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ABSTRACT

MULTISCALE STUDY OF THE PEARLITIC MICROSTRUCTURE IN CARBON STEELS:
ATOMISTIC INVESTIGATION AND CONTINUUM MODELING OF IRON AND
IRON-CARBIDE INTERFACES

While the behavior of carbon steel has been studied extensively for decades, there are still
many questions regarding its microstructures. As such, classical atomistics is utilized to obtain
further insight into the energetics, structure, and mechanical response of the various interfaces
between iron and iron-carbides. Simulations were constructed for the commonly reported orien-
tation relationships between ferrite and cementite within pearlite: the Bagaryatskii, the Isaichev,
and the Pitsch-Petch, as well as their associated near orientations. Dislocation arrays are found
to form for all orientation relationships, with their spacing and direction a function of lattice mis-
match. Within each orientation relationship, different interfacial chemistries are found to produce
identical dislocation spacings and line directions, but differing interfacial energies. This chemistry
component to the interfacial energy is characterized and it is determined that in addition to the
lattice mismatch, there are two structural factors within the cementite terminating plane that affect
the energetics: the presence of like site iron pairs and proximity of carbon atoms to the interface.
Additionally, an alternate method for determining the interfacial energy of systems in which there
are multiple chemical potentials for a single element is developed and implemented, an approach
which is likely valid for other similar systems. Atomistics finds the Isaichev orientation relation-
ship to be the most favorable, while the “near" orientation relationships are found to be at least
as energetically favorable as their parent orientation relationships. A continuum model based on
O-lattice theory and anisotropic continuum theory is also applied to the atomistic results, yield-
ing interfacial energy approximations that match well with those from atomistics and allowing for

the characterization of the Burgers vectors, which are found to lie in high symmetry directions
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of the ferrite on the interface plane. The continuum model also allowed for the analysis of the
system with changing lattice and elastic constants. This revealed that while most of the orienta-
tions had relatively small variation in their energetics with these changes, the Isaichev orientation
was in fact very sensitive to variations in the lattice constants. The use of temperature dependent
values for lattice and elastic constants suggested that while the Isaichev is most favorable at low
tempertaures, other orientations may become more favorable at high temperatures. This combined
atomistic/continuum approach was also applied to the austenite-cementite system and used to com-
pare the proposed habit planes of both the Pitsch and Thompson-Howell orientation relationships.
This analysis found the two orientation relationships to be unique, a point of previous contention,
with the Pitsch the more favorable.

Atomistic modeling was further used to investigate the mechanical response to compressive
and tensile straining of the pearlitic orientation relationships. A range of interlamellar spacings and
ferrite to cementite ratios are considered, and values for important mechanical properties including
elastic modulus, yield stress, flow stress, and ductility are determined. Mechanical properties
are shown to be largely dependent on only the volume ratios of the cementite and ferrite, with
the interlamellar spacing having an increasing role as it reaches smaller values. Slip systems and
Schmid factors are determined for a variety of loading states in both the transverse and longitudinal
directions and were used to fit to simple elasto-plastic models. Transverse loading is observed to
follow simple 1-D composite theory, while longitudinal loading requires the consideration of the
strain compatibility of the interface. Orientation, and specifically the alignment of slip planes in the
ferrite and cementite, was also determined to play a role in the mechanical response. Alignment
of favorable slip planes in the cementite, notably the {100}y and {110}y, with high symmetry
directions in the ferrite was found to greatly enhance the ductility of the system in longitudinal

loading, as well as allow for lower flow stresses in transverse loading.
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Chapter 1

Introduction

Steel is one of the most prevalent materials found in modern society, with over 1.6 billion met-
ric tons produced in 2017. In addition to its high strength and low cost [1], the common usage of
steel can be also be attributed to the wide range of physical properties that it exhibits, allowing its
use in a range of applications. With different processing routes and alloy content the microstruc-
ture and properties of steel can be dramatically altered, affecting mechanical properties such as
strength, ductility, and toughness [2]. Carbon steels for example, which may be the most preva-
lent by volume, have wildly different properties as the carbon content is changed, with low carbon
steels (wrought iron) being easily workable while ultra-high carbon steels (cast iron) are extremely
hard and very brittle. Additionally, there are a wide range of microstructures that form within car-
bon steels, including pearlite, banite, and martensite, that alter the mechanical properties [3]. Even
as alloying content is introduced into carbon steel, these microstructures are still found, making un-
derstanding them vital to understanding steel. However despite the enormous amount of research
conducted on carbon-based steels, there are still a great number of outstanding questions regarding
the microstructure of these steels and the associated mechanical properties. This includes pearlite,
which is perhaps the most studied of these carbon steel microstructures. This work seeks to an-
swer some of these questions with regards to the pearlitic microstructure through the use of both
atomistics and continuum models, with the major thrust of this dissertation focused on answering

the following:

1. Which of the commonly reported orientation relationships within pearlite is the most ener-

getically favorable?

2. What occurs structurally at the interface between ferrite and cementite within each of these

orientation relationships?



3. What effect does the orientation relationship, and the corresponding interface structure, have

on the mechanical properties of the system?

4. How can this atomic scale information be applied to larger length scales?



Chapter 2

Background

2.1 The Iron-Carbon System

This work focuses on two forms of iron, ferrite (a-Fe) and austenite (y-Fe), which are metals,
and the interfaces they form with cementite (FesC), a ceramic. These crystals are all known to have
different structure, with ferrite being body centered cubic (BCC), austenite face centered cubic
(FCC), and cementite orthorhombic with a unit cell containing 16 atoms (12 Fe, 4 C) [4] (Fig. 2.1).
It is these phases within the iron-carbon system that in different combinations are among the main
components in carbon steels. One of the most fundamental questions to these systems is what is
the orientation relationship (OR), or relative alignment of the two crystals, between the layers of
iron and cementite. As the OR of any laminate system will affect both energetics and mechanical
response [5, 6], understanding how the OR influences the system is fundamental to understanding
the microstructure. However, there is no consensus as to what is the most favorable OR within
either the ferrite-cementite or austenite-cementite system. Therefore it is necessary to first look at

the various proposed ORs within each system before any deeper analysis is undertaken.

C)y P QD

Figure 2.1: The iron and iron-carbides important to this work. a) Ferrite (BCC) b) Austenite (FCC) c)
Cementite (Orthorhombic). Blue atoms represent iron and black represent carbon.
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Figure 2.2: The Fe-C phase diagram. Reproduced from www.phase-trans.msm.cam.ac.uk.

2.1.1 Orientation Relationships
Ferrite-Cementite

Pearlite is derived from the eutectoid transformation of austenite (Fig. 2.2), and occurs at ap-
proximately 723 °C' and 0.8% carbon content by weight. The transition from austenite to pearlite
is a fairly complex one, involving both the diffusion of carbon to nucleate cementite, as well as
the transformation of austenite into ferrite. The resultant ferrite and cementite regions arrange
themselves in a lamellar structure, with contiguous regions of these alternating lamella known as
pearlite colonies (Fig. 2.3). Within each colony, the lamella maintain the same orientation rela-
tionship [8], however this OR is not the same for all pearlite colonies. Several different ORs have
been experimentally observed, with three in particular being reported the most often. Following
the convention ¢ < b < ¢ for the unit cell of cementite, these are:

the Bagaryatskii OR [9]:

[100]o/[[110],
[010]g[[[111]«
(001)][(112),

the Isaichev OR [10]:
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Figure 2.3: The iron-iron carbide microstructure. In pearlite, this consists of alternating layers of ferrite (a)
and cementite (carbide). Reproduced from [7].

[010]o]|[111]4
[101]6‘| | [Oil]a
(101)9|‘<211)a

and the Pitsch-Petch OR [11]:

[100]5 2.6° from [131].,
[010]4 2.6° from [113],
(001)6][(521)a

with 6 denoting cementite and « for ferrite.

While the Bagaryatskii OR, the Isaichev OR, and the Pitsch-Petch OR are all commonly re-
ported, there is no consensus as to which of the three ORs is the most favorable or prevalent in
pearlite. The Isaichev OR was even tho