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ABSTRACT 

GEOGRAPHICAL ASSESSMENT OF ALGAL PRODUCTIVITY AND WATER INTENSITY 

ACROSS THE UNITED STATES 

Water consumption due to evaporation in open algal cultivation systems represents a significant 

research gap in the resource assessment literature. Existing algal evaporation models often lack 

high spatiotemporal resolution or are not validated with experimental systems. This study 

presents a geographical and temporal assessment of the water requirements for commercial-scale 

production of algae biomass through a dynamic integrated thermal and biological modeling 

framework. Water demands were calculated through a validated dynamic thermal model which 

predicts temperature with an accuracy of -0.96 ± 2.72 °C and evaporation losses with a 1.46 ± 

5.92 % annual accuracy. The biological model was validated with experimental data representing 

the current state of technology and shows an average error of -4.59 ± 8.13 %. The integrated 

thermal growth model was then utilized to simulate the water demands for biomass production of 

a 400-hectare algae farm at 198 different locations across the United States over a period of 21 

years. Simulation outputs were used to determine algal protein yields, based on protein content, 

and fuel production via hydrothermal liquefaction. This foundation is integrated with life cycle 

methodology to determine the water footprint of algal biomass, proteins, and biofuels and to 

compare them to those of traditional energy crops and conventional fuels. Results indicate that 

less water-intensive cultivation can be achieved in the Gulf Coast region, where the average 

water footprints of the three simulated pathways were determined to be 155 m3 water tonne-1 

biomass, 371 m3 water tonne-1 algal proteins, and 11 m3 GJ-1 biofuel. The water footprints of 

algal systems were found to be more favorable when compared to traditional biomass feedstocks 
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such as soybeans and corn. However, when compared to petroleum-based fuels, results 

emphasize the need for more water-efficient strategies to reduce the water demands of algal 

cultivation. This work also incorporates a novel temperature tolerance assessment to identify the 

geographically specific temperature limits for algal strains in a commercial-scale facility. Results 

highlight the importance of high temporal and spatial resolution when modeling culture 

temperature, evaporative loss, and algae growth rate. 
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1. INTRODUCTION 

 

 

 

Extreme climate events are increasing in frequency and severity. This, combined with a 

growing global population, further exacerbates the need for sustainable energy technologies. 

Algal technologies are expected to play an important role in the effort to phase out petroleum 

fuels [1].  Algal biomass is considered a potential solution to the multiple demanding challenges 

of the food, water, and energy nexus. Microalgae can not only provide higher biomass yields per 

area of cultivation at a faster rate than conventional land crops such as corn and soybean [2]–[4], 

but can also be integrated with carbon capture technologies [5]–[7], as well as be processed into 

a variety of co-products such as nutraceuticals, bioplastics, and animal feed [8]–[11].  In contrast 

to other energy crops, algae can be cultivated on non-arable land, eliminating competition with 

food crops for high-value farmland [12],[13]. Despite the many advantages of algal biomass, 

many obstacles must be addressed before the large-scale deployment of sustainable algae farms 

becomes a reality. Multiple studies have shown that land requirements for sustainable production 

of algal fuels can be met [14], [15]. Preceding studies have also shown the need for carbon 

capture instead of the co-location of algae systems to CO2  sources, and for improvement in the 

logistics of CO2 supply and delivery for sustainable scalability of algal biofuels [15]–[17]. In 

terms of water, there is no general agreement on the water requirements for large-scale 

production of algae in open-raceway pond (ORP) systems [18], [19] due to limited research in 

this area [14].  

 Due to the growing concern over water scarcity and depletion of freshwater sources, it is 

necessary to provide accurate estimates of water requirements for emerging bioenergy 
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technologies [20]. Water demand not only has a direct impact on life cycle assessments but also 

impacts the economics of algae products.  Multiple studies have attempted to quantify the water 

footprint (WF) from microalgae cultivation in ORPs with results ranging from 15.8 to 230 m3 per 

tonne of biomass [4], [14], [18], [21]. Most existing studies are limited since they lack high-

resolution modeling and often approximate biomass yields with simplified solar conversions for 

a restricted number of locations [4], [18], [22]. Accurate prediction of biomass productivity 

requires geographically resolved growth modeling with the ability to capture biological effects at 

a high temporal resolution [23]. 

 Aside from productivity assumptions, the variability in water footprints is primarily 

attributed to the range of methodologies and assumptions used to estimate water loss through 

evaporation from open algae systems [18]. Previous studies often simplify the analysis by using 

evaporation models that neglect pond temperatures or assume that evaporative behavior in algae 

ponds follows that of pan evaporation systems [21], [22], [24]. Other studies provide water loss 

estimates through the coupling of evaporation models to dynamic thermal models with high 

temporal resolution [14], [25], [26]. This methodology is the most appropriate since it captures 

important geographical and temporal differences in evaporation rates from algae ponds, but an 

appropriate selection of the evaporation model and validation data is fundamental to reduce the 

uncertainty of these assessments [25].   

Evaporation from free water surfaces is a function of the water surface temperature and 

meteorological conditions such as relative humidity, vapor pressure, wind speed, and ambient 

temperature. Methods for modeling evaporation rates from free water surfaces range in 

complexity and accuracy [27]. The most simple and inaccurate is the pan evaporation method, 

but more physically sound models that capture meteorological-based effects have been used in 
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studies focusing on the water demand of algal ponds [4], [14], [18], [25]. These models often 

rely on empirical equations correlating wind speed to evaporation and are designed to estimate 

evaporation rates from lakes or cooling ponds [28]–[30].  Béchet et al. [25] reviewed and tested 

several evaporation models against experimental data measured in a pilot-scale pond and 

concluded that purely empirical evaporation models fail to accurately predict evaporation rates 

from algal systems since they were originally validated for water bodies with different spectral 

characteristics (algae cultures are more opaque), depths, and surface area [25], [29]. Béchet et al. 

[25] recommended a flat-plate model derived from theoretical concepts based on its accuracy 

and versatility to capture system-scale effects [25]. More importantly, the need to account for 

both mass transfer modes (natural and forced convection) is crucial when modeling systems with 

a larger surface area, such as commercial algae ponds, as the evaporation rate is inversely related 

to the characteristic length of the system [25], [29], [31].  

Equally critical is the need to validate thermal models with experimental data relevant to the 

system properties and scale. Studies in the literature often use observations from elevated 

experimental algae raceways to validate thermal models, which may provide inaccuracies when 

extrapolating results for commercial algae ponds [26], [32].  Khawam et al. [33] demonstrated 

that the temperature profiles from elevated raceways differ from those in commercial ponds. 

These variances are fundamentally linked to evaporation effects amplified by the paddlewheel. 

The additional turbulence and increase of pond surface area caused by the paddlewheel have a 

direct impact on the evaporation rates of experimental ponds. Therefore, to reduce the 

uncertainty in the computation of evaporation rates from commercial ponds, evaporation models 

must be validated at a pond scale where paddlewheel effects are minimal. Wigmosta et al. [14] 

validated an empirical evaporation model using corrected pan evaporation measurements. The 



4 

water used in pan evaporation has different spectral properties than algae cultures and wind 

effects are not completely captured due to the small surface area of evaporation pans [18], [25], 

[27]. When compared to annual net lake evaporation rates, White and Ryan [34] measured higher 

evaporation rates from a commercial algae farm located in New Mexico.  This is likely 

associated with the contrasting depths between shallow microalgae ponds and deeper lakes.    

Clearly, there exists a need for a robust temporal and geographical assessment of the water 

requirements for large-scale production of algal biomass. Although Wigmosta et al. [14] 

provided a novel and thorough outlook on the land and water requirements for large-scale algae 

farms, the assumptions used result in high uncertainty when estimating evaporation rates at 

larger scales. This study provides estimates for the blue WF of microalgae cultivation computed 

with a dynamic thermal and biological model developed and validated to predict evaporation 

losses, temperature profiles, and areal productivity of large-scale systems. This foundation is 

integrated with life cycle methodology to determine the WF of three different algal-based 

products. Results include water demands and temperatures for two different farm scales (400 and 

4000 hectares) for 198 locations across the US over 21 years, as well as the uncertainties in 

predicting water demand and pond temperatures using typical meteorological year (TMY) data 

[35] and actual weather data sets. The discussion focuses on the co-dependence of evaporation, 

temperature, and growth in algae systems, highlights the importance of accurate co-modeling of 

these parameters, and includes a comparison of WF of conventional energy crops cultivated for 

fuels and proteins. Lastly, the work is used to estimate temperature tolerances with a geospatial 

resolution to support strategic large-scale cultivation of algal strains.   
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2. MATERIALS AND METHODS 

 

 

 

This study is built upon accurate computations of water demands and biomass production 

at high temporal and spatial resolutions. Evaporation losses were determined using an energy 

balance approach through dynamic thermal modeling, while biomass productivity yields were 

estimated using a coupled biological growth model [26]. Although both models function as an 

integrated unit, validation of the thermal and biological model was performed independently 

using experimental observations for pond temperature, depth, and algal concentration. When 

coupled with historical meteorological data, model capabilities allow for a geographical and 

temporally resolved assessment of the WF of algal systems. The following sections provide 

detailed descriptions of the water footprint methodology, thermal model, biological model, 

validation data, and the simulation approach used in this work. 

2.1 Water footprint methodology 

The goal of this study was to compute the water footprint of large-scale algae cultivation 

systems and to compare them to those of traditional energy crops. As defined by Gerbens-Leenes 

et al., the blue WF of a product measures the amount of water consumed from blue water 

resources such as groundwater and rivers. The green WF quantifies the amount of water 

consumed from precipitation, while the gray WF component refers to the amount of freshwater 

needed for waste streams to meet water quality standards based on the concentration of 

pollutants [36]. In the case of algae cultivation,  the blue component includes the water needed to 

replace evaporation losses and is expressed in terms of biomass productivity or energy content 

[19], [36]. It is important to note that this analysis only considers the WF associated with the 
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algae cultivation process in ORPs and excludes water requirements from downstream conversion 

processes. Indirect water consumption from process consumables such as nutrients and 

electricity were assumed to be supplied from a non-local water source and were therefore not 

included in the water balance. Using these assumptions, the local on-site water footprint was 

calculated and reported in terms of cubic meters of water per functional unit. The water intensity 

of three different pathways producing distinct algae products was calculated: algal biomass, 

proteins, and biofuels. Functional units for algal biomass, algal proteins, and biofuels were set to 

a tonne of ash-free dry weight (AFDW) biomass, a tonne of algal proteins, and GJ of biodiesel, 

respectively. Green and gray WF components were not considered in order to simplify the 

analysis.  

2.2 Thermal model 

Thermal modeling is the foundation of this analysis, thus, a high-fidelity thermal model 

capable of providing accurate simulations of temperature and evaporation rates is essential to 

reduce error propagation in subsequent computations. The thermal model used in this study is a 

modification of the model developed by Greene et al. [26]. The model performs a transient 

energy balance for an isothermally spatial system to calculate time-resolved thermal outputs 

based on the algae culture’s thermal properties and various heat fluxes driving the thermal 

behavior of the pond  [26]:  

𝜌𝑐𝑝𝑉 𝑑𝑇𝑝𝑑𝑡 = ∑ 𝑄𝑛       (1) 

where 𝜌 denotes the culture density [kg m-3], 𝑐𝑝 is the specific heat of the culture [J kg-1 K-1], 𝑉 

is the pond’s volume [m3], 𝑇𝑝 is the temperature of the culture [K], 𝑡 is the independent time 

coordinate [s], and ∑ 𝑄𝑛 is the sum of the heat fluxes [W]. Heat fluxes include direct and diffuse 

solar radiation, water inflow, pond radiation, atmospheric radiation, ground conduction, 
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convection, and evaporation. The governing equation was integrated in time using a fourth-order 

Runge-Kutta method with a fixed time-step of one hour [25].  

 Primary model inputs include parameters describing the geometry of the pond such as 

the length, width, and operating depth, and meteorological conditions: global horizontal 

irradiance (GHI), ambient temperature, relative humidity, and wind speed. To predict accurate 

evaporation rates and pond temperatures, the following heat transfer models were modified from 

Greene et al. [26]: atmospheric radiation, ground conduction, convection, and evaporation.  The 

methods selected to model these heat transfer mechanisms are explained in detail in the 

following sections. Heat transfer models that were not modified are included in the Appendix.  

2.1.1 Atmospheric radiation  

 The atmospheric radiation heat flux was found to be a highly sensitive forcing term 

dependent on the ambient temperature (𝑇𝑎𝑚𝑏) and sky emissivity (𝜀𝑠𝑘𝑦). The method to 

calculate the radiation emitted by the atmosphere to the pond is defined by the Stefan-Boltzmann 

law:  

𝑄𝑎𝑡𝑚𝑜 = 𝜀𝑠𝑘𝑦 ⋅ 𝜎 ⋅  𝐴𝑠 ⋅ 𝑇𝑎𝑚𝑏4       (2) 

where 𝜎 is the Stefan-Boltzmann constant, 𝐴𝑠 represents the surface temperature, and 𝑇𝑎𝑚𝑏 is the 

ambient air temperature [K] [37]. The sky emissivity was calculated using the Brunt equation, 

previously used for algae pond models by Khawam et al. [33]:  

𝜀𝑠𝑘𝑦 = 𝑎 + 𝑏 ⋅ √𝑝𝑎     (3) 

where 𝑎 and 𝑏 are empirical coefficients set to 0.6 and 0.031 [mm Hg-0.5], and 𝑝𝑎 is the saturated 

vapor pressure at the ambient temperature in mm Hg [38].  
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2.1.2 Ground conduction 

 The conductive heat transfer between the pond and ground plays an important role in 

lowering pond temperatures during periods of intense solar radiation. Ground conduction is a 

function of the thermal properties of the soil beneath the pond which include thermal 

conductivity (𝑘𝑔), and the thermal diffusivity (𝛼𝑔). The heat transfer interactions between the 

pond and ground are calculated using the solution for the heat diffusion equation. This solution 

assumes a constant pond temperature during the duration of the time-step and takes the form:  

𝑄𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑘𝑔⋅𝐴𝑠⋅(𝑇𝑃−𝑇𝑔)√𝜋⋅𝛼𝑔⋅ℎ    (4) 

where 𝑇𝑔 is the ground temperature assumed to equal the annual average ambient temperature or 

the average for the period of the analysis [37], [39], [40], and ℎ is the time-step of the analysis 

[37], [40]. The thermal conductivity was empirically calibrated to 1.7 [W m-1 K-1] and the 

thermal diffusivity was set to 7.9 × 10−6 [m2 s-1], in accordance with values in the literature 

[40]. 

2.1.3 Convection 

 Convective effects at the pond surface deserve special attention, especially when 

modeling ponds with large surface areas. This study uses a semi-empirical flat plate model to 

calculate heat transfer via convection. Different from other studies, this model accounts for 

convective effects from both natural and forced convection, which are calculated using 

correlations that relate the size of the system to the wind speed (forced convection) and density 

gradient (natural convection). To simplify model operations, the effects of wind direction were 

not considered by defining the characteristic length of the system to be the ratio of surface area 

to perimeter of the pond. The forced convection model is taken directly from Greene et al. [26], 
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while natural convection effects are calculated using the following Nusselt number correlations 

for the laminar and turbulent regime, respectively:  

𝑁𝑢𝐿 = 𝑥 ⋅ 𝑅𝑎𝐿1/4  𝑓𝑜𝑟 (104  ≤ 𝑅𝑎𝐿 ≤ 107, Pr ≥ 0.7)       (5) 𝑁𝑢𝐿 = 𝑦 ⋅ 𝑅𝑎𝐿1/3  𝑓𝑜𝑟 (104  ≤ 𝑅𝑎𝐿 ≤ 1011, Pr ≥ 0.7)       (6) 

where 𝑥 and 𝑦 are empirical coefficients set to 0.54 and 0.15, and 𝑅𝑎𝐿 is the dimensionless 

Rayleigh number [37]. In the case where mixed natural and forced convection effects are present, 

the following correlation was used:  

𝑁𝑢𝐿 = (𝑁𝑢𝐿,𝑓𝑛 + 𝑁𝑢𝐿,𝑛𝑛 )1/𝑛
     (7) 

where 𝑁𝑢𝐿,𝑓 and 𝑁𝑢𝐿,𝑛 are the Nusselt numbers obtained from the forced and natural convection 

correlations, and 𝑛 is an empirical coefficient set to 3 [37]. Forced convection correlations and 

convective heat flux equations are further described in the Appendix.  

2.1.4 Evaporation 

 As previously mentioned, the selection of an appropriate evaporation model is paramount 

to produce robust water demand estimates. The mass transfer correlations used to model 

evaporation are analogous to the convection correlations presented in the previous section. 

Similarly, both mass transfer from forced and natural convection were considered. The main 

advantage of this evaporation approach over others in the literature is the use of nondimensional 

parameters which provide a method to scale up results from pilot-scale ponds to commercial 

ponds. Additionally, by separating the forced and natural convection components, the 

appropriate accounting of both transport phenomena is ensured. Methods to model evaporation 

from forced convection effects followed the ones used in Greene et al. [26]: 

𝑆ℎ𝐿 = 𝑐 ⋅ (𝑅𝑒𝐿)0.5(𝑆𝑐ℎ𝐿)13          for 𝑅𝑒𝐿 < (3 × 105) (8) 
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𝑆ℎ𝐿 = 𝑑 ⋅ (𝑅𝑒𝐿)0.8(𝑆𝑐ℎ𝐿)13          for 𝑅𝑒𝐿 > (5 × 105)  (9) 

The empirical coefficients 𝑐 and 𝑑 were calibrated to 0.65 and 0.045, respectively. The natural 

convection correlations for mass transfer have the form of Eqs. (5,6), previously defined by 

Lloyd et al [41]:      

𝑆ℎ𝐿 = 𝑥 ⋅ 𝑅𝑎𝐿14   𝑓𝑜𝑟 (2.2 × 104  ≤ 𝑅𝑎𝐿 ≤ 8 × 106)       (10) 𝑆ℎ𝐿 = 𝑦 ⋅ 𝑅𝑎𝐿13   𝑓𝑜𝑟 (𝑅𝑎𝐿 > 8 × 106)        (11) 

where 𝑆ℎ𝐿 is the dimensionless Sherwood number[41]. The approach for mixed mass transfer 

follows that of Eq. (7), substituting the Nusselt number for its mass transfer counterpart, the 

Sherwood number. Once the Sherwood number is defined, the evaporation rate 𝑚𝑒 [kg m-2 s-1] 

can be determined:  

𝑚𝑒 = 𝑆ℎ𝐿⋅𝐷𝑤𝑎𝐿𝑐 ⋅ [𝑝𝑤𝑇𝑝 − 𝑅𝐻⋅ 𝑝𝑎𝑇𝑎𝑚𝑏 ] ⋅ 𝑀𝑤𝑅     (12) 

where 𝐷𝑤,𝑎 = 2.4 × 105 [m2 s-1] denotes the mass diffusion coefficient of water vapor in the air, 𝐿𝑐 is the characteristic length [m], 𝑅𝐻 is the relative humidity of the ambient air, 𝑅 = 8.314 [Pa 

m3 mol-1 K-1] is the ideal gas constant, and 𝑝𝑎 and 𝑝𝑤 [Pa] are saturated vapor pressures at 𝑇𝑎𝑚𝑏 

and 𝑇𝑝, respectively [18], [26], [42]. The heat transfer is then calculated using the following 

equation:  

𝑄𝑒𝑣𝑎𝑝 = −𝑚𝑒 ∙ 𝐿𝑤 ∙ 𝐴𝑠   (13) 

where 𝐿𝑤 = 2.45 × 106 [J kg -1] is the latent heat of the water.  

2.3 Biological model 

 To determine microalgal biomass yields, this study adopted the biological modeling 

methodology developed by Greene et al. [26]. This model calculates algae growth based on the 
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primary physical processes affecting growth: culture temperature, respiration losses, and light 

availability impacted by culture concentration and incoming solar radiation [26]. The model 

correlates a carbon fixation rate to multiple efficiency factors which serve to account for 

conditions deviating from optimal. The rate of algal concentration is calculated using the 

following equation:  

𝑑𝐶𝑥𝑑𝑡 = 𝐶1 ∙ 0.458 ∙ 𝐺𝐻𝐼⋅𝜑𝐿(𝑡) ∙ 𝜑𝑇(𝑡)⋅∅𝑝ℎ𝑜𝑡𝑜𝑛 ∙𝐴𝑉 + 𝐷(𝑡)𝑉       (14) 

where 𝐶1 ⋅ 0.458 ⋅ 𝐺𝐻𝐼 represents the conversion from GHI to photosynthetically active 

radiation (PAR) in the 400-700 nm range, ∅𝑝ℎ𝑜𝑡𝑜𝑛 is the photon efficiency in terms of grams of 

biomass per mol photon, 𝐴 is the surface area of the pond, 𝑉 is the volume of the pond, 𝐷(𝑡) is 

the decay rate quantifying biomass losses from dark respiration,  𝜑𝐿 and 𝜑𝑇 are the light and 

temperature efficiencies, respectively [26].  

The calculation of algal growth begins by defining a carbon to photon conversion factor, 

which has a range of 1.2 to 1.5 [g biomass per mol photon] according to Greene et al. [26].  The 

model proceeds to quantify temperature effects on carbon fixation through a cardinal temperature 

model. This temperature model requires the input of four parameters describing the temperature 

response of the organism: minimum and maximum temperatures tolerated by the microalgae 

strain, the optimal temperature for growth, and the pond temperature (provided by the thermal 

model). The light efficiency component considers photoinhibition and concentration effects of 

the algae culture to provide a light efficiency ranging from zero to unity. Concentration effects 

are quantified using a depth-integrated Beer-Lambert’s law and the assumption that the culture is 

well-mixed [26]. To calculate light response effects, two specific strain parameters must be 

defined: the optical density coefficient (defined as the slope of the curve comparing biomass 

concentration [g m-3] and the optical density [OD750]) and the saturation light intensity. The final 
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foundational input of the growth model is the percent of biomass lost during dark respiration, 

used along the temperature efficiency factor to compute the decay rate [26]. After a complete 

species characterization is achieved, the model proceeds to calculate the time-resolved culture 

concentration. Further details are presented in Greene et al. [26].  

2.4 Thermal and biological model validation  

 Experimental data was leveraged to validate both the thermal and biological models. The 

thermal model was validated with data from the literature. Temperature and pond depth 

observations measured by Béchet et al. [25] in their comparison study were used to assess the 

model’s accuracy. To the authors’ knowledge, the data set used by Béchet et al. [25] is the most 

detailed collection of parallel temperature and pond depth measurements from a pilot-scale ORP 

system in the literature. Similarly, the growth model was validated with algal concentration data 

from the trials performed at the Arizona Center Algae Technology and Innovation (AzCATI). 

The growth model validation data includes on-site measurements of PAR, pond temperature, and 

algal concentration for an elevated experimental ORP. Both tools were verified and validated 

separately to provide an unbiased assessment of model quality.  

 Thermal validation data included all foundational inputs required to compute 

simultaneous pond temperatures and evaporation rates at an hourly resolution. As detailed by  

Béchet et al. [25], the pond used for this analysis was refilled regularly during the first half of the 

study and left to evaporate during the latter trials. The data set was reduced by eliminating 

periods where either evaporation or temperature measurements seem to vary (likely due to 

instrumentation issues, pond harvesting, or rainfall events) resulting in a total validation period 

of 314 days. Model inputs with the highest uncertainty were used to calibrate the model. Among 

these parameters are the soil properties, absorptivity and emissivity of the culture, and the 
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empirical coefficients of the convection and evaporation correlations. These parameters were 

bounded by retrieving minimum and maximum values from the literature. The final calibrated 

values were chosen by simultaneously minimizing the evaporation and temperature error through 

the entire validation period using a multiobjective optimization algorithm in MATLAB®. 

Rainfall events were considered of low impact and were not included in the thermal balance 

calculations.  

 The temperature error was calculated by comparing the hourly model to the hourly 

measured pond temperatures. The evaporation error is reported using two different metrics. The 

error is first reported as the relative mean percentage error obtained from comparing the hourly 

model to the measured pond depth. In addition, as a means to compare to previous studies, the 

evaporation error was also calculated by comparing the total modeled evaporated depth during 

the validation period to the total measured evaporated depth, following the methods in Béchet et 

al. [25].  

Similarly, the growth model was validated with experimental data collected in the 

summer of 2019 from growth experiments of Acutodesmus obliquus (UTEX 393) grown at 

AzCATI in Mesa, AZ (33.41° N, 111.83° W).  Three elevated experimental ponds, each with a 

surface area of 4.2 m2 and a volume of 820 L, were operated semi-continuously at a depth of 20 

cm. The culture was grown in BG-11 media with ammonium bicarbonate as the N-source and a 

16:1 N:P ratio with 5 ppt salinity. Algal concentration was measured in triplicates during the 

morning and afternoon. Simultaneous measurements of pond temperature and PAR were 

collected on-site. The selected data were collected from June 2019 to August 2019 resulting in a 

total of 24 harvests, from which three were discarded based on a statistical analysis of the grams 

to PAR ratio for that period. UTEX 393 is characterized as being a summer tolerant strain with 
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high saturation light intensity and temperature tolerances. Experimental pond temperature and 

PAR were input into the growth model along with six model inputs characterizing the strain, 

listed in the Appendix. The model was calibrated with half of the data set and validated with the 

remaining harvests. The error was calculated by comparing the measured algal concentration to 

the modeled output.  

2.4 Simulation framework 

 The simulation approach used in this study integrates the validated thermal and growth 

model with historical meteorological data and a harvesting scheme to predict pond temperatures, 

evaporation rates, and biomass yields. Thermal simulations were done for two different algae 

farm sizes with weather data from two different sources, resulting in a total of four scenarios. 

Results for each of the selected locations were generated in MATLAB® and spatially 

interpolated in R using kriging interpolation to cover the contiguous United States (CONUS) and 

Hawaii. Simulation outputs include heat maps illustrating regional variances in water demand 

and water footprints for microalgal biomass, proteins, and biofuels. Also, the work includes a 

novel analysis of geographical and seasonal temperature sensitivity which might inform strain 

optimization studies and provide insights on productivity maximization methods for open algae 

cultivation systems.   

2.4.1 Meteorological data  

 Historical weather data comprising of hourly measurements of solar radiation, wind 

speed, relative humidity, and air temperature were retrieved from the National Solar Radiation 

Data Base (NSRDB) [43] and the typical meteorological year (TMY3) files from the National 

Renewable Energy Laboratory (NREL) [35]. The NSRDB files contain data from 1998 to 2018 

from 198 locations across the U.S. Each of the locations was simulated by resetting the model at 
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the start of each year. The TMY3 files are comprised of hourly data from 903 locations in the 

US. Results generated from the two data sets were compared to assess if the analysis could be 

simplified by using TMY3 data without a significant loss in accuracy.   

2.4.2 Facility design and operation 

Results for two different farm sizes were generated to gain a better understanding of the 

implications of facility size on water demands. The baseline scenario models an algae farm with 

an area of 400 hectares, based on techno-economic assessment (TEA) and resource assessment 

(RA) models in literature [14], [15], [44]–[47]. The second scenario considers a 4000-ha farm 

sized according to projected biomass requirements by downstream conversion processes [47]–

[49]. To simulate real-time facility operations, the growth model was coupled with a dynamic 

harvesting scheme. Ponds were assumed to be operated semi-continuously with an initial 

concentration of 0.1 g L-1. Harvesting was assumed to occur at the first of either achieving 0.45 g 

L-1 or 3 days from system inoculation.  

2.4.3 Biomass conversion  

  A high-level conversion process from algal biomass to proteins and fuels was modeled to 

establish a global and objective comparison to other energy crops. The protein content of the 

modeled strain was assumed to be 41.7 % [50]. Conversion to fuels was done via hydrothermal 

liquefaction (HTL), assuming a biocrude yield of 50 wt. % of AFDW (0.5 kg biocrude per kg 

AFDW) and a biocrude to diesel and naphtha conversion of 63 % and 11 % by weight, 

respectively [17], [49], [51]. Energy content from algal biodiesel was calculated assuming a high 

heating value of 35 MJ kg-1 [52] and an oil density of 0.92 kg L-1 [14]. The computed water 

footprints of algae systems were then compared to those of primary and secondary bioenergy 
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crops such as sugar beet, alfalfa, sugar cane, maize, barley, sorghum, and soybean [20], [53]–

[56]. Blue WF for conventional feedstocks is provided in the Supplementary Information.  

2.4.4 Temperature tolerance 

 Pond temperatures have been shown to have an important impact on the growth rates, 

reliability, composition, and overall performance of algae species grown in ORPs [33], [57]–

[60]. Therefore, a comprehensive understanding of the temperature limits of commercial ORPs is 

not only critical for the appropriate siting of algae cultivation facilities but also to support strain 

selection decisions. This study provides temperature profiles of commercial ORPs computed 

with historical weather data and a validated thermal model designed to predict temperatures in 

commercial ORPs. The temperature profiles for the 400-ha baseline scenario were processed to 

determine the maximum temperatures for three different time intervals: a one-hour, two-hour, 

and three-hour culture exposure. Moreover, the simulated pond temperatures for five distinct 

locations were examined to identify seasonal and geographical trends based on descriptive 

statistics.  Results from the temperature tolerance assessment include dynamic maps illustrating 

maximum temperatures reached in commercial algae facilities and a geographical and temporal 

comparison of pond temperatures of commercial-scale facilities. Finally, the interactive effects 

of temperature and exposure time to avoid temperature-related culture crashes were investigated.   
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3. RESULTS AND DISCUSSION 

 

 

 

 The results of this study are presented in three different sections, 1) results obtained from 

the validation of the thermal model including error in the predicted temperature and evaporation 

rates, 2) results and errors associated with the validation of the biological model, and 3) results 

obtained from the simulation process including national productivity yields, water footprints, and 

temperature tolerance analysis.  

3.1 Thermal model validation 

 The thermal model validation process quantifies the model’s ability to simultaneously 

predict pond temperatures and evaporation rates accurately. The error was quantified by 

comparing a total of 7,525 data points. Plot regressions illustrating model accuracy are presented 

in Figure 1. The temperature accuracy shows an average error of  -0.96 ± 2.72 °C, consistent 

with values reported in the literature for previous validation efforts [26], [42], [61]. The highest 

average temperature errors were seen in the winter and spring season, where lower temperatures 

were predicted.  The lower modeled temperatures during these months are an effect of the 

overprediction of evaporative cooling. Furthermore, wind speed measurements were the highest 

during the spring and winter months, as seen in Fig. S1; this likely indicates that temperature 

errors are directly correlated to evaporative effects.   

The average annual evaporation error was calculated to be 1.46 ± 5.92 %. In terms of the 

total evaporated depth, the model demonstrated an overall under-prediction of 20.2 %, which is 

within the range reported by Béchet et al. [25]. The winter and summer seasons presented the 

highest evaporation errors of 5.69 ± 3.71 % and -3.24 ± 4.7 %, respectively. Wind speed data 
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was found to be the primary driver of evaporation error. The error seen during the winter months 

is linked to high wind speeds and lower relative humidity conditions during these months. 

Similarly, the summer error was also found to be highly correlated to wind speed measurements. 

Pond temperatures increased over periods of low wind speeds, causing the model to 

underestimate evaporative cooling effects (see Fig. A4). These thermal validation results 

highlight the importance of accurate wind speed measurements to reduce the uncertainty in 

predictions of evaporation rates. The data from the seasonal analysis of the validation effort and 

time-series for both temperatures and pond depths are shown in the Appendix.   

 

 

Figure 1. Modeled versus experimental  pond (A) temperature and (B) depth. 

Average annual temperature error: -0.96 ± 2.72 °C. Average annual evaporation 

error: 1.46 ± 5.92 %. Although a high R-value was obtained from the evaporation 

model, a 20.2 % error was calculated when comparing the total measured and 

modeled evaporated depths during the validation period.  
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3.2 Biological model validation 

 The growth model validation in this study quantifies the predictive error and evaluates 

the model’s performance in simulating growth rates of UTEX 393. Experimental and modeled 

biomass concentration (AFDW) for the validation data set is illustrated in Fig. 2. The model 

provided accurate predictions of concentration over the simulated period with an average relative 

error of -4.59 ± 8.13 %. The error from the biological model is within the range of previously 

reported values for this specific strain [62].  When comparing the areal productivity for the 

summer 2019 growth campaign, the model calculated areal productivity of 27.7 g per m2-day, 

which translates to an underestimating error of 1.82 %. 

In addition, this predictive error was found to be highly sensitive to the strain’s saturation 

light intensity. UTEX 393 is considered an all-season strain with peak performance occurring in 

the summer months. The biological model was not coupled with the thermal model for validation 

given that the temperature profiles of the systems used for thermal and biological validation are 

different due to system differences (the experimental system is an elevated small-scale pond). 

Growth data was obtained from experimental ponds where the paddlewheel enhances 

evaporative cooling. Determining temperature with the current thermal model would have 

introduced unnecessary error since the model was not built to capture paddlewheel effects.  



20 

  

Figure 2. Biological model validation for the summer 2019 runs of Acutodesmus 

obliquus UTEX 393. A total of 12 harvests were simulated, the initial biomass 

concentration for each of the semi-continuous runs was set to the respective 

concentration in each run. Error bars on the measured data represent the standard 

deviation of the algal concentration of 3 different ponds. The biological model 

showed an average error of -4.59 ± 8.13 %. 

 

3.3 Model extrapolation  

 The following section presents the results generated from the simulations conducted with 

the coupled thermal-biological model. The results from the model extrapolation effort are 

divided into four sections: (i) water demand (ii) microalgae productivity, (iii) water footprints, 

and (iv) results from the temperature tolerance analysis.  

3.3.1 National water demand  

 The water demand for the different combinations of weather data sets and facility scales 

were determined and leveraged to identify regions with the highest water demands for algae 

cultivation. Results for the baseline scenario of a 400-ha facility generated with weather data 

from the NSRDB are illustrated in the form of a dynamic map covering the CONUS and Hawaii. 
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As depicted in Fig. 3, marked regional differences exist when it comes to evaporation losses. As 

expected, water demands are the highest in the desert southwest region, where high light 

intensity and dry conditions predominate. Annual water demands reached a maximum of 16.8 

ML-ha-1 in this area. The Gulf Coast region and Hawaii, where more humid conditions are 

present, land on the middle to lower range of the spectrum. The lowest evaporation losses are 

seen at the northern latitudes where lower temperatures and light intensity predominate. A 

national annual mean of 7.38 ML-ha-1 was determined. 

 

Figure 3. Mean annual water demand (L ha -1 yr -1) for a 400-ha cultivation facility 

calculated with weather data from the NSRDB. Results represent the annual mean 

of 21 years (1998-2018). A national average of 7.4 ± 2.9 ML ha -1yr-1 was  

calculated.     

 

Compared to the literature, the water losses calculated in this study follow the same 

geographical trends provided by Wigmosta et al. [14] but with key differences in the upper and 

lower limits. Wigmosta et al. [14] estimated water demands in the Gulf Coast region averaging 
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1.53 ML-ha-1, significantly lower than the average of 9.5 ML-ha-1 calculated in this study. When 

comparing the desert southwest region, the annual average water demand computed in this study 

is 12.3 ML-ha-1 compared to 10.2 ML-ha-1 estimated by Wigmosta et al. [14], representing a 

20% increase. The variability in results is likely due to the contrasting approaches used in the 

model validation, particularly within the evaporation models and data used for validation.  

Additionally, historical pan evaporation data curated by Dewes et al. [63] was used to 

approximate the differences in evaporation rates from commercial microalgae ponds and pan 

evaporation measurements. Water demand results were found to be significantly lower than pan 

evaporation measurements with an average absolute difference of 59 %.  For corrected pan 

evaporation or lake evaporation, this average reduces to 45 %. These variations decreased at 

locations with lower wind speeds, implying that pan evaporation methods fail to capture wind 

effects present at commercial-scale algae ponds. The data demonstrates that the differences in 

depth and surface area of these systems make pan evaporation data inadequate to model 

evaporation from commercial algae ponds.  

The additional scenario modeled with weather data from the NSRDB provided further 

evidence of the interconnection between wind speed, surface area, and the magnitude of water 

demands.  The results indicate lower evaporation rates as the system size increases. When 

comparing water demands from the 4000-ha facility scenario to the previously simulated 400-ha 

sized facility, the calculated annual water demand decreased by an average of 4 %.  This 

reduction in evaporation is evidently an effect of the size of the system. As the area of the facility 

increases, the effects of wind speed are less relevant since evaporation is primarily driven either 

by a combination of forced and natural convection (mixed convection) or purely by buoyancy 

effects. Changes in water demand were the lowest in areas with low wind speeds as shown in 
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Fig. A11. These results show that water loss at the 400-ha scale is representative of larger-scale 

systems.  

Evaporation results were also compared to simulations with TMY3 data. Results 

generated with the TMY3 data set follow the same regional trends, but with a wider range for 

both facility sizes. The difference in water demands between the 400-ha and 4000-ha for the 

TMY scenario is more pronounced than those computed with weather files from the NSRDB. 

Results generated with TMY3 data show a 14 % reduction in the water demands of a 4000-ha 

compared to a 400-ha facility, which is more than three times higher than what was found with 

weather data from the NSRDB (4%). This difference is higher than the results calculated with the 

NSRDB files due to the low accuracy of wind speed measurements in TMY3 files. TMY3 data 

was originally developed to mimic typical conditions for solar radiation measurements and 

assigns lower weights to wind speeds, which might contribute to propagating error in the 

evaporation calculations. This is confirmed by observing the results from the weather data 

comparison. The average absolute difference in water demands between the results generated 

with TMY3 and NSRDB files for a 400-ha facility was calculated to be 16 % (Fig. A15).  For a 

system size of 4000-ha, the average difference in water demands decreases to 8 % (Fig. A15) 

attributed to the small influence of wind speeds at this scale. These results indicate that accurate 

evaporation modeling requires robust wind speed data.  

3.3.2 Geographically resolved biomass productivity  

  Areal productivity yields from semi-continuous cultures of UTEX 393 were computed to 

provide a national landscape of the current productivity potential. The computed annual biomass 

productivity values of the simulated locations were averaged and surface interpolated to define 

the optimal areas for algae cultivation based on the current state of technology. The outputs are 
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illustrated in the dynamic map shown in Fig. 4. The maximum biomass yields are located in 

Hawaii and Key West, FL reaching annual yields above 23 g m-2 day -1.  In the case of the desert 

south-west region, outputs show that productivities above 15.5 g m-2 day -1 can be attained with 

moderate seasonal variability. Seasonal variability at middle latitudes is more pronounced. For 

example, facilities in northern Nevada presented summer biomass yields above 14.2 g m-2 day -1, 

but biomass productivity during the fall and winter months was substantially lower due to 

temperature effects resulting in an annual average productivity of 7.5 g m-2 day -1.  Results 

suggest that reducing seasonal variabilities in middle and northern latitudes would require 

temperature regulation strategies or strains with a wider temperature tolerance.  

  

Figure 4. Mean annual biomass productivity (g m -2 day  -1) yields of Acutodesmus 

obliquus (UTEX 393) for the conterminous US and Hawaii. Results represent the 

annual mean of 21 simulated years (1998-2018) using the computed temperature 

profiles of a 400-ha facility. A national annual mean of 12.1 g m -2 day  -1  was  

calculated.     
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The results represent an optimistic scenario of biomass production based on model 

extrapolation from elevated raceways operated at Mesa, AZ. The modeled annual average 

productivity of 18.1 g m-2 day -1, at this location, was calculated to be 14 % higher than the 

annual average of  15.9 g m-2 day -1 obtained from cultivation experiments [50]. These 

productivity differences are likely associated with the differences in temperature profiles of 

elevated raceways to commercial ORPs, more details are provided in the following sections. The 

predicted open pond productivities provide a general outlook of the current biomass production 

potential at a national scale and illustrate the gap between the current state of technology and the 

target of 25 g m-2 day -1, typically modeled in sustainability assessments [16], [64], [65]. 

3.3.3 Water footprint assessment 

 After computing water demands and biomass yields, the spatial variation of the WF of 

conventional algae systems was assessed. The WF corresponding to biomass, algal proteins, and 

algal fuels are shown in Fig. 6.  The locations with the largest local WF are those with either low 

productivity and high water demands or areas with high water demands and lower biomass 

yields. As depicted in Fig. 6, these conditions are prevalent in the Western US, specifically in the 

middle latitudes where both dry conditions and low productivities intersect. The national average 

of the blue water footprints of algal biomass, proteins, and fuels was calculated to be 157 m3 

water tonne-1 biomass (AFDW), 376 m3 water tonne-1 algal proteins, and 11.2 m3 GJ-1 biofuel for 

these three different pathways.   

 The calculated WF of algal systems was compared to those of traditional biomass 

feedstocks. When comparing the WF per tonne of biomass, microalgae cultivation was found to 

be less water-intensive than most conventional crops except for drought-tolerant crops such as 

alfalfa and sugar beet. When compared to maize and soybeans, the results suggest that the 
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cultivation of algal biomass requires 58 % less water than maize and 89 % less than soybean 

cultivation. In terms of proteins, the WF is constrained by the protein content of the feedstock. 

Microalgae contain the highest protein content among the reviewed crops followed by soybean 

and alfalfa, which carry a WF of 3,741 and 689 per tonne of proteins, respectively. Results 

emphasize the potential of algal proteins over conventional systems; compared to algal proteins, 

alfalfa consumes 83 % more water while soybean proteins require approximately ten times more 

water.  

 

Figure 5. Mean annual blue water footprints of microalgal systems: whole w et 

biomass, algal proteins, and algal biofuels. Results represent the annual mean of 21 

simulated years (1998-2018) using the computed water demands and biomass yields 

for a 400-ha facility.  
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 In contrast, the WF of algal biofuels is significantly larger than petroleum-based diesel. 

Lampert et al. [66] reported a well-to-wheel water consumption of 1.54 m3 GJ-1 for petroleum-

based diesel.  Even when comparing the most favorable WF of algal biodiesel, water 

consumption is five times higher than diesel. However, compared to other biodiesel feedstocks, 

algal biodiesel presents one of the most favorable water footprints. Gerbens-Leenes et al. [20] 

calculated a WF of 216 and 298 m3 GJ-1 for soybean and rapeseed biodiesel, respectively. In the 

same way, the blue WF of ethanol from corn biomass was reported to be 37 m3 GJ-1 [20]. When 

compared to algal biodiesel, even the most unfavorable scenario is more water-efficient than 

corn ethanol by 44%. The evident gap between the WF of biofuels and petroleum-based fuels is 

associated with the substantial irrigation requirements for biomass production. Microalgal 

biomass, different from terrestrial crops, is positioned between these systems regarding water 

consumption.  

 This assessment highlights the advantages of whole algal biomass, proteins, and fuels 

over first and second-generation energy crops from a water footprint perspective. It is also 

important to note that this comparison is based on national averages and that specific regional 

variations are not considered due to the lack of data for conventional systems. For example, 

maize outputs in the Midwest are much higher than the national average which might reduce the 

WF of maize production in this region. Similarly, the growth rate for algal systems in the Gulf 

Coast region is well above the national average resulting in a more favorable local WF in that 

specific region. Only the blue water footprints of conventional systems were compared to 

provide an objective evaluation among feedstocks, contributions from the green and gray WF 

components were neglected. In reality, conventional crops often have higher green and gray WF 
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components, while microalgae cultivation does not produce a green WF and the gray component 

is negligible if proper media recycling strategies are implemented [19].  

However, the comparison to petroleum-based diesel demonstrates that algal biofuels are 

significantly more water-intensive than conventional diesel. It is important to note that the results 

discussed so far represent a local water withdrawal and do not include the WF of the full supply 

chain (well-to-wheel) of algal biofuel production. If the system boundary is expanded and the 

indirect water consumption from upstream processes is considered, the gap between 

conventional fuels and algal biofuels will further increase. The indirect WF of nutrients and 

electricity will vary regionally based on transportation requirements and electric generation 

technology and may represent a substantial contribution to the life cycle of water. However, the 

water consumption associated with the materials used in the hydrothermal liquefaction 

conversion process will increase the WF by 0.503 m3 per GJ [67], demonstrating that water is 

primarily consumed through evaporation.  

The WF of algal biofuels could be minimized through improvements in algal productivity 

or by considering seawater or brackish cultivation at locations with high water requirements. 

Additionally, co-production of high-value products or the incorporation of less water-intensive 

cultivation platforms such as closed photobioreactors could improve water usage metrics, 

although closed photobioreactors and covered ORPs may bring about more significant issues 

associated with exceeding algal temperature limits.   

3.3.4 Temperature tolerance evaluation 

 The performance of commercial outdoor algae cultivation is heavily influenced by the 

thermal conditions of the culture. Since pond temperatures are also dependent on the magnitude 

of evaporative effects, co-modeling of pond temperatures and evaporation at a high temporal and 
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spatial resolution are needed to gain an accurate and in-depth understanding of temperature 

profiles of commercial-scale facilities. The computed pond temperatures for the entire simulation 

period were processed to analyze seasonal and geographical trends.  

 The maximum temperatures that a specific strain will tolerate to avoid culture failure for 

one hour are illustrated in Fig. 6. As it is readily visible in Fig. 6, the highest summer 

temperatures are observed in the southern latitudes, where temperatures exceed 40°C. The 

analysis was also extended to a maximum temperature exposure or tolerance of two and three 

hours. The average variation between the one-hour and two-hour temperature tolerance was 

0.4°C. When comparing the one-hour and three-hour scenarios, a larger difference of 1.4°C was 

calculated. These results can support informed decisions on strain selection and facility siting. 

For example, a strain grown in Phoenix, AZ must have a one-hour temperature tolerance of 44.6 

°C and tolerate temperatures above 43°C for three consecutive hours of culture exposure while a 

strain grown in Lexington, KY must tolerate a one-hour exposure of 38.9 °C and a three-hour 

temperature tolerance of 37.4 °C. All the calculated temperature tolerances are provided in the 

Appendix. 
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Figure 6. Mean maximum pond temperatures for the CONUS and Hawaii for a 400 -

ha facility. The illustrated temperatures are the one-hour temperature that must be 

tolerated to avoid culture crashing. Results represent the annual mean of 21 

simulated years (1998-2018).  

 

Although a marked distinction exists between the southwestern and Gulf Coast regions in 

terms of evaporation rates, this is not the case for their temperature profiles and a similar range 

of maximum temperatures was found in both regions. This difference is explained by examining 

the parameters with the highest impact on the heat fluxes which influence pond temperatures. 

Evaporation rates were highly sensitive to wind speeds and relative humidity conditions, 

similarly, temperature profiles are also influenced by ambient temperatures and solar radiation. 

For instance, ambient temperature is higher in the desert southwest, but the low relative humidity 

enhances evaporative cooling consequently decreasing pond temperatures. On the other hand, 

pond temperatures in the Gulf Coast region are closer to ambient conditions due to the high 

humid conditions in the region.  
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 When expanding the facility size, a relatively low increase in temperatures was observed 

for results generated with both weather data sets. The average temperature difference between 

the 400-ha and 4000-ha using weather data from the NSRDB increased by 1 % (Fig. A25).  

Similarly, the difference for the TMY3 case was calculated to increase by 3 % (Fig. A28). These 

differences are correlated to the drop in evaporative cooling related to the change in surface area 

of the facility. Furthermore, results reflect that a relatively low error is introduced when 

computing temperature profiles with TMY3 data as opposed to the error observed in the 

prediction of water demands. The low variance is linked to the fact that TMY3 files do provide 

proper solar radiation and ambient temperature measurements, in contrast to wind speed data. 

The average temperature difference between the results generated with TMY3 and NSRDB 

weather data for a 400-ha and 4000-ha facility was calculated to be 4 % and 3 %, respectively 

(Fig. A31).  

Additionally, a more in-depth seasonal and geographical assessment of pond 

temperatures was performed. Descriptive statistics of pond temperature data corresponding to 

five case studies spanning the 21-year simulated period are shown in Fig. 7. The seasonal 

variability results demonstrate the importance of high temporal resolution in temperature 

modeling. Results allow the identification of subtle differences among locations and seasons. 

The first thing to note is the similarities in temperature ranges but differences in the spread of 

temperatures when comparing Baton Rouge, Phoenix, and Tampa. For example, the median 

temperature during spring and summer at these three locations is approximately the same, but 

temperatures in Baton Rouge and Tampa are much closer to the median. Selecting strains with 

optimal temperatures around the median will have a more advantageous effect in Baton Rouge 

and Tampa than in Phoenix, where temperatures are more dispersed around the median.  This is 
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demonstrated by the high productivity results from Lihue, where the range and dispersion are 

smaller than all the other locations for the four seasons and the seasonal variability is minimal. 

 

Figure 7. Mean seasonal temperature profiles for the 21-year simulation period for five distinct 

locations across the US. The boxes represent the interquartile range, outliers are not included. 

 

Furthermore, when observing locations like Colorado Springs, temperatures during the 

spring, fall, and winter render open cultivation unproductive. Successful biomass cultivation at 

regions with this temperature profile will require the incorporation of temperature-regulated 

systems. Another alternative is varying the culture’s depth as a temperature regulation strategy. 

This strategy is supported by the fact that the temperature in thinner cultures is significantly 

higher.  
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Results highlight the importance of temperature on the outdoor cultivation of biomass in 

ORPs. More importantly, the data indicates that the temperatures measured in elevated raceways 

are not representative of commercial-scale ORPs. The temperatures calculated in this study are 

significantly higher than those seen in experimental trials of elevated raceways [57]. Given the 

importance of temperature on algal growth, it is important to establish accurate temperature 

profiles of commercial ponds and understand the effects on the economics and operations of 

algal facilities. Future research will focus on the integration of these temperature profiles with 

strain-specific temperature crashing models to understand geographical differences in the 

operational days of algae facilities.  
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4. CONCLUSIONS 

 

 

 

 This study provides a robust assessment of the water demands of commercial-scale algae 

cultivation for conventional algae systems using a validated model with an average temperature 

predictive error of -0.96 ± 2.72 °C and evaporation accuracy of 1.46 ± 5.92 %. A validated 

biological model with an error of -4.59 ± 8.13 % was used to represent the current state of 

technology. The model was leveraged with historical weather data and WF methodologies to 

provide a temporal and geographical assessment of the water demands, temperature, and WF of 

algal biomass, proteins, and biodiesel. Results highlight the interactions between geographic 

inputs and facility sizes on temperature profiles and water demands of algae farms. Accurate 

prediction of evaporation rates requires high-quality weather data, specifically wind speed 

measurements, while the temperature profiles are more sensitive to temperature and solar 

radiation parameters. Appropriate selection of the evaporation model is of equal importance as 

the evaporation model must capture the effects of pond size to reduce the uncertainty in these 

calculations. This study also incorporates a novel outlook on the temperature tolerances needed 

for cultivation in commercial-scale open systems. Using current biomass production and 

conversion technologies, the national average of the blue WF of algal biomass, proteins, and 

fuels was calculated to be 157 m3 water tonne-1 AFDW biomass, 376 m3 water tonne-1 algal 

proteins, and 11.2 m3 GJ-1 biofuel, respectively.  The WF of algal systems was found to be more 

favorable when compared to conventional biomass feedstocks. However, improvements are still 

needed to achieve a smaller WF than petroleum-based fuels. Moving forward, cultivation in 

saline media may be an attractive solution to reduce these WF, but a better understanding of the 

implications on temperature and growth, as well as economical aspects, is required.  
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4.1 Future Work 

 The modeling results presented in this study provide a robust foundation for future 

commercial-scale modeling and optimization of algal facilities. Results can be further integrated 

with sustainability modeling to determine the economic viability and environmental impacts of 

algal cultivation at a specific location. The high spatiotemporal resolution model allows for a 

complete resource assessment based on land availability at a county level and minimizing the 

distance to carbon sources.  

The coupling of the model with historical weather data and strain-specific parameters 

allows for a comprehensive analysis of the thermal dynamics and productivity potential of a 

large-scale facility. Future work could focus on performing multi-objective optimization based 

on seasonal strain rotation and depth variation. The operating pond depth has a major influence 

on the thermal behavior of the system and operating at an optimal depth, that maintains culture 

temperature near the strain-specific optimal temperature, could potentially increase biomass 

yields. 

 In addition, a better understanding of the temperature limits for freshwater cultivation is 

required. The current state of the growth model does not capture second-order effects that high 

temperatures could trigger such as higher contamination rates. Frequent pond crashing will 

increase facility downtime and might require the implementation of crop protection strategies, 

which will negatively impact the economics of algal systems. Future efforts might include 

incorporating pond reliability data and validating the model with high-temperature tolerant 

strains will improve the biological model’s ability to predict growth rates of commercial algae 

ponds. 
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Moreover, the proposed water footprint assessment could be expanded into a 

comprehensive water life-cycle study. The consumptive water from upstream processes in the 

algal supply such as electricity generation and nutrient production will increase the water 

footprint of algal systems and comparing this metric to other energy crops is essential for future 

research and development. The high resolution of the model allows for a thorough examination 

of the variation of water consumption by accounting for the consumptive water of transportation 

of nutrients or regional electric grids. Expanding the system boundary to include different 

conversion pathways and assessed them based on water consumption will be a future area of 

focus. 

Finally, future work could also examine the impact of saline cultivation on water 

consumption metrics. Saline cultivation will require a detailed accounting of salt concentration 

on the system and could potentially increase energy metrics through salt blowdown disposal. 

Blowdown requirements will vary regionally, being higher in areas with high evaporation rates 

and could represent significant economic penalties on the costs of biomass production. However, 

saline cultivation could be beneficial from the water footprint perspective and the trade-offs must 

be carefully assessed at a seasonal and regional level.   
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APPENDIX A 

 

 

 

A1. Thermal model 

 This section describes the additional heat fluxes that are included in the thermal model 

and the methods used to calculate heat and mass transfer from forced convection. These heat 

fluxes were adopted directly from Greene et al. [1].  

A1.1 Direct and diffuse solar radiation  

The heat transfer from incoming solar radiation from both direct and diffuse components 

is modeled using the following equation: 

𝑄𝑠𝑜𝑙𝑎𝑟 = (1 − 𝑓𝑎) ∙ 𝐺𝐻𝐼 ∙ 𝛼𝑐𝑢𝑙𝑡𝑢𝑟𝑒 ∙ 𝐴𝑠     (A1) 

where 𝑓𝑎 = 0.015 is the fraction of sunlight converted into chemical energy by the algae during 

photosynthesis, 𝐺𝐻𝐼 [W m-2] is the global horizontal irradiance, 𝛼𝑐𝑢𝑙𝑡𝑢𝑟𝑒 is the absorptivity of 

the algae culture set to 0.90, and 𝐴𝑠 [m2] is the pond surface area. 

A1.2 Pond radiation  

 Radiation emitted by the pond was calculated using the following equation:  

𝑄𝑟𝑒𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 =  −𝜎 ∙ 𝜀𝑤 ∙ 𝑇𝑝4 ∙ 𝐴𝑠     (A2) 

where 𝜀𝑤 is the emissivity of the culture with a calibrated value of 0.87, 𝑇𝑝 is the pond 

temperature, and 𝜎 is the Stefan-Boltzmann constant. 
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A1.3 Inflow  

 Heat transfer from incoming water is calculated using the following equation: 

𝑄𝑖𝑛𝑓𝑙𝑜𝑤 = 𝑐𝑝 ∙ 𝑚𝑒 ∙ (𝑇𝑎𝑚𝑏 − 𝑇𝑝)   (A3) 

where 𝑐𝑝 is the specific heat of the culture set to 4184 [J kg-1 K-1], and 𝑚𝑒 is the water loss from 

evaporation [kg m-2 s-1].  

A1.4 Heat transfer by forced convection 

 Heat transfer from forced convection is calculated using the flat plate correlations 

described in Bergman et al. [2]: 

𝑁𝑢𝐿 = 𝑎 ⋅ (𝑅𝑒𝐿)0.5(𝑃𝑟)13          for 𝑅𝑒𝐿 < (3 × 105) (Laminar Flow)    (A4) 

𝑁𝑢𝐿 = 𝑏 ⋅ (𝑅𝑒𝐿)0.8(𝑃𝑟)13          for 𝑅𝑒𝐿 > (5 × 105) (Turbulent Flow)    (A5) 

𝑄𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = ℎ𝑐𝑜𝑛𝑣 ∙ (𝑇𝑎𝑚𝑏 − 𝑇𝑝𝑜𝑛𝑑)     (A6) 

where 𝑎 and 𝑏 are empirical coefficients set to 0.75 and 0.015, respectively, ℎ𝑐𝑜𝑛𝑣 [W m-2 K-1] is 

the convection coefficient, 𝑅𝑒𝐿 is the Reynolds number, and 𝑃𝑟 is the Prandtl number.  
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A2. Thermal validation 
 

 

Figure A1. Seasonal inputs used in the thermal model validation effort.  

 

 

 

Figure A2. Time-series of the modeled and experimental pond temperature. 
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Figure A3. Time-series of the modeled and experimental pond depths. 

 

Figure A4. Relation between wind speed and pond temperature for Summer 2011. Gaps in the 

temperature series represent discarded time intervals. The red line denotes the mean wind speed 

for the period. 
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Table A2. Seasonal breakdown of the validation error. 
 

TEMPERATURE 

ERROR (°C) 

EVAPORATION  

ERROR (%) 

SEASON Average SD Average SD 

WINTER -2.19 1.47 5.69 3.71 

SPRING -2.75 2.32 3.18 6.51 

SUMMER 1.48 2.41 -3.24 4.7 

FALL 0.46 1.85 -1.15 1.97 

 

A3. Growth validation 

The model inputs used for the validation of the growth model are tabulated below. 

Table A3. Growth model inputs. 

UTEX 393 Strain Parameters 

Parameter Value Units Source 

Optimal temperature 32.25 °C [3] 

Maximum temperature 40.9 °C Empirical adjustment 

Minimum temperature 3 °C Empirical adjustment 

Dark loss 3 %  Empirical adjustment 

Saturation Light Intensity 480 𝜇 𝑚𝑜𝑙 𝑚−2 𝑠−1 Calibrated based on other 

summer strains 

Optical Density Coefficient 0.38 g/L*OD750 AzCATI 

 

A4. WF of first- and second-generation energy crops 
 

   

 

Crop 
WF  

 (m3 per ton of crop) 

Source 

 Sugar beet 73 [4] 

Alfalfa 124 [5] 

Sugar cane 166 [4] 

Maize 374 [4] 

Barley  816 [4] 

Sorghum 998 [4]  

Soybean 1384 [4] 

Crop 
Protein Content 

(g protein/g crop) 

Source 

Sugar beet 0.05 [6] 

Alfalfa 0.18 [7] 

Sugar cane 0.07 [6] 

Maize 0.08 [6] 

Barley  0.11 [8] 

Sorghum 0.09 [6] 

Soybean 0.37 [6] 

Table A5. Protein content primary 

and secondary energy crops 

Table A4. Blue WF of primary and 

secondary energy crops 
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A5. Dynamic maps of water demand 

 

Figure A5. Mean annual water demand (L ha-1 yr-1) for a 400-ha for the simulated 21 years.  

Fuel WF (m3 per GJ) Source 

Soybean Biodiesel 216 [5] 

Rapeseed Biodiesel 298 [5] 

Diesel 1.54 [9] 

Corn ethanol 37 [5] 

Table A6. WF of fuels. 
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Figure A6. Mean annual water demand (L ha-1 yr-1) for a 4000-ha for the simulated 21 years.  

 

 

Figure A7. Standard deviation of annual water demand (L ha-1) for a 400-ha algae farm for the 

simulated 21 years.  
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Figure A8. Standard deviation of annual water demand (L ha-1) for a 400-ha algae farm for the 

simulated 21 years 
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Figure A9. Maximum annual water demands (L ha-1 yr-1) for the 400-ha and 4000-ha facilities 

for the 21 simulated years.  
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Figure A10. Maximum annual water demands (L ha-1 yr-1) for the 400-ha and 4000-ha facilities. 

Results represent the minimum annual averages for 21 years. 

 

Figure A11. Comparison of the water demands of a 4000-ha to a 400-ha facility generated with 

weather data from the NSRDB. Results represent the absolute relative difference between annual 

averages.  
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Figure A12. Annual water demands 3estimated with typical meteorological year (TMY3) data for 

a 400-ha algae farm.   

 

Figure A13. Annual water demands estimated with typical meteorological year (TMY3) data for 

a 4000-ha algae farm.   
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Figure A14. Comparison of the water demands of a 4000-ha to a 400-ha facility using TMY 

weather files.  

 

Figure A15. Comparison of the water demands generated with TMY3 weather data to results 

generated with weather data from the NSRDB (annual average 1998-2018). Water demands for 

a 400-ha facility are illustrated.  
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Figure A16. Comparison of the water demands generated with TMY3 weather data to results 

generated with weather data from the NSRDB (annual average 1998-2018). Water demands for 

a 4000-ha facility are illustrated.  
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Figure A17. Absolute relative error between the water demands generated with TMY3 weather 

data to results generated with weather data from the NSRDB (annual average 1998-2018). 

Comparison for both facility sizes is shown, outliers are not shown. 

 

Figure A18. Mean annual water demand (cm day-1) for a 400-ha algae farm. Results represent 

the average of 21 years. 
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Figure A19. Mean annual water demand (cm day-1) from pan evaporation measurements 

retrieved from Dewes et al. [10]. Lake evaporation or corrected pan evaporation values were 

calculated by scaling pan measurements by 0.75.  
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Figure A20. Comparison of the evaporation rates from pan evaporation to evaporation rates for 

an algal facility of 400-ha. 

 

  

Figure A21. Mean annual maximum temperatures (°C) for a 400-ha facility, calculated using 

historical weather data.  
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Figure A22. Mean annual maximum temperatures (°C) for a 400-ha facility, calculated using 

historical weather data.  

  

Figure A23. Standard deviation of annual maximum temperatures (°C) for a 400-ha facility, 

calculated using historical weather data from the NSRDB.  
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Figure A24. Standard deviation of annual maximum temperatures (°C) for a 400-ha facility, 

calculated using historical weather data from the NSRDB.  

 

Figure A25. Maximum of annual maximum temperatures (°C) for both modeled facilities, 

calculated using historical weather data from the NSRDB.  
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Figure A26. Minimum of annual maximum temperatures (°C) for both modeled facilities, 

calculated using historical weather data from the NSRDB.  

 

Figure A27. Mean maximum temperature comparison between a 400-ha and a 4000-ha facility. 

The mean of the total simulated period (21 years) for each location was compared.  
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Figure A28. Maximum temperatures (°C) for a 400-ha, calculated with TMY data. 

 

 

Figure A29. Maximum temperatures (°C) for a 4000-ha, calculated with TMY data. 
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Figure A30. Comparison of the maximum temperatures reached on a 400-ha and 4000-ha 

facility using TMY data.  

 

 

Figure A31. Comparison of the maximum temperatures calculated with historical weather data 

and TMY data. Results show temperatures for a 400-ha facility.  
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Figure A32. Comparison of the maximum temperatures calculated with historical weather data 

and TMY data. Results show temperatures for a 4000-ha facility.  

 

Figure A33. Absolute relative error between the maximum temperatures generated with TMY3 

weather data to results generated with weather data from the NSRDB (annual average 1998-

2018). Comparison for both facility sizes is shown, outliers are not shown. 
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A6. Dynamic maps of relevant weather inputs 
 

 

Figure A34. Average annual wind speed data (m s-1) retrieved from the NSRDB. The average of 

21 years is shown (1998-2018).   

 

Figure A35. Average annual relative humidity data (%) retrieved from the NSRDB. The average 

of 21 years is shown (1998-2018).  



65 

A7. References 
 

[1] J. C. Greene, Jonah M., Quiroz, David, Compton, Sam, Lammers, Peter J., Quinn, “A 
validated thermal and biological model for predicting algal productivity in large scale 

outdoor cultivation systems,” Algal Res., 2021. 

[2]   T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Fundamentals of Heat 

and Mass Transfer, 7th ed. John Wiley & Sons, Ltd, 2011 

[3] M. E. Martínez, J. M. Jiménez, and F. El Yousfi, “Influence of phosphorus concentration 
and temperature on growth and phosphorus uptake by the microalga Scenedesmus 

obliquus,” Bioresour. Technol., vol. 67, no. 3, pp. 233–240, Mar. 1999 

[4] P. W. Gerbens-Leenes, A. Y. Hoekstra, and T. H. Van Der Meer, “The water footprint of 
bio-energy: Global Water Use for Bio-Ethanol, Bio-Diesel, Heat and Electricity,” Value 

Water Res. Rep. Ser., vol. 34, no. 34, p. 108, 2008 

[5] a K. Chapagain and  a Y. Hoekstra, “Water Footprints of Nations (Vol 2),” Water Res., 

vol. 2, no. 16, p. 240, 2004. 

[6]     F. W. T. Penning De Vries, D. M. Jansen, H. F. M. Ten Berge, and A. Bakema, 

“Simulation of ecophysiological processes of growth in several annual crops.” 

[7] B. E. Dale, “Biomass Refining: Protein and Ethanol from Alfalfa,” Ind. Eng. Chem. Prod. 

Res. Dev., vol. 22, no. 3, pp. 466–472, 1983. 

[8] R. J. Henry, “THE CARBOHYDRATES OF BARLEY GRAINS - A REVIEW,” J. Inst. 

Brew., vol. 94, no. 2, pp. 71–78, Mar. 1988. 

[9] a K. Chapagain and a Y. Hoekstra, “Water Footprints of Nations (Vol 2),” Water Res., 

vol. 2, no. 16, p. 240, 2004. 

[10] C. F. Dewes, I. Rangwala, J. J. Barsugli, M. T. Hobbins, and S. Kumar, “Drought risk 
assessment under climate change is sensitive to methodological choices for the estimation 

of evaporative demand,” PLoS One, vol. 12, no. 3, p. e0174045, Mar. 2017. 

 


