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Abstract

Causal discovery algorithms have recently been applieéveral climate applications. In particular,
in prior work we have developed methods to recover pathwayrgeraction in the global climate system,
using the classiC algorithm. However, standard implementations of Bi@algorithm cannot handle the
large number of variables and temporal models requiredhisrapplication. This technical report shows
that a more efficient implementation of tR& algorithm can provide speed gains of a factor of 1,000 or
more. This in turn enables us to calculate graphs of infaongtow with much higher resolution grids.
Furthermore, we can now - for the first time ever - calculafermation flow graphs that extend over

three dimensions, i.e. rather than just includomg layer of the planet’s atmosphere we can now capture
interactions across several height layers.

1 Introduction

Causal discovery seeks to discover potential cause-e#tattonships from observational data. While used
extensively for decades in disciplines such as social sei@md economics, causal discovery has only re-
cently been used in climate science. Requirements of airmpplications can be challenging for existing
implementations: they often require using a large numbeadébles, distributed over large spatial regions,
and require the use of temporal (rather than static) modieh further increases complexity.

In prior work [3, 4] we have applied causal discovery alduoris in climate science to find potential cause
and effect relationships from observed atmospheric datee Key idea for this application is to interpret
large-scale atmospheric dynamical processes as infam@oiw around the globe and to use causal discov-
ery to identify the pathways of information flow around thelg. Specifically, by introducing a discrete,
equally-spaced grid around the earth, we can use the cassaldry algorithms to calculate "graphs of in-
formation flow”, which show the flow of information (i.e. irctions) around the globe. Which dynamical
process is tracked through this method depends on the tyggenokpheric variable observed in the data (e.g.
geopotential height) and the time scale used (e.g. dailynesithly data). For details of this application and
the basic methodology, please see [4, 5].
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The causal discovery algorithm we used for this applicasahe classidC algorithm [8, 9], extended
to provide temporal models [1], and incorporating the inmerents of thd”C stable algorithm [2]. This
approach yielded good results for low resolution planaphsaof information flow. However, once we
wanted to move on to high resolution grids, we quickly hit timits of standard implementations. For
example, using a grid witB00 points around the globe, and using time slices, the algorithm needs to
handle a total of5 x 200 = 3, 000 variables, which on a MacBook Pro or a standard Linux comalteady
required about 4 days. We would like to drastically incregegrid to have 400, 800, or maybe even 2,000
nodes. Furthermore, atmospheric information flow occu&nnot 2D, thus we also want to move on to a
spatial grid (and thus spatial graph) including more tham logight layer around the earth at the same time.

2 Faster Implementation

We tried publicly available implementations of tR€ algorithm, namelyTETRAD (implemented in Java),
BNT (implemented in Matlab) anptalg (implemented in R). None of them allowed us to move conshilgra
beyond the3, 000 variables already required for the temporal model (15 tifiees) with a planar low level
grid (200 points). We first considered other types of al¢poni$, such as score-based algorithms and Granger
graphical models. However, we liked the overall propemiesonstraint-based algorithms - of which tR€
algorithm is the best known example - namely we find them toetialrle and transparent, i.e. each step of
the process easy to understand. Thus we decided to try camimgth a more efficientmplementation of

the PC algorithm, rather than switching to a different algorithit a later time we plan to still try other
algorithms.

As mentioned above, the available implementationB@fve found were in Java, Matlab and R. While
Matlab and R are prime environments for mathematical comguthey are not that good at actual number
crunching. C is known to be much better suited for that pugp¥ée thus implement the algorithms (PC, PC
stable and their temporal extension) in C, using the GNUngifie library. It turned out that once we used
tens of thousands memory localization becomes a crucig jss illustrated in the following example. When
we increased the number of variables to tens of thousanddgbdthm suddenly took a tremendous amount
of time (days) for the simple task of just calculating theretation matrix from the sample data. (This task is
done once at the very beginning of the algorithm, as prejoarédr PC.) We solved this problem by simply
transposing the data matrix, which holds all the observed data for allades. Originally the observed data
of an individual variable was stored incalumn of the data matrix (withrows representingne sample of all
variables). By instead representing each variablerasvan the data matrix, we moved the values for each
variable closer together in memory, thus reducing accesstid those, and in turn reducing calculation time
for the correlation matrix from days to hours. In summaryusing C and by careful implementation and
optimization, we achieved a speed facto3ob over the Java/Matlab/R implementations. Thus calculation
with 3, 000 variables was reduced from 4 days to 20 minutes.

In the next step we added multi-threading, speeding cdloakby another factor of 4 or more for most
multi-core computers, such as many standard PC or Mac cargpthis already allowed us to calculate our
first spatial graphs of information flow, using00 grid points per layer, up t6 height layers and5 times
slices, i.e. requiring a total @00 x 6 x 15 = 36, 000 variables in thd>C algorithm. First results are shown
in the following section.

3 Results - Spatial Graphs of Information Flow

This section shows results which - to the best of our knowdedepnstitute the first spatial graphs of infor-
mation flow around the globe ever obtained. We use the sameonh@bgy used in [4, 5], just that with our
high-speed implementation we can now generate graphs witiehresolution and in three dimensions.

3.1 Data and Parameters Used

We use daily geopotential height data obtained from NCERAR@analysis data [6, 7] for years 1950-2000.
In some runs we used 4 layers of geopotential height (85000mb, 250mb, 50mb), in others we used six



height layers (925mb, 850mb, 500mb, 250mb, 50mb, 3&n#a)rthermore, for each year only daily data for
boreal winter is used (Dec-Jan-Feb). We use 400 geogrdpbézdions around the globe, and 15 temporal
slices (of which we discard the first slices to overcome tlitealization problem discussed in [4, 5]). Results
are for PC stable, using = 0.1. For this experiment we chose to use for the edge directiohsthe
temporal constraints. Therefore all edges for delay=1 aerdays have directions (purely from the temporal
constraints), while none of the edges for delay=0 have atiing, where the delay denotes the approximate
time it takes for the signal to travel from cause to effect.

3.2 Figures

We provide two types of plots to show the atmospheric infdgiomeflow in three dimensions: (1) Spherical
plots provide a spatial image of the earth with connectioomfall height layers surrounding it (at their
respective heights); and (2) Stereographic projectiotsgdoovide stereo-graphic projections of all height
layers, stacked on top of each other. While the sphericds@eoe more intuitive to interpret and show
information flow for both the Northern and Southern hemisphe a single plot, it is hard to make out any
details, in particular which connections belong to whiclghelayers. Thus the stereographic projection plots
are much more useful, even though they are less intuitiveshad only connections for one hemisphere per
plot.

To indicate connections between different layers, we uséalfowing color code for the individual edges:

Black: edge that is completely within a layer.

Red: edge is going up in the atmosphere, i.e. from a lowethhé&ger to a higher height layer.

Green: edge is going down in the atmosphere.

Green is also the default color, if we do not know whether agead going up or down, as is the case
for all zero-delay edges that are not within a single heigpét.

Figures 1 to 9 show results for a run with 4 height layers, &/Rigures 10 and 11 show results for a run
with 6 height layers. For the 4 height layers, Figures 1 to@stihe strongest connections that require about
0 days to travel from cause to effect (almost instantanedtigyjres 4 to 6 show the corresponding figures
for connections spanning about 1 day, and Figures 7 to 9 fonections spanning about 2 days (very few
connections span 2 days).

The most interesting plots for 4 layers are Figures 5 and é¢hlwshow most clearly the directions of
information flow for non-instantaneous connections. As wield expect the highest layer (88mb) is
relatively isolated from the other layers, with no strongmaction detected with any of the other layers (only
black arrows). There is considerable interaction betwberother three layers, and not all of it is exactly
vertical. Much can be learned from plots of this type. In jgafar, we can generate this type of plot for
different subsets of data, e.g. only using date ranges ftaioeatmospheric conditions. By comparing the
resulting plots for those different conditions we can lealbout specific information flow for each of those
scenarios.

Figures 10 and 11 show results from using 6 height layergsfongest connections spanning 1 day. These
figures illustrate that we can indeed run PC even with 36,@0@bles, and remind us that more work needs
to be done on studying the impact that the selection of hé#ytetrs (i.e. which height layers are included)
has on the results. For example, comparing the results irlBitp those in Fig. 5, we see that adding another
height layer at the bottom (925mb) significantly reducestinaber of arrows at the 850mb layer in Fig. 10.
See also Section 4 which discusses future work.

3.3 Interpretation of Results

All the figures in this report were obtained from daily geaptal height data at different height layers and
thus each arrow in these plots represents the pathwiaygescale atmospheric waves in three dimensions.
Some of the information we can obtain from these plots are

INote that ahigher pressure meanslawer layer, i.e. closer to the planet’s surface, so for exampRn@5is a lower layer than
500mb.



1. Location of the maximum wave source (largest number ofargyointing arrows).
2. Preferred pathways of wave propagation.

That type of information cannot be obtained from traditiom&thods, so represents new knowledge about
the inner workings of our planet’s climate. (Note also thatfrequency filtering was used to obtain these
results.) Being able to generate plots like the ones showm iBeuseful to better understand the effect of
climate change, and to study selected dynamic processes.

4 Future work

We have only scratched the surface of the methods preseetedih terms of theory and interpretation, as
well as their use to learn more about the internal workingseofain dynamic processes in the atmosphere.
Some of the research to be addressed include:

e Even higher efficiency implementation:As illustrated in Section 2, optimization of local memory is
a crucial speed factor for the implementation. So far we dmtgplized the memory in a few places
(e.g. transposing the data matrix), and believe that thed&ianal adjustments throughout the code
will result in significant additional speed-up. We are altanping to implement the message passing
interface (MPI) so that we can use several nodes on a Craytaimeously.

e Selecting height layers:As mentioned in Section 3.3, we need to further study thectffef selecting
height layers on the results. We plan to develop guidelioes©ibéw to interpret the results based on
the chosen heights, as well as potentially find ways to cosgterfor varying distances between the
height layers in the causal discovery algorithms.

e Applications in climate science:Of course, we have only touched the surface of what we canelo ev
with the current implementation. We can now generate in&iom flow graphs for spatial grids and
we will investigate what we can learn from them about our etanclimate using different types of
atmospheric variables, different resolutions, etc.

e Applications in bioinformatics: This high-speed implementation of causal discovery mayla¢suse-
ful for applications in bioinformatics that seek to ideptfotential cause effect relationships between
large numbers of variables. Sample applications inclushe gegulatory networks and finding neural
connections in the brain.
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Figure 1: Spherical plot for 4 layers, strongest connestigith travel time 0 days
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Figure 2: Stereographic projection plot for 4 layers, sgest connections with travel time 0 days, Northern
hemisphere
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Figure 3: Stereographic projection plot for 4 layers, sgest connections with travel time 0 days, Southern
hemisphere



Figure 4: Spherical plot for 4 layers, strongest connestigith travel time 1 day
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Figure 5: Stereographic projection plot for 4 layers, sg@st connections with travel time 1 day, Northern
hemisphere
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Figure 6: Stereographic projection plot for 4 layers, sg@st connections with travel time 1 day, Southern
hemisphere
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Figure 7: Spherical plot for 4 layers, strongest connestigith travel time 2 days
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Figure 8: Stereographic projection plot for 4 layers, sgest connections with travel time 2 days, Northern
hemisphere
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Figure 9: Stereographic projection plot for 4 layers, sgest connections with travel time 2 days, Southern
hemisphere
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Figure 10: Stereographic projection plot for 6 layers, sfy@st connections with travel time 1 day, Northern
hemisphere
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Figure 11: Stereographic projection plot for 6 layers, sfi@st connections with travel time 1 day, Southern
hemisphere
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