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ABSTRACT 

Calibration equations for free-flowing radial gates typically provide sufficient 
accuracy for irrigation district operations. However, many districts have difficulty 
in determining accurate discharges when the downstream water level begins to 
submerge the gate. Based on laboratory studies, we have developed a new 
calibration method for free-flowing and submerged radial gates that allows for 
multiple gates and widely varying upstream and downstream channel conditions. 
The method uses the energy equation on the upstream side of the structure and the 
momentum equation on the downstream side. An iterative solution is required to 
solve these two equations, but this allows calibration from free flow to submerged 
flow right through the transition. Adjustments to the energy equation for free flow 
are described, along with an additional energy adjustment for the transition to 
submerged flow. An application is used to describe the new procedure and how it 
overcomes the limitations of current energy-based methods. 

INTRODUCTION 

Radial gates are a common water control structure in much of the western United 
States. Their advantage over vertical sluice gates is that the lifting force is 
minimal. The U.S. Bureau of Reclamation has used these as a standard structure 
for nearly a century. They are also used in private irrigation projects, and projects 
of the U.S. Army Corps of Engineers. These structures are pervasive in canals and 
regulated streams in the central and western United States. 

Calibration methods for free-flowing radial gates are available in standard 
references and have been used with reasonable success to measure flow. 
Calibration of submerged flows, however, has had mixed success, with errors up 
to 50% reported in some cases. These calibration methods are based exclusively 
on the energy equation. Some use the momentum equation to define the limit 
between submerged and free flow. However, a major flaw with all these methods 
is that they are all based on upstream and downstream channels that are the same 
width and have the same floor elevation as the gate. This rarely occurs in practice. 
Where multiple gates occur, submerged calibration has proven successful only 
when all gates are open the same amount and their total width is similar to the 
width of the downstream channel (e.g., the head of the All American Canal). 
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In 1999, we conducted a study on the calibration of radial gates in the Hydraulics 
Lab of the U.S. Water Conservation Laboratory. Details of the experimental setup 
are provided in Tel (2000). In this paper, we present a solution method for 
submerged radial gates that uses the energy equation on the upstream side of the 
gate (the same as for free flow) and the momentum equation on the downstream 
side. A new transition between submerged and free flow is defined as an 
adjustment to the energy equation. 

FREE FLOW 

The calibration of flow under a vertical sluice gate is a classic problem in 
hydraulic engineering and has been studied for more than a century. Montes 
(1997) provides an excellent summary of the theoretical and experimental studies 
that have been conducted under free-flow conditions. However, our theoretical 
understanding of even free-flowing sluice gates is incomplete. For practical 
application, the errors associated with the theoretical disagreements are relatively 
small, being at most ± 5%, and within field calibration needs. Field calibrations 
are often needed anyway because of J-seals, etc. The foundation for the research 
on submerged flow is a reliance on the free-flow theory, thus it is worth 
discussion. 

The complexity of the problem stems from our inability to theoretically determine 
the free surface configuration downstream from the gate, even in free flow. The 
jet emanating from under the gate reaches a minimum depth at the vena contracta 
(Section 2 in Figure I). The theoretical difficulties are associated with defining 
the contraction coefficient t5 (ratio of minimum depth Yj to gate opening w) for the 
variety of flow configurations encountered. In general, the contraction coefficient 
varies with the angle of the gate (} and the ratio of gate opening to upstream 
energy head, W/Hl' 

If we apply the energy equation between Sections I and 2, we get 
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Figure I. Definition sketch for radial gate. 
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where HI is the total head at section 1, Hj is the energy head at the vena contracta, 
• H is the head loss between Section 1 and the vena contracta, Yj is the depth at the 
vena contracta or jet, Vj is the average velocity in the jet, Uj is the velocity 
distribution coefficient for the jet (i.e., correction to the velocity head due to 
nonuniform velocity), g is the acceleration of gravity, and ~ is the energy loss 
coefficient. For simplicity, we will assume Uj = 1. Any deviation from unity by Uj 

will end up in ~, giving a combined coefficient. 

Since the discharge is equal to velocity times area, in the jet we have Q = Owbevj; 
where Yj = Ow, and be is the gate width. Substituting for Vj and Yj in Equation 1 
and solving for discharge gives: 

For a given geometry, this provides a relationship between discharge and 
upstream energy head, with only the contraction coefficient, • ,.and the loss 
coefficient, ~, to be evaluated. 

(2) 

This differs substantially from prior solutions ofthe radial-gate energy equation in 
several ways. First, it is expressed in terms of upstream energy head rather than 
depth. This allows one to have an upstream velocity head that is not related to the 
flow in anyone gate, for example when multiple gates and weirs are used. 
Second, it includes as energy loss term rather than relying on empirical discharge 
coefficients. And finally, the contraction coefficient is not buried in the discharge 
coefficient. These 
differences allow us to 
determine the head
discharge relationships for 
a wider range of conditions 
than other methods. 

In our study, the 
contraction coefficients 
were found by measuring 
the gate opening and 
measuring the pressure in 
the jet at the vena contracta 
with a Prandtl tube. For 
several runs, we measured 
the pressure distribution 
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Figure 2. Radial gate contraction coefficient, .'
as a function of gate angle, e. 
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within the jet, and it was 
essentially hydrostatic, 
verifying that our single 
pressure readings were 
sufficient to define the 
contraction coefficient. Our 
resulting contraction 
coefficients (Fig. 2) were in 
excellent agreement with 
those found by Toch (1955) 
in labomtory studies. The 
contraction coefficient is 

strongly influenced by 
gate angle. We found 
almost no influence of 
wlHJ on the contraction 
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Figure 3. Combined velocity distribution and energy 
coefficient as a function of entrance Reynolds 
number for free flowing mdial gate. 

coefficient, in keeping with the results for planar sluice gates (Montes 1997). 

We chose to relate the measured energy loss to the velocity head in the jet, since 
the jet velocity head seems to be the most representative of the overall energy 
head that is causing/influencing the loss (Fig. 3). We found a strong relationship 
between the energy loss coefficient and the Reynolds number at the upstream face 
of the gate. Of significance to this research is that these energy losses are 
relatively high for labomtory models where Reynolds numbers are low. For 
prototype gates, Reynolds numbers may be an order of magnitude higher, 
suggesting energy 
losses on the order 
of 1 % or 2%. 8% r--~--~-~----~--~----' 

Solution of 
Equation 2 with 
the coefficients 
from Figures 2 
and 3 agreed with 
labomtory data to 
within about 1 % 
in all but a few 
cases (Fig. 4). 
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Figure 4. Accuracy ofmdial gate free-flow discharge 
computed with energy equation and curve fits for 
contraction coefficient and energy loss coefficient. 
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SUBMERGED CONDITIONS 

Only a few studies on submerged radial gates are available in the literature. The 
most common approach has been to use an empirical discharge coefficient 
according to the amount of submergence. This approach was suggested by Henry 
(1950) and Rajaratnam and Subramanya (1967) for vertical sluice gates and used 
by Buyalski (1983) for radial gates. One difficulty with this approach is that the 
curves are very steep, resulting in a large change in discharge coefficient for a 
small change in upstream depth or gate opening. Another approach (Bos 1989) is 
to use the same discharge coefficient as for free flow, but with the water level 
difference across the gate replacing the upstream depth. A challenge with this 
approach is to determine when to use the upstream head and when to use the head 
differential. The standard textbook approach is to use the conjugate depth 
equation for a rectangular channel to determine whether or not the gate is 
submerged (e.g., as suggested by Bos (1989)). 

These approaches have a major flaw when applied to practical situations. All of 
the studies and the conjugate depth relationship assume that the downstream 
channel is of the same cross section as the gate. The calibration results are highly 
dependent upon this condition, even though it is rarely found in practice. The 
current approaches cannot easily deal with these real-world conditions. 

Where a hydraulic jump occurs, energy losses are difficult, if not impossible, to 
predict with an energy-based equation. This usually requires solution of the 
momentum equation. However, it is also not practical to solve the momentum 
equation from the upstream section to the downstream section since the forces on 
the gate are unknown. Instead, we propose to use the energy equation from the 
upstream side to the vena contracta, where we think we can capture the essential 
flow conditions, and the momentum equation from the vena contracta to the 
downstream section. Under normal operation, the depth and velocity at the vena 
contracta will not be measured. Instead, those conditions must be inferred from 
the equations. 

Starting with the energy equation on the upstream side of the gate, we postulate 

(3) 

In Equation 3, the subscript j refers to the "live stream" conditions in the jet at the 
vena contracta and the subscript 2 refers to the vena contracta location, whether 
free or submerged. Equation 3 implies a nearly linear relationship between Yt and 
Y2 for any constant discharge and gate opening. However, laboratory results differ 
substantially from this result, as shown in Figure 5. At high submergence, the 
relationship looks reasonable, suggesting that the jet is the same size as under free 
flow, even though submerged. 
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Such results 
were also found 
by Rajaratnam 
and Subramanya 
(1967a), among 
others. At the 
beginning of 
submergence, 
the flow just 
downstream 
from the gate, as 
Y2 is increased 
holding all else 
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comprises an 
incomplete jump Figure 5. Preli~inary application of energy equation from 
gradually upstream side of radial gate structure to vena contracta. 

approaching the classical wall jet (Rouse et al. 1959), and finally becoming the 
standard wall jet with the jet similar in configuration to the jet under free flow. 
While the partial jump is present, increases in tailwater elevation have almost no 
effect on upstream water level. But as the ''wall-jet'' condition is approached, 
further increases in tailwater depth are reflected in upstream depth changes. 

Numerical modeling of this behavior between Sections 1 and 2 with the energy 
equation requires a reduction in jet velocity, and for a constant discharge, an 
expansion in the jet thickness (as suggested by Tel (2000». In a simpler, and 
ultimately equivalent procedure, we postulate a kinetic energy correction term, 
Ecorr. for the transition zone, such that 

2 2 
v· v· 

HI =Y2 +_J_+~-J--Ec,," 
2g 2g (4) 

with Vj held fast at the free-flow value. Ecorr is evidently zero under free flow, as 
well as under fully submerged flow. In our preliminary analysis, we determined 
values for ECorr as a function of relative submergence (shown below). Solving 
Equation 4 for discharge yields 

(5) 

Solution of Equation 5 for submerged discharge requires, in addition to what is 
needed for free flow in Equation 2, an estimate of the energy correction, ECorr, and 
an estimate for the depth, Y2, at the vena contracta. This depth is extremely 
difficult to measure in the field. The flow there is highly turbulent, rolling and 
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''frothy'' such that a surface measurement is insufficient to determine the true 
depth (i.e., as reflected in the pressure below the surface). This depth is not 
currently measured in the field and likely will never be. Instead, the water depth 
in the downstream channel,Y3, is measured. To utilize the measured depth,Y3, 
instead of Y2, a momentum relationship between Sections 2 and 3 is introduced. 

Conservation of momentum, applied from the section with the vena contracta to 
Section 3, can be written as: 

(6) 

where v. is the effective velocity in the jet (discussed below), V3 is the 
downstream velocity, p is the density of water (mass per unit volume), F3 is the 
hydrostatic-pressure force exerted by the downstream water depth, and Fw is the 
component of the force of water on all surfaces between Sections 2 and 3 in the 
direction of flow, including hydrostatic forces on all walls. This surface can be 
determined by taking the downstream area and projecting it back to Section 2 
(assuming the section only expands from Section 2 to Section 3). Projected 
surfaces include the edges of the piers that separate the individual gates, closed 
gates, weir overfall sections, and the canal walls where the cross section expands. 
For rectangular cross sections, the force terms reduce to bgll2, with subscripts 3 
or won band y. For the short distances involved here, we can ignore the channel 
friction and bed slope effects. 

Equations 5 and 6 represent solutions for flow on the upstream and downstream 
sides of the vena contracta, with Q and Y2 unknown, and the rest derivable from 
the measured water depths, gate opening, cross-section shapes, and empirical'''~' 
and ECorr. Application of these two equations is complicated by I) quantification 
of the energy loss coefficient, 2) application of the energy equation under slightly 
submerged conditions, and 3) estimation of the wall forces for application of the 
momentum equation. The force on the walls is assumed to be based on a water 
depth there -- hypothesized to be between the depths at Sections 2 and 3. The 
effective water depth at the walls is found as the weighted average ofthese two 
depths, with weighting coefficient p: 

(7) 

Laboratory experiments were performed to test the applicability of these 
equations. We solved Equation 6 for Eco" with the measured values of Q. Y1, and 
Y2, and with ~from the free-flow tests. The resulting energy correction relative to 
the change in depth at the vena contracta [Eco,.,.l(y2-Yj)] is shown in Figure 6 as a 
function of this change in depth relative to the free-flow jet thickness [(yz-y)IYj]' 
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Figure 6. Relative energy adjustment required to apply 
free-flow energy equation to submerged flow 
for a radial gate up to the vena contracta. 

in Equation 5. An equivalent jet velocity was determined by replacing the second 
and fourth terms on the right hand side of Equation 4 : 

(8) 

The equivalent velocity then replaces the jet velocity in the momentum equation. 
This formulation leaves the computed upstream energy loss unchanged, except 
with Reynolds number (which changes with discharge and upstream depth as the 
gate becomes submerged). 

The measured data were 
used to determine the 
coefficient p for the 
effective wall pressure. 
While there was some 
scatter in the data, a strong 
trend was not apparent. For 
the remaining analysis, an 
average value of 0.643 was 
used. 

At this point, some 
verification of the 
relationships was 
attempted. The energy 
and momentum equations 
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(5 and 6) were solved with only knowledge of the upstream and downstream 
water levels. The relationships in Figures 2, 3 and 6 were used, along with p 
=0.643. The resulting errors in discharge are shown in Figure 7. The circled 
values are those that faU within the sharp transition range in Figure 6 (energy 
adjustment values between 0.2 and 0.8). Those within the transition zone have 
errors that ranged from -8% to 12%, while aU the other values are estimated to 
within -4% to 3%. We also speculate that the relative depth at which the 
transition shown in Figure 6 occurs is a function of the ratio wlHJ, although there 
are not enough data points to define such a relationship (i.e., Figure 6 would have 
to have a family of curves). Further studies are needed to define this relationship 
as a function of wIH!. Also, additional studies of submergence are needed at 
values ofwlH! above 2/3, a theoretical limit at low submergence, but which can 
be greatly exceeded at high submergence. 

APPLICATION 

As an example, we show an application at the Salt River Project (SRP) in 
Arizona. At some check structures, operators report errors in computed flows as 
high as 50%. SRP has been using the submerged radial-gate calibration method 
suggested by Bos (1989). Under this method, the gate is assumed to be submerged 
when the downstream water level reaches the conjugate depth. In Figure 8, the 
calibration relationships for a fixed gate and given upstream water level are 
shown as a function of downstream (afterbay) depth. The horizontal line at the top 
represents free 
flow (i.e., not 
influenced by 
downstream 
depth). The far 
right point of 
this horizontal 
line represents 
the depth 
conjugate to the 
free-flowing jet 
thickness at its 
vena contracta 
fora 
downstream 
channel of the 
same width as 
the gate. The 
lower heavy line 
is the energy
based 
submerged-flow 
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Figure 8. Radial-gate flow rates computed with energy 
equation (as used by SRP) and the Energy-Momentum 
method. (Fixed gate opening and upstream depth). 
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solution recommended by Bos (1989), where discharge is proportional to the 
square root of the head difference. No recommendation is given on transitioning 
from the conjugate depth point to the submerged-flow line. A straight drop is 
implied, but is clearly unreasonable. SRP chose to use a 1 foot (0.3 m) transition 
zone, described essentially by a straight line. When compared to the Energy
Momentum solution proposed here (heavy line to upper right), this is not an 
unreasonable approximation. Note that both solutions start the transition at the 
same downstream depth, as they should. However, SRP found that their transition 
equation did not fit their field data very well. As an alternative, they chose to 
place the transition zone in the middle of their 0.3 m interval (0.15 m on either 
side of conjugate depth). For some cases this provided a better fit. (An additional 
transition zone in between these two has also been used). Also shown in Figure 8 
is the Energy-Momentum solution when the downstream channel is twice as wide 
as the gate. Submergence occurs at a lower downstream depth - i.e., the conjugate 
depth has changed. Their need to provide different transition zones for these gates 
can be entirely explained by application of the E-M method, as shown by the 
range of downstream depth at which submergence starts. The energy-equation 
solutions for submerged flow are not able to predict such performance. 
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