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ABSTRACT

INFERENCE FOR FUNCTIONAL TIME SERIES WITH APPLICATIONS TO YIELD

CURVES AND INTRADAY CUMULATIVE RETURNS

Econometric and financial data often take the form of a functional time series. Examples

include yield curves, intraday price curves and term structure curves. Before an attempt is made

to statistically model or predict such series, we must address whether or not such a series can

be assumed stationary or trend stationary. We develop extensions of the KPSS stationarity test

to functional time series. Motivated by the problem of a change in the mean structure of yield

curves, we also introduce several change point methods applied to dynamic factor models. For all

testing procedures, we include a complete asymptotic theory, a simulation study, illustrative data

examples, as well as details of the numerical implementation of the testing procedures. The impact

of scheduled macroeconomic announcements has been shown to account for sizable fractions of total

annual realized stock returns. To assess this impact, we develop methods of derivative estimation

which utilize a functional analogue of local-polynomial smoothing. The confidence bands are then

used to find time intervals of statistically increasing cumulative returns.
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Chapter 1

INTRODUCTION

The goal of this chapter is to motivate and introduce the major research topics presented in this

dissertation. Each chapter, except for the introduction represents a unique collaborative project,

resulting in four papers. The central theme encompasses functional time series with applications

to yield curves and intraday cumulative returns. Chapter 2 extends the extensively used KPSS

stationarity test of scalar time series to a functional time series setting. Chapter 3 is a comprehensive

application of the theoretical developments presented in Chapter 2. The procedures are applied to

common financial indices, chosen to represent the market as a whole. Daily treasury yield curves

are a well studied example of functional time series. Chapter 4 includes a formal development

of a change point test for functional factor models, which have recently become state of the art

method of modeling yield curves. Chapter 5 includes a data-driven approach for detecting intervals

of statistically increasing cumulative returns in the presence of macroeconomic announcements.

Before introducing the individual research topics in more detail, we describe relevant topics of

scalar time series analysis, local polynomial smoothing and give an introduction to functional time

series.

1.1 Background

Functional data analysis is a growing field of statistics that has applications spanning many

disciplines, e.g., biology, physics, geophysics, economics and finance are just a few. Functional

time series is a specialized subfield of functional data analysis and has many applications arising

in finance and economics. Among recent contributions, we note Antoniadis et al. (2006), Kargin

and Onatski (2008), Horváth et al. (2010), Müller et al. (2011), Panaretos and Tavakoli (2013),

Kokoszka and Reimherr (2013a), Hörmann et al. (2015), Aue et al. (2015), which account for only a

1



small list of recent publications. Before introducing relevant definitions of functional data analysis,

consider the following motivating example.

1.1.1 Scalar Time Series and Stationarity

Suppose an analyst is investigating the impact monetary policy decisions have on particular

financial indices. A common model used in this scenario is

ri = β0 + β11i(A) + ηi, i = 1, 2, . . . n, (1.1.1)

where the ηi’s are independent and identically distributed or temporally dependent random vari-

ables, each having mean zero and common variance. The variable 1i(A) is equal to one during the

announcement days and zero otherwise. To control for additional sources of variation, other covari-

ates could also be included in the model. In a recent paper, Lucca and Moench (2015), use a similar

model to detect the impact the scheduled Federal Open Market Committee (FOMC) meetings have

on the Standard & Poor’s 500 financial index over a prespecified sampling period. In nearly every

financial or econometric setting, the errors ηi’s do exhibit temporal dependence. Modeling the

dependence structure of the errors ηi is vital so that inferential procedures and predictions are well

founded.

To effectively model the time series {ηi, i ∈ Z}, we require that the series be stationary. This

crucial property informally gives insight on the predictability of the time series. If a time series

model exhibits stationary behavior, then classical inferential procedures can be performed. Hence

stationarity and predictability are often synonymously used in financial and econometric literature.

Strict stationarity is defined below:

Definition 1. Let {ηi, i ∈ Z} be a scalar time series and let F (ηt1 , ηt2 , . . . , ηtk) be the joint dis-

tribution of any size k-subset of this series. The time series is strictly stationary if for any lag

h,

F (ηt1+h, ηt2+h, . . . , ηtk+h) = F (ηt1 , ηt2 , . . . , ηtk).

2



If a time series is stationary, the joint distribution does not change with any shift in time. It is

often convenient to work with a weaker form of stationarity.

Definition 2. A scalar time series {ηi, i ∈ Z} is weakly stationary if

1. E(ηi) is independent of i,

2. Cov(ηi+h, ηi) is independent of i for each h.

Assuming the variances exist, strict stationarity implies weak stationarity but the converse is not

true. The canonical example of a stationary time series is the autoregressive process

ηi+1 = ϕηi + ui, (1.1.2)

where the ui’s are iid mean zero random variables each sharing common variance σ2u. Stationarity

holds provided |ϕ| < 1, see e.g. page 79 of Brockwell and Davis (1991). If ϕ = 1, the autoregressive

process becomes a random walk which is the canonical example of a nonstationary time series. The

random walk is thus defined by

ηi+1 = ηi + ui, (1.1.3)

where the ui’s are iid mean zero random variables each sharing the common variance σ2u. Here the

second condition of Definition 2 is violated since the covariance function of a random walk clearly

depends on i for each lag h.

The concept of stationarity can then be imposed on common financial and statistical models.

For example, one can assume the errors ηi’s from model (1.1.1) form a stationary time series.

This would encompasses a large class of error structures and consequently produce valid inferential

procedures for testing relevant parameters and forecasting returns.

One key distinction between an iid sequence of random variables and a stationary sequence of

random variables is the covariance structure. For an iid sequence of mean zero random variables

{ηi, i ∈ Z}, each case shares the same variance σ2 = E[η21]. If the time series {ηi, i ∈ Z} is stationary,

then the common dispersion parameter of this sequence is coined as the long-run variance.

3



Definition 3. Suppose {ηi, i ∈ Z} is a stationary time series with covariances Cov(ηi, ηi−j) = γj.

Then, the long–run variance σ2 is defined by

σ2 =

∞∑

j=−∞

γj = γ0 + 2

∞∑

j=1

γj , (1.1.4)

provided the infinite series converges.

One way to motivate this concept comes from the Central Limit Theorem for strictly stationary

sequences. Under many forms of assumptions, including mixing and cumulant type assumptions,

√
n(η̄n − Eη1)

D→ N(0, σ2),

where η̄n is the sample mean of the time series and σ2 is the long–run variance defined in Equation

(1.1.4). For stationary series, the variance of the sample mean is thus asymptotically approximated

by σ2/n, where σ2 is the long–run variance rather than the variance of η1, as would be the case

for iid ηi. To make the idea of the long-run variance more tangible, consider the autoregressive

process defined in Equation (1.1.2). The covariances of the autoregressive model are given by

γj = σ2uϕ
|j|/(1− ϕ2). Consequently, the long–run variance of the autoregressive model is

σ2 = γ0 + 2

∞∑

j=1

γj = σ2u/(1− ϕ)2.

Kernel estimation is one popular technique used for estimating σ2. Estimators of this type take

the form

σ̂2 = γ̂0 + 2
n−1∑

j=1

K
( j

hn

)
γ̂j , (1.1.5)

where K(·) is a kernel and hn is a bandwidth which, in asymptotic theory, depends on the sample

size n. Suitable assumptions are imposed on K(·) and {hn}, which guarantee the consistency of

this estimator, as n approaches infinity, e.g. Newey and West (1987). The standard Newey-West

estimator uses the Barlett kernel defined by

K(x) =

{
1− |x| |x| ≤ 1

0 otherwise.

4



1.1.2 Testing for Stationarity of Scalar Time Series

There have been many testing procedures developed to assess whether or not a scalar valued

time series exhibits stationarity. In economic research, procedures commonly known as unit root

tests have gained greatest importance. The most widely known procedures of this type are the unit

root test developed by (Dicky and Fuller 1979, 1981) and Said and Dickey (1984). If we consider

autoregressive model (1.1.2), the Dicky-Fuller procedure formally tests the null alternative pair

H0 : ϕ = 1 versus H1 : |ϕ| < 1. Heuristically, if we retain the null hypothesis, we cannot rule out

the possibility that autoregressive model (1.1.2) exhibits random walk behavior and hence, a unit

root. Another popular tool for testing stationarity of scalar time series is the celebrated KPSS test

of Kwiatkowski et al. (1992). The work of Kwiatkowski et al. (1992) was in fact motivated by the

unit root tests. Since traditional unit root tests have low power in samples of sizes occurring in

many applications, Kwiatkowski et al. (1992) proposed that stationarity should be considered as

the null hypothesis, and the unit root should be the alternative. The KPSS test has consequently

become a standard tool in time series analysis applied to econometric and financial data which is

applied alongside unit root tests.

The KPSS procedure assumes stationary under the null, giving the level and trend models:

H0 : xi = µ+ ηi, i = 1, 2, . . . n (1.1.6)

and

H0 : xi = µ+ ξi+ ηi, i = 1, 2, . . . n, (1.1.7)

where the errors ηi’s form a mean zero stationary time series. Model (1.1.6) represents level-

stationarity while model (1.1.7) represents trend-stationarity. Model (1.1.7) can be viewed as a

stationary time series with a deterministic drift. The alternative hypothesis can include any non-

stationary process, but the usual choice is the random walk model. This is because random walk
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implies the existence of a dominating nonpredictable component. Thus, the KPSS procedure es-

sentially tests stationarity, or trend stationarity, against the random walk alternative. The random

walk is commonly called the unit root process. To test the presence of a unit root, we use the the

cumulative sum (CUSUM) process defined by

Sk =

k∑

i=1

ei, (1.1.8)

where the random variables ei are the residuals, i.e., ei = xi − x̂i. The CUSUM process produces

the KPSS test statistic

KPSSn =
1

n2σ̂2

n∑

k=1

S2
k , (1.1.9)

where σ̂2 is the kernel estimator (1.1.5) of the long-run variance σ2. For both level and trend cases,

the residuals are estimated via least squares. For example, under model (1.1.6),

KPSSn =
1

n2σ̂2

n∑

k=1

{ k∑

i=1

(xi − x̄)

}2

.

Deviations far from H0 produce large values of (1.1.9), which supports the random walk alternative.

Under H0, Kwiatkowski et al. (1992) derive limiting distributions of the statistic KPSSn. For the

level-stationary case, test statistic (1.1.9) converges in distribution to a continuous functional of a

Brownian bridge B(r):

KPSSn
D→
∫ 1

0
B2(r)dr. (1.1.10)

Similarly, for the trend-stationary model, test statistic (1.1.9) converges in distribution to a con-

tinuous functional of a second level Brownian bridge V (r):

KPSSn
D→
∫ 1

0
V 2(r)dr. (1.1.11)

The second level Brownian bridge is defined by

V (r) =W (r) + (2r − 3r2)W (1) + (−6r + 6r2)

∫ 1

0
W (s)ds, 0 ≤ r ≤ 1,

where W (r) is a standard Brownian motion (Wiener process).
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1.1.3 Scalar Change Point Analysis

Although the random walk is the classic example of a nonstationary process, another common

violation of Definition 2 is when a time series contains a change point.

Definition 4. Let {ηi, i ∈ Z} be a stationary time series. Define a new time series {xi, i ∈ Z} by

xi =

{
µ1 + ηi, i ≤ k∗

µ2 + ηi, i > k∗.

If µ1 6= µ2, the integer k∗ is the change point (in mean) of the time series {xi, i ∈ Z}.

A change point intuitively represents a change in the mean structure located at discrete time

k∗. A change point violates the first condition of Definition 2. If a time series contains a change

point, then model misspecification can introduce problems with both prediction and inference on

relevant parameters. Definition 4 can also be generalized to a finite set of change points. For many

theoretical purposes, there is no loss in generality using the single change point model. To formally

test if the time series {xi, i ∈ Z} contains a change point, the null hypothesis is H0 : µ1 = µ2. This

is equivalent to model (1.1.6), which implies the null hypothesis can be expressed as H0 : xi =

µ+ ηi, i = 1, 2, . . . n. Similarly to the scalar KPSS procedure, testing for the presence of a change

point uses the same cumulative sum process from Equation (1.1.8). A possible change point test

statistic is the KPSSn statistic. Violations of the change point null hypothesis will result in large

values of this statistic. Under H0, the limiting distribution is the same as the KPSS procedure.

The problem of detecting a change point has been extensively studied, see e.g. Csörgő and

Horváth (1997). In Chapter 4, we develop a change point testing procedure for functional factor

models, and apply it to yield curves.

1.1.4 Local Polynomial Smoothing

A review of local polynomial smoothing will facilitate the understanding of Chapter 5, which

extends these ideas to a functional data analysis setting. First consider the model

xi = f(si) + ηi, i = 1, 2, . . . , n,
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in which f is an unknown smooth function observed at time points si in an interval, with a

measurement errors, or noise, ηi. In contrast to previous models, we do not impose temporal

dependence on the errors, i.e., assume the errors ηi’s are an iid sequence of mean zero random

variables. The goal of local polynomial smoothing is to estimate the function f without postulating

any specific parametric form. It thus falls into the field of nonparametric statistics. Using this

method also allows us to estimate the derivatives of f . An introduction to this technique is presented

in Chapter 21 of Ruppert (2011), a detailed and comprehensive treatment is given in Fan and Gijbels

(1996). We merely present a few formulas to aid the understanding of Chapter 5.

To estimate the function f and its derivatives, for every t, we minimize the objective function

N∑

i=1

{xi − (α0 + α1(si − t) + · · ·+ αp−1(si − t)p−1)}2K
(si − t

h

)
,

with respect to α0, α1, . . . , αp−1. The smoothed curve at time t is then given by the estimated

intercept f̂(t) = α̂0, and the estimated derivative by f̂ ′(t) = α̂1. In conjunction with the kernelK(·),

the bandwidth h governs the level of smoothness. A large bandwidth results in over-smoothing,

while a small bandwidth results in over-fitting the curve. Closed form formula for the estimator of

the parameter vector α = [α0, α1, . . . , αp−1]
′ follows easily using weighted least squares. For fixed

t, define the response vector and design matrix respectively by

x =




x1

x2
...

xn



, Ut =




1 (s1 − t) (s1 − t)2 · · · (s1 − t)p−1

1 (s2 − t) (s2 − t)2 · · · (s2 − t)p−1

...
...

...
. . .

...

1 (sn − t) (sn − t)2 · · · (sn − t)p−1



.

Define the diagonal weight matrix by

Ωt,h = diag
{
K
(s1 − t

h

)
,K
(s2 − t

h

)
, · · · ,K

(sn − t

h

)}
.
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The estimated parameter vector is given by the weighted least squares solution

α̂(t) = α̂ =




α̂0

α̂1

...

α̂p−1



= (U′

tΩt,hUt)
−1U′

tΩt,hx.

1.1.5 Functional Data

In models (1.1.1), (1.1.6) and (1.1.7), the observations xi are scalars. Each model can be

extended to a multivariate setting, e.g., each xi could be a vector simultaneously representing

two or more financial indexes. However, several important data structures studied in finance and

economics can be most naturally viewed as smooth curves that exhibit certain patterns in their

shape. These shapes evolve with time. Such a curve on each trading day could be treated as a

single functional observation and the analyst could test whether or not the time series of functions

is stationary. While a more general framewok is possible, Bosq (2000) and Horváth and Kokoszka

(2012), we illustrate the fundamental concepts using minute by minute scalar data on a trading

day.

Let J be the number of minutes in a typical trading day. A functional data set can take on the

form

Xi(tj), i = 1, 2, . . . , N, j = 1, 2, . . . J.

Notice in a functional data analysis setting, it is common to use N as the sample size as compared

to n. Even with refinement J , we still only have N observations, which represents a significant

dimension reduction. Typically each function Xi(t) is assumed to be square integrable over the

unit interval, which can be achieved with an affine transformation. The space L2 = L2([0, 1]) is the

set of all measurable real-valued functions defined on the unit interval such that
∫ 1
0 x

2(t)dt < ∞.

The space L2 is a separable Hilbert space with inner product

〈x, y〉 =
∫
x(t)y(t)dt.
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Note that any integral without limits of integration is assumed to be over the unit interval [0, 1].

The inner product generates the norm

‖x(t)‖ =
√

〈x, x〉2.

The most relevant class of operators in functional data analysis are integral operators defined by

Ψ(x)(t) =

∫
ψ(t, s)x(s)ds, x ∈ L2. (1.1.12)

The kernel of the integral operator is the real-valued function ψ(·, ·). For functional data, all

functions X are random elements of L2. To define a random curve X, it must be equipped with

the Borel σ-algebra and X is said to be integrable if E‖X‖ = E[
∫
X2(t)dt]1/2 < ∞. Functional

parameters can be defined analogously to the scalar case. If observations X1, . . . , XN are iid

functions in L2 such that E‖X1‖2 = E
∫
X2

1 (t)dt < ∞, then define the mean function, covariance

function and covariance operator respectively by

µ(t) = E[X1(t)], (1.1.13)

c(t, s) = E[(X1(t)− µ(t))(X1(s)− µ(s))], (1.1.14)

and

C = E[〈(X1 − µ), ·〉(X1 − µ)]. (1.1.15)

The covariance operator (1.1.15) is in fact an integral operator defined similarly to (1.1.12). For

arbitrary random element X in L2 such that EX = 0 and E‖X‖2 = E
∫
X2(t)dt < ∞, the

covariance operator C is often written as

C(y) = E[〈X, y〉X] =

∫
c(t, s)y(s)ds, y ∈ L2, (1.1.16)

where the kernel of C is the centered covariance function c(s, t) = E[X(t)X(s)]. All functional

parameters can be estimated by their sample equivalents, i.e., the sample mean function, sample

covariance function and sample covariance operator are defined respectively by

X̄N (t) =
1

N

N∑

i=1

Xi(t), (1.1.17)
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ĉ(t, s) =
1

N

N∑

i=1

(Xi(t)− X̄N (t))(Xi(s)− X̄N (s)), (1.1.18)

and

Ĉ(x) =
1

N

N∑

i=1

〈Xi − X̄N , x〉(Xi − X̄N ). (1.1.19)

The sample statistics displayed above are important quantities to synthesize the scalar framework

with the functional data analysis setting. For a more comprehensive introduction to functional

data analysis, see Horváth and Kokoszka (2012).

1.1.6 Eigenvalues and Eigenfunctions

Many theoretical results in functional data analysis use well-known properties of linear operators

in the space L2. Specifically, eigenvalues and eigenfunctions of the covariance operator (1.1.16) are

essential items used in asymptotic theory.

Definition 5. An eigenvector ν(t) ∈ L2 of operator Ψ is a non-zero function such that

Ψ(ν(t)) = λν(t),

where λ is a real scalar. λ is called the eigenvalue of Ψ corresponding to eigenfunction ν(t).

For the space L2, there are countably many eigenvalues and the common operator used in

functional data analysis is the covariance operator C defined in (1.1.16). Therefore, for all i ≥ 1,

we say λi ∈ R is an eigenvalue of covariance operator C corresponding to non-zero eigenvector νi

provided that

C(νi) = λiνi.

The eigenfunctions are traditionally referred to as the principal components of covariance operator

C.
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1.2 Functional Time Series

In agreement with the scalar case, temporal dependence can also be imposed on random elements

of L2. Studying the behavior of random curves over time is the subfield of functional time series.

In functional time series, the index t is used to denote “time” within a function. For example, for

price curves, t is the time (minutes) within a trading day. Functional observations are indexed by

i; it is convenient to think of i as a trading day. Under this convention, consider the functional

analogue of model (1.1.6),

Xi(t) = µ(t) + ηi(t), i = 1, 2, . . . N. (1.2.1)

Here, the functional parameter µ is a deterministic element in L2 and the series η1, η2, . . . is a

stationary time series of functions existing in L2. To rigorously prove asymptotic theory related to

functional time series, we must formally define stationarity in a functional data analysis setting.

One method of defining these objects was introduced in Hörmann and Kokoszka (2010, 2012), and

Chapter 16 of Horváth and Kokoszka (2012). The dependence imposed on the errors ηi’s are called

Bernoulli shifts and their structure is summarized in Definition 6.

Definition 6. A sequence of random functions {ηj , j ∈ Z} are Bernoulli shifts if for some measur-

able function g : S∞ → L2 and iid functions ǫj, −∞ ≤ j ≤ ∞, with values in a measurable space S,

each function admits representation ηj = g(ǫj , ǫj−1, ...). The functions (t, ω) 7→ ηj(t, ω) are product

measurable, Eη0 = 0 in L2 and E‖η0‖2+δ < ∞ for some 0 < δ < 1. The sequence {ηn}∞n=−∞ can

be approximated by ℓ-dependent sequences {ηn,ℓ}∞n=−∞ in the sense that

∞∑

ℓ=1

(E‖ηn − ηn,ℓ‖2+δ)1/κ <∞ for some κ > 2 + δ, (1.2.2)

where ηn,ℓ is defined by

ηn,ℓ = g(ǫn, ǫn−1, ..., ǫn−ℓ+1, ǫ
∗
n−ℓ, ǫ

∗
n−ℓ−1, . . .),

and the ǫ∗k are independent copies of ǫ0, independent of {ǫi,−∞ < i <∞}.
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The central theme of Definition 6 is that the dependence of the function g on the iid innovations

ǫj far in the past decays so fast that these innovations can be replaced by their independent copies.

This replacement is asymptotically negligible using relation (1.2.2).

Similar to scalar valued time series, the CUSUM process will give insight on the temporal

behavior of model (1.2.1). Define the CUSUM process as

1√
N




[Nx]∑

1=1

Xi(t)−
[Nx]

N

N∑

i=1

Xi(t)


 . (1.2.3)

Continuous functionals of Equation (1.2.3) will produce reasonable test statistics to formally assess

whether a functional time series is stationary.

We also define a covariance structure that accounts for the long-run behavior of functional time

series {ηi, i ∈ Z}.

Definition 7. Let {ηi, i ∈ Z} be a stationary functional time series each having mean zero. The

long-run covariance kernel of the time series is

c(t, s) = Eη0(t)η0(s) +

∞∑

i=1

(Eη0(t)ηi(s) + Eη0(s)ηi(t)) , 0 ≤ s, t ≤ 1. (1.2.4)

The above definition is analogous to Definition 3. The function c(t, s) is positive definite which

implies the existence of eigenvalues λ1 ≥ λ2 ≥ ... ≥ 0, and orthonormal eigenfunctions φi(t),

0 ≤ t ≤ 1, satisfying

λiφi(t) =

∫
c(t, s)φi(s)ds, 0 ≤ i ≤ ∞. (1.2.5)

The above relation yields the principal components of the long-run covariance operator C. The

spectral properties are crucial in asymptotic results related to functional time series. Estimation of

the long-run covariance kernel is similar to the scalar case. Define the estimated auto-covariances

by

γ̂i(t, s) =
1

N

N∑

j=i+1

ej(t)ej−i(s), 0 ≤ i ≤ N − 1, (1.2.6)
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where ej is the jth functional residual. Define the estimated long-run covariance kernel by

ĉ(t, s) = γ̂0(t, s) +

N−1∑

i=1

K

(
i

h

)
(γ̂i(t, s) + γ̂i(s, t)). (1.2.7)

The empirical eigenvalues and empirical principal components are computed using the estimated

long-run covariance kernel ĉ(t, s).

1.3 KPSS Test for Functional Time Series

This section introduces the topics presented in Chapter 2 and Chapter 3. The research presented

in these two chapters is a collaborative project with authors Piotr Kokoszka and Gabriel Young.

As mentioned in Section 1.1.2, the KPSS test of Kwiatkowski et al. (1992) has become one of

the standard tools in the analysis of econometric time series. In Chapter 2, we extend the trend-

stationary KPSS test procedure to a functional data analysis setting, which includes rigorous theory

and a simulation study. A contribution most closely related to Chapter 2 is Horváth et al. (2014)

who developed a test of level stationarity. The functional time series that motivate this work are

visually not level stationary, but can be potentially trend stationary. Incorporating a possible

trend changes the structure of functional residuals and leads to different limit distributions. The

null hypothesis of trend stationarity is stated as follows:

H0 : Xi(t) = µ(t) + iξ(t) + ηi(t). (1.3.1)

The functions µ and ξ correspond, respectively, to the intercept and slope. The errors ηi are also

functions and obey the dependence structure from Definition 6. Under the alternative, the model

contains a random walk component:

H1 : Xi(t) = µ(t) + iξ(t) +
i∑

k=1

uk(t) + ηi(t). (1.3.2)

Using a CUSUM process similar to (1.2.3), we develop a test statistic that extends the trend-

stationarity procedure from Kwiatkowski et al. (1992) to a functional time series setting. Under

14



H0, we develop rigorous asymptotic theory which has limiting distributions relating to (1.1.11).

We also show that the test statistic is consistent under the random walk alternative (1.3.2). A

simulation study is conducted to find empirical size under H0 and empirical power under the

random walk alternative (1.3.2).

Chapter 3 is an extensive application of the functional trend stationarity test developed in

Chapter 2. This chapter is a joint paper with authors Piotr Kokoszka and Gabriel Young. Many

financial data sets form functional time series. The best known and most extensively studied data

of this form are yield curves. Even though they are reported at discrete maturities, in financial

theory and practice they are viewed as continuous functions, one function per month or per day.

Other well known examples include intraday price, volatility or volume curves. For this application,

we consider daily yield curves, daily price curves of the S&P 500 financial index, daily price curves

of the U.S. dollar index and daily price curves of light crude oil futures. The main objective of the

empirical analysis is to uncover commonalities and differences between the various classes of assets

with respect to the trend behavior of specific daily functions. Functional time series of this type

often exhibit a visual trend, and obviously cannot be treated as stationary. The question is if trend

plus stationarity is enough or if a nonstationary component must be included. If the time period

is sufficiently long, trend stationarity will not be a realistic assumption due to periods of growth

and recession and changes in monetary policy of central banks.

1.4 Change Point Tests in Functional Factor Models

Chapter 4 is a joint project with authors Patrick Bardsley, Lajos Horváth, Piotr Kokoszka and

Gabriel Young. In this paper, we introduce several methods to test the null hypothesis that the

mean structure of a time series of curves does not change. Yield curve modeling has been an

important direction of economic research over many decades. An approach that has gained wide

acceptance in recent years is the Nelson–Siegel model and its dynamic modification, Diebold and

Rudebusch (2013). The most direct motivation for this project comes from the work of Chen and
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Niu (2014) who show that accounting for possible change points in the term structure improves

yield curve predictions. Our paper is concerned with the detection of change points in models that

generalize the dynamic Nelson–Siegel model.

The general form of the dynamic Nelson–Siegel model can be written as

Xi(tj) =

K∑

k=1

βi,kfk(tj) + ηi(tj), (1.4.1)

where the tj , 1 ≤ j ≤ J, denotes the maturities ordered from the shortest (1 month) to the longest

(10 years). The index i refers to time periods at which the curves are available, it typically indexes

days or months. The functions fk are postulated to have a specific parametric form. The attribute

“dynamic” stems from the fact that the weights βi,k are time series; in a static model βi,k = βk

does not depend on period i. The K-series {βi,k} and errors ηi are assumed to be joint stationary

time series following a dependence structure analogous to Definition 6.

The objective of this work is to develop significance tests whose null hypothesis is that the

mean structure of the K-series {βi,k} is constant over a time period under consideration against

the alternative that it changes at unknown change points. We consider a projection approach and a

fully functional approach. Test statistics are formulated using continuous functionals of cumulative

sum processes. The fully functional approach exploits the CUSUM process from Equation (1.2.3).

We develop formal tests of significance, simulate empirical size, simulate empirical power and apply

the developed procedures to yield curves over periods of economic expansion and contraction.

1.5 Determination of the Interval of Increasing Cumulative Returns Prior to Macroe-
conomic Announcements

Chapter 5 is joint project with authors Piotr Kokoszka, Hong Miao and Gabriel Young. The

goal of this project is to identify the time intervals over which an average increase of high frequency

cumulative returns can be claimed under the presence of scheduled macroeconomic announcements.

High–frequency, and intraday financial data in general, have been an important focus of re-

search in finance, econometrics and statistics for over two decades. The literature is enormous; an
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introduction is given in Chapters 5 and 6 of Tsay (2005), and to list a few influential publications,

which contain literature overview, we cite Engle and Russel (2004), Barndorff-Nielsen and Shephard

(2004), Hayashi and Yoshida (2005), Wang and Zou (2010), Andersen et al. (2012).

The impact of scheduled macroeconomic news on assets has been an important research topic

over the last few years. There have been several studies that established the impact or lack thereof

scheduled announcements on various types of assets, see e.g. Elder et al. (2011) for an enquiry of

this type which also contains references to earlier work. The most direct motivation for this project

comes from the work of Lucca and Moench (2015). As observed by Lucca and Moench (2015),

an interesting phenomenon occurs on the day of the scheduled Federal Open Market Committee

(FOMC) announcement. The authors document large average excess returns on U.S. equities in

anticipation of monetary policy decisions made at scheduled meetings of the Federal Open Market

Committee (FOMC). This phenomenon, which was observed over the last few decades is coined

as the “pre-FOMC drift”. These pre-FOMC returns have increased over time and account for

sizable fractions of total annual realized stock returns. To infer upon this phenomenon, Lucca and

Moench (2015) use a model similar to Equation (1.1.1). Although the “dummy” model approach

is common practice in finance, the method lacks novelty and the ability to detect precisely where

the cumulative returns are statistically increasing and decreasing.

We develop a data-driven approach for detecting intervals of statistically increasing cumulative

returns in the presence of macroeconomic announcements. This is done by finding an interval with

a positive derivative and extending the ideas developed by Liu and Müller (2009). We consider

Cumulative Intradaily Returns (CIDR’s) of the assets. The CIDR’s are defined by

Ri(t) = 100{logPi(t)− logPi(0)}, (1.5.1)

where Pi(t) is the price of the asset at time t on day i. Since Ri(t) ≈ 100(Pi(t) − Pi(0))/Pi(0),

the CIDR’s reflect the shape of the daily price curves. We assume that the observed CIDR curves,
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R1(t), . . . , RN (t), obey the model

Ri(t) = µ(t) + εi(t), i = 1, . . . , N, t ∈ [0, 1], (1.5.2)

where µ is the unknown mean function, µ(t) = ERi(t), and the curves εi are independent identically

distributed random functions with Eε1(t) = 0. In model (1.5.2), the mean function µ is a parameter

to which inference applies. We are specifically interested in estimating the derivative µ′(t) at any

given time point t and finding a confidence interval for this derivative. We use a framework akin to

the local polynomial smoothing, see Section 1.1.4, but suitably modified to apply to model (1.5.2).

A local polynomial estimator is calculated by minimizing the objective function

N∑

i=1

∫ 1

0
{Ri(s)− (α0 + α1(s− t) + · · ·+ αp−1(s− t)p−1)}2K

(s− t

h

)
ds, (1.5.3)

with respect to α0, α1, . . . , αp−1. We denote the estimated derivative by µ̂′(t) = α̂1. Minimizing

(1.5.3) is a different procedure than the standard local polynomial smoothing of a single function

observed with noise. It makes sense only in the context of model (1.5.2), and is similar to the

approach of Liu and Müller (2009).

18



Chapter 2

KPSS TEST FOR FUNCTIONAL TIME SERIES

2.1 Introduction

The KPSS test of Kwiatkowski et al. (1992) has become one of the standard tools in the analysis

of econometric time series. Its null hypothesis is that the series follows the model xt = α+ βt+ ηt,

where {ηt} is a stationary time series. The alternative is the model that includes a random walk:

xt = α + βt +
∑

i≤t ui + ηt, which then dominates the long term behavior of the series. The

alternative is thus a series known in econometrics as a unit root or an integrated series. The

work of Kwiatkowski et al. (1992) was in fact motivated by the unit root tests of Dickey and

Fuller (1979, 1981) and Said and Dickey (1984). In these tests, the null hypothesis is that the

series has a unit root. Since such tests have low power in samples of sizes occurring in many

applications, Kwiatkowski et al. (1992) proposed that trend stationarity should be considered as

the null hypothesis, and the unit root should be the alternative. Rejection of the null hypothesis

could then be viewed as a convincing evidence in favor of a unit root. It was soon realized that

the KPSS test has a much broader utility. For example, Lee and Schmidt (1996) and Giraitis et al.

(2003) used it to detect long memory, with short memory as the null hypothesis; de Jong et al.

(1997) developed a robust version of the KPSS test. The work of Lo (1991) is crucial because

he observed that under temporal dependence, to obtain parameter free limit null distributions,

statistics similar to the KPSS statistic must be normalized by the long run variance rather than by

the sample variance.

We develop extensions of the KPSS test to time series of curves, which we call functional time

series (FTS). Many financial data sets form FTS. The best known and most extensively studied

data of this form are yield curves. Even though they are reported at discrete maturities, in financial
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theory and practice they are viewed as continuous functions, one function per month or per day, see

Figure 2.1. This is because fractions of bonds can be traded which can have an arbitrary maturity

up to 30 years. Other well known examples include intraday price, volatility or volume curves.

Intraday price data are smooth, volatility and volume data are noisy, and must be smoothed before

they can be effectively treated as curves. Figure 2.2 shows series of price curves. Over a specific

period of time, FTS of this type often exhibit a visual trend, and obviously cannot be treated as

stationary. The question is if trend plus stationarity is enough or if a nonstationary component

must be included. If the time period is sufficiently long, trend stationarity will not be a realistic

assumption due to periods of growth and recession and changes in monetary policy of central banks.

As in the context of scalar time series, the question is if a specific finite realization can be assumed

to be generated by a trend stationary model.
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Figure 2.1: Right Panel: Ten consecutive yield curves of bonds issued by the United States Federal
Reserve; Right Panel: a series of 100 of these curves. The red trend line is added for illustration
only; the model under H0 assumes that a function is added at each time period.

We develop the required theory in the framework of functional data analysis (FDA). Application

of FDA to time series analysis and econometrics is not new. Among recent contributions, we note

Antoniadis et al. (2006), Kargin and Onatski (2008), Horváth et al. (2010), Müller et al. (2011),
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Figure 2.2: Left Panel: Ten consecutive price curves of the SP500 index; Right Panel: a series of
100 of these curves. The red trend line is added for illustration only; the model under H0 assumes
that a function is added at each time period

Panaretos and Tavakoli (2013), Kokoszka and Reimherr (2013a), Hörmann et al. (2015), Aue et al.

(2015), with a strong caveat that this list is far from exhaustive. A contribution most closely related

to the present work is Horváth et al. (2014) who developed a test of level stationarity. The FTS

that motivate this work are visually not level stationary, but can be potentially trend stationary.

Incorporating a possible trend changes the structure of functional residuals and leads to different

limit distributions. It also requires the asymptotic analysis of the long run variance function of

these residuals, which was not required in the level stationary case. A spectral approach to testing

stationarity of multivariate time series has recently been developed by Jentsch and Subba Rao

(2015). It is possible that it could be extended to a test of trend stationarity of FTS, but in this

paper we focus on the time domain approach in the spirit of the original work of Kwiatkowski et al.

(1992).

The remainder of the paper is organized as follows. Section 2.2 introduces the problem and

assumptions. Test statistics and their asymptotic distributions are presented in Section 2.3.
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Section 2.4 contains an application to yield curves and a small simulation study. Proofs of the

theorems stated in Section 2.3 are developed in Section 2.5.

2.2 Problem Statement, Definitions and Assumptions

In FDA, the index t is used to denote “time” within a function. For example, for price curves, t

is the time (e.g. in minutes) within a trading day; for yield curves, t is time to maturity. Functional

observations are indexed by n; it is convenient to think of n as a trading day. Using this convention,

the null hypothesis of trend stationarity is stated as follows:

H0 : Xn(t) = µ(t) + nξ(t) + ηn(t). (2.2.1)

The functions µ and ξ correspond, respectively, to the intercept and slope. The errors ηn are also

functions. Under the alternative, the model contains a random walk component:

HA : Xn(t) = µ(t) + nξ(t) +
n∑

i=1

ui(t) + ηn(t). (2.2.2)

Our theory requires only that the sequences {ηn} and {ui} be stationary in a function space, they

do not have to be iid. Our tests have power against other alternatives, for example change–points

or heteroskedasticity. We focus on the alternative (2.2.2) to preserve the context of the scalar KPSS

test.

All random functions and deterministic functional parameters µ and ξ are assumed to be el-

ements of the Hilbert space L2 = L2([0, 1]) with the inner product 〈f, g〉 =
∫ 1
0 f(t)g(t)dt. This

means that the domain of all functional observations, e.g. of the daily price or yield curves,

has been normalized to be the unit interval. If the limits of integration are omitted, integra-

tion is over the interval [0, 1]. All random functions are assumed to be square integrable, i.e.

E ||ηn||2 <∞, E ||un||2 <∞. Further background on random elements of L2 is given in Chapter 2

of Horváth and Kokoszka (2012); a more extensive theoretical treatment is presented in Hsing and

Eubank (2015).

We quantify the weak dependence of the errors via the following assumption:
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Assumption 8. The errors ηj are Bernoulli shifts, i.e. ηj = g(ǫj , ǫj−1, ...) for some measurable

function g : S∞ → L2 and iid functions ǫj, −∞ ≤ j ≤ ∞, with values in a measurable space S.

The functions (t, ω) 7→ ηj(t, ω) are product measurable.

Eη0 = 0 in L2 and E‖η0‖2+δ <∞ for some 0 < δ < 1.

The sequence {ηn}∞n=−∞ can be approximated by ℓ-dependent sequences {ηn,ℓ}∞n=−∞ in the sense

that
∞∑

ℓ=1

(E‖ηn − ηn,ℓ‖2+δ)1/κ <∞ for some κ > 2 + δ, (2.2.3)

where ηn,ℓ is defined by

ηn,ℓ = g(ǫn, ǫn−1, ..., ǫn−ℓ+1, ǫ
∗
n−ℓ, ǫ

∗
n−ℓ−1, . . .)

where the ǫ∗k are independent copies of ǫ0, independent of {ǫi,−∞ < i <∞}.

Assumption 8 has been shown to hold for all known models for temporally dependent func-

tions, assuming the parameters of these models satisfy nonrestrictive conditions, see Hörmann and

Kokoszka (2010, 2012), or Chapter 16 of Horváth and Kokoszka (2012). Its gist is that the depen-

dence of the function g on the iid innovations ǫj far in the past decays so fast that these innovations

can be replaced by their independent copies. Such a replacement is asymptotically negligible in the

sense quantified by (2.2.3). For scalar time series, conditions similar in spirit were used by Pötscher

and Prucha (1997), Wu (2005), Shao and Wu (2007) and Berkes et al. (2011), to name just a few

references. In this paper, Assumption 8 is needed to ensure that the partial sums (2.3.2) can be

approximated by a two–parameter Gaussian process. In particular, (2.2.3) is not used directly; it

is a condition used by Berkes et al. (2013a) to prove Theorem 15. To establish the results of Sec-

tion 2.3, one can, in fact, replace Assumption 8 by the conclusions of Theorem 15 and the existence

of an estimator ĉ(t, s) such that

∫∫
[ĉ(t, s)− c(t, s)]2dtds

P→ 0, as N → ∞, (2.2.4)

23



with the kernel c defined by (2.2.5). Assumption 8 is a general weak dependence condition under

which these conclusions hold. While we expect that our limit results can be proven under different

weak dependence conditions, the general theorems we use have been so far proven only under

Assumption 8.

We now define the bivariate functions appearing in (2.2.4). The long–run covariance function

of the errors ηn is defined as

c(t, s) = Eη0(t)η0(s) +
∞∑

i=1

(Eη0(t)ηi(s) + Eη0(s)ηi(t)) . (2.2.5)

The series defining the function c(t, s) converges in L2([0, 1] × [0, 1]), see Horváth et al. (2013).

The function c(t, s) is positive definite. Therefore there exist eigenvalues λ1 ≥ λ2 ≥ ... ≥ 0, and

orthonormal eigenfunctions φi(t), 0 ≤ t ≤ 1, satisfying

λiφi(t) =

∫
c(t, s)φi(s)ds, 0 ≤ i ≤ ∞. (2.2.6)

To ensure that the φi corresponding to the d largest eigenvalues are uniquely defined (up to a sign),

we assume that

λ1 > λ2 > · · · > λd > λd+1 > 0. (2.2.7)

The eigenvalues λi play a crucial role in our tests. They are estimated by the sample, or empirical,

eigenvalues defined by

λ̂iφ̂i(t) =

∫
ĉ(t, s)φ̂i(s)ds, 0 ≤ i ≤ N, (2.2.8)

where ĉ(·, ·) is an estimator of (2.2.5). We use a kernel estimator similar to that introduced by

Horváth et al. (2013), but with suitably defined residuals in place of the centered observations Xn.

To define model residuals, consider the least squares estimators of the functional parameters ξ(t)

and µ(t) in model (2.2.1):

ξ̂(t) =
1

sN

N∑

n=1

(
n− N + 1

2

)
Xn(t) (2.2.9)
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with

sN =
N∑

n=1

(
n− N + 1

2

)2

(2.2.10)

and

µ̂(t) = X̄(t)− ξ̂(t)
(N + 1

2

)
. (2.2.11)

The functional residuals are therefore

en(t) = (Xn(t)− X̄(t))− ξ̂(t)
(
n− N + 1

2

)
, 1 ≤ n ≤ N. (2.2.12)

Defining their empirical autocovariances by

γ̂i(t, s) =
1

N

N∑

j=i+1

ej(t)ej−i(s), 0 ≤ i ≤ N − 1, (2.2.13)

leads to the kernel estimator

ĉ(t, s) = γ̂0(t, s) +

N−1∑

i=1

K

(
i

h

)
(γ̂i(t, s) + γ̂i(s, t)). (2.2.14)

The following assumption is imposed on kernel function K and the bandwidth h.

Assumption 9. The function K is continuous, bounded, K(0) = 1 and K(u) = 0 if |u| > c, for

some c > 0. The smoothing bandwidth h = h(N) satisfies

h(N) → ∞,
h(N)

N
→ 0, as N → ∞. (2.2.15)

The assumption that K vanishes outside a compact interval is not crucial to establish (2.2.4).

It is a simplifying condition which could be replaced by a sufficiently fast decay condition, at the

cost of technical complications in the proof of (2.2.4).

Recall that if {W (x), 0 ≤ x ≤ 1} is a standard Brownian motion (Wiener process), then the

Brownian bridge is defined by B(x) = W (x) − xW (x), 0 ≤ x ≤ 1. The second–level Brownian

bridge is defined by

V (x) =W (x) +
(
2x− 3x2

)
W (1) +

(
− 6x+ 6x2

)∫ 1

0
W (y)dy, 0 ≤ x ≤ 1. (2.2.16)
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Both the Brownian bridge and the second–level Brownian bridge are special cases of the generalized

Brownian bridge introduced by MacNeill (1978) who studied the asymptotic behavior of partial

sums of polynomial regression residuals. Process (2.2.16) appears as the null limit of the KPSS

statistic of Kwiatkowski et al. (1992). We will see in Section 2.3 that for functional data the

limit involves an infinite sequence of independent and identically distributed second-level Brownian

bridges V1(x), V2(x), . . ..

2.3 Test Statistics and Their Limit Distributions

We will work with the partial sum process of the curves X1(t), X2(t), . . . , XN (t) defined by

SN (x, t) =
1√
N

⌊Nx⌋∑

n=1

Xn(t), 0 ≤ t, x ≤ 1, (2.3.1)

and the partial sum process of the unobservable errors defined by

VN (x, t) =
1√
N

⌊Nx⌋∑

n=1

ηn(t), 0 ≤ t, x ≤ 1. (2.3.2)

Test statistic are based on the partial sum process of residuals (2.2.12). Observe that

1√
N

⌊Nx⌋∑

n=1

en(t) =
1√
N

⌊Nx⌋∑

n=1

(
(Xn(t)− X̄(t))− ξ̂(t)(n− (N + 1)/2)

)

=
1√
N

⌊Nx⌋∑

n=1

Xn(t)−
1√
N

⌊Nx⌋∑

n=1

X̄(t)− ξ̂(t)√
N

⌊Nx⌋∑

n=1

(n− (N + 1)/2)

=
1√
N

⌊Nx⌋∑

n=1

Xn(t)−
⌊Nx⌋
N

1√
N

N∑

n=1

Xn(t)−
ξ̂(t)

2
√
N

(
⌊xN⌋(⌊xN⌋ −N)

)

= SN (x, t)− ⌊Nx⌋
N

SN (1, t)− 1

2
N3/2ξ̂(t)

(
⌊xN⌋
N

(
⌊xN⌋
N

− 1

))
.

A suitable test statistic is therefore given by

RN =

∫∫
Z2
N (x, t)dtdx =

∫
‖ZN (x, ·)‖2dx, 0 ≤ t, x ≤ 1, (2.3.3)

where

ZN (x, t) = SN (x, t)− ⌊Nx⌋
N

SN (1, t)− 1

2
N3/2ξ̂(t)

(⌊Nx⌋
N

(⌊Nx⌋
N

− 1
))

(2.3.4)
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and SN (x, t) and ξ̂(t) are, respectively, defined in equations (2.3.1) and (2.2.9). The null limit

distribution of test statistic (2.3.3) is given in the following theorem.

Theorem 10. If Assumption 8 holds, then under null model (2.2.1),

RN
D→

∞∑

i=1

λi

∫
V 2
i (x)dx,

where λ1, λ2,..., are eigenvalues of the long–run covariance function (2.2.5), and V1, V2, . . . are iid

second–level Brownian bridges.

The proof of Theorem 10 is given in Section 2.5. We now explain the issues arising in the

functional case by comparing our result to that obtained by Kwiatkowski et al. (1992). If all curves

are constant functions (Xi(t) = Xi for t ∈ [0, 1]), the statistic RN given by (2.3.3) is the numerator

of the KPSS test statistic of Kwiatkowski et al. (1992), which is given by

KPSSN =
1

N2σ̂2N

N∑

n=1

S2
n =

RN

σ̂2N
,

where σ̂2N is a consistent estimator of the long-run variance σ2 of the residuals. In the scalar

case, Theorem 10 reduces to RN
d→ σ2

∫ 1
0 V

2(x)dx, where V (x) is a second–level Brownian bridge.

If σ̂2N is a consistent estimator of σ2, the result of Kwiatkowski et al. (1992) is recovered, i.e.

KPSSN
d→
∫ 1
0 V

2(x)dx. In the functional case, the eigenvalues λi can be viewed as long–run

variances of the residual curves along the principal directions determined by the eigenfunctions of

the kernel c(·, ·) defined by (2.2.5). To obtain a test analogous to the scalar KPSS test, with a

parameter free limit null distribution, we must construct a statistic which involves a division by

consistent estimators of the λi. We use only d largest eigenvalues in order not to increase the

variability of the statistic caused by division by small empirical eigenvalues. A suitable statistic is

R0
N =

d∑

i=1

1

λ̂i

∫ 1

0
〈ZN (x, ·), φ̂i〉2dx, (2.3.5)

where the sample eigenvalues λ̂i and eigenfunctions φ̂i are defined by (2.2.8). Statistic (2.3.5)

extends the statistic KPSSN . Its limit distribution is given in the next theorem.
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Theorem 11. If Assumptions 8, 9 and (2.2.7) hold, then under null model (2.2.1),

R0
N

D→
d∑

i=1

∫ 1

0
V 2
i (x)dx,

with the Vi, 1 ≤ i ≤ d, the same as in Theorem 10.

Theorem 11 is proven in Section 2.5. Here we only note that that the additional Assumption 9

is needed to ensure that (2.2.4) holds which is known to imply λ̂i
P→ λi, 1 ≤ i ≤ d.

We conclude this section by discussing the consistency of the tests based on the above theorems.

Theorem 12 implies that under HA statistic RN of Theorem 10 increases like N2. The critical values

increase at the rate not greater than N . The test based on Theorem 10 is thus consistent. The exact

asymptotic behavior under HA of the normalized statistic R0
N appearing in Theorem 11 is more

difficult to study due to almost intractable asymptotics (under HA) of the empirical eigenvalues

and eigenfunctions of the kernel ĉ(·, ·). The precise asymptotic behavior under HA is not known

even in the scalar case, i.e. for the statistic KPSSN . We therefore focus on the asymptotic limit

under HA of the statistic RN whose derivation is already quite complex. This limit involves iid

copies of the process

∆(x) =

∫ x

0
W (y)dy + (3x2 − 4x)

∫ 1

0
W (y)dy + (−6x2 + 6x)

∫ 1

0
yW (y)dy, 0 ≤ x ≤ 1, (2.3.6)

where W (·) is a standard Brownian motion.

Theorem 12. If the errors ui satisfy Assumption 8, then under the alternative (2.2.2),

1

N2
RN

D→
∞∑

i=1

τi

∫ 1

0
∆2

i (x)dx,

where RN is the test statistic defined in (2.3.3) and ∆1,∆2(x), . . . are iid processes defined by

(2.3.6). The weights τi are the eigenvalues of the long-run covariance kernel of the errors ui defined

analogously to (2.2.5) by

cu(t, s) = E[u0(t)u0(s)] +

∞∑

l=1

Eu0(t)ul(s) +

∞∑

l=1

Eu0(s)ul(t). (2.3.7)

The proof of Theorem 12 is given in Section 2.5.
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2.4 Application to Yield Curves and a Simulation Study

In this section, we illustrate the theory developed in this paper with an application to yield

curves followed by a simulation study. Applications to other asset classes, including currency

exchange rates, commodities and equities are presented in Kokoszka and Young (2015b), which

also contain details of numerical implementation.

We consider a time series of daily United States Federal Reserve yield curves constructed from

discrete rates at maturities of 1, 3, 6, 12, 24, 36, 60, 84, 120 and 360 months. Yield curves are

discussed in many finance textbooks, see e.g. Chapter 10 of Campbell et al. (1997) or Diebold and

Rudebusch (2013). The left panel of Figure 2.1 shows ten consecutive yield curves. Following the

usual practice, each yield curve is treated as a single functional observation, and so the yield curves

observed over a period of many days form a functional time series. The right panel of Figure 2.1

shows the sample period we study, which covers 100 consecutive trading days. It shows a downward

trend in interest rates, and we want to test if these curves also contain a random walk component.

The tests were performed using d = 2. The first two principal components of ĉ explain over 95% of

variance and provide excellent visual fit. Our selection thus uses three principal shapes to describe

the yield curves, the mean function and the first two principal components. It is in agreement

with with recent approaches to modeling the yield curve, cf. Hays et al. (2012) and Diebold and

Rudebusch (2013), which are based on the three component Nelson–Siegel model.

We first apply both tests to the time series of N = 100 yield curves shown in the right panel

of Figure 2.1. The test based on statistic RN , yields the P–value of 0.0282 and the test based on

R0
N , 0.0483, indicating the presence of random walk in addition to a downward trend. Extending

the sample by adding the next 150 business days, so that N = 250, yields the respective P–values

0.0005 and 0.0013. In all computation the bandwidth h = N2/5 was used. Examination of different

periods shows that trend stationarity does not hold if the period is sufficiently long. This agrees

with the empirical finding of Chen and Niu (2014) whose method of yield curve prediction, based on
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utilizing periods of approximate stationarity, performs better than predictions based on the whole

sample; random walk is not predictable. Even though our tests are motivated by the alternative of a

random walk component, they reject any serious violation of trend stationarity. Broadly speaking,

our analysis shows that daily yield curves can be treated as a trend stationary functional time series

only over certain short periods of time, generally not longer than a calendar quarter.

We complement our data example with a small simulation study. There is a multitude of data

generating process that could be used. The following quantities could vary: shapes of the mean

and the principal components functions, the magnitude of the eigenvalues, the distribution of the

scores and their dependence structure. In this paper, concerned chiefly with theory, we present a

limited simulation study that validates the conclusions of the data example. We therefore attempt

to simulate curves whose shapes resemble those of the real data, and for which either the null or the

alternative holds. The artificial data is therefore generated according to the following algorithm.

Algorithm 13. [Yield curves simulation under H0]

1. Using real yield curves, calculate the estimates ξ̂(t) and µ̂(t) defined, respectively, by (2.2.9)

and (2.2.11). Then compute the residuals en(t) defined in (2.2.12).

2. Calculate the first two empirical principal components φ̂1(t) and φ̂2(t) using the empirical

covariance function

γ̂0(s, t) =
1

N

N∑

n=1

(en(t)− ē(t))(en(s)− ē(s)). (2.4.1)

This step leads to the approximation

en(t) ≈ a1,nφ̂1(t) + a2,nφ̂2(t), n = 1, 2, . . . , N,

where a1,n and a2,n are the first two functional scores. The functions φ̂1(t) and φ̂2(t) are

treated as deterministic, while the scores a1,n and a2,n form random sequences indexed by n.
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3. To simulate temporally independent residuals en, generate independent in n scores a′1,n ∼

N(0, σ2a1) and a
′
2,n ∼ N(0, σ2a2), where σ

2
a1 and σ2a2 are the sample variances of the real scores,

and set

e′n(t) = a′1,nφ̂1(t) + a′2,nφ̂2(t), n = 1, 2, . . . , N.

To simulate dependent residual curves, generate scores a′1,n, a
′
2,n ∼ AR(1), where each autore-

gressive process has parameter 0.5.

4. Using the estimated functional parameters µ̂(t), ξ̂(t) and the simulated residuals e′n(t), con-

struct the simulated data set

X ′
n(t) = µ̂(t) + ξ̂(t)n+ e′n(t), n = 1, 2, . . . , N. (2.4.2)

Table 2.1 shows empirical sizes based on 1000 replication of the data generating process de-

scribed in Algorithm 13. We use two ways of estimating the eigenvalues and eigenfunctions. The

first one uses the function γ̂0 defined by (2.4.1) (in the scalar case this corresponds to using the

usual sample variance rather than estimating the long–run variance). The second uses the esti-

mated long-run covariance function (2.2.14) with the bandwidth h specified in Table 2.1. The

covariance kernel γ̂0(t, s) is appropriate for independent error curves. The bandwidth h = N1/3

is too small, not enough temporal dependence is absorbed. The bandwidth h = N2/5 gives fairly

consistent empirical size, typically within one percent of the empirical size. The bandwidth h is

not relevant when the kernel γ̂0 is used. The different empirical sizes reflect random variability due

to three different sets of 1000 replications being used. This indicates that with 1000 replications, a

difference of one percent in empirical sizes is not significant.

To evaluate power, instead of (2.4.2), the data generating process is

X ′
n(t) = µ̂(t) + ξ̂(t)n+

n∑

i=1

ui(t) + e′n(t), n = 1, 2, . . . , N, (2.4.3)

where the increments ui are defined by

ui(t) = aNi1 sin
(
πt
)
+ aNi2 sin

(
2πt
)
,
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Table 2.1: Empirical sizes for functional time series generated using Algorithm 13.

Test statistic RN R0
N

DGP iid normal iid normal AR(1) iid normal iid normal AR(1)

N Cov-kernel γ̂0(t, s) ĉ(t, s) ĉ(t, s) γ̂0(t, s) ĉ(t, s) ĉ(t, s)

h = N1/3 6.3 5.6 9.4 5.9 5.2 9.1

100 h = N2/5 5.6 4.4 6.6 5.8 3.6 6.5

h = N1/2 5.1 4.8 3.5 4.5 5.1 2.9

h = N1/3 5.0 4.3 10.2 5.8 5.2 9.4

250 h = N2/5 5.5 4.9 7.2 4.5 4.1 5.6

h = N1/2 5.5 5.9 4.3 4.8 3.4 3.5

h = N1/3 4.8 4.2 7.0 5.9 5.6 7.1

1000 h = N2/5 6.1 6.3 6.3 6.0 5.1 5.7

h = N1/2 5.8 4.9 4.6 5.6 4.7 3.9

with standard normal Nij , j = 1, 2, 1 ≤ i ≤ N, totally independent of each other. The scalar a

quantifies the distance from H0; a = 0 corresponds to H0. For all empirical power simulations, we

use a 5% size critical value and h = N2/5. The empirical power reported in Table 2.2 increases as

the sample size and the distance from H0 increase. It is visibly higher for iid curves as compared

to dependent curves.

2.5 Proofs of the Sesults of Section 2.3

2.5.1 Preliminary results

For ease of reference, we state in this section two theorems which are used in the proofs of the

results of Section 2.3. Theorem 14 is well-known, see Theorem 4.1 in Billingsley (1968). Theorem

15 was recently established in Berkes et al. (2013a).

Theorem 14. Suppose ZN , YN , Y are random variables taking values in a separable metric space

with the distance function ρ. If YN
D→ Y and ρ(ZN , YN )

P→ 0, then ZN
D→ Y .
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Table 2.2: Empirical power based on the DGP (2.4.3) and h = N2/5.

Test statistic RN R0
N

DGP iid normal iid normal AR(1) iid normal iid normal AR(1)

Cov-kernel γ̂0(t, s) ĉ(t, s) ĉ(t, s) γ̂0(t, s) ĉ(t, s) ĉ(t, s)

a = 0.1 N = 125 100.0 89.9 10.1 100.0 87.9 10.4

N = 250 100.0 97.0 27.7 100.0 96.0 21.9

a = 0.5 N = 125 100.0 91.5 83.1 100.0 89.7 71.2

N = 250 100.0 97.3 96.4 100.0 97.4 92.4

In our setting, we work in the metric space D([0, 1], L2) which is the space of right-continuous

functions with left limits taking values in L2([0, 1]). A generic element of D([0, 1], L2) is

z = {z(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1}.

For each fixed x, z(x, ·) ∈ L2, so ‖z(x, ·)‖2 =
∫
z2(x, t)dt < ∞. The uniform distance between

z1, z2 ∈ D([0, 1], L2) is

ρ(z1, z2) = sup
0≤x≤1

|z1(x, ·)− z2(x, ·)‖ = sup
0≤x≤1

{∫
(z1(x, t)− z2(x, t))

2dt
}1/2

.

In the following, we work with the space D([0, 1], L2) equipped with the uniform distance.

Theorem 15. If Assumption 8 holds, then
∑∞

i=1 λi < ∞, and we can construct a sequence of

Gaussian processes ΓN (x, t) such that for every N

{ΓN (x, t), 0 ≤ x, t ≤ 1} D
= {Γ(x, t), 0 ≤ x, t ≤ 1},

where

Γ(x, t) =

∞∑

i=1

λ
1/2
i Wi(x)φi(t), (2.5.1)

and

κN = sup
0≤x≤1

‖VN (x, ·)− ΓN (x, ·)‖ = op(1). (2.5.2)

Recall that the Wi are independent standard Wiener processes, λi and φi are defined in (2.2.6)

and VN (x, t) is defined in (2.3.2).
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2.5.2 Proof of Theorem 10

The proof of Theorem 10 is constructed from several lemmas decomposing the statistic RN into

a form suitable for the application of the results of Section 2.5.1, i.e. to leading and asymptotically

negligible terms. Throughout this section, we assume that the null model (2.2.1) and Assumption 8

hold.

Lemma 1. For the sN is defined in (2.2.10),

sN
N3

→ 1

12
, as N → ∞.

Proof. Identify the left–hand side with a Riemann sum.

Lemma 2. For the functional slope estimate ξ̂ defined by (2.2.9),

ξ̂(t)− ξ(t) =
1

sN

N∑

n=1

(
n− N + 1

2

)
ηn(t).

Proof. Use the identities

N∑

n=1

(
n− N + 1

2

)
= 0,

N∑

n=1

(
n− N + 1

2

)
n =

N∑

n=1

(
n− N + 1

2

)2
= sN .

Lemma 3. The following identity holds

N3/2

sN

N∑

n=1

(
n − N + 1

2

)
ηn(t) =

1

N−3sN

{(N − 1

2N

)
VN (1, t)− 1

N

N−1∑

k=1

VN

( k
N
, t
)}

,

where VN (x, t) is the partial sum process of the errors defined in (2.3.2).

Proof. Notice that

N3/2

sN

N∑

n=1

(
n− N + 1

2

)
ηn(t)

=
1

N−3sN

{
1

N

1√
N

N∑

n=1

nηn(t)−
(N + 1

2N

) 1√
N

N∑

n=1

ηn(t)

}
.
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Using the relation
N∑

n=1

nηn(t) = N
N∑

n=1

ηn(t)−
N−1∑

k=1

k∑

n=1

ηn(t),

we have

N3/2

sN

N∑

n=1

(
n− N + 1

2

)
ηn(t)

=
1

N−3sN

{
1

N

1√
N

(
N

N∑

n=1

ηn(t)−
N−1∑

k=1

k∑

n=1

ηn(t)
)

−
(N + 1

2N

) 1√
N

N∑

n=1

ηn(t)

}

=
1

N−3sN

{
1√
N

N∑

n=1

ηn(t)−
1

N

N−1∑

k=1

1√
N

k∑

n=1

ηn(t)

−
(N + 1

2N

) 1√
N

N∑

n=1

ηn(t)

}

=
1

N−3sN

{(N − 1

2N

)
VN (1, t)− 1

N

N−1∑

k=1

VN

( k
N
, t
)}

.

Lemma 4. The process ZN (x, t) defined by (2.3.4) admits the decomposition

ZN (x, t) = VN (x, t)− ⌊Nx⌋
N

VN (1, t)

− 1

2

1

N−3sN

{(N − 1

2N

)
VN (1, t)− 1

N

N−1∑

k=1

VN

( k
N
, t
)}⌊Nx⌋

N

(
⌊Nx⌋
N

− 1

)
.

Proof. Notice that

ZN (x, t) = SN (x, t)− ⌊Nx⌋
N

SN (1, t)− 1

2
N3/2ξ̂(t)

(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))

=
1√
N

⌊Nx⌋∑

n=1

Xn(t)−
⌊Nx⌋
N

1√
N

N∑

n=1

Xn(t)−
1

2
N3/2ξ̂(t)

(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))

=
1√
N

⌊Nx⌋∑

n=1

(µ(t) + ξ(t)n+ ηn(t))−
⌊Nx⌋
N

1√
N

N∑

n=1

(µ(t) + ξ(t)n+ ηn(t))

− 1

2
N3/2ξ̂(t)

(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))
.
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Therefore,

ZN (x, t) = µ(t)
1√
N

⌊Nx⌋+ ξ(t)
1√
N

⌊Nx⌋∑

n=1

n+
1√
N

⌊Nx⌋∑

n=1

ηn(t)

− µ(t)
1√
N
N

⌊Nx⌋
N

− ⌊Nx⌋
N

1√
N
ξ(t)

N∑

n=1

n− ⌊Nx⌋
N

N∑

n=1

ηn(t)

− 1

2
N3/2ξ̂(t)

(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))

=
1√
N

⌊Nx⌋∑

n=1

ηn(t)−
⌊Nx⌋
N

N∑

n=1

ηn(t)

+ µ(t)
1√
N

⌊Nx⌋ − µ(t)
1√
N

⌊Nx⌋

+ ξ(t)
1√
N

⌊Nx⌋∑

n=1

n− ⌊Nx⌋
N

ξ(t)
1√
N

N∑

n=1

n

− 1

2
N3/2ξ̂(t)

(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))
.

By Lemma 2,

ZN (x, t) =
1√
N

⌊Nx⌋∑

n=1

ηn(t)−
⌊Nx⌋
N

N∑

n=1

ηn(t)

+ ξ(t)
1√
N

⌊Nx⌋(⌊Nx⌋+ 1)

2
− ⌊Nx⌋

N
ξ(t)

1√
N

N(N + 1)

2

− 1

2
N3/2ξ̂(t)

(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))

=
1√
N

⌊Nx⌋∑

n=1

ηn(t)−
⌊Nx⌋
N

N∑

n=1

ηn(t)

− 1

2
N3/2(ξ̂(t)− ξ(t))

(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))

=
1√
N

⌊Nx⌋∑

n=1

ηn(t)−
⌊Nx⌋
N

N∑

n=1

ηn(t)

− 1

2

{
N3/2

sN

N∑

n=1

(
n−

(N + 1

2

))
ηn(t)

}(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))
.
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By Lemma 3,

ZN (x, t) = VN (x, t)− ⌊Nx⌋
N

VN (1, t)

− 1

2

1

N−3sN

{(N − 1

2N

)
VN (1, t)− 1

N

N−1∑

k=1

VN

( k
N
, t
)}⌊Nx⌋

N

(
⌊Nx⌋
N

− 1

)
.

Lemma 5. The following convergence holds

∫ { 1

N

N∑

k=1

VN

( k
N
, t
)
−
∫ 1

0
ΓN (y, t)dy

}2
dt

P→ 0,

where the ΓN are the Gaussian processes in Theorem 15.

Proof. Since VN is a step function with jumps at y = k
N ,

1

N

N∑

k=1

VN

( k
N
, t
)
=

∫ 1

0
VN (y, t)dy.

We must thus show that
∥∥∥
∫ 1

0
VN (y, ·)dy −

∫ 1

0
ΓN (y, ·)dy

∥∥∥ P→ 0.

Using the contractive property of integrals and relation (2.5.2), we have

∥∥∥
∫ 1

0
VN (y, ·)dy −

∫ 1

0
ΓN (y, ·)dy

∥∥∥ ≤
∫ 1

0
‖VN (y, ·)− ΓN (y, ·)‖dy

≤
∫ 1

0
sup

0≤x≤1
‖VN (y, ·)− ΓN (y, ·)‖dy

≤ κN = op(1)

which proves Lemma 5.

Lemma 6. Consider the process Γ(·, ·) defined by (2.5.1) and set

Γ0(x, t) = Γ(x, t) +
(
2x− 3x2

)
Γ(1, t) +

(
− 6x+ 6x2

)∫ 1

0
Γ(y, t)dy. (2.5.3)

Then

∫ 1

0
‖Γ0(x, ·)‖2dx =

∞∑

i=1

λi

∫ 1

0
V 2
i (x)dx.

37



Proof. Expansion (2.5.1) implies that

Γ0(x, t) = Γ(x, t) +
(
2x− 3x2

)
Γ(x, t) +

(
− 6x+ 6x2

)∫ 1

0
Γ(y, t)dy

=
∞∑

i=1

√
λiWi(x)φi(t) +

(
2x− 3x2

) ∞∑

i=1

√
λiWi(1)φi(t)

+
(
− 6x+ 6x2

)∫ 1

0

∞∑

i=1

√
λiWi(y)φi(t)dy

=

∞∑

i=1

√
λi

{
Wi(x) +

(
2x− 3x2

)
Wi(1)

+
(
− 6x+ 6x2

)∫ 1

0
Wi(y)dy

}
φi(t)

=

∞∑

i=1

√
λiVi(x)φi(t),

where V1, V2, . . . are iid second–level Brownian bridges defined in (2.2.16). By the orthonormality

of the eigenfunctions φi,

∫ 1

0
‖Γ0(x, ·)‖2dx =

∫∫
(Γ0(x, t))2dtdx

=

∫∫ ( ∞∑

i=1

√
λiVi(x)φi(t)

)2

dxdt

=

∞∑

i=1

λi

∫ 1

0
V 2
i (x)dx.

Lemma 7. For the processes ZN (·, ·) and Γ0
N (·, ·) defined, respectively, in (2.3.4) and (2.5.3),

sup
0≤x≤1

‖ZN (x, ·)− Γ0
N (x, ·)‖ P→ 0. (2.5.4)

Proof. Using the decomposition given in Lemma 4, ZN (x, t) can be algebraically manipulated to

be expressed as

ZN (x, t) = VN (x, t) + aN (x)VN (1, t) + bN (x)
1

N

N−1∑

k=1

VN

( k
N
, t
)

where

aN (x) =

(
1

2N−3sN

(N − 1

2N

)
− 1

)
⌊Nx⌋
N

− 1

2N−3sN

(N − 1

2N

)(⌊Nx⌋
N

)2
(2.5.5)

38



and

bN (x) =
1

2N−3sN

⌊Nx⌋
N

(⌊Nx⌋
N

− 1
)
.

Notice that

‖ZN (x, ·)− Γ0
N (x, ·)‖ ≤

∥∥∥VN (x, t)− ΓN (x, t)
∥∥∥

+
∥∥∥aN (x)VN (1, t)−

(
2x− 3x2

)
ΓN (1, t)

∥∥∥

+
∥∥∥bN (x)

1

N

N−1∑

k=1

VN

( k
N
, t
)
−
(
− 6x+ 6x2

)∫ 1

0
ΓN (y, t)dy

∥∥∥.

Thus, Lemma 7 will be proven once we have established the following relations:

sup
0≤x≤1

‖VN (x, ·)− ΓN (x, ·)‖ P→ 0; (2.5.6)

sup
0≤x≤1

‖an(x)VN (1, ·)− (2x− 3x2)ΓN (1, ·)‖ P→ 0; (2.5.7)

sup
0≤x≤1

∣∣∣∣∣

∣∣∣∣∣bn(x)
1

N

N−1∑

k=1

VN (
k

N
, ·)− (−6x+ 3x2)

∫ 1

0
ΓN (y, ·)dy

∣∣∣∣∣

∣∣∣∣∣
P→ 0. (2.5.8)

Relation (2.5.6) is the conclusion of Theorem 15. The verification of relation (2.5.7) follows next.

Since

‖an(x)VN (1, ·)− (2x− 3x2)ΓN (1, ·)‖

≤ |an(x)|‖VN (1, ·)− ΓN (1, ·)‖+ |aN (x)− (2x− 3x2)|‖ΓN (1, ·)‖,

relation (2.5.7) will hold once we have verified that

sup
N≥1

{
sup

0≤x≤1
|aN (x)|

}
<∞, (2.5.9)

‖VN (1, ·)− ΓN (1, ·)‖ P→ 0, (2.5.10)

sup
0≤x≤1

|aN (x)− (2x− 3x2)| → 0, (2.5.11)

‖ΓN (1, ·)‖ = OP (1). (2.5.12)
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Relation (2.5.10) follows from Theorem 15. By (2.5.1),

‖ΓN (1, ·)‖2 D
=

∞∑

i=1

λiZ
2
i ,

where the Zi are independent standard normal and
∑∞

i=1 λi < ∞. Thus relation (2.5.12) holds

trivially because the distribution of the left-hand side does not depend on N . To show (2.5.9), set

dN =
1

2N−3sN

(N − 1

2N

)
.

By Lemma 1, dN → 3, and

an(x) = (dN − 1)
⌊Nx⌋
N

− dN

(
⌊Nx⌋
N

)2

.

Since ⌊Nx⌋ ≤ N , |aN (x)| ≤ |dN − 1| + dN , and (2.5.9) follows. To show relation (2.5.11) , first

notice that

|aN (x)− (2x− 3x2)| ≤
∣∣∣∣∣(dN − 1)

⌊Nx⌋
N

− 2x

∣∣∣∣∣+
∣∣∣∣∣dN

(
⌊Nx⌋
N

)2

− 3x2

∣∣∣∣∣.

We must thus show that

sup
0≤x≤1

∣∣∣∣∣(dN − 1)
⌊Nx⌋
N

− 2x

∣∣∣∣∣→ 0, (2.5.13)

and

sup
0≤x≤1

∣∣∣∣∣dN

(
⌊Nx⌋
N

)2

− 3x2

∣∣∣∣∣→ 0. (2.5.14)

To show (2.5.13), first notice that Nx− 1 ≤ ⌊Nx⌋ ≤ Nx, which implies

(dN − 1)x− 2x− 1

N
(dN − 1) ≤ (dN − 1)

⌊Nx⌋
N

− 2x ≤ (dN − 1)x− 2x.

Both sides of the inequality are linear in x which implies the extrema occurs at the boundaries.

Thus for any x ∈ [0, 1], ∣∣∣∣∣(dN − 1)
⌊Nx⌋
N

− 2x

∣∣∣∣∣ ≤ |dN − 3| → 0,

which proves relation (2.5.13). To show (2.5.14), notice that (Nx−1)2 ≤ ⌊Nx⌋2 ≤ (Nx)2, implying

dNx
2 − 3x2 −

(2x
N

− 1

N2

)
dN ≤ dN

(
⌊Nx⌋
N

)2

− 3x2 ≤ dNx
2 − 3x2.
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For any x ∈ [−1, 0], the quadratic functions on each side of the inequality are strictly decreasing.

Hence, the extrema occurs at the boundaries implying for any x ∈ [0, 1],

∣∣∣∣∣dN

(
⌊Nx⌋
N

)2

− 3x2

∣∣∣∣∣ ≤ |dN − 3| → 0.

This proves (2.5.14) and hence relation (2.5.11) holds true. Thus relations (2.5.9), (2.5.10), (2.5.11)

and (2.5.11) hold true which proves relation (2.5.7). That is

sup
0≤x≤1

‖an(x)VN (1, ·)− (2x− 3x2)ΓN (1, ·)‖ P→ 0.

Next is the verification (2.5.8). As in the case of (2.5.7), it suffices to show that

sup
N≥1

{
sup

0≤x≤1
|bN (x)|

}
<∞, (2.5.15)

∥∥∥ 1

N

N−1∑

k=1

VN

( k
N
, ·
)
−
∫ 1

0
ΓN (y, ·)dy

∥∥∥ P→ 0, (2.5.16)

sup
0≤x≤1

|bN (x)− (6x2 − 6x)| → 0, (2.5.17)

∥∥∥
∫ 1

0
ΓN (y, ·)dy

∥∥∥ = OP (1). (2.5.18)

The verification of (2.5.15) and (2.5.17) uses the same arguments as the verification of (2.5.9) and

(2.5.11) so we do not need to present the details. Relation (2.5.16) coincides with Lemma 5, while

relation (2.5.18) follows from Lemma 6. This completes the proof of Lemma 7.

Using the above lemmas, we can now present a compact proof of Theorem 10.

Proof of Theorem 10: Recall that the test statistic RN is defined by RN =
∫∫

Z2
N (x, t)dxdt,

where

ZN (x, t) = SN (x, t)− ⌊Nx⌋
N

SN (1, t)− 1

2
N3/2ξ̂(t)

(⌊Nx⌋
N

(⌊Nx⌋
N

− 1
))

with SN (x, t) and ξ̂(t) are respectively defined in equations (2.3.1) and (2.2.9). Recall that

Γ0
N (x, t) = ΓN (x, t) +

(
2x− 3x2

)
ΓN (1, t) +

(
− 6x+ 6x2

)∫ 1

0
ΓN (y, t)dy,
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and

Γ0(x, t) = Γ(x, t) +
(
2x− 3x2

)
Γ(1, t) +

(
− 6x+ 6x2

)∫ 1

0
Γ(y, t)dy.

From Lemma 7, we know that

ρ(ZN (x, ·),Γ0
N (x, ·)) = sup

0≤x≤1
‖ZN (x, ·)− Γ0

N (x, ·)‖ P→ 0.

By Theorem 15, Γ0
N (x, t)

D
= Γ0(x, t). Thus, Theorem 14 implies that

ZN (x, t)
D→ Γ0(x, t).

By Lemma 6,
∫∫

(Γ0(x, t))2dxdt
d
=

∞∑

i=1

λi

∫ 1

0
V 2
i (x)dx.

Thus, by the continuous mapping theorem,

RN =

∫∫
(ZN (x, t))2dxdt

D→
∞∑

i=1

λi

∫
V 2
i (x)dx,

which proves the desired result. ✷

2.5.3 Proof of Theorem 11

The key fact needed in the proof is the consistency of the sample eigenvalues λ̂i and eigenfunc-

tions φ̂i. The required result, stated in (2.5.19), follows fairly directly from (2.2.4). However, the

verification that (2.2.4) holds for the kernel estimator (2.2.14) is not trivial. The required result

can be stated as follows.

Theorem 16. Suppose Assumption 8 holds with δ = 0 and κ = 2. If H0 and Assumption 9 hold,

then relation (2.2.4) holds.

Observe that assuming that relation (2.2.3) in Assumption 8 holds with δ = 0 and κ = 2

weakens the universal assumption that it holds with some δ > 0 and κ > 2 + δ.

We first present the proof of Theorem 11, which uses Theorem 16, and then turn to a rather

technical proof of Theorem 16.
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Proof of Theorem 11: If Assumptions 8, 9, condition (2.2.7) and H0 hold, then

max
1≤i≤d

|λ̂i − λi| = op(1) and max
1≤i≤d

‖φ̂i − ĉiφi‖ = op(1), (2.5.19)

where ĉ1, ĉ2, ..., ĉd are unobservable random signs defined as ĉi = sign(〈φ̂i, φi〉). Indeed, Theorem 16

states that relation (2.2.4) holds under H0 and Assumptions 8 and 9. Relations (2.5.19) follow from

(2.2.4) and Lemmas 2.2. and 2.3 of Horváth and Kokoszka (2012) which state that the differences

of the eigenvalues and eigenfunctions are bounded by the Hilbert–Schmidt norm of the difference

of the corresponding operators.

Using (2.5.1), it is easy to see that for all N

{〈Γ0
N (x, ·), φi〉, 0 ≤ x ≤ 1, 1 ≤ i ≤ d} D

= {
√
λiVi(x), 0 ≤ x ≤ 1, 1 ≤ i ≤ d}. (2.5.20)

We first show that

sup
0≤x≤1

|〈ZN (x, ·), φ̂i〉 − 〈Γ0
N (x, ·), ĉiφi〉| P→ 0. (2.5.21)

By the Cauchy-Schwarz inequality and Lemma 7, we know

sup
0≤x≤1

|〈ZN (x, ·)− Γ0
N (x, ·), φ̂i〉| ≤ sup

0≤x≤1
‖ZN (x, ·)− Γ0

N (x, ·)‖ = op(1).

Again by the Cauchy-Schwarz inequality and (2.5.19), we have

sup
0≤x≤1

|〈Γ0
N (x, ·), φ̂i − ĉiφi〉| ≤ sup

0≤x≤1
‖Γ0

N (x, ·)‖‖φ̂i − ĉiφi‖ = op(1).

Then using the triangle inequality and inner product properties,

sup
0≤x≤1

|〈ZN (x, ·), φ̂i〉 − 〈ΓN (x, ·), ĉiφi〉|

= sup
0≤x≤1

|〈ZN (x, ·), φ̂i〉 − 〈Γ0
N (x, ·), φ̂i〉+ 〈Γ0

N (x, ·), φ̂i〉 − 〈Γ0
N (x, ·), ĉiφi〉|

≤ sup
0≤x≤1

|〈ZN (x, ·), φ̂i〉 − 〈Γ0
N (x, ·), φ̂i〉|+ sup

0≤x≤1
|〈Γ0

N (x, ·), φ̂i〉 − 〈Γ0
N (x, ·), ĉiφi〉|

= sup
0≤x≤1

|〈ZN (x, ·)− Γ0
N (x, ·), φ̂i〉|+ sup

0≤x≤1
|〈Γ0

N (x, ·), φ̂i − ĉiφi〉|

= op(1),
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which proves relation (2.5.21). Thus by Theorem 14, (2.5.19), (2.5.21), (2.5.20) and the continuous

mapping theorem,

R0
N =

d∑

i=1

1

λ̂i

∫
〈ZN (x, ·), φ̂i〉2dx d→

d∑

i=1

∫
V 2
i (x)dx.

✷

Proof of Theorem 16: Recall definitions of the kernels c and ĉ given, respectively, in (2.2.5)

and (2.2.14). The claim will follow if we can show that

∫∫
{γ̂0(t, s)− E[η0(t)η0(s)]}2dtds = oP (1) (2.5.22)

and
∫∫ {N−1∑

i=1

K

(
i

h

)
γ̂i(t, s)−

∑

i≥1

E[η0(s)ηi(t)]

}2

dtds = oP (1). (2.5.23)

These relations are established in a sequence of Lemmas which split the argument by isolating the

terms related to the estimation of trend from those related to the autocovariances of the ηi. The

latter terms were treated in Horváth et al. (2013), so the present proof focuses on the extra terms

appearing in our context.

Lemma 8. Under model (2.2.1), the following relation holds

γ̂0(t, s) =
1

N

N∑

i=1

(ηi(t)− η̄(t))(ηi(s)− η̄(s))

− 1

NsN

{
N∑

i=1

(
i− N + 1

2

)
ηi(t)

}{
N∑

i=1

(
i− N + 1

2

)
ηi(s)

}
.

Proof. Observe that
∑N

i=1

(
i− N+1

2

)
= 0, and so

N∑

i=1

(
i− N + 1

2

)
i =

N∑

i=1

(
i− N + 1

2

)2
= sN .

Also recall that

ξ̂(t)− ξ(t) =
1

sN

N∑

i=1

(
i− N + 1

2

)
ηi(t) =

1

sN

N∑

i=1

(ηi(t)− η̄(t))
(
i− N + 1

2

)
.
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We can express the residuals en(t) as

ei(t) = (Xi(t)− X̄(t))− ξ̂(t)
(
i− N + 1

2

)

= µ(t) + iξ(t) + ηi(t)−
1

N

N∑

i=1

(µ(t) + iξ(t) + ηi(t))− ξ̂(t)
(
i− N + 1

2

)

= (ηi(t)− η̄(t))− (ξ̂(t)− ξ(t))
(
i− N + 1

2

)
.

Then, by the above relations,

γ̂0(t, s) =
1

N

N∑

i=1

ei(t)ei(s)

=
1

N

N∑

i=1

[
(ηi(t)− η̄(t))− (ξ̂(t)− ξ(t))

(
i− N + 1

2

)][
(ηi(s)− η̄(s))− (ξ̂(s)− ξ(s))

(
i− N + 1

2

)]

=
1

N

N∑

i=1

(ηi(t)− η̄(t))(ηi(s)− η̄(s))

− (ξ̂(s)− ξ(s))
1

N

N∑

i=1

(ηi(t)− η̄(t))
(
i− N + 1

2

)

− (ξ̂(t)− ξ(t))
1

N

N∑

i=1

(ηi(s)− η̄(s))
(
i− N + 1

2

)

+ (ξ̂(t)− ξ(t))(ξ̂(s)− ξ(s))
1

N

N∑

i=1

(
i− N + 1

2

)2

=
1

N

N∑

i=1

(ηi(t)− η̄(t))(ηi(s)− η̄(s))

− 1

NsN

N∑

i=1

(
i− N + 1

2

)
ηi(s)

N∑

i=1

(
i− N + 1

2

)
ηi(t)

− 1

NsN

N∑

i=1

(
i− N + 1

2

)
ηi(t)

N∑

i=1

(
i− N + 1

2

)
ηi(s)

+
1

N

1

sN

N∑

i=1

(
i− N + 1

2

)
ηi(t)

1

sN

N∑

i=1

(
i− N + 1

2

)
ηi(s)sN .

The claim thus follows because the last two terms cancel.

To lighten the notation, in the remainder of this section we set

ki = i− N + 1

2
.
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Lemma 9. Relation (2.5.22) holds under the assumptions of Theorem 16.

Proof. We must show that ‖γ̂0 − γ0‖ P→ 0, where γ0(t, s) = E[η0(t)η0(s)] and the norm is in

L2([0, 1]× [0, 1]). We will use the decomposition of Lemma 8, i.e.

γ̂0(t, s) = γ̃0(t, s)− vN (t, s)

where

γ̃0(t, s) =
1

N

N∑

i=1

(ηi(t)− η̄(t))(ηi(s)− η̄(s))

and

vN (t, s) =
1

NsN

{
N∑

i=1

kiηi(t)

}{
N∑

i=1

kiηi(s)

}
.

It will be enough to show that

‖γ̃0 − γ0‖ P→ 0 and ||vN || P→ 0.

The first convergence is the consistency of the sample covariance function which was proven by

Horváth et al. (2013). The remainder of the proof is devoted to the verification that ||vN || P→ 0.

Since

‖vN‖2 = 1

N2s2N

∫ { N∑

i=1

kiηi(t)
}2
dt

∫ { N∑

i=1

kiηi(s)
}2
ds,

we must show that

‖vN‖ =
1

NsN

∣∣∣∣∣

∣∣∣∣∣

N∑

i=1

kiηi

∣∣∣∣∣

∣∣∣∣∣

2

P→ 0, (2.5.24)

where the norm in (2.5.24) is in L2([0, 1]). Using diagonal summation, we get

∣∣∣∣∣

∣∣∣∣∣

N∑

i=1

kiηi

∣∣∣∣∣

∣∣∣∣∣

2

=

N∑

i=1

N∑

j=1

kikj〈ηi, ηj〉

=

N∑

i=1

k2i ‖ηi‖2 + 2

N−1∑

l=1

N−ℓ∑

i=1

kiki+ℓ〈ηi, ηi+ℓ〉.
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Since
∑N

i=1 k
2
i = sN , we obtain

E
[ N∑

i=1

k2i ‖ηi‖2
]
= sNE‖η0‖2. (2.5.25)

We now turn to the expectation of the second term

E
[N−1∑

l=1

N−ℓ∑

i=1

kiki+ℓ〈ηi, ηi+ℓ〉
]
=

N−1∑

l=1

N−ℓ∑

i=1

kiki+ℓE〈ηi, ηi+ℓ〉.

By stationarity, E〈η0, ηℓ〉 = E〈ηn−ℓ, ηn〉. By Assumption 8, ηn can be approximated by ηn,ℓ which

is independent of ηn−ℓ. Therefore

E〈ηn−ℓ, ηn〉 = E〈ηn−ℓ, ηn,ℓ〉+ E〈ηn−ℓ, ηn − ηn,ℓ〉 = E〈ηn−ℓ, ηn − ηn,ℓ〉,

because E〈ηn−ℓ, ηn,ℓ〉 = 0. Observe that, using the Cauchy-Schwarz inequality twice,

|E〈ηn−ℓ, ηn − ηn,ℓ〉| ≤ E‖ηn−ℓ‖‖ηn − ηn,ℓ‖

≤
{
E‖ηn−ℓ‖2

}1/2{
E‖ηn − ηn,ℓ‖2

}1/2
.

It follows that

∣∣∣∣∣E
[N−1∑

l=1

N−ℓ∑

i=1

kiki+ℓ〈ηi, ηi+ℓ〉
]∣∣∣∣∣ ≤

N−1∑

l=1

N−ℓ∑

i=1

kiki+ℓ

∣∣E〈ηi, ηi+ℓ〉
∣∣

≤
{
E‖ηn−ℓ‖2

}1/2 N−1∑

l=1

N−ℓ∑

i=1

kiki+ℓ

{
E‖ηn − ηn,ℓ‖2

}1/2
.

≤ CN3
∞∑

ℓ=1

{
E‖ηn − ηn,ℓ‖2

}1/2
.

Thus assuming
∞∑

ℓ=1

{
E‖ηn − ηn,ℓ‖2

}1/2
<∞,

we obtain ∣∣∣∣∣E
[N−1∑

l=1

N−ℓ∑

i=1

kiki+ℓ〈ηi, ηi+ℓ〉
]∣∣∣∣∣ ≤ O(N3) = O(sN ). (2.5.26)
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Combining (2.5.25) and (2.5.26), we see that

E‖vN‖ =
1

NsN
E‖

N∑

i=1

kiηi‖2 =
1

NsN
O(sN ) = O(N−1). (2.5.27)

This proves relation (2.5.24).

Lemma 10. Relation (2.5.23) holds under the assumptions of Theorem 16.

Proof. Under H0,

γ̂i(t, s) =
1

N

N∑

j=i+1

ej(t)ej−i(s)

=
1

N

N∑

j=i+1

[
(ηj(t)− η̄(t))− (ξ̂(t)− ξ(t))kj

]
·
[
(ηj−i(s)− η̄(s))− (ξ̂(s)− ξ(s))kj−i

]

=
1

N

N∑

j=i+1

(ηj(t)− η̄(t))(ηj−i(s)− η̄(s))

− 1

NsN

N∑

l=1

klηl(s)
N∑

j=i+1

kj−i(ηj(t)− η̄(t))

− 1

NsN

N∑

l=1

klηl(t)

N∑

j=i+1

kj(ηj−i(s)− η̄(s))

+
1

Ns2N

N∑

l=1

klηl(s)
N∑

m=1

kmηm(t)
N∑

j=i+1

kjkj−i.

Set

γ̄i(s, t) =
1

N

N∑

j=i+1

(ηj(t)− η̄(t))(ηj−i(s)− η̄(s)).

Then

N−1∑

i=1

K

(
i

h

)
γ̂i(t, s) =

N−1∑

i=1

K

(
i

h

)
γ̄i(t, s)

− 1

NsN

N∑

l=1

klηl(s)

N−1∑

i=1

K

(
i

h

) N∑

j=i+1

kj−i(ηj(t)− η̄(t))

− 1

NsN

N∑

l=1

klηl(t)
N−1∑

i=1

K

(
i

h

) N∑

j=i+1

kj(ηj−i(s)− η̄(s))

+
1

Ns2N

N∑

l=1

klηl(s)

N∑

m=1

kmηm(t)

N−1∑

i=1

K

(
i

h

) N∑

j=i+1

kjkj−i.
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Thus, in order to prove Lemma 10, we must establish all of the following relations:

∫∫ (N−1∑

i=1

K

(
i

h

)
γ̄i(t, s)−

∑

i≥1

E[η0(s)ηi(t)]

)2

dtds = oP (1); (2.5.28)

∫∫ (
1

NsN

N∑

l=1

klηl(s)
N−1∑

i=1

K

(
i

h

) N∑

j=i+1

kj−i(ηj(t)− η̄(t))

)2

dsdt = oP (1); (2.5.29)

∫∫ (
1

NsN

N∑

l=1

klηl(t)
N−1∑

i=1

K

(
i

h

) N∑

j=i+1

kj(ηj−i(s)− η̄(s))

)2

dsdt = oP (1); (2.5.30)

∫∫ (
1

Ns2N

N∑

l=1

klηl(s)
N∑

m=1

kmηm(t)
N−1∑

i=1

K

(
i

h

) N∑

j=i+1

kjkj−i

)2

dsdt = oP (1). (2.5.31)

Relation (2.5.28) has been established by Horváth et al. (2013), so it remains to deal with the

remaining three relations which are due to the estimation of the trend.

Relations (2.5.29) and (2.5.30) follow by application of similar arguments, so we display only

the verification of (2.5.29). Observe that the left–hand side of (2.5.29) is equal to

(
1

NsN

∣∣∣∣∣

∣∣∣∣∣

N∑

l=1

klηl

∣∣∣∣∣

∣∣∣∣∣

2)(
1

NsN

∣∣∣∣∣∣

∣∣∣∣∣∣

N−1∑

i=1

K

(
i

h

) N∑

j=i+1

kj−i(ηj − η̄)

∣∣∣∣∣∣

∣∣∣∣∣∣

2)
(2.5.32)

A bound for the expectation of the first factor is given in (2.5.27). In the second factor, the centering

by η̄ contributes asymptotically negligible terms, so this factor has the same order as

FN =
1

NsN

∣∣∣∣∣∣

∣∣∣∣∣∣

N−1∑

i=1

K

(
i

h

) N∑

j=i+1

kj−iηj

∣∣∣∣∣∣

∣∣∣∣∣∣

2

.

Observe that

E

∣∣∣∣∣∣

∣∣∣∣∣∣

N−1∑

i=1

K

(
i

h

) N∑

j=i+1

kj−iηj

∣∣∣∣∣∣

∣∣∣∣∣∣

2

=

N−1∑

i=1

N−1∑

i′=1

K

(
i

h

)(
i′

h

)N−1∑

l=1

N−1∑

l′=1

klkl′E〈ηi+l, ηi′+l′〉

= E‖η0‖2
N−1∑

i=1

N−1∑

i′=1

K

(
i

h

)(
i′

h

)N−1∑

l=1

N−1∑

l′=1

klkl′

= O(N3)

(
N−1∑

i=1

∣∣∣∣K
(
i

h

)∣∣∣∣

)2

Notice that
N−1∑

i=1

∣∣∣∣K
(
i

h

)∣∣∣∣ = h

N−1∑

i=1

1

h

∣∣∣∣K
(
i

h

)∣∣∣∣ = O
(
h

∫ 1

0
|k(u)|du

)
,
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we see that EFN = O(N−4N3h2) = O(N−1h2). Thus, (2.5.32) is of the order of (2.5.27),

OP (N
−1)OP (N

−1h2) = OP

(
h2

N2

)
= op(1).

We now turn to the verification of (2.5.31) whose left–hand side can be written as

{∫ ( 1

sN

N∑

l=1

klηl(t)
)2
dt

}2{N−1∑

i=1

K

(
i

h

)
1

N

N∑

j=i+1

kjkj−i

}2

=
N2

S2
N

‖vN‖2
{

N−1∑

i=1

K

(
i

h

)
1

N

N∑

j=i+1

kjkj−i

}2

.

Using (2.5.27), we see that the order of the above expression is

O

(
N2

N6

)
OP (N

−2){OP (hN
2)}2 = O(N−4)OP (N

−2)O(h2N4) = OP

(
h2

N2

)
= oP (1).

This completes the proof of Lemma 10.

2.5.4 Proof of Theorem 12

The proof of Theorem 12 is constructed from several lemmas.

Lemma 11. Under the alternative (2.2.2), for the functional slope estimate ξ̂ defined by (2.2.9),

N3/2(ξ̂(t)− ξ(t)) =
1

N−3sN

{(N − 1

2N

)
VN (1, t)− 1

N

N−1∑

k=1

VN

( k
N
, t
)}

+
1

N−3sN

{
N∑

n=1

n

N
YN

( n
N
, t
)
−
(N + 1

2N

) N∑

n=1

YN

( n
N
, t
)}

,

where VN (x, t) is the partial sum process of the errors ηn defined in (2.3.2) and YN (x, t) is the

partial sum process of the random walk errors un defined by

YN (x, t) =
1√
N

⌊Nx⌋∑

n=1

un(t). (2.5.33)

Proof. Recall that kn = n−(N+1)/2,
∑N

n=1 kn = 0,
∑N

n=1 nkn = sN . Therefore, under alternative
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(2.2.2),

ξ̂(t)− ξ(t) =
1

sN

N∑

n=1

knXn(t)− ξ(t)

=
1

sN

N∑

n=1

kn

(
µ(t) + nξ(t) +

n∑

i=1

ui(t) + ηn(t)

)
− ξ(t)

=
1

sN

{
µ(t)

N∑

n=1

kn + ξ(t)

N∑

n=1

nkn

}

+
1

sN

N∑

n=1

knηn(t)− ξ(t) +
1

sN

N∑

n=1

kn

n∑

i=1

ui(t)

=
1

sN
ξ(t)sN +

1

sN

N∑

n=1

knηn(t)− ξ(t) +
1

sN

N∑

n=1

kn

n∑

i=1

ui(t)

=
1

sN

N∑

n=1

knηn(t) +
1

sN

N∑

n=1

kn

n∑

i=1

ui(t).

Using definition (2.5.33),

N−3/2

N−3sN

N∑

n=1

kn

n∑

i=1

ui(t) =
N−3/2

N−3sN

{
N∑

n=1

n
n∑

i=1

ui(t)−
(N + 1

2

) N∑

n=1

n∑

i=1

ui(t)

}

=
1

N−3sN

{
N∑

n=1

n

N

1√
N

n∑

i=1

ui(t)−
(N + 1

2N

) N∑

n=1

1√
N

n∑

i=1

ui(t)

}

=
1

N−3sN

{
N∑

n=1

n

N
YN

( n
N
, t
)
−
(N + 1

2N

) N∑

n=1

YN

( n
N
, t
)}

.

The claim follows from the above relations and Lemma 3.

Lemma 12. Under the alternative, ZN (x, t) defined in (2.3.4) can be expressed as

ZN (x, t) = VN (x, t)− ⌊Nx⌋
N

VN (1, t)

− 1

2

1

N−3sN

{(N − 1

2N

)
VN (1, t)− 1

N

N−1∑

k=1

VN

( k
N
, t
)}(⌊Nx⌋

N

(
⌊Nx⌋
N

− 1

))

+

⌊Nx⌋∑

n=1

YN

( n
N
, t
)
− ⌊Nx⌋

N

N∑

n=1

YN

( n
N
, t
)

− 1

2

1

N−3sN

{
N∑

n=1

n

N
YN

( n
N
, t
)
−
(N + 1

2N

) N∑

n=1

YN

( n
N
, t
)}(⌊Nx⌋

N

(
⌊Nx⌋
N

− 1

))
.

51



Proof. Under HA, the partial sum process SN (x, t) can be expressed as

SN (x, t) =
1√
N

⌊Nx⌋∑

n=1

Xn(t)

=
1√
N

⌊Nx⌋∑

n=1

(
µ(t) + nξ(t) +

n∑

i=1

ui(t) + ηn(t)

)

=

(
1√
N
µ(t)⌊Nx⌋+ 1√

N
ξ(t)

⌊Nx⌋(⌊Nx⌋+ 1)

2
+

⌊Nx⌋∑

n=1

1√
N

n∑

i=1

ui(t) +
1√
N

⌊Nx⌋∑

n=1

ηn(t)

)

=

(
1√
N
µ(t)⌊Nx⌋+ 1√

N
ξ(t)

⌊Nx⌋(⌊Nx⌋+ 1)

2
+

⌊Nx⌋∑

n=1

YN

( n
N
, t
)
+ VN (x, t)

)
.

By Lemma 8,

ZN (x, t) = SN (x, t)− ⌊Nx⌋
N

SN (1, t)− 1

2
N3/2ξ̂(t)

(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))

=

(
1√
N
µ(t)⌊Nx⌋+ 1√

N
ξ(t)

⌊Nx⌋(⌊Nx⌋+ 1)

2
+

⌊Nx⌋∑

n=1

YN

( n
N
, t
)
+ VN (x, t)

)

− ⌊Nx⌋
N

(
1√
N
µ(t)N +

1√
N
ξ(t)

N(N + 1)

2
+

N∑

n=1

YN

( n
N
, t
)
+ VN (1, t)

)

− 1

2
N3/2ξ̂(t)

(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))
.

Therefore,

ZN (x, t) =
1√
N
µ(t)⌊Nx⌋ − 1√

N
µ(t)⌊Nx⌋+ 1

2
N3/2ξ(t)

(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))

+

⌊Nx⌋∑

n=1

YN

( n
N
, t
)
− ⌊Nx⌋

N

N∑

n=1

YN

( n
N
, t
)
+ VN (x, t)− ⌊Nx⌋

N
VN (1, t)

− 1

2
N3/2ξ̂(t)

(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))

=

⌊Nx⌋∑

n=1

YN

( n
N
, t
)
− ⌊Nx⌋

N

N∑

n=1

YN

( n
N
, t
)
+ VN (x, t)− ⌊Nx⌋

N
VN (1, t)

− 1

2
N3/2(ξ̂(t)− ξ(t))

(
⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

))
.

Then reexpressing N3/2(ξ̂(t)− ξ(t)), we get the desired expression.
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Since the ui satisfy Assumption 8, an analog of Theorem 15 holds, i.e. there exist Gaussian

processes ΛN equal in distribution to

Λ(x, t) =

∞∑

i=1

τ
1/2
i Wi(x)ψi(t), (2.5.34)

where τi, ψi are, respectively, the eigenvalues and the eigenfunctions of the kernel (2.3.7). Moreover,

for the partial sum process YN defined by (2.5.33),

ln = sup
0≤x≤1

||YN (x, ·)− ΛN (x, ·)|| = op(1). (2.5.35)

Lemma 13. Under the alternative, the following convergence holds

sup
0≤x≤1

‖N−1ZA
N (x, ·)−∆0

N (x, ·)‖ P→ 0,

where the processes ZA
N (·, ·) and ∆0

N (·, ·) are respectively defined by

ZA
N (x, t) =

⌊Nx⌋∑

n=1

YN

( n
N
, t
)
− ⌊Nx⌋

N

N∑

n=1

YN

( n
N
, t
)

(2.5.36)

−1

2

1

N−3sN

{
N∑

n=1

n

N
YN

( n
N
, t
)
−
(N + 1

2N

) N∑

n=1

YN

( n
N
, t
)}(⌊Nx⌋

N

(
⌊Nx⌋
N

− 1

))

and

∆0
N (x, t) =

∫ x

0
ΛN (y, t)dy + (3x2 − 4x)

∫ 1

0
ΛN (y, t)dy + (−6x2 + 6x)

∫ 1

0
yΛN (y, t)dy. (2.5.37)

Proof. Notice that N−1ZA
N (x, t) can be expressed as

1

N
ZA
N (x, t) =

⌊Nx⌋∑

n=1

YN

( n
N
, t
) 1

N
+ fN (x)

N∑

n=1

YN

( n
N
, t
) 1

N
+ gN (x)

N∑

n=1

n

N
YN

( n
N
, t
) 1

N

where

fN (x) =
1

2N−3sN

(N + 1

2N

)⌊Nx⌋
N

(
⌊Nx⌋
N

− 1

)
− ⌊Nx⌋

N

and

gN (x) =
1

2N−3sN

⌊Nx⌋
N

(
1− ⌊Nx⌋

N

)
.
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By the triangle inequality,

‖N−1ZN (x, ·)−∆0
N (x, ·)‖ ≤

∣∣∣∣∣∣

∣∣∣∣∣∣

⌊Nx⌋∑

n=1

YN

( n
N
, ·
) 1

N
−
∫ x

0
ΛN (y, ·)dy

∣∣∣∣∣∣

∣∣∣∣∣∣

+

∣∣∣∣∣

∣∣∣∣∣fN (x)
N∑

n=1

YN

( n
N
, ·
) 1

N
− (3x2 − 4x)

∫ 1

0
ΛN (y, ·)dy

∣∣∣∣∣

∣∣∣∣∣

+

∣∣∣∣∣

∣∣∣∣∣gN (x)
N∑

n=1

n

N
YN

( n
N
, ·
) 1

N
− (−6x2 + 6x)

∫ 1

0
yΛN (y, ·)dy

∣∣∣∣∣

∣∣∣∣∣ .

Thus, Lemma 1 will be proven once we have established the following relations:

sup
0≤x≤1

∣∣∣∣∣∣

∣∣∣∣∣∣

⌊Nx⌋∑

n=1

YN

( n
N
, ·
) 1

N
−
∫ x

0
ΛN (y, ·)dy

∣∣∣∣∣∣

∣∣∣∣∣∣
P→ 0; (2.5.38)

sup
0≤x≤1

∣∣∣∣∣

∣∣∣∣∣fN (x)

N∑

n=1

YN

( n
N
, ·
) 1

N
− (3x2 − 4x)

∫ 1

0
ΛN (y, ·)dy

∣∣∣∣∣

∣∣∣∣∣
P→ 0; (2.5.39)

sup
0≤x≤1

∣∣∣∣∣

∣∣∣∣∣gN (x)
N∑

n=1

n

N
YN

( n
N
, ·
) 1

N
− (−6x2 + 6x)

∫ 1

0
yΓN (y, ·)dy

∣∣∣∣∣

∣∣∣∣∣
P→ 0. (2.5.40)

Relations (2.5.39) and (2.5.40) follow from arguments fully analogous to those used in the proof of

Lemma 7. The verification of (2.5.38) is not difficult either. Observe that

⌊Nx⌋∑

n=1

YN

( n
N
, ·
) 1

N
=

∫ x

0
YN (y, ·)dy − rN (x),

where

rN (x) =

∫ x

⌊Nx⌋/N
YN (y, ·)dy.

Relation

sup
0≤x≤1

∥∥∥
∫ x

0
YN (y, ·)dy −

∫ x

0
ΛN (y, ·)dy

∥∥∥ = op(1)

follows from (2.5.35) and the contractive property of the integral, which also implies that

sup
0≤x≤1

‖rN (x)‖ ≤ sup
0≤x≤1

∫ x

⌊Nx⌋/N
‖YN (y, ·)‖dy

≤ 1

N
sup

0≤x≤1
‖YN (y, ·)‖ = Op(N

−1).

This completes the proof of Lemma 13.
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Lemma 14. Under the alternative, the following convergence holds

sup
0≤x≤1

‖N−1ZN (x, ·)−∆0
N (x, ·)‖ P→ 0,

where the process ZN (·, ·) is defined in (2.3.4) and the process ∆0
N (·, ·) in (2.5.37).

Proof. Under the alternative, Lemma 12 implies that, ZN (x, t) can be expressed as

ZN (x, t) = Z0
N (x, t) + ZA

N (x, t),

where

Z0
N (x, t) = VN (x, t)− ⌊Nx⌋

N
VN (1, t)

− 1

2

1

N−3sN

{(N − 1

2N

)
VN (1, t)− 1

N

N−1∑

k=1

VN

( k
N
, t
)}(⌊Nx⌋

N

(
⌊Nx⌋
N

− 1

))

and ZA
N (x, t) is defined by (2.5.36). Notice under the null hypothesis, Lemma 4 implies that

Z0
N (x, t) = ZN (x, t). Hence from Lemma 7, sup

0≤x≤1
‖Z0

N (x, ·)− Γ0
N (x, ·)‖ P→ 0, implying

sup
0≤x≤1

∣∣∣∣
∣∣∣∣
1

N
Z0
N (x, ·)

∣∣∣∣
∣∣∣∣ =

1

N
Op(1).

Thus the claim follows from Lemma 13 and the triangle inequality.

Lemma 15. Consider the process Λ(·, ·) defined by (2.5.34) and set

∆0(x, t) =

∫ x

0
Λ(y, t)dy + (3x2 − 4x)

∫ 1

0
Λ(y, t)dy + (−6x2 + 6x)

∫ 1

0
yΛ(y, t)dy. (2.5.41)

Then

∫ 1

0
‖∆0(x, ·)‖2dx =

∞∑

i=1

τi

∫ 1

0
∆2

i (x)dx,

where τ1, τ2, . . . are eigenvalues of the long–run covariance function of the ui, i.e. (2.3.7), and

∆1,∆2, . . . are independent copies of the process ∆ defined in (2.3.6).

55



Proof. Expansion (2.5.34) implies that

∆0(x, t) =

∫ x

0
Λ(y, t)dy + (3x2 − 4x)

∫ 1

0
Λ(y, t)dy + (−6x2 + 6x)

∫ 1

0
yΛ(y, t)dy

=

∫ x

0

∞∑

i=1

√
τiWi(y)ψi(t)dy + (3x2 − 4x)

∫ 1

0

∞∑

i=1

√
τiWi(y)ψi(t)dy

+ (−6x2 + 6x)

∫ 1

0
y

∞∑

i=1

√
τiWi(y)ψi(t)dy

=
∞∑

i=1

√
τi

{∫ x

0
Wi(y)dy + (3x2 − 4x)

∫ 1

0
Wi(y)dy

+ (−6x2 + 6x)

∫ 1

0
yWi(y)dy

}
ψi(t)

=

∞∑

i=1

√
τi∆i(x)ψi(t).

The claim then follows from the orthonormality of the eigenfunctions φi.

Proof of Theorem 12: Recall that the test statistic RN is defined by RN =
∫∫

Z2
N (x, t)dxdt,

with ZN defined by (2.3.4). We want to show that under the alternative model (2.2.2),

1

N2
RN

D→
∞∑

i=1

τi

∫ 1

0
∆2

i (x)dx,

where ∆1,∆2, . . . are independent copies of the process defined by (2.3.6) and τ1, τ2, . . . are the

eigenvalues of the long-run covariance kernel (2.3.7). By Lemma 14,

ρ(N−1ZN (x, ·),∆0
N (x, ·)) = sup

0≤x≤1
‖N−1ZN (x, ·)−∆0

N (x, ·)‖ P→ 0.

By construction, ∆0
N

d
= ∆0, so Theorem 14 implies that N−1ZN

d→ ∆0. By Lemma 15,

∫∫
(∆0(x, t))2dxdt

d
=

∞∑

i=1

λi

∫ 1

0
∆2

i (x)dx.

Thus by the continuous mapping theorem,

1

N2
RN =

∫∫
(N−1ZN (x, t))2dxdt

d→
∞∑

i=1

λi

∫
∆2

i (x)dx.

✷
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Chapter 3

TESTING TREND STATIONARITY OF FUNCTIONAL TIME SERIES WITH

APPLICATION TO YIELD AND DAILY PRICE CURVES

3.1 Introduction

Many econometric and financial data sets take the form of a time series of curves, or functions.

The best known and most extensively studied data of this form are yield curves. Even though they

are observed at discrete maturities, in financial theory they are viewed as continuous functions,

one function per month or per day. The yield curves can thus be viewed as time series of curves,

functional time series. Other examples include intraday price, volatility or volume curves. Intraday

price curves are smooth, volatility and volume curves are noisy and must be smoothed before they

can be effectively treated as curves. As with scalar and vector valued time series, it is important

to describe the random structure of a functional time series. A fundamental question, which has

received a great deal of attention in econometric research, is whether the time series has a random

walk, or unit root, component. The present paper addresses this issue in the context of functional

time series by proposing extensions of the KPSS test of Kwiatkowski et al. (1992) and applying

them to several data sets.

The work of Kwiatkowski et al. (1992) was motivated by the fact that unit root tests developed

by Dickey and Fuller (1979, 1981), and Said and Dickey (1984) indicated that most aggregate

economic series had a unit root. In these tests, the null hypothesis is that the series has a unit root.

Since such tests have low power in samples of sizes occurring in many applications, Kwiatkowski

et al. (1992) proposed that trend stationarity should be considered as the null hypothesis, and

the unit root should be the alternative. Rejection of the null could then be viewed as convincing

evidence in favor of the unit root hypothesis. It was soon realized that the KPSS test of Kwiatkowski
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et al. (1992) has a much broader utility. For example, Lee and Schmidt (1996) and Giraitis et al.

(2003) used it to detect long memory, with short memory as the null hypothesis; de Jong et al.

(1997) developed a robust version of the KPSS test. The work of Lo (1991) is crucial because

he observed that under temporal dependence, to obtain parameter–free limit null distributions,

statistics similar to the KPSS statistic must be normalized by the long run variance rather than by

the sample variance.

In the functional setting, the null hypothesis of trend stationarity is stated as follows:

H0 : Xn(t) = µ(t) + nξ(t) + ηn(t), (3.1.1)

where n is the serial number of the day in our applications, and t refers to “time” for each function.

For example, for the intraday price curves, t is the time within a trading day, measured in minutes or

at an even finer resolution. For the yield curves, t does not correspond to physical time but to time

until expiration, the maturity horizon of a bond. The functions µ and ξ correspond, respectively,

to the intercept and slope. The errors ηn are also functions which model random departures of the

observed functions Xn from a deterministic model. Under the alternative, the model contains a

random walk component:

HA : Xn(t) = µ(t) + nξ(t) +

n∑

i=1

ui(t) + ηn(t), (3.1.2)

where u1, u2, . . . are mean zero identically distributed random functions.

Our approach to testing exploits the ideas of functional data analysis (FDA), mostly those

related to functional principal component expansions; several monographs, e.g. Ramsay and Sil-

verman (2005) and Horváth and Kokoszka (2012), explain them in detail. Application of FDA

methodology in an econometric context is not new. Among others, Kargin and Onatski (2008)

studied prediction of yield curves, Müller et al. (2011) considered functional modeling of volatility,

Kokoszka et al. (2014) used a regression type model to explain the shapes of price curves. A con-

tribution most closely related to the present work is that of Horváth et al. (2014) who developed
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a test of level stationarity. Incorporating a possible trend leads to different limit distributions and

more complex numerical implementations.

The remainder of the paper is organized as follows. After introducing the required concepts

and notation in Section 3.2, we present in Section 3.3 the large sample results needed to construct

the tests. The resulting testing procedures are described in Section 3.4. Section 3.5 presents their

applications to data representing bond, equity, forex and commodity markets. In this last section,

we also examine and discuss finite sample properties of the tests.

3.2 Preliminaries

To understand the construction of the tests in the setting of functional time series, we must

introduce some notation and definitions. This is the objective of the present section.

All random functions and deterministic functional parameters µ and ξ are assumed to be el-

ements of the Hilbert space L2 = L2([0, 1]) with the inner product 〈f, g〉 =
∫ 1
0 f(t)g(t)dt. This

means that the domain of all functional observations, e.g. of the daily price or yield curves, has

been normalized to be the unit interval. If the limits of integration are omitted, integration is

over the interval [0, 1]. All random functions are assumed to be square integrable, i.e., E ||ηn||2 <

∞, E ||un||2 <∞, where the norm is generated by the inner product, i.e. ||f ||2 =
∫
f2(t)dt.

Kwiatkowski et al. (1992) assumed that the errors ηn are iid, but subsequent research extended

their work to errors which form a stationary time series, see, e.g., Giraitis et al. (2003) and the

references therein. In the case of scalar observations, temporal dependence can be quantified in

many ways, e.g., via structural, mixing or cumulant conditions, and a large number of asymptotic

results established under such assumptions can be used. For functional time series, the correspond-

ing results are much fewer and fall into two categories: 1) those derived assuming a linear, ARMA

type, structure, see, e.g., Bosq (2000); 2) those assuming a nonlinear moving average represen-

tation (Bernoulli shifts) with the decay of dependence specified by a moment condition. We have

established the asymptotic validity of our tests assuming very general conditions falling into the
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second category. Detailed formulations of these conditions are presented in Kokoszka and Young

(2015a). In essence, the error functions ηn and ui need not be iid, but merely must form stationary

and weakly dependent sequences.

Next we define the long–run covariance function of the errors ηn and its estimator. The long–run

covariance function is defined as

c(t, s) =Eη0(t)η0(s) (3.2.1)

+
∞∑

i=1

(Eη0(t)ηi(s) + Eη0(s)ηi(t)) .

The series defining the function c(t, s) converges in L2([0, 1] × [0, 1]), see Horváth et al. (2013).

The function c(t, s) is positive definite. Therefore there exist eigenvalues λ1 ≥ λ2 ≥ ... ≥ 0, and

orthonormal eigenfunctions φi(t), 0 ≤ t ≤ 1, satisfying

λiφi(t) =

∫
c(t, s)φi(s)ds, 0 ≤ i ≤ ∞. (3.2.2)

The eigenvalues λi play a crucial role in our tests. They are estimated by the sample, or empirical,

eigenvalues defined by

λ̂iφ̂i(t) =

∫
ĉ(t, s)φ̂i(s)ds, 0 ≤ i ≤ N, (3.2.3)

where ĉ(·, ·) is an estimator of (3.2.1), and N is the sample size of the functional time series. We use

a kernel estimator similar to that introduced by Horváth et al. (2013), but with suitably defined

residuals in place of the centered observations Xn. To define model residuals, consider the least

squares estimators of the functional parameters ξ(t) and µ(t) in model (3.1.1):

ξ̂(t) =
1

sN

N∑

n=1

(
n− N + 1

2

)
Xn(t) (3.2.4)

with

sN =

N∑

n=1

(
n− N + 1

2

)2
(3.2.5)

and

µ̂(t) = X̄(t)− ξ̂(t)
(N + 1

2

)
. (3.2.6)
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The functional residuals are therefore

en(t) = (Xn(t)− X̄(t))− ξ̂(t)
(
n− N + 1

2

)
, (3.2.7)

where 1 ≤ n ≤ N . Defining their empirical autocovariances by

γ̂i(t, s) =
1

N

N∑

j=i+1

ej(t)ej−i(s), 0 ≤ i ≤ N − 1, (3.2.8)

leads to the kernel estimator

ĉ(t, s) = γ̂0(t, s) +
N−1∑

i=1

K

(
i

h

)
(γ̂i(t, s) + γ̂i(s, t)). (3.2.9)

It can be shown that under the usual assumptions on the kernel function K and the bandwidth h

(h→ ∞, h/N → 0),
∫∫

[ĉ(t, s)− c(t, s)]2dtds
P→ 0, as N → ∞, (3.2.10)

details are presented in Kokoszka and Young (2015a).

We conclude this section by stating the definitions of Gaussian stochastic processes which are

needed to construct the limit distributions of the test statistics. Recall that if {W (x), 0 ≤ x ≤ 1}

is a standard Brownian motion (Wiener process), then the Brownian bridge is defined by B(x) =

W (x)− xW (x), 0 ≤ x ≤ 1. The second–level Brownian bridge is defined by

V (x) =W (x) +
(
2x− 3x2

)
W (1) (3.2.11)

+
(
− 6x+ 6x2

)∫ 1

0
W (y)dy, 0 ≤ x ≤ 1.

Both the Brownian bridge and the second–level Brownian bridge are special cases of the generalized

Brownian bridge introduced by MacNeill (1978) who studied the asymptotic behavior of partial

sums of polynomial regression residuals. Process (3.2.11) appears as the null limit of the KPSS

statistic of Kwiatkowski et al. (1992). We will see in Section 3.3 that for functional data the

limit involves an infinite sequence of independent and identically distributed second-level Brownian

bridges V1(x), V2(x), . . ..
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3.3 Large sample limits

Horváth et al. (2014) developed tests of level–stationarity of a functional time series, i.e., of the

null hypothesis Xn(t) = µ(t) + ηn(t), using the partial sum process

UN (x, t) =
1√
N

⌊Nx⌋∑

n=1

(
Xn(t)− X̄(t)

)

= SN (x, t)− ⌊Nx⌋
N

SN (1, t),

where SN (x, t) is the partial sum process of the curves X1(t), X2(t), . . . , XN (t) is defined by

SN (x, t) =
1√
N

⌊Nx⌋∑

n=1

Xn(t), 0 ≤ t, x ≤ 1. (3.3.1)

The process UN (x, t) has the form of a functional Brownian bridge. Their main statistic

TN =

∫∫
U2
N (x, t)dtdx

=

∫
‖UN (x, ·)‖2dx, 0 ≤ t, x ≤ 1,

is asymptotically distributed, under the null, as
∑∞

i=1 λi
∫
B2

i (x)dx, where λ1, λ2, . . . are eigenvalues

of the long–run covariance function of the observations Xn, and B1, B2, . . . are iid Brownian bridges.

In the case of trend stationarity, a different distribution arises; the Bi must be replaced by second

level Brownian bridges, and the λi are defined differently. The remainder of this section explains

the details.

The test statistic for the trend-stationary case is based on the partial sum process of residuals

(3.2.7), i.e., on the two–parameter process

ZN (x, t) =
1√
N

⌊Nx⌋∑

n=1

en(t). (3.3.2)

A suitable test statistic is given by

RN =

∫∫
Z2
N (x, t)dtdx (3.3.3)

=

∫
‖ZN (x, ·)‖2dx, 0 ≤ t, x ≤ 1.
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It can be shown, Kokoszka and Young (2015a), that under the null hypothesis,

RN
d→

∞∑

i=1

λi

∫
V 2
i (x)dx, (3.3.4)

where λ1, λ2, . . . are the eigenvalues of the long–run covariance function (3.2.1), and V1, V2, . . . are

iid second–level Brownian bridges.

We now explain the issues arising in the functional case by comparing our result to that obtained

by Kwiatkowski et al. (1992). If all curves are constant functions (Xi(t) = Xi for t ∈ [0, 1]), the

statistic RN given by (3.3.3) is the numerator of the KPSS test statistic of Kwiatkowski et al.

(1992), which is given by

KPSSN =
1

N2σ̂2N

N∑

n=1

S2
n =

RN

σ̂2N
,

where σ̂2N is a consistent estimator of the long-run variance σ2 of the residuals. In the scalar

case, (3.3.4) reduces to RN
d→ σ2

∫ 1
0 V

2(x)dx, where V (x) is a second–level Brownian bridge.

If σ̂2N is a consistent estimator of σ2, the result of Kwiatkowski et al. (1992) is recovered, i.e.

KPSSN
d→
∫ 1
0 V

2(x)dx. In the functional case, the eigenvalues λi can be viewed as long–run

variances of the residual curves along the principal directions determined by the eigenfunctions of

the kernel c(·, ·) defined by (3.2.1). To obtain a test analogous to the scalar KPSS test, with a

parameter free limit null distribution, we must construct a statistic which involves a division by

consistent estimators of the λi. We use only d largest eigenvalues in order not to increase the

variability of the statistic caused by division by small empirical eigenvalues. A suitable statistic is

R0
N =

d∑

i=1

1

λ̂i

∫ 1

0
〈ZN (x, ·), φ̂i〉2dx, (3.3.5)

where the sample eigenvalues λ̂i and eigenfunctions φ̂i are defined by (3.2.3). Statistic (3.3.5)

extends the statistic KPSSN . It can be shown that under suitable assumptions, Kokoszka and

Young (2015a),

R0
N

d→
d∑

i=1

∫ 1

0
V 2
i (x)dx, (3.3.6)

with the Vi, 1 ≤ i ≤ d, the same as in (3.3.4).

Section 3.4 describes how the tests based on relations (3.3.4) and (3.3.6) are implemented.
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3.4 Algorithmic description of the test procedures

This section provides step–by–step descriptions of the test procedures based on limit relations

(3.3.4) and (3.3.6).

Algorithm 17. [Monte Carlo test based on relation (3.3.4)]

1. Estimate the null model (3.1.1) and compute the residuals defined in equation (3.2.7).

2. Select kernel K and a bandwidth h in (3.2.9) and compute the eigenvalues λ̂i φ̂i, 1 ≤ i ≤ N,

defined by (3.2.3).

3. Simulate a large number, say G = 10, 000, of vectors [V1, V2, . . . , VN ] consisting of independent

second level Brownian bridge processes Vi defined in (3.2.11). Find the 95th percentile, Rcritical,

of the G replications of

R⋆
N =

N∑

i=1

λ̂i

∫ 1

0
V 2
i (x)dx.

4. Compute the test statistic RN defined in (3.3.3). If RN ≥ Rcritical, reject H0 at the 5%

significance level.

In most applications, the λ̂i decay very quickly to zero, so if N is large, it can be replaced in

Algorithm 17 by a smaller number, e.g by d = 20, and the empirical distribution of the R⋆
N can be

replaced by that of the R⋆
d. In Algorithm 17 the critical value must be obtained via Monte Carlo

simulations for each data set. In Algorithm 18, tabulated critical values can be used. These depend

on the number d of the functional principal components used to construct statistic R0
N . Typically

d is a small, single digit, number. Table 3.1 lists selected critical values. They have been obtained

by simulating G = 10, 000 vectors [V1, V2, . . . , Vd] and finding the percentiles of the G replications

of

R0(d) =

d∑

i=1

∫ 1

0
V 2
i (x)dx. (3.4.1)

Algorithm 18. [Asymptotic test based on relation (3.3.6)]
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Table 3.1: Critical values of the distribution of the variable R0(d) given by (3.4.1).

d 1 2 3 4 5

10% 0.1201 0.2111 0.2965 0.3789 0.4576

Size 5% 0.1494 0.2454 0.3401 0.4186 0.5068

1% 0.2138 0.3253 0.4257 0.5149 0.6131

d 6 7 8 9 10

10% 0.5347 0.6150 0.6892 0.7646 0.8416

Size 5% 0.5909 0.6687 0.7482 0.8252 0.9010

1% 0.6960 0.7799 0.8574 0.9487 1.0326

1. Perform steps 1 and 2 of Algorithm 17.

2. Choose the smallest d such that
∑

i≤d λ̂i/
∑

i≤N λ̂i > 0.85.

3. Calculate the statistic R0
N given by (3.3.5) and reject H0 if R0

N > R0
critical

, with the critical

value given in Table 3.1.

The 85% rule in Step 2 is a rule of thumb; asking for 85% of the variance to be explained is

based on good empirical results, leading to our choice above. In some applications, Step 2 may be

replaced by a selection of d based on a visual fit of the truncated principal component expansion

X(d)
n (t) = µ̂(t) +

d∑

j=1

〈
Xn, φ̂j

〉
φ̂j(t)

to the observed curves Xn(t). In other applications, existing theory or experience may support

certain choices of d. This is the case for the yield curves, which we use to illustrate the application

of our tests (mean level plus d = 2 principal components). For financial data, d is generally small,

with d = 2, 3, 4 being the typical values. However, for other types of data, e.g. for environmental

data, d exceeding 10 may be needed. In such cases, caution is recommended in the application of

Algorithm 18 as the resulting test may be numerically and statistically unstable due to the division

by small λ̂j which may exhibit large sampling variability.
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An important step is the choice of h needed to estimate the long run covariance function. A

great deal of research in this direction has been done for scalar and vector time series. For functional

time series, the method proposed by Horváth et al. (014b) often gives good results. It uses the flat

top kernel

K(t) =





1, 0 ≤ t < 0.1

1.1− |t|, 0.1 ≤ t < 1.1

0, |t| ≥ 1.1

(3.4.2)

advocated by Politis and Romano (Politis and Romano (1996), Politis and Romano (1999)) and

Politis (2011), and a data–driven selection of h. This method performs well if the series length

N is larger than several hundred, longer than the series we consider. In the simulations reported

in Kokoszka and Young (2015a) a deterministic bandwidth h = N2/5 (combined with the flat top

kernel) produced good size and power. The optimal selection of h is not a focus of this paper, this

complex issue must be investigated in a separate work. As in the scalar case, it is however unlikely

that a selection procedure that is uniformly optimal for all dependence structures can be found. In

testing problems, it is useful to use several values of h and trust results which do not depend on h

in a reasonable range.

3.5 Application to yield and daily price curves

In this section, we apply the test procedures of Section 3.4 to several financial data sets which

can be viewed as time series of functions. The most extensively studied series of this type is the

series of yield curves. In the past, the series of monthly yield curves have been typically studied,

but in recent years high quality data at the daily frequency have become available. On a given

day, a yield curve shows the yield (interest) earned on a fixed income instrument as a function of

maturity. In most economic studies, these are yields on bills and bonds issued by central banks.

The shape and level of these curves reflect the expectations of investors on the future direction of

a specific economic area, see e.g., Chapter 10 of Campbell et al. (1997) or Diebold and Rudebusch

(2013). Figures 3.1 (left panel) and 3.2 show, respectively, five consecutive yield curves and two sets
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of 250 yield curves. The question we want to answer is whether the time series of yield curves can

be treated as stationary time series with trend, or if they contain a random walk component. Visual

examination and economic interpretation of these data leads to the conclusion that a pure trend

model will not hold over very long periods of time which include periods of growth and recession

and changes in central bank policies. Over shorter periods of time, the trend model may however

hold, and may be useful to investors in fixed income securities.

The second type of functional time series we study are daily price curves like those shown in the

right panel of Figure 3.1. As noted in the introduction, whether a time series of closing prices on a

specific asset contains a random walk (is a unit root process) has been one of the most extensively

studied topics in finance. In contrast to these studies, we consider the series of price curves. Out of

a large number of assets that are of interest, we selected the S&P500 index, the US dollar index and

light crude oil futures. These assets represent, respectively, the equity, currency and commodity

markets. As for the bond market, trend stationarity will not hold over long periods of time, but

our tests can identify periods for which it does hold.

The main objective of the empirical analysis presented in this section is to uncover commonalities

and differences between the various classes of assets with respect to the trend behavior of specific

daily functions. The analysis will also illustrate the statistical properties of the tests we propose.

3.5.1 Data description

As an example of the time series of yield curves we use the daily United States Federal Reserve

yield curves defined for maturities of 1, 3, 6, 12, 24, 36, 60, 84, 120 and 360 months. The available

data covers all business days from January 2001 to December 2013.

The second data set is the Standard & Poor’s 500 financial index (S&P500) in one minute

resolution. The index is a weighted average of stock values of the largest 500 U.S. companies. At

each trading day, we consider a price curve. The last value on day n − 1 is not the same as the

first value on day n. An overnight jump of over half a percent is not unusual. Figure 3.3 shows
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Figure 3.1: Left: five consecutive yield curves. Right:prices of the S&P 500 index over five consec-
utive days.

Figure 3.2: Consecutive yield curves over two time periods. Vertical lines show the location of
sample sizes N = 50, 100, 150, 200, 250.
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Figure 3.3: S&P 500 index for two different time periods.

the S&P500 index over two periods. The available data cover the period of 23 years from January

1989 to December 2012.

The third data set is the U.S. dollar index. As a weighted average of exchange rates against

several major currencies, it measures the value of the U.S. dollar relative to a collection of other

foreign currencies. A higher index indicates that the U.S. dollar is stronger compared to foreign

currencies. The index is traded and used for the construction of derivative instruments. Similar

to the S&P500 index, we use values in one minute resolution and consider one day as a single

functional observation. However, instead of considering business days, we only exclude Saturdays

for this data set. Figure 3.4 shows the U.S. dollar index over two different sampling periods. The

available data cover the period of 23 years from January 1989 to December 2012.

The fourth data set consists of light crude oil futures. Light sweet crude oil futures and options

are one of the worlds most highly traded energy products. Similar to the S&P500 and the U.S. dollar

index, we use minute–by–minute prices, and consider one day as a single functional observation.

We exclude only Saturdays for this data set. Figure 3.5 shows the light crude oil futures over two

different sampling periods. The available data cover the period of 22 years from January 1989 to
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Figure 3.4: U.S. dollar index for two different time periods.

Figure 3.5: Light crude oil futures over two different time periods.
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December 2011.

In Section 3.5.2, we show how the P–values broadly depend on the length of the series, N , and

on the time period. We complement this analysis by focusing in Section 3.5.3 on selected time

periods, those shown in Figures 3.2, 3.3, 3.4 and 3.5. This additional, more detailed analysis allows

us to gain insights about the properties of the tests.

3.5.2 Long term trend characteristics of the curves

In this section, we display the P–values of the Monte Carlo test described in Algorithm 17

applied to the data described in Section 3.5.1. We also computed the P–values for the test based

on Algorithm 18. While the P–values for the two tests are different, their general patterns are

very similar, so to conserve space we focus on Algorithm 17 with the bandwith h = N2/5. We

take a closer look at the differences between the two algorithms and the effect of the bandwidth in

Section 3.5.3.

The main finding of our analysis is that for time periods of length N = 100 days, what cor-

responds roughly to the number of business days in four months, it is not uncommon that the

null hypothesis of trend stationarity is not rejected. For periods covering the whole year, the null

hypothesis is generally rejected. However, the proportion and temporal pattern of rejections are

different for different assets. For example, for the yield curves there are hardly any period when

H0 can be accepted. This implies that this functional time series is not stationary even if a de-

terministic trend is allowed. This finding has implications for the prediction of yield curves; many

methods assume a stationary model, some form of autoregression for factor coefficients. However,

Chen and Niu (2014) obtained better prediction by assuming that the yield curves form only a

locally stationary functional time series, i.e. stationary only on short subintervals. Our inferential

procedures confirms the validity of such an approach. In the remainder of this section, we sys-

tematically present and discuss the results for all four data sets. For each asset, we consider all

available consecutive, nonoverlapping periods of N = 100 and N = 300 days.
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Figure 3.6: P–values of the test based on Algorithm 17 applied to the Treasury Yield Curves.
The plot on the left shows thirty 100 day periods and the plot on the right shows ten 300 day
periods.

Figure 3.6 exhibits the pattern of P–values for the Daily United States Federal Reserve yield

curves. Focusing first on periods of length N = 100, we see that 23 out of the 30 periods show

P–values below the significance level of 0.05. As the sample size increases to N = 300, we see that 9

out of the 10 longer periods have P–values below the significance level of 0.05. As noted above, an

overriding conclusion is that the yield curves do not follow a stationary model even with a trend,

and a presence of a random walk component or some other changes in the the stochastic structure

must be taken into account.

Figure 3.7 shows the P–values for the S&P500 curves. For N = 100, 32 out of the 60 periods

have P–values smaller than 0.05. In contrast to the yield curves, this shows that a stationary model

with a trend can be suitable for many periods extending over several months; in most cases this

corresponds to a persistent bull market, cf. Figure 3.3. However, as the sample size increases to

N = 300, we see that 16 out of the 20 longer periods have P–values below 0.05; a bull market

cannot last forever.

Figure 3.8 shows the P–values for the U.S. dollar index. For N = 100, 44 out of the 60 periods
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Figure 3.7: P–values of the test described in Algorithm 17 applied to the S&P500 index. The
plot on the left shows sixty 100 day periods and the plot on the right shows twenty 300 day periods.

have P—values below 0.05. As the sample size increases to N = 300, we see that 17 out of the 20

longer periods have P–values smaller than 0.05. In terms of the trend behavior, the currency index

is somewhere between the yield curves and the equity index. There are periods of trend stationarity

but they are less frequent than for equities.

Finally, we turn to the light crude oil futures. Figure 3.9 shows the P–values. For N = 100, 42

out of the 60 periods have P–values smaller than 0.05. In this case, an interesting temporal pattern

of these P–values can be seen. Starting from 1997, there are periods with increasing P–values,

indicting that a trend model might often be suitable. This agrees with a persistent, almost linear,

decline in prices from December 1996 to December 1998 followed by a long rise from January 1999

up to the summer of 2008, just before the financial crisis. These long periods were punctuated by

short periods of reversals, so only in 3 out of 20 longer periods a trend model is accepted.

3.5.3 Properties of the tests

In this section, we elaborate on the findings of Section 3.5.2 in two ways: 1) we zoom in on

specific time periods, those displayed in Figures 3.2, 3.3, 3.4 and 3.5, to establish a more direct
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Figure 3.8: P–values of the test described Algorithm 17 applied to the U.S. dollar index. The
plot on the left shows sixty 100 day periods and the plot on the right shows twenty 300 day periods.

connection between the data and the P–values, 2) we apply to these fewer periods both algorithms

of Section 3.4 and use a selection of bandwiths h. The results are shown in Tables 3.2, 3.3, 3.4 and

3.5.

We begin by analyzing Table 3.2 which pertains to the yield curves shown in Figure 3.2. As

for most other periods, the null hypothesis is rejected, except for a few cases corresponding to the

bandwidth h = N1/2. Simulations reported in Kokoszka and Young (2015a) show that for artificial

data which resemble the yield curves, this bandwidth is too large. It makes the statistic too small

and so the tests are too conservative. We also see that while the test based on the Monte Carlo

distribution, statistic RN , and the pivotal test based on R0
N generally give different P–values, the

differences are small, and generally do not affect significance statements. Turning to the S&P500

index, for the two periods shown in Figure 3.3, Table 3.3 shows rejections, except for the first 100

days in the left panel of Figure 3.3. In some cases these rejections are weak if h = N1/2; both tests

again give the same conclusions in almost all cases. The conclusions for the U.S. Dollar index and

Oil Futures are qualitatively the same as for the S&P500 data.
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Figure 3.9: P–values of the test described Algorithm 17 applied to the Oil Futures. The plot on
the left shows sixty 100 day periods and the plot on the right shows twenty 300 day periods.

The conclusion is that bandwidths h = N1/3 or h = N2/5 can be used for sample sizes in the

range from 50 to 300. Both algorithms presented in Section 3.4 give practically the same results.

We note that for the data we studied d was small, typically 2 or 3. If d is large, Algorithm 18 must

be used with caution, as explained in Section 3.4.
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Table 3.2: P–values of the tests of Section 3.4 applied to Treasury Yield Curves. The data are
shown in Figure 3.2.

Time period Sample size Bandwidth RN R0

N

N1/3 0.0200 0.0206

01/03/2006 – 03/15/2006 N = 50 N2/5 0.0432 0.0561

N1/2 0.0878 0.1361

N1/3 0.0022 0.0024

01/03/2006 – 05/25/2006 N = 100 N2/5 0.0108 0.0116

N1/2 0.0410 0.0661

N1/3 0.0003 0.0005

01/03/2006 – 08/07/2006 N = 150 N2/5 0.0013 0.0007

N1/2 0.0117 0.0086

N1/3 0.0000 0.0000

01/03/2006 – 10/18/2006 N = 200 N2/5 0.0005 0.0001

N1/2 0.0015 0.0050

N1/3 0.0000 0.0000

01/03/2006 – 12/29/2006 N = 250 N2/5 0.0000 0.0001

N1/2 0.0011 0.0051

Time period Sample size Bandwidth RN R0

N

N1/3 0.0065 0.0109

07/25/2006 – 10/03/2006 N = 50 N2/5 0.0164 0.0290

N1/2 0.0404 0.0704

N1/3 0.0075 0.0169

07/25/2006 – 12/14/2006 N = 100 N2/5 0.0272 0.0590

N1/2 0.0967 0.1885

N1/3 0.0002 0.0005

07/25/2006 – 02/28/2007 N = 150 N2/5 0.0027 0.0044

N1/2 0.0230 0.0447

N1/3 0.0030 0.0081

07/25/2006 – 05/09/2007 N = 200 N2/5 0.0166 0.0451

N1/2 0.1035 0.1965

N1/3 0.0000 0.0000

07/25/2006 – 07/20/2007 N = 250 N2/5 0.0002 0.0010

N1/2 0.0090 0.0240
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Table 3.3: P–values of the tests of Section 3.4 applied to S&P500 index. The data are shown in
Figure 3.3.

Time period Sample size Bandwidth RN R0

N

N1/3 0.1364 0.2407

07/14/2006 – 09/22/2006 N = 50 N2/5 0.1580 0.2584

N1/2 0.1443 0.1960

N1/3 0.2242 0.2620

07/14/2006 – 12/04/2006 N = 100 N2/5 0.2669 0.2320

N1/2 0.2915 0.1707

N1/3 0.0001 0.0003

07/14/2006 – 02/16/2007 N = 150 N2/5 0.0001 0.0013

N1/2 0.0057 0.0076

N1/3 0.0001 0.0001

07/14/2006 – 05/01/2007 N = 200 N2/5 0.0001 0.0011

N1/2 0.0075 0.0120

N1/3 0.0013 0.0063

07/14/2006 – 07/12/2007 N = 250 N2/5 0.0090 0.0254

N1/2 0.0519 0.1240

Time period Sample size Bandwidth RN R0

N

N1/3 0.0186 0.0457

08/27/2010 – 11/05/2010 N = 50 N2/5 0.0324 0.0682

N1/2 0.0607 0.0967

N1/3 0.0329 0.0465

08/27/2010 – 01/19/2011 N = 100 N2/5 0.0671 0.0916

N1/2 0.1365 0.1207

N1/3 0.0032 0.0088

08/27/2010 – 03/31/2011 N = 150 N2/5 0.0112 0.0266

N1/2 0.0439 0.0762

N1/3 0.0000 0.0001

08/27/2010 – 06/13/2011 N = 200 N2/5 0.0001 0.0009

N1/2 0.0026 0.0086

N1/3 0.0000 0.0000

08/27/2010 – 08/23/2011 N = 250 N2/5 0.0001 0.0004

N1/2 0.0012 0.0055
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Table 3.4: P–values of the tests of Section 3.4 applied to U.S. dollar index. The data are shown
in Figure 3.4.

Time period Sample size Bandwidth RN R0

N

N1/3 0.0538 0.0350

08/27/2010 – 10/24/2010 N = 50 N2/5 0.0980 0.0410

N1/2 0.1742 0.0562

N1/3 0.0001 0.0003

08/27/2010 – 12/21/2010 N = 100 N2/5 0.0006 0.0014

N1/2 0.0079 0.0165

N1/3 0.0016 0.0012

08/27/2010 – 02/18/2011 N = 150 N2/5 0.0093 0.0059

N1/2 0.0533 0.0243

N1/3 0.0022 0.0018

08/27/2010 – 04/18/2011 N = 200 N2/5 0.0126 0.0087

N1/2 0.0711 0.0371

N1/3 0.0045 0.0089

08/27/2010 – 06/16/2011 N = 250 N2/5 0.0219 0.0347

N1/2 0.1041 0.1146

Time period Sample size Bandwidth RN R0

N

N1/3 0.0039 0.0199

01/03/2011 – 03/01/2011 N = 50 N2/5 0.0129 0.0455

N1/2 0.0350 0.1033

N1/3 0.0001 0.0006

01/03/2011 – 04/30/2011 N = 100 N2/5 0.0003 0.0031

N1/2 0.0033 0.0178

N1/3 0.0001 0.0003

01/03/2011 – 06/27/2011 N = 150 N2/5 0.0003 0.0021

N1/2 0.0029 0.0158

N1/3 0.0000 0.0001

01/03/2011 – 08/24/2011 N = 200 N2/5 0.0001 0.0012

N1/2 0.0019 0.0107

N1/3 0.0038 0.0184

01/03/2011 – 10/22/2011 N = 250 N2/5 0.0179 0.0609

N1/2 0.0691 0.1746

78



Table 3.5: P–values of the tests of Section 3.4 applied to Oil Futures. The data are shown in
Figure 3.5.

Time period Sample size Bandwidth RN R0

N

N1/3 0.0161 0.0185

07/14/2006 – 09/10/2006 N = 50 N2/5 0.0333 0.0340

N1/2 0.0691 0.0781

N1/3 0.0115 0.0243

07/14/2006 – 11/07/2006 N = 100 N2/5 0.0318 0.0477

N1/2 0.0963 0.1116

N1/3 0.0000 0.0001

07/14/2006 – 01/07/2007 N = 150 N2/5 0.0004 0.0007

N1/2 0.0055 0.0084

N1/3 0.0001 0.0004

07/14/2006 – 03/06/2007 N = 200 N2/5 0.0001 0.0037

N1/2 0.0128 0.0342

N1/3 0.0000 0.0000

07/14/2006 – 05/04/2007 N = 250 N2/5 0.0001 0.0006

N1/2 0.0028 0.0110

Time period Sample size Bandwidth RN R0

N

N1/3 0.1117 0.1159

08/27/2010 – 10/24/2010 N = 50 N2/5 0.1771 0.1931

N1/2 0.2752 0.2694

N1/3 0.0882 0.2514

08/27/2010 – 12/21/2010 N = 100 N2/5 0.1567 0.3883

N1/2 0.2343 0.4744

N1/3 0.0007 0.0079

08/27/2010 – 02/19/2011 N = 150 N2/5 0.0044 0.0267

N1/2 0.0176 0.0620

N1/3 0.0030 0.0174

08/27/2010 – 04/18/2011 N = 200 N2/5 0.0144 0.0589

N1/2 0.0551 0.1189

N1/3 0.0164 0.0704

08/27/2010 – 06/15/2011 N = 250 N2/5 0.0530 0.1682

N1/2 0.1707 0.2828
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Chapter 4

CHANGE POINT TESTS IN FUNCTIONAL FACTOR MODELS WITH

APPLICATION TO YIELD CURVES

4.1 Introduction

Recent advances in yield curve modeling have brought to the fore a class of functional data

models which we call functional factor models. This paper proposes several methods for testing

the hypothesis of the existence of change points in such models. While there has been exten-

sive research on yield curve prediction, modeling via regime switching processes and even change

point estimation, we are not aware of any previous research concerned with a change point testing

problem.

Yield curve modeling has been an important direction of economic research over many decades.

A solid account of the classical theory related to the so called affine models is presented in Chapter

8 of Campbell et al. (1997); Filipović (2009) presents a continuous finance theory perspective.

An approach that has gained wide acceptance in recent years is the Nelson–Siegel model and its

dynamic modification, Diebold and Rudebusch (2013). This paper is concerned with the detection

of change points in models that generalize the dynamic Nelson–Siegel model. The most direct

motivation for our research comes from the recent work of Chen and Niu (2014) who show that

accounting for possible change points in the term structure improves yield curve predictions. The

purpose of this work is to develop formal tests of significance for the existence of change points in

a general class of functional models for yield curves. We now elaborate on our contribution.

Denote by tj , 1 ≤ j ≤ J, the maturities ordered from the shortest (1 month) to the longest (10

years). The general form of the dynamic Nelson–Siegel model can be written as

Xi(tj) =

K∑

k=1

βi,kfk(tj) + εi(tj). (4.1.1)
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The index i refers to time periods at which the curves are available, it typically indexes days or

months. The functions fk are postulated to have a specific parametric form; in the standard model,

K = 3 functions are used. The function f1 is equal to one, its weight βi,1 represents the general

level of yields in period i. The function f2 is decreasing, and for negative βi,2 models the increase

of yields with maturity. The function f3 has a hump at maturities of 2–3 years, and models the

curvature of the yield curve over such maturities, detailed formulas are presented Section 4.5. The

attribute “dynamic” stems from the fact that the weights βi,k are time series; in a static model

βi,k = βk does not depend on period i. The objective of this work is to develop significance

tests whose null hypothesis is that the mean structure of the K series {βi,k} is constant over a

time period under consideration against the alternative that it changes at unknown change points.

Our approach allows the error structure to change at prespecified points. Precise definitions of the

mean and error structures are given in Section 4.2. Before proceeding further, we give an illustrative

example. Figure 4.1 shows 100 yield curves centered at the height of the financial crisis of 2008.

Visual inspection shows that the typical shape of the curves, which we will quantify as the mean

structure, changed in mid–September. If we apply our test assuming that the error structure is

the same over the sample period, then the test does not reject the null hypothesis that the mean

structure has not changed. If, however, the error structure is allowed to change on Sep 16, then

the test rejects the null hypothesis with a very high significance.

The above example illustrates the need for flexibility in modeling the error structure when

testing for change points in the mean structure. The prespecified break points in the error structure

can reflect exogenous information or can be based on exploratory analysis of the data. In Figure 4.1,

the mean structure is reflected by the general level and range of the curves, the error structure by

the “wiggliness” in the top, middle and bottom parts of the curves. The errors, volatility, of the

curves increased after the middle of the sample. The change in mean structure is fairly obvious

in Figure 4.1; this period is used to emphasize a main message of this paper that without taking
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Figure 4.1: US yield curves over N = 100 business days form July-08-2008 to November-28-2008.
The central time point corresponds to the Lehman Brothers collapse.

instability in the errors structure into account, decision on the existence of change points in the

mean structure can be incorrect. In the context of scalar time series, this point has recently been

emphasized by Dalla et al. (2015).

The fact the the stochastic structure of yield curve changes has been recognized for many

decades. An established approach is to use hidden Markov chains to estimate the structural

changes together with the parameters of the affine structure, Nieh et al. (2010). In addition to

the aforementioned paper of Chen and Niu (2014), the only other paper concerned with change

point estimation is Chib and Kang (2013). The main difference between hidden Markov models

and change point models is that in the former only a few, typically two, states are assumed and the

system moves between them. In a change point model, no such assumption is made, the parameters

can take any values between the change points. This is the paradigm advocated by Chib and Kang

(2013) who use a Bayesian approach to estimate the change points. This paper is concerned with

testing for the presence of change points. We propose frequentist procedures based on asymptotic

distributions of test statistics.
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The methodology and theory we develop does not depend on the specific form of the curves fk,

which we will call factor curves, extending the usual terminology of multivariate statistics. Leng-

wiler and Lenz (2010) and Hays et al. (2012), among others, argue that the standard Nelson–Siegel

factor curves are not optimal in some respects. In our methodological and theoretical exposition,

we merely assume that the fk are square integrable and linearly independent. We then go a step

further, and assume that the yield curves follow the model Xi(tj) = τi(tj)+ηi(tj), where the curves

τi describe the mean structure and the ηi are error curves. We will derive tests that allow to test for

the presence of change points in the form of the functions τi without any parametric assumptions.

The remainder of the paper is organized as follows. In Section 4.2, we specify the general

functional factor model. Testing for the presence of change point in this model is addressed in

Section 4.3. In Section 4.4, we extend our approach to the nonparametric setting. Finite sample

performance of the proposed methods is studied by a simulation study in Section 4.5. Main con-

clusions are summarized in Section 4.6. Section 4.7 contains proofs of the asymptotic results on

which the tests are based. Their numerical implementation is explained in Section 4.8.

4.2 Functional Factor Model

In this section, we introduce the general functional factor model. In Section 4.4, we introduce

the fully functional model which does not assume a factor structure.

We consider the functional term structure model

Xi(t) =

K∑

k=1

βi,kfk(t) + εi(t), 1 ≤ i ≤ N. (4.2.1)

This is the same model as (4.1.1), but the maturity t is modeled as a continuous variable, following

the Nelson–Siegel paradigm. An empirical justification is that fractions of bonds with standard

maturities can be traded at any time. The functions fk are known, and we merely assume that

∫
f2k (t)dt <∞, 1 ≤ k ≤ K. (4.2.2)
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The random coefficients βi,k can be decomposed as

βi,k = µi,k + bi,k, Ebi,k = 0.

We want to test the change point hypothesis

H0 : µ1 = µ2 = . . . = µN , (4.2.3)

where

µi = [µi,1, µi,2, . . . , µi,K ]⊤

We thus want to test if the first order structure of the process (4.2.1) changes at some unknown

points. Under the alternative, there are at most R possible changes in the mean structure at times

1 = r0 < r1 < r2 < . . . < rR < rR+1 = N.

When testing for a change in the mean, it is generally assumed in change point analysis, e.g.

Csörgő and Horváth (1997), Horváth and Rice (2014), that the second order properties do not

change. Even in the simplest case of independent normal observations, allowing for a change in

both mean and variance leads to quite complex asymptotic theory, Horváth (1993). In the setting

of model (4.2.1), the error structure is captured by the terms
∑K

k=1 bi,kfk(t)+ εi(t). We allow their

stochastic structure to change at specific points

1 = i0 < i1 < i2 < . . . < iM < iM+1 = N.

In application to yield curves, the im can be determined as dates of substantial central bank

intervention, times of events of economic impact, or by exploratory analysis of the variability of the

curves. The dates im reflect available exogenous information and are treated as known. We refer

to them as break points. By contrast, the change points rℓ are unknown, and their existence is to

be tested. In Figure 4.1, the break point visually practically coincides with the change point. The

break point is reflected by the higher variability of the yield curves in the second half of the sample.
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The top and bottom parts of the graph are more variable, have larger errors. The change point

is reflected by the wider range of the curves. In the Nelson–Siegel model, the decreasing curve f2

describes the spread of yields between short and long maturities. For µ∗2 < µ2 < 0, the yield curves

containing µ∗2f2 will have a larger spread that the curves containing µ2f2.

We now formulate model assumptions. Introduce the error vectors

ai(t) = [bi,1, . . . , bi,K , εi(t)]
⊤, 1 ≤ i ≤ N. (4.2.4)

The vectors ai are stationary on each interval (im, im+1], and have mean zero. Their dependence

structure is described by the following assumptions.

Assumption 19. Assume that the vectors ai defined by (4.2.4) admit the representation

ai = gm(δi, δi−1, . . .), im < i ≤ im+1, m = 0, 1, . . . ,M,

where g0, g1, . . . , gM : S∞ 7→ L2 are unknown deterministic measurable functions. The random

elements {δi,−∞ < i <∞} are iid with values in a measurable space S.

Broadly speaking, Assumption 19 requires merely that on the segments of stationarity are some

abstract (non–linear) moving averages of abstract errors. Representations of this type impose a

very flexible dependence structure and have become popular over the last decade, e.g. Wu (2005),

Shao and Wu (2007), Aue et al. (2009), Hörmann and Kokoszka (2010), Hörmann et al. (2013) and

Kokoszka and Reimherr (2013b). Observe that the same sequence {δi} is used in all functions gm.

This reflects the intuition that even though the stochastic structure can change from segment to

segment, there is a dependence between the segments; Kokoszka and Leipus (2000), among others,

used this paradigm in a change point problem for scalar ARCH models.

Next, we formalize the assumption that on each subinterval (im, im+1] the sequence {ai, 1 ≤ i ≤

N} is weakly dependent. We use the notion of approximability which has been recently used in the

analysis of time series of functions. Chapter 16 of Horváth and Kokoszka (2012) puts this notion
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in a historical context and provides a number of its applications. To formulate it in our context of

segment–stationarity, we must extend the part–sequences {ai, im < i ≤ im+1} to the full domain

of all integers. We thus denote by {a(m)
i } the above sequence extended to all integers, i.e.

a
(m)
i = gm(δi, δi−1, . . .), −∞ < i <∞. (4.2.5)

Assumption 20. For some δ > 0 and κ > 2 + δ,

max
1≤m≤M+1

∞∑

ℓ=1

(
E‖a(m)

i,ℓ − a
(m)
i ‖2+δ

)1/κ
<∞, (4.2.6)

where a
(m)
i,ℓ is defined by a

(m)
i,ℓ = gm(δi, δi−1, . . . , δi−ℓ+1, δ

∗
i−ℓ, δ

∗
i−ℓ−1, . . .), and δ∗k are independent

copies of δi, independent of {δi,−∞ < i <∞}.

The essence of Assumption 20 is that the impact of innovations δi far back in the past becomes

negligible; replacing them by independent copies does not affect the distribution of the a
(m)
i much.

Condition (4.2.6) quantifies the magnitude of the effect of such a replacement. It allows us to

control remainder terms arising be replacing the sequence a
(m)
i by sequences consisting of variables

that are independent for sufficiently large lags (m–dependent sequences). The arbitrary constants

δ and κ in (4.2.6) are needed to guarantee that a weak approximation theorem of Berkes et al.

(2013b), which we use in our proofs, holds for every segment.

Our last assumption states that the segments of stationarity have asymptotically comparable

lengths.

Assumption 21. We assume that im = im(N) and

lim
N→∞

N−1im(N) = θm, 1 ≤ m ≤M, (4.2.7)

with 0 = θ0 < θ1 < θ2 < . . . θM < θM+1 = 1.
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4.3 Detection Through Projections onto Factors

The method presented in this section directly exploits representation (4.2.1). A method that

does not use the factor structure is presented in Section 4.4.

Test statistics can be derived either using the vector of projections

zi = [〈Xi, f1〉 , . . . , 〈Xi, fK〉]⊤ (4.3.1)

or cumulative estimates µ̂k computed using the first k observations. These two approaches are

equivalent, as we now explain. We begin with the CUSUM process of the vectors (4.3.1). Introduce

the matrix

C = [〈fk, fj〉 , 1 ≤ k, j ≤ K].

The matrix C is deterministic and known. We assume that the fk are linearly independent. That

is,
∑K

k=1 akfk = 0 in L2 implies a1 = a2 = . . . = aK = 0. It is easy to check that this condition

implies that the columns of C are linearly independent, so C−1 exists. By (4.2.1),

zi = Cµi + γi, (4.3.2)

where

γi = Cbi + εi,

and where

bi = [bi,1, bi,2, . . . , bi,K ]⊤, εi = [〈εi, f1〉 , 〈εi, f2〉 , . . . , 〈εi, fK〉]⊤.

Since the matrix C is deterministic and invertible, relation (4.3.2) implies that a change in the

vectors µi is equivalent to a change in the zi at the same change points. Test statistics will thus

be based on the CUSUM process

αN (x) = N−1/2




[Nx]∑

i=1

zi −
[Nx]

N

N∑

i=1

zi


 , 0 ≤ x ≤ 1. (4.3.3)
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Another route that leads to the process (4.3.3) is through cumulative least squares estimators

of the vector µ = [µ1, µ2, . . . , µK ]⊤, which does not depend on i under H0. The estimator based

on the whole sample minimizes the least-squares criterion

UN (µ) = UN (µ1, µ2, . . . , µK) =
N∑

i=1

∣∣∣∣∣

∣∣∣∣∣Xi −
K∑

k=1

µkfk

∣∣∣∣∣

∣∣∣∣∣

2

.

It is given by µ̂N = N−1C−1
∑N

i=1 zi. Denote by µ̂k the estimator based on the first k functions,

i.e. µ̂k = k−1C−1
∑k

i=1 zi. Then

N−1/2k(µ̂k − µ̂N ) = C−1αN

(
kN−1

)
.

Thus, functionals of the process N1/2x(µ̂[Nx]− µ̂N ), 0 ≤ x ≤ 1, are the same as those of the process

(4.3.3), up to the multiplication by a known deterministic matrix.

Our next goal is to specify the limit distribution of the process αN . Notice that γi = w(ai),

where w is a known function and ai is defined in (4.2.4). This allows us to introduce the M + 1

infinite domain stationary sequences

γ
(m)
i = w(a

(m)
i ), −∞ < i <∞,

and define their long–run covariance matrices

Vm =

∞∑

ℓ=−∞

Cov(γ
(m)
i ,γ

(m)
i+ℓ ).

Theorem 22. If H0 (4.2.3) and Assumptions 19, 20, 21 hold, and the factors fk are linearly

independent, then

αN
d→ G0, in DK([0, 1]),

where the process G0 is defined by

G0(x) = G(x)− xG(1), (4.3.4)

and G(x), x ∈ [0, 1], is a mean zero R
K–valued Gaussian process with covariances

E[G(x)G⊤(y)] =

m∑

j=1

(θj − θj−1)Vj + (x− θm)Vm+1, θm ≤ x ≤ θm+1, y ≥ x.
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Theorem 22 is proven in Section 4.7.

The covariances of the process G0(x) can be computed explicitly. They are given by

Q(x, y) :=E[G0(x)G0(y)⊤] (4.3.5)

=(1− y)

[ m∑

j=1

(θj − θj−1)Vj + (x− θm)Vm+1

]

− x

[ m′∑

j=1

(θj − θj−1)Vj + (y − θm′)Vm′+1(t, s)

]

+ xy

M+1∑

j=1

(θj − θj−1)Vj ,

where 0 ≤ x ≤ y ≤ 1, θm ≤ x ≤ θm+1 and θm′ ≤ y ≤ θm′+1.

Tests can be based on the Cramér–von–Mises functional

CN =

∫ 1

0
||αN (x)||2 dx, (4.3.6)

where ||·|| is the Euclidean norm in R
K , or the Kolmogorov–Smirnov functional

KN = sup
0≤x≤1

||αN (x)|| , (4.3.7)

or their weighted versions. In finite samples, Cramér–von–Mises tests generally perform better,

and we therefore fucus on the statistic CN . By Theorem 22,

CN d→
∫ 1

0

∣∣∣∣G0(x)
∣∣∣∣2 dx. (4.3.8)

To perform the test, we must simulate the distribution of the right–hand side of (4.3.8). We

propose two methods. The first one is based on the following general result.

Proposition 23. Let Γ(x), x ∈ [0, 1], be a mean zero R
K–valued Gaussian processes with covari-

ances R(x, y) = E[Γ(x)Γ(y)⊤]. Then

∫ 1

0
||Γ(x)||2 dx d

=

∞∑

j=1

λjZ
2
j , (4.3.9)

89



where the Zj are independent standard normal random variables and the λj are the eigenvalues of

covariance kernel R(·, ·), i.e.
∫ 1

0
R(x, y)φj(y)dy = λjφj(x), (4.3.10)

where the φj(x) are orthonormal eigenfunctions defined on the unit interval and taking values in

R
K .

Proposition 23 follows from the Karhunen–Loéve decomposition of a Gaussian element in a

separable Hilbert space. To enhance the understanding of this result, we present a proof in Sec-

tion 4.7. It shows that to approximate the distribution of
∫ 1
0 ‖G0(x)‖2dx, it is enough to compute

the eigenvalues λj in (4.3.10), with Q given by (4.3.5) in place of R. To this end, we must estimate

the long–run covariance matrices Vm. These estimates are also needed in the second method of

approximating the limit in (4.3.8), which we now discuss.

The second method is based on generating replications of the process G0. By (4.3.4), this

reduces to generating replications of the process G. In the course of the proof of Theorem 22, it is

shown that

G(x) =

m∑

j=1

(θj − θj−1)
1/2Gj(1) + (θm+1 − θm)1/2Gm+1

(
x− θm

θm+1 − θm

)
, x ∈ (θm, θm+1]. (4.3.11)

Each process Gj is a mean zero Gaussian process with E[Gj(x)Gj(y)
⊤] = min(x, y)Vj . It can

be simulated as Gj(x) = LjW(x), where LjL
⊤
j = Vj and W = [W1,W2, . . . ,WK ]⊤ consists of K

independent standard Wiener processes. The decomposition of the long-run variance matrix uses

either the upper or lower Cholesky decomposition. This representation always exists because Vj

is non-negative definite. In order to simulate the Gaussian processes Gj , we must compute the

estimated long–run covariance matrices V̂j , for which computationally efficient R implementations

exist, details are described in Section 4.8.

We conclude this section by stating the consistency of the test based on convergence (4.3.8).

To keep the statement simple, we consider only one change point, but it can be shown by the same
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technique, merely with a more complex notation, that the statistic CN diverges if there are more

than one change points.

Theorem 24. Suppose there is a change point r ∈ (0, 1) such that µ 6= µ∗, where µ = µ1 = . . . =

µ[Nr], µ∗ = µ[Nr]+1 = . . . = µN . Then,

N−1CN P→ ||C(µ− µ∗)||2
∫ 1

0
{g∗(x, r)}2 dx, (4.3.12)

with the function g∗ defined in (4.7.5).

Theorem 24 is proven in Section 4.7.1. It implies that CN P→ ∞, provided C(µ − µ∗) is not a

zero vector. Since the limit distribution in (4.3.8) does not depend on the vectors µi, it shows that

the probability of rejection approaches one, as N → ∞.

4.4 A Nonparametric Functional Approach

In this section, we consider a testing procedure that does not assume model (4.2.1). To motivate

it, we rewrite model (4.2.1) as

Xi(t) = τi(t) + ηi(t), 1 ≤ i ≤ N, (4.4.1)

where

τi(t) =
K∑

k=1

µi,kfk(t), ηi(t) =
K∑

k=1

bikfk(t) + εi(t). (4.4.2)

In (4.4.2), the mean functions τi and the error functions ηi are expressed in terms of the components

of model (4.2.1). However, such a specific form is not assumed in (4.4.1). Functional factor models,

and earlier affine models, postulate some form of parametric dependence of the yield curve on a small

number of parameters. Formulation (4.4.1) can be viewed as a nonparametric model emphasizing

the main first order structure described by the functions τi, which are all equal to a function τ

under H0. The form of the function τ can be arbitrary. It can be estimated by nonparametric
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methods, but our focus here is on testing if it does not change. In this setting, the null hypothesis

becomes

H0 : τ1 = τ2 = . . . = τN , (4.4.3)

with an alternative formulated analogously as in Section 4.2. Observe that under model (4.2.1), in

light of (4.4.2), the null hypothesis (4.4.3) is equivalent to the null hypothesis (4.2.3).

The problem of testing for a change point in the functional means τi, without any reference to

yield curves, was addressed by Berkes et al. (2009) who assumed that the error curves ηi are iid.

Hörmann and Kokoszka (2010) extended that test by allowing to the ηi to be stationary and weakly

dependent. In both cases, the tests are based on projections of the data on the estimated functional

principal components of the errors ηi. (Both tests are described, respectively, in Chapters 6 and 16

of Horváth and Kokoszka (2012).) In our setting, the ηi are not stationary; the functional principal

components, and hence the corresponding projections cannot be defined. It is however possible to

derive tests based directly on the functional CUSUM process

αN (x, t) =
1√
N




[Nx]∑

1=1

Xi(t)−
[Nx]

N

N∑

i=1

Xi(t)


 . (4.4.4)

In the remainder of this section, we develop the required theory and derive the tests.

We begin by stating assumptions analogous to Assumptions 19 and 20. The error functions ηi

are mean zero and form stationary sequences on the intervals (im, im+1]. By η
(m)
i we denote their

extensions to the infinite domain consisting of all integers.

Assumption 25. The functions ηi in (4.4.1) admit the representation

ηi = gm(δi, δi−1, . . .), im < i ≤ im+1, m = 0, 1, . . . ,M,

where the functions gm and the errors δi satisfy conditions of Assumption 19

Assumption 26. For some δ > 0 and κ > 2 + δ,

max
1≤m≤M+1

∞∑

ℓ=1

(
E‖η(m)

i,ℓ − η
(m)
i ‖2+δ

)1/κ
<∞, (4.4.5)
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where η
(m)
i,ℓ is defined by η

(m)
i,ℓ = gm(δi, δi−1, . . . , δi−ℓ+1, δ

∗
i−ℓ, δ

∗
i−ℓ−1, . . .), and δ∗k are independent

copies of δi, independent of {δi,−∞ < i <∞}.

Consider the long–run covariance kernels defined by

Dm(t, s) =

∞∑

ℓ=−∞

E[η
(m)
0 (t)η

(m)
ℓ (s)], 0 ≤ t, s ≤ 1. (4.4.6)

The existence of the L2–limit Dm(·, ·) was established by Horváth et al. (2013). The following

theorem, proven in Section 4.7, is an analog of Theorem 22.

Theorem 27. Under H0 (4.4.3) and Assumptions 25, 26, 21, we can define Gaussian processes

Γ0
N (x, t), 0 ≤ x, t ≤ 1, such that

sup
0≤x≤1

∣∣∣∣αN (x, t)− Γ0
N (x, t)

∣∣∣∣ P→ 0.

Each process Γ0
N is defined by

Γ0
N (x, t) = ΓN (x, t)− xΓN (1, t),

where ΓN is mean zero Gaussian with covariances

E[ΓN (x, t)ΓN (y, s)] =

m∑

j=1

(θj − θj−1)Dj(t, s) + (x− θm)Dm+1(t, s), θm ≤ x ≤ θm+1, x ≤ y.

The covariances E[Γ0
N (x, t)Γ0

N (y, s)] can be computed explicitly. Assuming

0 ≤ x ≤ y ≤ 1, θm ≤ x ≤ θm+1, θm′ ≤ y ≤ θm′+1, (4.4.7)

E[ΓN (x, t)ΓN (1, s)] =
m∑

j=1

(θj − θj−1)Dj(t, s) + (x− θm)Dm+1(t, s),

E[ΓN (y, s)ΓN (1, t)] =

m′∑

j=1

(θj − θj−1)Dj(t, s) + (y − θm′)Dm′+1(t, s),

E[ΓN (1, s)ΓN (1, t)] =
M+1∑

j=1

(θj − θj−1)Dj(t, s).
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Assuming (4.4.7), we thus obtain

U0(x, y; t, s) :=E[Γ0
N (x, t)Γ0

N (y, s)] (4.4.8)

=E[(ΓN (x, t)− xΓN (1, t))(ΓN (y, s)− yΓN (1, s))]

= (1− y)

[ m∑

j=1

(θj − θj−1)Dj(t, s) + (x− θm)Dm+1(t, s)

]

− x

[ m′∑

j=1

(θj − θj−1)Dj(t, s) + (y − θm′)Dm′+1(t, s)

]

+ xy
M+1∑

j=1

(θj − θj−1)Dj(t, s).

The complex structure of U0 is what distinguishes the present research from the methods

developed by Berkes et al. (2009) and Hörmann and Kokoszka (2010). The later work can be

considered as a special case, in which D1 = D2 = . . . = DM+1 (= D). In that case, U0(x, y; t, s) =

(min(x, y) − xy)D(t, s). Consequently, new approaches are needed to implement tests based on

Theorem 27, even though they use the usual functionals. Denote by {Γ0(x, t), 0 ≤ x, t ≤ 1} a

process with the same distribution as each Γ0
N . As in Section 4.3, we focus on the Cramér–von–

Mises functional

VN =

∫∫
α2
N (x, t)dtdx, (4.4.9)

and the convergence

VN
d→
∫∫ {

Γ0(x, t)
}2
dtdx. (4.4.10)

There is no explicit formula for the distribution of the limit in (4.4.10). It depends on the unknown

long–run covariance kernels Dj , 1 ≤ j ≤ M + 1, whose estimation is discussed below. Once these

estimates are computed, the approximations of right–hand side of (4.4.10) is based on the relation

∣∣∣∣Γ0
∣∣∣∣2 =

∞∑

j=1

λjZ
2
j , (4.4.11)

where the Zj are iid standard normal and the λj are the eigenvalues of U0 given by (4.4.8). If Û0

is an estimator of U0, then the λj are approximated by the eigenvalues λ̂j defined by

∫∫
Û0(x, y; t, s)ϕ̂j(y, s)dyds = λ̂jϕ̂j(x, t).
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and
∑∞

j=1 λjZ
2
j by

∑N
j=1 λ̂jZ

2
j . The numerical computation of the λ̂j is not trivial, details are

described in Section 4.8. The simulation of the limit process Γ0 is even more challenging, and is

not pursued.

We now turn to the estimation of the covariance kernels Dj . We describe the method proposed

by Horváth et al. (2013). Set Nj = ij − ij−1. Before defining the sample covariance kernel

D̂j,Nj
, we need to introduce more notation. Let Xij−1+1, Xij−1+2, . . . , Xij denote the jth subset of

observations. Define the nth residual of the jth subset by

ej,n(t) = Xij−1+n(t)− X̄Nj
(t), 1 ≤ n ≤ Nj , 1 ≤ j ≤M,

where X̄Nj
(t) is the subset’s sample mean defined by

X̄Nj
(t) =

1

Nj
(Xij−1+1 +Xij−1+2 + . . .+Xij ).

The jth subset’s autocovariances are defined by

γ̂j,ℓ,Nj
(t, s) =

1

Nj

Nj∑

i=ℓ+1

ej,i(t)ej,i−ℓ(s), 1 ≤ j ≤M,

We then define the jth subset’s long–run kernel estimator by

D̂j,Nj
(t, s) = γ̂j,0,Nj

(t, s) +

Nj−1∑

ℓ=1

K

(
ℓ

h

)
{γ̂j,ℓ,Nj

(t, s) + γ̂i,ℓ,Nj
(s, t)}. (4.4.12)

Using Theorem 2 of Horváth et al. (2013), it is easy to verify that ‖Û0
N − U0‖ P→ 0, where Û0

N is

defined analogously to U0 (4.4.8) with the Dj replaced by the D̂j,Nj
and θj by N−1ij . The kernel

K must satisfy the following assumption.

Assumption 28. The function K is continuous, bounded, K(0) = 1 and K(u) = 0 if |u| > c, for

some c > 0. The smoothing bandwidth h = h(N) satisfies h(N) → ∞, N−1h(N) → 0, as N → ∞.

We conclude this section with the following consistency result proven in Section 4.7.
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Theorem 29. Suppose Assumptions 25, 26, 21 hold and there is a change point r ∈ (0, 1) such

that τ 6= τ∗, where τ = τ1 = . . . = τ[Nr], τ
∗ = τ[Nr]+1 = . . . = τN . Then,

N−1VN
P→ ||τ − τ∗||2

∫ 1

0
{g∗(x, r)}2 dx, (4.4.13)

where ||·|| is the norm defined in L2[0, 1] and the function g∗ defined in (4.7.5).

4.5 Finite Sample Performance

In this section, we assess the empirical size and power of the procedures introduced in Sections

4.3 and 4.4. We emphasize the importance of incorporating a break point in the error structure.

This section is not meant to be an extensive empirical study of yield curves, but rather a study of

the proposed statistical methods. We however take care to use simulated data that closely resemble

actual yield curves. For ease of reference, we begin by listing in Table 4.1 the procedures we study.

We work with zero coupon US yield curves defined at maturities of 1, 3, 6, 12, 24, 36, 60, 84, 120

and 360 months. Figure 4.5 shows five consecutive yield curves.

Table 4.1: Testing procedures

Method Description

ProjSim Projections onto factors approach of Section 4.3;

limit approximated by simulating process (4.3.11).

ProjEigen Projections onto factors approach of Section 4.3;

limit approximated by simulating the RHS of (4.3.9).

NFEigen Nonparametric functional approach of Section 4.4;

limit approximated by simulating the RHS of (4.4.11).

We begin by illustrating the behavior of the methods using three sampling periods listed in the

first column of Table 4.2. In the first two periods, whose central 100 days are shown, respectively

in Figures 4.1 and 4.5, we expect a change point in the mean structure. In the third period, see

Figure 4.5, we do not expect such a change point. The periods were chosen in such a way that the
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Figure 4.2: US yield curves at five business days around the Lehman Brothers collapse

potential break point in the error structure is in the middle of the sampling period. To perform the

tests, we assume either no break point, designation “no” in the “Break Point” column of Table 4.2,

or one break point in the middle of the sample, θ1 = 1/2, designation “yes”. We emphasize that

a break point in the error structure should be viewed as an option in the application of the tests;

we test for change points in the “main” mean structure. Table 4.2 shows that if a change in the

mean structure exists, but a break point in the error structure is not taken into account, then the

change point may not be detected. This finding is confirmed by the simulation study that we now

describe.

As simulated data we use realizations of the dynamic Nelson–Siegel model

Xn(t) = βi,1f1(t, λ) + βi,2f2(t, λ) + βi,3f3(t, λ) + εi(t), (4.5.1)

where

f1(t, λ) = 1, f2(t, λ) =
1− e−λt

λt
, f3(t, λ) =

1− e−λt

λt
− e−λt. (4.5.2)

Curves (4.5.2) are shown in Figure 5.5. The value of the parameter λ is chosen to maximize f3(t, λ)

at the maturity of 30 months, Diebold and Li (2003). Since we simulate data on the rescaled
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Table 4.2: Application of the test procedures to yield curves over three sampling periods. We
expect small P–values in periods (1)–(2), large in period (3).

Sampling Period Method Break Point P–value

ProjSim yes 1.5%

(1) ProjEigen yes 1.7%

03/20/2008 – 03/19/2009 NFEigen yes 0.1%

ProjSim no 87.9%

ProjEigen no 85.2%

NFEigen no 26.2%

ProjSim yes 0.1%

(2) ProjEigen yes 0.0%

06/30/2005 - 06/29/2006 NFEigen yes 0.2%

ProjSim no 56.7%

ProjEigen no 50.5%

NFEigen no 57.2%

ProjSim yes 68.1%

(3) ProjEigen yes 66.9%

02/16/2012 – 02/14/2013 NFEigen yes 55.8%

ProjSim no 80.4%

ProjEigen no 77.7%

NFEigen no 76.3%
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Figure 4.3: Yield curves on N = 100 business days form October-18-2005 to March-14-2006.
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Figure 4.4: Yield curves on N = 100 business days from June-4-2012 to October-24-2012.
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interval [0, 1], we use λ = 21.5194 which maximizes f3(t, λ) at t = 30/360 = 0.0833. To assess the

sensitivity of the results to the specific form of the factors, we also performed simulations using

factor curves f1(t) = 1, f2(t) = t, f3(t) = t(1− t). The properties of the methods and the empirical

rejection rates are very similar, so we do not include the additional tables.
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Figure 4.5: Nelson–Siegel factors f1(t, λ), f2(t, λ), f3(t, λ). Left panel: curves with λ = 0.0609
corresponding to the domain of real yield curves. Right panel: curves with λ = 21.52 corresponding
to the unit interval.

The coefficients βi,k are generated as AR(1) processes

βi,k = µk(1− ϕk) + ϕkβi−1,k + ui,k, ui,k ∼ N(0, σ2k), i = 1, . . . , N, k = 1, 2, 3.

To resemble real data, the values of model parameters used in simulations are obtained as follows.

For a specified sampling period, we compute least squares estimates of βi,1, βi,2, βi,3 for each day i.

This is the approach recommended by Diebold and Rudebusch (2013). Treating these estimates as

a realization of an AR(1) processes, we estimate µk, ϕk and σ2k by maximum likelihood. Following

Bech and Lengwiler (2012), the presence of a break point in the error structure is simulated by

using different AR(1) error variances σ2k before and after the break point. Finally, the error curves
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εi are simulated as random curves

εi(t) =
2

25
ζi1 +

1

25
ζi2 sin(2πt), t ∈ [0, 1], (4.5.3)

chosen so that they are of the same size as the actual residuals, Figure 4.6. The series ζi,j are

autoregressions defined by ζi,j = .9ζi−1,j + Zi,j , Zi,j ∼ N(0, 1), j = 1, 2. i = 1, . . . , N. The

parameters chosen above represent well the error curves over periods where no break point in the

error structure is visible.
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Figure 4.6: The left panel shows the residuals of the dynamic Nelson-Siegel model estimated over
N = 250 business days from March-20-2008 to March-19-2008. The right panel shows N = 100
error curves simulated using Equation (4.5.3).

Using the approach described above, one can specify a large number of realistic data generating

processes. We estimated several segments consisting of 250 and 125 consecutive yield curves. The

following values are fairly representative, and we use them to simulate data.

AR(1) coefficients: ϕ1 = 0.90, ϕ2 = .90, ϕ3 = .90.

AR(1) error variances:

Var[ui,1] = 0.003, i ≤ i1, Var[ui,1] = 0.012, i > i1,
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Var[ui,2] = 0.006, i ≤ i1, Var[ui,2] = 0.026, i > i1,

Var[ui,3] = 0.063, i ≤ i1, Var[ui,3] = 0.095, i > i1.

We use two different locations of the break point θ1, 1/2 and 2/3.

Means under H0:

µ =
(
4.54 −2.82 −3.03

)⊤
. (4.5.4)

Means under HA(1):

µi =




4.54

−2.82

−3.03


 , i ≤ N/2; µi =




4.20

−3.00

−3.20


 , i > N/2. (4.5.5)

Means under HA(2):

µi =




4.54

−2.82

−3.03


 , i ≤ N/2; µi =




3.89

−3.32

−3.32


 , i > N/2. (4.5.6)
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Figure 4.7: Both panels show simulated yield curves under the alternative hypothesis (4.5.5). In
the left panel, including the break point leads to P–value = 0.5%, without it, P–value = 38.1%. In
the right panel, when the break point is included, P–value = 0.0%, otherwise P–value = 27.8%.
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The alternative HA(2) is a larger departure from H0 than HA(1), and somewhat exaggerates the

change points that can be expected in real data; HA(1) is very realistic. Examples of simulated

processes which satisfy HA(1) are shown in Figure 4.7. It is often difficult to tell by eye if a change

point is present or not. For the simulation study, we investigate how the power behaves when the

change point coincides with the breakpoint (CP = BP ), and when the change point is different

from the breakpoint (CP 6= BP ). In the first scenario, we use CP = BP = N/2, in the second

CP = N/2 and BP = 2N/3.

The empirical rejection rates, based on one thousand replications are displayed in Tables 4.3,

4.4 and 4.5. For N = 500, if a break point is taken into account, all methods have correct size,

within the chance error. For N = 250, the size is overinflated. As preliminary examples indicated,

if the break point is not taken into account, all methods can fail to detect an existing change

point with a large probability. In that case, all procedures also suffer from nonmonotonic power,

i.e. power is smaller for the larger departure from H0. Taking the break point into account

preserves monotonicity, in addition to leading to tests of practically useable power and correct size

for sufficiently large sample size.

In the setting described so far, the projection methods ProjSim and ProjEigen have an auto-

matic advantage because they use projections on the same factor curves that are used to generate

the data. To further investigate the performance of these two approaches, we will impose a different

factor structure on the data generating process than the structure used to compute test statistic

(4.3.6). We will use the same data generating process as before, which imposes the factor structure

in dynamic Nelson-Siegel model (4.5.1). However, the tests will be applied using the intelligible
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factors introduced by Lengwiler and Lenz (2010). Their factor curves have the form

f1(t, α1, α2, b1, b2, b3) = 1 +
1
t (b3 − log(α3)b1)(1− αt

2)− 1
m(b2 − log(α2)b1)(1− αt

3)

log(α2)b3 − log(α3)b4
,

f2(t, α1, α2, b1, b2, b3) =
−1

t b3(1− αt
2)− 1

mb2(1− αt
3)

log(α2)b3 − log(α3)b4
,

f3(t, α1, α2, b1, b2, b3) =
1
t log(α3)(1− αt

2)− 1
t log(α2)(1− αt

3)

log(α2)b3 − log(α3)b4
.

Estimating the parameters α2, α3, b1, b2, b3 requires a nested optimization. We use the values ob-

tained in Lengwiler and Lenz (2010), i.e. α2 = 0.1133, α3 = 0.6798, b1 = 0.2674, b2 = −.4343

and b3 = −.2584. The resulting factor curves are displayed in Figure 4.8. To make the intelligible

factors conform to the simulated yield curves generated on the unit interval, we transformed them

in a similar manner as the Nelson–Siegel factors. The parameters of the transformed intelligible

factors are α2 = 0.113330, α3 = 0.679830, b1 = 0.2674, b2 = −.4343 ∗ 30 and b3 = −.2584 ∗ 30. These

transformed intelligible factors are displayed in the right panel of Figure 4.8.
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Figure 4.8: Intelligible factor curves. Left: corresponding to real yield curves; Right: transformed
to the unit interval.

104



Tables 4.6 and 4.7 show the rejection rates in the case of a misspecified factor structure. Com-

pared to the correctly specified structure, the sizes become somewhat overinflated, especially in

the case the projEigen method. However, employing the intelligible factors in the ProjSim test

improves the empirical size for N = 250.

Table 4.3: Empirical size and power for the ProjSim approach.

(CP = BP ) Break point Significance level Sample size H0 HA(1) HA(2)

Yes 5% N = 250 7.8% 61.1% 97.3%

Yes 5% N = 500 5.2% 84.6% 100.0%

Yes 10% N = 250 11.6% 70.7% 98.1%

Yes 10% N = 500 8.5% 90.3% 100.0%

No 5% N = 250 1.6% 9.8 % 2.8%

No 5% N = 500 2.8% 50.8% 39.9%

No 10% N = 250 5.7% 25.6% 12.9%

No 10% N = 500 6.3% 73.7% 77.1%

(CP 6= BP ) Break point Significance level Sample size H0 HA(1) HA(2)

Yes 5% N = 250 6.8% 65.8% 98.0%

Yes 5% N = 500 5.1% 87.5% 100.0%

Yes 10% N = 250 12.4% 75.9% 98.9%

Yes 10% N = 500 8.7% 91.5% 100%

No 5% N = 250 0.9% 7.8% 0.8%

No 5% N = 500 2.6% 48.7% 25.2%

No 10% N = 250 4.3% 23.3% 7.3%

No 10% N = 500 5.3% 72.5% 61.2%
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Table 4.4: Empirical size and power for the ProjEigen approach.

(CP = BP ) Break point Significance level Sample size H0 HA(1) HA(2)

Yes 5% N = 250 8.5% 68.7% 99.2%

Yes 5% N = 500 5.1% 88.6% 100%

Yes 10% N = 250 13.7% 76.7% 99.5%

Yes 10% N = 500 9.4% 92.3% 100%

No 5% N = 250 2.6% 19.3% 12.6%

No 5% N = 500 3.4% 68.5% 81.5%

No 10% N = 250 8% 43.3% 41.7%

No 10% N = 500 7.3% 84.9% 97.6%

(CP 6= BP ) Break point Significance level Sample size H0 HA(1) HA(2)

Yes 5% N = 250 8.7% 71.9% 97.2%

Yes 5% N = 500 5.8% 89.2% 100%

Yes 10% N = 250 14.9% 79.2% 98.9%

Yes 10% N = 500 11.9% 94.7% 100%

No 5% N = 250 3.2% 19.4% 10.5%

No 5% N = 500 4.8% 70.2% 76%

No 10% N = 250 8.9% 43.3% 36.6%

No 10% N = 500 9.6% 86.6% 97.9%
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Table 4.5: Empirical size and power for the NFEigen approach.

(CP = BP ) Break point Significance level Sample size H0 HA(1) HA(2)

Yes 5% N = 250 7.9% 67.7% 98.3%

Yes 5% N = 500 5.7% 90.7% 100%

Yes 10% N = 250 12.3% 76.5% 99.7%

Yes 10% N = 500 10.9% 94.2% 100%

No 5% N = 250 2.2% 13.8% 3.8%

No 5% N = 500 4.2% 64.8% 54.6%

No 10% N = 250 7.4% 37.2% 22.4%

No 10% N = 500 7.8% 83.6% 88.5%

(CP 6= BP ) Break point Significance level Sample size H0 HA(1) HA(2)

Yes 5% N = 250 9.7% 71.8% 99.1%

Yes 5% N = 500 6.1% 92.5% 100%

Yes 10% N = 250 14.6% 79.4% 99.6%

Yes 10% N = 500 12.6% 96% 100%

No 5% N = 250 3% 13.1% 2.4%

No 5% N = 500 5.1% 63.5% 34.1%

No 10% N = 250 7.7% 38.3% 15.6%

No 10% N = 500 10.1% 83.8% 80.1%
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Table 4.6: Empirical size and power for the ProjSim approach with misspecified factors.

(CP = BP ) Break point Significance level Sample size H0 HA(1) HA(2)

Yes 5% N = 250 6.3% 62.3% 97.7%

Yes 5% N = 500 6.2% 85.7% 100.0%

Yes 10% N = 250 11.4% 71.6% 99.2%

Yes 10% N = 500 10.8% 91.2% 100.0%

No 5% N = 250 0.7% 10.3% 0.3%

No 5% N = 500 3.1% 53.6% 41.1%

No 10% N = 250 3.1% 26.6% 13.6%

No 10% N = 500 7.2% 73.6% 77.5%

(CP 6= BP ) Break point Significance level Sample size H0 HA(1) HA(2)

Yes 5% N = 250 6.3% 62.1% 97.45%

Yes 5% N = 500 4.5% 87.8% 100.0%

Yes 10% N = 250 11.3% 72.4% 98.9%

Yes 10% N = 500 8.2% 92.4% 100.0%

No 5% N = 250 1.2% 8.7% 0.9%

No 5% N = 500 2.2% 51.9% 23.0%

No 10% N = 250 4.4% 24.7% 6.5%

No 10% N = 500 5.4% 73.9% 65.7%
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Table 4.7: Empirical size and power for the ProjEigen approach with misspecified factors.

(CP = BP ) Break point Significance level Sample size H0 HA(1) HA(2)

Yes 5% N = 250 8.4% 66.7% 98.1%

Yes 5% N = 500 6.9% 89.1% 100%

Yes 10% N = 250 13.5% 75.1% 99.1%

Yes 10% N = 500 10.5% 93.1% 100%

No 5% N = 250 1.9% 21.2% 13.2%

No 5% N = 500 3.3% 65.7% 82%

No 10% N = 250 7.1% 43.4% 39.4%

No 10% N = 500 9.5% 84.9% 97.3%

(CP 6= BP ) Break point Significance level Sample size H0 HA(1) HA(2)

Yes 5% N = 250 8.6% 69.9% 98.9%

Yes 5% N = 500 7.4% 91.9% 100%

Yes 10% N = 250 14.5% 77.6% 99.5%

Yes 10% N = 500 11.7% 95.5% 100%

No 5% N = 250 3.5% 20% 8.8%

No 5% N = 500 6.2% 70.9% 77.6%

No 10% N = 250 9.6% 42.9% 34.6%

No 10% N = 500 9.6% 86.2% 97.2%
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4.6 Summary

We introduced several asymptotic methods to test the null hypothesis that the mean structure

of the a sequence of curves does not change. The tests are motivated by application to yield curves.

In this context, the mean structure does not refer merely to the level of the curves, but also to their

range and other aspects of their shape, most prominently concavity. We observed the importance

of the error structure, which refers to the random variability in the aspects of the curves listed

above.

Two tests, called projSim and projEigen, are based on projections of the factor curves, for

example on the Nelson–Siegel curves or the intelligible factors of Lengwiler and Lenz (2010). The

difference between them is that projSim is based on simulating data that approximately satisfy H0

(no change point), while projEigen is based on approximating suitable eigenvalues (it also required

generating an MC distribution). These two tests require a specification of a factor structure. The

third approach, NFEigen, does not require any factor structure; it is a nonparametric version of

the method projEigen.

Based on our data analysis and simulation study, the following conclusions can be drawn.

1. If a possible break point in the error structure is not taken into account in any of the testing

procedures, an existing change point in the mean structure can fail to be detected with a

large probability.

2. The test are generally well calibrated if N = 500.

3. If N = 250, all tests have a tendency to overreject at the 5% level, i.e. the empirical type I

error tends to be larger than 5%.

4. If the intelligible factors are used, the empirical size of projSim test improves at the 5%

nominal level, but the size of the ProjEigen test deteriorates.
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The objective of this paper has been to develop the methodology and theory for change point

testing in a setting of factor models commonly used in the analysis of yield curves. Our simulation

study, while representative, is limited. Keeping this in mind, we recommend method ProjSim with

intelligible factors and method NFEigen.

4.7 Proofs of the Asymptotic Results

4.7.1 Proofs of the results of Section 4.3

The main result of Section 4.3 is Theorem 22. It follows from Lemmas 16 and 17. We will use

the following notation:

Nm = im − im−1 and Jm(x) = {j : im−1 < j ≤ ⌊im−1 +Nmx⌋}.

Lemma 16. Suppose Assumptions 19, 20 and 21 are satisfied. Then, for each N , we can define

M + 1 independent Gaussian R
K–valued processes GN,m, 1 ≤ m ≤M + 1, such that

EGN,m(x) = 0 and E[GN,m(x)GN,m(y)⊤] = min(x, y)Vm,

and for all 1 ≤ m ≤M + 1,

max
0≤x≤1

∣∣∣∣∣∣

∣∣∣∣∣∣
N−1/2

m

∑

j∈Jm(x)

γj −GN,m

∣∣∣∣∣∣

∣∣∣∣∣∣
P→ 0. (4.7.1)

Proof. Lemma 16 is a consequence of Theorem 1.1 of Berkes et al. (2013b). Their approximation

principle is applied to each segment of stationarity of the γi. The only difference is that Berkes

et al. (2013b) consider L2–valued processes, whereas (4.7.1) involves R
K–valued processes. All

arguments used by Berkes et al. (2013b) remain valid, the inner product must be interpreted as

the inner product in R
K rather than in L2.

The processes N
−1/2
m

∑
j∈Jm(x) γj , 1 ≤M ≤M+1, are not independent under our assumptions.

The proof of Berkes et al. (2013b) shows that it is enough to consider ℓ–dependent sequences, cf.

Assumption 20. These ℓ–dependent sequences are asymptotically independent for any ℓ ≥ 1.

Therefore, we obtain the independence of the approximating sequences GN,m.
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Lemma 17. Suppose Assumptions 19, 20 and 21 are satisfied. Then

max
0≤x≤1

∣∣∣∣∣∣

∣∣∣∣∣∣
N−1/2

∑

1≤j≤Nx

γj −GN (x)

∣∣∣∣∣∣

∣∣∣∣∣∣
P→ 0,

where GN is a mean zero Gaussian process with covariances

E[GN (x)G⊤
N (y)] =

m∑

j=1

(θj − θj−1)Vj + (x− θm)Vm+1, θm < x ≤ θm+1, x ≤ y ≤ 1. (4.7.2)

Proof. For θm < x ≤ θm+1, we can write the partial sum process as

∑

1≤j≤Nx

γj =

m∑

j=1

∑

ij−1<i≤ij

γi +
∑

im<i≤Nx

γi. (4.7.3)

Therefore, by Lemma 16,

N−1/2
∑

1≤j≤Nx

γj =

m∑

j=1

(
Nj

N

)1/2

N
−1/2
j

∑

ij−1<i≤ij

γi +

(
Nm+1

N

)1/2

N
−1/2
m+1

∑

im<i≤Nx

γi

can be approximated by

GN (x) =

m∑

j=1

(θj − θj−1)
1/2GN,j(1) + (θm+1 − θm)1/2GN,m+1

(
x− θm

θm+1 − θm

)
.

The process GN (x) is a linear combination of Gaussian processes and hence is Gaussian. The

covariance structure (4.7.2) follows from the independence of GN,1,GN,2, . . . ,GN,M+1 and there

covariances established in Lemma 16.

Proof of Theorem 22: By the triangle inequality,

∣∣∣∣αN (x)−G0
N (x)

∣∣∣∣ =
∥∥∥∥

1√
N


 ∑

1≤i≤Nx

γj −
[Nx]

N

N∑

i=1

γj


− (GN (x)− xGN (1))

∥∥∥∥

≤
∥∥∥∥

1√
N

∑

1≤i≤Nx

γj −GN (x)

∥∥∥∥+
∥∥∥∥
[Nx]

N

1√
N

N∑

i=1

γj − xGN (1)

∥∥∥∥

Thus, by Lemma 17, max 0 ≤ x ≤ 1
∣∣∣∣αN (x)−G0

N (x)
∣∣∣∣ P→ 0, and the claim follows.

Proof of Proposition 23: Suppose Γ is a zero mean random element in a separable Hilbert space,

which satisfies E ||Γ||2 <∞. Then, Γ admits the Karhunen–Loéve decomposition, Γ =
∑∞

j=1 ξjϕj ,
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where the ϕj are (deterministic) orthonormal eigenvectors of the covariance operator of Γ, and ξj

are random variables, ξj = 〈X,ϕj〉. The covariance operator of Γ is defined by f 7→ E[〈Γ, f〉Γ], so

the ϕj satisfy E[〈Γ, ϕj〉Γ] = λjϕj . If Γ is Gaussian, then the ξj are independent and normal with

means zero and variances λj .

In the setting of Proposition 23, we consider the Hilbert space of of RK–valued functions

f(x) = [f1(x), f2(x), . . . , fK(x)]⊤, x ∈ [0, 1],

with the inner product

〈f ,g〉 =
K∑

k=1

∫ 1

0
fk(x)gk(x)dx.

Direct verification shows that

E[〈Γ, f〉Γ](x) =
∫ 1

0
R(x, y)f(y)dy.

Therefore, the Karhunen–Loéve decomposition with the eigenelements in (4.3.10) is

Γ(x) =
∞∑

j=1

√
λjZjφj(x).

By the orthonormality of the φj , we obtain

∫ 1

0
||Γ(x)||2 dx = 〈Γ,Γ〉 =

∞∑

j=1

λjZ
2
j .

Proof of Theorem 24: Under the change point alternative,

zi =

{
Cµ+ γi, 1 ≤ i ≤ ℓ∗,

Cµ∗ + γi, ℓ∗ < i ≤ N,

with ℓ∗ = [Nr]. Therefore, the CUSUM process can be expressed as

αN (x) = βN (x) +N−1/2gN (x, r)C(µ− µ∗),

where

βN (x) = N−1/2


 ∑

1≤i≤Nx

γi −
[Nx]

N

N∑

i=1

γi


 ,
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gN (x, r) =
[Nx]

N
(N − [Nr])I({x ≤ r}) + [Nr]

N
(N − [Nx])I({x > r}), (4.7.4)

and I(A) is the indicator function of set A. We also define the function

g∗(x, r) = x(1− r)I({x ≤ r}) + r(1− x)I({x > r}), (4.7.5)

and notice that for fixed x, r ∈ [0, 1],

N−1gN (x, r) → g∗(x, r), as N → ∞. (4.7.6)

Under HA, the Cramér–von–Mises test statistic can be expressed

CN =

∫ 1

0
||αN (x)||2 dx

=

∫ 1

0
||βN (x)||2 dx+

∫ 1

0

∣∣∣
∣∣∣N−1/2gN (x, r)C(µ− µ∗)

∣∣∣
∣∣∣
2
dx

+ 2

∫ 1

0
N−1/2gN (x, r)β⊤

N (x)C(µ− µ∗)dx.

Recall the Gaussian limit process defined in Theorem 22. Then,

∫ 1

0
||βN (x)||2 dx d→

∫ 1

0

∣∣∣∣G0(x)
∣∣∣∣2 dx = OP (1).

By (4.7.6) and the continuous mapping theorem,

N−1/2

∫ 1

0
N−1/2gN (x, r)β⊤

N (x)C(µ− µ∗)dx
d→
∫ 1

0
g∗(x, r)[G0(x)]⊤C(µ− µ∗)dx = OP (1),

The second term is deterministic and dominates the other two terms. By (4.7.6),

N−1

∫ 1

0

∣∣∣
∣∣∣N−1/2gN (x, r)C(µ− µ∗)

∣∣∣
∣∣∣
2
dx→ ||C(µ− µ∗)||2

∫ 1

0
{g∗(x, r)}2 dx.

Combining the above limits, we obtain relation (4.3.12).

4.7.2 Proofs of the results of Section 4.4

The proof of Theorem 27 is analogous to the proof of Theorem 22. Recall the notation Nj and

Jm(x) introduced at the beginning of Section 4.7.1. Throughout this section, we assume that the

Assumptions of Theorem 27 hold.
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Lemma 18 follows from Theorem 1.1 of Berkes et al. (2013b); the argument for the independence

of the M + 1 processes ΓN,m is presented in the proof of Lemma 16.

Lemma 18. For each N , we can define we can define M + 1 independent Gaussian processes

ΓN,1,ΓN,2, . . . ,ΓN,M+1 such that for all 1 ≤ m ≤M + 1,

EΓN,m(x, t) = 0, EΓN,m(x, t)ΓN,m(y, s) = min(x, y)Dm(t, s)

and

max
0≤x≤1

∣∣∣∣∣∣

∣∣∣∣∣∣
N−1/2

m

∑

j∈Jm(x)

ηj(t)− ΓN,m(x, t)

∣∣∣∣∣∣

∣∣∣∣∣∣
P→ 0.

The proof of Lemma 19 is analogous to the proof of Lemma 17, so it is omitted.

Lemma 19. Define the process

ΓN (x, t) =
m∑

l=1

(θj − θj−1)
1/2ΓN,j(1, t) + (θm+1 − θm)1/2ΓN,m+1

(
x− θm

θm+1 − θm
, t

)
,

θm ≤ x ≤ θm+1, 0 ≤ m ≤M + 1. Then

max
0≤x≤1

∣∣∣∣∣∣

∣∣∣∣∣∣
N−1/2

⌊Nx⌋∑

j=1

ηj(t)− ΓN (x, t)

∣∣∣∣∣∣

∣∣∣∣∣∣
P→ 0.

The proof of Theorem 27: Under H0 : τ1 = τ2 = · · · τN = τ , so

∑

1≤i≤Nx

Xi(t)−
[Nx]

N

N∑

i=1

Xi(t) =
∑

1≤i≤Nx

ηi(t)−
[Nx]

N

N∑

i=1

ηi(t).

It remains to apply Lemma 19 and the triangle inequality, analogously as in the proof of Theorem 22.

Proof of Theorem 29: The following proof is similar to the proof of Theorem 24. Under the

change point alternative,

Xi(t) =

{
τ(t) + ηi(t), 1 ≤ i ≤ ℓ∗,

τ∗(t) + ηi(t), ℓ∗ < i ≤ N,

with ℓ∗ = [Nr]. The CUSUM process can then be expressed as

αN (x, t) = βN (x, t) +N−1/2gN (x, r)(τ(t)− τ∗(t)),
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where

βN (x, t) = N−1/2


 ∑

1≤i≤Nx

ηi(t)−
[Nx]

N

N∑

i=1

ηi(t)


 ,

and gN (x, r) is the function defined in Equation (4.7.4). Under HA, the Cramér–von–Mises test

statistic can be expressed as

VN =

∫∫
α2
N (x, t)dtdx

=

∫∫
β2N (x, t)dtdx+ ||τ − τ∗||2

∫ 1

0
N−1g2N (x, r)dx

+ 2

∫∫
N−1/2gN (x, r)βN (x, t)(τ(t)− τ∗(t))dtdx,

where ||·|| is the norm defined in L2[0, 1]. By the Gaussian limit process defined in Theorem 27,

∫∫
β2N (x, t)dxdx

d→
∫∫

(Γ0(x, t))2dxdt = OP (1).

By (4.7.6) and the continuous mapping theorem,

N−1/2

∫∫
N−1/2gN (x, r)βN (x, t)(τ(t)−τ∗(t))dtdx d→

∫ 1

0
g∗(x, r)Γ0(x, t)(τ(t)−τ∗(t))dtdx = OP (1),

The second term is deterministic and dominates the other two terms. By (4.7.6),

N−1 ||τ − τ∗||2
∫ 1

0
N−1g2N (x, r)dx→ ||τ − τ∗||2

∫ 1

0
{g∗(x, r)}2 dx.

Combining the above limits, we obtain relation (4.4.13).

4.8 Details of the Numerical Implementation of the Tests

This section provides details of the numerical implementation of the methods proposed in this

paper. We use abbreviations introduced in Table 4.1.

4.8.0.0.1 Method ProjSim To lighten the notation, we describe the method in case of a single

break point, M = 1. Given functional observations X1, X2, . . . , XN , we proceed as follows. We

estimate the long–run covariance matrices V̂1 and V̂2, respectively, of the series data1 = {zi, i ≤ i1}
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and data2 = {zi, i > i1}. This allows us to generate a large number R, say R = 10E4 of processes

{Ĝ0
r(x), x ∈ [0, 1]}, as described following (4.3.11). For each replication r, we compute C(r)

N =

∫ 1
0

∣∣∣∣G0
r(x)

∣∣∣∣2 dx. The P–value is computed as the fraction of the C(r)
N which exceed CN computed

from the data. Critical values are the empirical quantiles of the C(r)
N , 1 ≤ r ≤ R.

To compute the long–run variance matrices, we use the Newey–West estimator implemented

in the R package sandwich. The main function used is lrvar(·). One important point is that

the function lrvar(·) gives the long-run variance of the sample mean and hence is scaled by the

sample size. To adjust for this, we need to multiply the function by the jth subset’s sample size.

More specifically, we estimate Vj by

V̂j = Nj*lrvar(dataj,type="Newey-West", prewhite=TRUE, adjust=FALSE), j = 1, 2,

where Nj is the sample size of the jth subset. Another important point is that for each estimated

long–run covariance matrix, we apply prewhiting.

4.8.0.0.2 Method ProjEigen The limit distribution of the statistic CN is approximated as

∫ 1

0
‖G0(x)‖2dx =

∞∑

j=1

λjZ
2
j ≈

J∑

j=1

λ̂jZ
2
j = ĈJ ,

where the Zj are i.i.d. standard normal and the λ̂j are eigenvalues defined by

∫ 1

0
R̂0(x, y)φ̂j(y)dy = λ̂jφ̂j(x).

For 0 ≤ x ≤ y ≤ 1, im ≤ Nx ≤ im+1 and im′ ≤ Ny ≤ im′+1, the kernel R̂0 is defined by

R̂0
N (x, y) = (1− y)




m∑

j=1

(θ̂j − θ̂j−1)V̂j + (x− θ̂m)V̂m+1




− x




m′∑

j=1

(θ̂j − θ̂j−1)V̂j + (y − θ̂m′)V̂m′+1




+ xy
M+1∑

j=1

(θ̂j − θ̂j−1)V̂j ,
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where θ̂j = N−1ij and where V̂j are the estimators defined above.

Using orthonormal basis functions ψi(y), 0 ≤ y ≤ 1, and the standard orthonormal basis {ei}Ki=1

of RK , we express R̂0
N (x, y) as

R̂0(x, y) =
K∑

i,j=1

∞∑

k,l=1

aijkleie
⊤
j ψk(x)ψl(y),

with

aijkl =

∫
e⊤i R̂0(x, y)ejψk(x)ψl(y)dxdy. (4.8.1)

Using the first p functions ψi, the eigenvalues λ̂n are computed by solving the equation

∫ 1

0

K∑

i,j=1

p∑

k,l=1

aijklψk(x)ψl(y)eie
⊤
j φ̂n(y)dy = λ̂nφ̂n(y),

which is reduced to finding the eigenvalues of a matrix A whose components are given by

Aµν = a(⌊µ−1

p
⌋+1),(⌊ ν−1

p
⌋+1),(µ−⌊µ−1

p
⌋p),(ν−⌊ ν−1

p
⌋p) for µ, ν = 1, . . . ,K × p,

with aijkl given by (4.8.1). We used ψj(x) =
√
2 sin(jπx), j = 1, . . . , p = 64 (K = 3).

Using J = N/5, we compute the replications

Ĉ(r) =

N/5∑

j=1

λ̂jZ
2
j , r = 1, . . . , 10E4.

The resulting empirical distribution is used to compute P–values or critical values.

4.8.0.0.3 Method NFEigen The key difficulty is to compute the eigenvalues λ̂j defined by

∫ 1

0

∫ 1

0
Û0(x, y, t, s)φ̂j(y, s)dyds = λ̂jφ̂j(x, t).

In contrast to method ProjEigen, the readily available long–run covariance matrix estimators cannot

be used.

To estimate the D̂j,Nj
defined in (4.4.12), w e use the flat–top kernel

K(t) =





1, |t| < 0.1,

1.1− |t|, 0.1 ≤ |t| < 1.1,

0, 1.1 ≤ |t|,
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with bandwidth parameter h = 16, which works well for sample size N = 250 and N = 500.

Using a complete orthonormal set {ψi}∞i=1 ∈ L2([0, 1]), the function Û0(x, y, t, s) is expressed as

Û0(x, y, t, s) =

∞∑

i,j,k,l=1

aijklψi(x)ψj(y)ψk(t)ψl(s),

with

aijkl =

∫
Û0(x, y, t, s)ψi(x)ψj(y)ψk(t)ψl(s)dxdydtds. (4.8.2)

We set aijkl = 0 for i, j, k, l > p. The eigenvalue λ̂n is then computed by solving the equation

∫∫ p∑

i,j,k,l=1

aijklψi(x)ψj(y)ψk(t)ψl(s)φ̂n(y, s)dyds = λ̂nφ̂n(x, t). (4.8.3)

Expanding φ̂n as

φ̂n(x, t) =
∞∑

i,j=1

d
(n)
ij ψi(x)ψj(t)

and recalling that the functions ψj are orthonormal, equation (4.8.3) can be further simplified to a

p2 × p2 system of linear equations

p∑

j,l=1

aijkld
(n)
jl = λ̂nd

(n)
ik for i, k = 1, . . . , p.

Thus the eigenvalues λ̂n can be estimated by finding the eigenvalues of a matrix A whose compo-

nents are given by the projection coefficients aijkl, e.g.

Aµν = a(
⌊µ−1

p
⌋+1

)

,
(

⌊ ν−1

p
⌋+1

)

,
(

µ−⌊µ−1

p
⌋p

)

,
(

ν−⌊ ν−1

p
⌋p

) for µ, ν = 1, . . . , p2,

with aijkl given by (4.8.2).

We used p = 64, ψj(x) =
√
2 sin(jπx), and J = 200 first eigenvalues to compute the replications

of
∑J

j=1 λ̂jZ
2
j .
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Chapter 5

DETERMINATION OF THE INTERVAL OF INCREASING CUMULATIVE

RETURNS PRIOR TO MACROECONOMIC ANNOUNCEMENTS

5.1 Introduction

Inspired by Lucca and Moench (2015), we develop a data-driven approach for detecting intervals

of statistically increasing cumulative returns in the presence of macroeconomic announcements. We

examine the intraday cumulative return curve in the context of Functional Data Analysis (FDA).

This is done by finding an interval with a positive derivative. To construct the confidence band, we

develop two methods: asymptotic and bootstrap. Our approach can precisely determine the turning

points of the derivatives and thus detect the exact interval of the “pre-FOMC.” We then apply our

approach to re-examine the pre-FOMC drift phenomenon. Our results reveal more information

about how the return curves change previous to the FOMC meeting. This methodology can be

applied to investigate the impact of events on high frequency asset returns.

Lucca and Moench (2015) document an interesting phenomenon that occurs on the day of the

scheduled Federal Open Market Committee (FOMC) announcement. The authors find large average

excess returns on U.S. equities in anticipation of monetary policy decisions made at scheduled

meetings of the Federal Open Market Committee (FOMC). This phenomenon, which was observed

over the last few decades, is named as the “pre-FOMC drift.” These pre-FOMC returns have

increased over time and account for sizable fractions of total annual realized stock returns. To infer

upon this phenomenon, Lucca and Moench (2015) formally assesses the magnitudes of excess stock

market returns prior to scheduled FOMC announcements by running a simple dummy variable

regression model:

rxt = β0 + β11t(FOMC) + βxXt + ǫt. (5.1.1)
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The response rxt denotes the cum-dividend log excess return on the SPX over the risk-free rate

in percentage points. The explanatory variable is a dummy variable equal to one on scheduled

pre-FOMC announcement windows and zero otherwise. Xt is a vector of additional controls.

Although the “dummy” approach is generally used in the macroeconomic announcement litera-

ture, the method lacks novelty and the ability to detect precisely where the cumulative returns are

statistically increasing and decreasing. In order to assess the impact of macroeconomic announce-

ments, most if not all literature artificially separate data into pre- and post- announcement and

run similar regression analysis or simple statistics to show the difference (or similarity) pre- and

post- announcement. Ideally, the data can tell us where to cut it instead of using brute force.

In this paper we want to answer the following questions:

1. Do the cumulative returns change direction at exactly the announcement time (i.e. 14:15 for

FOMC meeting)?

2. If not, can we detect the change points statistically?

To answer these injuries, we develop a data-driven approach for detecting intervals of statis-

tically increasing cumulative returns in the presence of macroeconomic announcements. This is

done by finding an interval with a positive derivative and extending the ideas developed by Liu and

Müller (2009).

Liu and Müller (2009) develop a method of recovering the derivative of sparsely observed obser-

vations. The authors accomplish this task by expanding on traditional local polynomial smoothing,

generalizing it to a FDA setting. Their approach in conjunction with functional principal compo-

nent scores for sparse data leads to a practical solution of recovering derivatives for sparsely observed

functions. The authors apply their developed methods to online auction price dynamics.

Investigated by Lucca and Moench (2015), the pre-FOMC drift is a phenomenon that deserves

more attention. To study this drift in more detail, we expand on the ideas of Liu and Müller
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(2009) and develop a method of recovering the derivative of intraday cumulative returns. Our

proposed method accounts for the uncertainty related to our estimation, which produces (1−p)100%

confidence bands of the derivative. To construct the (1− p)100% confidence band, we develop two

methods: asymptotic and bootstrap. These new approaches can then be used to estimate time

intervals of statistically increasing intraday cumulative returns under the presence of scheduled

macroeconomic announcements.

We apply the asymptotic procedure to the same sampling period presented in Lucca and Moench

(2015). We construct an interval of statistically increasing cumulative returns of the S&P500 index

using 132 trading days in which the FOMC announcement occurred. This sampling period begins

September-1994 and ends March-2011. For this motivating example, we only look at a single day,

where Lucca and Moench (2015) investigated a three day period centered about the announcement

day. When using this sampling period, the asymptotic confidence band crosses zero 47 minutes

before the FOMC announcement. The announcement occurs at 14:15 and the interval of statistically

increasing returns begins 09:30 and ends at 13:28. This procedure is illustrated in Figure 5.1.

Then we apply the approach to several other combinations: WTI Sweet Light Crude Oil Futures

returns before the Weekly Petroleum Status Report, i.e., the crude oil inventory announcements of

the U.S. Energy Information Administration (EIA).

In addition to the work cited above, this paper is related to different streams of literature.

High–frequency, and intraday financial data in general, have been an important focus of research

in finance, econometrics and statistics for over two decades. The literature is enormous; an in-

troduction is given in Chapters 5 and 6 of Tsay (2005), and to list a few influential publications,

which contain literature overview, we cite Engle and Russel (2004), Barndorff-Nielsen and Shep-

hard (2004), Hayashi and Yoshida (2005), Wang and Zou (2010), and Andersen et al. (2012). The

impact of scheduled macroeconomic news on assets has been an important research topic over the

last few years. There have been several studies that established the impact or lack thereof scheduled
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Figure 5.1: Intraday Cumulative Returns of S&P500 on the FOMC Days

The S&P500 intraday cumulative returns on the scheduled FOMC announcement days from
September 1994 through March 2011. The domain of each curve consists of a single trading day
(390 minutes). The FOMC announcement is located at t = 285 minutes which corresponds to
14:15. The asymptotic procedure is used to estimate when the true maximum occurs with 95%
confidence. The 95% asymptotic band crosses zero at t = 238 minutes or 13:28.
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announcements on various types of assets, see e.g. Elder et al. (2011) for an inquiry of this type

which also contains references to earlier work.

The paper is organized as follows. Section 5.2 introduces the statistical model and relevant

definitions of functional data analysis. Section 5.3 gives details on how the derivative is estimated,

which incorporates a functional analogue of local polynomial regression. Section 5.4 describes the

asymptotic and bootstrap procedures used to construct the confidence bands, which includes nu-

merical implementations and large sample approximations. Section 5.5 discuss the data used in the

empirical study. Section 5.6 is an extensive empirical study. We apply the two developed procedures

to selected financial indexes in the presence of scheduled macroeconomic announcements. Section

5.7 is a simulation study assessing the performance of the asymptotic and bootstrap procedures.

Section 5.8 summarizes the statistical and financial findings. Section 5.9 includes proofs of the

propositions.

5.2 Statistical Model and Assumptions

We consider Cumulative Intraday Returns (CIDRs) of financial assets. The CIDR’s are defined

by

Ri(t) = 100{logPi(t)− logPi(0)}, (5.2.1)

where Pi(t) is the price of the asset at time t on day i. Since Ri(t) ≈ 100(Pi(t)− Pi(0))/Pi(0), the

CIDR’s reflect the shape of the daily price curves. In contrast to the price curves Pi(t), the Ri(t)

form an approximately stationary functional time series.

To answer the questions discussed in the Introduction with statistical significance, a suitable

statistical model is needed. We postulate that the observed CIDR curves, R1(t), . . . , RN (t), follow

the model

Ri(t) = µ(t) + εi(t), i = 1, . . . , N, t ∈ [0, 1], (5.2.2)

where µ is the unknown mean function, µ(t) = ERi(t), and the curves εi are independent identically

distributed random functions with zero mean, that is, Eεi(t) = 0.
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Without loss of generality, we assume that all functions are defined on the unit interval [0, 1].

This can always be achieved by an affine transformation of time. From now on, integration without

indicating the limits, always refers to integration over [0, 1]. We assume that µ belongs to the space

L2 of square integrable functions, i.e.
∫
µ2(t)dt < ∞. The error functions are also assumed to be

in L2 and to be square integrable, i.e. E
∫
ε2i (t)dt < ∞. The covariance operator C of random

functions ε1, ε2, . . . , εN is defined by

C(y)(t) =

∫ 1

0
c(s, t)y(s)ds, y ∈ L2[0, 1], (5.2.3)

where the kernel c(·, ·) is the covariance function defined by

c(s, t) = E[ε(s)ε(t)] = E[(R(t)− µ(t))(R(s)− µ(s))], 0 ≤ s, t ≤ 1. (5.2.4)

Model (5.2.2) can intuitively be thought of as a single path of a Brownian motion. A more

detailed background can be found in several recent monographs, see e.g. Chapters 2 and 3 of

Horváth and Kokoszka (2012).

5.3 Estimation of the Derivative

In model (5.2.2), the mean function µ is a parameter to which inference applies. We are

specifically interested in estimating the derivative µ′(t) at any given time point t and finding a

confidence interval for this derivative. We use a framework akin to the local polynomial smoothing,

see Fan and Gijbels (1996), but suitably modified to apply to model (5.2.2). A local polynomial

estimator is calculated by minimizing the objective function

SN (t;α) =
N∑

i=1

∫ 1

0
{Ri(s)− (α0 + α1(s− t) + · · ·+ αp−1(s− t)p−1)}2K

(s− t

h

)
ds, (5.3.1)

with respect to α0, α1, . . . , αp−1. We denote the estimated derivative by µ̂′(t) = α̂1. Minimizing

(5.3.1) is a different procedure than the standard local polynomial smoothing of a single function

observed with noise. It makes sense only in the context of model (5.2.2), and is similar to the
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approach of Liu and Müller (2009), who used a sum rather than the integral, as they focused on

sparsely observed curves. A review of the local polynomial smoothing is presented in Section 5.9.1.

The CIDR curves are smooth and densely observed, so the integral notation is appropriate.

5.3.1 Estimation of model (5.2.2)

In the framework of model (5.2.2), minimizing (5.3.1) for a fixed t leads to an estimator of the

parameter vector

α(t) = α = [α0, α1, . . . , αp−1]
′. (5.3.2)

It is possible to compute the minimum using the Newton’s method; it can be shown that the

Hessian does not depend on α and can be calculated in closed form for any specific kernel K. As

a matter of practical implementation, it is however easier to relate the minimization of (5.3.1) to

the minimization of (5.9.1) for which computationally efficient R implementations exist. We now

explain how this is done.

Partition the unit interval into J+1 intervals using equispaced points 0 = s0 < s1 < · · · < sJ =

1. For fixed time t, define the functional response vector and design matrix by

Ri =




Ri(s1)

Ri(s2)
...

Ri(sJ)



, Ut =




1 (s1 − t) (s1 − t)2 · · · (s1 − t)p−1

1 (s2 − t) (s2 − t)2 · · · (s2 − t)p−1

...
...

...
. . .

...

1 (sJ − t) (sJ − t)2 · · · (sJ − t)p−1



. (5.3.3)

Define the diagonal weight matrix by

Ωt,h = diag
{
K
(s1 − t

h

)
,K
(s2 − t

h

)
, · · · ,K

(sJ − t

h

)}
. (5.3.4)

Notice that the weight matrices (5.9.2) and (5.3.4) are basically the same except that in (5.9.2) N is

the number of points at which a single curve is observed and in (5.3.4), J is the number of partition

points which can be arbitrarily chosen. The connection between the two settings is established by

the following proposition.
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Proposition 30. For every fixed t, the least squares objective function SN (t;α) defined in (5.3.1)

achieves its minimum at

α̂(t) = α̂ =




α̂0

α̂1

...

α̂p−1



=

1

N

N∑

i=1

α̂i(t),

where

α̂i(t) = α̂i =




α̂0,i

α̂1,i

...

α̂p−1,i



= (U′

tΩt,hUt)
−1U′

tΩt,hRi. (5.3.5)

The proof of Proposition 30 is given in Section 5.9.2. Comparing equation (5.3.5) to (5.9.3),

we see that each α̂i can be computed using available software and treating the vector Ri defined

in (5.3.3) as a curve observed at points sj . For the empirical study in Section 5.6 and simulation

study in Section 5.7, the R function locpoly(·) is implemented to compute (5.3.5). This function

can be found in the R package KernSmooth. In all calculations, we use p = 3 (local quadratic fit)

because it is known to give well–behaved estimates of the local slope.

5.3.2 Asymptotic approximation to the distribution of µ̂′(t)

To lighten the notation, set

Qt,h = (U′
tΩt,hUt)

−1U′
tΩt,h, (5.3.6)

so that α̂i(t) = Qt,hRi. Notice that Qt,h is a function of both the fixed time t ∈ [0, 1] and the

bandwidth h. In contrast to the usual asymptotic theory for local smoothing, we do not consider

h→ 0 with the sample size. This is because we want to obtain an approximation for an actual h we

use. In such a setting, α̂(t) is in general a biased estimator of α(t), but under weak assumptions

on the local structure of the function µ in (5.2.2), the asymptotic approximation described in

Section 5.4 can be justified. Proposition 31 gives the details of the limiting distribution with fixed

h. Before stating it, we present some preliminary notation and arguments.
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The expected value of the response vector Ri defined in (5.3.3), is

E[Ri] =




ERi(s1)

ERi(s2)
...

ERi(sJ)



=




µ(s1)

µ(s2)
...

µ(sJ)



=: µ,

which implies E[α̂(t)] = Qt,hµ. In Proposition 30, we discretize the unit interval into J points. The

mean vector µ is the discretized representation of mean function µ in model (5.2.2). The covariance

function c defined in (5.2.4) can also be represented in a discrete form

Σε =




c(s1, s1) c(s1, s2) · · · c(s1, sJ)

c(s2, s1) c(s2, s2) · · · c(s2, sJ)
...

...
. . .

...

c(sJ , s1) c(sJ , s2) · · · c(sJ , sJ)



, (5.3.7)

where c(·, ·) is the covariance function defined in Equation (5.2.4). Denote the covariance matrix

of estimator α̂(t) by Σα̂. This matrix can be expressed as

Σα̂ = Var[α̂i(t)] = Var[Qt,hRi] = Qt,hVar[Ri]Q
′
t,h = Qt,hΣεQ

′
t,h. (5.3.8)

Proposition 31. Under model (5.2.2), for fixed t ∈ [0, 1] and h > 0,

√
N(α̂(t)−Qt,hµ)

D→ N(0,Σα̂),

where Qt,h is defined in Equation (5.3.6) and Σα̂ is defined in Equation (5.3.8).

Proof. The R1,R2, . . . ,RN are independent and identically distributed random vectors with com-

mon mean Qt,hµ and covariance matrix Σα̂. The result follows immediately from the multivariate

central limit theorem, e.g. Lütkepohl (2005) p. 691.

Proposition 31 implies that

√
N(α̂1(t)− α∗

1(t))
D→ N(0, σ2ε),
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where α∗
1(t) is the second component of vector Qt,hµ and σ2ε is the second diagonal element of

covariance matrix Σα̂. To construct the confidence band of interest, we need to estimate σ2ε and

address the bias α∗
1(t)− α1(t).

Define the empirical covariance function ĉ by

ĉ(s, t) =
1

N

N∑

i=1

(Ri(t)− R̄(t))(Ri(s)− R̄(s)), 0 ≤ s, t ≤ 1,

where the sample mean is defined by

R̄(s) =
1

N

N∑

i=1

Ri(t), 0 ≤ t ≤ 1.

Discretizing the unit square and evaluating the respective points in the empirical covariance function

ĉ(s, t) gives a natural estimator of Σε. More specifically,

Σ̂ε =




ĉ(s1, s1) ĉ(s1, s2) · · · ĉ(s1, sJ)

ĉ(s2, s1) ĉ(s2, s2) · · · ĉ(s2, sJ)
...

...
. . .

...

ĉ(sJ , s1) ĉ(sJ , s2) · · · ĉ(sJ , sJ)



. (5.3.9)

The bias α∗
1(t) − α1(t) cannot, in general, be eliminated for a fixed h. It however vanishes at

every t for which the mean function µ admits the representation

µ(sj) =

p−1∑

l=1

αi(sj − t)l, i = 1, 2, . . . , N, j = 1, 2, . . . , J, (5.3.10)

where the coefficients αi depend on t. The model can then be expressed using matrix representation

Ri = Utα+ εi, i = 1, 2, . . . , N.

Hence, the estimator α̂(t) is unbiased because

E[α̂(t)] = Qt,hµ = (U′
tΩt,hUt)

−1U′
tΩt,hUtα = α.

Representation (5.3.10) will not hold exacly at every t = tj , but is a reasonable approximation

underlying the local polynomial method. This leads to the approximation in distribution

√
N(α̂1(t)− µ′(t)) ≈ N(0, σ̂2ε), (5.3.11)
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where σ̂2ε is the second diagonal element of the matrix Qt,hΣ̂εQ
′
t,h with the matrix Qt,h defined in

(5.3.6) and the matrix Σε in (5.3.9). The matrices Ut and Ωt,h in (5.3.6) are defined, respectively,

in (5.3.3) and (5.3.4).

5.4 Asymptotic and Bootstrap Procedures

Our objective is to determine the t–region over which the function µ is increasing. Equivalently,

we want to determine the values of t for which µ′(t) > 0. To achieve this objective with a specified

statistical significance p, we have to find for each t, a random lower bound µL(t) such that P (µ′(t) >

µ′L(t)) = 1 − p. Note that using p = 0.05 defines a one–sided 95 percent confidence interval. If

µ′L(t) > 0, we can be 95 percent confident that the expected cumulative return is increasing at time

t. In the following, we often suppress the time t, as it is fixed when constructing the confidence

band.

Computation of the exact value of µ′L is not possible; we would need to know the exact dis-

tribution of µ̂′ − µ′. In that infeasible case, if qU is the (1 − p)th quantile of the distribution of

µ̂′ − µ′, we would set µ′L = µ̂′ − qU . The distribution of µ̂′ − µ′ is however unknown and must be

approximated in some way. We consider asymptotic and bootstrap approximations.

The asymptotic approximation we use is stated as relation (5.3.11), which leads to approxima-

tion:

qU ≈ N−1/2σ̂εΦ1−p, (5.4.1)

where the standard deviation σ̂ε is defined immediately below relation (5.3.11). The symbol Φ1−p

is the (1 − p)th quantile of the standard normal distribution. For the empirical study, we denote

the asymptotic approximation by AS.

In the bootstrap approximation, we replace the distribution of µ̂′ − µ′ by the empirical distri-

bution of α̂∗
1. The bootstrap replications are obtained according to Algorithm 32. For convenience,

label the bootstrap procedure as BS. Denote the empirical pth (e.g. 5th) percentile of the B values
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of α̂∗
1 by q∗L. We then approximate µ′L by q∗L. Note the implemented bootstrap procedure follows

from Section 6.3.4 of Ruppert (2011). The percentile bootstrap method is known to work well if the

distribution of α̂∗
1 is symmetric about α̂1, which is reasonable in our setting. We emphasize that

the bootstrap samples are selected from the set of all CIDR curves R1, R2, . . . RN , not separately

for each t.

Algorithm 32. [Bootstrap] For b = 1, 2, . . . B, repeat the following steps:

1. Select a random sample with replacement of N curves R∗ = {R∗
1, R

∗
2, . . . , R

∗
N} from the orig-

inal data set.

2. Using the bootstrap sample R∗, compute α̂∗
1 which minimizes (5.3.1). (We use Equation

(5.3.5).)

3. Use the lower quantile q∗L of the of the empirical distribution of α̂∗
1 to construct the lower

bound µ′L = q∗L.

In practice, we partition the interval [0, 1] using points 0 = t0 < t1 < t2 < . . . < tJ = 1, and

calculate the approximations to µ′L(tj) defined above.

Both the asymptotic and bootstrap procedures can be transformed to find intervals of statis-

tically decreasing cumulative returns. To accomplish this, we have to find for each t, a random

upper bound µU (t) such that P (µ′(t) < µ′U (t)) = 1− p. In this paper, we only focus on intervals of

increasing cumulative returns.

5.5 Data

In this empirical study, we apply the asymptotic procedure and the bootstrap procedure to

selected financial data sets under the presence of scheduled macroeconomic announcements. There

are two financial data sets under consideration. The first is intraday cumulative returns of S&P500

index. This is a slight variation from the work of Lucca and Moench (2015), who use 2pm-to-

2pm SPX excess cumulative returns. A typical trading day consists of J = 390 minutes ranging
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from 09:30 to 16:00. The second financial index is NYMEX light crude oil futures for which, we

consider the intraday cumulative returns from 10:00 to 15:00, which gives refinement J = 300

minutes.1 In the empirical study, analyzing a larger window about the announcement is often

appropriate. We consider either a one day or a three day window. The one day analysis refers to

only looking at functional observations that come from the actual announcement day. A three day

window corresponds to a single functional observation covering a three day span. For the S&P500

cumulative returns, a one day window has refinement J = 390 minutes while a three day window

has refinement J = 1170 minutes.

The first macroeconomic announcement we consider is the scheduled Federal Open Market

Committee meetings. To investigate the pre-FOMC drift, we run a one day analysis using the sam-

pling period from Lucca and Moench (2015) on the S&P500 cumulative returns. This constitutes

132 scheduled FOMC meetings ranging from September-1994 and ending March-2011. A longer

sampling period of 145 days is also considered, which span February-1994 through March-2012. To

assess the impact of the FOMC meetings on crude oil cumulative futures, we look at all scheduled

meeting days from February-1994 through ending March-2011, which results in 166 days. We run

a one day window on oil futures in the presence of the FOMC meetings.

The next macroeconomic announcement is the US Change in Nonfarm Payrolls, which con-

stitutes 157 days starting from January-1999 through March-2012. For this case, we assess its

influence on the S&P500 cumulative returns. The announcement occurs at 8:30, which is before

the start of the trading day. Consequently, we chose a three day window for this setting. Many

researches consider the Change in Nonfarm Payrolls announcement to be one of the most impactful

announcements, see e.g., Elder et al. (2011). To gain further insight, we consider both ex-post

1Our sample period for CL is June 2003 to December 2014. During this period, the futures trading hours
changed. From June 2003 to 6/11/2006, Crude Oil Futures cease trading between 9:30 and 10:00 for maintenance.
After 6/12/2006, the maintenance period is between 16:15 and 17:00. Thus, for the period between 2003 and 2006,
there is no trading between 9:30 and 10:00. Therefore, For simplification, we only consider the timer period between
10:00 and 15:00 for CL.
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positive and negative shocks on the market. Namely, we consider when the market exceeds expec-

tations and when the market is less than expected. The expectations come from the Bloomberg

survey median.

The third announcement considered is the Energy Information Administration’s announcement

of crude oil inventory. This is known to be a killer or buster of short run crude oil prices. We

test its impact on crude oil futures cumulative returns with announcement days ranging from

June-2003 through December-2014. This announcement occurs mostly on Wednesday at 10:30 am

which results in a total of 601 days. Since the announcement occurs during the business day, we

only consider a one day analysis as opposed to a three day window. For the crude oil inventory

announcement, we also consider ex-post positive and negative shocks related to market expectations

measured by the Bloomberg Survey median. For ease of reference, Tables 5.1 and 5.2 summarize

the above data sets, announcements, sampling periods and testing procedures.

The intraday index and futures price data is obtained from TickData. The market expectations

of the corresponding macroeconomic news are from Bloomberg.

5.6 Empirical Applications

5.6.1 Pre-FOMC Drift

For both procedures, the confidence bands are computed using least squares optimization

method described in Section 5.3.1. For the BS procedure, use B = 1000 bootstrap replications.

The confidence bands are estimated using levels 90%, 95% and 99%. The kernel function K(·) is

chosen to be gaussian with seven bandwidths h = .01, .05, .10, .15, .20, .30, .50. Using too big of

a bandwidth will result in under-fitting while too small of a bandwidth will result in over-fitting.

Visual inspection supports the use of bandwidth h = .10, which is also chosen in all figures, chosen

to demonstrate the relevant procedures.

After running the AS and BS procedures to construct the confidence bands, the intervals of

statistically increasing returns are determined by where the confidence bands are greater than zero.
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These time periods can be a single interval or a union of disjoint intervals. In the summary tables,

“NA” reflects the case when the confidence band erratically crosses zero due to over-fitting. The

NA is displayed when the confidence band produces at least four intervals. In the summary tables,

“none” reflects the case when the confidence band is under zero for the entire trading day. In this

case, no intervals of statistically increasing returns have been discovered. To determine intervals of

statistically decreasing returns, upper confidence bands must be constructed, which is not a focus

in this paper.

Table 5.4 shows the one day window SP intervals of increasing cumulative returns in the presence

of the FOMC scheduled meetings. This is the same sampling period used in Lucca and Moench

(2015). The results show that with different bandwidths and different confidence levels, both the

AS and BS approaches are able to detect the intervals of increasing cumulative returns within the

one day window. Different bandwidths and different confidence levels do impact the results. In

general, results of approaches with most of the combinations of bandwidth and confidence levels

show that the cumulative returns do increase before the announcement at 14:15. However, the

results also answer our first question. That is, the cumulative returns do not change direction

exactly at 14:15. Instead, the increasing return intervals end before 14:00 for all combinations. The

pre-FOMC drift does exist, but it ends earlier than the announcement. The results also clearly

show that increasing bandwidth and confidence levels make the intervals tighter. TheAS procedure

produces similar results as the BS procedure. The different bandwidths and confidence levels do

not change the fundamental pattern.

Figure 5.1 displays all the cumulative return curves, the mean and the 95% derivative confidence

band with h = 0.1. The figure shows that the average cumulative returns increase statistically until

approximately 47 minutes (at 13:28) before the scheduled FOMC announcements.

Table 5.5 shows one day window SP intervals of increasing cumulative returns in the presence of

the FOMC scheduled meetings using the extended sample size. The pattern is similar to Table 5.4.
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When using the increased sample size, the intervals of statistically increasing returns is roughly 10

minutes shorter. For example, when using h = .10 and 95% confidence, the AS procedure produces

the interval (09:30,13:28) for the smaller sample size and (09:30,13:17) for the larger sample size.
−

2
−

1
0

1
2

Increasing Cumulative Returns

● ●● ●

AS
BS

Day 1 Day 2 Day 3

FOMC

Figure 5.2: Three Day Window SP 95% Confidence Bands: FOMC Days

Tables 5.6 and 5.7 show three day window SP intervals of increasing cumulative returns in

the presence of the FOMC scheduled meetings. For this output, the larger sampling period is

used. The pattern is in-line with Table 5.5 and adds more information. As illustrated in Figure

5.2, the cumulative returns tend to start statistically increasing on the business day before the

announcement and stop increasing before the FOMC announcement. When using h = .10 and

95% confidence, the AS procedure produces the interval (12:39,16:00) for the day preceding the

announcement and the interval (09:30,13:51) on the announcement day. This pattern is roughly

uniform for the different sample sizes and announcements. The AS procedure and BS procedures

produce similar conclusions. In summary, the results show that the pre-FOMC drift starts at

roughly noon of the day before the announcement day and continues to about half hour before

14:15.
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Figure 5.3: One Day Window CL 95% Confidence Bands: FOMC Days

5.6.2 Change in Crude Oil Inventory

In much macroeconomic announcement literature, the EIA Change in Crude Oil Inventory

announcements have been shown to impact the price movement of crude oil futures, at least at the

intraday level. This impact is known to vanish quickly. In this section, we apply our approaches to

detect whether there is a pre-announcement drift around the EIA Change in Crude Oil Inventory

announcements.

Tables 5.8, 5.9, and 5.10 show one day window CL intervals of increasing cumulative returns

in the presence of the CI scheduled meetings. Table 5.8 reports the results for all announcement

days. The results basically show an increasing interval after 12:00 for all combinations. It does not

contain much information at all since the announcement is at 10:30. Thus, to further investigate

the impact of the change in inventory, we divide the data into two sub-samples: days with ex-post

negative shocks – less than expected change of inventory and days with positive shocks – more than

expected change of inventory. The expectation is measured as the Bloomberg Survey median. In

reality, one does not observe the shocks until the announcements, but as an ex-post examination,
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most literature adopt this approach.

Table 5.8 reports the results for the days with ex-post negative shocks. Intuitively, negative

shocks should lead to price increase or increasing returns of CL. The results are consistent with

intuition. Although different combinations of bandwidth and confidence levels give different in-

creasing return intervals, in general, the intervals contains 10:30. For instance, the AS approach

with 0.10 bandwidth and 95% confidence levels detect the increasing return interval (10:23:11:25).

This is consistent with the literature: negative shocks results in up price movements of CL and the

impact vanish fairly quickly. The interval seems to indicate that there is some pre-announcement

drift, but only several minutes before the announcements on average.

Table 5.10 presents the results for the days with ex-post positive shocks. Not surprisingly,

we do not observe any increasing intervals containing 10:30. Intuitively, positive shocks upsets CL

prices and thus, we are more likely to detect a decreasing interval. However, the after announcement

intervals (mostly start after 12:00) are consistent with the “correcting of over reaction” phenomenon

observed in the literature. Most likely, after a positive shock, the market overreacts to the shock

for more than an hour and then corrects the over reaction quickly after.

5.6.3 The Change in Nonfarm Payrolls

The Change in Nonfarm Payrolls which is included in the monthly Employment Situation

Summary from the Bureau of Labor Statistics is considered the “King of announcement.” In this

section, we investigate the impact of the Nonfarm Payrolls on the cumulative return of the S&P500

index. Table 5.11 shows three day window CL intervals of increasing cumulative returns in the

presence of the CM scheduled meetings. The single table shows all relevant intervals for positive

shocks, negative shocks and all announcement days. Validated by Figure 5.5, the confidence bands

all exist below zero, which indicates the S&P500 cumulative returns are not shown to be statistically

increasing under the change in conform payroll announcement. This conclusion is consistent with
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Lucca and Moench (2015). The few intervals that do exist are likely a result of overfitting, since

they occur with small bandwidths h = .01, .05.
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5.7 Simulation study

To assess the performance of both asymptotic approach described by approximation (5.3.11)

and bootstrap approach described by Algorithm 32, we perform a small simulation study using

curves that resemble actual intraday cumulative returns. With regards to model (5.2.2), assume

two different functional means:

µ(t) = −169/128t(t− 16/13), 0 ≤ t ≤ 1, (5.7.1)

and

µ(t) = −169/64t(t− 16/13), 0 ≤ t ≤ 1. (5.7.2)

Rescaled to 390 minutes to represent a typical trading day, these curves resembles the average

pattern of cumulative returns. The two different functions have the same vertex with different

amplitudes. The true maximum of both quadratics is located at t = 240/390, which corresponds

to 240 minutes when µ(t) is not scaled to the unit interval. The maximum of (5.7.1) is .5 and the

maximum of (5.7.2) is 1. The random functional errors εi(t) are assumed to be an AR(1) process

simulated at discrete time points tj , j = 1, 2, . . . , J . More specifically,

εi(tj) = 0.99 ∗ εi(tj−1) + uj , j = 2, . . . J, , i = 1, 2, . . . , N,

where the uj ’s are iid mean zero random variables with variance σ2 = (1/25)2. Collectively, the

cumulative returns are simulated using the two models

Ri(tj) = −169/128tj(tj − 16/13) + εi(tj), j = 2, . . . J, , i = 1, 2, . . . , N, (5.7.3)

and

Ri(tj) = −169/64tj(tj − 16/13) + εi(tj), j = 2, . . . J, , i = 1, 2, . . . , N. (5.7.4)

Consequently, the true interval of increasing returns is expressed as:

Interval of increasing futures = [0, 240) minutes.
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For convenience, we call t = 240 minutes the true cut-off value. In our study, we simulate N

curves and estimate the (1−p)% confidence band using bandwidth 0.10. Denote the location where

the confidence band crosses zero by tc. Using bootstrap Algorithm 32, define tc as the value that

satisfies

µL(tc) = 0.

Using approximation (5.3.11), define tc as the value that satisfies

α̂1(tc)−N−1/2σ̂ǫΦ1−p = 0.

With (1− p)% confidence, this quantity defines our large sample interval of increasing returns, i.e.,

(1− p)% interval of increasing cumulative returns = (0, tc) minutes.
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Figure 5.6: N = 100 simulated curves using refinement J = 390 minutes. The BS and AS
procedures are used to estimate when the true maximum occurs with 95% confidence. The true
maximum is located at 240 minutes and the true amplitude of the mean µ(t) is 1/2. For this
realization, the BS confidence band crosses at 223 minutes and the AS confidence band crosses at
227 minutes.

To illustrate the procedure, Figure 5.6 shows N = 100 generated curves with true mean assumed

as Equation (5.7.1). The 95% lower confidence bands are computed using both procedures. The

simulation algorithm is described below:

140



Algorithm 33. [Simulation]

1. Simulate N curves based on equations (5.7.3) and (5.7.4). Here we use sample sizes N =

100, 250 and refinement J = 390.

2. Estimate 95% lower confidence band using AS approximation (5.3.11) and BS Algorithm 32.

Using the confidence bands, find cut-off values tc for both procedures.

3. With R = 200, compute the MSE using both procedures where

MSE =

{
1

R

R∑

r=1

(
t(r)c − t)

)2
}1/2

.

Table 5.3 displays the simulation results of Algorithm 33. For all cases, the AS procedure did

a better job at identifying the true cut-off compared to the BS procedure. Simulated curves that

exhibit a larger amplitude in µ(t) also produce a smaller MSE. This is intuitive because the trend is

easier to identify which in turn, makes it easier to estimate the true cut-off t = 240. The increased

sample size also produces a smaller MSE for all cases.

5.8 Conclusion

There has been extensive literature that studied the impact of macroeconomic news on returns

of financial assets. In a recent paper, Lucca and Moench (2015) documents large average excess

returns on U.S. equities in anticipation of monetary policy decisions made at scheduled meetings of

the Federal Open Market Committee (FOMC). However, their conclusion is based on dividing the

data artificially at the announcement point of time and run simple regression to show the existence

of the pre-FOMC drift.

In this paper, we develop a data-driven approach for detecting intervals of statistically increas-

ing cumulative returns in the presence of macroeconomic announcements. We examine the intraday

cumulative return curve in the context of Functional Data Analysis (FDA). This is done by finding

an interval with a positive derivative. To construct the confidence band, we develop two meth-

ods: asymptotic and bootstrap. Our approach can precisely determine the turning points of the
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derivatives and thus detect the exact interval of the “pre-FOMC.” The approaches can be applied

to study the impacts of any “events” on the returns of financial assets.

We then apply our approaches to re-examine the pre-FOMC drift phenomenon. Our results

reveal more information about how the return curves change previous to the FOMC meeting. First,

the pre-FOMC drift does exist. Second, the drift ends earlier than the announcement time of 14:15,

not exactly at the announcement time. Therefore, artificially cutting the data at the time of the

announcement is questionable or at least not very accurate.

We also apply our approaches to examine the impacts of Change in Crude Oil Inventory on

the cumulative returns of WTI Light Sweet Crude oil futures. When the announcement days are

divided into sub-samples of positive and negative ex-post inventory shocks, the approaches are able

to detect the increasing return intervals for both sub-samples. The intervals detected are consistent

with the literature and contain richer information. The result of applying the approaches to the

impact of Change in Nonfarm payroll on the S&P500 index is consistent with Lucca and Moench

(2015).
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Table 5.1: Tickers and Abbreviation

This table shows the Tickers (symbols) and abbreviations used in the paper.

Assets, Events, etc. Symbol (Abbreviation)

S & P 500 E-mini futures SP

Light crude oil futures NYMEX CL

Federal open market committee meetings (14:15 or 2:15 pm) FOMC

Change in nonfarm payroll (8:30 am) CM

Inventory change in crude oil (10:30 am) CI

Asymptotic Procedure AS

Bootstrap Procedure BS

Positive Shock (Actual > Expected) POS

Negative Shock (Actual < Expected) NEG

Table 5.2: Sampling Periods and Sizes

This table reports the sample periods in this study.

Financial index Announcement Sampling period Sample size

SP

FOMC 09/94 - 03/11 132

FOMC 09/94 - 03/12 147

CM-FULL 01/99 - 03/12 157

CM-POS 01/99 - 03/12 86

CM-NEG 01/99 - 03/12 71

CL

FOMC 02/94 - 12/14 166

CI-FULL 06/03 - 12/14 601

CI-POS 06/03 - 12/14 378

CI-NEG 06/03 - 12/14 223
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Table 5.3: MSE for Simulations

This table reports the simulated MSE values of the bootstrap procedure (BS) and large sample
procedure (AS). Each method uses confidence level 95% and bandwidth h = .10. The MSE values
are calculated using the full 390 minute trading day. The units of the empirical MSE values are in
minutes.

Procedure Cut-off Amplitude of µ(t) N = 100 N = 250

BS
tc Small 26.79 16.78

tc Big 12.55 8.21

AS
tc Small 20.03 12.42

tc Big 9.45 6.23

144



Table 5.4: FOMC and S&P One Day Increasing Return Intervals: 1994 to 2011

This table presents the one day SP intervals of increasing returns in the presence of the FOMC
scheduled meetings for the sample period September 1994 to March 2011. This is the same
sampling period as pre-FOMC drift paper.

h
Confidence Level (%)

90 95 99

Panel A: Asymptotic Procedure

0.01 NA NA NA

0.05 (09:37,13:40) (09:41,13:37) (09:48,11:49) (12:30,13:32)

0.10 (09:30,13:37) (09:30,13:28) (09:30,13:13)

0.15 (09:30,13:36) (09:30,13:24) (09:30,13:07)

0.20 (09:30,13:35) (09:30,13:23) (09:30,13:05)

0.30 (09:30,13:35) (09:30,13:23) (09:30,13:04)

0.50 (09:30,13:35) (09:30,13:22) (09:30,13:04)

Panel B: Bootstrap Procedure

0.01 NA NA NA

0.05 (09:45,12:01) (12:25,13:44) (09:48,11:56) (12:29,13:42) (09:52,11:47) (12:34,13:38)

0.10 (09:30,13:38) (09:30,13:32) (09:35,13:27)

0.15 (09:30,13:38) (09:30,13:28) (09:30,13:12)

0.20 (09:30,13:38) (09:30,13:24) (09:30,13:06)

0.30 (09:30,13:34) (09:30,13:24) (09:30,13:06)

0.50 (09:30,13:35) (09:30,13:21) (09:30,13:05)
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Table 5.5: FOMC and S&P One Day Increasing Return Intervals: 1994 to 2012

This table presents the intervals of increasing returns in the presence of the FOMC scheduled
meetings for the sample period February 1994 to March 2012. This is a different sampling period
as the pre-FOMC drift paper.

h
Confidence Level (%)

90 95 99

Panel A: Asymptotic Procedure

0.01 NA NA NA

0.05 (09:35,13:36) (09:39,12:06) (12:18,13:33) (09:46,11:46) (12:35,13:27)

0.10 (09:30,13:27) (09:30,13:17) (09:30,13:02)

0.15 (09:30,13:27) (09:30,13:15) (09:30,12:58)

0.20 (09:30,13:28) (09:30,13:16) (09:30,12:58)

0.30 (09:30,13:28) (09:30,13:16) (09:30,12:58)

0.50 (09:30,13:29) (09:30,13:16) (09:30,12:58)

Panel B: Bootstrap Procedure

0.01 NA NA NA

0.05 NA (09:46,11:53) (12:30,13:38) (09:51,11:45) (12:38,13:31)

0.10 (09:30,13:30) (09:30,13:26) (09:34,13:14)

0.15 (09:30,13:27) (09:30,13:18) (09:30,13:00)

0.20 (09:30,13:26) (09:30,13:20) (09:30,13:06)

0.30 (09:30,13:26) (09:30,13:16) (09:30,12:56)

0.50 (09:30,13:26) (09:30,13:16) (09:30,12:56)
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Table 5.6: FOMC and S&P Three Days Increasing Return Intervals: Asymptotic Procedure

This table presents the three day SP asymptotic intervals of increasing returns in the presence of
the FOMC scheduled meetings for the sample period February 1994 to March 2012 (different
as pre-FOMC drift paper).

h CL(%) Day 1 Day 2 (FOMC) Day 3

0.01 90 NA (09:30,11:56) (12:30,13:42) (14:44,15:05) (12:34,13:09) (13:36,14:37)

0.01 95 NA (09:30,11:53) (12:33,13:39) (14:48,15:01) (12:39,13:05) (13:44,13:56)

0.01 99 (12:26,12:41) (15:46,16:00) (09:30,11:13) (11:25,11:47) (12:38,13:33) none

0.05 90 (12:48,16:00) (09:30,13:34) (13:06,14:23)

0.05 95 (13:06,16:00) (09:30,13:21) none

0.05 99 (13:50,16:00) (09:30,13:03) none

0.10 90 (12:24,16:00) (09:30,14:11) (14:24,16:00)

0.10 95 (12:39,16:00) (09:30,13:51) none

0.10 99 (13:13,16:00) (09:30,13:18) none

0.15 90 (11:11,16:00) (09:30,14:47) none

0.15 95 (11:33,16:00) (09:30,14:18) none

0.15 99 (12:20,16:00) (09:30,13:28) none

0.20 90 (09:30,16:00) (09:30,15:06) none

0.20 95 (09:30,16:00) (09:30,14:32) none

0.20 99 (10:39,16:00) (09:30,13:33) none

0.30 90 (09:30,16:00) (09:30,15:23) none

0.30 95 (09:30,16:00) (09:30,14:45) none

0.30 99 (09:30,16:00) (09:30,13:37) none

0.50 90 (09:30,16:00) (09:30,15:35) none

0.50 95 (09:30,16:00) (09:30,14:54) none

0.50 99 (09:30,16:00) (09:30,13:40) none
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Table 5.7: FOMC and S&P Three Days Increasing Return Intervals: Bootstrap Procedure

This table presents the three day SP Bootstrap intervals of increasing returns in the presence of
the FOMC scheduled meetings for the sample period February 1994 to March 2012.

h CL(%) Day 1 Day 2 (FOMC) Day 3

0.01 90 NA NA NA

0.01 95 NA NA (12:40,13:04) (13:39,13:55)

0.01 99 (12:24,12:42) (15:51,15:55) NA (12:47,13:01)

0.05 90 (09:30,09:44) (12:54,16:00) (09:30,13:29) (12:51,14:27)

0.05 95 (13:19,16:00) (09:30,13:22) (13:06,14:06)

0.05 99 (14:16,16:00) (09:30,13:02) none

0.10 90 (12:40,16:00) (09:30,13:46) (13:26,15:03)

0.10 95 (12:51,16:00) (09:30,13:29) none

0.10 99 (13:23,16:00) (09:30,13:00) none

0.15 90 (12:19,16:00) (09:30,14:15) (14:32,16:00)

0.15 95 (12:37,16:00) (09:30,13:52) none

0.15 99 (13:09,16:00) (09:30,13:24) none

0.20 90 (11:29,16:00) (09:30,14:47) none

0.20 95 (11:47,16:00) (09:30,14:13) none

0.20 99 (12:23,16:00) (09:30,13:25) none

0.30 90 (09:30,16:00) (09:30,15:04) none

0.30 95 (09:30,16:00) (09:30,14:34) none

0.30 99 (10:03,16:00) (09:30,13:49) none

0.50 90 (09:30,16:00) (09:30,15:32) none

0.50 95 (09:30,16:00) (09:30,14:38) none

0.50 99 (09:30,16:00) (09:30,13:21) none
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Table 5.8: EIA and CL One Day Increasing Return Intervals

This table presents the one day CL intervals of increasing returns in the presence of Crude Oil
Inventory Change releases for the sample period June 2003 to December 2014.

h
Confidence Level (%)

90 95 99

Panel A: Asymptotic Procedure

0.01 NA NA NA

0.05 NA NA (11:44,11:57) (13:05,13:25)

0.10 (11:48,13:50) (11:58,13:36) none

0.15 (12:01,13:57) (12:12,13:37) none

0.20 (12:09,14:12) (12:20,13:46) none

0.30 (12:15,15:00) (12:29,14:18) none

0.50 (12:19,15:00) (12:33,15:00) none

Panel B: Bootstrap Procedure

0.01 NA NA NA

0.05 NA NA NA

0.10 (11:34,13:46) (14:51,15:00) (11:40,12:22) (12:43,13:40) (13:06,13:08)

0.15 (11:49,13:50) (12:03,13:32) none

0.20 (12:01,13:52) (12:08,13:34) (12:28,13:06)

0.30 (12:09,14:19) (12:19,13:53) none

0.50 (12:15,15:00) (12:29,14:31) (13:08,13:22)
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Table 5.9: EIA and CL One Day Increasing Return Intervals: Negative Inventory Shock

This table presents the one day CL intervals of increasing returns in the presence of negative
shock of Crude Oil Inventory Change scheduled meetings for the sample period June 2003 to
December 2014.

h
Confidence Level (%)

90 95 99

Panel A: Asymptotic Procedure

0.01 NA NA (10:25,10:31) (13:29,13:38)

0.05 (10:23,11:11) (13:17,13:55) (10:30,11:00) (13:28,13:46) none

0.10 (10:04,11:42) (13:19,14:05) (10:23,11:25) none

0.15 (10:00,12:14) (13:12,14:24) (10:00,11:31) none

0.20 (10:00,13:27) (10:00,11:29) none

0.30 (10:00,13:14) none none

0.50 (10:00,13:12) (11:45,12:30) none

Panel B: Bootstrap Procedure

0.01 NA NA (10:26,10:31) (13:30,13:37)

0.05 NA (10:27,10:53) (13:31,13:44) none

0.10 (10:15,11:31) (13:17,14:00) (10:36,11:10) (13:44,13:46) none

0.15 (10:02,11:44) (13:18,14:09) (10:29,11:24) none

0.20 (10:00,12:15) (13:10,14:22) (10:02,11:39) none

0.30 (10:00,13:29) (10:04,10:09) (10:11,10:14) (11:00,15:00) none

0.50 (10:00,13:17) none none
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Table 5.10: EIA and CL One Day Increasing Return Intervals: Positive Inventory Shock

This table presents the one day CL intervals of increasing returns in the presence of positive
shock of Crude Oil Inventory Change releases for the sample period June 2003 to December 2014.

h
Confidence Level (%)

90 95 99

Panel A: Asymptotic Procedure

0.01 NA (11:36,12:02) (12:50,13:04) (11:44,11:55) (11:59,12:54) (12:57,15:00)

0.05 NA (11:37,12:14) (12:48,13:27) (11:48,12:00) (13:03,13:11)

0.10 (11:56,13:27) (12:04,13:14) none

0.15 (12:16,13:27) (12:28,13:09) none

0.20 (12:31,13:36) none none

0.30 (12:43,14:24) (13:11,13:33) none

0.50 (12:48,15:00) (13:06,15:00) none

Panel B: Bootstrap Procedure

0.01 NA NA (11:45,11:51) (11:58,12:00) (12:54,15:00)

0.05 NA (11:34,12:09) (12:50,13:28) (11:40,12:03) (13:01,13:13)

0.10 (11:40,13:30) (14:58,15:00) (11:46,13:22) none

0.15 (12:00,13:24) (12:08,13:15) none

0.20 (12:13,13:25) (12:20,13:16) none

0.30 (12:35,13:44) none none

0.50 (12:45,14:59) (13:06,14:13) none
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Table 5.11: CM and S&P Three Days Increasing Return Intervals: Bootstrap Procedure

This table presents the three day SP Bootstrap intervals of increasing returns in the presence of
the FOMC scheduled meetings for the sample period February 1994 to March 2012.

Shock h CL(%) Day 1 Day 2 (CM) Day 3

Panel A: Asymptotic Procedure

Pos
0.01 90 (11:47,11:56) (15:20,15:54) none

0.01 95 none (15:23,15:46) none

Neg
0.01 90 none none (15:47,16:00)

0.01 95 none (15:23,15:44) none

All
0.01 90 (15:39,16:00) (09:30,09:32) (15:19,15:52) none

0.01 95 none (15:23,15:45) none

Panel B: Bootstrap Procedure

Pos

0.01 90 (11:46,12:02) (11:33,11:40) (15:22,15:53) none

0.01 95 (11:49,11:58) (15:24,15:50) none

0.01 99 none (15:30,15:43) none

Neg
0.01 90 none none (15:42,15:52)

0.05 90 (14:20,14:22) (14:25,16:00) none none

All

0.01 90 (10:36,10:43) (15:42,16:00) (09:30,09:38) (15:21,15:51) none

0.01 95 none (15:25,15:47) none

0.01 99 none (15:32,15:39) none
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5.9 Proofs

5.9.1 Review of local polynomial smoothing

Local polynomial smoothing and derivative estimation have been developed in the context of

the model

xi = f(si) + εi, i = 1, 2, . . . , N,

in which f is an unknown smooth function observed at time points si with a measurement error or

noise εi. An introduction to this technique is presented in Chapter 21 of Ruppert (2011), a detailed

and comprehensive treatment is given in Fan and Gijbels (1996). We merely present a few formulas

we needed in the following.

To estimate the function f and its derivatives, for every t, we minimize

N∑

i=1

{xi − (α0 + α1(si − t) + · · ·+ αp−1(si − t)p−1)}2K
(si − t

h

)
, (5.9.1)

with respect to α0, α1, . . . , αp−1. The smoothed curve at time t is then given by the estimated

intercept f̂(t) = α̂0, and the estimated derivative by f̂ ′(t) = α̂1. In conjunction with the kernel

K(·), the bandwidth h governs the level of smoothness. A large bandwidth results in oversmoothing,

while a small bandwidth results in over-fitting the curve.

Closed form formula for the estimator of the parameter vector α = [α0, α1, . . . , αp−1]
′ follows

easily using weighted least squares. For fixed t, define the response vector and design matrix

respectively by

x =




x1

x2
...

xN



, Ut =




1 (s1 − t) (s1 − t)2 · · · (s1 − t)p−1

1 (s2 − t) (s2 − t)2 · · · (s2 − t)p−1

...
...

...
. . .

...

1 (sN − t) (sN − t)2 · · · (sN − t)p−1



.

Define the diagonal weight matrix by

Ωt,h = diag
{
K
(s1 − t

h

)
,K
(s2 − t

h

)
, · · · ,K

(sN − t

h

)}
. (5.9.2)
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The estimated parameter vector is given by the weighted least squares solution

α̂(t) = α̂ =




α̂0

α̂1

...

α̂p−1



= (U′

tΩt,hUt)
−1U′

tΩt,hx. (5.9.3)

5.9.2 Proof of Proposition 30

Proof. Under the partition P = {0 = s0 < s1 < · · · < sJ = 1}, the least squares criterion SN (t;α)

defined in (5.3.1) can be expressed

SN (t;α) =

N∑

i=1

∫ 1

0
{Ri(s)− (α0 + α1(s− t) + · · ·+ αp−1(s− t)p−1)}2K

(s− t

h

)
ds

=
N∑

i=1

1

J

J∑

j=1

{Ri(sj)− (α0 + α1(sj − t) + · · ·+ αp−1(sj − t)p−1)}2K
(sj − t

h

)

=
1

J

N∑

i=1

SSEi(t;α)

=
1

J

N∑

i=1

(Ri −Utα)′Ωt(Ri −Utα)

=
1

J

N∑

i=1

{R′
iΩtRi −R′

iΩtUtα−α′U′
tΩtRi +α′U′

tΩtUtα}

The quantities R′
iΩtUtα and α′U′

tΩtRi are scalars which implies they have the same transpose.

This gives

SN (t;α) =
1

J

N∑

i=1

{R′
iΩtRi − 2α′U′

tΩtRi +α′U′
tΩtUtα}.

Using matrix calculus,

∂

∂α
SN (t;α) =

1

J

N∑

i=1

∂

∂α
{R′

iΩtRi − 2α′U′
tΩtRi +α′U′

tΩtUtα}

= − 2

J

N∑

i=1

{U′
tΩtRi −U′

tΩtUtα}

= − 2

J

{
N∑

i=1

U′
tΩtRi −NU′

tΩtUtα

}
.
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Setting ∂
∂αSN (t;α) equal to zero gives relation

N∑

i=1

U′
tΩtRi −NU′

tΩtUtα = 0.

By the definition of Ut and Ωt, the matrix U′
tΩtUt is is nonnegative definite and hence invertible.

Thus the least squares solution that minimizes SN (t;α) is

α̂ =
1

N

N∑

i=1

α̂i =
1

N

N∑

i=1

(U′
tΩtUt)

−1U′
tΩtRi.

To show that µ̂ is indeed a minimum, notice that

∂2SN (t;α)

∂α′∂α
= − 2

J

∂

∂α′

{
N∑

i=1

U′
tΩtRi −NU′

tΩtUtα

}

=
2N

J
U′

tΩtUt.

The above matrix is nonnegative definite which guarantees α̂ is a minimum. This completes the

proof of Proposition 30.
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Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis. Wiley.

Dalla, V., Giraitis, L., and Phillips, P. C. B. (2015). Testing mean stability of heteroskedastic time

series. Technical report, Yale University.

de Jong, R. M., Amsler, C., and Schmidt, P. (1997). A robust version of the KPSS test based on

indicators. Journal of Econometrics, 137:311–333.

Dickey, D. A. and Fuller, W. A. (1979). Distributions of the estimattors for autoregressive time

series with a unit root. Journal of the American Statistical Association, 74:427–431.

Dickey, D. A. and Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series

with unit root. Econometrica, 49:1057–1074.

Diebold, F. and Rudebusch, G. (2013). Yield Curve Modeling and Forecasting: The Dynamic

Nelson–Siegel Approach. Princeton University Press.

Diebold, F. X. and Li, C. (2003). Forecasting the term structure of government bond yields.

Working Paper 10048, National Bureau of Economic Research.

157



Elder, J., Miao, H., and Ramchander, S. (2011). Impact of macroeconomics news on metal futures.

Journal of Banking and Finance, 36:51–65.

Engle, R. F. and Russel, J. R. (2004). Analysis of high frequency financial data. In Ait-Shahlia,

Y., editor, Handbook of Financial Econometrics. North Holland.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and its Applications. Chapman &

Hall/CRC.
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Horváth, L., Kokoszka, P., and Reeder, R. (2013). Estimation of the mean of functional time series

and a two sample problem. Journal of the Royal Statistical Society (B), 75:103–122.
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