best fit logistic regression for 
downy brome occurrence.  Sensitivity is the probability of finding downy brome where it 
is predicted to occur (true positives).  Specificity is the probability of not finding downy 
brome when it is predicted to be absent (true negatives).  The area under the curve (AUC) 
describes the strength of the model by demonstrating how different the data are from 
random.  Thus, a high AUC (≥0.90) is representative of a model with very good fit.  
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Figure 2.4.  Map of 2007 probability of downy brome occurrence with red representing 
very high probabilities and light green representing low probabilities.  Areas circled on 
the map are Lumpy Ridge and Wild Basin, both with high probability areas where downy 
brome was found.  The arrow represents an area of high probability of occurrence where 
downy brome was not detected by the 2008 sampling, but was detected by staff of Rocky 
Mountain National Park. 
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APPENDIX A 

 

Opportunistic Sampling of Downy Brome 
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In the summer of 2008, I conducted a survey of downy brome for Rocky 

Mountain National Park, separate from the random sampling points used to validate the 

Maxent model.  This consisted of surveying along all roads and many of the trails within 

the park.  The model had already suggested an increased chance of downy brome 

occurrence along roads and trails within certain elevation ranges.  Location (UTM 

coordinate), vegetation community, dominant species, elevation, size of site and ocular 

estimate of downy brome cover were recorded for the park.  In this survey from June to 

August 2008, I recorded sites in 47 grassland locations, 32 shrub land communities, and 

42 forested sites (Table A1).  The total area of downy brome detected was 146.3 acres in 

grasslands, 87.4 acres in shrub lands, and 60.6 acres in forests.    

I combined these survey occurrences with the data from the random stratified 

sampling points (Chapter 2) to examine the number of occurrences within each predicted 

probability class from the three Maxent models run for 1996, 1999, and 2007 (Chapter 1).  

The number of opportunistic survey locations and randomly sampled occurrences are 

summarized in table A2.    Interestingly, the highest number of occurrences was within 

the lowest probability class, and the lowest number of occurrences was within the highest 

probability class (Figure A1).  I also looked at the percentage of occurrences in each 

probability class with these combined data.  Because the only absences recorded were 

from the random stratified sampling (Chapter 2), I had many more absences at low 

probabilities than at high probabilities.  Thus, the percentages of occurrences across the 

probability classes were more similar than were the counts of occurrences, but still did 

not show the increasing trend that I expected (Figure A2). 
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Looking across the three model years, the 1996 model showed more occurrences 

at very low probability and fewer occurrences at very high probability than the more 

recent 1999 and 2007 models (Figure A1).  The 1999 and 2007 models may be making 

only slightly better predictions of the 2008 downy brome data.  However, using the 

opportunistic downy brome locations mapped for the park would appear to show poor 

model performance for all model years when compared to the random stratified sampling 

locations.  It should also be noted that the number of occurrences for the 1999 and 2007 

models are very similar within each probability class.  Thus, the additional data added in 

2007 does not appear to have much effect on increasing the predictive power of the 

model.  Although none of these models were generated from large data sets, this might 

indicate that only a small amount of data is necessary to generate a strong predictive 

model.  Additional data may not increase the predictive capabilities of the model. 

It is important to address why the opportunistic sampling demonstrated drastically 

different results from the random stratified sampling.  Low probability opportunistic 

locations were much greater than the number of high probability locations, which is the 

opposite pattern shown by random sampling.  For the random sampling, 30m x 30m areas 

were thoroughly searched for downy brome as this was the same pixel size used by the 

Maxent model.  Opportunistic patch sizes varied greatly from less than 0.001 acres up to 

approximately 35 acres.  Many of these patches were greater than the 30m x 30m pixel 

size used by the Maxent model.  Only a single coordinate would represent the entire 

infested patch of downy brome.  Due to variation on the landscape, many of the 

coordinates recorded may have fallen within a low probability pixel by chance.  

Ultimately, the pattern evident from the opportunistic sampling may be an issue of 
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recording measurements at a much larger scale than that of the original model.  Random 

stratified points demonstrated that sampling at the same scale will give much better 

results when accessing the validity of the model.    

These data do not dispute that the model is a good predictor of downy brome in 

Rocky Mountain National Park.  Even at very low probabilities, there is still a predicted 

chance of occurrence that is greater than zero.  Although the random stratified sampling 

did not detect any downy brome in the lowest probability class, a more thorough survey 

along roads and trails within the park did detect downy brome.  Downy brome has the 

potential to occur at most predicted probabilities.  It is much more likely to occur in areas 

with the highest predicted probability, as seen from the random stratified sampling 

conducted for the model validation.  Because roads and trails are closely associated with 

the distribution of downy brome, it is possible to find it in these areas even at low 

predicted probabilities. 
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Figure A1.  The number of downy brome occurrences from the 2008 sampling including 
both random stratified points and opportunistic surveying for Rocky Mountain National 
Park.  2008 downy brome occurrences within each probability class are shown across 
1996, 1999 and 2007 model predictions.  The numbers of opportunistic points included in 
each 2007 probability class are shown above the bars. 
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Figure A2.  The percentage of downy brome occurrences within each probability class 
from the 2008 sampling including both random stratified points and surveying for Rocky 
Mountain National Park.  Percentages are the number of downy brome occurrences over 
the total number of sample locations within each probability class.  2008 percent downy 
brome occurrences are shown across 1996, 1999 and 2007 model predictions. 
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Table A1. 2008 survey locations along roads and trails for Rocky Mountain National 
Park downy brome mapping project with elevation, patch size, and probabilities predicted 
in each of the three Maxent modeling years for those locations. 
 
Veg type Easting Northing Elev (ft) Size (ac) prob2007 prob1999 prob1996 
GRASSLAND 449703 4472130 NA 0 0.0955 0.2236 0.4442 
GRASSLAND 446922 4472899 8560 0 0.3751 0.1620 0.0580 
GRASSLAND 455719 4475120 8113 0.001 0.0113 0.0257 0.1845 
GRASSLAND 454609 4475140 8254 0.002 0.0045 0.0061 0.0018 
GRASSLAND 454523 4475210 8287 0.002 0.0019 0.0055 0.0045 
GRASSLAND 454428 4475252 8310 0.002 0.0165 0.0317 0.0050 
GRASSLAND 447489 4469851 8890 0.002 0.3288 0.4900 0.5725 
GRASSLAND 448289 4470579 8907 0.005 0.8743 0.8070 0.5003 
GRASSLAND 446654 4467158 8132 0.006 0.1752 0.0567 0.0420 
GRASSLAND 449424 4464343 8642 0.0064 0.3557 0.0997 0.1669 
GRASSLAND 446426 4467935 9205 0.01 0.1591 0.0814 0.0312 
GRASSLAND 447901 4472557 8400 0.01 0.3816 0.0551 0.0202 
GRASSLAND 447858 4468929 8448 0.01 0.8076 0.8446 0.5428 
GRASSLAND 445931 4466482 8477 0.014 0.1377 0.2549 0.0227 
GRASSLAND 449054 4471618 8648 0.014 0.1555 0.2860 0.1521 
GRASSLAND 447422 4465060 8808 0.0188 0.0075 0.0153 0.0166 
GRASSLAND 449353 4464290 8640 0.05 0.1166 0.1240 0.2492 
GRASSLAND 445613 4473315 8587 0.06 0.2331 0.0110 0.0474 
GRASSLAND 456606 4475326 7969 0.08 0.0041 0.0147 0.4055 
GRASSLAND 457186 4475540 7896 0.084 0.0026 0.0036 0.0611 
GRASSLAND 449329 4464921 8675 0.1 0.1054 0.3438 0.2220 
GRASSLAND 457333 4475557 7910 0.11 0.0014 0.0060 0.0945 
GRASSLAND 448101 4469069 8476 0.12 0.3702 0.2275 0.0851 
GRASSLAND 448888 4467353 8126 0.17 0.0223 0.0041 0.0127 
GRASSLAND 450981 4466325 7938 0.23 0.0186 0.0476 0.2988 
GRASSLAND 454457 4451972 8369 0.24 0.3524 0.5918 0.0310 
GRASSLAND 457045 4475523 7903 0.43 0.0089 0.0043 0.0109 
GRASSLAND 447627 4468746 8543 0.463 0.0547 0.1012 0.1389 
GRASSLAND 449366 4468590 8306 0.52 0.5522 0.3701 0.0218 
GRASSLAND 447272 4465112 8785 0.569 0.0377 0.0903 0.0458 
GRASSLAND 448901 4471429 8661 1.09 0.6177 0.5897 0.6379 
GRASSLAND 449072 4467328 8106 1.14 0.1791 0.0213 0.0318 
GRASSLAND 446452 4465082 9058 1.163 0.0028 0.0000 0.0001 
GRASSLAND 447952 4468570 8576 2.28 0.5471 0.6188 0.4751 
GRASSLAND 448536 4463810 8720 3.23 0.0616 0.2773 0.0927 
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Table A1.  2008 survey locations along roads and trails for Rocky Mountain National 
Park downy brome mapping project with elevation, patch size, and probabilities predicted 
in each of the three Maxent modeling years for those locations. (continued) 
 
Veg type Easting Northing Elev (ft) Size (ac) prob2007 prob1999 prob1996 
GRASSLAND 449956 4468528 8276 3.64 0.1658 0.1493 0.3174 
GRASSLAND 447470 4467336 8110 4.65 0.0894 0.2522 0.0792 
GRASSLAND 449918 4468794 8389 5.02 0.7467 0.1629 0.0778 
GRASSLAND 449196 4468392 8398 7.7 0.3364 0.3187 0.3200 
GRASSLAND 447744 4466570 8136 9.66 0.0490 0.0260 0.0076 
GRASSLAND 451320 4468666 8179 9.95 0.4652 0.6751 0.8397 
GRASSLAND 451528 4471099 8454 12.2772 0.7829 0.6260 0.4118 
GRASSLAND 449083 4471799 8576 16.1 0.3199 0.4170 0.0225 
GRASSLAND 449619 4465992 8280 28 0.2945 0.2292 0.1236 
GRASSLAND 451461 4469167 8221 32.956 0.4675 0.5830 0.8987 
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Table A1.  2008 survey locations along roads and trails for Rocky Mountain National 
Park downy brome mapping project with elevation, patch size, and probabilities predicted 
in each of the three Maxent modeling years for those locations. (continued) 
 
Veg type Easting Northing Elev (ft) Size (ac) prob2007 prob1999 prob1996 
SHRUBLAND 448443 4470284 8733 0 0.4753 0.5595 0.2629 
SHRUBLAND 445496 4466910 8192 0.001 0.2769 0.1771 0.0180 
SHRUBLAND 451225 4467926 8159 0.001 0.6770 0.6819 0.1845 
SHRUBLAND 447941 4469296 8536 0.002 0.7813 0.7906 0.3470 
SHRUBLAND 448393 4469596 8539 0.002 0.8486 0.8395 0.5586 
SHRUBLAND 446837 4465180 9005 0.004 0.0061 0.0077 0.0436 
SHRUBLAND 445070 4473569 8567 0.005 0.5479 0.3299 0.1319 
SHRUBLAND 455689 4472318 7985 0.01 0.0072 0.0250 0.8455 
SHRUBLAND 444287 4473811 8694 0.012 0.0514 0.1032 0.0828 
SHRUBLAND 450712 4469373 9099 0.02 0.7673 0.7313 0.7191 
SHRUBLAND 447075 4468685 9022 0.056 0.2436 0.1253 0.0988 
SHRUBLAND 449041 4465770 8369 0.12 0.1726 0.0904 0.0929 
SHRUBLAND 444618 4473677 8536 0.16 0.2076 0.1073 0.0792 
SHRUBLAND 445911 4467054 8218 0.175 0.0649 0.0062 0.0034 
SHRUBLAND 451439 4467924 8083 0.219 0.5901 0.4196 0.3189 
SHRUBLAND 447666 4464986 8664 0.255 0.0099 0.0193 0.0096 
SHRUBLAND 456214 4472230 8093 0.33 0.0043 0.0132 0.2849 
SHRUBLAND 450787 4469389 9092 0.35498 0.7008 0.8284 0.8619 
SHRUBLAND 448317 4465557 8428 0.489 0.5617 0.1584 0.0030 
SHRUBLAND 450459 4463876 8562 0.848 0.3550 0.4822 0.1577 
SHRUBLAND 450356 4469364 9199 0.853 0.8159 0.7232 0.7591 
SHRUBLAND 450534 4464102 8579 0.897 0.2382 0.1916 0.1629 
SHRUBLAND 450564 4469336 9110 1.39685 0.7124 0.6347 0.9633 
SHRUBLAND 455637 4472248 7913 2.15 0.0268 0.0510 0.5297 
SHRUBLAND 450396 4466145 8095 2.29 0.0152 0.0069 0.0317 
SHRUBLAND 450660 4468695 8320 3.7016 0.5683 0.7360 0.6820 
SHRUBLAND 447007 4469416 8835 4.01 0.0339 0.1021 0.0540 
SHRUBLAND 447102 4463500 9051 4.4 0.0530 0.0474 0.0356 
SHRUBLAND 448094 4467367 8132 6.28 0.0815 0.0127 0.0106 
SHRUBLAND 451546 4468919 8082 12.5814 0.2051 0.4501 0.6694 
SHRUBLAND 448722 4465790 8454 17.8 0.6702 0.8947 0.7499 
SHRUBLAND 447325 4469523 8644 27.95 0.1039 0.4943 0.3674 
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Table A1. 2008 survey locations along roads and trails for Rocky Mountain National 
Park downy brome mapping project with elevation, patch size, and probabilities predicted 
in each of the three Maxent modeling years for those locations. (continued) 
 
Veg type Easting Northing Elev (ft) Size (ac) prob2007 prob1999 prob1996 
FOREST 449418 4472319 8137 0 0.5194 0.3717 0.0617 
FOREST 455648 4472359 8110 0.001 0.0083 0.0255 0.7750 
FOREST 447923 4468641 8536 0.001 0.5447 0.1211 0.1339 
FOREST 447785 4466468 8110 0.002 0.1267 0.1388 0.1228 
FOREST 446480 4467875 9261 0.002 0.2977 0.1573 0.1053 
FOREST 449457 4472377 8190 0.002 0.2577 0.1970 0.2661 
FOREST 447598 4469132 8602 0.002 0.3884 0.2730 0.1737 
FOREST 446600 4468230 9245 0.004 0.0077 0.0334 0.0241 
FOREST 446685 4466590 8224 0.004 0.3696 0.2353 0.0396 
FOREST 448237 4469690 8638 0.005 0.1560 0.5048 0.5521 
FOREST 449052 4465625 8385 0.006 0.0353 0.0052 0.2330 
FOREST 445994 4462373 9043 0.008 0.1420 0.2723 0.0144 
FOREST 453787 4475024 8549 0.01 0.0023 0.0078 0.0042 
FOREST 445681 4466899 8218 0.014 0.1749 0.1305 0.0255 
FOREST 445010 4473294 8588 0.02 0.0945 0.0693 0.0006 
FOREST 448300 4470270 8690 0.0375 0.2939 0.5285 0.2406 
FOREST 451025 4469561 9035 0.03866 0.8458 0.5819 0.6342 
FOREST 450742 4469459 9141 0.04188 0.4984 0.3991 0.8012 
FOREST 448018 4465087 8510 0.052 0.0297 0.0497 0.0397 
FOREST 448211 4466350 8060 0.08 0.1320 0.0768 0.0077 
FOREST 450791 4471412 8480 0.12 0.2741 0.1763 0.2706 
FOREST 449214 4472125 8457 0.127 0.5989 0.4265 0.3215 
FOREST 446047 4466533 8336 0.139 0.0643 0.0864 0.1044 
FOREST 447133 4466688 8162 0.15 0.0241 0.0718 0.0575 
FOREST 448080 4465158 8434 0.182 0.0534 0.0681 0.0259 
FOREST 443726 4473823 8854 0.2 0.0910 0.1872 0.1134 
FOREST 446970 4468053 NA 0.223 0.4788 0.1199 0.1519 
FOREST 449104 4464333 8635 0.27 0.0500 0.4247 0.0654 
FOREST 445656 4462249 9155 0.34 0.0775 0.0020 0.0020 
FOREST 446419 4473295 8598 0.47 0.1115 0.0342 0.0477 
FOREST 446824 4468240 9143 0.528 0.0389 0.0403 0.0053 
FOREST 448315 4463305 8733 0.66 0.0294 0.0122 0.0725 
FOREST 447086 4463316 8886 0.73 0.0361 0.0360 0.0058 
FOREST 449396 4471984 8445 0.87 0.2101 0.2503 0.0993 
FOREST 449369 4470318 9151 0.90695 0.8707 0.8760 0.6206 
FOREST 454587 4452113 8368 1.34 0.0000 0.0000 0.0000 
FOREST 447381 4466684 8179 1.38 0.0500 0.1444 0.0541 
FOREST 448638 4463578 8722 2.32 0.1016 0.0089 0.0863 
FOREST 451667 4469774 8707 2.83381 0.4440 0.4635 0.6298 
FOREST 454066 4475074 8425 4.59 0.0089 0.0079 0.0067 
FOREST 447276 4468389 8713 6.23 0.3379 0.4030 0.1638 
FOREST 449689 4467521 8128 35.68 0.0278 0.0118 0.0981 
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Table A2.  The number of downy brome sites visited in each probability class for each of 
the three Maxent model years.  All opportunistic locations indicate presence of downy 
brome.  Random stratified sites visited are broken down into those containing 
occurrences and those in which downy brome was absent.  
 
Model 
year Probability class Opportunistic locations Random occurrences Random absences 
          

1996 0- 0.1 61 2 41 
  0.1-0.3 26 1 7 
  0.3-0.5 10 5 3 
  0.5-0.8 16 16 10 
  0.8-1.0 6 5 2 
          

1999 0-0.1 49 0 39 
  0.1-0.3 32 3 6 
  0.3-0.5 16 4 10 
  0.5-0.8 16 9 6 
  0.8-1.0 6 12 3 
          

2007 0-0.1 48 0 27 
  0.1-0.3 28 2 12 
  0.3-0.5 19 5 9 
  0.5-0.8 18 8 8 
  0.8-1.0 6 13 8 
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APPENDIX B 

 

Survey locations of 2007 field sampling 
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Figure B1.   Locations of sampled downy brome from the Ecotone study and Succession 
study plots in 1996, 1999, and 2007.  The map on the left shows the locations within 
Rocky Mountain National Park of the 14 occurrence of downy brome sampled in 1996 on 
which the 1996 Maxent model was generated.  The middle map shows 21 occurrences on 
which the 1999 Maxent model was generated.  The map on the left shows 31 occurrences 
on which the 2007 Maxent model was generated.  Note that all sample locations 
represented by small dots are in the central eastern region of the Park.  
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Table B1.  UTM coordinates of Ecotone study plots surveyed for downy brome in Rocky 
Mountain National Park. 
 

  Easting Northing    Easting Northing 
1 447159.97 4469634.23  22 449465.51 4471628.28 
2 447231.13 4469794.77  23 449245.13 4471628.53 
3 444990.34 4462323.95  24 448985.06 4471628.07 
4 445210.14 4462323.35  25 451101.07 4467266.32 
5 445110.14 4462323.75  26 451100.49 4467426.31 
6 447202.54 4470837.76  27 451100.48 4467565.01 
7 426792.59 4475888.06  28 450217.67 4464572.18 
8 426732.55 4475888.81  29 450217.75 4464631.40 
9 426652.15 4475891.63  30 450217.41 4464491.46 

10 446217.33 4475368.44  31 450662.03 4469823.22 
11 446417.4 4475368.39  32 450582.15 4469824.49 
12 446297.08 4475368.70  33 450501.77 4469824.75 
13 449351.82 4468681.59  34 451643.45 4455136.99 
14 449351.73 4468581.19  35 451443.25 4455136.79 
15 449351.39 4468501.01  36 451543.34 4455136.31 
16 452449.3 4452166.43  37 448679.89 4465885.67 
17 452449.44 4451901.19  38 448680.28 4465826.84 
18 452449.74 4452026.57  39 448680.67 4465945.28 
19 453814.66 4461087.80  40 452690.5 4463226.37 
20 453874.08 4461088.17  41 452629.78 4463225.66 
21 453934.52 4461086.99  42 452570.5 4463225.18 
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Table B2.  UTM coordinates of Succession study plots surveyed for downy brome in 
Rocky Mountain National Park. 
 

  (disturbed sites)   (reference sites) 
  Easting Northing   Easting Northing 

1 448800 4468978   448359 4468950 
2 447909 4468800   447823 4468749 
3 446765 4472611   446442 4472557 
4 446724 4472339   N/A N/A 
5 448250 4471180   448290 4471090 
6 449607 4468974   449497 4468906 
7 449520 4468954   N/A N/A 
8 448054 4465673   447982 4465726 
9 448032 4465349   448073 4465269 

10 448993 4469734   449050 4469798 
11 447501 4470633   447497 4470681 
12 448055 4465150   448092 4465116 
13 447740 4464923   447748 4464913 
14 448042 4471547   448007 4471568 
15 445298 4472362   445218 4472417 
16 445292 4462589   445259 4462603 
17 442720 4465247   442705 4465205 
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APPENDIX  C 

 

2008 field sampling for model validation 
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Table C1.  UTM coordinates of random stratified locations visited in Rocky Mountain 
National Park in 2008.   
 

Site 
ID Easting Northing 

Elevation 
(m) 

Road dist. 
(m) 

Vegetation 
type 

Prob. 
class 

Brome 
present 

1 448201 4469359 2582 283 Conifer 5 Y 
4 450416 4471176 2815 799 Deciduous 5 N 
5 450269 4469590 2799 663 Grassland 5 N 
6 450402 4469180 2603 342 Conifer 5 Y 
7 448963 4470361 2657 524 Shrubland 5 N 
8 428801 4457750 2655 201 Shrubland 5 N 
9 450820 4471620 2561 212 Deciduous 5 Y 

10 428460 4458627 2647 457 Conifer 5 N 
11 448792 4470571 2707 459 Shrubland 5 Y 
12 448817 4469764 2593 379 Shrubland 5 Y 
14 451117 4469127 2553 323 Conifer 5 Y 
15 448144 4471157 2694 335 Deciduous 5 N 
16 449293 4469112 2539 258 Shrubland 5 Y 
17 449116 4469200 2545 90 Shrubland 5 Y 
18 448219 4466096 2640 892 Conifer 5 Y 
20 449104 4469717 2590 150 Shrubland 5 Y 
21 450422 4469063 2566 283 Grassland 5 Y 
24 453145 4451790 2593 295 Conifer 5 N 
26 427024 4469339 2709 67 Grassland 5 N 
27 444468 4474136 2757 551 Conifer 5 Y 
28 454488 4451818 2578 426 Conifer 5 Y 
29 450511 4464174 2556 192 Shrubland 5 Y 
34 451253 4468995 2501 180 Conifer 4 Y 
37 451083 4470957 2766 811 Deciduous 4 N 
38 448799 4472039 2614 474 Grassland 4 Y 
39 448249 4470464 2654 201 Conifer 4 Y 
40 447857 4469502 2591 402 Deciduous 4 Y 
41 448600 4470849 2739 324 Shrubland 4 Y 
43 426908 4466498 2684 446 Grassland 4 N 
44 447259 4468118 2621 721 Shrubland 4 N 
47 450100 4472719 2520 242 Conifer 4 Y 
49 427040 4472869 2980 886 Grassland 4 N 
50 453594 4456678 2763 95 Grassland 4 N 
52 451250 4450889 2660 842 Deciduous 4 N 
54 449724 4466378 2527 242 Conifer 4 Y 
55 426970 4469586 2715 300 Conifer 4 N 

57 427664 4461706 2660 726 
Non-
Vegetated 4 N 

60 446885 4463690 2761 1677 Shrubland 4 Y 
65 450375 4468542 2505 309 Conifer 3 Y 
66 444520 4472021 2920 931 Deciduous 3 N 

67 448255 4465661 2557 824 
Non-
Vegetated 3 Y 

68 448945 4471873 2637 582 Deciduous 3 Y 
69 427490 4461801 2660 900 Deciduous 3 N 
71 448772 4468226 2494 323 Deciduous 3 Y 
72 426584 4465051 2681 570 Deciduous 3 N 
77 450226 4463682 2635 531 Deciduous 3 N 

78 427450 4463025 2664 576 
Non-
Vegetated 3 N 
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Table C1.  UTM coordinates of random stratified locations visited in Rocky Mountain 
National Park in 2008.  (continued) 
 

Site 
ID Easting Northing 

Elevation 
(m) 

Road dist. 
(m) 

Vegetation 
type 

Prob. 
class 

Brome 
present 

79 450571 4467524 2490 124 Shrubland 3 Y 
82 452234 4458953 2897 324 Deciduous 3 N 
83 453683 4456675 2758 108 Conifer 3 N 
88 439845 4471273 3310 306 Deciduous 3 N 
89 427609 4475247 2791 750 Deciduous 3 N 
91 453993 4452345 2594 514 Deciduous 2 N 
95 444298 4471560 2879 658 Grassland 2 N 
97 446973 4462934 2756 1256 Deciduous 2 N 
98 445890 4467390 2582 693 Shrubland 2 N 

103 426825 4464988 2678 543 Conifer 2 N 
105 449428 4468040 2498 404 Conifer 2 Y 
106 452483 4452616 2959 1357 Deciduous 2 N 
107 448361 4470478 2655 182 Shrubland 2 Y 
108 453011 4469824 2533 430 Conifer 2 N 
113 428241 4462836 2672 216 Conifer 2 N 
114 452564 4457639 2903 384 Deciduous 2 N 
116 427703 4473370 2765 573 Conifer 2 N 
119 439680 4471182 3221 408 Grassland 2 N 
120 432396 4476401 3240 577 Grassland 2 N 
122 443118 4468475 3201 2210 Conifer 1 N 
125 428200 4464316 2727 949 Conifer 1 N 
137 442963 4470831 3258 30 Conifer 1 N 
139 452206 4459106 2887 446 Conifer 1 N 
141 430913 4465156 2927 3336 Conifer 1 N 
142 438396 4453086 3444 6638 Conifer 1 N 
146 452392 4454592 2840 2239 Deciduous 1 N 
148 440428 4470535 3119 994 Conifer 1 N 
152 444897 4460958 3067 1304 Grassland 1 N 
159 432884 4475747 3435 242 Conifer 1 N 
167 430523 4459953 2910 1825 Conifer 1 N 
176 433039 4475853 3440 228 Tundra 1 N 
179 428660 4451994 2560 1361 Deciduous 1 N 
185 430416 4460595 3041 2014 Conifer 1 N 
186 449447 4449794 2781 2876 Conifer 1 N 
193 432579 4453412 2773 1129 Conifer 1 N 
195 442852 4471807 3307 153 Conifer 1 N 

198 442853 4472035 3326 95 
Non-
Vegetated 1 N 

203 434533 4454113 2646 2644 Deciduous 1 N 

205 440457 4453551 3389 8574 
Non-
Vegetated 1 N 

220 426819 4470097 2774 819 Conifer 1 N 
221 447080 4451195 2980 5013 Conifer 1 N 
225 435261 4454710 3080 3335 Conifer 1 N 
254 428822 4464665 2772 1426 Conifer 1 N 
261 442318 4470271 3540 892 Conifer 1 N 
274 442963 4463492 3327 2699 Conifer 1 N 
284 445288 4453008 3275 7100 Conifer 1 N 
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APPENDIX D 

 

Maps of downy brome locations in 

Rocky Mountain National Park 
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Figure D1.  Map of downy brome locations in Rocky Mountain National Park from 2007 
field sampling of Ecotone study plots and Succession study plots. 
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Figure D2.  Random stratified sites surveyed for downy brome in Rocky Mountain 
National Park in 2008. 
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Figure D3.  Opportunistic locations found in 2008 from mapping of downy brome along 
roads and trails in Rocky Mountain National Park. 
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Figure D4.  All sites visited in Rocky Mountain National Park in 2008 including both the 
random stratified locations for the Maxent model validation and opportunistic locations 
collect for the downy brome mapping project.  
 


