
Robust Resource Allocations in Parallel Computing Systems:

Model and Heuristics

Vladimir Shestak
1
,

Howard Jay Siegel
1,2

,

and Anthony A. Maciejewski
1

Colorado State University
1
Department of Electrical & Computer

Engineering
2
Department of Computer Science

Fort Collins, CO 80523-1373

Email:{shestak, hj, aam}@colostate.edu

Shoukat Ali

University of Missouri-Rolla

Department of Electrical and

Computer Engineering

Rolla, MO 65409–0040

Email: shoukat@umr.edu

Abstract

This is an overview of the material to be discussed

in the invited keynote presentation by H. J. Siegel; it

summarizes our research in [2, 16, and 17].
The resources in parallel computer systems

(including heterogeneous clusters) should be allocated

to the computational applications in a way that
maximizes some system performance measure.

However, allocation decisions and associated

performance prediction are often based on estimated
values of application and system parameters. The

actual values of these parameters may differ from the

estimates; for example, the estimates may represent
only average values, the models used to generate the

estimates may have limited accuracy, and there may be

changes in the environment. Thus, an important
research problem is the development of resource

management strategies that can guarantee a particular
system performance given such uncertainties. To

address this problem, we have designed a model for

deriving the degree of robustness of a resource
allocation—the maximum amount of collective

uncertainty in system parameters within which a user-

specified level of system performance (QoS) can be
guaranteed. The model will be presented and we will

demonstrate its ability to select the most robust

resource allocation from among those that otherwise
perform similarly (based on the primary performance

criterion). The model’s use in allocation heuristics also

will be demonstrated. This model is applicable to
different types of computing and communication

environments, including parallel, distributed, cluster,

grid, Internet, embedded, and wireless.

This research was supported by the Colorado State University Center

for Robustness in Computer Systems (funded by the Colorado

Commission on Higher Education Technology Advancement Group

through the Colorado Institute of Technology), and by the Colorado

State University George T. Abell Endowment.

1. Introduction

This is an overview of the material to be discussed

in the invited keynote presentation by H. J. Siegel; it

summarizes our research in [2, 16, and 17].

In the context of resource allocation in parallel

computing systems, including heterogeneous clusters,

how is the concept of robustness defined? Parallel

systems may operate in an environment where certain

system performance features degrade due to

unpredictable circumstances, such as sudden machine

failures, higher than expected system load, or

inaccuracies in the estimation of system parameters

(e.g., [4, 5, 7, 8, 10, 11, 12, 13, 15]). A resource

allocation is defined to be robust with respect to

specified system performance features against

perturbations (uncertainties) in specified system
parameters if degradation in these features is limited

when the perturbations occur. An important question

then arises: given a resource allocation, what extent of

departure from the assumed circumstances will cause a

performance feature to be unacceptably degraded? That

is, how robust is the system?

Any claim of robustness for a given system must

answer these three questions: (a) what behavior of the

system makes it robust? (b) what uncertainties is the

system robust against? (c) quantitatively, exactly how

robust is the system?

Section 2 describes the FePIA procedure for

deriving a robustness metric for an arbitrary system.

Derivation of this metric for a given allocation of

independent applications in a parallel system is

presented in Section 3, with an experiment that

highlights the usefulness of the robustness metric.

Section 4 discusses heuristics developed to generate

mappings of independent applications in parallel

systems such that the robustness of the produced

mappings is maximized. Section 5 extends the work

presented in Section 4 for parallel systems where the

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

dollar cost for processors is a constraint. Some future

work is outlined in Section 6.

2. Generalized Robustness Metric

This section presents a general procedure, called

FePIA, for deriving a general robustness metric for any

desired computing environment [2]. The name for the

above procedure stands for identifying the performance

features, the perturbation parameters, the impact of

perturbation parameters on performance features, and

the analysis to determine the robustness. A specific

example illustrating the application of the FePIA

procedure to sample systems is given in the next section.

Each step of the FePIA procedure is now described,

summarized from [2].

1) Describe quantitatively the requirement that makes

the system robust (question (a) in Section 1). Based on

this robustness requirement, determine the QoS

performance features that should be limited in variation

to ensure that the robustness requirement is met.

Identify the acceptable variation for these feature values

as a result of uncertainties in system parameters.

Consider an example where (a) the QoS performance

feature is makespan (the total time it takes to complete

the execution of a set of applications) for a given

resource allocation, (b) the acceptable variation is up to

a 20% increase of the makespan that was predicted for

the given resource allocation using estimated execution

times of applications on the machines they are assigned,

and (c) the uncertainties in system parameters are

inaccuracies in the estimates of these execution times.

2) Identify the uncertainties to be considered whose

values may impact the QoS performance features

selected in step 1 (question (b) in Section 1). These are

called the perturbation parameters, and the

performance features are required to be robust with

respect to these perturbation parameters. For the

makespan example above, the resource allocation (and

its associated predicted makespan) was based on the

estimated application execution times. It is desired that

the makespan be robust (stay within 120% of its

estimated value) with respect to uncertainties in these

estimated execution times.

3) Identify the impact of the perturbation parameters in

step 2 on the system performance features in step 1. For

the makespan example, the sum of the actual execution

times for all of the applications assigned to a given

machine is the time when that machine completes its

applications. Note that 1(b) states that the actual time

each machine finishes its applications must be within

the acceptable variation.

4) The last step is to determine the smallest collective

variation in the values of perturbation parameters

identified in step 2 that will cause any of the

performance features identified in step 1 to violate its

acceptable variation. Step 4 is done for a given, specific

resource allocation. This will be the degree of

robustness of the given resource allocation (question (c)

in Section 1). For the makespan example, this will be

some quantification of the total amount of inaccuracy in

the execution times estimates allowable before the

actual makespan exceeds 120% of its estimated value.

3. Robustness Metric Example

3.1. Derivation of Robustness

In this section summarized from [2], the robustness

metric is derived for a system that assigns a set of

independent applications to a set of machines. In this

system, it is required that the makespan be robust

against errors in application execution time estimates.

Specifically, the actual makespan under the perturbed

execution times must be no more than a certain factor

times the predicted makespan calculated using the

estimated execution times.

A brief description of the system model is now

given. The applications are assumed to be independent,

i.e., no communications between the applications are

needed. The set of applications is to be assigned to a

set of machines so as to minimize the makespan.

Each machine executes a single application at a time

(i.e., no multi-tasking). Let ijC be the estimated time to

compute (ETC) for application ia on machine .jm It is

assumed that values are known for all i, j, and a

resource allocation

ijC

is determined based on the ETC

values. In addition, let jF be the time at which jm

finishes executing all of the applications assigned to it.

Assume that unknown inaccuracies in the ETC

values are expected, requiring that the resource

allocation be robust against them. More specifically,

it is required that, for a given resource allocation, its

actual makespan value M (calculated using the actual

application computation times (not the ETC values))

may be no more than times its predicted value,

predM . The predicted value of the makespan is the

value calculated assuming the estimated ETC values.

Following step 1 of the FePIA procedure in Section 2,

the system performance features that should be limited

in variation to ensure the makespan robustness are the

finishing times of the machines. That is,

{ for 1pred
jF M j } .

According to step 2 of the FePIA procedure, the

perturbation parameter needs to be defined. Let est
iC be

the ETC value for application on the machine where

it is assigned. Let

ia

iC be the actual computation time

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

value. Let C be the vector of th values, and e iC
est

C

be the vector of the values. The vector C is the

perturbation parame his analysis.

In accordance p 3 of the FePIA procedure,

est
iC

ter for t

with ste

jF

p() red
jF MC

has to be expressed as a function of C. To that end,

: is assigned to

() .

i j

j i

i a m

F CC (1)

Following step 4 of the FePIA procedure, the set of

boundary relationships corresponding to the set of

performance features is given by
est

C

1C

2C

(,)jr F C

{ () for 1 }.pred
jF M jC

The robustness radius (,)jr F C

ian distan

e in any di

for machine j

provides the largest Euclid ce, i.e., l2-norm, at

which variable C can chang rection from the

assumed point without the finishing tim

exceeding the tolerable variation:

est
C e ()jF C

2: ()
(,) min .

pred
j

j
F M

r F est

C C

C C C (2)

That is, if the Euclidean distance between any vector of

th the

x e C

the actual execution times and e vector of

estimated e ecution times is no larg r than (,jr F

then the finishing time of machine

),

jm will be at most

times the estimated makespan value.

Assume only applications 1a and 2a have been

assigned to machine j, depict

components and that

undary line ed to

F t the righ

ing the

 [14],

reduces to

ed in Figure 1, C has two

 correspond to execution 1C 2C

times of 1a and 2a on machine j, respectively. The

term ()jF est
C is a finishing time for machine j

computed based on ETC values of applications 1a and

eterm2.a The bo is d in by

() .pred
j MC Note tha t hand side in

Equation 2 can be interpreted as the perpendicular

distance from the point est
C to the hyperplane

described by the equation () .pred
jF MC Us

point-to-plane distance formula Equation 2

()
(,)

pred
j

.
number of applications asiigned to

j

j

M F
r F

est
C

C

m

The robustness metric,

(3)

, is given as

 1 j

That is, if the Euclidean distance between any vector of

the actual execution times and the vector of the

estimated execution ti s is no larger than ,

min { (,)}.jr F C (4)

me then the

actual mak span will be at most e times the predicted

makes .

3.2. Utility of Robustness

The experiment in this subsection seeks to establish

tility o stness metric. The experiments

 a system with five machines and 20

applications. A total of 1000 resource allocations were

generated by assigning a random y chosen machine to

each application (see [2] for d).

The resource allocat uated for

robustness, makespan, and load balance index (defined

as the ratio

Figure 1: Some possible directions of increase of

the perturbation parameter .C Robustness radius

j(,)r F C corresponds to the smallest increase.

The set of boundary points is given by
est pred

j() = .F C M

pan value

the u f the robu

were performed for

etails

ions were eval

 of the finishing time of the machine that

finishes first to the makespan). The larger the value of

the load balance index, the more balanced the load (the

largest value being 1). The tolerance,

l

, was set to

t the resource

allocation can endure any comb

without the makespan increasin

spa

e

he predicted makespan. A similar

obustness against the load

igure 2(b).

120%. In this context, a robustness metric value of x for

a given resource allocation means tha

ination of ETC errors

g beyond 1.2 times its

estimated value as long as the Euclidean distance of the

errors is no larger than x seconds.

Figure 2(a) shows the “normalized robustness” of a

resource allocation against its make n. The

normalized robustness equals th robustness metric

value divided by t

graph for the normalized r

balance index is shown in F

There are large differences in the robustness of

some resource allocations that have very similar values

of makespan. Thus, when selecting a resource

allocation with low makespan, the robustness

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

area of research (e.g., [1, 6, 13]). Static mapping is

performed when the applications are mapped in an off-

line planning phase such as in a production

environment. Static mapping techniques take a set of

applications, a set of machines, and generate a mapping.

These heuristics determine a mapping off-line, and

must use estimated values of application computation

times.

As described in the previous section, the allocation

of independent applications in parallel systems is

considered robust if the actual makespan under the

perturbed conditions does not exceed the required time

constraint. The goal of this study was to find a static

mapping of all applications to machines so that the

robustness of the mapping is maximized; i.e., to

maximize the collective allowable error in execution

time estimation for the applications that can occur

without the actual makespan exceeding the constraint.

Mathematically, this problem can be stated as finding a

mapping of

calculation allows one to select an allocation that also

provides high robustness. Figure 2(b

(a)

) shows that load

balancing does not provide an accurate measure of

robustness. These observations highlight the fact that

the information given by the robustness metric could

not be obtained from the makespan and load balance

performance measures.

4. Mapping under Makespan Constraint

4.1. Problem Statement

This section summarizes the research described in

[16]. An important research problem is how to

determine a mapping (resource allocation) so as to

maximize the robustness of desired system features

against perturbations in system parameters. The general

problem of optimally mapping applications to machines

has been shown to be NP-complete [9]. Thus, the

development of heuristic techniques to find near-

optimal solutions for the mapping problem is an active

 applications to machines such that

the actual makespan is with the absolute time

constraint

in

 while maximizing , given by (4).

Equation (3) is restated in this study as

()
(,) .

number of applications asiigned to

j

j

j

F
r F

m

est
C

C

A parallel system with eight machines and 1024

dependent applications was simulated in this study.

Two different cases of ETC heterogeneities were used

 this research, the high application and high machine

heterogeneity (high-high) case and the low application

and low machine heterogeneity (low-low) case (see 16

for details about the simulation setup). The value of the

me constraint

in

in

ti of 5000 seconds was chosen so that

(b)

Figure 2: Normalized robustness against (a)
makespan and (b) load balance index for 1000
randomly generated resource allocations. it presents a feasible mapping problem for the heuristics

to solve. A total of 100 trials (50 trails for each of the

cases) were performed, where each trial corresponded

to a different ETC matrix. The wall clock time for each

of the heuristics to determine a mapping was arbitrarily

required to be less than or equal to 60 minutes to

establish a basis for comparison.

Seven static mapping schemes were developed in

this study: Max-Max, Greedy Iterative Maximization

(GIM), Overhead Iterative Maximization (OIM),

GENITOR, Memetic Algorithm (MA), Ant Colony

Optimization (ACO), and Hereboy Evolutionary

Algorithm. Two are described here.

summarized as follows.

1)

4.2. Greedy Iterative Maximization

The GIM heuristic can be

A mapping is generated using the Min-Min heuristic

[6, 9], based on completion times.

2) Find the robustness metric and the machine with the

smallest robustness radius among all machines (min-
radius machine) for the current mapping.

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

3) Generate an application list containing all

applications on the min-radius machine not yet

considered for reassignment.

4) An application is chosen arbitrarily from the

application list and considered for reassignment to all

other machines.

5) Reassign the application to the machine that

improves the robustness metric the most and go to step

2; if the reassignment does not improve the mapping,

remove the application from the application list and go

to step 4 until there are no applications in the

application list.

6) T

 a

it ion

d go to step 8

10) A new mapping is generated using the MCT

heuristic [6, 9] based on completion times. Applications

ctor of length

he robustness metric and min-radius machine for

the current mapping is determined.

7) Generate an application list containing all

applications on the min-radius machine not yet

considered for swapping.

8) An application is chosen arbitrarily from the

application list and considered to be swapped to all

applications on all other machines.

9) The chosen application from the application list is

swapped with the first application that will increase the

robustness metric by traversing through all the

applications in arbitrary order on ll other machines and

go to step 6; if the chosen application could not be

swapped w h any other applicat , remove the

application from the application list an

until the application list is empty.

are considered in a different order every time a new

mapping is generated by MCT.

11) Repeat steps 2–10 until the one hour time

constraint has expired.

One variation tried was to select the “best”

application that improves the robustness during

swapping in step 9 and was found to perform slightly

worse than the “arbitrary order” swap method. It is

observed that, in general, the robustness of the initial

mapping did not impact the robustness of the final

mapping; however, if the robustness of the initial

mappings are good, more iterations of steps 2 through 9

can be performed in the given time constraint.

4.3. GENITOR

This heuristic is a general optimization technique

that is a variation of the genetic algorithm approach. It

manipulates a set of possible solutions. The method

studied here is similar to the standard GENITOR

approach used in [18]. Each chromosome represents a

possible complete mapping of applications to machines.

Specifically, the chromosome is a ve .

The ith element of the vector is the number of the

The

GENITOR operates on a fixed population of 200

-Max [6, 9] solution

ted (ranked)

 in the population. The

tric value (highest first). The

ver operation, and two new

-off point is

each chromosome, crossover

opulation in ranked

g is considered for

l iterations.

t a good

e “arbitrary order” swap; however,

ed more beneficial swaps and showed

a g

machine to which application i is assigned.

chromosomes. The population includes one

chromosome (seed) that is the Max

based on robustness and the rest of the chromosomes

are generated by randomly assigning applications to

machines. The entire population is sor

based on their robustness metric values given by (4).

Chromosomes that do not meet the makespan constraint

are allowed to be included

ranking is constructed so that all chromosomes that

meet the constraint are listed first, ordered by their

robustness me

chromosomes that do not meet the makespan constraint

are then listed, again ordered by their robustness metric

value.

Next, a special linear bias function [6] is used to

select two chromosomes to act as parents. These two

parents perform a crosso

offspring are generated. For the pair of the selected

parent chromosomes a random cut

generated that divides the chromosomes into top and

bottom parts. For the parts of both chromosomes from

that point to the end of

exchanges machine assignments between corresponding

applications producing two new offspring. The

offspring are then inserted in the p

order, and two lowest ranked chromosomes are dropped.

After each crossover, the linear bias function is

applied again to select a chromosome for mutation. A

mutation operator generates a single offspring by

perturbing the original chromosome. A random

application is chosen from the chromosome and the

mutation operator randomly reassigns it to a new

machine. The resultant offsprin

inclusion in the population in the same fashion as for an

offspring generated by crossover.

This completes one iteration of the GENITOR. The

heuristic stops after 250,000 tota

4.4. Experimental Results

The simulation results are shown in Figure 3. All

the heuristics are run for 100 different scenarios and the

average values and 95% confidence intervals are

plotted. The GIM and OIM are among the best

heuristics for both of the high-high and low-low cases

studied here. The IM heuristics that make use of the

tailored search technique (as opposed to the general

search used by GENITOR) proved to be very effective.

The “best” swap variation of the GIM arrived a

solution faster than th

the latter perform

radual increase in the robustness better than the

former. The GENITOR and MA performed comparably

to the IM heuristics. Both of the heuristics are seeded

with the Max-Max solution. The ACO solution was

within 12% of the best heuristic (OIM) solution. In the

ACO heuristic, seeding the pheromone trial with the

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

Max-Max mapping and the use of the local search

technique improved the solution on average by 27%.

5. Mapping under Makespan and

Dollar Cost Constraints

5.1. Problem Statement

This section summarizes the study described in

[17], which was an extension of [16]. The research

environment here differs from the previous study with

the addition of the cost constraint for the machines and

choosing a subset of all the available machines to be

used. Thus, problem addressed here is how to select

(purchase) a fixed set of machines, within a given dollar

cost constraint to use to comprise a cluster system. It is

assumed that this fixed system will be used in a

production environment to regularly execute the set

of applications with known estimated computational

characteristics. The machine

set are to be selected from

s to be purchased for

 five different classes of

mac

that class i+1 machines.

In this study, one must: (1) select a subset of

machines so that the cost constraint for the machines is

satisfied, and (2) find a static mapping of all

applications to the subset. Sub-problems 1 and 2 must

be done in a way so that the robustness of the mapping

 the

hines, where each class consists of homogeneous

machines. The machines of different classes differ in

dollar costs depending upon their application execution

speed. The dollar cost of machines within a class is the

same. Machines in class i are assumed to be faster than

machines of class i+1 for all applications, for

1 4.i Correspondingly, class i machines cost more

is maximized. For sub-problem 2, the machine

assignment heuristics described in the previous section

are used as components of the heuristics developed in

this research.

A method used to generate 100 high application

and low machine heterogeneity (high-low) ETC

matrices for 1024 independent applications was

identical to that used in the previous work (see the

details of the simulation setup in [17]). Experiments

with simple greedy heuristics were used to decide the

value of the cost constraint to be 34,800 dollars and the

time constraint to be 12,000 seconds. Choosing

different values for any of the above parameters will

ics used in

pper itself

was

re developed in this

mpact Greedy Iterative

Max

not affect the general approach of the heurist

this research. The wall clock time for the ma

 set as in [16].

Six static mapping schemes we

research: Negative I

imization (NI-GIM), Parition/Merge Greedy

Iterative Maximization (P/M-GIM), Sum Iterative

Maximization (SIM), GENITOR, Memetic Algorithm

(MA), and Hereboy Evolutionary Algorithm. Two are

described here.

5.2. Negative Impact Greedy Iterative Maximization

The NI-GIM heuristic used here is a modification

of GIM described in Section 4. The NI-GIM heuristic

performs a Min-Min mapping based on completion

times assuming all machines to be available, ignoring

the dollar cost constraint.

The robustness radius of all the available machines

is calculated for the Min-Min mapping. The negative

impact of removing machine j is determined in the

following way. Each of the applications mapped onto

machine j is evaluated for reassignment to each of the

other machines. The decrease in the robustness radius

of each available machine i if an application t is

d from machine j is calculated; call this reassigne , .i t

Define average decrease in the robustness radii across

all the available machines due to reassignment of

application t to be
1

,

0

 number of available machines.t i t

i

The negative impact of removing machine j, jNI , is

 t

 .
asks on

j t

t

NI

0

35

70

105

140

175

210

a
x
-M
a
x

G
IM

O
IM

G
E
N
IT
O
R

M
A

A
C
O

re
B
o
y

ro
b
u
s
tn
e
s
s

M H
e

high-high low-low

Figure 3: Simulation results for robustness for a
given fixed set of machines.

j

The ratio of negative impact to cost is obtained by

dividing the negative impact by the cost of the machine

j. The machine that has the least value of ratio is then

removed. The procedure of performing the Min-Min

mapping with only the available machines and the ratio

calculation to remove another machine is repeated until

the cost constraint is met.

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

For the set of machines determined above that

meets the cost constraint, the GIM heuristic is run to

determine a mapping that maximizes robustness for the

given machine set.

5.3. GENITOR

The GENITOR heuristic developed in this work

consists of two phases. For phase 1, a chromosome is a

vector of length five, where ith element is the number of

machines used in ith class. The phase 1 of GENITOR

operates on a fixed population of 100 chromosomes.

The entire population is generated randomly such that

the cost constraint is met. To evaluate each

chromosome, a mapping was produced using the Max-

Max heuristic based on robustness. The entire

population is sorted in descending order based on the

robustness metric.

In the crossover step, for the pair of the parent

chromosomes selected by applying the linear bias

function, a random cut-off point is generated that

divides the chromosomes into top and bottom parts. A

new chromosome is formed using the top of one and

botto

nes of the other by one. If the

chro

ons is met. The machine combination

max

The

d 5 (i.e., the fastest class and the two

cheapest classes of machines) were used in re than

90% of the scenarios. The SIM heuristic by itself did

d machines

e on

or robustness improvem nt. HereBoy Evolutionary

Algorithm is the fastest am ng all the algorithms and its

perform

6.

ndary curves for different problem

2) I

0.0

100.0

200.0

300.0

400.0

500.0

600.0

N
I-
G
IM

P
/M
-G
IM

C
P
I-
S
IM

G
E
N
IT
O
R

M
A

H
e
re
B
o
y

ro
b
u
s
tn
e
s
s

m of another. An offspring is inserted in the

population after evaluation only if the cost constraint is

satisfied (the worst chromosomes of the population are

discarded to maintain a population of only 100).

Otherwise, it is discarded.

After each crossover, the linear bias function is

applied again to select a chromosome for mutation. A

mutation operator generates a single offspring by

perturbing the o ginal chromosome. Two random

classes are chosen for the chromosome and the

mutation operator increments the number of machines

of the first chosen class by one and decrements the

number of machi

ri

mosome violates the cost constraint it is discarded.

Otherwise, the resultant offspring is considered for

inclusion in the population in the same fashion as for an

offspring generated by crossover.

This completes one iteration of phase 1 of

GENITOR. The heuristic stops when the criterion of

500 total iterati

found from phase 1 is used in phase 2, which derives a

mapping using this combination of machines to

imize robustness based on the GENITOR

implementation in described in Section 4 (a total of

100,000 iterations is used here to stop the phase 2 of

GENITOR).

5.4. Experimental Results

The simulation results are shown in Figure 4. All

the heuristics are run for 100 different scenarios and the

average values and 95% confidence intervals are

plotted. The GENITOR and the P/M-GIM heuristic are

the best among all the heuristics studied for this

problem. Both of these heuristics, on average, had all of

the available machines from Class 4 and Class 5.

NI-GIM heuristic performed comparably to P/M-GIM.

The negative impact calculation always forced removal

of machines from either Class 2 or 3. All machines

from Class 1, 4, an

mo

not perform well because it always selecte

for relocation that will maximize application-ex cuti

e

o

ance is within 12% of GENITOR. The search

technique used for selecting the machines for HereBoy

used all of the machines of Class 1, 4, and 5. The

machine selection of the MA heuristic based on the

random approach proved to be ineffective. Therefore,

the robustness achieved on the selected sets was the

worst among all the heuristics.

Future Work

We are considering extending our current work in

different directions, including:

1) Deriving the bou

Figure 4: Simulation results for robustness.
Machine sets were determined heuristically.

domains.

ncorporating multiple types of perturbation

parameters (e.g., uncertainties in input sensor loads and

uncertainties in estimated execution times). Challenges

here are how to define the collective impact to find each

robust radius and how to state the combined bound on

multiple perturbation parameters to maintain the

promised performance.

3) Incorporating probabilistic information about

uncertainties. Such information might be available

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

about individual perturbation parameter elements. One

might have only relative information about perturbation

para

marized from [2].

S. B. Gundala, S. Gertphol, H.

ystems,” J. Parallel

1, No. 6, June 2001, pp. 810–837.

E. Carrillo, “ -Robust scheduling

, No. 11, Nov. 1997, pp.

. Gribble, “Robustness in complex systems,” 8th

al flowtime job shops using

tability

 optimal schedule: A survey and recent

Industrial Applications of

thm and selective

Why rank based allocation of reproductive

st,” 3rd Int’l Conf. Genetic Algorithms, June

meter elements (e.g., the execution times of

different applications). In another case, one might have

relative information about different perturbation

parameters (e.g., changes in input sensor loads versus

changes in the execution times of different applications).

4) Determining when to use Euclidean distance versus

a simple sum when calculating the collective impact of

changes in the perturbation parameter elements.

7. Summary

Any claim of robustness for a given system must

answer three questions: (a) what behavior of the system

makes it robust? (b) what uncertainties is the system

robust against? (c) quantitatively, exactly how robust is

the system? This paper, which corresponds to H. J.

Siegel’s keynote presentation, summarizes the material

from three papers related to robustness. A metric for the

robustness of a resource allocation with respect to

desired system performance features against

perturbations in system and environmental conditions,

and the experiments conducted to illustrate the utility of

the robustness metric, are sum

Heuristics developed to generate mappings of

independent applications in parallel systems such that

the robustness of the produced mappings is maximized

are summarized from [16]. Finally, heuristics for (1)

selecting a set of machines and (2) mapping

applications to the set of machines, both to maximize

robustness, are summarized from [17].

References

[1] S. Ali, J.K. Kim, Y. Yu,

J. Siegel, A. A. Maciejewski, and V. Prasanna,

“Utilization-based techniques for statically mapping

heterogeneous applications onto the HiPer-D

heterogeneous computing system,” Parallel and

Distributed Computing Practices, Vol. 5, No. 4, Dec.

2002.

[2] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim,

“Measuring the robustness of a resource allocation,”

IEEE Trans. Parallel Systems, Vol. 15, No. 7, July

2004, pp. 630–641.

[3] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim,

“Robust resource allocation for distributed computing

systems,” 2004 Int’l Conf. Parallel Processing

(ICPP’04), Aug. 2004, pp. 178–185.

[4] P. M. Berry, “Uncertainty in scheduling: probability,

problem reduction, abstractions and the user,” IEE

Computing and Control Division Colloquium

Advanced Software Technologies for Scheduling,

Digest No. 1993/163, Apr. 1993.

[5] L. Boloni and D. C. Marinescu, “Robust scheduling of

metaprograms,” J. Scheduling, Vol. 5, No. 5, Sept.

2002, pp. 395–412,

[6] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M.

Maheswaran, A. I. Reuther, J. P. Robertson, M. D.

Theys, B. Yao, D. Hensgen, and R. F. Freund, “A

comparison of eleven static heuristics for mapping a

class of independent applications onto heterogeneous

distributed computing s

Computing, Vol. 6

[7] R. L. Daniels and J.

for single-machine systems with uncertain processing

times,” IIE Trans., Vol. 29

977–985,.

[8] S. D

Workshop Hot Topics in Operating Systems (HotOS-

VIII), May 2001, pp. 21–26.

[9] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for

scheduling independent applications on non-identical

processors,” J. ACM, Vol. 24, No. 2, Apr. 1977, pp.

280–289.

[10] M. Jensen, “Improving robustness and flexibility of

tardiness and tot

robustness measures,” J. Applied Soft Computing, Vol.

1, No. 1, June 2001, pp. 35–52.

[11] E. Jen, “Stable or robust? What is the difference?”

Complexity, Vol. 8, No. 3, June 2003.

[12] V. J. Leon, S. D. Wu, and R. H. Storer, “Robustness

measures and robust scheduling for job shops,” IEE

Trans., Vol. 26, No. 5, Sept. 1994, pp. 32–43.

[13] M. Sevaux and K. Sorensen, “Genetic algorithm for

robust schedules,” 8th Int’l Workshop Project

Management and Scheduling (PMS 2002), Apr. 2002,

pp. 330–333.

[14] G. F. Simmons, Calculus With Analytic Geometry,

Second Edition, McGraw-Hill, New York, NY, 1995.

[15] Y. N. Sotskov, V. S. Tanaev, and F. Werner, “S

radius of an

developments,”

Combinatorial Optimization, Vol. 16, 1998, pp. 72–

108.

[16] P. Sugavanam, H. J. Siegel, A. A. Maciejewski, S. A.

Ali, M. Al-Otaibi, M. Aydin, K. Guru, A. Horiuchi, Y.

Krishnamurthy, P. Lee, A. Mehta, M. Oltikar, R.

Pichel, A. Pippin, M. Raskey, V. Shestak, and J.

Zhang, “Processor allocation for applications that is

robust against errors in computation time estimates,”

14th IEEE Heterogeneous Computing Workshop

(HCW 2005) proceedings of 19th Int’l Parallel

Processing Symposium (IPDPS 2005), April 2005.

[17] P. Sugavanam, H. J. Siegel, A. A. Maciejewski, J.

Zhang, V. Shestak, M. Raskey, A. Pippin, R. Pichel,

M. Oltikar, A. Mehta, P. Lee, Y. Krishnamurthy, A.

Horiuchi, K. Guru, M. Aydin, M. Al-Otaibi, and S. A.

Ali, “Robust processor allocation for independent

applications when dollar cost for processors is a

constraint,” 4th Int’l Workshop Algorithms, Models,

and Tools for Parallel Computing on Heterogeneous

Networks (HeteroPar-05), accepted, to appear in 2005.

[18] D. Whitley, “The GENITOR algori

pressure:

trials is be

1989, pp. 116–121.

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

