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ABSTRACT

EXTRACTION, CHARACTERIZATION AND MODELING OF NETWORK DATA FEATURES -

A COMPRESSIVE SENSING AND ROBUST PCA BASED APPROACH

Designing computer networks resilient to failures, excessive loads, and attacks and then
monitoring them are challenged by a range of issues inherent to networks. These limita-
tions include inability to effectively characterize anomalous and baseline behaviors, access
restrictions to place probes, and measurement limitations due to load limits. We develop
a suite of solutions for extracting network data given the accessibility and load limitations
of networks, and for characterizing interesting behaviors that capture the features useful for
designing and monitoring networks. To the network monitoring and data extraction end, we
build solutions for (1) retrieving interesting network data such as anomalies, with a limited
amount of instrumentation, e.g., at the network periphery, (2) reconstructing a description
of the network from a limited number of measurements, with different approaches suitable
for computer networks and sensor networks. To the network data characterization end,
we develop solutions for (1) extracting interesting features of data, such as anomalies and
baselines, and (2) concisely and accurately modeling these features. These four classes of
solutions build up the contributions of this thesis, which include: (1) adaptive compressive
sensing algorithms for network monitoring, (2) spatiotemporal modeling of network traffic
anomalies, (3) modeling and extracting network traffic baselines using Robust PCA, (4)
Compressive Sensing (CS) based data recovery for phenomena discovery, (5) Wavelet based
recovery with applications to plume tracking in sensor networks, (6) Subtle pattern detec-
tion algorithm with usage in hardware trojan detection, and (7) TCP/IP filter for extracting

features with deployments in network attack detection.



We present multiple algorithms that adaptively perform CS to resolve network tomo-
graphic measurements and rapidly localize anomalies. These algorithms are scalable to large
networks, operable with probes placed at arbitrary locations, and guide measurements using
advanced IP options. The adaptive compressive sensing algorithms demonstrat over 99% de-
tection rates and less than 1% false positive rates in realistic test environments, for networks
reaching over 10,000 links. These require a limited number of monitoring probes residing
at the edge of the network and are capable of localizing faults with orders of magnitudes
fewer measurements than traditional approaches. Thus, we overcome the accessibility re-
strictions in networks and also provide an efficient method to retrieve critical information
from networks.

Due to the sporadic behavior, modeling spatiotemporal characteristics of network traffic
anomalies has been a challenge. The solution we developed models different spatial and
temporal properties of anomalies and integrate them into a single model. The combined
anomaly model captures statistical behaviors of anomalies as they propagate through nodes
and subnets. Calibrating the model requires only local measurements. However it is capa-
ble of capturing the global anomaly behaviors. This characterization enables reproducing
statistically similar network anomalies. By incorporating such characterization, traffic gen-
erators can produce realistic behaviors containing realistic anomalies. Based on the anomaly
model, a real-time anomaly monitoring system and a real-time parameter learning system
are also proposed. The model concisely and hierarchically characterizes anomaly behaviors
of networks, which so far was not possible. Moreover, the model provides vital information
for designing robust networks.

Our experiments reveal that Robust PCA achieves recovery over much wider ranges of

sparsity and rank, than the published sufficient conditions suggest. These findings enable
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the use of Robust PCA for separating features of network data. We employ Robust PCA and
Fourier methods for separating baseline and anomalous components. Further, these methods
are made into real-time filters for baseline extraction and modeling. The baseline extraction
algorithm is used in anomaly detection and compared against a number of existing methods
to establish its fidelity. Extracted baselines are modeled using two types of patterns: one
for link level behaviors and another for network level behaviors. Such characterizations are
crucial for network design and provisioning.

Applications of the work done in this thesis go beyond the scope of infrastructure net-
works. For example, we derive theoretical recovery bounds of CS for any pairing of sampling
and orthogonality measures. This work leads to cost effective phenomena discovery in sensor
networks, where every node in the network becomes aware of the overall network state. Phe-
nomena awareness experiments implemented with random walk sampling indicate superior
energy savings and comparable accuracy to classical uniform sampling. Random walk mea-
surements provide a practical means of gathering measurements, while uniform sampling is
costly to implement. When applied with CS, phenomena awareness provides a practical and
efficient approach to build a complete picture.

We developed an energy efficient approach that require fewer instrumentation using
wavelet transforms. This work has applications in chemical plume tracking. It achieves
an error of less than 7% with 25% of measurement points. This data reconstruction scheme
saves energy and extends longevity of energy starved sensor network by a factor of five in
average. A second improved solution is proposed by combining matrix completion and CS.
An algorithm for detecting subtle patterns in an array of time-series is also developed. It
is capable of extracting interesting but obscure features from data. The subtle pattern ex-

traction algorithm lay the pathway for detecting hardware trojans whose existence makes
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only a slight impact on the impedance measurements. To extract interesting features from
live network data, we develop a TCP/IP feature filter and successfully use it for detecting
Neptune, Smurf, IP and port sweep, and Ping of death attacks. These approaches provide
different means of extracting data and features for a range of applications, which extend
beyond the scope of networks.

The proposed solutions are tested on either real-world or realistic data in order to estab-
lish performance and accuracy. To obtain real data, we develop tools to extract data from
planet-lab infrastructure and other networks. To construct realistic data, we use established
data models such as the Gilbert-Elliot model for packet loss and heavy-tailed distributions
for delay, then calibrated these models using actual measurements. Further, commonly used
synthesis tools such as IGen are used to simulate large scale realistic networks. These test
environments help establish the fidelity of the developed solutions. This research provides
effective, practical and accurate solutions for network monitoring, data extraction and mod-

eling.
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CHAPTER 1

INTRODUCTION

Computer networks connect resources and deliver information to build information sys-
tems that range from Personal Area Networks (PANs) to internets. Each category of net-
works has their own class of problems. For example, networks of the scales ranging from
Local Area Networks (LANSs) to the Internet would be concerned about the throughput,
latency, reliability and security; whereas wireless sensor networks would be more concerned
about the energy efficiency. Therefore, when designing networks, their respective concerns
should be taken into account. Further, during operation, the networks should be monitored
to assure a healthy operation and to learn when faults occur. The premise of this the-
sis revolves around monitoring networks, retrieving network information, characterizing and
modeling network behaviors. This study addresses issues related to robust network designing
and efficient network monitoring.

Network data are rich in various features. External to the data content, physical fea-
tures such as throughput and delay reveal information about the network performance. By
digesting the data content, much about the communication can be revealed. At a higher
level, packet headers can be conveniently extracted by filters, which provide a range of in-
formation about the communication such as the origin, destination and the protocol used.
By performing deep packet inspection more intricate information about the communication
can be learned. Information extracted from features of different levels can be used to di-
agnose network issues of a few categories. Most operational issues such as link failures can
be diagnosed by observing physical features as the throughput. Tracking traffic flows can

be done by observing the packet headers. Networks may observe unusual traffic behaviors



in three main scenarios: (1) excessive but legitimate user behaviors such as flash crowds,
(2) network failures, and (3) attacks. The network administrators have to identify these
scenarios distinctly as they have to react in different manners to each of the cases. If the
unusual behavior is due to legitimate user behaviors, the administrators should take action
to throttle traffic, keep the system alive, and continue to serve requests. Whereas during
an attack, the administrators should first take action to protect the system and prevent fur-
ther damage. They may decide to trace data to identify and localize the perpetrators. All
these scenarios require the administrators characterizing the nature of the unusual behavior.
Methods based on deep packet inspection are likely to provide more information. However,
deep packet inspection is a costly operation and may not be possible to perform against
a large incoming traffic volume. Thus, fast and light-weight techniques based on packet
header characterization are more attractive. Further, packet header extraction is built into
most network hardware making methods based on packets headers cost-effective. We focus
on building a feature extraction and correlation scheme based on information revealed by
packet headers. We apply this method to detect a number different network attacks.
Modeling network traffic behaviors has been of interest since the early days of computer
networks. The initial approaches treated computer networks similar to telephony networks
and used Poisson models to describe traffic behaviors. As most communications on initial
computer networks were via dial-up connections, these models were quite valid. But as
broadband communication took prominence, validity of Poisson model decayed. Although
a group of researchers believe that Poisson model is still valid at an Internet backbone
level. Over time, traffic modeling evolved into heavy-tailed distributions as most network
parameters demonstrated occurrence of large values quite frequently. Furthermore, network

data showed long-range dependence [3]. Some recent approaches view network data as a



fractal process and continue use heavy-tailed distributions to describe them. The most
recent approaches take truncation into account, as in [4]. For example, if the delay of a
transmission surpasses a certain threshold, a retransmission occurs. This leads to occurring
large values but with a maximum limit.

Another one of our interests is in identifying and characterizing the important and inter-
esting properties of data. One of the techniques we employ is Robust Principal Component
Analysis (RPCA) [5, 6]. It additively separates a data matrix into a low-rank matrix and a
sparse matrix. A number of practical scenarios exists where data matrices are a sum of low-
rank and sparse matrices. Video surveillance, face recognition, latent signal indexing and
collaborative filtering are a example few applications. If the data matrix was in fact a sum of
a “true” low-rank matrix, i.e. a matrix which is not also sparse, and a “true” sparse matrix,
i.e. a matrix that is not also low-rank, then the output matrices match the original low-rank
and sparse matrices. As low-rank-ness and sparse-ness can coexist, the conditions to assure
true low-rank-ness and true sparse-ness prevent ambiguous recoveries. The conditions laid
down in literature however are either quite conservative or impractical to calculate. Thus,
we could not use them to predict the recoverability of a matrix pair. As an alternative, we
empirically establish the recoverability of RPCA and as well a cross validation principle to
determine whether a decomposition was actually a recovery. We study a range of matrix
constructions and example matrices from real-world applications to establish our claims.

One of the primary focuses of this thesis is extracting and modeling network specific
behaviors. We identify two major component network data: (1) baselines and (2) anomalies.
However extracting these components are challenging as network data carry a vast amount
randomness that mask these properties. Baseline behavior describes the expected behavior

under regular operation. Although it is a well conceptualized property, mathematically



describing a baseline is difficult. Thus, we use a few properties that are admissible to a
human network monitor’s point of view and amenable to mathematical representation to
describe baselines. Baselines are expected to be common across the dataset. They are
also expected to be the prominent component of the data. Further, baseline behaviors
are expected to re-occur at regular intervals. We employ PCA and Fourier analysis to
extract baseline behaviors, as they capture these properties. We also use RPCA to cleanse
data of any major anomalies. Anomalies on the other hand show a drastically different
behavior. Their sporadic occurrences with unpredictable volumes and durations make it
difficult to model anomalies with typical random processes. Thus, we device a new approach
where features of anomalies are separated and modeled individually. This leads to a concise
description of anomalies that captures the statistical properties of anomalies accurately. The
proposed method enables describing anomaly behaviors hierarchically. Further, based on this
new model, we propose two real-time applications: (1) a technique to communicate model
parameters efficiently track anomaly behaviors of regions on the fly, and (2) a technique for
intelligent real-time anomaly tracking.

As a maintenance service, network monitoring should be least intrusive as possible. More-
over, instrumentations used for monitoring can only be placed at authorized locations such
as end points. In designing an efficient monitoring system, a number of concerns should be
taken into consideration: (1) it should produce a minimal monitoring traffic, (2) identifica-
tion of the presence of faults and localizing the faults should be swift in order to minimize the
damage, (3) it should learn network conditions irrespective of the instrument locations, and
(4) it should be scalable in terms of the monitoring traffic and the instrumentation cost as
the networks grow in size. As pointed out in [7], network faults or anomalies in modern day

reliable networks are rare occurrences over time and space. Thus, anomalies have a sparse



presence in network data. Pioneering work in [8] demonstrated the usage of Network To-
mography [9] for identification and localization of these sparse network faults via end to end
measurements. Work presented in [10] extends the network tomography to mesh networks
which by then had been limited to tree structures. Compressive sensing (CS) [11] (reviewed
later on) provided a means to evaluate under-determined linear systems for sparse solutions.
Authors of [12, 1] proposed to resolve for network faults using compressive sensing. A key
limitation in networks is that measurements can only be made over network paths, unlike
applications such as image processing where an arbitrary combination of samples can be
made. This leads to a poorer performance in terms of sampling for compressive sensing in
networks compared to other compressive sensing applications. More specifically, unlike other
CS applications, the common place logarithmic scaling of measurements was not achieved in
literature so far in the networking domain.

We in [13, 14] proposed adaptive schemes for network fault localization using compressive
sensing, which achieve the logarithmic scaling of measurements. This work presents efficient
and fast algorithms to monitor networks for faults and adaptively localize them with a
minimal number of additional measurements. The proposed schemes use the TCP /IP Loose
Source Routing and Route Recording (LSRR) option to be able reach interested network
locations from the instrumented locations, as well to record the path the measurements
took. This strategy overcomes the access restrictions on co-operating network segments.
The proposed schemes are applicable for network faults in a variety of QoSs (Quality of
Services) which are additive over network paths. Some examples are link delays, packet
losses, and log of packet loss rates. The schemes are implemented in two-stages. The first
stage monitors the network with a minimal number of measurements marginally sufficient

to cover the network. The objective of this phase is to detect when the network contains



faults. Separability conditions laid down in [8] are used to determine the existence of a fault.
Once the existence of a fault is detected, the second phase launches an adaptive algorithm
to iteratively learn the locations of the faults. Each iteration uses CS to resolve the network.
By evaluating the solution provided by CS, the algorithms determine whether the faults are
successfully localized, and if not, the next feedback measurement to make. These algorithms
are tested on realistic network topologies with realistic network data models, for accuracy,
performance and scalability.

Though the main focus of this thesis is on networking domain, the techniques developed
are valid for a range of applications that use time-series data. The primary approach in de-
tecting unusual behaviors is to seek for deviations in data from known acceptable behaviors.
Methods such as data clustering [15], and PCA scores [16] seek for differences in prominent
behaviors of data. Most of the methods detect when a behavior of a data sample is distinctly
different from the reference data. While that is an important contribution, detection of sub-
tle difference of behavior is a difficult and also an important issue. Being able to identify
a subtle but unusual behavior helps detecting issue before they cause a significant damage.
We propose an optimization based algorithm for detecting sparse pattern. To test it, we use
real PCB test data. The proposed method detects behavior changes in data, even when the
deviations are within a narrow margin.

A key factor in building an efficient data recovery scheme is to exploit the energy packing
of data in different domains. Network faults are sparse in time and space domains. Phenom-
ena such as chemical plumes which resembles natural images are dense in time and space,
but have a sparse representation in domains such as Fourier and Wavelets. Compressive
sensing [17-20, 1] provides an efficient means to solve sparse linear systems. We review the

details of CS principals in Section 3.3. In essence when the domain on which the signal is



sparse is known, CS recovers the signal with a minimal number of measurements of the order
O (slog(n/s)) where n is the length of the signal and s is the sparsity of the signal in the
sparse domain. To achieve best performance of CS, sampling measure is required to have
an orthogonalizational property [21] — which states that sampling matrix is approximately
orthogonal. We extend this work to understand the recoverability of CS with any sampling
measure as practical sampling schemes may not be endowed with the orthogonalizational
property. Then we apply CS to achieve phenomena awareness of sensor networks with a
minimal measuring overhead. Sensor networks achieve global knowledge of the sensor field
via phenomena awareness which leads to intelligent data routing.

Common place image compression such Joint Photographic Experts Group (JPEG) [22]
relies heavily on sparse representations and has achieve significant image compression perfor-
mance. These concepts can be exploited to compress data on sensor networks and minimize
the communication cost. Wireless sensor networks are expected to operate with a minimal
energy usage. Communicating sensed data is their costliest operation. Thus, reducing the
communication cost has been of significant interest. Compressing the data to be commu-
nicated will reduce the cost of communication. We propose a distributed approach which
enables data compression over the communication structure of the sensor network, to reduce
the amount of data to be transmitted. These developments are applied to track a chemical
plume at a minimal cost with a high accuracy [23].

The best energy compaction scheme known to date is Karhunen-Loeve transform or
Principal Component Analysis (PCA). PCA implies that if the most prominent principal
components can be estimated, the signal can be recovered with a high accuracy. Based on
this principle, authors of [24] propose to use nuclear norm minimization to reconstruct a

matrix from a subset of entries. The strategy is to fill in the missing entries such that the



rank of the completed matrix is minimal. However, minimizing the nuclear norm does not
guarantee a smooth reconstruction, which affect data matrices of applications such as natural
images. Thus, we employ nuclear norm minimization in conjunction with compressive sensing
based image reconstruction to recover images with a high accuracy from a minimal number
of samples.

As a part of this research, several software tools are developed and made available to
the public. These tools encapsulate collecting, extracting, and modeling network traffic and
other data. The network anomaly analysis toolkit is a suite of tools to separate anomalies
from network data, characterize and visualize them. The Robust PCA toolkit provides
generation and analysis of a variety of data matrices. The network data collection tools can
be deployed against any typical network to gather data similar to those used in this work.
Publishing these tools enables future enhancements to the concepts proposed herein and
grants the researchers a head start.

Rest of the thesis is arranged as follows. Chapter 2 presents the precise problem state-
ment addressed in this work. Network monitoring and fault localization are addressed in
Chapter 3. Data recovery techniques are researched in Chapter 4 and feature extraction is re-
searched in Chapter 5. Then we proceed to network behavior modeling. Chapter 6 discusses
modeling anomalies and Chapter 7 discusses baseline modeling. Conclusions are presented
in Chapter 8. Finally, Appendix A reviews the algorithms used in this work, Appendix B

describes the software developed under this work, and Appendix C lists key sources codes.



CHAPTER 2

PROBLEM STATEMENT

Network performance is a key factor of the performance of an information system. A
healthy network delivers a vast quantity of information faster, i.e., a healthy network has a
high throughput and a low delay. Whereas an unhealthy network has a poor information
delivery capacity, which in turn affects the performance of the entire computer system.
Therefore maintaining network performance targets is a major responsibility of network
administrators. These targets are referred to as Service Level Agreements (SLAs) [25].

As with any real-world system, computer networks are vulnerable to component failures.
Even with redundancy and replication, time lag bringing up fail over resources may affect
performance. Thus, sufficient provisioning and constant monitoring of the network is a major
part of the administrators responsibilities. Unusual user behaviors are another aspect that
has to be taken into consideration. Events such as flash crowds [26], may exceed the capacities
of even the best provisioned computer systems. Network administrators are expected to
detect, throttle and maintain operation under such overwhelming but legitimate traffic.
Resources of a computer system are accessible via its network. Therefore the resources have
to be protected against malicious connections arriving via the network that may harm the
computer system. Due to criticality of such protection measures, fields such as cyber-security
are gaining momentum nowadays. Also, the cost of deploying an efficient computer network
cannot be discounted. To this end, efficient and low-cost solutions for various computer
system related problems are of great interest. Further, an Understanding of the distribution
of loading and utilization of elements in a computer system allows designing networks with

appropriate provisioning.



In order to support provisioning, maintaining health, and assuring security of computer
networks, information about the network has to be constantly retrieved and analyzed. How-
ever, care should be taken to make the process of information extraction and evaluation
not a burden to the network, especially when the network is overloaded or affected in some
other way. Otherwise the solution will contribute to and worsen the problem. Therefore ef-
ficient data reconstruction techniques via parsimonious sampling are of much interest. Such
techniques lead to drawing a complete picture of a given scenario from a minimal set of in-
formation. Once the information is extracted, they need to be analyzed rapidly. Thus, fast
fault localization algorithms are another branch of vital solutions needed. If certain actions
should be taken to regain the health of the network, those actions have to be triggered.
Further, the characterization of interesting features such as the baseline and anomalous be-
haviors, leads to optimum network design. The presented work attempts to encapsulate the
above discussed breadth of problems.

Challenges that inspired this work is discussed in Section 2.1. The overall research goals
are reviewed in Section 2.2. In Section 2.3 the specific research objectives are discussed.

Finally, in Section 2.4 the solution approach employed under this work is presented.

2.1. CHALLENGES AND MOTIVATION

The problem domain concerned in this work is centered around monitoring networks,
diagnosing issues and modeling behaviors. As with any other problem domain, a range of
issues arises as we seek practical solutions. Computer networks contains an abundance of
data. However, the efficient retrieval and use of which is yet to pick up speed. The work

presented aims at efficient use of computer network data to solve prevalent problems in
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the domain. This work address challenges in scalability, accessibility, speed, and insight in
computer network traffic.

As networks grow in size, challenges of a few different natures begin to arise. One
aspect is the escalation of instrumentation to cover the increased network elements. Thus,
a large cost has to be incurred to monitor the network. Another aspect is the escalation in
complexity. Elements of a network are connected and thus, are correlated in many ways.
As the number of network elements increase, these correlations become even more complex.
The increased complexity poses a challenge to fault localization algorithms. Furthermore,
data needed to process for monitoring, fault localization, and network characterization also
increases. Even more, these data are needed to be delivered over the network itself to
the processing locations. Despite the important role played by network performance data,
retrieving them without burdening the network is challenging. Thus, developing methods
to efficiently retrieve interesting and important information about the network aids a wide
variety of networking and other applications.

Larger networks such as the Internet span beyond the scope of a single authority. Access
granted for co-operating entities by each other are mostly restricted. For example an entity
operating at network end points may not have complete access to the core of the network to
place monitoring devices. However, end to end performance is affected by issues in the core.
Thus, schemes have to be devised to operate at end to end points, but have capabilities
to diagnose and localize issues even in the core without complete access. Such problems
are not restricted to a single core. Large networks such as the Internet have multitudes of
sub-network units, such as Autonomous Systems (AS), which may be owned by different

groups but operate in parallel. In such scenarios access restrictions would become a more
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complicated problem. So schemes that require minimal access privileges and that maximally
exploit the available information are in great demand.

In spite of the size of the network, administrators require to know the existence and
locations of issues in the network soonest possible. This is a major challenge as complexity
of any algorithm would only grow with network size. Thus, fast algorithms that have low
complexities are in demand. Complexity of the algorithm is not the only factor that governs
the speed. Algorithms such as those are adaptive, require feedback, in these cases, from the
network. Thus, efficient feedback mechanisms contribute to the speed of the algorithm. A
key improvement here would be to identify the optimum feedbacks that deliver the most
information leading to a rapid convergence of the algorithm.

Gaining insight into the network would tremendously improve network management, pro-
visioning and also designing future networks. However the breadth of mathematics developed
to describe key behaviors of networks is limited. Thus, new approaches have to be identified
to efficiently and comprehensively capture network behaviors. To this end, network behavior
modeling is of much interest. However, identifying parameters to model and the approaches
for modeling is a major challenge. Features such as network traffic anomalies do not follow
commonly known and used distributions. Thus, new approaches have to be investigated and
devised to effectively capture behaviors of such properties.

Network administrators maintained networks facing the above challenges over the last few
decades. However as the network grow in scale, the current methods used are increasingly
becoming insufficient. Finding solutions to these challenges would greatly enhance network
performance and will ease the duties of administrators leading to more performant and

reliable networks.
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2.2. RESEARCH GOALS

The ultimate goal of this work is to develop network monitoring infrastructures that are
highly scalable to a point they are almost invariant to network size, highly efficient that they
optimally collect and use network information, and completely model all aspect of networks.
This thesis innovates on the prevalent technologies and presents new concepts leading to the
above goal. For this, we take a data-centric approach.

The context of this thesis centered around data mostly specific but not limited to com-
puter networks. The goal is to seek optimum usage of data to address problems identified in
previous sections. For that, efficient means of data collection, processing, and interpretation
are needed. Impact on the network made by collecting data should almost be negligible.
This becomes critical when the network is under threat. Data gathering should not add up
weight to an already overloaded system. Once the data is collected they should be analyzed
in a timely manner. Fast algorithms and efficient feedback systems are critical for this.
Data analysis should be able to construct the larger picture of the network with a minimal
amount of data and also reveal interesting features of the behavior. If network behaviors can
be characterized once the features are extracted that would help provisioning and designing
future networks.

Thus, the goal of this thesis is to investigate and develop efficient gathering, processing,
feature extraction and characterization of network data, with the possibility to extend beyond
the scope of networks. For this, we seek to borrow concepts from signal processing, machine
learning, optimization, and TCP /IP. We also seek to establish the validity of the finding by
testing on realistic scenarios whenever possible. Furthermore, we pay special attention to

performance and accuracy of the developed schemes, as well as the practicality of deployment.
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2.3. RESEARCH OBJECTIVES

The research objectives of this work are organized around the following four aspects.

(1) Retrieving network data
(2) Data recovery
(3) Extracting features

(4) Characterizing behaviors

Under retrieving network data aspect, we investigate approaches to retrieve important
information from networks efficiently. A primary concerns in collecting data is to gather and
deliver data in a timely manner and also not to burden the network. Thus, schemes relying
on naturally available or easily measurable properties are of interest. This work leads to
efficient network monitoring. Retrieving location information of faults is also viewed as a
part of this. We also investigate ways to exploit the sparse nature of network faults. Another
aspect to study is the accessibility to the network. Retrieving internal network information
from end points in particular is a key interest.

Optimal data retrieval schemes would only require a minimal amount of data to build
a complete picture of the network behavior. Thus, we investigate data recovery schemes
that operate on sparse and parsimonious samples. This involves looking into domains where
data has a compact representation and investigating sampling strategies to enable successful
data recovery. Practicality is another key factor to be taken into consideration. The data
recovery methods developed should be able to perform against real world data. Furthermore,
theoretical guidelines should be established to predict the recoverability and select sampling
specifications. We also extend the scope of investigations beyond network data into general

data occurring in other applications.
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Once data is collected, features have to extracted and analyzed. We seek to investigate
different domains for representing data and different data decomposition schemes to extract
features. We extend our investigations into algorithm implementations and evaluations. We
pay a special attention to practical recoverability and thus, attempt to establish empirical
recovery regions for the feature extraction algorithms. We focus on the feature extraction
methods that may be tied to interesting physical features of data. Network data contains a
wide range of features whose interplay reveals interesting behaviors. Moreover, we investigate
methods that can extract features obscure to a human operator.

Another objective of this thesis is to characterize network behaviors. Such character-
izations have applications in efficient provisioning and designing. We seek to investigate
extracting and characterizing interesting behaviors such as baselines and anomalies. These
behaviors are to be modeled so that their properties are well captured and also enable regen-
eration. The ability to regenerate behaviors is imperative for studies. Due to sporadic nature
of most network data, they are not amenable to classical modeling methodologies. There-
fore, new approaches for effectively modeling network behaviors should be investigated. The
models developed should be able to concisely represent behaviors enabling compact storage

and communication of interesting network behaviors.

2.4. SOLUTION APPROACH

In this section we establish the solution approaches to address the research objectives
and goals identified so far. Our approaches are data centric and we pay a special attention
to practical implementation of the solutions. We also try to leverage from the existing

technologies and build upon them. Where no existing methods answer to our requirements,
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we develop new solutions. In all cases we test on real world or realistic data and evaluate
performance of the solutions.

Recently, a wide range of algorithms were introduced that take advantage of data sparsity.
We study and borrow concepts from these developments. Further, as discussed in [8], faults
in the core can be felt by end to end paths going thru the faulty point(s). Therefore we build
on Network Tomography algorithms to localize faults using end to end measurements. This
allows data extraction through access restricted networks. As network sizes grow, solutions
that resolve the entire network would be costly and inefficient. Thus, we research on adaptive
algorithms that use feedbacks to localize faults. The idea behind here is to limit probing
to the area of interest and narrow down the area of interest iteratively - thereby efficiently
localizing faults and limiting the measurement load.

Compressive sensing, matrix completion, and wavelet analysis are some of the concepts
we use for data reconstruction. When a signal has a sparse representation on some known
domain, compressive sensing allows reconstruction of the entire signal from a very small set
of samples [19, 27]. The “signal” in our case is the fault state of all the network elements.
As network faults are uncommon, the signal would be sparse in time and spatial domains.
In the cases of measurements such as those from chemical plumes, the signals are sparse in
domain such as discrete cosine and wavelets. We intend to identify the sparsity domains
for each application and use the appropriate transform to recover signals. As most data
matrices can be closely approximated by a few principal components, nuclear norm based
matrix completion [24] allows estimating matrices from a limited number of samples. Wavelet
compression is widely used for compressing natural images. By applying wavelet compression

distributively over a sensor field can drastically reduce the amount of information that needs
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to be transmitted over the network. This is highly beneficial especially for applications such
as resource limited wireless sensor networks.

We investigate extracting features from data using techniques as feature filters, Fourier
methods and Robust PCA. Network data carry a number of different fields, making them
amenable to convenient feature extraction via different filters. While each feature individ-
ually is interesting, their inter-connection and correlation are also quite interesting as well.
Further, we view these features as distributed in space and time. Thus, we study spatiotem-
poral correlation of features. Fourier methods reveal interesting features of signal that are
repetitive. Many network measurements such as, CPU usage, memory usage, and network
usage show diurnal and weekly patterns. Therefore Fourier methods are can decompose and
extract interesting features in those data. Karhunen-Loeve transform or Principal Compo-
nent Analysis (PCA) is the best known energy compacting scheme. Therefore PCA will
produce the most prominent features of a dataset. However as pointed out in [28] con-
tamination can significantly spoil the identification of principal features. As a remedy, we
investigate the usage of Robust PCA [5, 6]. We establish its recoverability and applicability
to problem of our interest.

Most of the prevalent models do not capture enough information to successfully repro-
duce traffic with similar nature. This issue is especially noticeable with traffic anomalies.
Thus, we propose a new approach for modeling network data. First we decompose data
into physically meaningful components, namely, baseline and anomalies. Then we model
each component separately with appropriate techniques that is best suited to describe each
feature. Baselines are prominent and consistent across the data. Thus, we employ method-

ologies such as PCA and Fourier analysis to describe baseline behaviors. As anomalies are
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sporadic, they are not so amenable to commonly used to random processes. Thus, we in-
troduce a new modeling scheme for anomalies where important properties of anomalies are
modeled separately with common random processes. This leads to a more accurate and a
concise description of anomaly behaviors. We further investigate the ease of communication

and real time application of the extracted behaviors.
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CHAPTER 3

NETWORK MONITORING AND FAULT LOCALIZATION
3.1. INTRODUCTION

This chapter focuses on monitoring computer networks for faults, and upon detection of
faults to localize them. We mainly present two algorithms, one an enhancement of the other,
for this purpose. We also present the evolution of the algorithms that lead to these two. We
begin by reviewing the problem of network monitoring and fault localization and discuss the
state of art. We also review theoretical background leading up the proposed methodologies.
The presented algorithms have two phases. The initial phase monitors the network for faults
with a minimal cost. Then upon detection of presence of faults, they initiate the second phase
to localize the faults. It should be pointed out that we do not assume access to individual
network elements, preventing us from directly verifying a detection. This would be the case
in a realistic network where the access to the entire network may not be available to a single
party. Thus, we device indirect methods to verify a localization and if a localization is not
accurate to generate further measurements to improve the localization. The first complete
network monitoring and fault localization algorithm is presented in Section 3.2. Then a more
improved, noise resilient version is presented in Section 3.3. In Section 3.4, we additionally
present another algorithm to select effective monitoring paths and the evolution of the fault
localization algorithms. The presented algorithms are tested on realistic topologies and with

a few different data models which includes realistic loss and delay models.
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3.2. AN ADAPTIVE COMPRESSIVE SENSING SCHEME FOR NETWORK TOMOGRAPHY

BASED FAULT LOCALIZATION

A scalable network fault localization scheme based on compressive sensing is proposed.
Aimed at large networks, the proposed scheme monitors a network with a few paths covering
the network, and upon detection of anomalies in one or more paths, adaptively carries out
additional end-to-end measurements to localize the faulty links. Each adaptive measurement
covers a set of links identified based on the previous resolution. The scheme is highly scalable
as the total number of measurements required grows logarithmically with the number of links
in the network - a level of scalability not practically achieved for network data inference with
compressive sensing so far. The scheme is tested on realistic Internet topologies with Gilbert-
Elliott loss model calibrated with measurements made on Planet-Lab infrastructure. Results
indicate that the converged solution of the proposed scheme achieves over 99% detection rates
and less than 1% false positive rates. The proposed scalable scheme is accurate in terms of

detection, cost effective in terms of implementation, and casts a minimal monitoring traffic

load.

3.2.1. INTRODUCTION. A number of considerations challenge monitoring and localizing
faults in large networks. As large networks are formed by subnetworks, which often are
managed as separate entities, complete access of the network to a single party may not
exist. Also, the sheer size of networks or even a subnets demands a significant amount of
instrumentation. Thus, schemes such as “Network Tomography” [9] have gained a significant
interest recently. Network tomography techniques probe the network from endpoints and
infer internal performance and QoS characteristics. Schemes of interest to large networks

have to scale well with the network size, with respect to the instrumentation cost, the number
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of measurements or measurement time, and the monitoring traffic load. This dissertation
presents an efficient and a scalable scheme that detects and localizes faulty network links.

Many existing network tomography methods, e.g., [8], impose a tree-like probing scheme
where test packets are injected from a root node and observed at multiple leaf nodes. Based
on the anomaly characteristics established in [8], authors of [10] propose an efficient scheme
to monitor mesh networks and localize anomalies using end-to-end measurements. A frame-
work of three algorithms for monitoring and localizing anomalies in [29] seeks breaches of
network performance guarantees and localizes faults based on the anomalous path measure-
ments. Using second order statistics to characterize and localize lossy links is addressed in
[30]. Based on this work more recent developments such as Netscope[31] and LIABLI[32]
have emerged. Many loss tomography methods also rely on tree probing structures [33-35].
Network delay tomography over tree structures is addressed in [36]. Usage of passive probing
techniques as well as active techniques for loss tomography is addressed in [37]. A key issue
in network tomography involves setting or finding the routes for the measurements. Possible
path selection strategies include OSPF paths, and use of pre-configured MPLS [38]. However,
when the exact path cannot be found, routing matrices can be inferred using non-negative
matrix factorization [39, 40].

The concept of “Compressive Sensing” [20, 19, 27] sheds new light to the network tomog-
raphy domain. Compressive Sensing (CS) provides a mathematical foundation to retrieve
a sparse solution to an under-determined linear system, from a logarithmic fraction of re-
alizations. Considering that in most production networks today, anomalies occurring at a
given time are on a small set of links, the idea of sparse solutions is highly attractive. How-
ever, satisfying CS requirements in a network setup is quite challenging as highlighted in

[1, 41]. In spite of such theoretical challenges, [42] demonstrates the use of CS for network
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tomography. However, CS based methods tested on networks have achieved only a limited
amount of savings (in the order of 50%) [1]. As pointed out in [43], resource restrictions in
the measurement systems cause CS based recoveries to fail. Using an insufficient number of
measurements and the measurements not satisfying recovery conditions are some examples
that cause CS to fail in the network monitoring domain. An adaptive scheme is proposed in
[43] as a remedy for scenarios that lack resources for CS. Practical adaptive CS algorithms
are currently used in areas such as radar and image processing. However they are not readily
applicable in the networking domain.

The contribution of this work is an adaptive compressive sensing scheme for network
tomography based fault localization requiring far fewer tomographic measurements than
state-of-the-art [1]. The number of measurements scales logarithmically with the number
of links, therefore it requires much less instrumentation, especially in large networks. Fur-
thermore, the proposed scheme casts a significantly less monitoring traffic load on to the

network.

3.2.2. BACKGROUND. Efficiency of the proposed scheme is due to the use of compressive
sensing (CS). If a signal is sparse, i.e., it contains only a few non-zero elements in a known
domain, CS can recover the signal with far fewer samples of the signal than the number of
elements. In fact, compressive sensing literature [19, 18] states that the number of samples
required for successful reconstruction of the signal is a logarithmic fraction of the signal
length. If the signal has n elements, k of which are non-zero, the signal can be reconstructed
with m samples where m = O (klog (n/k)). Internet traffic anomalies typically affect only
a small fraction of network elements [7]. Thus, we seek to exploit this similarity between

network anomalies and sparse signals to efficiently monitor for and localize network faults.
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For a network with n links, of which k are anomalous, a successful implementation of CS is
expected to localize the faulty links with m = O (klog (n/k)) samples.
Signal recovery via CS can be formulated as follows. Consider a linear system consisting

of a matrix A € R™*" a vector x € R™*!, and a vector p € R™*!:

Ax (3.1)

I
i

Here A is referred to as the measurement matrix, while z is the unknown but sparse
signal and p contains the compressive measurements. In a network tomography setup, A
indicates the routes for each of the tomographic measurements, = represents the unknown
QoS values of each link, and p contains the cumulative QoS values over each measurement
path. The case of interest to us is when m < n, i.e., when the system given by (3.1) is highly
under-determined. CS literature shows that when matrix A satisfies certain conditions such
as Restricted Isometry Property [19, 27|, the solution to sparse z is unique, and that it can be
found by solving for minimum ||z||¢ (Lo norm) solution, i.e., the solution with the minimum
number of non-zero elements. CS literature recommends using L; norm minimization since
Ly minimization is intractable. The mathematically tractable L; norm minimization achieves
the Lo norm minimum solution with a very high probability for sparse signals z, when A is
well conditioned.

Random matrices have been shown to be good candidates for A [21]. But realizing random
measurements matrices is difficult in networks. The construction of binary matrices that are
good measurement matrices is addressed in [44]. Exploiting the fact that routing matrices
are binary, [42] connects compressive sensing to network tomography and demonstrates that
the recovery conditions in [44] can be met in network setups when the networks have only

one faulty link. However, results presented in [1, 41] do not hold with the logarithmic factor
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m = O (klog (n/k)) for general CS recovery in network setups. Further, the recovery bounds
of existing CS methods rely on the knowledge of the signal, such as sparsity. However, such
knowledge is not available in reality. A practical recovery algorithm has to depend only on
the information provided by the measurements themselves.

CS recovery is vulnerable to many factors including noise, poor measurement matrix
A, dense x, etc. As discussed in [43] a possible remedy for such scenarios is an adaptive
approach. An adaptive scheme takes into account the problem at hand and even partial
knowledge obtained in the process to drive the solution, rather than seeking a solution to
a general class of problems. When a network contains a fault, the requirement is only to
localize that particular fault. However, adaptive signal recovery via compressive sensing on a
network setup has not been addressed in literature as of now. The practical scheme proposed
in this dissertation adaptively applies compressive sensing to localize faulty links and only

uses knowledge provided by the measurements themselves to determine the convergence.

3.2.3. NETWORK MONITORING AND FAULT LOCALIZATION. We refer the linear system
(3.1) as the “measurement set.” The measurement value of path i is the i*! element of the
vector p. The i*® row of A indicates the number of times path i goes through each link. If
path ¢ goes through link j once, a;; - the element on row ¢ column j of A - is set to one, if
path goes through the link twice, a;; is set to two, and so on. If path ¢ does not go through
link j , a;; is zero. This representation can be used for any additive network QoS parameter,
such as link delays [36, 45|, log of packet transmission rates [30-32], and packet losses [33].
The proposed scheme is of two phases. The first phase monitors the network for presence
of a fault. Upon detection of a fault, the second phase for localizing the faulty network

elements is initiated.
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3.2.3.1. Monitoring Phase. The network is monitored with a few tomographic monitoring
path measurements. Monitoring measurements can be implemented with random walks [1] or
more strategically as discussed in Section 3.4.1. These measurements cover all the network
links and form the initial set of measurements. Coverage of all the links is required to
guarantee the detection and subsequent localization of a fault on any of the links. Though
the monitoring measurements may not be sufficient to localize a fault, they are indicative
of when an anomaly is present. During the monitoring phase, the path measurement vector
p is inspected for significant deviations. If a path measurement does not exceed a certain
threshold, none of the links on the path are in error. A significant deviation in p indicates
that the network contains one or more faults that affect the end-to-end network performance.
In such cases the adaptive fault localization phase discussed below is initiated.

3.2.3.2. Adaptive Fault Localization Phase. The monitoring path measurements are merely
indicative of a presence of an anomaly and in general insufficient to localize faults. The
scheme discussed here adaptively carries out further path measurements to localize the faults.

It follows the algorithm in Fig. 3.1 whose steps can be summarized as follows:

(1) Reduce measurement set to Ausy = pq

(2) Solve system of reduced measurements

(3) Check for convergence, and if converged exit

(4) Find link set f for additional adaptive measurements
(5) Collect additional adaptive measurements

(6) Append measurements to the measurement set and repeat the procedure from step 1

Reducing the measurement set: Let set a indicate the subset of paths that have anomalous
readings. Then construct a vector p, by selecting elements on a from p. In addition, build

a sub-matrix A, by selecting rows of A that correspond to a. Figure 3.2a illustrates this
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FI1GURE 3.2. Reducing the measurement set. Anomalous path measurements
are indicated by a shaded cell.

step. As shown, entries of p corresponding to paths 2, 4 and 5 are anomalous. Thus, set
a=1{2,4,5}. Then A, is built with rows 2, 4 and 5 of A. Once the set of rows is reduced, a
new set s is built with the columns of A, that have at least one non-zero element. Then by
selecting the columns on s from A,, the reduced matrix A, is built. This is illustrated in
Fig. 3.2b. As shown, columns 3 and 6 of A, are all zero, in Fig. 3.2b. Thus, s = {1,2,4,5}.
Then the reduced A, is built with columns 1,2,4, and 5 of A,.

Solving the reduced measurement set: The reduced measurement set contains the anoma-
lous path measurements and the links those paths go through. The goal in solving this linear
system is to recognize the exact links that caused the path measurements to be anomalous.

The reduced measurement set can be expressed as a linear system:

AgsTs = Pa (3.2)
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where z, is the vector of unknown link QoS values of links in s. The reduced measurement
set (3.2) is extremely likely to be an under-determined set of equations, especially for large
networks monitored with a few tomographic measurements. We seek a solution that explains
the path anomalies with a minimal number of faulty links. Thus, we solve the following CS

problem as discussed in Section 3.2.2.

minimize||z,|o such that A,szs = pg (3.3)

where, || - [|o is the Ly norm. In a traditional CS implementation, the process exits at this
point. The faulty links are indicated by the non-zero elements in x,. As measurement
matrices for networks are unlikely to satisfy properties required by traditional CS, leading
to solutions that does not indicate faulty links, we employ an adaptive approach.

Unlike the existing adaptive sensing methods where the entire measurement matrix is
rebuilt [43] or where the measurement matrices are impossible to be realized on networks, the
proposed adaptive approach appends additional measurements to the measurement set and
iteratively solves until convergence. In each iteration, (3.3) is solved as a || - ||; minimization.
Though publicly available solvers such as L1 magic [46] can be used, we developed a solver
based on Doughlas-Rachford iterations [47] for stability. Should one seek to solve || - ||o
minimization without the || - ||; relaxation, a number of algorithms such as the class of
matching pursuit algorithms [48] can be used. It should be noted that the solution delivered
from L, minimization may not necessarily be the sparsest solution we desire. Further, the
solutions may require post-processing. For instance, if link delays were used, they are non-
negative. On the other hand, if log of packet loss rates were used, they are non-positive.

Thus, any out of range entries in the solution including other invalid entries such as NaNs
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(Not a Number) have to be removed via post-processing. The solution is then analyzed for
convergence.

Convergence: Since individual link measurements are not available, a convergence criteria
to terminate the iterations using only the available path measurements need to be found.
Here we present three conditions which guarantee an accurate, minimal, and a unique fault
localization using only the path measurements. Violation of any of the three conditions
implies an un-converged solution, and therefore continuation with additional measurements.

The first condition is the “accuracy.” Since the solution obtained for (3.3) is subjected
to post-processing, it may no longer satisfy (3.2) closely. If the processed solution deviates
from the path measurements by some preset threshold €, the accuracy condition is considered

violated.

| Az —p|| > ¢ (3.4)

The second condition is the minimality. It implies that the solution cannot be further
reduced to fewer links, i.e., every link marked as faulty is needed to describe the anomalies
observed at path level. For this, a set h is formed with the indices of the non-zero entries of
the solution. Then a sub-matrix A, is formed by selecting columns corresponding to h from
Agn. If the solution can be further reduced, then a linear dependence between the links in
h and the corresponding columns A, should exist. Therefore, if A, is rank deficient, the

minimality condition is considered to be violated.

rank (Agp) < min (|hl,|al) (3.5)

The third condition is uniqueness. This condition prevents alternative solutions. A set

h¢ which is the complement of set h is formed first. By selecting columns of A, on k¢ a
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sub-matrix A,,c is then formed. Let set J indicate the zero entries in the inner product
(Aan, Agne). Elements in J correspond to possible alternative links that may have caused the

same path anomalies. Thus, a non-empty J indicates a violation of the uniqueness condition.

[ >0 (3.6)

If none of the above violations (3.4), (3.5), and (3.6), occur, then set h contains the
minimal set of faulty links and the fault localization scheme terminates. Otherwise, the
process continues through the next steps.

Selecting additional adaptive measurements (AAMs): If convergence was not achieved,
further path measurements are made. Termed as additional adaptive measurements (AAMs),
these measurements are designed to remove any ambiguities and converge to the actual
solution. Two requirements are sought in the links selected for adaptive measurements: (1)
selected links break linear dependences between faulty links indicated in the solution, and
(2) selected links include possible alternatives links which are not identified as faulty in the
solution. These requirements are achieved by selecting a random subset of links f from
h and the links that correspond to zeros in the inner product (Agu, Ague). Then a path
measurement is made to cover links in f.

Carry out AAMs: The goal here is to make AAMs that will route measurement packets
through the links in f. It is to be noted that an AAM is not required to cover only or all
the links in f. A path measurement may contain other links and even may skip some of
the selected links due to routing limitations. If the path measurement did not achieve the
anticipated coverage, and as a result convergence was not reached, the next iteration will

account for the deficiencies.
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Appending the measurement set: Each additional adaptive measurement is appended to
the measurement set Ar = p. Each new AAM adds a new row to A corresponding to
the path and the measurement value adds a new entry to p. If the new AAM value is ¢,
then the current path values vector p is updated as p = [qu}T. Similarly, the new route
indicated by row r is appended to measurement matrix A as A = [ATTT}. Then adaptive

fault localization scheme is repeated on the updated measurement set.

3.2.4. EXPERIMENTS.

3.2.4.1. Ezperimental Setup. The proposed adaptive compressive sensing based fault lo-
calization algorithm is tested via the simulation setup described here and details can also be
found in Section 3.4.1. Realistic network topologies are generated using the IGen topology
generator [49] simulating backbone networks on one continent, connected using Delaunay
triangulation. The link faults are simulated with Gilbert-Elliott model [50] which uses a
two state Markov chain. This model emulates bursty packet losses prevalent in the Inter-
net, using a faulty state where packets are continually dropped and a no-faults state where
no packets are dropped. To obtain realistic parameters, we made measurements on the
Planet-Lab infrastructure [51] for link losses and tuned the fault model. The Planet-Lab
measurements suggested a probability of 1/ (1.5 x 10°%) to transition to faulty state and a
probability of 0.05 to transition to no-faults state. Each measurement consisted of 1000
packets transmitted over a path. Measurement packets are generated at a network probing
device attached to a network node, and the measurement path terminates again at a probing
device which retrieves test packet information. All the simulated networks are assumed to be
monitored by 10% of nodes with attached probes scattered across the network. However, it
was noticed that the number of probes used has little impact on performance, long as more

than 10 probes are used. A random set of paths initiating and terminating at probes that
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cover the network are selected for network monitoring. For AAMs, two probes closest to the
set of links f are selected and source routing measurement are made between the two probes
over path that includes the links on f. Path measurement vector p contains the log of path
pass rates. Pass rate is (1 - loss rate). Pass rate of a path j denoted by d; is the product of
pass rate of all links on the path. This formulation is similar to the previous work [31, 32].

If the loss rate of a link ¢ which is a member of path j is r; then
a=TJa-r) (3.7)

i

pj =logd; = log(1—r) (3.8)

The performance is analyzed with two parameters: detection rate (DR) and false positive
rate (FPR). Links that have a loss rate over 5% are treated as faulty. Let the set of links

that actually are faulty be T" and the set of links the scheme identified as faulty be S, then

T
pr = LS 100% (3.9)
|T|
T C
FPR — % X 100% (3.10)

3.2.5. REsSULTS. The main goal of the proposed scheme is to monitor and localize faults
in large networks with a small number of measurements. Further, the measurements required
were expected to scale slowly with the network size. The accuracy of detection is also of
significant interest. The results presented below answers these concerns.

Figure 3.3 shows the number of measurements needed for a range of network sizes. As
can be noted, the total number of measurements needed is significantly less than the number

of links in the network. Notably, only a few additional measurements were required for at
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all network sizes to successfully localize the faulty links. This demonstrates the credibility of
the criteria used to specify additional adaptive measurements, and also the ability to rapidly

localize faults.
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FI1GURE 3.3. Measurement cost vs. network size. Each column corresponds
to a certain network size. The average number of links and the number of
nodes (within paranthesis) for each size is shown.

Next, we demonstrate the scalability of required number of measurements with the net-
work size. As of now, there is no evidence that traditional compressive sensing approach on
networks has practically achieved logarithmic scaling of number of network measurements
with links. But as the results in Fig. 3.4 show, the required total number of measurements for
successful localization of faults increases logarithmically with the number of links in the net-
work for the proposed scheme. This result supports the scalability of the proposed scheme.
Since the cost of instrumentation increases with number of measurements, the scheme can
be implemented with less instrumentation, the scheme is cost effective.

As illustrated in Fig. 3.5 the proposed scheme achieves a very high detection rate and
a very low false positive rate for the range of network sizes using the realistic loss model.

The detection rate is consistently over 99.0% and the false positive rate is consistently below
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1.0% for all the network sizes tested. This demonstrates the credibility of the conditions used
for convergence test. If the network is instrumented so that link level measurements can be

made for verification, detection rate achieves 100% and false positives drop to 0%. Finally
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F1GURE 3.5. Fault localization performance.

we provide a comparison against a standard compressive sensing over graphs implementation

in Fig. 3.6. Here we apply the proposed scheme to bidirectional complete networks similar to
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those used in [1] and then compare the number of measurements required for the proposed
scheme against the 50% measurement savings claimed [1]. We note that detection and
false positive rates of both schemes are same. As can be observed the proposed adaptive

compressive sensing scheme for network fault localization provides tremendous measurement

savings.
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F1GURE 3.6. Comparison of proposed adaptive CS method against standard
CS implementation [1].

3.2.6. CONCLUSIONS. An adaptive compressive sensing scheme for network tomography
based fault localization was proposed. It achieves a very high detection rate and a very
low false positive rate with a number of measurements that scales logarithmically with the
number of links in the network. Experiments on realistic internet topologies with 100 links
to 5000 links show the total number of measurements required scaled logarithmically - a
level of scalability that has not been demonstrated so far for network tomography. Further,
the proposed three conditions for convergence and the two criteria for selecting the links
for additional adaptive measurements, lead to a fault localization with a minimal number
of additional measurements and assures a rapid localization process. Thus, the proposed
scheme is efficient for monitoring and localizing faulty links of large networks in terms of

accuracy, speed, instrumentation cost, and measurement traffic load.
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3.3. ADAPTIVE COMPRESSIVE SENSING FOR NETWORK FAULT LOCALIZATION

A scalable technique that localizes network faults efficiently in large networks while im-
posing a minimal overhead is proposed. The scheme monitors the network of interest with
minimal end-to-end monitoring measurements, and upon detection of a fault, initiates an
adaptive fault localization process. An adaptive compressive sensing method that employs
practically available information to guide localization measurements, is developed for fault
localization. The algorithm indicates measurements that lead to an accurate, minimal and
a unique solution which rapidly converge on to the faulty links. The scheme requires only a
limited number of instrumentations sitting at the edge of the network and does not require
access to the internals of the network. The proposed scheme is tested on simulated realistic
Internet topologies with a number of different data models including realistic loss and delay
models, to evaluate performance and cost. Results show a very high detection rate and a
very low false positives rate for all data models tested. Results also indicate that the total
number of measurements required grows nearly logarithmically with the network size. This

is a scalability that is unachieved so far in literature.

3.3.1. INTRODUCTION. Effective, reliable and economical network monitoring schemes,
especially those targeted at large networks, are increasingly in demand. As instrumenting
and monitoring each network node and/or link individually is costly and impractical in large
networks, efficient approaches such as network tomography [9] are of significant interest.
Network tomography estimates internal network parameters with a few end to end measure-
ments. An efficient monitoring and fault localization system should scale well with respect
to the links and nodes in the network, in terms of the number of measurement equipment

and the amount of test traffic imposed on the network while guaranteeing a high quality of
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monitoring. As the network size grows, restricting the escalation of equipment and test traf-
fic is crucial to prevent the growth of cost of monitoring. To guarantee quality of monitoring
with fewer resources requires efficient and reliable techniques. With products such as JDSU
PacketPortal TM [52] and SFProbeTM [53] which allows for filtering of packets, identifying
and reporting header associated values such as timestamps, a novel class of monitoring and
fault localization techniques for networks has become feasible. In this section, we present
a technique for efficiently localize network faults. The presented scalable scheme requires
only a very limited number of network nodes to be instrumented with monitoring probes
and casts a low monitoring and fault localization traffic on to the network.

A brief review of closely related work is provided next. Many existing work on network
tomography proposes a tree-like probing scheme where test packets are injected from a root
node and observed at multiple leaf nodes. A few algorithms with plausible performance for
localizing faulty links from path measurements for tree networks appear in [8]. Based on
the anomaly characteristics established in [8], authors of [10] propose an efficient scheme
to monitor mesh networks and localize anomalies using end-to-end path measurements. A
framework of three algorithms for monitoring and localizing anomalies is presented in [29].
They seek breaches of network performance guarantees while achieving a good coverage of
the network. When such a breach is detected, the anomalous network elements are localized
using an elimination algorithm based on the anomalous path measurements. Locating links
with excessive losses and delays using network tomography based methods stands out in the
literature. Using second order statistics to characterize loss behaviors of links and locating
faulty links is addressed in [30]. This work has provided the base for more recent develop-
ments such as Netscope [31] and LIABLI [32]. Similar to other network tomography schemes,

many loss tomography methods also rely on tree probing structures [33-35]. Network delay
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tomography over tree structures is addressed in [36]. Usage of passive probing techniques
as well as active techniques for loss tomography is addressed in [37]. An active probing
scheme called Flexicast is used for delay tomography in [45]. Another common approach for
general network tomography is using network coding. Loss tomography via network coding
is proposed in [54]. A key issue in network tomography is either setting or learning the
routes of the tomographic measurements. As reviewed in [38], among the possible solutions
are periodically downloading and calculating OSPF paths, and use of pre-configured MPLS
paths. However, when the exact path cannot be learned, routing matrices can be inferred
using non-negative matrix factorization [39, 40].

The concept of “Compressive Sensing” [55, 20, 27, 17] facilitates novel techniques for net-
work tomography. Compressive Sensing (CS) provides a mathematical foundation to retrieve
a sparse solution to an under-determined linear system. Considering that in most produc-
tion networks today the anomalies affect only a small fraction of elements at a given time,
the idea of sparse solutions seems highly attractive. However, satisfying CS requirements
in a network setup is quite challenging as highlighted in [1, 41]. In spite of the theoretical
challenges, [42] proposes the use of CS for network tomography. They demonstrate that
expander graph based recovery guarantees of CS can be achieved with routing matrices of
a network tomography setup. More theoretical bounds are derived in [1] and [41] which
are further reinforced by simulated examples. Despite the significant literature on efficient
network monitoring techniques, there is a significant gap between the desired performance
and the theoretical achievements. Much of the earlier work relies on tree-based probing,
which either does not provide sufficient coverage or is costly to provide a complete coverage
for mesh topologies. Also, most work is limited to binary faults. Approaches such as in [1]

tested on more realistic QoS parameters on mesh networks have achieved only a limited
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amount of savings (in the order of 50%). As pointed out in [43], resource restrictions in
the measurement systems cause CS based recoveries to fail. Adaptive schemes are a remedy
proposed for these scenarios. In some of the earlier work, an iterative focusing algorithm that
adaptively collects measurements and retains only a subset of the estimates at each iteration
is used [43]. Among the more recent developments of adaptive CS algorithms, [56] proposes
LASeR (Learning Adaptive Sensing Representation) - an adaptive algorithm to solve convex
optimization problems for CS when coefficients exhibit a tree structure in some orthonormal
dictionary. The existing adaptive CS algorithms, which have been developed for applications
such as radar, image processing, are not readily applicable in the networking domain.

The focus of this section is the development of an adaptive compressive sensing algorithms
targeted for network monitoring. A preliminary but a different version of the proposed
scheme is presented in the companion paper [13]. The proposed scheme monitors the network
with a minimal number of end-to-end measurements for faults and upon detection of a fault,
initiates an adaptive fault localization algorithm to localize the faulty links that uses a few
additional end-to-end measurements. The total number of measurements required by the
scheme grows logarithmically with the number of links in the network. Therefore the scheme
is highly scalable and very cost effective for large networks. Furthermore, the results show
a high detection rate and a low false positives rate for a number of different data models
including realistic loss and delay models, on realistic Internet-like topologies. The remainder
of the section is arranged as follows. Section 3.3.2 reviews some preliminaries required for the
context of the section. The analytical foundation of the proposed work is laid in Section 3.3.3.
The proposed network monitoring and fault localization scheme is presented in Section 3.3.4.
Section 3.3.5 discusses the experimental setup and Section 3.3.6 presents the results of the

experiments carried out. Finally, Section 3.3.7 makes the concluding remarks.
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3.3.2. PRELIMINARIES. We begin by reviewing a few related technical concepts, to ease
the conversation forth. First we lay down the taxonomy and then review compressive sensing
and fixed sparse signal recovery, as they form the base for the proposed scheme.

3.3.2.1. Tazonomy. The following notation is used throughout the section. Scalars are
indicated with non-bold italic lower-case characters; for example: . While vectors and sets
are indicated with bold italic lower-case characters as in @, matrices are indicated with bold
italic upper-case characters as in X. When sub-sets or sub-matrices are formed, a subscript
representing the index set is attached to these symbols; for example: X,.

If a certain sparse vector  has k non-zero elements whose locations are listed in a set
s, k is referred to as the sparsity of x, and s is referred to as the support of . In signal
processing, similarity between two vectors & and vy if often quantified with coherence yielded
from their inner product (z,y) = x’y. Let A be a matrix of n columns, and a; and
a; denote the i"" and j™ columns. Then worst case coherence of A = min, ; <aiT,aj> for
1,5 =1,...,nand i # j. It should be noted that, if the matrix or vectors are strictly binary,
Hamming distance can be used in place of the inner product. Two norms occur frequently
in this section: Ly norm and L; norm. The L; norm of a vector or a matrix X, denoted
by || X1, is the sum of absolute values of the entries of X. The Ly norm of X, denoted by
| X |0, is the number of non-zero elements (also called active elements) in X.

The presented work revolves around network faults. Network faults are significant de-
viations of QoS (Quality of Service) parameters of the network. We use the symbol & to
denote the strength of a faulty QoS sample, and it is expressed as a factor of the range of
the acceptable QoS values. If v is the maximum acceptable value for a certain QoS param-
eter, and if a certain faulty sample had a value of (, then £ = (/7. When convenient, £ is

expressed in dBs.
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Certain QoS parameters are additive over network paths. For example, delay over a
network path is the sum of the delays of individual links of the path. If the packet loss rate
is denoted by is r, the log of the pass rate, log (1 —r), is also an additive QoS parameter. We
refer to such path QoS values as tomographic end-to-end path values. A significant deviation
of a link QoS value will cause a significant deviation of the tomographic end-to-end path
value, which sets the premise of the proposed network monitoring and fault localization
scheme.

3.3.2.2. Compressive Sensing. Efficiency of the proposed scheme is due to the use of
compressive sensing (CS). If a signal is sparse, i.e., it contains only a few non-zero elements
in a known domain such as time, space, frequency, wavelet, etc., CS can recover the signal
with far fewer samples of the signal than the number of elements. In fact, compressive
sensing literature [19, 20, 27, 17, 18] states that the number of samples required for successful
reconstruction of the signal is a logarithmic fraction of the signal length. If the signal has
n elements, k of which are non-zero, the signal can be reconstructed with m samples where
m = O (klog(n/k)). Internet traffic anomalies typically affect only a small fraction of
network elements at a given time [7]. Thus, we seek to exploit this similarity between
network anomalies and sparse signals to efficiently monitor for and localize network faults.
For a network with n links, of which £ are anomalous, a successful implementation of CS is
expected to localize the faulty links with m = O (klog (n/k)) samples. Though this target
is not yet practically achieved in literature.

Signal recovery via CS can be formulated as follows. Consider a linear system consisting

of a matrix A € R™ " a vector & € R™ ! and a vector p € R™*!

Az =p (3.11)
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Here A is referred to as the measurement matrix, while & is the unknown but sparse signal
and p contains the compressive measurements. In a network tomography setup, A indicates
the routes for each of the tomographic measurements, @ represents the unknown QoS values
of each link, and p contains the cumulative QoS values over each measurement path. The
case of interest to us is when m < n, i.e., when a network of many elements is monitored
with a few measurements. Notably, the system given by (3.11) is highly under-determined
when m < n, thus, no unique solution is available. CS literature shows that when matrix A
satisfies certain conditions such as Restricted Isometry Property (RIP) [19, 27], the solution
to sparse « is unique, and that it can be found by solving for minimum |||y (Lo norm)
solution, i.e., the solution with the minimum number of non-zero elements. CS literature
recommends solving (3.11) as a L; norm minimization since Ly minimization is intractable.
The mathematically tractable L; norm minimization achieves the Ly norm minimum solution

with a very high probability for sparse signals &, when A is well conditioned as in RIP

(1 =)zl < [[Az[ls < (1 + 9)[|].2 (3.12)

where the constant § is called the Restricted Isometry Constant (RIC).

Random matrices have been shown to be good candidates for A [21]. But realizing
random measurements matrices as routing matrices in networks is impractical. Work such
as in [57] discusses the construction of deterministic matrices which have good recoverability
in CS. The construction of binary matrices that are good measurement matrices is addressed
in [44]. Exploiting the fact that routing matrices are binary, [42] connects compressive
sensing to network tomography and demonstrates that the recovery conditions in [44] can
be met in network setups when the networks have only one faulty link. However, results

for CS implementations on networks such as those presented in [1] and [41] do not hold
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with the logarithmic factor m = O (klog(n/k)) for general CS recovery in realistic network
setups. Further, the recovery bounds of existing CS methods rely on prior knowledge of the
signal, such as sparsity. However, such prior knowledge is not available in reality. Therefore
the existing bounds cannot be used to build a practical CS implementation for network
monitoring. A practical detection algorithm has to depend only on the information provided
by the measurements themselves.

CS recovery is vulnerable to many factors including noise, poor measurement matrix A,
dense x, etc. As discussed in [43] a possible remedy for such scenarios is to use an adaptive
approach. Based on the idea of adaptive compressive sensing, a number of extensions are
stemmed, such as LASeR (Learning Adaptive Sensing Representation) [56] an adaptive algo-
rithm to solve convex optimization problems for CS when coefficients exhibit a tree structure
in some orthonormal dictionary. An adaptive scheme seeks to solve the problem at hand
using partial knowledge obtained in the process, rather than solving a general class of prob-
lems. When a network contains a fault, the requirement is only to localize that particular
fault. However, adaptive signal recovery via compressive sensing on a network setup has not
been addressed in literature as of now. The practical scheme proposed in this section adap-
tively applies compressive sensing to localize faulty links and only uses knowledge provided
by the measurements themselves to determine the convergence.

3.3.2.3. Recovery of Fixed Sparse Signals. As noted above, if the scheme is adaptive,
conditions to recover a general sparse signal are not necessary to meet. As mentioned earlier
when a network contains a fault, it is only required to localize that particular fault. Recovery
of fixed sparse signals is discussed in [58, 59]. The following theorem is initially proposed
in [58] and then is generalized in [59]. A comprehensive review of the theorem can be found

in [21]. A signal & with support s can be successfully recovered via Compressive Sensing
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when the measurement matrix A satisfies

|(Ata;,sgn(z,))| < 1Vi ¢ s (3.13)

where A7 is the pseudo-inverse of the sub-matrix of columns of A over s, a; is the i*" columns
of A, x, is the vector of elements of & over s, and sgn(-) is the signum function. The proof
can be found in [58, 21, 59]. As can be noted, this optimality condition depends on a priori
knowledge of the signal’s support. If the knowledge of signal sparsity is in fact available,
the system equation (3.11) can be constructed to satisfy the above theorem. However, such
knowledge is not available in practice.

Using an adaptive scheme to resolve a fixed sparse signal, as we do in this section, has
not been discussed yet in literature. Further, as shown above, recovery bounds of exist-
ing methods rely on prior knowledge of the signal. The scheme proposed in this section
adaptively applies compressive sensing to localize faulty links and use only the knowledge
provided by the measurements and the solver to determine the convergence. Thus, it relies

only on practically available information, not practically unavailable prior knowledge.

3.3.3. ANALYTICAL FOUNDATION. The proposed scheme localizes faulty links from path
measurements. For this we need to develop an understanding of how faults affect network
paths. The path measurements are resolved using compressive sensing, but with a novel
adaptive approach which uses existing knowledge to converge on the solution. This section
discusses the underlying concepts of the proposed scheme.

3.3.3.1. Sum of Random Variables and Faults. Network link QoS values can be treated
as random variables. We are interested in QoS values which are additive over network

paths. Sum of two random variables is obtained by the convolution between the two. By
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Central Limit Theorem, it is known that the sum of many (typically greater than 30) random
variables approximates to a Gaussian distribution centered around the sum of the means of
the individual random variable with a variance which is the sum of the variances of the
individual random variables. In other words, with a 68% probability the path measurements
would lie within one standard deviation around the sum of the means of link QoS values,
and with a 95% probability within two standard deviations and with a 99.7% probability
within three standard deviations. More precisely with a probability of erf (n / \/5), the path
measurements would lie within n standard deviations around the sum of the means of link
QoS values.

When a path measurement contains a faulty link measurement, the path measurement
will significantly deviate from the expected range. However, it should be noted that the
variance of longer paths is high and therefore the deviation caused by a link fault may lie
within the non-faulty range of path measurements. For a fault on a path of h links to make
a deviation beyond n standard deviations, the path length should satisfy

h< <<_7)2 (3.14)

no;

where ( is the magnitude of the fault, v is the maximum non-faulty link QoS value and o
is the standard deviation of link level QoS parameter. The derivation is found in Appen-
dix 3.3.8. This result provides a rule for limiting monitoring path length. For the simple
random data model discussed later in Section 3.3.5, the limit on the path length is simplified
to 12(¢ — 1)?/n?. This quantity is derived in Appendix 3.3.9.

When measurements are beyond a certain threshold they are considered anomalous.
Based on the desired detection rate and false positive rate, a threshold can be found more

precisely as follows. Let 8 = ¢ — u;, where p; is the mean of link level QoS parameter, and
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« denotes the threshold. Then the distribution of path level QoS values with and without

faults can be described as shown in Fig. 3.7. The detection and false positive rates are

Detection rate = ( 1 + erf 2 3.15

(e (Sr))/ 1)

False positives rate = (1 + erf <L2)) /2 (3.16)
o

where o is the path level standard deviation. Derivations of these quantities are discussed in
Appendix 3.3.10. An ROC (Receiver Operating Characteristic) curve for the above is shown
in Fig. 3.8, which enables selecting a suitable threshold to obtain a desired performance in

detecting faults of an interested magnitude.

v

FIGURE 3.7. Distribution of path level QoS values with (red) and without
(green) a fault. Mean of the no-fault path measurements is indicated by pu.

3.3.3.2. Criteria Indicating a Correct Fault Localization. Compressive Sensing solves the
system equation (3.11) as a minimization of L; norm. The proposed fault localization scheme
iteratively appends adaptive measurements to (3.11) and solves until a correct localization
is achieved. Here we develop the criteria that indicate a correct localization. Notably, these
criteria depend only on the available information, unlike the prevalent CS methods.

We first study an example where CS L; minimization does not yield the sparsest solution

we seek. Let us consider the following scenario illustrated in Fig. 3.9. It has multiple possible
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Ficure 3.8. ROC for different fault magnitudes and thresholds. Deviation
caused by faults f = no, where o is the path level standard deviation.

L; minimum solutions, to name a few: (1) o =1, 23 =24 =0 (2) 22 =0, 3 = 24, = 0.5 and
(3) 22 = 0.5, 3 = x4 = 0.25. While ||z||; of all these three solutions is 1.0, ||x||o is 1.0, 2.0
and 3.0 respectively. Though the first solution is the sparsest, an L; minimization cannot
guarantee to produce the sparsest, as it cannot distinguish the sparsest solution from the
other possibilities long as they all have the minimum L; norm. Quite possibly, the solver

would produce the least squares solution, i.e., x9 = x3 = x4 = 1/3 in this case.

A X p
1 P 3 4 5
0 1
1 2 X 1 2
1 2 X3 = 1 3
% 0 4

FIGURE 3.9. An example system having multiple L; minimum solutions, but
has a unique Ly minimum solution.
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Thus, we need one or more criteria that indicate when the solver produces a less than
acceptable answer. If the solution is unacceptable, by making additional measurements
the ambiguities can be resolved. When the solution satisfies the criteria, no additional
measurements will be needed and resolution can terminate. We identified three criteria
which indicate when the solver produces an acceptable parsimonious solution. In fact, as
discussed in the next subsection, these criteria even guide additional measurements.

When the proposed adaptive scheme achieves a correct localization, the solution had the
following properties: (1) it was stable - meaning, the solution does not change with further
measurements, (2) it was minimal - meaning, the solution cannot be further reduced, i.e.,
it had no redundancies, and (3) it was unique - meaning, there are no alternative solutions.
Further, these three criteria are testable using available knowledge. Thus, they are very
practical to implement.

The first criterion - stability - is assessed by keeping track of the support of the solution
produced by the solver. When the solution does not show any churn between iterations,
the solution is said to be stable. The second criterion is minimality. Let the support of an
intermediate solution be h. Since elements outside h are redundant, the system (3.11) can

be expressed as

Ax =p= Az (3.17)

where Ay, is a submatrix formed with the columns of A on h, and xj, is vector formed with
elements of  on h. If h can further be reduced to g, then Apxp = Agxy where |h| > |g|.
That implies rank (Ap) < rank (A,) < |h|. But if k is minimal, then rank (Ap) = |h|. The
final criterion is uniqueness. Here we seek for elements in the complementary set of h, called
h¢ that can replace elements in h. We take a geometric approach for this. First we build an

projector I — Ay, (A:,CAh)_1 Al and then project columns of A corresponding to h¢. This
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projector projects vectors to the perpendicular space of the solution h. Should a vector
vanishes completely when projected that vector lies on the subspace of the solution and the
link it correspond to can be an alternative to some of the links in the current solution. If
none of the columns of A corresponding to h® vanish when projected, then the solution is
unique. We will illustrate implementation of these criteria in Section 3.3.4.

3.3.3.3. Adaptive Measurements. For an efficient localization involving a minimal number
of additional measurements, the most effective adaptive measurements have to be made. We
deduce two rules based on the termination criteria discussed earlier. The first rule is to
improve minimality of non-minimal solutions. If two links are visited by the same set of
measurements, and if one of them has a fault, it would be difficult to pin point which
link actually contained the fault. The L; solvers are likely to indicate both links as faulty.
Columns of A corresponding to such columns have a high coherence value. An adaptive
measurement has to decrease the coherence between the columns of A corresponding to the
support of the current solution. That will lead to a minimal solution in future resolutions.
The way to decrease coherence between a subset of links is to visit each link with different
measurement or visit only a subset of links with a measurement. The second rule is to
incorporate possible alternatives. For that, adaptive measurements have to go through the
possible alternative links indicated previously. Inclusion of alternative links may lead to
a non-minimal solution at first. But eventually minimality will be achieved with the first
rule. By then, all the possible alternatives will also be taken into consideration, leading
to a minimal unique resolution. Again, the implementations of these are illustrated in

Section 3.3.4.

3.3.4. NETWORK MONITORING AND FAULT LOCALIZATION. A “good” monitoring sys-

tem operates with minimal number of equipment and casts minimal monitoring traffic onto
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the network, and is efficient. Resource requirements of a good monitoring algorithm will scale
well with the network size, thus, is scalable. Accuracy guarantee is a major challenge for al-
gorithms as they operate with far fewer resources compared to the size of the network, thus,
a good scheme is reliable. The proposed scheme is endowed with the above characteristics.

It consists of two phases:

(1) Tomographic monitoring phase

(2) Adaptive fault localization phase

The first phase monitors the network for a presence of a fault. Upon detection of a fault,
the second phase for localizing the faulty network elements is initiated. The procedure is

summarized in Fig. 3.10.

Select a set of tomographic paths

Monitoring 1‘_
> Collect tomographic path measurements  |€

Are measurements
anomalous ?

Fault Localization

Use adaptive solver to identify faulty link
candidates

| 1
I I
I 1
1 |
1 I
: ¥ !
| Identify and cairy out additional :
| measurements |
I I
I 1
1 |
1 I
1 I
I 1
I 1
| 1

Iz the anomaly
localized and
verified ?

FiGURE 3.10. The monitoring and localization framework.

¢

We refer the linear system (3.11) as the “measurement set.” The measurement value of

path i is the i*" element of the vector p. The i*" row of A indicates the number of times
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path i goes through each link. If path i goes through link j once, a;; - the element on row
¢ column j of A - is set to one, if path goes through the link twice, a;; is set to two, and
so on. If path 7 does not go through link j, a,; is zero. It should be noted that though
most routing matrices are binary, we do not impose a binary constraint on the measurement
matrix. Binary routing matrices are a special case of the general class of measurement
matrices considered herein. This representation can be used for any additive network QoS
parameter, such as link delays [36, 45|, log of packet transmission rates [30-32], and packet
losses [33].

3.3.4.1. Monitoring Phase. The goal of the proposed approach is to monitor the network
with a minimal measurement load on the network, while employing a minimal number of
instrumented nodes. The monitoring system keeps the network in check with a few tomo-
graphic path measurements. Monitoring measurements can be implemented with random
walks [1] or more strategically as discussed in Section 3.4. Subjected to path length restric-
tions discussed in Section 3.3.3, these measurements cover all the network links and form the
initial set of measurements. Coverage of all the links is required to guarantee the detection
and subsequent localization of a fault on any of the links. Though the monitoring mea-
surements may not be sufficient to localize a fault, they are indicative of when an anomaly
is present. If no path measurement is anomalous, then the network is anomaly-free. But
if one or more path measurements are anomalous, then the network contains at least one
anomalous link. During the monitoring phase, the path measurement vector p is inspected
for significant deviations. If a path measurement does not exceed a certain threshold, none
of the links on the path has a fault. A significant deviation in p indicates that the network
contains one or more faults that affect the end-to-end network performance. In such cases

the adaptive fault localization phase discussed below is initiated.
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3.3.4.2. Adaptive Fault Localization Phase. The monitoring path measurements are merely
indicative of a presence of a fault and quite possibly insufficient to localize the faults. The
scheme discussed here adaptively carries out further path measurements to localize the faults.

It follows the algorithm in Fig. 3.11 whose steps can be summarized as follows:

(1) Reduce measurement set to Aqsy = Pq

(2) Solve system of reduced measurements

(3) Test termination criteria. If they are satisfied, exit.
(4) Find link set f for additional adaptive measurements
(5) Collect additional adaptive measurements

(6) Append measurements to the measurement set and repeat the procedure from step 1

Reducing the measurement set: Let set a indicate the subset of paths that have anoma-
lous readings. Then construct a vector p, by selecting elements on a from p. In addition,
build a sub-matrix A, by selecting rows of A that correspond to a. Fig. 3.12(a) illustrates
this step. As shown, entries of p corresponding to paths 2, 4 and 5 are anomalous. Thus,
set @ = {2,4,5}. Then A, is built with rows 2, 4 and 5 of A. Once the set of rows is
reduced, a new set s is built with the columns of A, that have at least one non-zero ele-
ment. Then by selecting the columns on s from A,, the reduced matrix Ag, is built. This
is illustrated in Fig. 3.12(b). As shown, columns 3 and 6 of A, in Fig. 3.12(b) are all zero.
Thus, s = {1,2,4,5}. Then the reduced A, is built with columns 1,2,4, and 5 of A,.

Solving the reduced measurement set: The reduced measurement set contains the faulty
path measurements and the links those paths go through. The goal in solving this linear
system is to recognize the exact links with the faults. The reduced measurement set can be
expressed as a linear system:

Ay s = Pa (3.18)

52



START

A : monitoring matrix eR™*
P :path measurements € R7*1
v
a=supp(p) [€
v
s : active columns of Ad
v
solve for y
minimize [yf| ; s.t. Agoy = p,
v
X=0,y
v assignxg =y

J:{j

h 4

|-, A,

FEk,

<t}

R S
OR
rank(A ,z,) < min(|4|.|af)
OR
J>0

h': arandom subset of A

!
S=hoj

[r,q] : source routing path
measurement covering f°

appendr to A
BNy
append g to p

F1GURE 3.11. Adaptive fault localization algorithm.

where x4 is the vector of unknown link QoS values of links in [bms. The reduced measurement
set (3.18) is extremely likely to be an under-determined set of equations, especially for large

networks monitored with a few tomographic measurements. We seek a solution that explains
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F1GURE 3.12. Reducing the measurement set. Anomalous path measure-
ments are indicated by a shaded cell.

the path anomalies with a minimal number of faulty links. Thus, we solve the following CS

problem as discussed in Section 3.3.2.

minimize ||x||p such that AgsTs = Pa (3.19)

where, || - ||o is the Lo norm. In a traditional CS implementation, the process exits at this
point. The faulty links are indicated by the non-zero elements in @,. Measurement matri-
ces for networks are unlikely to satisfy properties required by traditional CS and solutions
obtained will fail to indicate the faulty links. Thus, we develop an adaptive approach.
Unlike the existing adaptive sensing methods where the entire measurement matrix is
rebuilt [43] or where the measurement matrices are impossible to be realized on networks,
the proposed adaptive approach appends additional path measurements to the measurement

set and iteratively solves until convergence. In each iteration, (3.19) is solved as a || - |3
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minimization. Though publicly available solvers such as L1 magic [46] can be used, we
developed a solver based on Doughlas-Rachford iterations [47] for stability. Should one seek
to solve || - ||o minimization without the || - ||; relaxation, a number of algorithms such as
the class of matching pursuit algorithms [48] can be used. It should be noted that the
solution delivered from [L; minimization may not necessarily be the sparsest solution we
desire. Further, the solutions may require post-processing. For instance, if link delays were
used, they are non-negative. On the other hand, if log of packet loss rates were used, they
are non-positive. Thus, any out of range entries in the solution including other invalid entries
such as NaNs (not a number) have to be removed via post-processing. The solution is then
analyzed for termination criteria.

Termination criteria: Since individual link measurements are not available, a convergence
criteria to terminate the iterations using only the available path measurements need to be
found. Here we implement the three criteria discussed in Section 3.3.3. Violation of any of
the three conditions implies an un-converged solution, and therefore the scheme continues
with additional measurements.

The first criterion - stability - is implemented by keeping track of the support of the
solution. At each iteration the support of the previous solution hgq is compared against
the support of the current solution h. If they are similar a counter t is incremented. If h
is different, the counter is reset to zero. When the counter increase past a predetermined

threshold %,,.., the solution is said to be stable. The solution is unstable when

t < tmax- (3.20)

The second criterion is the minimality. It implies that the solution cannot be further

reduced to fewer links, i.e., every link marked as faulty is needed to describe the anomalies
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observed at path measurements. For this, a sub-matrix Agp, is formed by selecting columns
corresponding to h from Ag,. If the solution can be further reduced, then a linear dependence
between the links in h and the corresponding columns A,p should exist. Therefore, if Agp

is rank deficient, the minimality condition is considered to be violated.
rank (Agp) < min (|h|, |a|) (3.21)

The third criterion is uniqueness. This condition prevents alternative solutions. A pro-
jection operator I — Ag,p (AaThAah)*1 AT, is built, first. Then a set h¢ which is the com-
plement of set h is formed. Columns of A,s corresponding to h¢ are projected onto the
above projector. The columns that vanishes when projected are listed in a set 7. Elements
in 7 correspond to possible alternative links that may have caused the same faulty path

measurements. Thus, a non-empty 7 indicates a violation of the uniqueness condition.
7] >0 (3.22)

If none of the above violations (3.20), (3.20), or (3.22) occur, then set h contains the
minimal set of faulty links. The fault localization scheme terminates at this point. Otherwise,
the process continues through the next steps.

Selecting additional adaptive measurements (AAMs): If the scheme did not terminate
in the previous step, further path measurements are made. Termed as additional adaptive
measurements (AAMs), these measurements are designed to remove any ambiguities and
converge to the actual solution. As discussed in Section 3.3.3, two requirements are sought
in the links selected for adaptive measurements: (1) selected links that break linear de-

pendences between faulty links indicated in the solution, and (2) selected links to include
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possible alternatives links which are not identified as faulty in the solution. The first rule is
implemented by selecting a subset of links in h. The second rule is implemented by including
the set 3. Thus, a set f is formed by taking the union of a subset of h and the entire set 3.
Then a path measurement is made to cover links in f.

Carry out AAMs: The goal here is to make AAMs that will route measurement packets
through the links in f. It is to be noted that an AAM is not required to cover only or all
the links in f. A path measurement may contain other links and even may skip some of
the selected links due to routing limitations. If the path measurement did not achieve the
anticipated coverage, and as a result convergence was not reached, the next iteration will
account for the deficiencies.

Appending the measurement set: Each additional adaptive measurement is appended to
the measurement set Ax = p. Each new AAM adds a new row to A corresponding to the
path and the measurement value adds a new entry to p. If the new AAM value is ¢, then the
current path values vector p is updated as p = [qu}T. Similarly, the new route indicated
by row r is appended to measurement matrix A as A = [ATTT]T. Then adaptive fault

localization scheme is repeated on the updated measurement set.

3.3.5. EXPERIMENTAL SETUP. Here we review the experimental setup used to test the
proposed scheme. Our goal is to test the proposed scheme on realistic large networks under
real and interesting operating conditions. The details can also be found in .

3.3.5.1. Realistic Topologies. Realistic network topologies are generated using the IGen
topology generator [49] simulating backbone networks on one continent, connected using
Delaunay triangulation. Work in [60] shows that though the Internet grows in size, its
features are relatively stable. Therefore we make a reasonable assumption that [Gen provides

a faithful representation of realistic networks of the scales we sought to test.
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3.3.5.2. Path Measurements. We assume the network supports the IPv4 option Loose
Source Routing and Route Recording (LSRR) [61] for test traffic. This option provides two
functions. The first, it permits routing test packets along a path that includes the links
we desire. The second, it records the path the test packets took, enabling a convenient
construction of the measurement matrix. Measurement packets are generated at a network
probing device attached to a network node, and the measurement path terminates again
at a probing device which retrieves test packet information. All the simulated networks are
assumed to be monitored by 10% of nodes with attached probes scattered across the network.
However, it was noticed that the number of probes used has little impact on performance,
long as more than 10 probes are used. This is because source routing enables routing to and
from desired links, from and to the available probes. Two types of measurements are made
in the proposed scheme: monitoring measurements and AAMs.

The goal of the monitoring measurements is to monitor the network with a minimum
number of measurements. They have to adhere to two constraints: (1) monitoring measure-
ment should cover the entire network, and (2) each monitoring path has to adhere to the
path length limit. This is achieved by building a few longest possible paths that cover the
network. Each path is forced to go thru as many unvisited links as possible. The algorithm
used is summarized in Fig. 3.13.

For AAMs, two probes closest to the set of links f are selected and source routing
measurement are made between the two probes over path that includes the links on f.
However, there is a possibility that path length may exceed the limit if the entire set f
is included in a measurement. The set f contains links included for two purposes: (1)
break linear dependence between the links identified as possibly faulty, and (2) alternative

links which possibly be faulty. The set f is shuffled, so that the two types of links appear
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F1cURE 3.13. Constructing monitoring path measurements.

in reasonably large subset of f. Then a path measurement is developed by including the
largest possible subset of f adhering to the path length limit.

3.3.5.3. Data Models. Network tomography relies on the fundamental concept of separa-
bility laid down in [8]. The data model proposed in [8] uses two states of QoS values: High
and Low. The idea of separability and the High-Low data model states that when a link
contain a fault, a path going through the link will show a noticeable shift in path QoS values
and if a path shows a noticeable shift in QoS values, it must contain at least one faulty link.
We test the proposed scheme under three data models: (1) binary fault model, (2) simple
random fault model, and (3) realistic loss and delay data model.

The first data model we consider is the binary data model. Mostly used in earlier lit-
erature on network tomography such as in [62], binary data model is a highly simplified
representation of data and faults, mostly suitable for proof of concept experiments. Under
this model, links with no faults are assumed to carry a QoS value of zero and faulty links

are assigned with a one. Each path measurement counts the number of one’s along the path.
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Finally, the fault localization scheme will identify the faulty links which carried a QoS value
of one.

The second model we employ is called the simple random fault model. This model is
more representative of realistic network data. Under the simple random model, links without
a fault are assumed to have a random value in a range [0,~]. For simplicity, we assume non-
faulty QoS values are uniformly distributed over [0,v]. When a link is faulty, its QoS value
will escalate to an unbounded random value ¢, which is obviously beyond . We express the
strength of the fault £ as a fold of the range of non-faulty values, i.e, (/7.

Finally we simulate realistic network data. We consider two QoS parameters: packet loss
rate and link delay. The packet losses are simulated with Gilbert-FElliott model [50] which
uses a two state Markov chain. This model emulates bursty packet losses prevalent in the
Internet, using a faulty state where packets are continually dropped and a no-faults state
where no packets are dropped. To obtain realistic parameters, we made measurements on
the Planet-Lab infrastructure [51] for link losses and tuned the fault model. The Planet-Lab
measurements suggested a probability of 1/ (1.5 x 10°%) to transition to faulty state and a
probability of 0.05 to transition to no-faults state. Each measurement consisted of 1000
packets transmitted over a path. For convenience of implementation pass rate which is (1 -
loss rate) is used. Pass rate of a path j denoted by d; is the product of pass rates of all links
on the path. This formulation is similar to the previous work [31, 32]. If the loss rate of a

link ¢ which is a member of path j is ; then

di=J[a-r-1) (3.23)

i

p; =logd; =) log(1—r) (3.24)

60



Network delays are simulated using an alpha-stable heavy-tail distribution [63]. Again
we employ measurements made on Planet-Lab infrastructure to calibrate the model, so
that the regenerated data is realistic. Based on the measurements we made, we used the
following parameter settings for the network delay model. The characteristic exponent is set
to 1.0. The skewness is bounded within [-1,1] and found to follow an exponential distribution
with a rate of 0.25 distributed leftwards with an offset of 1.0. The scale is found to be
distributed exponentially with a rate of 0.02. Finally, the location parameter is also found
to be distributed exponentially with a rate of 0.2 and an offset of 2.0.

3.3.5.4. Performance Metrics. The performance is analyzed with two parameters: detec-
tion rate (DR) and false positive rate (FPR). Links that have a loss rate over 5% are treated
as faulty. Let the set of links that actually are faulty be t and the set of links the scheme

identified as faulty be s, then

tn
DR = % x 100% (3.25)
tn s
prR = L0 100y (3.26)
S

3.3.6. RESULTS. In this section we present the performance and cost results of the pro-
posed scheme under the data models discussed in Section 3.3.5. Performance is quantified
with detection and false positive rates. Cost is quantified with the number of measure-
ments needed for monitoring and fault localization. All results are average values over 100
realization under each parameter setting.

First, we test the scheme under varying sparsities of binary fault model. The corre-
sponding results are shown in Fig. 3.14. Here we use networks of 300 nodes and 1772 links

in average. Faulty links carry a value one and the other links carry a zero. As can be noted,
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TABLE 3.1. Ratio Between Actual and Theoretical Samples Needed

Sparsity ‘ klog(n/k) ‘ m (Actual Number of Samples) ‘ m (klog (n/k))”"

2 13.6 26.2 1.93
4 244 37.1 1.52
6 34.1 51.6 1.51
8 43.2 61.6 1.42
10 51.8 78.0 1.51

the proposed scheme achieves near 100% detections and near 0% false positives for the range

of sparsities tested.
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FIGURE 3.14. Effect of sparsity under the binary data model.

We compare the above results against the theoretical number of measurements needed
m = O (klog (n/k)). For this we calculate m (klog (n/k))~". Under a typical compressive
sensing setup, this number is expected to be around 3.0. But as listed in Table 3.1, the
proposed algorithm achieves a relatively smaller factor.

Next we consider the scalability of the scheme under the binary data model, as we increase
the network size. Here we simulate five faulty links on each network. Fig. 3.15 shows the
results, as the network size is increased. The figure shows the sizes of the networks in terms

of the number of nodes and the average number of links. As the results indicate, the scheme
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continues to performs with near 100% detection and near 0% false positives throughout all
the network sizes test. Notably even when the network size is grown exponentially, the

number of measurements needed grew much slower.
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FIGURE 3.15. Scalability under the binary data model.

Next we test the scheme under the simple random model. As before, we begin by testing
the performance of the scheme with varying fault sparsity. The networks tested in these
experiments are of 300 nodes and 1772 links average. The faults had a strength £ of 30dB.
Performance and cost results are shown in Fig. 3.16. The results indicate a perfect 100%
detection for all the tested cases, and a low false positives rate.

The scalability of the scheme under the simple random model is tested in the experiment
whose results are shown in Fig. 3.17. In this experiment five faults with strength of 30dB
is injected to the test networks. The network sizes are varied exponentially as shown in the
figure. Although, as can be seen, the number of measurements needed grew slowly. The
detection rate continues to remain at 100% while maintaining a low false positives rate.

We also test the effect of fault strength on the performance and cost. For this, we test the

detection of five faulty links on a network of 300 nodes and 1772 links in average. The fault
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FIGURE 3.16. Effect of sparsity under the simple random model.
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FIGURE 3.17. Scalability under the simple random model.
strength £ is varied over the range 25dB to 45dB. The results shown in Fig. 3.18 indicate
that the scheme achieves a near 100% detection rate and a very low false positives rate.
Further, it can also be noted that the number of measurements needed to localizes faults
slightly decreases as the strength of the faults increases.
Then we test the performance of the scheme under realistic data models. We begin with

the loss data and test for the scalability of the proposed scheme. As discussed before network
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FiGURE 3.18. Effect of the strength of the faults.

losses are simulated with Gilbert-Elliott model calibrated with real measurements made on
Planet-Lab infrastructure. As the results shown in Fig. 3.19 indicate, the proposed model
achieves a high detection rate and low false positives rate. More importantly, even when the
network size is grown exponentially, the number of measurements needed grew much slower

indicating a high scalability.
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FIGURE 3.19. Scalability under the loss data model.
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Then we repeat the experiment for the network link delay model. As discussed above,
link delays are simulated using heavy tail distributions calibrated with measurements made
on Planet-lab infrastructure. We continue to observe a high detection rate and a low false
positives rate in the link delay model as well. Moreover, the number of measurements needed

grew much slower, even when the network size is grown exponentially.
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FI1GURE 3.20. Scalability under link delay model.

Finally we take a closer look at the scalability of the proposed scheme under each data
model. As the results in Fig. 3.21 shows, the number of measurements needed to localize
faults grows nearly proportional to the logarithm of the number of links in the network. This
indicates that the proposed scheme achieves the m = O (klog (n/k)) scaling so far was not
achieved with CS in a network setup. Such kind of a scaling promises significant cost savings

for large networks.

3.3.7. CONCLUSIONS. An adaptive compressive sensing scheme for network tomography
based fault localization was proposed. The scheme is tested on realistic network topologies

using a few different data models. The scheme achieves a very high detection rate and a
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FIGURE 3.21. Scalability under link delay model.
very low false positive rate under all the tested data models. More importantly, the number
of measurements the scheme required scale logarithmically with the number of links in the
network. Further, the proposed three criteria for termination and the two rules for selecting
the links for additional adaptive measurements, lead to a fault localization with a minimal
number of additional measurements and assures a rapid localization process. Thus, the
proposed scheme is efficient for monitoring and localizing faulty links of large networks in

terms of accuracy, speed, instrumentation cost, and measurement traffic load.

3.3.8. LiMIT ON PATH LENGTH. Let 0% denote variance of path QoS values and o}
denote variance of link QoS values. Then for a path of & links 6 = o7h. For a fault of

magnitude ¢ to cause a deviation beyond no for a selected n

(¢ —7) >no =novh (3.27)

h< (C_7>2 (3.28)

noy
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3.3.9. LimiT OoN PATH LENGTH UNDER SIMPLE RANDOM DATA MODEL. Let the typ-
ical link level QoS values under simple random data model be distributed uniformly over the

range [0,7]. Then link level variance o7 = 7?/12.

12(¢ — 7)?
b < (712—727) (3.29)

12 (¢—~\? 12
h<— (T) = ﬁ(g —1)? (3.30)

3.3.10. DETECTION AND FALSE POSITIVE RATES. Area under a normalized Gaussian
bell over a range [—x, +2] around the mode is given by erf(z/v/2). Therefore the detection

rate for Fig. 3.7 is

erf (%5;0‘) +% (1—erf (%5;&» - (1+erf <i25;0‘>) /2 (3.31)

Similarly, the false positive rate is

(1 —erf (%%)) /2 (3.32)

3.4. ADDITIONAL ALGORITHMS DEVELOPED

Here we present a few additional algorithms developed under this work.

3.4.1. OPTIMUM SAMPLING PATHS. This section presents an approach to select opti-
mum sampling paths. This scheme is an alternative measurement scheme to the random
path monitoring used in the prior sections. The presented scheme supports prioritized re-
covery. That is, the measurements are constructed such that faults localization occurs more

rapidly over marked high priority regions. Further, the algorithm is designed to operate
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with realistic hub and spoke cum mesh core network structures. The monitoring probes are
assumes to be placed in the leaf nodes.

Figure 3.22 shows an example map of three priority levels. The network resembles a
typical communication network where the core is a mesh network and the service network

has a hub and spoke structure. We use this map as a running example.

? <

probes
_rlo y 1
Priority 2
.. Rriority 3\

FI1GURE 3.22. Sample network

Algorithm 3.23 shows the algorithm used herein. It begins by listing all end to end path
measurements. The next step is to assign a score to each path. The score is based on the
importance of the links covered. Note that it follows the priorities assigned in the map.
Then the algorithm selects the paths. It can be terminated when the maximum number of
paths desired is reached.

In order to compare performance of the scheme, three other path selection schemes are

used.

(1) All core paths
(2) Weighted random paths

(3) Random paths
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Obtain all end-to-end paths
Assign a score to paths based on the links it go thru
Max for core links
Min for edge links
Start with a path with maximal score
Find a most different path
Hamming distance / incoherence
Compare group-wise
F1GURE 3.23. Algorithm for optimum sampling paths
In “All core path” selection, all possible paths that go through the core network are selected.
However, this does not lead to superior performance, as shown later. In “Weighted random
paths” paths are selected at random, but a higher probability is assigned to paths with a
higher priority. In the “Random paths” case paths are selected at random.
Next we proceed to compare performance. Figure 3.24 shows the detection of a single
fault using each path selection scheme at each priority level. In this experiment the number

of paths selected are varied. As can be noted, the proposed scheme shows the most superior

performance. We also study the false positive rate of the proposed scheme in detecting 1-
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FIGURE 3.24. Detecting 1-sparse faults
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sparse faults. The results are shown in Fig. 3.25. The results indicate that the false positives

caused by the algorithm is in the same neighborhood as the other schemes. We also test
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FIGURE 3.25. False positives in detecting 1-sparse

the performance of the algorithm in detecting realistic losses. The corresponding results are

presented in Fig. 3.26. These results are comparable to the detection results obtained earlier.

In essence, the presented optimum sampling scheme selects the best set of measurements

to optimize fault localization of a prioritized network.

3.4.2. EVOLUTION OF THE FAULT LOCALIZATION ALGORITHM. Here we briefly review
the evolution of the fault localization algorithm presented in prior sections.

The first algorithm reduces the measurement systems and applies compressive sensing
to localize faults. But it does not perform iterative solving. Thus, it will require a good
measurement systems such as build in Section 3.4.1. Otherwise it requires a higher number

of measurements compared to algorithms presented here forth.
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FiGURE 3.26. Loss detection

When access to any network link is available fault localizations can be immediately
verified. Algorithm 3.28 is designed for such scenarios. Notably this algorithm always
yields zero fault positives. Also the number of measurements needed for this algorithms
is far less. However, to realize the algorithm on a network require a significant amount of
instrumentation.

When access to a limited set of links are available, Algorithm 3.29 can be used. Although
it require less instrumentation than the previous algorithm, it has degraded performance.

Algorithm 3.30 is designed for tomographic measurement environments. This algorithm
forms the foundation of the localization algorithms presented in prior sections. This algo-
rithm is endowed with high accuracy and also require less instrumentations. However it is

vulnerable to noise. But the next generations of this algorithm became resilient to noise.
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FIGURE 3.27. Fault localization algorithm - version 1

3.5. CONCLUSIONS

In this chapter we presented our work on network monitoring and fault localization. We
used compressive sensing to resolve network measurements. To achieve a high detection
accuracy from a minimal number of measurements, we developed adaptive algorithms that
quickly converge on the faulty links. Further, these algorithms relied only on the available
information unlike CS algorithms found in literature. We tested our algorithms on realistic
network topologies with realistic data models for QoS parameters such as link delays and

losses, for accuracy, scalability and cost.
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FIGURE 3.28. Fault localization algorithm - version 2
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F1GURE 3.29. Fault localization algorithm - version 3
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~ Are all faulis
found ?

FI1GURE 3.30. Fault localization algorithm - version 4
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CHAPTER 4

DATA RECOVERY
4.1. INTRODUCTION

In this chapter we consider data recovery techniques. We begin with compressive sensing.
Authors of [21] established recovery bounds for compressive sensing when the sampling
measure is orthogonalizational. We extend this work to any sampling measure and quantify
the effect of mismatch therein. We also review the implications of the generalizations. This
generalization is important as it cannot be guaranteed that a practical sampling scheme
would actually be orthogonalizational. Then we apply compressive sensing for phenomena
discovery in Wireless Sensor Networks (WSNs). The findings here show a notable amount
of cost savings that can achieved via compressive sensing in WSNs.

Next we consider wavelet based data recovery. We develop a distributed compression
scheme that reduce the communication cost of WSNs to deliver information. This scheme
uses two-dimensional wavelet transform and only require a limited set of sensors scattered
at random locations. We demonstrate the performance of the scheme on tracking a chemical
plume with this limited number of sensors. In an extension of the same work, matrix com-
pletion is used to recover data when the sampling is extremely low (5%). To overcome the
lack of smoothness in matrix completion, compressive sensing is used over matrix completed

data with Discrete Cosine basis as the sparsity domain.

4.2. PERFORMANCE BOUNDS FOR SPARSE SIGNAL RECOVERY FROM RANDOM SAMPLES

We consider the problem of reconstructing a signal from a small number of its samples.
The signal is assumed to have a sparse representation in a known basis and the sampling

points are selected at random according to a probability measure. However, unlike previous
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work, the basis elements are not orthogonal with respect to the measure from which the
sample points are selected. In other words, there is mismatch between the sampling measure
and the orthogonality measure. We consider two cases: (1) non-uniform recovery: Given
each fixed s-sparse support, we establish conditions that guarantee the recovery of the signal
from a random realization of sample points with high probability, and (2) uniform recovery:
Given a fixed realization of sample points, we establish conditions under which recovery is
guaranteed for any s-sparse signal with high probability. In each case, lower bound on the
number of measurements is a monotonically increasing function of the extent of mismatch.
We specifically bound the extent of mismatch in the case where sparse signals in the Fourier

basis are sampled at random according to distributions from the natural exponential family.

4.2.1. INTRODUCTION. Let {3 (t)}r_, be an orthonormal system of complex functions

on D C R with respect to measure v that is

/ij(t)zpk—(t)du(t): o gke{l,... N (A1)

where d;;, is the Kronecker delta and D is endowed with measure v, and v(D) = 1. Assume

basis elements ¢y (t),k = 1,..., N are bounded as
|[Vklloo = sup Ui ()] < K, K € RT. (4.2)
teD
Let y(t) be a generic signal that has an s-sparse representation in {@bk(t)}szl That is,
y(t) =Y de(t)by = (t)b, (4.3)

where W (t) = [¢1(t),...,¥n(t)], and b = [by,... by]" € CV is s-sparse. Let ty,..., %, be

a sequence of i.i.d. realizations w.r.t. a probability measure v. Let y = [y(t1), ... ,y(tm)]T
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and A be an m x N matrix whose (I, k)™ entry A, = 1.(t;). Then, we can express y as

y = Ab. (4.4)

We are interested in deriving bounds on the number of samples m required to guaran-
tee the recovery of y(t) from a random set of samples y = [y(t1),...,y(tm)]", with high
probability.

In [21], the authors have investigated this question in the case where the sampling measure
v is identical to the orthogonality measure v. They have studied two scenarios: non-uniform
recovery and uniform recovery. Given each fixed s-sparse support, non-uniform recovery
guarantees the recovery of the signal from a random realization of sample points with high
probability. Given a fixed realization of sample points, uniform recovery guarantees the
recovery of any s-sparse signal with high probability. In [64], the authors present improved
guarantee bounds for the uniform recovery case considered in [21].

In this paper, we study the case where there is a mismatch between the sampling measure
v and the orthogonality measure v, and derive sufficient conditions for uniform and non-
uniform recoveries. The lower bound on the number of measurements needed for recovery
is a monotonically increasing function of the extent of mismatch. We specifically bound
the extent of mismatch in case where sparse signals in the Fourier basis are sampled at
random according to distributions from the natural exponential family. We report explicit
bounds for three distributions: Fzponential, Normal, and Gamma. As discussed in [65] many
scenarios exist where sampling measures are not orthogonalizational. This work provides the

theoretical foundation for recovery guarantees for such instances.
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4.2.2. NON-UNIFORM RECOVERY. Here we study the recovery of sparse signals with a

fixed but unknown support.

THEOREM 4.2.1. Let b € CV be an arbitrary s-sparse signal with fized but unknown
support S (|S| = s). Let {t;},~, be a sequence of i.i.d. draws w.r.t. the probability measure
v and A € C™N be a matriz whose (1, k)™ entry A, = (). Then, b can be successfully

recovered from y = Ab with probability at least (1 — €) if

m > 8v/2sK%k? log (M) log (%) . (4.5)

where k = \/DTQ+1+Q+%+§, D =2Y/8/s/meK, Q = |A|l2 and

0 P12 - PIN
p21 0 - pon
A = (4.6)
pn1 pn2 -+ O

where

s = [ e s (47
D
fori=1,....,N,5=1,...,N,andi # j.
PROOF. Steps of the proof is similar to those in the proof of [21, Theorem 4.2]. In

Appendix 4.2.6.1, the steps that are required to incorporate the effects of mismatch into the

proof are presented. 0

REMARK 1. The lower bound in (4.44) is similar to the bound derived in [21], except in

k. The effect of mismatch between orthogonalization measure v and the sampling measure
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v appears in k via Q). The value of Q) depends on p;;s which capture the extent of non-
orthogonality of the basis elements 1;(t) w.r.t. the sampling measure v, as shown in (4.7). In
the mismatch-free case, k = \/D?JA+ 1+D/2 and for us x = \/D2/4 + 1+ Q+Q/D+D/2.
The extent of mismatch will in turn determine the overhead in the number of measurements
to guarantee perfect recovery. In the special case where v and v coincide, p;; and subsequently
Q vanish, and the bound in (4.44) reduces to that obtained in [21]. Later in Section 4.2.4,

we present a case study where the mismatch is quantified and explicitly bounded.

4.2.3. UNIFORM RECOVERY. We now study the recovery of any sparse signal with a
sparsity limit.

Restricted Isometry Property (RIP) of A is a commonly used sufficient condition for A
to recover b from y = Ab (see, e.g. [11]). We say A satisfies RIP with Restricted Isometry

Constant (RIC') s, or in short it satisfies v,-RIP, if

(1= 7)[Iblz < [IAB[Z < (1+7)Ibl3, ¥b € T, (4.8)

where I, is the set of all s-sparse vectors in CV. The RIP can be written as

IJA*A = T}[|, < (4.9)
where A = \/LHA, and the operator semi-norm ||| - |||s for s-sparse unit vectors is defined as
IBllls=  sup  [(Bz,z)| (4.10)

lzllo<s,|lz[l2=1

for B € R™*%,
If A satisfies vo,-RIP with o5 < 1/3, then every s-sparse b is recoverable from y = Ab

using a linear program [11]. If RIP is satisfied probabilistically, then recovery is guaranteed
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only probabilistically. The probability ¢ with which ~,-RIP is not satisfied is given by
—P[|JA*A — T[], > 7.]. (4.11)

THEOREM 4.2.2. Let b € CV be an arbitrary s-sparse signal. Let {ti}zl be a sequence
of i.i.d. draws w.r.t. the probability measure v and A € C™¥ be a matriz whose (I, k)™

entry Ay = Yr(t)). Then, b is recoverable from'y = Ab with a probability at least (1 —€) if

~ ~2
m a1k 9 7

> - .
n(10m) = 72 sIn*(100s) In(4N) In (€> (4.12)

w/1+D—+Q+ \/_
m

for D = C\/2BK /5 1n(100s)+/In(4N) In(10/m) for some constants C and 3, and Q = |||Al||s.

where

K

SIG

(4.13)

Before we prove Theorem 4.3.3, two remarks are in order.

REMARK 2. The bound in (4.95) is similar to the bound obtained in [21], except in K.

The effect of mismatch between the sampling measure v and the orthogonalization measure

v appears in i via Q. In the mismatch-free case, i = /D%/m+ 1 + D/m instead of

R = \/D2/Th +14+Q + D/ + QvVm/(2D). The extent of mismatch affects the number
of measurements needed to guarantee recovery with a certain probability. When v and v
coincide, Q vanishes and (4.95) reduces to that in [21]. Later in Section 4.2.4, we will bound
the extent of mismatch for the case where Fourier sparse signals are sampled at random

according to distributions from the natural exponential family.
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REMARK 3. Under the additional condition E|||Ax A —1|||s < 8v5/9, the bound in (4.95)

can be tightened to

D 1
m > 25K (—) (4.14)
Vs €
where c¢o < 456 and D = 1142%//7762'
PROOF. See Appendix 4.2.6.2. O

4.2.4. CANONICAL EXAMPLE. We consider a signal y(¢) that has a sparse representation
in Fourier domain, i.e., ¥y (t) = e for some fundamental frequency wy, and ||b|lo < s.
We assume the signal y(t) is sampled in time at random according to a probability measure

v corresponding to the natural exponential family with characteristic function

wo(t) = exp{A(n +1t) — Aln)} (4.15)

where A(n) is the so-called log-partition function and 7 is the so-called natural parameter.
We quantify the extent of mismatch between the sampling measure v and the orthogo-
nality measure v for the Fourier basis by @ = ||All2, with A defined in (4.6). We have the

following theorem.

THEOREM 4.2.3 (Bounding mismatch for non-uniform recovery). Let Q = ||Al|s with A
as in (4.6) and pj, = [0;(t),(t)dD(t) with U being a measure of the natural exponential

amily with characteristic function (4.15), and y(t) = et Then
Jamily ;

exp {A(n+wo) —Aln)} <Q

< 3 e {a(rtiG - b)) - am} (0)

k#N/2

fork=1,...,N.
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Proor. Using Gershgorin circle theorem, and norm equivalence, we have

max | p| < Q < mjaxz |0ji] (4.17)
k#j
where
Pk = / eIkl qp(t). (4.18)
D

Note that (4.18) is the characteristic function of v(t) at (j — k)wy. Therefore

pir = exp {A (0 +1(j — k)wo) — A(n)} (4.19)

Since A(n) is a logarithmic function, max; x [pjr| occurs when [j—k[ = 1 and max; >, [pjx|

occurs at j = [N/2]. This completes the proof. O

REMARK 4. For uniform recovery, we quantify the extent of mismatch by Q = |||Al||s-

Then, similar bounds as in (4.16) for Q hold with k =1,...,s/2, N —s/2,...,N.

We now explicitly work out the bounds in (4.16) for three distributions from the natural
exponential family. For the exponential distribution, the natural parameter n = —\ and

log-partition function A(n) = —In —n, where X is the rate. Then,

(4.20)
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and,

2
exp {—%0‘2(,03} << Z exp {—%02 <g — k) wg} ) (4.21)

k#%

Similarly, for the Gamma distribution, we have

1

n= [04— 1,—5] and

A(m) =L (g +1) = (m + 1) In (=)

where « is the shape parameter and 6 is the scale parameter, and (4.16) becomes

—a/2

2
(1+wie?) << (1 + (g - k;) w(%e?) : (4.22)

kAL

Figure 4.1 show the effect of sampling mismatch on x in non-uniform and uniform recovery
for Exponential distribution in Figs. 4.1(a) and 4.1(d), Normal distribution in Figs. 4.1(b)
and 4.1(e), and Gamma distribution in Figs. 4.1(c) and 4.1(f). In each figure, the upper and
lower bound on k in the presence of mismatch are plotted (meshed surface), along with the
k in the mismatch-free case (solid surface) obtained in [21]. These plots show the increase
of k due to the mismatch between the sampling measure and the orthogonality measure
for the sparsity basis. An increase in kK means more measurements may be needed in the
mismatched case, compared to the mismatch-free case, to guarantee signal recovery with the

same probability.

4.2.5. CONCLUSION. In this paper we derived sufficient conditions for uniform and non-
uniform recovery of a sparse signal from its random samples for the case where there is

a mismatch between the sampling measure and the orthogonality measure for the sparsity
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FIGURE 4.1. Upper and lower bounds for x (in dB), for different values of
s and m, in non-uniform recovery (subplots (a)-(c)) and uniform recovery
(subplots (d)—(f)). The bounds are plotted for three different random sam-
pling distributions: Exponential, Normal, and Gamma. The plot of s in the

mismatch-free case is also shown for comparison (bottom most surface in all
subplots). In all cases the signal dimension N = 1000.

basis. We derive explicit bounds for the extent of mismatch when Fourier sparse signals are

sampled at random according to distributions from the natural exponential family.

4.2.6. APPENDICES.

4.2.6.1. Proof of Theorem 4.3.1. Let a; denote the {*" column of A. Let Ag denote the
submatrix of A, whose column indices are in S that is, Ag = [a;,, ay,, ..., a;,], where [; € S
for i =1,2,...,s. Further, let bg = [by,, by, ..., 0]

From [21, Corollary 2.8] (also see [58, 59]) if bg satisfies

‘<Agal, sgn (b5)>‘ <1, VvigSs (4.23)
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where sgn(-) denotes the signum function and Ag denotes the Moore-Penrose pseudo inverse
of Ag, then b can be recovered from y with probability at least 1 — ¢, using a linear program.
Using union bound and [21, Corollary 6.10], the lower bound € on the failure probability in

recovering b can be bounded as

e<P [%%X ‘<Agal, sgn(b5)>) > 1] (4.24)

<o (-4 (22) )

+ (A -1, > 0]

/ ~ 2
+P r{;asx ;Kal,ajﬂ > \/sT (4.25)
j

where 7,7 € (0,1/2], Ag = \/LEAS, flg is the Hermitian transposed of Ag, and a; = \/Lmal
forl=1,...,s.
From Markov inequality, the second term of R.H.S. of (4.25) is bounded as
P [HASAS - ]1” > ﬂ <= (4.26)
2 g

where E = E;||A%Ag — 1|2, and the expectation is taken w.r.t. the probability measure 7.
Then we write F as

E=E, (4.27)

1 m
—> XX -1
m
=1 2
where X; is the " column of A%. Now, let’s look at By (X;X;). The (4,7)™ entry of By (X;X;)
1s

B, (XX7), = - S [dul@)vy(n)]. (4.28)
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Then, we have E; (X;X;) =1+ A or alternatively

I=E, (X, X])—A (4.29)
where A is given in (4.6) and p;; is given in (4.7) for i =1,...,N,j =1,...,N,and i # j.
Using (4.29), we write
1 m
E=E|—Y (X[ X - E (X, X])+ A)
i 2
1 m
<Ep | =) (X7X - By (XX]))|| +Q (4.30)
A 2
where @ = ||Alls.
From the symmetrization lemma [21, Lemma 6.7], we have
B, || XX - B X X; < 2B, | Y aXiX7||  (4.31)
=1 2 =1 2
where {1} is a Radermacher sequence. Therefore,
E <~ Zng,Xl +Q (4.32)
From Rudelson’s lemma [21, Lemma 6.18], we have
xxr| < 27/8\/ﬁK\/E,, it Ag — 1 +]1H (4.33)
e 2
From (4.31)—(4.33) we obatin
E<258 | KVE+1+Q. (4.34)
me
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Let D = 21%/8,/s/meK, then

E<DVE+1+Q<kD
where

(4.35)

D? D
m:\/j+1+Q+Q+—.

4.36
From [21, Proposition 6.5], we have

P [||A* Ag—T|p > 7} < 23/45 exp (-M) . (4.37)
S - - 8v/2K2K2
This bound is similar in form to the probability bound in [21, Theorem 7.3|, except that x

in (4.67) now contains the effect of mismatch as captured by (4.36). From here on, we can

follow similar steps as in [21, Section 7.3] to obtain (4.44). We omit these steps for brevity.
4.2.6.2. Proof of Theorem 4.3.3. From Markov inequality, we have

PlIIA'A-1)|l,| < =

(4.38)
where F = [||A*A —1]||,. Following similar steps as (4.27)(4.30), with || - ||, replaced by
1] |I]s, we obtain

1 m ~
B < —Ell| Y (X7 —EX0X7) ||l + Q
=1

(4.39)
where Q = |||A[||s. From this point on the proof follows that of [21, Section 8.5], except

that we carry @ in our derivations quantify the effects of mismatch.
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4.3. COMPLETE PROOF OF GENERALIZED RECOVERY BOUNDS FOR COMPRESSIVE

SENSING

Let {¢x(t)}n_, be an orthonormal system of complex functions with respect to measure

v that is

/R@bj(t)@bk—(t)dy(t): w g ke{l,...,N}, (4.40)

where §;;, is the Kronecker delta and measure space R is endowed with measure v, and
v(R) = 1. It should be noted that the results derived here are valid for any measure space

D C RY. Assume basis elements ¢ (t),k = 1,..., N are bounded as
[¥klloo = sup |¥x(t)] < K, K € R*. (4.41)
te

Let y(t) be a generic signal that has an s-sparse representation in {@bk(t)}kN:l That is,

N

y(t) = W(t)b = ()b, (4.42)

k=1

where W (t) = [¢1(t),...,¥n(t)], and b = [by,... by]" € RY is s-sparse. Let t1,..., %, be
a sequence of i.i.d. realizations w.r.t. a probability measure v. Let y = [y(t1), ... ,y(tm)]T

and A be an m x N matrix whose (I, k)™ entry A;; = 15 (#;). Then,
y — Ab. (4.43)

We are interested in deriving bounds on the number of samples m required to guarantee
the recovery of y(t) from a random set of samples, with high probability.
In [21], the authors have investigated this question in the case where the sampling measure

v is identical to the orthogonality measure v. They have studied two scenarios: non-uniform
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recovery and uniform recovery. Given each fixed s-sparse support, non-uniform recovery
guarantees the recovery of the signal from a random realization of sample points with high
probability. Given a fixed realization of sample points, uniform recovery guarantees the
recovery of any s-sparse signal with high probability. In [64], the authors present improved
guarantee bounds for the uniform recovery case considered in [21].

In this dissertation, we study the case where there is a mismatch between the sampling
measure 7 and the orthogonality measure v, and derive sufficient conditions for uniform and

non-uniform recoveries.

4.3.1. NON-UNIFORM RECOVERY. Here we study the recovery of signals with a fixed

support.

THEOREM 4.3.1. Let b € RY be an arbitrary s-sparse signal with fived but unknown
support S. Let {t;}", be a sequence of i.i.d. draws w.r.t. the probability measure v and
A € R™N be a matriz whose (I,k)" entry Ajx = ¥r(t;). Then, b can be successfully
recovered from y = Ab with probability at least (1 — €) if

m > 8v2sK%k? log (M) log (%) . (4.44)

PROOF. According to [58, 59] and [21, Corollary 2.8], if b with fixed support S(|S| = s)
satisfies

‘<ATSal, sgn (b5)>‘ <1Vl ¢S (4.45)

then b can be recovered from y = Ab using a linear program. Here A g denotes the submatrix
formed with the columns of A on S, bg denotes the sub-vector formed with the elements of

b on S, a; is the I*" column of A, sgn(-) is the signum function, and A:.r; is the Moore-Penrose
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inverse of Ag. Then the probability € of failure to recover b is bounded as

e<P {%%X ‘<Agal, sgn (b5)>‘ > 11 ) (4.46)

Next we consider two cases:

(1) HATSGZHZ <avi¢s

2) HATSalH2 >avi¢s.

We will set the value of « later on.

Under the first case

f >
P [r%ggx ‘<Asal,sgn(bs)>‘ > 1]

<P [%x [(ALar, sgn (bs))| = HALaZHQa*} (4.47)

Then by applying union bound

f >
P [I{;%X ’<A5al,sgn(b5)>‘ > 1]

< ;P H<A*T9al’ sgn(b5)>‘ > HAgale oz_l] (4.48)

Reference [21, Corollary 6.10] states

(Ao = o

< 23/ exp (—a7?/2) (4.49)
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Therefore

f >
P {r%%x ‘<Asal,sgn(b5)>‘ > 1]

< (N —5)2%*exp (—a7?/2) (4.50)

Using the above two cases, (4.46) can be re-written as

f > 1] =
P [r%ggx ‘<Asal,sgn(b3)>‘ > 1]

P lasa], <<

P [max ‘<Agal, sqn (bs)>’ >1 ‘ HAgal

< oz} +
1¢S5 2

[Jate

>oz]
2

P [%%x ’<Agal,sgn (bs)>’ >1 ‘ HAgal

> a} . (451)

Then can be bounded as

f >
P |:I%29X ‘<A5al,sgn(b5)>‘ > 1]

< (N — 5)2%* exp (—a7%/2) +

P [%;%XHAE‘”HQ > a} . (452)
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Now we focus on the second term of the R.H.S. of (4.52). By the definition of Moore-

Penrose inverse

A, > of -
P lmax [ata], = o]

I{;%XH (A5AS) " Abay|, > | . (4.53)

Following [21] we set o = .y € (0,1/2]

<

{maxHASalH >«
1¢S5

st
{IﬁzasXH (A5As) 7', lASal, > \/_—7}

<P [H(A*SAS)_lHQ . ﬁ} i

P [%%X |Agall, > \/gt} . (4.54)
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By applying the normalization A = \/%A, Neumann series, and using the definition of

spectral norm || B[z = max.,=1 || B2[[2 = sup,,— | < Bz,z > |

P [maxHAgalH > a] <
1¢S5 2

<P

S s > 3]
k=1 k=1 _

/ 2
P r%%x ;](W,aj)] > /st
J

<[Jauds i, ]

~ o~ 2
P max /;|<al,aj>| > \/st| . (4.55)
J

Next we focus on the first term on the R.H.S. of (4.55). From Markov inequality,

P[I1AsAs T > 9] <

= | &

(4.56)

where E = E||A5Ag — I||s, and the expectation is taken w.r.t. probability measure v. Let
X, = Ug(t;) € C® be the I column of A*S Next we take the expectation of X; X} w.r.t. v -

the sampling measure.

1 1O
E, X\ X[ = — Y XX = ~ > Us(t)Ts(ty). (4.57)
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The (i, 7)™ entry of E; X; X} can be written as

= [ ¥;()i(t) du(t) = pyy (4.58)

SEX X =1+ A (4.59)

where A is a matrix whose diagonal entries are zero, and whose (i, 7)™ entry (for i # j) is
Pij-

Now we can write E as

1 m
E— 1E||E D (XX —Bo X X!+ A) |
=1
1 m
< EHEZ(XZ*XZ — B XoX7) |2 + (A2 (4.60)

=1

The symmetrization lemma [21, Lemma 6.7] states

p\ 1/p
2

> XX - B X X]
=1

m py\ 1/p
Zlele* ) for1 <p<oo (4.61)
I=1 2

Q(E

where ¢ is a Radermacher sequence.

2
~E<ZE +Q (4.62)
m

D axX;
=1

2

where @ = || A2
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Rudelson’s lemma [21, Lemma 6.18] states

p\ 1/p
2

> oaxix;
=1

23/ 51/ fpe~1/’R 1A%, max [ X, | for 2 < p < oo. (4.63)
Assuming E ||Z£1§ZX1X;‘||2 >1and E||A%]l, > 1

1/2

E <|E

ZlezXl* ZﬁzXle*
=1 2 =1

S
< 27/8\@&/1@ |45 4s]l,

. 27/8\/%.!( E HAgAs —I+1

2
2

(4.64)

2

E<28 | T KVET14Q. (4.65)
me
Let D = 2'%/%,/s/meK, then

E<DVE+1+Q

< kD (4.66)

Whel"eK,:\/DTQ—Fl—l—Q—l—%—l—%.

Reference [21, Proposition 6.5] states if (E|Z[P)"/? < 88/Pp!/" for some 6, 3,1, p > 0 then
P [|Z| > e'/"0u] < Be~*"/". By comparing variables of (4.56) and (4.66) we set 3 = 2%/4s

and © = 2™ Then

2¥2Kk
P [||A* Ag—T|]s > 7| < 2%4sexp (—M) . (4.67)
S B S22 K2
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Next we discuss the second term on the R.H.S. of (4.55). Let’s pick a pair of column

indices i, j and define T' = {i,j},|T| = 2, set v = t, and apply in (4.67).

<. 2mt>
P |:HATAT - I[HQ > t:| < 23/4 -2 exp (—m) . (468)

There are (];[) = N(]\;_l) (< N;) candidate sets for T'. Using union bound, for any T’

O 2mt? N?
]P[A*A —1I >t]<23/4-2- -] - —
|| THT ||2— = exXp 8\7§K2K2 2
t2
— 9N ox (—m—> 4.69
P A2 K22 ( )

The second term on the R.H.S. of (4.55) can be bounded as

P ar, a;)|® > /st| <P a;, ;)| >t
e[S 1) > ot < e (00

Since the absolute value of any entry of a matrix is bounded by the spectral norm of the

(4.70)

matrix [(a;, ;)| < HA}AT - HH :
2

- P 5 V2 t
<P | max /jEZSKaZ,a]H > /s

<[Jasar 1,2

mt?

< 9 N? ox (__
- P A2 K 2K2

) (4.71)

98



Now we proceed to derive the non-uniform recovery bound. For this, we plug (4.67) and

(4.71) in (4.55), then apply (4.55) in (4.52), and finally apply (4.52) in (4.46).

< i ‘ >
e<P [%egx ‘<A5al, sgn(b5)> > 1]

< (N —5)2%*exp (—a7?/2) +

2
2%/45 ex (__msv ) +
P 82K 2K2

DVAN? oxp (- (4.72)
P A2 K2 K2 .

Following [21] we bound the first term by €/3 and set ¢ = v4/s/2. From the first term

we deduce
1 3(N — 5)2%/4
— > s’ log (ﬁ) . (4.73)
0l €
From the latter two terms we deduce
1 8v2K?K? 3(N?
m§—2\/_ ﬁlog( <4+S)). (4.74)
ot 5 v2¢
Therefore if
3(N — 5)2%/1 3(N?+s)
m < 8v2sK?k%1o (— log | ——= 4.75
< g - g e (4.75)
signal b cannot be recovered from y = Ab with probability (1 — €). O

REMARK: Note that @) is the noise generated due to violating the orthogonalization
measure condition (4.40). @ vanishes in the cases similar to [21] where the sampling is an

orthogonalization measure.
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4.3.1.1. Ezample: Ezponential and Gaussian. We assume that y(t) has a sparse repre-
sentation in Fourier domain, i.e., ¥y (t) = e+ and ||b|lo < s. We also assume v;(t)’s have

the same fundamental frequency wy = kwy.

0 for j =k
Note that A, = and Q = E||A|l3.

Pjk forj # k

If v(t) is exponential with rate A, from (4.58) for j # k

—+00
0

A

ikl = (4.76)
\/)\2 — wk
Using Gershgorin circle theorem
[A]l2 = omax(A) < maxz |pjk] - (4.77)
k#j
2
Q < 4N*N? Z , N = (5—11. (4.78)
VAZ + wi 2
For Gaussian v(t) with mean fi and standard deviation &,
oo 1 _e-w?
— v(wj—wg)t 3
o= ! . 252 dt. 4.79
it /_oo NG (479)
o 2
Ly 99 Y N
Q<4 exp — w0’k N =[5 -1] (4.80)
k=1

4.3.2. UNIFORM RECOVERY. Restricted Isometric Property (RIP) of A is a commonly

used sufficient condition for A recovering of b from y (see, e.g. [46]). The RIP means that
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A satisfies

(1= 7)lIblz < [IAB[Z < (1+7)Ibl3, ¥b € T, (4.81)

where T, is the set of all s-sparse vectors in RV and ~, is a positive constant called Restricted
Isometric Constant (RIC). When A satisfies (4.81) we say A is 75-RIP. If A has v,,-RIP
with 755 < 1/3, then every s-sparse b is recoverable from y = Ab using a linear program [46].
If RIP is satisfied only probabilistically, then recovery is guaranteed only probabilistically as
well.

The following operator semi norm ||| - |||s is defined for s-sparse unit vectors.

IBllls = sup  [(Bz,z)| (4.82)

[zllo<s,[|zl[2=1

Then RIP can be rearranged as

IJA*A = T[[[s < 7 (4.83)

where A = \/LRA, as before. Then the probability € with which ~,-RIP is not satisfied is give
by

e=P[[|A"A — |||, > ] . (4.84)

4.3.2.1. Recovery Probability Guarantee.

THEOREM 4.3.2. Let b € RY be an arbitrary s-sparse signal. Let {tz}ﬁ1 be a sequence
of i.i.d. draws w.r.t. the probability measure v and A € R™Y be a matriz whose (I, k)™
entry Ajx = Yr(t)). Then, b can be successfully recovered from y = Ab with probability at
least (1 —¢€) if

oA m
< Texp (- : : 4.85
€= ( 1725 n%(100s) In(4N) ln(lOrh)) (4.85)
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PrROOF. By noting
U T
A'A =) X)X; and EXX;=I+A
m
=1

we redefine the quantity E as

E =E|[|A*A —TJ||,. (4.86)

restate (4.86) as

1 m
E = —E| > (XX - Eo XX+ A) .- (4.87)
=1

Then use Jensen’s inequality to separate A as
1 m . )
B < —E||| Y (X} —EXX) [l + EllAL. (488)
=1

By applying the Symmetrization Lemma [21, Lemma 6.7]

2 & .
E < K[| ) aXiX;|||. +El|Alll, (4.89)
I=1
where {e1, ...,em} is a Rademarcher sequence. Using the Crucial Lemma [21, Lemma 8.2]

on (4.89) and setting Q = E|||A[,

9 m . .
E < %DlHZXleH’i/Q_FQ (4.90)
=1

where D = C/2BK+/51n(100s)y/In(4N)In(10m) with C' ~ 67.97 and 8 = 6.028 from

Dudley’s inequality ([21, Theorem 6.42]). Following [21] we use triangle inequality to derive

2D )
E < ﬁ\/E T1+Q. (4.91)
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Then by completing the squares yields

oD ( [ D> . Qvm D
ES%( 1+%+Q+W+%>' (4.92)
Let %=\/1+%+Q+%+% (4.93)

Then following the same procedure as for (4.67) we obtain

e=P[lIA"A - 1]||, > 7]

oA m
<7 — : 4.94
- eXp( 1725 1n%(100s) In(4N) ln(mm)) (4.94)

where ¢; = 8eC. O

4.3.2.2. Minimum Number of Samples Required.

THEOREM 4.3.3. Let b € RY be an arbitrary s-sparse signal. Let {ti}il be a sequence
of i.i.d. draws w.r.t. the probability measure v and A € R™ be a matriz whose (I, k)™
entry Ay = Yi(t;). Then, to successfully recover b from y = Ab with a probability at least

(1 — €) will require at least m samples satisfying

~ ~2
m c1k 9 7

> In“(1 In(4N)In (| - 4.
n(10m) = 2 sIn*(100s) In(4N) In (€> (4.95)

and when El|| Zlfil X X7 = T||s < 874/9

D 1
m > 22K In (-) (4.96)

€

PROOF. Re-arrange Theorem 4.3.2 to obtain (4.95).
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When E||| 7, X, X7 —T|||s < 87,/9, as per [21, Theorem 8.4], € can be strengthened as

=P [|I1> X7 ~ 1, >
=1

" ) . i
Bl S XX — ||, + Qrin + (4.97)
=1
Since 7,/sK? < 1, using [21, Theorem 6.25]
. 2
(@+5)
e<exp | — —
2nsk?+4 (%) i+ 2 (Q+ %)
mys
= = 4.98
o (-5 per) (55
where ¢y < 456 and D; = fjg%/ /:62.
Rearrange (4.98) into (4.96). O

4.4. PHENOMENA DISCOVERY IN WSNs: A COMPRESSIVE SENSING BASED APPROACH

A Compressive Sensing (CS) based solution is proposed for centralized and distributed
discovery of physical phenomena in large scale Wireless Sensor Networks (WSNs). WSNs
monitoring environmental phenomena over large geographic areas collect measurements from
a large number of distributed sensors. Compressive Sensing provides an effective means of
discovery and reconstruction of functions with only a subset of samples. Traditional CS relies
on uniformly distributed samples which limits practicality of CS based recovery. To enhance
the flexibility of sampling and implementation, the proposed approach uses random walk
based samples. Unlike uniform sampling, random walk based sampling enables individual
nodes achieve phenomenon awareness, i.e., the physical distribution of the phenomenon. We

also derive a theoretical upper bound for the reconstruction failure probability. Simulation
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results on the number of samples required and error show that random walk based sampling
is comparable to uniform sampling but with superior energy efficiency. More importantly,
the proposed scheme provides a practical solution for a range of applications where uniform

sampling is less economical or even infeasible.

4.4.1. INTRODUCTION. Future Wireless Sensor Networks (WSNs) can be envisioned as
large information ecosystems of millions of sensors embedded in the environment. Apart from
the complexities posed by the enormous scale, factors such as lack of direct connectivity [66],
coverage and delay intolerance [67], make data dissemination and fusion much challenging.
Therefore, schemes for data dissemination capable of handling vast amount of data, which
are also resilient to intermittent connections and lack of connectivity are in demand.

Compressive Sensing (CS) [11] is an attractive approach to estimate functions from a
minimal set of samples. Employing a domain where a signal is represented with a min-
imal support, CS can recover a high dimensional signal with a small number of random
projections or samples of the signal. The distribution of the samples has a major effect
on the recovery [21]. Among the distributions identified as feasible, uniformly at random
sampling is predominant in literature. However, gathering uniformly scattered samples is
expensive in practice. The goal of the presented work is to investigate function recovery of
natural physical phenomena using practical sampling schemes and domains providing sparse
representations.

Phenomenon, in this dissertation, refers to a distribution or some other profile, e.g.,
a chemical plume, being monitored by a sensor network. Current CS based phenomena
discovery approaches are implemented at a BS instead of at individual nodes [68], as they
employ uniform sampling. Since collecting a set of uniformly scattered samples is costly

to realize, data are only gathered at BSs, not at individual nodes. We define phenomena
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awareness as nodes being conscious of the phenomena the network is observing and call
the perception process as phenomena discovery. Phenomena awareness ranges from a gross
estimation to the exact recovery of the phenomena. This awareness at individual nodes
can dramatically improve the capability of the network to efficiently track and react to the
changes of the phenomenon. In this dissertation, we demonstrate achieving phenomenon
awareness at individual nodes efficiently in a distributed manner. In the presence of a
BS, phenomena awareness may be achieved at BS as well. Phenomenon awareness at the
node level facilitates smarter and adaptive sensing strategies and provides localized decision
making ability to sensor-actuator applications, with no involvement of a base-station. An
upper bound is provided for the probability of recovery failure of CS based recovery under a
given basis and a sampling scheme. This upper bound provides an estimate for the number
of samples required to reconstruct a function within a desired error margin.

We present several motivating examples next. The hydrologic study by USDA-ARS Great
Plains Systems Research (Fort Collins, Colorado) has 110ha of a winter wheat and fallow
strip cropping system [69], where soil measurements are collected using sensors mounted on
a pickup truck. A traditional CS realization needs samples scattered uniformly over the
field, which is difficult to achieve with a truck. However, the truck could make random
walks (RWs) to collect samples with much ease. We are interested in knowing whether CS
reconstruction is possible with RW samples instead of uniform samples. Another application
is Intel’s Wireless Vineyard [70] which uses ubiquitous computing for agricultural monitoring.
Here, the network is expected to not only collect and interpret data, but also to use such
data to make decisions related to detecting parasites and using appropriate insecticides. In
this delay tolerant network application [71], data collection relies on data mules [72] - small

devices carried by people/dogs/robots that communicate with the nodes and collect data.

106



Here as well the collected samples may not be uniformly scattered. The results presented in
this dissertation are applicable under such scenarios.

Distributed phenomena discovery has many emerging applications. If the sensor nodes in
Intel’s Wireless Vineyard are phenomena aware, then the sensed information can be accessed
via any node using a mobile phone, and alerts can be sent out via automated emails or text
messages. Vehicular Ad-hoc Networks (VANETS) - networking vehicles with one another
to build an infrastructure that provide drivers information beyond their field of vision and
warn them about accidents or traffic jams [73] is another example, where it is necessary for
individual nodes to be aware of phenomena being monitored.

The rest of the section is organized as follows: Section 4.4.2 presents related work. Pro-
posed novel algorithm for phenomena discovery using random walk and a mathematical
bound for the reconstruction performance is discussed in Section 4.4.3. Section 4.4.4 delivers

performance evaluation. Finally, Section 4.4.5 concludes the section.

4.4.2. RELATED WORK. Single dimension function recovery in underwater sensor net-
works is discussed in [74], where function is assumed to be sparse in Fourier domain and
sensors send their information directly to the base station in a uniformly at random manner.
Discovery of binary sparse events using Bayesian detection is addressed in [75]. However,
the performance of their scheme decays as the signal to noise ratio (SNR) approaches 20dB.
Minimizing the network energy consumption through joint routing and compressed aggre-
gation is the goal in [76], with uniformly at random samples routed to a sink through a
tree based structure. A scheme to efficiently exchange features in VANETS is developed
in [77]. An energy efficient compressed sensing scheme for wireless sensor networks using
spatially-localized sparse projections is proposed in [78] by using measurements from clus-

ters of adjacent sensors in order to reduce transmission cost. Differing from the above, [79]
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proposes spatial domain sparse function recovery at a sink using RW based linear combina-
tion of the sensed values. However this scheme has scalability issues related to RW samples
required in larger networks.

A CS for manifold learning protocol (CSML) is proposed in [80] for localization in wireless
sensor networks. Here, each sensor transmits a subset of distance measurements to a central
node. Then the central node reconstructs the full pair wise distance matrix through an L1-
minimization algorithm. A CS based approach for sparse target counting and positioning
scheme is proposed in [81]. The proposed greedy matching pursuit algorithm (GMP) in [81]
complements the well-known signal recovery algorithms in CS theory and proves that GMP
can accurately recover a sparse signal with a high probability.

All the successful implementations discussed above share two common factors: uniformly
at random sampling and recovery at a base/central station. The focus of this research is
on smooth function discovery in a suitable domain, using a pragmatic sampling scheme.
Uniformly sampled sensor values require many nodes to participate in propagating sensed
values of a limited number of nodes to the BS. We are tempted to ask “why not make use
of the sensed information lying on the paths leading to the BS?” Collecting uniformly at
random samples also require sensor nodes to be placed and activated uniformly in the sensor
field, which is less or even not practical in many of the applications. We propose RW based

sampling, and demonstrate centralized and distributed phenomena discovery.

4.4.3. COMPRESSIVE SENSING UNDER RANDOM WALK BASED SAMPLING IN Dis-
CRETE COSINE DOMAIN. Compressive Sensing [11] is posed as recovering an n-dimensional
signal X (€ R") that is k-sparse in its sparse representationz(€ R", with m(< n) number
of samples y(€ R™) given by y = Ax. If y is a subset of samples of X and X has a sparse

representation in a domain whose inverse transform is W, the problem can be re-written as
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in [17]:

y=RX =R(Vz)=(RVY)z (4.99)

where A = RV is called the measurement matrix and R is a subset of rows of an n x n
Identity matrix selected by some probability mass function (pmf). Most of the theoretical
recovery bounds in CS are derived from the Restricted Isometric Property (RIP) of the
measurement matrix A. RIP requires every combination of support of  many columns of A

to be well conditioned as [11]:

(1= 9)ll=lly < [[Az[[y < (1 + 0)][l2 (4.100)

where ¢ is called Restricted Isometric Constant (RIC) and is specific for the support of x.
Authors of [57] provide a summary of solvers that can be used to solve the CS problem when
the RIP is satisfied. The work presented in this dissertation uses L; minimization [11, 46]
to recover the signal vector. Given y and A, the under-determined system (4.99) is solved
for x as:

minimize ||z||; s.t. Az =y (4.101)

where || - ||; is the Lj-norm and A(€ R™*") is the sensing/measurement matrix.

The goal is to recover the sparse transformed domain representation of the function/sig-
nal. Here, two main design criteria emerge: (1) the choice of the basis/frame, and (2) the
row selection scheme. The basis/frame is chosen to provide a sparsest possible representation
of the signal. The row selection scheme essentially is the sampling scheme. The probability
of failure and the minimal number of samples required, when the measurement matrix is
constructed by drawing rows from an orthonormal basis is derived in [21] according to an

orthogonalization measure. For example, a measurement matrix constructed by uniformly
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sampling the Fourier basis meets the above requirements. Deviating from the traditional
approach, in this dissertation we sample the basis based on a pragmatic sampling schemes
that can be used in a sensor field. Next, we discuss the basis and the sampling scheme
selected.

4.4.3.1. Why Discrete Cosine Basis? According to [21], operating on a basis where the
signal is sparsest, provides highest recovery probability. Therefore, in a WSN deployment to
monitor real-world physical phenomena, sensing the Discrete Cosine Transform (DCT) of the
phenomenon is rather promising. As reference [82] points out, the DCT of natural signals
achieves nearly optimal energy compression - comparable to Karhunen-Loeve transform,
yielding the fewest coefficients, i.e., the sparsest representation.

4.4.3.2. Why Random Walk as the Sampling Scheme? Random routing is based on Ran-
dom Walk or Brownian motion models and is the basis for a large number of routing al-
gorithms for WSNs [83]. In random routing, each node randomly selects a neighbor and
forwards the received message. Rumor routing [83] is an example RW routing protocol, in
which messages such as agents and queries, also called rumors, randomly traverse the net-
work. Even when the network is structured and deterministic routing is possible, random
routing schemes play a crucial role in WSNs in discovery of resources and disseminating
information, especially in the absence of a base station that acts as a global moderator.
Moreover, RW motion models are applicable for the case where samples are collected by a
carrier. Thus, random routing is highly desirable in WSN applications. However, using RW
routing to gather a set of uniformly scattered measurements from a sensor field is rather
inefficient. Making the messages traverse in a RW manner, while collecting measurements
along the path it traverse is more practical. But, such will not result in a uniform selection

of measurements. Instead we receive a set of RW collected samples.
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4.4.3.3. Implementation - Random Walk based Phenomena Discovery. This section dis-
cusses the proposed RW based phenomena discovery algorithm for centralized and distributed
realizations.

Centralized Realization of Phenomena Discovery. In a centralized implementation, the
network has a base station (BS) with a higher computational capacity. There are many
scenarios where a centralized implementation is feasible or even preferable [70]. In this
setup, we assume there is a carrier - a robot/vehicle/animal, collecting sensed information
while traversing the network on a RW. At the end, the carrier either returns or transmits
the collected data to the BS. Then BS will form and solve the CS problem to recover the
phenomenon. Under similar conditions, forcing the carrier to collect samples uniformly at
random is not pragmatic.

Distributed Realization of Phenomena Discovery. Nodes becoming phenomena aware
with distributed schemes without the involvement of a base-station is crucial for many fu-
ture ubiquitous sensor/actuator network applications. This phenomena awareness may be
achieved using messages that continuously disseminate in the network for event/destination
discovery or other management purposes. Let X be the vectorized 2D sensed phenomena.
Then each node has a corresponding entry in X. For simplicity, we assume nodes are num-
bered in ascending order from the top left corner to bottom right corner (see Fig. 4.2), which
is used as the node ID as well the index in X. In a localized network, physical position
information of nodes can be used to organize X. If the network is not localized, a hash
function can be used to map some identification of the node to an index in the range of
X. Consider the example grid network in Fig. 4.2, where a message generated by node-8
traverses the network in a RW while disseminating information it gathered so far from the

nodes it visited. When a node receives a message, it stores the content. Then the node
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piggybacks its node I D and the measurement to the message and forwards to a randomly
selected neighbor. For instance, node-15 may receive the message [IDsg, Ty, I Dy, Ty] from
node-9. Node-15 then stores the message and appends its node identification I D5 and mea-
surement 775 and transmits to a neighbor. After visits from multiple packets, a node may
accumulate a sufficient number of samples for recovery and construct the entire phenomena

using the algorithm in Fig. 4.3.
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FIGURE 4.2. RW based sample collection on an example grid

In next section we evaluate the probability of recovery failure of this process. The pro-
posed mathematical bound provides a bound on the minimum number of measurements
needed to recover the function within a desired error margin.

Reconstruction Failure Probability. The support of the signal vector is the set of indices
of non-zero elements. Let z with support S be the signal to be recovered and |S| = s the
number of non-zero elements, i.e., sparsity of x. Failure of recovery of a signal with support

S is viewed as A being unable to satisfy RIP. In this case, RIP implies that a sub-matrix
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function PHENOMENA DiSCOVERY (Collected samples of the phenomena)
m < number of collected samples
y«<Tyi=1,...,m
Z <+ 1ID;,i=1,....,m
if m > my then
fori=1,...,mdo
for j=1,...,Nr do
if j == 1 then
U(i,75) < +/1/Np
else
k<« ID;
U(i,j) < /1/Nrcos (%J;l)])
end if
end for
end for
SOLVE(min. ||z[|; s.t. Yo =y)
X «+ IDCT(x) > Inverse DCT of x
else > more sample required
for j=1,...,mdo > check whether ¢ is a new sample
if ID; == 1D; then
flag < 1
end if
end for
flag < 0
if lag == 0 then
ID,, 1 < ID;
Tm+1 <~ T’z
else
flag < 1
end if
Forward the packet to a neighbor to which which the packet has not been previously
forwarded.
end if
return Reconstructed phenomena
end function

F1GURE 4.3. Distributed phenomena discovery algorithm implemented at a node.

formed by columns of A over S referred as Ag being nearly orthonormal, i.e.,

|AsAs —T||, < 6. (4.102)
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Here Ag denotes column wise normalized Ag and § is the RIC. The probability with

which the above is unable to be satisfied is defined as the probability of failure e.

e=P||ALAs —1T|s >4 (4.103)

Let X; = (\Ifj (tl)) then, expected value of X;X;

jES?

E (X[ X)), = bjk (4.104)

EX;X,=1+n (4.105)

where E is expectation, ¥ is an orthonormal basis, ¢; is a set of arbitrary indices and T is
the identity. 7 is the off-diagonal elements of EX*X;. According to [21] in scenarios such as
when the basis is Fourier and the sampling scheme is uniform and 7 is null; thus, Fourier
basis with uniform sampling is widely accepted to provide the optimal performance. Since
we are using a different sampling scheme, recovery performance is degraded due to nonzero
7, thus, requiring additional number of samples to achieve similar recovery properties such
as probability of failure, error in recovered function, etc., compared to those when uniform
sampling is used. The general form of the RIP condition given in (4.100) can be re-arranged

to:

0= max

_ A Ag — ]IH 4.106
Sc{1,...n},|S|<s §4%5 2 ( )

From Markov Inequality the probability of failure is bounded above by;

L. E
P ||| AsAds — 1, > 0] < =2 (4.107)
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where E, is E Hflgfls — ]IHp. Substituting for T from (4.106)
2

p

+E[nl (4.108)
2

E,=E HA;AS - HHP <E
2

1 m
— > XX, - EX| X}
m =1

Note that E||n||5 is the noise generated due to the deviation from uniform sampling. By

/14 D? + @ + D
4 D? 2

P 1/p 2
where D = ((\%ﬁ) 23/45pP/2 exp (—’5’)) . Let & =4 /1+ 5+ % + L. Substituting E,

(4.109) in (4.107) and rearranging terms, we obtain the failure probability e

solving for £,

1
E)? <D (4.109)

A A 3 %m
P[H s S_]IH2] =€ < 2isexp Y (4.110)

where m is the number of measurements needed under any sampling scheme and K is the
upper bound of || X;|l2 < 4/s. Complete proof is available on [65].

The theoretical number of samples required for uniform sampling as in [78] is evaluated
and shown in Fig. 4.4 under failure probabilities 0.1%; 0.5%; 1%, against sparsity. ¢ and K
were set to 0.5 and 1 respectively. The number of samples required under same probabilities

of failure (€¢), by RW based sampling evaluated by simply solving (4.110) for m, which is

m > KRy (22/35

62 €

), for the same sparsity range is also plotted in Fig. 4.4. Monte Carlo
simulation of RW is used to estimate the probability distribution of a message visiting a

node and & is estimated.

4.4.4. PERFORMANCE EVALUATION. Temperature distribution map of State of Alabama
[84] during August averaged over 1951 - 2006 years was used to demonstrate the effectiveness

of the RW based phenomena discovery (See Fig. 4.5(a)). There are a total of 7653 data
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FIGURE 4.4. Variation of m and m with sparsity under different failure prob-
abilities (¢) for a 100 x 100 grid network

points in a grid structure where we assume 7653 sensors are deployed. Each node is capable
of communicating with its immediate four neighbors, i.e. communication range is one grid
segment.

The presented experiments look into the cost of implementing centralized and distributed
phenomena awareness with random walk sampling using a suitable basis. Experiments are
carried out on MATLAB 2011a and L1 magic [46] is used as CS solver. Performance eval-
uation metric is the percentage reconstruction error (E,) of the recovered function defined
as:

1 _
B, = — X, — X.| /X)) x 100 4111
NT;(‘ k= Xi| /X)) % (4.111)

where Np is the total number of samples in the function, which is the same as the total
number of sensors in the network. X and X} are the k' sample of the original function

and the reconstructed function respectively.
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First, a pre analysis of temperature distribution in Fig. 4.5(a) was performed to identify
its sparsity level. The number of significant coefficients defines the sparsity level. If the
function to be reconstructed is sparse in DCT domain, we expect only a few significant DCT
coefficients. It was found that to approximate the temperature function in Fig. 4.5(a) within
a 0.1% error, 3183 DCT coefficient out of 7653 were required. This implied that even in

DCT domain the selected phenomenon is not as sparse as expected.

(s} (b) E = 0.38% (c) E, = 0.88%

FIGURE 4.5. (a)Average temperature distribution of State of Alabama in Au-
gust. 7653 sensors in total are available. (b) Reconstructed image based on
2583 samples collected at the BS by a single carrier (¢) Reconstructed image
at randomly selected node when 1056 samples were collected in that node

In order to compare the theoretical prediction with the simulated, we begin our per-
formance evaluation by finding the number of samples needed to recover the approximated
version of phenomena in Fig. 4.5(a) based on the most significant s DCT coefficients. The
number of coefficients to be recovered is considered as the sparsity (s) of the function. Here a
message with a predefined TTL (Time To Live) is disseminated into the network. Note that
due to the possibility of revisiting to the same node the message will not be able to collect
TTL many unique samples. Recovery error of reconstruction against the samples collected
by the message is plotted as in Fig. 4.6, for three sparsity cases: 2, 3 and 4. As Fig. 4.6
indicates, the empirical values for the number of measurements needed to obtain an FE, of

1%, for sparsities 2, 3, 4 is less than 600. Dashed lines in Fig. 4.6 indicate the theoretical
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FIGURE 4.6. Variation of E, with the empirical number of samples used when

(a) s=2 (b) s=3 (c) s=4. Dashed lines show the theoretical number of samples
needed and the dotted line show the Er=1% level.

estimates for the number of samples required under each sampling scheme. The theoreti-
cal values are an over-estimate as they are based on satisfying the sufficient conditions of
recovery.

Although such natural phenomena can be approximated by a sparse representation with
only a few non-zero coefficients, in next simulation results, we aim to recover the original

dataset - not an approximation of the original with low sparsity.
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4.4.4.1. Performance of Phenomena Discovery at the Base Station. Here, the base sta-
tion is assumed to be at (0,0). A carrier (robot) collects sensed information and node IDs
while moving from one node to another in a RW of step size one. The maximum number of
steps that the carrier will take is set to 4000 when there is a single carrier. Since revisiting
to the same node twice is allowed, the carrier may collect less than 4000 samples. Fig. 4.5(b)
shows an example recovery under RW sampling at a BS when 2583 unique samples were
available. In reality, the true sparsity of the phenomenon is unknown. Therefore, the theo-
retical number of samples needed is undetermined. In Fig. 4.7 we demonstrate the variation
of E, with the number of samples used. The variation of error as two carriers collectively
gather the same number of samples is also plotted in the same Figure. In the experiment
with two carriers, each carrier has a TTL of 2000. As can be seen, performance in terms of
FE, depends more on the number of samples than the number of carriers used. Even though
collecting samples under uniform distribution is difficult in practice, we show the recovery
error under simulated uniform sampling as a comparison. Error performance under RW
sampling is only about 0.2% away that of under uniform sampling, when 2000 samples are
available.

4.4.4.2. Performance of Distributed Phenomena Discovery. To the best of our knowledge,
CS based distributed phenomena discovery in WSNs is proposed here for the first time. We
envision that future WSNs will evolve over their lifespan and become increasingly aware of the
sensed phenomena. Thus, the proposed scheme will provide a cost effective infrastructure.

We use the same temperature dataset for the distributed phenomena awareness imple-
mentation and evaluation. In a WSN where there is no fixed BS, random routing is used for
event and sink discovery [67]. Those messages can be used to make network learn the phe-

nomena being observed. Note that while phenomena discovery at a BS used carriers incurring
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FIGURE 4.7. Variation of average error with number of samples used for re-
construction in centralized recovery. Single carrier with 4000 steps in total
and two carriers with 2000 steps per each were used.

cost, the distributed implementation uses packets already disseminated in the network in-
curring no additional cost. In the simulation, 1000 messages with TTL 300 are generated
at a randomly selected node and traversed on a RW. Messages may revisit the same node
but message will carry only one sample per visited node. A view of the phenomena at a
randomly selected node, which has collected 1056 samples from the messages that passed
through it, is given in Fig. 4.5(c). Figure 4.8 shows the average error F, in the recovered
phenomena at different nodes. The mean F, is calculated over nodes with the same number
of samples collected.

Next, we consider the convergence of the entire network achieving phenomena awareness
in a distributed implementation. Figure 4.9 shows the mean rate of nodes achieving phe-

nomena awareness under two different TTL values. From Fig. 4.8 we deduce that a node
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FIGURE 4.8. Variation of average error with number of samples used for re-

construction in a distributed manner. Evaluation is after 1000 messages with
300 TTL disseminated in the network.

needs at least 1000 samples to become aware of the sensed phenomena with an E, of less
than 2%. When TTL is 300, at least 1200 messages need to be disseminated in the network,
while when TTL is doubled the required number of messages reduces to less than 400. Note
that the network considered has 7653 nodes. If the traditional uniform sampling was used,
for entire network to become aware of the phenomena, 1000 randomly selected nodes need
to flood the network which leads to at least 7,653,000 transmissions. But the proposed ap-
proach achieves a map with a similar E, with at least 240,000 transmissions with TTL 600,

providing approximately 96% reduction in the number of transmissions.
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FIGURE 4.9. Convergence rate of nodes achieving phenomena awareness in a
distributed implementation when messages has TTL 300 and 600.

4.4.5. CONCLUSIONS. A novel implementation using compressive sensing for phenomena
awareness is proposed. The proposed algorithm provides nodes with network-wide knowl-
edge of the events observed. Moving beyond the traditional approach of uniform sampling
based CS for function recovery, we illustrate that RW based sampling can practically and
successfully be used for phenomena awareness at base-stations and at each sensor without
a BS, with minimal additional samples. An upper bound for the probability of successful
recovery with a given error percentage is also derived. The derived bound provides an ap-
proximate number of samples required to recover a function under a selected basis and a
sampling scheme.

We considered random walk as the mobility model due its wide spread usage in WSNs.
But other mobility models as random waypoint model, Markovian model etc. can also be
used in the same manner. Performance bounds for CS based phenomena discovery using a
frame - an over complete basis, instead of an orthogonal basis and other practical sampling

schemes that accurately captured by motion models are under investigation.
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4.5. SUBSURFACE PLUME TRACKING USING SPARSE WIRELESS SENSOR NETWORKS

Deployment of sensors for tracking chemical plumes such as those in the subsurface can
be quite expensive. A compressed data gathering scheme for chemical plume tracking is
presented. With only a fraction (about 25%) of the measurement points required to achieve
a given spatial resolution this novel application of compressed sensing can track the plume
within 7% accuracy compared to the case of a full sensor array. The scheme also gathers and
re-distributes information of the sensors to the entire network, compressing with Discrete
Wavelet Transform. The scheme can be used to disseminate global tracking information to
sensors as well, with savings in communications by a factor of 5 in average, if such capability
is required. The scheme is capable of interpolating randomly missing sensor points with
significant accuracy. It also supports data fusion as a simple addition of coefficients requiring

no changes to the message length.

4.5.1. INTRODUCTION. In a variety of situations in environmental science and engineer-
ing, some of them related to national security, it is necessary to track and monitor chemical
plumes, to make predictions on their future behaviors, and to evaluate potential risk to
humans and ecological environments. While it is desirable to have data on chemical concen-
trations collected at high spatial and temporal resolutions to facilitate reliable predictions,
the cost and other logistical factors associated with installing sampling wells limit the mon-
itoring accuracy and the resolution achievable. Specific situations dealing with tracking
dissolved contaminant plumes in flowing groundwater require the collection of water sam-
ples from sparsely distributed monitoring wells. With current technology, these samples are
delivered from field sites to testing laboratories to conduct chemical analysis to determine

dissolved concentrations. For accurate tracking, this tedious and expensive process has to be
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repeated frequently. Recent advances in Wireless Sensor Network (WSNs) have the potential
to alleviate this labor intensive and time consuming task of data gathering. With wireless
sensor nodes (motes) that measure and transmit the concentrations in situ in sampling wells
in real-time, the need for manual collection of samples can be avoided. However, installa-
tion and maintenance of a large number of WSN nodes (containing sensors interfaced with
motes) required for large-scale and evolving plumes can also be expensive. Minimizing the
number of sensors will allow for this real-time monitoring technology to be a viable option.
Sampling at regular spatial intervals (e.g., with sensors arranged in a rectangular grid) can
be challenging at field sites, wherein an unstructured deployment of motes would be more
realistic. The distribution of such nodes will be determined by other factors associated with
the geography and accessibility of deployment locations (e.g., to avoid buildings and other
land infrastructure features). Effectively using a random deployment of sensors to obtain
satisfactory results is also of interest.

Many interesting phenomenon in chemical plume tracking, seismic activity monitoring,
animal migration tracking, etc., results in data in the forms of configurations with fairly
regular boundaries and smooth gradients over the sensor field. Image processing algorithms
often deals with similar regular features. A number of transforms such as Discrete Cosine
Transform (DCT), Discrete Wavelet Transform (DWT) are known to effectively compress
images with regular shapes. Moreover these transforms are realizable as linear transforms
and can easily be implemented on sensor motes with limited processing capacity. The goal
of this work is to use such image processing techniques to reduce the amount of information
transferred back and forth on sensor networks, while improving the resolution for a given set

of sensors. The technique also enables the redistribution of the state of a part or the entire
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network back to each node efficiently. This feature could be used to develop future smart
sensing schemes that operate more intelligently.

4.5.1.1. Related work. WSNs are widely used in applications related to environmental
and habitat monitoring, reconnaissance and building automation [85-89]. A WSN node,
also called a mote, consists of a processor and a wireless transceiver interfaced to a sensing
device to measure the interested phenomenon, [90].

The feasibility of using WSNs for subsurface chemical plume tracking applications has
been demonstrated in [91, 92]. Some of the challenges posed in traditional data gathering as
described in [93] prevent the accurate tracking of the plume. Low maintenance, miniature
sensing devices such as electrical conductivity sensors [94] are placed in wells at different
depths for monitoring the plumes. The WSN has to be configured for efficient operation
[95], and can coupled to numerical models to form a closed loop system that uses WSN
readings to calibrate the model, while the model provides information for data collection
and node activation [96].

The potential for sensor readings related to many applications to be compressible is well
known. Most work exploits the local correlation of the readings. Reference [97] provides an
information theoretic derivation, based on correlations of sensor readings, on savings possible
for one- and two-dimensional networks. The Hierarchical Cooperation scheme presented
in [97] achieves logarithmic scaling on traffic and schedule lengths. A data compression
scheme based on wavelet decomposition and reconstruction is applied hierarchically at cluster
heads in [98] with the goal of reducing waste in transmitting raw data to the data-center.
Reference [99] points out the fact that wavelets approximate missing data on sensor readings
when applied on a correlated structure. Their method - Data Correlation Compression

(DCC) relies on Gaussian assumption of sensor data. A scheme utilizing historical data to
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reduce the amount of information needed to be transmitted is presented in [100]. A localizing
scheme based on correlation is used to improve the accuracy on the multi-level clustering
structure. Spatio-temporal correlation can be exploited to identify redundant sensors as
indicated in [101], where wavelet transform and Fourier transform are used for compressing
time series on individual sensors.

4.5.1.2. Contribution. A novel approach for reducing the number of sensors used and/or
improving the resolution of the measurements in plume tracking applications is presented.
With a fairly small fraction of sensor readings, the scheme is capable of approximating the
status of the entire network to a significant accuracy. With the proposed approach, the
energy spent gathering the status of the network and then redistributing that information
back to the network is a magnitude less than with the conventional approach. Fusion has
no effect to the message length, thus, it requires no additional bandwidth.

Section 4.5.2 discusses the theoretical background. An analysis on the communication
cost is presented in Section 4.5.3. Sensor deployment is addressed in Section 4.5.5 while Sec-
tion 4.5.6 presents the results of the work. Scheme and results are evaluated in Section 4.5.7,

followed by conclusions in Section 4.5.8.

4.5.2. DISCRETE WAVELET TRANSFORM BASED COMPRESSION. We view the mea-
surements collected by the sensors as pixels of an image. We assume that the underlying
chemical concentration image has pixels on a fine grid. However, the wireless sensors are
randomly deployed and only sparsely populate this grid. Our objective is to reconstruct the
image on the fine grid from the sensor measurements. To minimize communication volume,
we also wish to compress the data collected by each sensor before processing. We show in
this dissertation that a simple DWT compression provides reasonable results. We start by

reviewing two-dimensional DW'T.
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4.5.2.1. DWT compression and reconstruction. Most real images are compressible in the
DWT domain. The DWT successively splits an image into an approximation component,
which captures the smooth part of the image, and several detail components, as shown in
Fig. 4.10. Roughly speaking, at each level, the H; filter is a “low-pass” filter that passes the
smoother part of the image and the G; is a “high-pass” filter that passes detail components.
As the DWT branches are traversed the size of the signal decreases diadically (down-sampling
by 2). Since an image is two dimensional, each transformation is applied in two dimensions,
the horizontal (row-wise) and vertical (column-wise) and as we proceed through successive
branches the number pixels in the DWT image is reduced by a factor of 4.

To compress the image, we discard the detail components and only keep the coarsest

approximation component produced by the bottom most branch in Fig. 4.10.

path in bold - coarsest approximation and recovery
H; - i™ level approximation filter

H; - i*™ level reconstruction filter

Wy - i level vertical approximation filter

Ty, - i level vertical reconstruction filter

Uy, - i™™ level horizontal approximation filter

Wy, - it level horizontal reconstruction filter

X - original image

Y - reconstructed image

FIGURE 4.10. Block diagram of wavelet transform
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The DWT however needs to be calculated in a distributed fashion, where each sensor
computes the contribution of its own measurement to the coarse approximation term without
having the knowledge of measurements from the other nodes in the network. To accomplish
this, we work with point spread functions (PSF) associated with each sensor node as we now
describe.

Consider the coarsest approximation branch in Fig. 4.10. The coarsest approximation A

for this branch can be expressed in matrix form as:

A=V XUy (4.112)

where, X is the original image defined under the fine grid, ¥y, is the DW'T matrix in vertical
direction and Vg is the DWT matrix in horizontal direction.

The vertical DWT matrix Wy, (accounting for down-sampling) at the i*" level for an n xn
image is given by (j =1,...,n/2" k=1,...,n/2"):

Uy, = (4.113)

(3

0 otherwise

where, [ is the length of the filter and h;’s are the scaling coefficients of the filter. The
horizontal transform Wy, is the transpose of Wy,. The coarse approximation component A;

at level 7 is given by

A =Ty X, Uy (4.114)
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where, A is equal to X. If an L-level DWT the coarse approximation component A can be

calculated from (4.112) with:

Ty =Ty, Uy, -0y By, (4.115)

Uy =Wy Uy, - Uy, Uy (4.116)

We can write the coarse term approximation to A as:

A= Ay = D W ()X () Al ) (4.117)

where Ag; ;) = Wy (-,4) X (4, )V x(J, -) is the contribution of the (i, j) pixel X (7, j to the coarse
approximation A. The notations (-,7) and (7, -) respectively mean the i*® column and the

J* row of a matrix. Thus, we can think of PSF of pixel (i,7) as:

PSF(i,5) = Uy (1)U x5, ) (4.118)

If all X (7, ) on the fine grid were available we could obtain the coarse approximation compo-
nent A by simply transmitting PSF's scaled by the corresponding pixel value. The advantage
is that each PSF can be calculated locally without knowledge of other pixels. The size of
each PSF matrix is 2/n” x n/2%.

In our case sensors sparsely populate the image grid and we only have access to a small
number of pixels at random locations. Nonetheless, we show that by combining the PSF's
associated with these sensor locations we can still obtain a reasonable reconstruction of the
chemical plume concentration.

Coefficients of the PSF depend on the wavelet transform and the filter selected. They can

be built into the sensor motes prior to deployment. Therefore computing the contribution of
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each sensor to the approximation can be done locally, which involves only scaling the PSF
by the sensor reading.

Another advantage of this method is that computing the approximation of a part of or the
entire sensor field becomes an addition of the contributions of each of the sensors. This allows
sensors nodes to fuse their contributions to a single message conveniently and opportunely.
For example, if the sensors are reporting to a base station over a tree, an intermediate node
will add its coefficient matrix to the coefficient matrices it receives from its children nodes
and transmits the result to its parent. Thus, there will be only one transmission per link
in the tree carrying all the information of the subtree below. Regardless of the position of
a link in the tree the size of the composite PSF matrix that the link needs to communicate
stays the same.

Once the base-station receives the sum of all contributions the image can be approximated
by applying the inverse-DW'T, as shown in Fig. 4.10. The synthesis filter pair (ﬁ , é) and
analysis filter pair (H, G) are quadrature mirror filters, satisfying the perfect reconstruction
condition [102]. Note that in the synthesis tree all detail components are zero.

However, this reconstruction can also be done at each sensor as will be shortly explained.
While it is not essential for a node to know about the plume spread in the entire flow
region, we envision future intelligent plume tracking systems where sensing operations within
a locality may benefit by having global information on plumes. A simple extension to
the scheme provides the ability to re-distribute the global information to cluster heads or

individual sensors efficiently.
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TABLE 4.1. Daubechies D4 Scaling Coefficients

Coefficient \ Value
hy (14 V3) /4v2
ha (34 V3) /4v2
b | (3-v3) 4V
| (1-v3) 43

Suppose the coarse approximation component A is broadcasted from the base-station,

then the inverse-DW'T approximation can be calculated as:

X =0, ATy, (4.119)

where, A is the sensor network approximation to the coarse approximation component A.
The matrices ¥y and Wy are vertical and horizontal synthesis matrices. They are of the
form (4.115) and (4.116) respectively, but constructed from elements of similar to (4.113).
4.5.2.2. Implementation with Daubechies Dj wavelet. We present a sample implementa-
tion of a single level compression using Daubechies D4 wavelet. The coefficients of the H
filter are shown in Table 4.1. The single level vertical and horizontal DWT matrices are

given by:

hi hy hg hy 0 0 0 O

0 0 hy hy hg ha 0 0O
Uy = (4.120)

0 0 0 0 hy hy hy hy

Uy = Ui, (4.121)

The PSF to be loaded to each node is computed using (4.118). The PSF for a node is a

few non-zero elements often appear as a single patch on a mostly empty matrix. During
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reporting, each node will scale the pre-loaded PSF by its measurement. Details of the

compression algorithm are summarized in Fig. 4.11.

function COMPRESSED REPORT(reading, reports from children)

Initialize report <« [| > empty matrix of the size of PSF
for i = 1,..., number of children do

report ¢ <— report of child node ¢

report + = report ¢ > a matrix addition
end for
my report <— PSF x reading > a matrix scaling
report + = my report > a matrix addition

Forward report to parent
end function

FIGURE 4.11. Pseudo code for the compression algorithm

As a simple example, let us consider the 10 x 10 matrix of sensor readings shown in

Fig. 4.12.

0.00 | 0.00 | 1.76 | 2.47 | 2.67 | 2.47 | 1.76 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 2.20 | 2.80 | 2.98 | 2.80 | 2.20 | 0.00 | 0.00 | 0.00
0.00 | 1.05 | 247 | 3.02 | 3.18 | 3.02 | 2.47 | 1.05 | 0.00 | 0.00
0.00 | 1.36 | 2.62 | 3.14 | 3.30 | 3.14 | 2.62 | 1.36 | 0.00 | 0.00
0.00 | 1.45 | 2.67 | 3.18 | 3.33 | 3.18 | 2.67 | 1.45 | 0.00 | 0.00
0.00 | 1.36 | 2.62 | 3.14 | 3.30 | 3.14 | 2.62 | 1.36 | 0.00 | 0.00
0.00 | 1.05 | 247 | 3.02 | 3.18 | 3.02 | 2.47 | 1.05 | 0.00 | 0.00
0.00 | 0.00 | 2.20 | 2.80 | 2.98 | 2.80 | 2.20 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 1.76 | 2.47 | 2.67 | 2.47 | 1.76 | 0.00 | 0.00 | 0.00
0.00 ] 0.00 1 0.93 [ 1.96 | 2.20 | 1.96 | 0.93 | 0.00 | 0.00 | 0.00

FIGURE 4.12. A sample 10 x 10 measurement matrix

Each sensor is also assigned with a PSF calculated according to (4.118). For example

node (7,4) would calculate its PSF using (4.118) for a single level compression by multiplying
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the 7 column of ¥y and 4" row of ¥y to produce:

0 0 000
0 0 000
PSF(7,4) = —0.020 0.188 0 0 0 (4.122)

—0.062 0.404 0 0 O

0 0 000

According to Fig. 4.12 the reading of the sensor node (7,4) is 3.02 . Therefore the
contribution of the node (7,4) is obtained by scaling PSF(7,4) by 3.02 .

Similarly, all the nodes will calculate their PSF and then scale by their measurement. The
approximation of the entire sensor field is obtained by summing up all the approximations

generated by individual nodes.

10 10
A=Y Auy (4.123)
i=1 j=1
0.210 5.011 5794 1.456 —0.008
1.754  5.899 6.485 3.265 —0.233
A= 2000 6.027 6.583 3.549 —0.269 (4.124)

0.638 5.474 6.204 2.026 —0.066

—0.002 3.731 4.539 0.839 0.000

To obtain an approximation to the chemical plume image we inverse-DW'T is applied on

A and the resultant matrix is shown in Fig. 4.13.

4.5.3. EXCHANGE OF SENSOR DATA. a network in which the sensors are placed on an

n x n grid as shown in Fig. 4.14(a) with a tree communication structure rooted at the center
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0.05 | 0.08 | 1.60 | 2.71 | 2.57 | 2.77 | 1.29 | 0.25 | 0.20 | -0.12
0.08 | 0.15 | 1.83 | 3.08 | 2.89 | 3.08 | 1.49 | 0.38 | 0.25 | -0.15
0.41 | 0.76 | 2.123.213.03|3.19|1.91 | 1.02 | 0.37 | -0.34
0.65 | 1.23 | 2.39|3.40 | 3.22 | 3.36 | 2.28 | 1.52 | 0.48 | -0.49
0.62 | 1.16 {2.35 | 3.37 | 3.19 | 3.33 | 2.22 | 1.45 | 0.46 | -0.47
0.65 | 1.23 | 2.39 [ 3.39|3.21 | 3.35 | 2.28 | 1.53 | 0.48 | -0.49
0.34 | 0.64 | 2.10|3.24 | 3.06 | 3.22 | 1.86 | 0.91 | 0.35 | -0.31
0.13 | 0.23 | 1.90 | 3.14 | 2.95 | 3.14 | 1.57 | 0.47 | 0.27 | -0.18
0.07 { 0.12 | 1.49 252|241 |2.61|1.22] 0.26 | 0.19 | -0.12
-0.04 | -0.07 | 1.15 | 2.03 | 1.99 | 2.19 | 0.88 | -0.02 | 0.10 | -0.05

FIGURE 4.13. The reconstructed measurement matrix

FIGURE 4.14. (a) Nodes placed in a grid with root at the center (b) Levels of
nodes (c¢) A random node deployment with a tree communication structure.

of the grid. We assume that a node is capable of communicating with its eight immediate

neighbors. The levels of the tree then form co-centric squares, with the maximum depth of

(b)

the tree at n/2. The average depth of a node from the root is n/6.

Communication cost is two folds: reporting and re-distributing. During reporting, sensors
report their readings to the root. Then, root informs the status of the network to each of
the sensors during re-distributing. Reporting costs can be alleviated by making sensors not

report, if the reading is null. However, the node still needs to take part in communication

to relay reports from the subtree descending from itself.
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4.5.3.1. Conventional Reporting. Under the conventional monitoring scheme, each node
reports its measurement along with its ID or coordinates. This report has to be to the root,
i.e. n/6 times on average. Since there are n? nodes in the network, the total reporting
cost is O (n3). If the null readings are not transmitted, then communication cost reduces to
O (kn?), where k is the number of nodes having a non-zero reading. Further, overhead in
transmitting individual reports as separate packets can be saved by packing a few if not all
reports received from the subtree to a single message along with its report. Such a fusion
saves overhead cost, yet no savings are made on the amount of payload transmitted. It is to
be noted that in the conventional scheme, reporting the location and the reading provides
no loss of information.

4.5.3.2. Compressed Reporting, Fusion and Recovering Missing Data. Compressed re-
porting exploits the compressibility of data. Instead of reporting the reading and location
information tuple, nodes report wavelet coefficients. Further, data is fused by adding coeffi-
cient matrices. As in conventional scheme, the nodes having a null reading do not contribute
to the coefficient matrix.

Each contributing node will produce a coefficient matrix, which is a small patch of non-
zero elements. By putting together these patches, the approximation for the entire matrix
is formed. Patches are in fact added onto the coefficient matrix - which enable an effective
fusion scheme, where the message length does not change. Under conventional reporting,
reading of each node was stored in the message separately. Such would lengthen message
length as the message arrives at the root. But with the compressed reporting, nodes keep
adding their contributions onto the existing message. Therefore the length of the message is

not affected.
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The size of the coefficient matrix is m x m, with m equal to n/2", where L is the number
of levels of compression applied. When fewer nodes have readings, instead of transmitting
the entire coefficient matrix, the patch and its location information can be transmitted to
save cost.

Compressed reporting imposes a smoothing operation on the measurements. Thus, it
automatically approximates readings of the locations which provided no input. If a malfunc-
tioning node feeds in an abnormally large contribution (an outlier) that would be suppressed
as well.

Let us demonstrate recovering missing data points using the matrix in Fig. 4.12 by
randomly dropping some 10 measurements out of the 100. The resultant is shown in Fig. 4.15.
This doesn’t correspond to a sparse sensor network, but still demonstrates how missing
data points are handled. The actual chemical plume example presented in Section 4.5.6
corresponds to a truly sparse network where the sensors populate only 25% of the grid

points. beginfigure[!ht]

0.00 | 0.00 | 1.76 | 2.47 | 2.67 | 2.47 0.00 | 0.00 | 0.00
0.00 | 0.00 | 2.20 | 2.80 | 2.98 | 2.80 | 2.20 0.00 | 0.00
0.00 | 1.05 | 2.47 | 3.02 | 3.18 | 3.02 | 2.47 | 1.05 | 0.00 | 0.00
2.62 3.30 [ 3.14 | 2.62 | 1.36 | 0.00 | 0.00

0.00 | 1.45 | 2.67 | 3.18 | 3.33 | 3.18 | 2.67 | 1.45 | 0.00 | 0.00
0.00 | 1.36 | 2.62 | 3.14 | 3.30 | 3.14 | 2.62 0.00 | 0.00
0.00 2.4713.02 ] 3.18 | 3.02 | 2.47 | 1.05| 0.00 | 0.00
0.00 | 2.20 | 2.80 | 2.98 | 2.80 | 2.20 | 0.00 | 0.00 | 0.00

0.00 | 0.00 | 1.76 | 2.47 | 2.67 1.76 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.93 2.2011.96 | 0.93 | 0.00 | 0.00 | 0.00

FIGURE 4.15. A sample 10 x 10 measurement matrix with 10 missing values

The approximation derived from the available nodes if shown in Fig. 4.16a and the

reconstruction is shown in Fig. 4.16b. By comparing Fig. 4.16b with Fig. 4.12, it can be
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0.305 | 5.351 | 5.603 | 1.045 | -0.031
1.139 | 3.701 | 6.462 | 3.413 | -0.085
1.802 | 6.027 | 6.730 | 2.595 | -0.238
0.179 | 5.758 | 5.741 | 2.026 | 0.000
0.210 | 2.510 | 3.451 | 0.649 | 0.000

(A) Approximation for the sensor readings with missing nodes
0.09 | 0.16 | 1.56 | 2.61 | 2.39 | 2.50 | 1.09 | 0.09 | 0.14 | -0.10
0.10 | 0.19 | 2.06 | 3.44 298| 3.01 | 1.33| 0.11 | 0.16 | -0.12
0.29 | 0.52 | 1.58 | 2.42|2.78 | 3.27 | 1.89 | 1.01 | 0.40 | -0.28
0.43 | 0.77 | 1.37 | 1.89 | 2.80 | 3.60 | 2.36 | 1.67 | 0.58 | -0.41
0.51 | 0.96 | 2.06 | 2.98 | 3.11 | 3.45 | 2.03 | 1.08 | 0.39 | -0.37
0.61 | 1.16 | 2.51 | 3.64 |3.34|3.42|1.91| 0.83 | 0.30 | -0.38
0.22 | 042 | 2.113.39|1299|3.05|1.71| 0.75 | 0.32 | -0.25
-0.03 | -0.07 | 1.93 | 3.39 | 2.80 | 2.77 | 1.54 | 0.63 | 0.32 | -0.15
0.07 | 0.12 | 1.24 12.08 | 1.99|2.15|1.03| 0.26 | 0.17 | -0.10
0.07 { 0.13 10.69 | 1.11 | 1.34 | 1.62 | 0.62 | -0.04 | 0.06 | -0.04

(B) Reconstruction

FIGURE 4.16. Approximation and reconstruction with missing data

noted missing points are approximated quite closely compared to the range of measurements.

4.5.3.3. Hybrid reporting. Compressed reporting captures the status of the (partial) net-
work by an m x m matrix, instead of the number of nodes many tuples. However, at lower
depths of the tree, where only a few nodes observe some reading, reporting the m x m
matrix or the coefficients patch may be too costly. The hybrid scheme proposes to use
conventional scheme until the number of nodes with a non-zero reading is below %m X M.
Once this threshold is reached, readings are to be transformed to the m x m coefficient
matrix. Implementation of the hybrid scheme is explained in Fig. 4.17. Until transmitting
the coefficient matrix is effective than reporting raw data, conventional scheme is followed,
denoted by reporting mode : 0. When the list of raw data and the coordinate information
grow past the threshold, the coefficient matrix is formed. Thereafter, all nodes contribute in

the compressed mode.
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function GET MODE OF REPORTING
enum mode {0, 1} > 0 :raw data, 1 :compressed data
message length < 0
for : = 1,..., number of children do
Receive message @
message length + = length(message 1)
end for
if message length > 0.5 x m? then
reporting mode < 1

else
reporting mode <« 0
end if
return reporting mode
end function

function CONSTRUCT MESSAGE
if reporting mode == 0 then
message < ||
for i =1,..., number of children do
receive message i
message <— [ message; message 1|

end for
if measurement ! = 0 then _
message < [ message; [coordinates, measurement||
end if
end if

if reporting mode == 1 then
message < ||
for : = 1,..., number of children do
receive message 1%
message + = message ¢
end formessage + = PSF xreading

end if
end function

function TRANSMITTING MESSAGE
if reporting mode == 1 then TRANSMIT(message)

end if
if reporting mode == 0 then
if length(message) < 0.5 X m? then TRANSMIT(message)
else
msg < []
for i =1,... length(message) do
coord <— message i(coordinate)
value <— message i(measurement)
msg + = PSF(coord) xvalue
end forTRANSMIT(msg)

end if
end if

end function

F1GURE 4.17. Pseudo code for hybrid reporting scheme

4.5.3.4. Re-distribution. Future smart sensing schemes on large networks would benefit

by being aware of the state of the entire network. Thus, a phase where the status of the
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network is re-distributed back to the network is discussed here. The methodology of re-
distributing status of the network is intuitive from the hybrid scheme. The status of the
n x n network is compressed to m x m. But if the number of non-zero values in the network is
below %m x m, re-distribution is more effectively done with a conventional approach, where
the location and reading information tuple is broadcast. Otherwise the compressed matrix
delivers the status of the network more effectively.

Then at each node, the inverse transform is performed to recover the status of the entire
network. By doing so each and every node becomes aware of the entire network.

4.5.3.5. Potential Issues. Here we discuss issues associated with the scheme that would
be of interest to certain applications.

Reconfiguring nodes: since each node use a unique combination of Wy and ¥y, reconfig-
uring can be tedious. However, using nodes programmable over the network would alleviate
the effort.

Speed of the plume: a cycle of reporting and dissemination is expected to complete while
the plume is effectively stationary. If the cycle is a slow process, the picture built using the
reports would be inaccurate.

Ringing effects: this is an issue natural to lossy compression. Since the high-frequency
components are discarded, a slight ringing artifact builds on the image.

Blurred image: approximation is analogous to a low-pass filter, which smoothens the
image. Thus, reconstructed images would be less crispy and more blurred.

Effects of missing contributions: although the scheme interpolates the missing locations
quite accurately according to a smoother description of the plume, it draws energy from the

available contributions. Thus, missing contributions causes noise on the available.
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Poor alignment: the simulation results presented later assumes a worst case of a purely
random deployment. A pure random deployment would have a few cluttered nodes and a
few blank areas. Thus, the approximation would be more biased to the cluttered locality
and less towards the empty regions. However, actual deployments are not purely random

and will suffer less from such effects.

4.5.4. ANALYTICAL RESULTS. To identify uniquely and for communication sensor nodes
need 2> log, n? bit long address. If we assume the reading produces some b bit floating point,
the cost of reporting under conventional scheme is &~ (log, n? + b) ¢ per node. If only k nodes
read non-zero values and report, then the total reporting cost is ~ k (log, n* + b) & Pure
compressed reporting scheme requires transmitting an m x m matrix. Thus, the reporting
cost would be km?2b'n /6, where I/ is the length of a coefficient. Reporting cost can be saved
by reporting patches instead of the entire matrix, where applicable. Moreover, the hybrid
scheme would provide much savings.

Reporting is economical for certain choices of wavelets and levels, which also determine
the required precision of the coefficients. Nonetheless, reporting in compressed form is es-
sential to implement compressed re-distribution in a distributed form. As well to interpolate
for the missing location, compression scheme has to be employed at reporting, irrespective
of the communication cost. Re-distributing is effectively achieved for large values of k and
n, i.e. for large network with a large fraction of nodes reading non-zero measurements.

The key advantage of the compressed reporting and re-distributing is the information of
a vast network is represented using only a few coefficients. Thus, less information needed to

be transmitted in order to deliver the status of the network.
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4.5.5. SENSOR DEPLOYMENT. When sensor nodes are placed on a regular grid, they
can be matched to pixels of an image (Fig. 4.14(a) and Fig. 4.14(b)). To calculate the
contribution made by each pixel (sensor) for the approximation, each sensor is fed with a
corresponding PSF. Thus, at reporting, each node will scale its PSF by the reading and
report the resultant matrix. Further, nodes fuse readings simply by adding the contribution
matrices.

When all the contribution matrices of all the sensors are added, the approximation for
the entire sensor field is formed. This approximation can be then transmitted back to the
sensor field, so that each of the sensors learns the status of the entire network.

When constructing the approximation, if the contribution of some of the pixels were not
available, an interpolated value will be automatically assigned to those pixels. This relaxes
the need of a complete grid which is attractive for many applications, and is discussed next.

4.5.5.1. Random points on a Grid. A random deployment of sensors can be treated as a
sparse deployment on a grid (Fig. 4.14(c)). As pointed out above, DWT based approximation
scheme fills out the missing grid points with interpolated values based on the available grid
points automatically. This allows using the same scheme even for a random deployment of
sensor nodes.

As before, each node is assigned with its PSF matrix based on the grid point the sensor
is located. The rest of procedure is the same. When reconstructing, an image of the size of
the grid is formed, where missing grid points are assigned with an interpolated value based
on the wavelet used.

4.5.5.2. Representing a More Realistic Scenario. Deploying sensors on an exact grid is
difficult and not economical for many environmental sensing applications. A deployment

exhibiting characteristics of a random deployment can be considered more realistic. The
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nodes can be considered to be randomly placed at points on a finer grid for computational
convenience. Another issue with wireless sensor networks is the availability of the nodes. At
a given time it is quite likely that a significant fraction of the nodes may either be sleeping,
or even dead. Once the random deployment is treated as a sparse deployment over a fine
grid, unavailability can be accounted as a much sparser deployment. Thus, when resolved,

measurements will be interpolated for on each point on the fine grid.

4.5.6. REsSuULTS. In this section we evaluate the compressed data reporting and dissem-
ination scheme using a dataset corresponding to a subsurface plume. The dataset and
numerical results are presented next.

4.5.6.1. Synthetic Plume Data Set. The data that is needed in field problems will come
from a set of sensors that are installed in water quality monitoring wells. As such data set
was not available, a synthetic data set using a groundwater flow (MODFLOW) transport
model (MT3DMS) was generated [103-106]. Synthetic data emulating a propagating plume
over a period of 3 years, collecting daily samples are used as experimental data for this work.
The synthesizer software allows placing sensors and making measurements at any desired
location. By placing sensors at a complete fine grid, the actual plume is recognized. Then
sensors are placed at random location for the experiments. Sensor field is represented as a
64 x 64 pixel image. The readings are compressed using a two-level Daubeschie-4 wavelet.
The compressed image is 16 x 16.

4.5.6.2. Numerical Results. At each time interval, selected based on plume tracking ap-
plication, a snapshot of the sensor field is built using the compressed reporting method

described in Section 4.5.3. For our experiment, the time interval was selected to be a day.
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TABLE 4.2. Error of Approximation

Mean over en- Max over entire
tire sensing pe- sensing period
riod
Mean over a|Max over a|Mean over a|Max over a
snapshot snapshot snapshot snapshot
Error (%) | 2.5 | 55.4 9.5 824

The error is defined as the deference between the calculated value and the actual value nor-
malized to the largest reading (which is the range of the measurements), and expressed as a
percentage.

Four versions of errors are defined. Given a snapshot, the mean of the errors and the
maximum of the errors can be taken. Then over the entire sensing duration (3 years in our
case) the mean and the maximum of above two can be taken.

Transmission cost is evaluated in terms of the number of transmissions. The experiment
used double precision floating point values for both measurements and coefficient matrices.
Thus, the actual transmission cost is a factor of the number of transmissions made.

4.5.6.3. Accuracy. The proposed scheme exploits the effectiveness of lossy compression.
Inevitably, some of the information is destroyed during the reporting phase. Table 4.2
assesses the error introduced by the approximation.

More realistic networks are represented as a sparse deployment of nodes over a grid.
Their performance is comparable when a large fraction of nodes are unavailable on a grid.
Table 4.3 summarizes error performance when 25%, 50% and 75% of the nodes are unavail-
able. Table 4.4 shows the mean and the standard deviation of the mean error over 100

random network settings. It can be noted that mean error is small and it varies very little.

4.5.6.4. Communications Cost Savings. Compression based data gathering and re-distributing

scheme saves floating point transmissions by a factor of 5 in average. When hybrid scheme
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TABLE 4.3. Effect of Partial Availability on the Error

Dead nodes 25%

Mean over Max over
entire sensing entire sensing
period period
Error com- | Mean over a | Max over a|Mean over a | Max over
pared against | snapshot snapshot snapshot snapshot
Actual 2.5 55.4 9.5 82.4
Approximation| 2.7 24.9 4.9 47.7
Dead nodes 50%
Actual 4.9 76.7 13.6 98.8
Approximation| 5.3 41.1 9.0 82.6
Dead nodes 75%
Actual 7.0 87.9 18.4 103.5
Approximation| 7.9 56.1 11.8 84.9

TABLE 4.4. Mean and Standard Deviation of the Accuracy

Dead node % \ Error compared against

\ Mean \ Standard deviation

95 Actual 3.2 0.09
Approximation 2.7 0.16
50 Actual 4.9 0.14
Approximation 5.3 0.19
75 Actual 7.0 0.15
Approximation 7.9 0.16

Largest factor of the savings is accounted to the re-distributing phase as shown in

4.5.6.5. Approximating Missing Data. DW'T coefficients automatically approximate val-

using the three schemes over the sensing period.
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is employed instead, the saving reaches a factor of 10. Figure 4.18 shows the total cost of

Fig. 4.19. However, for the re-distribution to be implemented in a distributed fashion, the
reporting scheme has to be implemented in either the compressed form or the hybrid form.
The hybrid scheme improves the compressed scheme further by a factor of 2 in average. The

performance of the hybrid scheme over the compressed scheme is presented in Fig. 4.20.

ues for the missing locations during reconstruction. Figure 4.21 displays the approximation

capacity of the scheme. Only 25% of the sensors were activated in the sensor field. This
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FI1GURE 4.18. Cost of re-distributing sensor information over the entire net-
work over time.
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FIGURE 4.19. Amount of floating point transmissions saving by compression
over time.

could also be interpreted as, only 25% of the grid points actually contained sensors. Fig-
ure 4.21(a) shows a snapshot of the plume to be detected. But only some random 25% of
the grid points indicated in Fig. 4.21(b) are available for measurements. The non-zero mea-
surements provided by the available sensors are indicated in Fig. 4.21(c). With coefficients

for these non-zero measurements the plume is approximated as in Fig. 4.21(d). It is to be
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FIGURE 4.20. Amount of floating point transmissions saved using hybrid re-
porting instead of compressed reporting over time.

noted that the mean error between the approximated reconstruction using only 25% of the

measurements is only 7% as shown in Table 4.3.
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FIGURE 4.21. (a) The actual plume (b) a sample deployment of sensors (c)
non-zero reading provided by 25% of sensors (d) approximate plume recon-
structed.
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4.5.7. DiscussiON. The goal of the presented scheme is to gather and re-distributed
sensor data from each of the sensors to entire network cost effectively. The communication
structure is a tree rooted at the center of the network. All the nodes observing the interested
phenomenon generates a report and pass it up the tree. Thus, a description of the entire
network is generated at the root. Then the root sends down this information back to the
network, making all the nodes aware of the entire network.

Under conventional scheme each node reports its reading and the location information,
and all the nodes take part in passing this information to the root. The root collects all
the information and build giant picture of the network which is then passed down to the
network. The conventional scheme does not take into account the compressibility of data.
Although it preserves perfect accuracy, most applications tolerate errors to a certain degree
to account for noise which is inevitable in measurements. Compressed re-distributing scheme
proposed exploit the tolerance to mild loss of information. The coefficients also enable data
fusion. Thus, when multiple messages are to be transmitted on the same link, they can be
fused to a single message saving overhead. Moreover, the fusion does not change the data
length, whereas under the conventional scheme the length of the message is increased when
multiple messages are packed.

Compressed scheme reduces the operations at the root. Under the conventional scheme,
the root has to gather and form the giant message containing information of the entire
network. In the compressed scheme the root has no more operations than a regular node in
the network. It sums the coefficients and pass on to the children nodes.

Although compressed reporting alone may not be communication effective, it is essential
to facilitate interpolation of missing points, improve resolution and for a distributed imple-

mentation of the dissemination scheme. So that the burden on the root is alleviated, and
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producing a distributed deployment of the scheme. The hybrid scheme utilizes the effective
components from both the conventional and compressed schemes. It prevents forming a
large coefficient matrix where data is effectively transmitted conventionally, but also applies
compression later on, to utilize the advantages in both the schemes.

Computation requirement at sensors nodes are commendable as well. Compression and
decompression require matrix multiplication, which is an O (n?) floating point operation.
Fusion requires matrix addition which is O(n) floating point operation. The PSF needed for
each node is proposed to be preloaded to each node. The hybrid scheme requires a list of

potential PSFs of its children which can also be pre-loaded.

4.5.8. CONCLUSIONS. The scheme estimated the state of the entire network within a
7% error bound using only 25% of the measurements, and demonstrated a communication
savings by factor of 10 when applied for the plume data. Thus, the scheme is capable of
improving resolution of the measurements made, and also to reduce the number of sensors
to be used to achieve a given error bound.

Hybrid scheme exploits the effective components from conventional and the compressed
reporting schemes and cuts down the communication cost by a magnitude. Computation
and memory requirements needed for all the operation in the feasible range for most common

place sensor motes.

4.6. COMBINED MATRIX COMPLETION AND COMPRESSIVE SENSING BASED IMAGE

RECONSTRUCTION

In this section we attempt to employ both matrix completion and compressive sensing
to recover a highly under-sampled image. We use the same chemical plume data used in

prior sections. In the example presented in Fig. 4.22 only 5% of the points are sampled.
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(D) Matrix Completion and Compressive Sens-
ing

(¢) Matrix Completion

FI1GURE 4.22. Reconstruction using matrix completion and compressive sensing.

The chemical plume is shown in Fig. 4.22a and the samples are shown in Fig. 4.22b. Then
matrix completion is applied on the samples and its reconstruction is shown in Fig. 4.22c. A
key limitation of matrix completion is that it does not take smoothness into account. Thus,
we add another phase to enforce smoothness. Due to the similarity of chemical plumes to
natural images, we select a DCT basis as the sparsity basis and perform compressive sensing
over the recovered image. This step identifies significant DCT coefficient that describe the
underlying plume. Then we recover the plume information as shown in Fig. 4.22d which has

only a 4% reconstruction error.
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4.7. CONCLUSIONS

We employed methods such as compressive sensing, wavelet transform and matrix com-
pletion for data recovery in this chapter. The developed techniques are applied on a few
WSN applications to recover data at a lower cost. The developed methodologies enabled
reconstructing sensor field information from a sparse set of samples as well as enable phe-
nomena awareness. Further, recovery bounds of compressive sensing are derived for any

sampling measure.
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CHAPTER 5

DATA FEATURE EXTRACTIONS
5.1. INTRODUCTION

Extracting features from the gathered data is the focus of this chapter. We begin by
taking a closer look at Robust Principal Component Analysis. As the sufficient conditions
established in [6] are too conservative and the conditions in [5] do not provide all the infor-
mation, there is no guidance to predict whether a combination of a low-rank matrix and a
sparse matrix would recover. Thus, we investigate the empirical recovery region of RPCA.
We establish the recovery regions for a variety of matrices and also look into a cross valida-
tion principle to determine whether a decomposition is a recovery. Validity of the established
boundaries are tested on real-world matrices as well. Then we focus our attention to features
of network data. We propose a scheme to extract network data features and compute derived
features. Then we apply this scheme to detect a few network attacks. We also develop a
methodology to extract subtle patterns in data. These findings are tested on real PCB ca-
pacitance measurements. The objective of this breadth of work is to find candidate methods

to extract features of various nature.

5.2. EXPERIMENTAL RECOVERY REGIONS FOR RoBusT PCA

The principle of Robust Principal Component Analysis (RPCA) is to additively resolve a
matrix into a low-rank and a sparse component. The question that arises in the application
of this principle to experimental data is, “when is this resolution an identification of the
actual low-rank and sparse components of the data?” That is, when is recovery successful?
And, given a resolution, how can we know it is a recovery of the underlying matrices? In

this paper we report several experimental findings: (1) the subset of matrices that satisfy

151



published sufficient conditions is quite small compared to the set of matrices that successfully
recover; (2) successful recoveries can only be expected at low fractional ranks and sparsities;
(3) where recovery is unsuccessful, the returned matrices tend to be near half-rank and half-
sparsity; (4) the demarkation between the region of consistent recovery and consistent failure
is narrow, indicating a phase change in recoverability. We demonstrate these findings with a
variety of synthetic matrices that are faithful to matrices appearing in practice. Furthermore,

we apply and verify these results on real-world matrices.

5.2.1. INTRODUCTION. Robust Principal Component Analysis (RPCA) decomposes an
input data matrix into a sum of a low-rank matrix and a sparse matrix. If the input
matrix is in fact a sum of an unknown “true” low-rank matrix (which is low rank but not
sparse) and an unknown “true” sparse matrix (which is sparse but not low-rank), RPCA
“recovers” the original unknown matrices. In this paper we report experimental evidence for
“recoverability” of matrices consisting of low-rank plus sparse components, using RPCA.

A low-rank—vplus—sparse decomposition is of interest in many applications. A few
classes of applications are reviewed in [5], namely : video surveillance, face recognition,
Latent Signal Indexing (LSI) and ranking and collaborative filtering. The authors of [6]
review rank-sparsity decomposition for statistical model selection, computational complexity
and system identification. RPCA for cyber-security is discussed in [107-109]. RPCA is also
used in a number of image processing applications such as texture extraction [110], image
alignment [111], image tag refinement [112] and image signature analysis [113].

Among a few interpretations, RPCA is viewed as making classical Principal Component
Analysis (PCA) robust against “gross” perturbations [5]. That is, it separates principal
components of a matrix in the presence of additive sparse perturbations — hence the name

Robust PCA. This can also be viewed as “recovering” a low-rank matrix from sparse and
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“oross” corruptions. In another point of view, RPCA can be viewed as a tool to extract
sparse signals concealed by low-rank background interferences. The work presented here
focuses on the “recovery” of both low-rank and sparse components.

Following [5] and [6], we model a data matrix ¥ € R™" as composed of a low-rank
“baseline” matrix B and a sparse “anomalies” matrix A. The idea is to “recover” the two

components from Y with RPCA:

Y=B+AX4 5=V (5.1)

The output low-rank matrix L and sparse matrix S solve
argr?iSnHLH*—{—)\HS]\l st. L+S=Y (5.2)

where || ]|« is the nuclear-norm, || - ||; is the one-norm, and A is a weighting parameter. Our
goal is to recover B via L and A via S.

The results of this paper suggest that the existing sufficient conditions for recovery via
RPCA derived in [5] and [6], while certainly fundamental to the theory of Robust PCA, are so
seldom satisfied for experimental data that they do not reliably predict when a resolution will
actually be a recovery. These sufficient conditions are met only at extremely low fractional-
ranks and fractional-sparsities, where recovery is also successful. At relatively small ranks
and sparsities sufficient conditions are not met, but recovery is satisfactory. At moderate to
high ranks and sparsities sufficient conditions are not met and recovery is unsuccessful. When
recovery is unsuccessful, the resultant low-rank matrix is near half-rank and the sparse matrix
is near half-sparse. This leads to a cross validation principle to determine failed recoveries.

Further, we report a narrow phase change between the regions of successful recovery and
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unsuccessful recovery. We empirically establish ranges of rank and sparsity where recovery
is successful. These ranges are estimated using a variety of synthetic matrices that represent
a range of matrices appearing in practical problems. Then these results are validated on

real-world matrices obtained from actual data.

5.2.2. BACKGROUND. Conditions presented in [6] state that if B is “true” low-rank
(meaning, it is not also sparse) and A is “true” sparse (meaning, it is not also low-rank) then
RPCA recovers exactly. The two metrics £ and p presented in [6] measure these respective
properties. There, a small {(B) indicates that low-rank B is not sparse and a small p(A)
indicates that sparse A is not low-rank. The sufficient conditions for exact recovery of B
and A via RPCA are stated as

| (5.3)

D

§(B)u(A) <

The metrics £ and p are defined as follows. Let us denote the Singular Value Decomposi-
tion (SVD) of B as ULVT where B € R™™ and rank(B) = r with orthonormal U,V € R™*".

Then a measure of “true” low-rank-ness in [6] is

§(B) = max [Nl (5.4)

NEeT(B),|IN|l2<1

where T(B) = {UXT + YVT | X, Y € R™"} is the tangent space at B w.r.t. the variety of
n X n matrices whose rank is less than or equal to rank(B). Further, incoherence bounds £

as

inc(B) < ¢(B) < 2inc(B) . (5.5)
Here, incoherence is
inc(B) = max {max || Pyei| |2, max || Prei|» (5.6)
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where Py is the rank-r orthogonal projection onto the dimension-r subspace (U), and {e; }7 is
the standard basis for R™. ||Pye;||3 may be interpreted as the cosine squared of the principal
angle between e; and the subspace (U).

A measure of “true” sparsity [6] is

pA) = max _[[N]] (5.7)

NeQ(A),||N]0<1

where Q(A) = {N € R™" | supp(N) C supp(A)} is the tangent plane at A w.r.t. the variety
of sparse n x n matrices whose support size is less than or equal to supp(A). The maximum

and minimum matrix degrees bound p above and below as

degmin(4) < p(A) < degnae(A) (5.8)

where deg,,;, is the minimum number of non-zero elements along a row or a column, and
degmaz 1s the maximum number of non-zero elements along a row or a column.

Using 