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Abstract

This is an overview of the material to be discussed 

in the invited keynote presentation by H. J. Siegel; it 

summarizes our research in [2, 16, and 17]. 
The resources in parallel computer systems 

(including heterogeneous clusters) should be allocated 

to the computational applications in a way that 
maximizes some system performance measure. 

However, allocation decisions and associated 

performance prediction are often based on estimated 
values of application and system parameters. The 

actual values of these parameters may differ from the 

estimates; for example, the estimates may represent 
only average values, the models used to generate the 

estimates may have limited accuracy, and there may be 

changes in the environment. Thus, an important 
research problem is the development of resource 

management strategies that can guarantee a particular 
system performance given such uncertainties. To 

address this problem, we have designed a model for 

deriving the degree of robustness of a resource 
allocation—the maximum amount of collective 

uncertainty in system parameters within which a user-

specified level of system performance (QoS) can be 
guaranteed. The model will be presented and we will 

demonstrate its ability to select the most robust 

resource allocation from among those that otherwise 
perform similarly (based on the primary performance 

criterion). The model’s use in allocation heuristics also 

will be demonstrated. This model is applicable to 
different types of computing and communication 

environments, including parallel, distributed, cluster, 

grid, Internet, embedded, and wireless.

This research was supported by the Colorado State University Center 

for Robustness in Computer Systems (funded by the Colorado 

Commission on Higher Education Technology Advancement Group 

through the Colorado Institute of Technology), and by the Colorado 

State University George T. Abell Endowment. 

1. Introduction 

This is an overview of the material to be discussed 

in the invited keynote presentation by H. J. Siegel; it 

summarizes our research in [2, 16, and 17]. 

In the context of resource allocation in parallel 

computing systems, including heterogeneous clusters, 

how is the concept of robustness defined? Parallel 

systems may operate in an environment where certain 

system performance features degrade due to 

unpredictable circumstances, such as sudden machine 

failures, higher than expected system load, or 

inaccuracies in the estimation of system parameters 

(e.g., [4, 5, 7, 8, 10, 11, 12, 13, 15]). A resource 

allocation is defined to be robust with respect to 

specified system performance features against 

perturbations (uncertainties) in specified system 
parameters if degradation in these features is limited 

when the perturbations occur. An important question 

then arises: given a resource allocation, what extent of 

departure from the assumed circumstances will cause a 

performance feature to be unacceptably degraded? That 

is, how robust is the system?  

Any claim of robustness for a given system must 

answer these three questions: (a) what behavior of the 

system makes it robust? (b) what uncertainties is the 

system robust against? (c) quantitatively, exactly how 

robust is the system?  

Section 2 describes the FePIA procedure for 

deriving a robustness metric for an arbitrary system. 

Derivation of this metric for a given allocation of 

independent applications in a parallel system is 

presented in Section 3, with an experiment that 

highlights the usefulness of the robustness metric. 

Section 4 discusses heuristics developed to generate 

mappings of independent applications in parallel 

systems such that the robustness of the produced 

mappings is maximized. Section 5 extends the work 

presented in Section 4 for parallel systems where the 
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dollar cost for processors is a constraint. Some future 

work is outlined in Section 6. 

2. Generalized Robustness Metric 

This section presents a general procedure, called 

FePIA, for deriving a general robustness metric for any 

desired computing environment [2]. The name for the 

above procedure stands for identifying the performance 

features, the perturbation parameters, the impact of 

perturbation parameters on performance features, and 

the analysis to determine the robustness. A specific 

example illustrating the application of the FePIA 

procedure to sample systems is given in the next section. 

Each step of the FePIA procedure is now described, 

summarized from [2]. 

1) Describe quantitatively the requirement that makes 

the system robust (question (a) in Section 1). Based on 

this robustness requirement, determine the QoS 

performance features that should be limited in variation 

to ensure that the robustness requirement is met. 

Identify the acceptable variation for these feature values 

as a result of uncertainties in system parameters. 

Consider an example where (a) the QoS performance 

feature is makespan (the total time it takes to complete 

the execution of a set of applications) for a given 

resource allocation, (b) the acceptable variation is up to 

a 20% increase of the makespan that was predicted for 

the given resource allocation using estimated execution 

times of applications on the machines they are assigned, 

and (c) the uncertainties in system parameters are 

inaccuracies in the estimates of these execution times. 

2) Identify the uncertainties to be considered whose 

values may impact the QoS performance features 

selected in step 1 (question (b) in Section 1). These are 

called the perturbation parameters, and the 

performance features are required to be robust with 

respect to these perturbation parameters. For the 

makespan example above, the resource allocation (and 

its associated predicted makespan) was based on the 

estimated application execution times. It is desired that 

the makespan be robust (stay within 120% of its 

estimated value) with respect to uncertainties in these 

estimated execution times. 

3) Identify the impact of the perturbation parameters in 

step 2 on the system performance features in step 1. For 

the makespan example, the sum of the actual execution 

times for all of the applications assigned to a given 

machine is the time when that machine completes its 

applications. Note that 1(b) states that the actual time 

each machine finishes its applications must be within 

the acceptable variation. 

4) The last step is to determine the smallest collective 

variation in the values of perturbation parameters 

identified in step 2 that will cause any of the 

performance features identified in step 1 to violate its 

acceptable variation. Step 4 is done for a given, specific 

resource allocation. This will be the degree of 

robustness of the given resource allocation (question (c) 

in Section 1). For the makespan example, this will be 

some quantification of the total amount of inaccuracy in 

the execution times estimates allowable before the 

actual makespan exceeds 120% of its estimated value. 

3. Robustness Metric Example 

3.1. Derivation of Robustness 

In this section summarized from [2], the robustness 

metric is derived for a system that assigns a set of 

independent applications to a set of machines. In this 

system, it is required that the makespan be robust 

against errors in application execution time estimates. 

Specifically, the actual makespan under the perturbed 

execution times must be no more than a certain factor 

times the predicted makespan calculated using the 

estimated execution times.  

A brief description of the system model is now 

given. The applications are assumed to be independent, 

i.e., no communications between the applications are 

needed. The set of applications is to be assigned to a 

set of machines so as to minimize the makespan. 

Each machine executes a single application at a time 

(i.e., no multi-tasking). Let ijC be the estimated time to 

compute (ETC) for application ia on machine .jm  It is 

assumed that values are known for all i, j, and a 

resource allocation 

ijC

is determined based on the ETC 

values. In addition, let jF be the time at which jm

finishes executing all of the applications assigned to it.  

Assume that unknown inaccuracies in the ETC 

values are expected, requiring that the resource 

allocation be robust against them. More specifically, 

it is required that, for a given resource allocation, its 

actual makespan value M (calculated using the actual 

application computation times (not the ETC values)) 

may be no more than times its predicted value,

predM . The predicted value of the makespan is the 

value calculated assuming the estimated ETC values. 

Following step 1 of the FePIA procedure in Section 2, 

the system performance features that should be limited 

in variation to ensure the makespan robustness are the 

finishing times of the machines. That is, 

{ for 1pred
jF M j } .

According to step 2 of the FePIA procedure, the 

perturbation parameter needs to be defined. Let est
iC be 

the ETC value for application on the machine where 

it is assigned. Let 

ia

iC be the actual computation time 
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value. Let C be the vector of th  values, and e iC
est

C

be the vector of the  values. The vector C is the 

perturbation parame his analysis.  

In accordance p 3 of the FePIA procedure, 

est
iC

ter for t

with ste

jF

p( ) red
jF MC

has to be expressed as a function of C. To that end,  

: is assigned to 

( ) .

i j

j i

i a m

F CC              (1) 

Following step 4 of the FePIA procedure, the set of 

boundary relationships corresponding to the set of 

performance features is given by
est

C

1C

2C

( , )jr F C

{ ( ) for 1 }.pred
jF M jC

The robustness radius ( , )jr F C

ian distan

e in any di

for machine j

provides the largest Euclid ce, i.e., l2-norm, at 

which variable C can chang rection from the 

assumed point without the finishing tim

exceeding the tolerable variation: 

est
C e ( )jF C

2: ( )
( , ) min .

pred
j

j
F M

r F est

C C

C C C      (2) 

That is, if the Euclidean distance between any vector of 

th the

x e C

the actual execution times and e vector of  

estimated e ecution times is no larg r than ( ,jr F

then the finishing time of machine 

),

jm  will be at most 

times the estimated makespan value. 

Assume only applications 1a  and 2a  have been 

assigned to machine j, depict

components  and  that

undary line ed to 

F t the righ

ing the

 [14],  

reduces to 

ed in Figure 1, C has two 

 correspond to execution 1C 2C

times of 1a  and 2a on machine j, respectively. The 

term ( )jF est
C  is a finishing time for machine j

computed based on ETC values of applications 1a  and 

eterm2.a The bo is d in  by 

( ) .pred
j MC  Note tha t hand side in 

Equation 2 can be interpreted as the perpendicular 

distance from the point est
C  to the hyperplane 

described by the equation ( ) .pred
jF MC Us  

point-to-plane distance formula Equation 2

( )
( , )

pred
j

.
number of applications asiigned to 

j

j

M F
r F

est
C

C

m

The robustness metric,

(3) 

,  is given as

 1  j

That is, if the Euclidean distance between any vector of 

the actual execution times and the vector of the 

estimated execution ti s is no larger than ,

min { ( , )}.jr F C            (4) 

me  then the 

actual mak span will be at most e times the predicted 

makes .  

3.2. Utility of Robustness 

The experiment in this subsection seeks to establish 

tility o stness metric. The experiments 

 a system with five machines and 20 

applications. A total of 1000 resource allocations were 

generated by assigning a random y chosen machine to 

each application (see [2] for d ). 

The resource allocat uated for 

robustness, makespan, and load balance index (defined 

as the ratio

Figure 1: Some possible directions of increase of 

the perturbation parameter .C Robustness radius 

j( , )r F C corresponds to the smallest increase. 

The set of boundary points is given by 
est pred

j( ) = .F C M

pan value

the u f the robu

were performed for

etails

ions were eval

 of the finishing time of the machine that 

finishes first to the makespan). The larger the value of 

the load balance index, the more balanced the load (the 

largest value being 1). The tolerance, 

l

, was set to 

t the resource 

allocation can endure any comb

without the makespan increasin

spa

e

he predicted makespan. A similar 

obustness against the load 

igure 2(b).  

120%. In this context, a robustness metric value of x for 

a given resource allocation means tha

ination of ETC errors 

g beyond 1.2 times its 

estimated value as long as the Euclidean distance of the 

errors is no larger than x seconds. 

Figure 2(a) shows the “normalized robustness” of a 

resource allocation against its make n. The 

normalized robustness equals th  robustness metric 

value divided by t

graph for the normalized r

balance index is shown in F

There are large differences in the robustness of 

some resource allocations that have very similar values 

of makespan. Thus, when selecting a resource 

allocation with low makespan, the robustness 
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area of research (e.g., [1, 6, 13]). Static mapping is 

performed when the applications are mapped in an off-

line planning phase such as in a production 

environment. Static mapping techniques take a set of 

applications, a set of machines, and generate a mapping. 

These heuristics determine a mapping off-line, and 

must use estimated values of application computation 

times.

As described in the previous section, the allocation 

of independent applications in parallel systems is 

considered robust if the actual makespan under the 

perturbed conditions does not exceed the required time 

constraint. The goal of this study was to find a static 

mapping of all applications to machines so that the 

robustness of the mapping is maximized; i.e., to 

maximize the collective allowable error in execution 

time estimation for the applications that can occur 

without the actual makespan exceeding the constraint. 

Mathematically, this problem can be stated as finding a 

mapping of

calculation allows one to select an allocation that also 

provides high robustness. Figure 2(b

(a)

) shows that load 

balancing does not provide an accurate measure of 

robustness. These observations highlight the fact that 

the information given by the robustness metric could 

not be obtained from the makespan and load balance 

performance measures.  

4. Mapping under Makespan Constraint 

4.1. Problem Statement 

This section summarizes the research described in 

[16]. An important research problem is how to 

determine a mapping (resource allocation) so as to 

maximize the robustness of desired system features 

against perturbations in system parameters. The general 

problem of optimally mapping applications to machines 

has been shown to be NP-complete [9]. Thus, the 

development of heuristic techniques to find near-

optimal solutions for the mapping problem is an active 

 applications to machines such that 

the actual makespan is with  the absolute time 

constraint

in

 while maximizing , given by (4). 

Equation (3) is restated in this study as 

( )
( , ) .

number of applications asiigned to 

j

j

j

F
r F

m

est
C

C

A parallel system with eight machines and 1024 

dependent applications was simulated in this study. 

Two different cases of ETC heterogeneities were used 

 this research, the high application and high machine 

heterogeneity (high-high) case and the low application 

and low machine heterogeneity (low-low) case (see 16 

for details about the simulation setup). The value of the 

me constraint 

in

in

ti  of 5000 seconds was chosen so that 

(b)

Figure 2: Normalized robustness against (a) 
makespan and (b) load balance index for 1000 
randomly generated resource allocations.  it presents a feasible mapping problem for the heuristics 

to solve. A total of 100 trials (50 trails for each of the 

cases) were performed, where each trial corresponded 

to a different ETC matrix. The wall clock time for each 

of the heuristics to determine a mapping was arbitrarily 

required to be less than or equal to 60 minutes to 

establish a basis for comparison. 

Seven static mapping schemes were developed in 

this study: Max-Max, Greedy Iterative Maximization 

(GIM), Overhead Iterative Maximization (OIM), 

GENITOR, Memetic Algorithm (MA), Ant Colony 

Optimization (ACO), and Hereboy Evolutionary 

Algorithm. Two are described here. 

summarized as follows.

1)

4.2. Greedy Iterative Maximization 

The GIM heuristic can be 

A mapping is generated using the Min-Min heuristic 

[6, 9], based on completion times. 

2) Find the robustness metric and the machine with the 

smallest robustness radius among all machines (min-
radius machine) for the current mapping.  
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3) Generate an application list containing all 

applications on the min-radius machine not yet 

considered for reassignment. 

4) An application is chosen arbitrarily from the 

application list and considered for reassignment to all 

other machines. 

5) Reassign the application to the machine that 

improves the robustness metric the most and go to step 

2; if the reassignment does not improve the mapping, 

remove the application from the application list and go 

to step 4 until there are no applications in the 

application list.  

6) T

 a

it ion

d go to step 8 

10) A new mapping is generated using the MCT 

heuristic [6, 9] based on completion times. Applications 

ctor of length

he robustness metric and min-radius machine for 

the current mapping is determined. 

7) Generate an application list containing all 

applications on the min-radius machine not yet 

considered for swapping. 

8) An application is chosen arbitrarily from the 

application list and considered to be swapped to all 

applications on all other machines. 

9) The chosen application from the application list is 

swapped with the first application that will increase the 

robustness metric by traversing through all the 

applications in arbitrary order on ll other machines and 

go to step 6; if the chosen application could not be 

swapped w h any other applicat , remove the 

application from the application list an

until the application list is empty. 

are considered in a different order every time a new 

mapping is generated by MCT. 

11) Repeat steps 2–10 until the one hour time 

constraint has expired. 

One variation tried was to select the “best” 

application that improves the robustness during 

swapping in step 9 and was found to perform slightly 

worse than the “arbitrary order” swap method. It is 

observed that, in general, the robustness of the initial 

mapping did not impact the robustness of the final 

mapping; however, if the robustness of the initial 

mappings are good, more iterations of steps 2 through 9 

can be performed in the given time constraint. 

4.3. GENITOR 

This heuristic is a general optimization technique 

that is a variation of the genetic algorithm approach. It 

manipulates a set of possible solutions. The method 

studied here is similar to the standard GENITOR 

approach used in [18]. Each chromosome represents a 

possible complete mapping of applications to machines. 

Specifically, the chromosome is a ve .

The ith element of the vector is the number of the 

The 

GENITOR operates on a fixed population of 200 

-Max [6, 9] solution 

ted (ranked) 

 in the population. The 

tric value (highest first). The 

ver operation, and two new 

-off point is 

each chromosome, crossover 

opulation in ranked 

g is considered for 

l iterations.  

t a good 

e “arbitrary order” swap; however, 

ed more beneficial swaps and showed 

a g

machine to which application i is assigned. 

chromosomes. The population includes one 

chromosome (seed) that is the Max

based on robustness and the rest of the chromosomes 

are generated by randomly assigning applications to 

machines. The entire population is sor

based on their robustness metric values given by (4). 

Chromosomes that do not meet the makespan constraint 

are allowed to be included

ranking is constructed so that all chromosomes that 

meet the constraint are listed first, ordered by their 

robustness me

chromosomes that do not meet the makespan constraint 

are then listed, again ordered by their robustness metric 

value. 

Next, a special linear bias function [6] is used to 

select two chromosomes to act as parents. These two 

parents perform a crosso

offspring are generated. For the pair of the selected 

parent chromosomes a random cut

generated that divides the chromosomes into top and 

bottom parts. For the parts of both chromosomes from 

that point to the end of 

exchanges machine assignments between corresponding 

applications producing two new offspring. The 

offspring are then inserted in the p

order, and two lowest ranked chromosomes are dropped. 

After each crossover, the linear bias function is 

applied again to select a chromosome for mutation. A 

mutation operator generates a single offspring by 

perturbing the original chromosome. A random 

application is chosen from the chromosome and the 

mutation operator randomly reassigns it to a new 

machine. The resultant offsprin

inclusion in the population in the same fashion as for an 

offspring generated by crossover. 

This completes one iteration of the GENITOR. The 

heuristic stops after 250,000 tota

4.4. Experimental Results 

The simulation results are shown in Figure 3. All 

the heuristics are run for 100 different scenarios and the 

average values and 95% confidence intervals are 

plotted. The GIM and OIM are among the best 

heuristics for both of the high-high and low-low cases 

studied here. The IM heuristics that make use of the 

tailored search technique (as opposed to the general 

search used by GENITOR) proved to be very effective. 

The “best” swap variation of the GIM arrived a

solution faster than th

the latter perform

radual increase in the robustness better than the 

former. The GENITOR and MA performed comparably 

to the IM heuristics. Both of the heuristics are seeded 

with the Max-Max solution. The ACO solution was 

within 12% of the best heuristic (OIM) solution. In the 

ACO heuristic, seeding the pheromone trial with the 
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Max-Max mapping and the use of the local search 

technique improved the solution on average by 27%.  

5. Mapping under Makespan and 

Dollar Cost Constraints 

5.1. Problem Statement 

This section summarizes the study described in 

[17], which was an extension of [16]. The research 

environment here differs from the previous study with 

the addition of the cost constraint for the machines and 

choosing a subset of all the available machines to be 

used. Thus, problem addressed here is how to select 

(purchase) a fixed set of machines, within a given dollar 

cost constraint to use to comprise a cluster system. It is 

assumed that this fixed system will be used in a 

production environment to regularly execute the set 

of applications with known estimated computational 

characteristics. The machine

set are to be selected from

s to be purchased for

 five different classes of 

mac

that class i+1 machines. 

In this study, one must: (1) select a subset of 

machines so that the cost constraint for the machines is 

satisfied, and (2) find a static mapping of all 

applications to the subset. Sub-problems 1 and 2 must 

be done in a way so that the robustness of the mapping 

 the 

hines, where each class consists of homogeneous 

machines. The machines of different classes differ in 

dollar costs depending upon their application execution 

speed. The dollar cost of machines within a class is the 

same. Machines in class i are assumed to be faster than 

machines of class i+1 for all applications, for 

1 4.i Correspondingly, class i machines cost more 

is maximized. For sub-problem 2, the machine 

assignment heuristics described in the previous section 

are used as components of the heuristics developed in 

this research. 

A method used to generate 100 high application 

and low machine heterogeneity (high-low) ETC 

matrices for 1024 independent applications was 

identical to that used in the previous work (see the 

details of the simulation setup in [17]). Experiments 

with simple greedy heuristics were used to decide the 

value of the cost constraint to be 34,800 dollars and the 

time constraint to be 12,000 seconds. Choosing 

different values for any of the above parameters will

ics used in 

pper itself 

was

re developed in this 

mpact Greedy Iterative 

Max

not affect the general approach of the heurist

this research. The wall clock time for the ma

 set as in [16]. 

Six static mapping schemes we

research: Negative I

imization (NI-GIM), Parition/Merge Greedy 

Iterative Maximization (P/M-GIM), Sum Iterative 

Maximization (SIM), GENITOR, Memetic Algorithm 

(MA), and Hereboy Evolutionary Algorithm. Two are 

described here. 

5.2. Negative Impact Greedy Iterative Maximization  

The NI-GIM heuristic used here is a modification 

of GIM described in Section 4. The NI-GIM heuristic 

performs a Min-Min mapping based on completion 

times assuming all machines to be available, ignoring 

the dollar cost constraint.  

The robustness radius of all the available machines 

is calculated for the Min-Min mapping. The negative 

impact of removing machine j is determined in the 

following way. Each of the applications mapped onto 

machine j is evaluated for reassignment to each of the 

other machines. The decrease in the robustness radius 

of each available machine i if an application t is 

d from machine j is calculated; call this reassigne , .i t

Define average decrease in the robustness radii across 

all the available machines due to reassignment of 

application t to be 
1

,

0

 number of  available machines.t i t

i

The negative impact of removing machine j, jNI , is 

  t

 .
asks on 

j t

t

NI

0

35
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a
x
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a
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G
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O
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G
E
N
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O
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O
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B
o
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ro
b
u
s
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e
s
s

M H
e
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Figure 3: Simulation results for robustness for a 
given fixed set of machines. 

j

The ratio of negative impact to cost is obtained by 

dividing the negative impact by the cost of the machine 

j. The machine that has the least value of ratio is then 

removed. The procedure of performing the Min-Min 

mapping with only the available machines and the ratio 

calculation to remove another machine is repeated until 

the cost constraint is met. 
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For the set of machines determined above that 

meets the cost constraint, the GIM heuristic is run to 

determine a mapping that maximizes robustness for the 

given machine set. 

5.3. GENITOR 

The GENITOR heuristic developed in this work 

consists of two phases. For phase 1, a chromosome is a 

vector of length five, where ith element is the number of 

machines used in ith class. The phase 1 of GENITOR 

operates on a fixed population of 100 chromosomes. 

The entire population is generated randomly such that 

the cost constraint is met. To evaluate each 

chromosome, a mapping was produced using the Max-

Max heuristic based on robustness. The entire

population is sorted in descending order based on the 

robustness metric.  

In the crossover step, for the pair of the parent 

chromosomes selected by applying the linear bias 

function, a random cut-off point is generated that 

divides the chromosomes into top and bottom parts. A 

new chromosome is formed using the top of one and 

botto

nes of the other by one. If the 

chro

ons is met. The machine combination 

max

The

d 5 (i.e., the fastest class and the two 

cheapest classes of machines) were used in re than 

90% of the scenarios. The SIM heuristic by itself did 

d machines 

e on 

or robustness improvem nt. HereBoy Evolutionary 

Algorithm is the fastest am ng all the algorithms and its 

perform

6.

ndary curves for different problem 

2) I

0.0
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N
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G
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H
e
re
B
o
y
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b
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s
tn
e
s
s

m of another. An offspring is inserted in the 

population after evaluation only if the cost constraint is 

satisfied (the worst chromosomes of the population are 

discarded to maintain a population of only 100). 

Otherwise, it is discarded. 

After each crossover, the linear bias function is 

applied again to select a chromosome for mutation. A 

mutation operator generates a single offspring by 

perturbing the o ginal chromosome. Two random 

classes are chosen for the chromosome and the 

mutation operator increments the number of machines 

of the first chosen class by one and decrements the 

number of machi

ri

mosome violates the cost constraint it is discarded. 

Otherwise, the resultant offspring is considered for 

inclusion in the population in the same fashion as for an 

offspring generated by crossover. 

This completes one iteration of phase 1 of 

GENITOR. The heuristic stops when the criterion of 

500 total iterati

found from phase 1 is used in phase 2, which derives a 

mapping using this combination of machines to 

imize robustness based on the GENITOR 

implementation in described in Section 4 (a total of 

100,000 iterations is used here to stop the phase 2 of 

GENITOR). 

5.4. Experimental Results 

The simulation results are shown in Figure 4. All 

the heuristics are run for 100 different scenarios and the 

average values and 95% confidence intervals are 

plotted. The GENITOR and the P/M-GIM heuristic are 

the best among all the heuristics studied for this 

problem. Both of these heuristics, on average, had all of 

the available machines from Class 4 and Class 5.  

NI-GIM heuristic performed comparably to P/M-GIM. 

The negative impact calculation always forced removal 

of machines from either Class 2 or 3. All machines 

from Class 1, 4, an

mo

not perform well because it always selecte

for relocation that will maximize application-ex cuti

e

o

ance is within 12% of GENITOR. The search 

technique used for selecting the machines for HereBoy 

used all of the machines of Class 1, 4, and 5. The 

machine selection of the MA heuristic based on the 

random approach proved to be ineffective. Therefore, 

the robustness achieved on the selected sets was the 

worst among all the heuristics.  

Future Work

We are considering extending our current work in 

different directions, including: 

1) Deriving the bou

Figure 4: Simulation results for robustness. 
Machine sets were determined heuristically.  

domains. 

ncorporating multiple types of perturbation 

parameters (e.g., uncertainties in input sensor loads and 

uncertainties in estimated execution times). Challenges 

here are how to define the collective impact to find each 

robust radius and how to state the combined bound on 

multiple perturbation parameters to maintain the 

promised performance. 

3) Incorporating probabilistic information about 

uncertainties. Such information might be available 
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about individual perturbation parameter elements. One 

might have only relative information about perturbation 

para

marized from [2]. 

S. B. Gundala, S. Gertphol, H. 

ystems,” J. Parallel 

1, No. 6, June 2001, pp. 810–837. 

E. Carrillo, “ -Robust scheduling 

, No. 11, Nov. 1997, pp. 

. Gribble, “Robustness in complex systems,” 8th

al flowtime job shops using 

tability

 optimal schedule: A survey and recent 

Industrial Applications of 

thm and selective 

Why rank based allocation of reproductive 

st,” 3rd Int’l Conf. Genetic Algorithms, June 

meter elements (e.g., the execution times of 

different applications). In another case, one might have 

relative information about different perturbation 

parameters (e.g., changes in input sensor loads versus 

changes in the execution times of different applications). 

4) Determining when to use Euclidean distance versus 

a simple sum when calculating the collective impact of 

changes in the perturbation parameter elements. 

7. Summary

Any claim of robustness for a given system must 

answer three questions: (a) what behavior of the system 

makes it robust? (b) what uncertainties is the system 

robust against? (c) quantitatively, exactly how robust is 

the system? This paper, which corresponds to H. J. 

Siegel’s keynote presentation, summarizes the material 

from three papers related to robustness. A metric for the 

robustness of a resource allocation with respect to 

desired system performance features against 

perturbations in system and environmental conditions, 

and the experiments conducted to illustrate the utility of 

the robustness metric, are sum

Heuristics developed to generate mappings of 

independent applications in parallel systems such that 

the robustness of the produced mappings is maximized 

are summarized from [16]. Finally, heuristics for (1) 

selecting a set of machines and (2) mapping 

applications to the set of machines, both to maximize 

robustness, are summarized from [17]. 
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