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ABSTRACT

EFFICIENT MULTIDIMENSIONAL UNCERTAINTY QUANTIFICATION OF HIGH SPED

CIRCUITS USING ADVANCED POLYNOMIAL CHAOS APPROACHES

With the scaling of VLSI technology to sub-45 nmellsy uncertainty in the nanoscale
manufacturing processes and operating conditions haea& ound to result in unpredictable circuit
behavior at the chip, package, and board levels oemadtegrated microsystems. Hence, modeling the
forward propagation of uncertainty from the device-levedpeters to the system-level response of high-
speed circuits and systems forms a crucial requirememibdérn computer-aided design (CAD) tools.
This thesis presents novel approaches based on tiega@ed polynomial chaos (gPC) theory for the
efficient multidimensional uncertainty quantificatioh general distributed and lumped high-speed circuit
networks. The key feature of this work is the developgroEapproaches which are more efficient and/or
accurate comparing to recently suggested uncertairptitication approaches in the literature. Main
contributions of this thesis are development of twavithael approaches for improvement of the
conventional linear regression uncertainty quantificat@mpproach, and development of a sparse
polynomial expansion of the stochastic response iuraertain system. The validity of this work is

established through multiple numerical examples.
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CHAPTER |: INTRODUCTION

In today’s fast paced environment of electrical design and fabrication, simulation tools have
proved to be a great asset to electrical engineerin[itje past decades, we have been able to preeélict th
behavior of a circuit through simulation before any ptglsmplementation. These tools are essential to
the industry since they save a great deal of time namuky. Today instead of fabricating expensive
prototypes and time consuming electromagnetic cobilpatiests [2], it is possible to predict a lot of
details a priori to the fabrication phase. This hashnbeade practical due to great advancements in high
speed computations and numerical analysis, whichrésdgted in development of advanced SPICE-lke
circuit simulators [3], finte element and finite volunamalysis, and several advanced new techniques
which provide more efficient and accurate results. Howelsg advancements of the fabrication
technology to nanoscales, new challenges have rakieti motivates new areas of research. This thesis

is the report of an endeavor in addressing such problems.

1.1 Problem statement

With the scaling of VLSI technology to sub-45 nm Ieyeuncertainty in the nanoscale
manufacturing processes and operating conditions heee found to result in unpredictable behavior of
high speed circuits. As a result, contemporary compitexd design (CAD) tools need to be flexible
enough to be able to predict the impact of parametniceniainty on general circuit responses.
Traditionally, uncertainty quantification of circuit mairks has been performed using the brute-force
Monte Carlo approach [4]-[9]. Despite the simplicitytti§ approach, its slow convergence translates to a
prohibitively large number of deterministic simulatiopisthe original network model in order to achieve
accurate statistical results. This makes the Monteo@aproach computationally infeasible for analyzing

large networks10Q].

Recently, more robust uncertainty quantification tearesgbased on the generalized polynomial

chaos (PC) theory have been reported for various high-great, electromagnetic (EM) and electronic



packaging problemslp]-[44]. These techniques attempt to model the uncéyrtaithe network response
as an expansion of predefined orthogonal polynomias basctions of the input random variables. The
coefficients of the expansion form the new unknowns efdysstem and are evaluated via intrusive or

nortintrusive approaches [37].

The existing literature in circut and EM simulatioashbeen dominated by the highly accurate
but intrusive stochastic Galerkin (SG) approach [10]-[ZBls approach requires the solution of a single
but augmented coupled deterministic network modetidtermine the PC coefficients. This issue is
further exacerbated for nonlinear networks since the pettineer product operations have to be
approximated using a quadrature method where each guadierm is represented using a large number
of additional dependent voltage/current sources [18kr&lly the simulation costs of such large models
scale in a near-exponential manner with the numbearafom dimensions. While recent works such as
the decoupled PC algorithn2Q] and the stochastic testing methe)][ [41] can mitigate the time and
memory costs of the standard SG approach, both thgseaapes require the development of intrusive
codes that preclude the direct exploitation of SPIC&Mdigacy circuit simulators. These bottlenecks have

imited the applicability of the SG approach to profefeaturing only low-dimensional random spaces
[45], [46].

On the other hand, non-intrusive PC approaches sutie atochastic collocation (SC) approach,
pseudo-spectral collocation approach and linear regreagiproach, among others, have recently been
explored for circuit and EM problems as wetb[239]. The advantage of these non-intrusive approaches
over the intrusive SG approach lies in their abiltyclampute the PC coefficients of the network
responses by simply probing the original model ataasgpset of nodes located within the random space
[45]. The deterministic simulation of the network at eactle can be performed by a direct invocation of
SPICE without the need for any intrusive coding. In @dithe relevant deterministic simulations can

be parallelized unlike the conventional SG approaléres the augmented network is always coupled.



1.2 Goals of the thesis

Among non-intrusive approaches, the linear regressipnoaph has been found to be highly
popular [27], [28], [46]. This approach probes the PC expansiothe network responses at an
oversampled set of multidimensional nodes locatettirwihe random space, thereby leading to the
formulation of an overdetermined set of linear algebraitataps. These equations can be solved in a
least-square sense to directly evaluate the PC coeffici# the network responses [46]. Typically, the
multidimensional regression nodes are chosen from thgorteproduct grid of one dimensional (1D)
guadrature nodes [27], [28]. Since the number of nodd® itensor product grid increases exponentially
with the number of random dimensions, realistically @nsparse subset of the nodes, also referred to as
design of experiments (DoE), can be chosen. In the wbild9), it was demonstrated that blindly
choosing the DoE can lead to inaccurate evaluafitheoPC coefficients. However, the contemporary
iterature on linear regression based PC analysis of EMcanuit problems have not identified any
specific formal criterion for choosing the best set of OaHF], [28]. Recently, the stochastic testing
approach has developed a reliable technique to gmdsstble DoE where the number of DoE is equal to
the number of unknown PC coefficients [40], [41]. Howewkig technique does not choose the DoE

using any optimal criterion and hence does not guaeathie maximum possible accuracy of results.

This thesis firstly presents new technigues for improverokethe linear regression methodology
in order to address the above issues. The first coigribatdevelopment of a sparse linear regression
(SPLINER) approach and then more improvements are sugdessed on the D-optimal criterion for
choosing the DoE. The proposed approaches insistfdhahe most accurate evaluation of the PC
coefficients, the corresponding DoE have to be so cheseh that the determinant of the information
matrix in the linear regression problem is maximized [33]other words, this thesis proposes greedy
search algorithms in order to identify the D-optimal Div&m multidimensional random spaces. The
proposed search algorithm begins with an arbitrary sBXo&f chosen from the tensor product grid of 1D

guadrature nodes and then sequentially replaces eaEhiDthat inttial set with the best possible



substitute selected from the remaining set of quadratdes. The best possible substitute DoE is chosen
to be the one that increases the current determinahe afiformation matrix by the largest amount. This
stepby-step refinement of the starting set of DoE contindesll tof them have been replaced at which
point the new set forms the D-optimal DoE [39]. Nowgherical strategies to expedite the search of the
substitute DoE for problems involving high-dimensionahdom spaces have been developed in this

thesis.

Furthermore, in order to increase the efficiency of PC appesa@ novel methodology for
curbing the scaling of computational costs with respecumber of random variables is provided. In
fact, in most of the state of the art PC approachesdmputational cost increases in an exponential or
near exponential rate with respect to number if randanables. This increase in CPU cost is called
curse of dimensionality and is the main bottleneckF@ approaches which has limited their use to a
relatively limited number of dimensions. In this thesisiovel approach is suggested to address the curse
of dimensionality. In this approach based on sparsitgffects [47], [48] more impactful polynomial
bases are selected by switching the linear criteridgheofegular PC approach to a hyperbolic criterion.
Coefficients of these polynomial bases can be found) @siy state of the art PC approach; however, in
this thesis the focus is on nonintrusive approaché®nTthe desired statistics are found from the
coefficients with marginal loss in accuracy. Since remmtf new unknowns is noticeably less than the
regular PC approach the CPU cost and number of deternsistulations is only a fraction of the
original amount. Moreover, an adaptive methodologgeseloped to determine how many impactful
bases are needed based on the desired accuracy. Thadventage of this approach is reducing the
increase rate of CPU costs with minimal loss in accur@hig claim has been proved through multiple

examples including distributed and nonlinear networks.

1.3 Organization of the text

This thesis tries to be self-explanatory and withaumajor need to previous knowledge in
uncertainty quantification for the reader. Most of thetestaf the art PC approaches are reviewed.
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Exploited techniques are explained in details, amekhideas are supported with extensive numerical
examples and discussions. The rest of text is orghagdollows: Chaptei provides a review of basics
of the generalized PC theory and the most common werasid nonintrusive uncertainty quantification
approaches including stochastic Galerkin [10]-[25]¢clséstic collocation49 and the linear regression
approach 27, [28]. Moreover, the major advantages and disadvastafjthese approaches are provided
in this chapter. ChaptdH is dedicated to improvements to the linear regresgipnoach. This chapter is
divided to three main sections; the first section mesi¢he D-optimal criterion and the Fedorov search
algorithm for the linear regression approach. In the sesention the proposed SPLINER approach is
discussed, and in the third section more improvememthe linear regression approach are suggested.
All contributions in this chapter are validated by euwical examples. In Chapt®Y, firstly further details
about the PC theory is provided which is used in réshe chapter, then the improvemesnt PC
approaches with the use of the hyperbolic criterion iEnédaptive methodology are discussed. This
approach is mainly compared with a nonintrusive stelihatesting based approacB7] and the
contributions are validated using multiple numericabraples. Finally the thesis is ended with a

concluson in Chapter V



CHAPTER II: EXISTING UNCERTAINTY QUANTIFICATION APPROACHES

In this chapter an extended review of currently availableertainty quantification approaches is
discussed. To do so, it is imperative to be famili&h the generalized Polynomial Chaos (gPC) theory.
Therefore gPC is introduced at the beginning of this telaprhen we discuss the uncertainty
quantification problem using different intrusive and ntosive approaches. The considered intrusive
approaches are Stochastic Galrekin (SG) [10]-[25] anch&stic Testing4(Q], [41]. On the other hand, in
the nonintrusive section since the focus of this werlon nonintrusive methods more methods are
discussed. This includes Pseudo Spectral Stochaglmation [29], classical inear regression [27], [28]
Stochastic CollocatiordP] and Stroud cubature ruleSd, [51]. At the end of each section comparative
analysis of that approach with respect to other teabsids discussed. Finally, at the end of this chapte

numerical example is provided to present the apglicadf numerical uncertainty approaches.

2.1 Generalized Polynomial Chaos Theory

The concept of the orthogonal polynomials has beemaihematics records for a long time [52],
[53]. However, due to emergence of uncertainty problents its challenges, orthogonal polynomials
have become popular among engineers, especiallydhaneal and electrical engineering. The work of
[54 revived the idea of generalzed polynomial chaos (gPXpamsion and exploits it to analyze
stochastic differential equations. Afterwards the idearifibed and was expanded to different fields and
applications [10], [55], [56]. To name a few, polynomiakos is exploited in the Stochastic Galerkin
[10]-[25], stochastic testing [40], [41], pseudo spectRRCg)29 and linear regressior2f], [28], which

wil be discussed later in this chapter.

2.1.1 Basics of the gPC theory

One noticeable application of gPC is to extract siegisof stochastic systems by modeling the
output as an expansion of orthogonal polynomials. @asethe b5, output of a system with a one-

dimensional random variable can be written as:
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X(2)= 264 (2) @Y

where is the random variahl&X is the output, cis a scalar coefficient ang (1) represents orthogonal

bases with respect to probabilty distribution funct{®DF) of 1. In order to make (2.1) practical it is

truncatedo:

X(2)~ Y e () 22)

wheremrepresents the order of expansion and therenarél terms in the expansion.

The property that makes the orthogonal polynomialactive is that the bases are orthogonal

with respect to the PDF af hence,

(4(2).6,(1) = [ (D¢, (W p(Ddi =25, (2.3)

where <,> denotes the inner product, Q is the random space, p represents the PDF #fq;” is a constant

scaler and;; represents the delta function. It is worth noting i3)2he inner product of bases is zero
unlessi = j. In this thesis the polynomial bases are normalized factor ofe; for simplicity purposes.

Hence they are called orthonormal polynomials.

The above mentioned polynomials are chosen bas#teowiener-Askey schemé&9], where it
can be decided which besgives a faster convergence rate for a certain distrilsutiime corresponding
class of orthogonal polynomials with respect to comstamdard distributions can be found in Table 2.1,

however, theoretically orthogonal polynomials terderived for any arbitrary distribution.



Table2.1 Common distributions and the corresponding Wiekekey polynomials

Distribution ofl Wiener-Askey chaos polynomials Support
Gaussian Hermite (-o0, +00)
Uniform Legendre [-1,1]

Gamma Laguerre [0, +o0)
Beta Jacobi [-1,1]

2.1.2 Generation of 1-D orthonormal polynomials

22

Consider the standard normal distributlé®,1) wherep(1) = V%_ne‘? By using (2.3) it can be

proven that Hermite polynomials are orthogonal to dstribution. These polynomials can be generated

either analytically 10]:

¢(i) ( 1)| 22 dﬂ —2212 (24)

or recursively:
$.1(2) =24, (A1) —i¢_1(2) (2.5)

where ¢,(1) =1, #(1)=4andi > 1. As mentioned before, all polynomials in thissis are normalized

by a® in (2.2), which can be found as:

=(4(A),4 (1)) =i (2.6)
Furthermore, the uniform distributiot(-1,1) is defined as:

05 —-1<1<1

pA) Z{ 1, Otherwise .

and by using (2.3) it can be proven that Legendre polials are orthogonal to this distribution. These

polynomials can be generated either analytical}: [

;D) = ﬁﬁ(zz — 1)t (2.8)



or recursively:

Pivs (D) =20, = 75 P (D

i+1

®.9

where®, = 1, &; = 1 andi > 1. As mentioned before, all polynomial in this thesis are normalized by o

in (2.2), which can be found as:

1

@ ={hd) =51 (210

For illustration purposes the first six univariate ortiomed Hermite and Legendre polynomials

are listed in Table 2.2.

Table 2.2 The first six univariate orthonormal Higenand Legendre polynomials

Bases Orthonormal Hermite Polynomial Orthonormal Legendre Polynomial
Do(A) 1 1

D1(2) A V31

D,(7) 0%-1) 1V2 V5 (342-7)

P3(7) @3-3) 16 V7 (243-22)

D4(2) 0*- 612+ 3) 1 (2/6) 3(%14%1%5)

@s(4) (°-10% + 15) / (2V30) VI(ZA°- 200 +27)

In the general case, the correspondingj” degree orthogonal monic polynomial function can be

generated via the three term recurrence relation [45]

wheref.

fia(A) = (A -a) £ ()= B fi,(2)

. jgz f2(A)p(A)di
T [ Raema

(1) = 0,fo() = 1, andpo = 1.

(2.11)



2.1.3 Generation of multidimensional orthonormal polynomials

In the topic of uncertainty most of the practical pnoislenvolve more than one random
variable; therefore, in order to analyze these problems #ssential to consider multidimensional
polynomials. However, basics of gPC stay the same..2h{Zhanges to the vectar= [Ay, Ay, ..., 41",
with T being the transpose sign, which representautually uncorrelated random variables. In other

words

X(\) = ZP:C,¢I ) (2.12)

where @;(4) represents muitidimensional orthonormal polynomiats] B+1 is number of polynomial

bases in the multidimensional case and is equal to

P41 = () = ) 1@

min!

with m being the common expansion degree of each dimemsien.in (2.3) in addition to polynomials,
p(4) turns to the joint PDF of all random variables andsiarch spac@ converts to a multidimensional

random space i.e. for orthonormal multidimensional poiyal bases we have

(6.0.6,0) = [ 40)8, W) p(). =5, (2.14)

It is worth noting, in this thesis even for multidimensl casesx® is equal to one since normalized
univariate polynomials are used in (2.14).
The multivariate polynomials are presented as produtbdases as shown in:

RS | D (2.15)

with d; being the index of-th 1D basis. It should be noted tli&) bases of (2.15) can be from different

families. The traditional scheme to deternhéndices of polynomials is1[):

10



dy+dy+-+d, <m (2.16)

The graphical interpretation of this scheme for the aafstvo random variables and the third order

expansionm = 3, is illustrated in Fig. 2.1. This ilustratiom be expanded to the general casa of

random variables, where

the polynomials are locatgubsitive coordinates and are bounded bynan

dimensional surface noted as:.d; = m.

J2
N
~N
\\3\3 Srdy 37 Ty2,.3 Sy.3, .3
biids i bidy iy
N - ~ - ~ _ ~
N
N
N
N
N
0, 2 ) 2, 27 Sy .3, 2
b1 b b1 Cbz\ dj:%\ Ebj 2
AN —~ ~. P ~.
N
N
AN
N
AN
D, 1 1, 1 2, 1 ~4 3, 1
b1 d2 b1 b, b1 d)z ¢1>\f
\\ /// \\.
AN
~N
N
N
D, 0 1, 0 2, 0 3 0
b1d,; b1 b, (IR0 1 b,
N
\\\\ jl

Fig. 2.1: Graphical illustration of the scheme $alection of multivariate polynomials for the cadaen = 2 and

m=3.

For illustration purposes the first 10 orthonormal Hermidynomials for two random variables

with the standard normal

distribution and also Legemdtgnomials for two random variables with the

uniform distribution are listed in Table 2.3.

2.1.4 Derivation of statistical information using PC coefficients

As stated before, the main goal of this thesis isvalyn of statistical information of stochastic

systems. Most of the statistical information are defibbgdintegration over the random space, and

entering PC expansions in

the integration formulas stielgerive an analytical formula to obtain them.
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Table 2.3 The first ten orthonormal two-dimensiokiakrmite and Legendre polynomials

Bases Orthonormal Her mite Polynomial Orthonormal Legendre Polynomial Total degree
Do(A) 1 1 0
@1(1) /11 \/5,11 1
D,(4) A2 V31, 1
D3(2) (1% -1) IN2 V5 (2042-3) 2
) 71* Ao 3% Ay 2
@@ (" -1) IV2 V5 (3457 7) 2
) 43-3) /6 V7 * (204° -2 0a) 3
1) Jo* (2 1) 12 VIS *ip* (Sia*-3) 3
Dg(2) A * (A2 -1) 12 x/ﬁ*zl*(zzzz-i) 3
) (2° - 32) 1V6 V7 * (205° -2 Jo) 3

2.1.4.1 Arithmetic mean of random outputs

The first and most common statistical moment is tiitBraetic mean since it indicates the central
value which has random outputs spread around it. €fieitidn of arithmetic mean for a random output

is:
E((1) = [ X0 p (1) (2.17)

wherex is the random output, and the integral is multidinwetad with n dimensions. By replacing (212

in (2.17) we would have:

EX0) =Y. [ (o). = . [ G () (1) p (1) (2.1

i=0 @ i=0 O

It is worth noting #,(4) is always equal to 1 for all orthonormal polynomiddy. comparing the right

hand side of (2.18) and (2.14), we can write:
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ECO) = X (66 (). (D) = Y660 =6, (2.19)

Therefore, the arithmetic mean of a random output is c@effi of the first polynomial in its PC

expansion disregard of the distribution and number ofarandariables.

2.1.4.2 Variance and standard deviation of random outputs

The second statistical moment is the variation. paikameter shows how far samples can get

from the mean value; hence, a lower variation is ddsirdbe mathematical definition of variation is:

Var (x(A)) = E[(x(%) — E(x(M)))]

= [ ()~ o (1)’ 0 = [ (s (1) (1)

o i=0

(2.20)

Expansion of the right hand side of this equation t®gulall possible combinations a;wj which would

convert the formula of variance to:

P P

var(®)) = > (ad (1).c;4,(0)) B2

i=1 j=1

However, only whem=j, the inner product results in a nonzero answer; therefore:

P

var() = (64 (.64 ) = > (2.22)

i=1
Or in other words summation of square of every coefficizogpt the first one.

The other popular statistical measurement tool isstaedard deviation ar which is the square

root of variance; thus, variance is also showa’a3he equation for standard deviation is:

o= Vo2 (2.23)

13



Standard deviation is favorable over the variance beciiuss the same order of mean; hence, it is

comparable with the mean value.
2.1.4.3 Higher order moments and the probability distribution function

Higher order moments provide more information about thkawier of a random output.
Although it is not very common to see these moméntdhe mainstream lterature, they can be a

noticeable help in special problems. In general sitatisnoments are defined &s7]:

1M () = [ (x() = EC))) p()ch (2.24)

where M represents order of the moment apd' (X(A))is the M-th order moment. The third order

moment is skewness and demonstrates asymmetry oDiReAhigh skewness means the PDF has high

asymmetry. After simplification this parameter can benshas:
S(x(1)) = E(x(1)°) = 3o:(X(1))" ~ E(x(3))’ (2.25)

wheres(x(4)) indicates skewness »f1). The next statistical moment is called kurtosis laasian order of

4. This parameter demonstrates the form of tails of te &1d after simplification can be shown as:
K(X(1) = E(x(2)*) ~ 4s(x(1) E(x(1)) ~ 65 (x(W)) E(x(W))* - E(x(1))* (2.26)

wherek(x(4)) indicates kurtosis ak(4). Unfortunately for statistical moments greater thanttveonner
product approach cannot be used because third deghg®npals with different random variables
appear in the integral. However, knowledge of the caefiis in (2.12) allows us to find higher order

moments in a different way. In order to do so, an apprsmalar to Monte Carlo is taken.

Statistical analysis with Monte Carlo is done by perfognnumerous experiments. Then
statistical information of experiments’ results are computed. However, this approach is not peddti the

cases where one instance of the experiment takessal@@ble time to perform. Nevertheless, a faster
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method is generating the gximents’ results by using (2.12). In this approach, firdfl random sample
nodes are generated, whevkis a great number. The number of dimensions andbditn of these
samples is same as random varialles the system. By having coefficients, polynomialsl aandom
samples, the right hand side of (2.12) is known; thergfioeeresult oM instances of the experiment can

be approximated. The final step is computing stediinformation from these approximated results.

The final statistical information discussed in thist&s is the PDF which holds information from
all previously introduced statistical moments, andniany cases is the most desirable statistical
information. The approach to find PDF is same as highger momentsM experiments’ results are
generated by sampling (2)1&nd the PDF is constructed by drawing the normalisdgnam of all that
data. It is worth noting, using Monte Carlo to find kiglorder moments and PDF does not disvalue the
PC approach because performing one single experimenttakes significantly more time comparing to

calculation of (2.12).

2.2 Intrusive approaches

Intrusive approaches are the ones which require intrusiding and development of a new
circuit solver. In this section two intrusive approaches discussed which are the Stochastic Galerkin

and the stochastic testing approaches.

2.2.1 Stochastic Galerkin (SG) approach

The first PC based stochastic analysis technique weatdiscuss is the stochastic Galerkin
approach [10]-[25], which is intrusive and requires inrrstoding and cannot be done in a black box
manner. However, this effort makes the stochastic Galdéokihave a higher accuracy comparing to
nonintrusive methods. In this approach, the equagomsrning the system are augmented with means of
gPC theory. The resultant augmented equations are inefagvalent to an expanded and coupled

deterministic system. The PC coefficients can be deraftel one single simulation of this system.
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Before discussing this approach in details it is neargs® introduce one more PC based integration

formula. This formula is explained in the next section
2.2.1.1 Three term inner products

In previous sections we mentioned that we are intetest@éner product of two polynomials

because of the orthogonality condition. However, @& stochastic Galerkin approach a new expression,
<¢k AN (/1)>, appears, which is the inner product of multiplicatdériwo polynomials and another

polynomial. The result for Hermite polynomials would[&8]:

17 —A2 /2 K j!”
Ap (1), (1)) =——=— g (g (A di= 2.27
(4 (D), (1), () @jfk( )¢, (), (M)e IO i) (2.27)
wherem= (k+j+i)/2 is an integer angh> k, i, j. If mdoes not meet these two conditions the resulr@ ze

Furthermore, result of the abovementioned inner product.dégendre polynomials would be

[10]:

(0.0,(D).4: (D) =3 [, (D (D)
* (2.28)

e il(2s—2i)!d O (KD i)
=D (s—k)!(s—j)!(s—l)!(23+1)!§( & t(k—0)!(j =i +1)!(i —1)!

where s = (k+j+i)/2, p = max (0, i - j) and g = min (ki,i)). The above equation works only whes

even and values before factorial signs are non-negéiterwise the result is null.

2.2.1.2 Stochastic Galerkin approach for linear circuit elements

The SG approach is desirable in systems being gavésneimple equations. Therefore, it can be
easily applied to passive elements [18]. Consider itligesresistor pictured in Fig. 2.2 (a). Assuming this

resistor is affected by random varialleshe equation relating voltage and current for thimeld is:
i(t,2) = GOV (v, (t,A) —V, (t, 1)) = Gv(t,A) (2.29)
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Fig. 2.2: Application of SG on a single resis{a) The resistor element. (b) Theth spectral circuit.
whereG is the conductivity. The first step is applying (2.&@yandom functions in (2.29), which yields:

Y40 =33 G, (04 M, (). (2.30)

k=0j=0

Since random variable(s) are embedded in the resistagg@nds known,Gy in (2.30) can be found using

the orthogonal projection technique

(6.4, ()= | (ZG " (x)}ﬁk (1p0)d= [ 016, ()4, ()p(1)=G, (2.31)

The next step is applying the Galerkin projection(2:30) which means calculating inner product of left

and right hand sides with tmath polynomial.

<Z| O (x).¢m(x>> _ <i§ekvj 4 ()9, (x),¢m<x>>. (2.32)

k=0j=0

Considering the orthogonality condition we would have:
- P g
im(t) = ZGm’ \Z ® (2.33)
j=0

where G is the augmented conductance matrix:
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_ P
G, = Zekakjm (2.34)

And:
G = (B (1), 1), 6,(1)) = [ A (1), (1), (3) p(3) . (2.35)

After applying (2.32) to alg, (A) polynomials,P+1 similar equations would be generated which can be

organized as:
i(t)=Gv() (2.36)

where i~(t)=[i0(t),...lp(t)]T, V(t) =[V,(t),..vo()]", G denotes the augmented conductance matrix
described in (2.34), anflis the transpose sign. It is worth noting (2.36) reprissa deterministic circuit
which can be simulated by circuit simulator softwdrethis augmented circuit, there alPa1 branches
and as depicted in Fig. 2.2 (b) each of them possessesstor equal to &,,. Each branch is coupled to
other branches with a factor 6f,; modeled by parallel voltage dependent current soursiésstwards,
coefficients of output voltages or currents can be eabligined by probing the augmented circuit. In

other words\/'; is equal to the voltage at the end of jthl branch.

This process can be done likewise for stochastic aitapm and inductors, where the PC
expansion, Galerkin projection and augmentation areie dmn i(t,A)=C(A)dv(t,1)/dt and
v(t,A) = L(A)di(t,1)/dt respectively. A general circuit usually involves a dbtdeterministic elements

as well. By writing the expansion it can be easilyprothese elements appear as themselves in every
branch of the augmented circutt. Finally, independtterministic sources appear as themselves in the

first branch and with zero amplitude in other branches.

In the case of distributed networks, same principaldyaPpnsider a set of coupled transmission

ines. They can be modeled by partial differential éigos [10], and the PC expansion and Galrekin
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projection can be applied to these equations siulgpassive elements [10]. Moreover, the coupled

equations describing the augmented system can beraged from Galerkin projection of expanded
version of the partial differential equations and #e(A) basis. The result represents a deterministic

augmented circuit which can be simulated by cirdoiultor software. In this augmented circuit, there
are P+1 times more transmission lines and all of them atgled to others. Afterwards, coefficients of

output voltages or currents can be easily obtaingaidiying the augmented circuit.
2.2.1.3 Stochastic Galerkin approach for nonlinear circuit elements

One major challenge in the SG approach is deteroinatiintegrals similar to the one in (2.32)
which are necessary for finding coefficient in PC expansion of equations describing network’s elements.
In case of passive elements and even transmissiantli® is a relatively easy task. However, it is
different for nonlinear elements like diodes which areegaed by a nonlinear function as iift) =
F(v(t)) because after the Galerkin projection the result woeid

n®)=] F@vk (tm(m}zsm(mp(x)dx (2.37

Q

Therefore the work of [18] suggests a numerical approasbive this integral by generatiqy=
(m+1)" companion cells where each cell includes the remlirelement and a dependent voltage source.
And the nonlinear element is replaced by a deperd@nént source in tharth spectral branch of the

main augmented circuit representing

This process can be done likewise for three termindihean elements such as transistors by
modeling them a$) companion cellswhere each cell includes the transistor and two degrenaltage

sources, in addition tm spectral networks with two dependent current sourceadh of them.

19



2.2.1.4 Stochastic Galerkin approach for a general network

Consider the general nonlinear network consisting dfitdised and lumped circuit elements
characterized by the modified nodal analysis (MNA) agust After introducing the random variables

to the network the stochastic version of the MNA eiqoatould be [19], [25], [61]:

dX(t )

GA)X(t,A)+C(A) ——=+F(X(t,A))+ Z( Y, (6, A)T")*X(t,A) = B(t) (2.38)

where G, C matrices contain the stamp of all the memoryless raachory lumped circuit elements
respectively X is the vector of stochastic voltage/current resporiSemntains the stamp of nonlinear
circuit elementsT; is the selector matrix mapping the vector of port cusrgft) for thei-th distributed
network into the nodal space of the circ¥itjs the corresponding time-domadrparameter macromodel
of thei-th distributed networkB represents the input vector of independent voltagecamént sources

and ‘*’ denotes the temporal convolution which is performed in a recursive manner in SPICE.

The intrusive SG approach begins by expanding thehastic processes of (2.38) using

multivariate orthogonal polynomial bases as [19]:

G()‘*) = ZG k¢k ()") ) C()") = zck¢k (;\') )
k=0 k=0 (2.39)

XEN=Y X O40), Y, 6= Y, 040)

Then the matrice§,, Cx andY, of (2.39) are obtained from the explicit knowledgeGgt), C()) and
Y (1) respectively. The expansion of (2.39) is then replacdg@.38) and a Galerkin projection of both
sides of the equation is performed, thereby convertiegstbchastic equations of (2.38) into a set of

augmented deterministic coupled equations as [19]:

dx (t)

X.(0)+C, +F.(X, (t))+Z(T|a 2OT )+ X, (=B, (1) (2.40)
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where G,, C, are augmented matrices constructed using3h€, block matrices respectively,
Tiais a purely diagonal matrix composedTof Yi,(t) is the augmented time-domain macromodel ofithe
th distributed network constructed from tkg block matrices of (2.39B. = [B, O...., 0]", Xa = [Xo, X1

..., Xp]" andF,(.) denotes the augmented vector of nonlinear circuiteis.

The overall MNA equations of (2.40) represent an augedetéterministic network which can be
solved within a SPICE environment. Once the PC coeftE¥i{t) are known, the statistical moments of

the system can be easily evaluated via the PC eigpanis(2.39).
2.2.1.5 Pros and cons of the stochastic Galerkin approach

With no doubt the described SG approach provideshelengl of accuracy [10]-[25]. One reason
is that unlike nonintrusive approaehthe distribution of output is not assumed to be joive PDF of
input random variables. The higher accuracy allows SG to choose lower ordeesgansion which in
turn saves computational costs. Moreover, SG is ablextract all PC coefficients from one single
experiment or simulation, while nonintrusive and samg@pproaches perform a great number of calls to

the simulation software.

However the SG approach requires intrusive coding tnaaie the conversion of the stochastic
equations describing the network into the augmenédrihinistic network. Thus, this approach cannot
directly exploit existing sophisticated determinissiolvers such as SPICE. Moreover, the augmented
deterministic equations denote the augmentation eofntitwork by a factor dP+1. This translates to a
near-exponential scaling of the CPU time and memostscwith respect to the number of random
dimensions. Finally, the multidimensional integrafsnonlinear equations are computed using numerical
technigues where the terms of the numerical approxmatie represented in SPICE using lumped
dependent sources, thus leading to further augmenttidre network [18]. Due to these factors, the
application of the SG approach is only limited to f@ois involving small-dimensional random spaces

[10]-[25].
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2.2.2 The intrusive stochastic testing (ST) approach

In order to address the inefficiencies of the SG technmigaently the intrusive stochastic testing
approach which is able to extract PC coefficients byoiirg an intrusive solver is suggested in [40].
For simplicity in discussion of the ST approach, iadtef (2.38) the following differential algebraic

equation (DAE) is considered:
WH (x(t,2),A) = Bu(t) (2.41)

where u(t) denotes the input signad, represents voltages and currents in the networkgaanadf are
stamps of memory and memoryless elements respectiigtjar to other PC approaches solution of the

network is approximated as:
A P A
X(t,2) =D % ()4 () (2.42)
i=0

Replacing (2.42) in (2.41) yields the following residfuaiction:

da(X(t. %),

RES(X(t,1)=(— ) £ (&(t,2),4) - Bu(t) (2.43)

where X(t,A) =[X (t),...X-(t)]. The goal of ST is developing an intrusive solvestve (2.43) and

extract PC coefficients. In the following sections basigsdeveloping ST’s intrusive solver, selection of
sample nodes required for ST analysis, an alternatniatngsive ST approach, and finally a discussion

on pros and cons of the approach are provided.

2.2.2.1 Basics of development of an intrusive solver for the ST approach
The basic idea behind the ST approach starts widulaing (2.43) forP+1 testing nodes
denoted a&,.... XM, and enforcing the residue to be zero:

dQ(df(t)LF(x(t)): Bu(t) (2.44)

22



where:

[ q(&E.2®)0) ] [ fxea®)a®) ] [B

i
I

Q(X())= : F(X()= (2.45)

_q(s‘((t,;\’(Pil)),}\‘(PJrl) )_ _f ()'*((t,)\’(Pil)),k(PJrl) )_ B

The ST approach proposed in [40], solves (2.45) bylaj@ng an intrusive transient solver
where adaptive time stepping and decoupling canseel. uAfter solving (2.45), this approach directly
provides PC coefficients. This solver can be implemebyedsing different integration schemes such as
backward Euler, trapezoidal and Gear-2 techniquest, Mékout any loss of generality, backward Euler
is selected to demonstrate application of the ST apprchowever, it can be applied to other integration

schemes likewise.

Using the backward Euler integration scheme disctietizaf (2.44) yields in [1]

R(X,) = 2 (Q(X,) ~ QX 1))+ F(X,) ~Bu, =0 (2.46)

where:

X, =X({t), u, =u), o = (2.47)

k tk—l

It is worth noting in this approach the local trunaaterror (LTE) is exploited to adaptively set the
timestep. Moreover, the Newton’s iterative technique is used to determine Xy in (2.47) by starting from

random guess of°. In other words the equation
J(XDHAX] =—R(X}), (2.48)
where J(X]) is the Jacobian matrix dR(X]), is solved. Then th&| is updated:

X=X} +AX] (2.49)

23



until the solution gets converged. Equation (2.48Y i@ solved forAX| using a matrix solver which

would be costly. Therefore, [40] suggests an iteratie dacoupled technique. Interested readers are
encouraged to read [40] for extra details. Once the PC cieeffi are extracted, the statistical moments
can be generated same to previously mentioned PC appsaNext the algorithm to find the testing

node in (2.44) is discussed.
2.2.2.2 Determination of testing nodes for the ST approach

One major challenge in the ST approach is determinafi testing nodes since poor selection of
nodes results in il-conditoned matrices in (2.45)iclhin turns makes the solution inaccurate or
impossible to obtain. In order to address this isswe ST approach of [40] starts with the+l)" nodes
inspired by the Wiener-Askey scheme. These nodesedr® be the tensor product of roots of timeX)-
th polynomial orthogonal to the joint distribution ijput random variables. The ST approach tries to
obtain PC coefficients from the least possible numbeamwiptes which is equal to number of coefficients
i.e. P+1. In order to have accurate results two criteria aréosestelecting nodes. The first one is giving
the preference to quadrature nodes with a higher corrasgomdight since they are statisticaly more

important. The second criterion is based on the fallgi matrix generated from the selected notfés

28, e,

%) 4.0.9)

A= (2.50)

G(D) L g ()

This criterion states the finad matrix needs to be full rank and well-conditionede Tdigorithm for
finding testing nodes starts with constructing time+X)" quadrature nodes and their corresponding
weights. Then nodes are sorted from the highest weigtite lowest, and the first testing nod€’ is
selected as the one with the highest weight. In dadgenerate the remainii®gynodes the rest of the
gquadrature nodes are conselgin the same order as their weight. Assunmirignodes are selected at

stepr the following vector space is constructed:
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V ={HG.®),.. . HG. D)) (2.51)

where H()) =[¢,(A),4(M),--6.(M)]" . Next, from the remainingm+1)" —(r —1) nodes, the node with the
highest weight)"; is tested to see if the (L") vector has large enough orthogonal componekt. tt

this condition is met." is added to selected nodes and the algorithm movstepr+1, otherwise other

remaining nodes in the quadrature space are tested.F3fimodes are obtained the algorithm stops.
2.2.2.3 An aternative nonintrusive ST approach

The ST approach introduced in [40] provides noticealoleances in accuracy comparing to
nonintrusive approaches and in efficiency comparinght intrusive SG approach. However, the
intrusive nature impedes its application on many istipated problems. To address this issue the work
of [37] suggests a nonintrusive approach. The noningusitochastic testing asks for doing the
deterministic simulation of the system at oyl nodes and arranges the result as:

GO 00X, [ X0.0)

(2.52)

BTN B[ X | | X@EP)
wherel is the identity matrix. Since the matrxis square, the solution can be foundX¥asA™E, with
X=[Xo,... Xp]" andE=[X(AD),... XL,

The arbitrary selection dP+1 nodes is not guaranteed to yield accurate resiétsefore, the
main contribution of [37] is selection of the+l nodes in (2.52). In order to do this task the narsive
stochastic testing takes advantage of the nodetisaledgorithm described in section 2.2.2.2, claiming

the ST’s node selection algorithm is strong enough to yield accurate results.

2.2.2.4 Pros and cons of the stochastic testing approach

The ST approach suggests well designed technigtiedtthe PC coefficients. Comparing to the

SG method, the modified network which ST needs teesisl less complicated and also according to [40]

25



it can be decoupled; therefore, it is more efficients Huproach also provides a high accuracy comparing
to nonintrusive approaches and although it has a&higi?U cost comparing to some PC approaches, it
presents the potential to find the coefficients fastan thome nonintrusive approaches which have a

exponential rate with respect to number of random vasaldince the ST approach presents a

polynomials scaling rate.

On the other hand the original ST approach is inteusifter al, and intrusive coding is not
practical in all cases. This issue impedes ST’s application for sophisticated networks which can only be
simulated by commercial software with no open sourake cAlthough, the nonintrusive version of ST is
very efficient comparing to other PC approaches, and twiegldress the issue of being intrusive, it is
proven in [61] that results obtained from (2.52) may eohbcurate enough becaube ST’s criteria for

selection of the nodes is not optimal.

2.3 Nonintrusive approaches

Nonintrusive approaches are the ones which don’t require intrusive coding or development of a
new solver. These approaches take advantage of corahsaftivare to find the result at a set of sample
nodes. In this section four nonintrusive approaches sressed which are the pseudo spectral PC,
conventional linear regression, stochastic collocasiod Stroud cubature based stochastic collocation

approaches.

2.3.1 Pseudo spectral PC approach

The nonintrusive pseudo spectral approach seems tbhebenost straightforward among PC
methods. Beingiorintrusive, this approach does not need any simulaioidevelopment, modification
of the circuit or even knowledge of internal equationsegning the circutt. In this approach the PC
expansion of (2.12) is directly applied to the outmitthe system and by means of numerical integration

methods PC coefficients are found. Then, these coefficiet used to find statistical information. In the
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following sections first we introduce the used numerigiggration technique which is integration with

Gaussian quadrature rules and then mathematicakdettdfiis approach are discussed.
2.3.1.1 Integration with Gaussian quadrature rules

Gaussian quadrature rules are numerical integration Wiseld to approximate the integral of a
certain functionf(1) with distribution p(1) [58], [10]. The approximation is in form of a weighted

summation of functiori(1) at predetermined sample nodes. This can be written as

Q
j F)p()dh =Y F()0(h ) 52)
Q k=1

whereQ is number of the sample nodé§= [1,%, 1,%, ..., 1,%] is thek-th discrete node in the random

spacew(1") is the corresponding weight to natfeandf(1") is the value of functiof(1) at nodei®.

Order of a quadrature rule is associated with number afsnadd is noted ag. In the one
dimensional cas€ is equal to +1), and inspired by the Wiener-Askey scheme sanggeshare set to
be the roots of theg@1)-th polynomial orthogonal to th&/) distribution. In problems witim dimensions
Q = (g+1)" and sample nodes are obtained by generating tensaicpifdthe one dimensional nodes.
Finally, (1) is equal to product of the weights of one dimensiomales . which depends on the

distribution of /.

For the normal distribution, nodes are generated from obd#ermite polynomials. Another way
to generate nodes which also yields correspondinghtgeig solving an eigenvalue problem which is
known as Golub-Welsch algorithndq, [10. In order to do so, consider the matig.1)q+1) With the

following entries:

a j=i-1
AW =9/j i=j—1 (2.54)
0 otherwise
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nodes are equal to eigenvalues/ofand corresponding weights are squares of first elemeaada

eigenvector in the same order.

For the uniform distribution nodes are generated from robtthe Legendre polynomials.

Corresponding weight t&* is obtained from the following formula [60]:

1
(1— (2% )Z{OZS/Q; (,1<k>)J

o™ = (2.55)

where ¢Q+1 is the @+1)-th Legendre polynomial.

In the general case, parametersndf; of (2.12) can be used in the Golub-Welsh algorithm to
compute the quadrature nodes and weights [59]. Thasitalp requires first constructing the symmetric

tridiagonal matrixA where

o, ifi= |

JB if j=i+1

AL T) C g<ii<pit
(,1) \/ﬂT fioit <iyj<p+ (2.56)

0 otherwise

Let A =UAU" be the eigenvalue decompositionfofvhereU is the unitary matrix. This make(i,i) the

i"" Gaussian quadrature node abi{1(j))? the corresponding weight.

2.3.1.2 Application of Gaussian quadrature rules to the pseudo spectral PC approach

As stated before, the pseudo spectral PC approach adkastage of numerical integration to
find the PC coefficients. Since polynomials used is #pproach are orthonormal, coefficients can be
found using the orthogonal projection technique, ootimer words calculation of inner product of a

function and a polynomial:
(X)) = I XM (1) p(r)dr (357
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Replacing (2.12) in (2.57) yields:
(XG2.409)=] (Zc " (x)},ﬁ. (1P = Z [.¢.6, 09 (). = (259
Therefore, the only remaining step is numerical apprdiimaof the integral in (2.57), which is:
6 = [ XA~ 3 X0 )00)0(0) (2.59

whereX(W¥) are provided by performin@ experiments and the rest is done analytically.
2.3.1.3 Pros and cons of the PC pseudo spectral approach

Being nonintrusive the pseudo spectral approach iarg@geous since it can be done by using
commercial software. Moreover, for a moderate number of randoables it would be much faster than
Monte Carlo. Comparing to other nonintrusive PC approag®=sjdo spectral demonstrates a higher

accuracy because it exploits a higher number of detistimisamples.

On the other hand the scaling rate of the CPU cosirgjar challenge in the pseudo spekttra
approach since it increases exponentialy with respeatumber of random variables; therefore, for
problems with a higher number of random variables, wteohbe addressed easily by other PC methods,
the pseudo spectral approach might even need mordesaogmparing to Monte Carlo. The exponential
rate increases CPU cost so drastic that the use ofvetieshniques might be both more efficient and

accurate comparing to the pseudo spectral approach.
2.3.2 Conventional linear regression approach

Another nonintrusive approach is the conventionahtineegression [27], [28]. This approach
takes advantage of the linear least squares techiqietermine the best fit for PC coefficients. In the
next section a brief review of the linear least squarethad is done and then its application in the PC

theory is discussed.
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2.3.2.1 Linear least squares technique

The linear least squares is a common techniqueaiistits to fit a model to the gathered data
[62. As an example Fig. 2.3 pictures a set of data, diie, gathered froml experiments or simulation.
It is desiable to find a model such as the red curve which represents the experiment’s result, y, at an
arbitraryx. In the general case, the equation describing thét festhe i-th samplex®”, can be written

as:
N . .
DG F () =y @6
=)

where 1 <i <M, y" represents the result of experiment or simulation at-thesamplex®, F,(x") is a
function ofx, N < M, F;(x")=1, andc; are unknown coefficients. After doing this figr samples, thé

inear equations can be written as:

Ac=y (2.61)
where:
R (x®) Fu(x®) G y®
A= : : ;e=| 1 Ly=| (2.62)
RO o RO e [y

Fig. 2.3 Demonstration of fitting a model to stochastic dasing the linear least square technique.
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Although F does not have to be linear, this technique isciflear least square because (2.61)
is a linear combination of; Functions. Moreover, sincll < M the system is overdetermined and usually
does not have an answer. Therefore, the linear leastestechnique tries to find coefficierdsin the

best way to fit the equations and minimize sum o&segl of errors:
¢ =arg minS(c) (2.63)
where:
S =ly-AclF=>r*  +  r=y? =Y ¢ F ()] (2.64)
i=1 j=1

Equation (2.64) is minimum when its gradient is zexoause it is a convex function. Therefore

the following equation needs to be solved:

M M N
B 31 T3y, S EF () |- F (x))=0 (2.65)
6Cj i=1 6cj i=1 k=1

The simplified form of (2.65) would be:
M N _ ) M _
PIAAC A ESWACHN (2.66)
i=1 k=1 i=1
which in the matrix form is:
(ATAJe=ATy (2.67)

Equation (2.67) has a solution whe®l is full column rank which maleX"™X positive definite. This

solution is:
c=(ATA)'ATy (2.68)

and yields the coefficient vector in (2.61).
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2.3.2.2 Application of least squares technique to the PC theory

The conventional linear regression approal],[[28], [46] begins by approximating the

uncertainty in the network response of (2.38) using &&fansion as
P
X(t,4) =) X, )¢ (1) (2.69)
i=0

As stated before the goal @ stochastic analysis approach is to find coefficieXié);

nevertheless, the polynomials "are known beforehaddtair value can be computed at any sample

nodei”. Therefore, we can write dowh(A") to ¢, (L") in a certain vectoh, as:

A =[N AN, (A)1] (2.70)

where | represents the identity matrix and is added to supnpattiple responses. Using (2.60), the

summation in (2.69) can be expressed as:
A X =X(t,A") 2.71)

where X =[X,(t), X,(t),...X,@®)]", and X(t,»")is the simulation resutt a@”. The conventional linear

regression approach suggests doing (2.7M at2(P+1) orM = 3(P+1) nodes located within the random

space Q, resulting in the formulation of an overdetermined systétinear algebraic equations:

AX =E (2.72)

where

$6 (A . g () X(t,2®)
: B : E= : (2.73)

A= :
X(t, ™)

$HOM) ()]
The vectorE consists of the network responses obtained by prdtmngriginal stochastic network at the
M multidimensional nodes® = 1%, L,Y...., %¥]"; 1<k<M. Since the minimum number of rows in
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(2.72) to have a unique answer &t1), this method is called oversampling. It is worthingpthat (2.72)
is similar to (2.61) and it can now be solved inastesquare sense to evaluate the PC coefficients of the

network response:
X=(ATA)'ATE (2.74)

Once the PC coefficients are obtained from (2.74), aflsstal moments of the network

responses can be obtained from the PC expansion.
2.3.2.3 Pros and cons of the linear regression approach

As a nonintrusive method one benefit of the conveatiinear regression approach is that
sophisticated deterministic solvers such as SPICE eatiréctly used to populate the matéxin (2.72)
without any intrusive coding as required in the SGragoph as well as the stochastic testing approach.
More importantly, theM simulations of (2.72) can be easily parallelizedkanthe conventional SG
approach. It is appreciated that the ma#iis time independent and the nodes and their el@iuageds
to be found only once and thereafter can be stored forefutuse. Furthermore, this approach is
significantly more efficient comparing to the pseudocsiae approach because it scales aR+2§ or

3(P+1) with respect to number of random variables.

On the other hand the conventional linear regressibls lygneral disadvantages of nonintrusive
approaches mentioned in section 2.3.1.3. Moreovsmibtied that existing works on the linear regression
approach for circuit simulation have not provided anyho@ology to select thsl regression node&T],

[28. Some works suggest choosing tlemultidimensional nodes of (2.72) from the full tensordpiat
grid of one dimensional (1D) Gaussian quadrature nodesekkr, it is stressed that blindly choosing the
M nodes from the tensor product grid is not guaranteegivéoaccurate results, and since the linear
regression approach is less accurate because of itarasme nature, it would have a poor accuracy.
Nevertheless, in the field of estimation theory ané @atalysis various criteria to inteligently selea th

most importantM quadrature nodes based on minimizing/maximizing sattréute of the information
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matrix A'A of (2.74)have been reporte®3. Of these, the D-optimal criterion is the most popalad
requires choosing th# nodes in such a way that the determinant of the isftom matrix A'A is
maximized. Interested readers are directed to the refer@d@eg$5] for more details on the D-optimal

criterion.

2.3.3 Stochastic collocation (SC) approach based on the Lagrange interpolation

This section provides a brief review of a nonintrusieelsastic collocation approach, in general
all classical sampling methods like Monte Carlo aaation techniques4l]; nevertheless, the focus in
this section is on a SC approach based on Lagrarggdigtion p7]. First basics of the Lagrange
interpolation and its application to SC are presented, then pros and cons of this approach are

discussed.
2.3.3.1 Basics of the SC approach with Lagrange interpolations

For the problem of a single random variable= A, the SC approach expands the stochastic

solution of (2.38) into a sum of weighted interpolatiomctions as§7], [68]
X(E2) =Y Xt 2)1 (%) (2.75)
i=0

where m+1 is number of the collocation noddg.) represents the univariate Lagrange interpolation

function expressed as

L) < l—l(j)
i( )_ H 20 D) (2'76)

0<j<m, j#i

It is noted that although the Lagrange polynomial off@R is a highly popular interpolation
function, other interpolation functions such as thegi@se multi-inear function has also been employed
in the context of the SC approadg] In (2.76) A represents thé" collocation node out of a total of

m+1 nodes antj(\") = §;, whered; is the Dirac delta function. Typically, the+1 one dimensional (1D)
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collocation nodes of (2.76) are the roots of thel™ order polynomial basis chosen from the Weiner-

Askey schemed/], [68].

Extending the above methodology to the general vauliite problem, the SC expansion of

(2.75) can be rewritten as:
M .
X(E2) =Y X)L () (2.77)
i=0

where Li(}) is the multivariate Lagrange interpolation functiond an” =[A? 1% ..A01 is the i"
multidimensional collocation node (out a total Bf+1 multidimensional nodes). This multivariate
Lagrange interpolation function can be constructed flemproduct of univariate Lagrange interpolation
functions as

n A _)\‘(i)
Li(;‘):HIiO\‘k); i (h) = H T} (2.78)

(i ()
0<j<m, j#i 7LkI _xk]

Based on (2.75) and (2.77), it is noted that unlikevipusly mentioned PC approaches
coefficients of the SC expansion are always known. k\itié context of interconnect networks, these
coefficients can be obtained by deterministic SPICE Iatinnos of the original model of (2.38) at the
collocation nodes."”, 0<i<M. Once the coefficients of (2.77) are obtained from SPIGEmean and

variance of a particular quantity of interegt,) € X(t,A) of (2.38) can be computed as

E(x(t,)) = jﬂ (i x(t,A0)L, (x)jp(x)dx

Var (x(t.1)) = [ & X)L (1) - E(x(t,x))j p(1)dh (2.79)

The multidimensional integrals of73) can be easily performed numerically using suitable

quadrature rules[].
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2.3.3.2 Pros and cons of the SC approach with Lagrange inter polations

One advantage of the SC approach is its simplicity lagidg easy to implement since the
coefficients in (2.77) are obtained merely from SPICE siiook and there is no post-analysis
computation cost in order to extract these coefficielisreover, as a nonintrusive approach SC has
major benefits which are mentioned in previous sectienghere is no restriction on the macromodeling
algorithm used in the deterministic solution at eaole and hence direct exploitation of sophisticated
macromodeling techniques can be supported. Moreowse thimulations do not involve augmentation of
the overall circuit model caused by the need to perfarmbersome inner product computations such as
the ones which are required for the SG approach. Fitiah+1 deterministic SPICE simulations at the
collocation nodes are all independent of each othércan be easily parallelized unlke the SG approach

where the augmented model of (2.40) is typicaly cmlipl

On the other hand, it is noted from the above disongkat the CPU cost of the SC approach is
proportional to the number of multidimensional coll@amnodes (i.e M+1) since for each node a new
deterministic simulation of the network of (2.38) is riegplito evaluate each coefficient of (2.7These
multidimensional nodes are typically obtained froneasbr product of the 1D nodes of (2.76) thereby
leading to an exponential scaling of the number ofesothnd deterministic SPICE simulations) with
respect to the number of random dimensions. As a maogeeftfalternative, an inteligent choice of only
a sparse subset of the tensor product nodes can alssedewhere the choice of the sparse nodes is
guided by the Smolyak algorithr8q], [67]. The Smolyak algorithm leads to a significant redurctn the
number of collocation nodes fronm{l)", for full tensor product grids, to approximatelyn)2m.
However, despite the comparative benefits of the spgnide, the number of collocation nodes for this
approach still scales in a polynomial fashion withpees to the number of random dimensions, thereby
providing only limited benefits for large multidimensimandom spaces. In order to address this poor
scalabilty of the classical SC approach with respedh¢ number of random dimensions, in the next

section a Stroud cubature based approach is proposed.
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2.3.4 Stroud cubature based stochastic collocation approach

This section begins with a brief review of the Stroudbature rules and its application to

stochastic collocation approach. Moreover, pros and obthe Stroud cubature approach are presented.

2.3.4.1 Stroud cubature rules and their application to uncertainty quantification

In the work of p1], Stroud cubature rules were introduced in order to camputtidimensional

integrals weighted by arbitrary weighting functions aver hypercube space [-1,Hs
N 0)
j[ o f(x)w(x)olx=§a;i f (10 (2.80)

wherew(}) is the arbitrary weighting functiom; is the weight associated with tif&cubature noda."”

and f()) is any integrand that can be approximated using conse or maximum third degree

polynomials. Whenf (i) is approximated using a second degree polynomeélséctond degree Stroud

cubature rule (also called the S2 rule) dictates tramtimber of multidimensional cubature points in
(2.80) is equal td1+1 = n+1. The location of thé" cubature node within the [-171fypercube space is

given as p1],

i 2 2riz) 2 . (2rirx
Ay = \/; Co{n_ﬂj; Ay = \/;sm[n—JrJ (2.81)

forr=12,..., \_n/ ZJ providedn is an even number WhetE/ ZJ represents the greatest integer less than

or equal ton/2. If n is an odd number, the location of tH&cubature node along the last (ire"
dimension) is given byHl]
: ~1)'
20 = ( 2.82
" T (2.82)

It is noted that all weights, for the S2 rule of (2.81)§2.82) are equal to H¢1).
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Similarly, when f (1) is approximated using a third degree polynomial,ttiiel degree Stroud

cubature rule (also called the S3 rule) dictates thamntimber of multidimensional cubature nodes in
(2.80) is equal tV+1 = h. The location of tha" cubature node within the [-17lhypercube space is

given by B1],

)“(ZIr)—l — \/Eco{(zr_l)(l-}_l)ﬂ)’ ;"gr) — \/Esm((zr_l)(l-i—l)”j (283)
3 n 3 n

forr = 1,2,...,Ln/ ZJ providedn is an even number. if is an odd number, the location of iHeubature

node along the last (i.@" dimension) is given by5fl]

o_ Y 2.84
M= (2.84)

All weights w; for the S3 rules of (2.83(2.84) are equal to ().

One of the drawbacks of the Stroud cubature rules of (22834) was that they were originally
proposed for integrals performed over a hypercube spadé' vhich, in the context of the SC approach,
is applicable for random variables exhibiting a uniform beta probability distribution functions.
However, for other probability distribution functions sucas the normal distribution, the
muttidimensional integral of (2.80) is performed over fhe,«]" space instead of the [-1,1jypercube,
and hence the results of (2.81)-(2.84) are not direpthicable for such problems. Recently, in the work
of [34], the Stroud cubature nodes and weights for normalddistm functions have been reported and
these results have been provided in Table 2.4. Simcainiform and normal distributions are the most
commonly encountered distribution functions, the predoStroud cubature based SC approach of this

section can directly utiize the results of Table 2.4.

By setting the collocation nodes of (2.75) as the Stomature nodes of (2.812.82) or (2.83)

(2.84) depending on whethet(t,A) is well approximated by a second or third degree polyal
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Table 2.4 Stroud nodes and weights for common griityad istributions

. Weight Nodes
Distribution > 3 = 3
)\.(i) _\/ZCO 2I‘I7z . )"(Zir)—l :\/%CO{W);
#17V3 " {n+1) :
0 2 . (2rim ;\42) :\/ésin w
. Ay = 39N V3 n
Uniform _ wherer = 1,2,...,[n/2] and provided
wherer =1.2,...,[n/2] and nis even
providedn is even. ( e
. —1)! i 0 _\&
If nis odd, 3" _ED If nis odd, 2} A
1 1 3
n+1 2n
_ ; W @2 -9 +Yr )\
2O = \/ECO{ZWTJ; Ay, = \/Eco{—n ;
n+1
; i (@r=-)(i+D)x
Normal or 2.0 —J2sin 2riz AY :\/Esm[7
Beta n+l h =12 /2 d ided
wherer =1.2,...[n/2] and wherer = 1.2.....[n/2] and provide
. ; nis even.
providedn is even. i nis odd. L0 = 1 41
If nis odd, A" = (-1)' U

respectively, and applying the cubature approximatibn(2.80) to the multidimensional integrals of

(2.79), after some algebraic manipulations, the mearbeaxpressed as
E(x(t,0) =Y oxt ") (2.85)

where the weighting functiom().) has been set equal to the joint probabilty distiobufunction p(2.).

By using the same methodology of above and the a#idedledge that multiplication of
Lagrange polynomials yieldd, (ML, (A) =6, the expression of the variance in (2.79) can also be

simplified to
Var (x(t, 1)) = i(a), X (t,1.9))- E(x(t, 1)) (2.86)

where the mean teri®(x(t,.)) in (2.86) can be obtained from (2.85). It is noticed f(@B5) and (2.86)
that the mean and variance (i.e. first and second orakstisal moments) of any quantity of interest can

be analyticaly computed directly from the SPICE resaftthe stochastic network of (2.38) evaluated at
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M+1 sparse Stroud nodes of (2.81)-(2.84). This feature ofrttgoped Stroud based SC approach can
also be extended for any general higher order statigtioadent ofx(t,.). Equation (2.85) and (2.86) can

be used for other distributions in Table 2.4 as well.

It is emphasized that since the work of Strdad,[many other cubature rules for varying number
of dimensions and degrees greater than 3 have beeredt@odomprehensive list of which is provided in
[70, [7]. However, none of the reported methods preserve thly bigtactive linear scalabilty feature
of the Stroud rules, though many of them still scalebftter than the polynomial scalabilty of the SC
approach based on sparse grids. Furthermore, since @eahgBry assumes that the output of interest
exhibits a smooth dependence on the random variadbléisid order polynomial expansion has been
found to be sufficient for most contemporary interconnegoblpms [L(]. For the above reasons, the

Stroud method stil remains a highly effective cubatute for efficient uncertainty quantification.

2.3.4.2 Pros and cons of the Stroud cubature based stochastic collocation approach

The main advantage of the Stroud cubature approatshssaling rate. Unlike other stochastic
analysis methods which scale at a polynomial or meqiial rate, this approach scales linearly with
respect to number of random variables since number ofisaoges and SPICE simulatiomisl for the
S2 rule and 2 for the S3 rule. Therefore, the Stroud cubature rule ovexsdhe curse of dimensionality,
mentioned in Chapter |, for random variables which canapproximated by second or third degree
polynomials. Moreover, this approach is able to extramy statistical moment merely from SPICE
simulations and without post analysis costs. It @tkv noting in the PC approach it is necessary to
analyze data after SPICE simulations to extract PC ceeff®iand even after that the coefficients can
provide a closed form solution for up to the second ostiatistical moment i.e. the variance. And for
higher order moments it is necessary to generate thimsdnMC samples using the PC coefficients.
Finally it goes without saying that the Stroud cubatapproach is nonintrusive and therefore it can use

commercial software and do parallelization.
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@) (b)
Fig. 2.4. Topology of microstrip-stripline-microgtrstructure analyzed using ANSYS Designer 3D plai®©M
solver. (@) 3D view. (b) Cross-section view (alindhsions are shown in mils).

On the other hand, the main disadvantage of the dStralature approach is being limited to the
third degree polynomials. And despite the higher ordéatre rules are able to address this issue, they
do not provide the optimal scaling rate of the Straushture approach. In other words, although majority
of stochastic variables are smooth and can be appteximgth a maximum of third degree polynomials,
this issue causes lack of generality for the Stroud approMoreover, Stroud cubature rules apply to
specific distributions, while in practical exampleg thistribution of output might be non-standard which
increases the error; therefore, the Stroud cubature rule woulde able to handle some of possible
outcomes. It is worth noting in the PC approaches tisenaich in distribution can be compensated by
increasing the order of expansion; however, it is ngspte to increase the order more than three in

Stroud cubature rules.

2.4 A numerical example

As an example, in order to exhibit the applicationuntertainty quantification methods, the
interconnect network of Fig. 2.4 is considered andpgeudo spectral PC and Monte Carlo approaches
are taken for computation of statistical results. Trerastrip traces are of length 625 mils, width 50 mils,
separated by a distance of 20 mils and located 6k4bove the ground plane. The stripline traces are
of length 625 mils, width 12.4 mils, separated byistadce of 57.6 mils and located 16.4 mis above the
ground plane. The microstrip and stripline traces arenexird by via posts of height 45 mis and

diameter 20 mils passing through a diclectric layer of relative permittivity € = 4. This system is
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Fig. 2.5: Comparison o$-parameter statistics of the example of Fig. 2#hwihe width of microstrip traces as
stochastic parameter using proposed LM macromaua@iMonte Carlo (10,000 samples). (a) Mean ofig dB. (b’
Standard deviation of;$in dB.
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Fig. 2.6 PDF comparison between the proposed LM macromatiMonte Carlo (20,000 samples) 8f; of Fig.
2.4 at5.22 GHz.

characterized by its 4-port S-parameters computed tlengommercial ANSYS Designer 3-D planar
EM solver based on the method of moments (MoM). Moredher,stochastic Loewner matrix (LM)

technique [29] is used to generate the root macrom&&i) in (2.59) from the sampled data.

In the first test case, the width of the microstrip trasesstochastic parameter with the nominal
values of above and exhibiting a +/- 10% relativéoam variation. This requires a third order Legendre

polynomial expansion of the S-parameters as in:

S(1)= Y5 (94, $(9) ~ X S(649)4 (.9)0(®) @87)
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Fig. 2.7 Comparison ofSparameter statistics of the example of Fig.2.hwite width and separation of 1
microstrip traces as stochastic parameters usioggsed LM macromodel and Monte Carlo (10,000 sasly

(@) Mean of g, in dB. (b) Standard deviation 0o§Sn dB.

where S(s)¥) is the S-parameter data at which can be easily obtained using deterministicviialve

EM solvers. Using a Gaussian-Legendre quadrature hdenumber of quadrature nodesGs= 4 in
(2.87) and are located at the roots of the fourth ordeenhdrg polynomial. The accuracy of the pseudo
spectral approach is compared against the MC simulasioy 10,000 random samples of the uniform
random variable. The mean and standard deviationeoStharameter S11 is shown in Fig. 2.5 over the
bandwidth 10 MHz- 10 GHz where both the above techniques show ertaligeement. The gray lines
llustrate the S-parameter variation using 1,000 MC $&snrig. 2.6 shows the probability distribution
function of S11 at the minima of 5.22 GHz using thevabtwo approaches. In order to achieve the

excellent agreement of Fig. 2.6, the number of MC stinol had to be increased to 20,000.

In the next test case, in addition to the tracehyitte microstrip trace separation is another
stochastic parameter with the nominal value of abodeaat/- 10% relative uniform variation. The order
of the Legendre polynomial expansion of (2.12) is kbt at 3. In this case, the same Gaussian-
Legendre quadrature rule is used leadin@te 16 quadrature nodes in (2.87). The comparison betwee
the pseudo spectral approach and MC simulations arermedosimilar to the previous test case. The
mean and standard deviation of the S-parameter S3Bownsin Fig. 2.7 where both the above
approaches show excellent agreement. The gray limetsaite the S-parameter variation using 1,000 MC

samples. It is appreciated that for this case the pedpos! based macromodeling strategy required only
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16 deterministic simulations while the MC required t&ltof 10,000 samples leading to over two orders

of magnitude in speedup.
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CHAPTER IlIl: PROPOSED FAST LINEAR REGRESSION APPROACHES

Among multidimensional uncertainty approaches intteduin Chaptetl, the nonintrusive linear
regression seems to have the highest potential fdnasttc analysis of high-speed circuits. Firstly, being
nonintrusive this approach is able to take advantddke avaiable commercial software and easily do
parallelization on the required deterministic simulgtioat sample nodes. Moreover, this approach
provides a desirable accuracy and by adding an optiesdn of experiments it is able to extract the
most critical sample nodes. The number of sample nadesual to 2°+1) or 3P+1); however, by
taking some consideration this number can be furthecesfluvhile maintaining the accuracy. Finally, it

is worth noting, linear regression is available for diff¢distributions and orders of expansion.

This chapter starts with a through explanation of #erch algorithm of the linear regression
approach. This includes descriptiohtbe rationale behind the D-optimal criterion and teeldfov search
algorithm. Then noble ideas for improvement on the mbasive linear regression approach are
introduced in the next two sections. The first disedsapproach is called Sparse Linear Regression
(SPLINER) which we have published in [61]. The contrimgiin this approach are developing a sparse
node selection technique and then modifying it furtbelbe faster through limiting the search space and
reducing number of matrix inversions. The second appraacanother modified linear regression
methodology and we have published it in [72], thiprapch expedites the node selection technique by

reducing number of iterations and exploiting a fast maversion method.

In order to valdate these techniques and compare gbaiing rate with other PC approaches,
multiple numerical examples on high-speed circuid mitrowave/RF networks are presented. Although
both approaches can be applied at the same tinmnierical examples we apply them separately to

demonstrate their individual impact.
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3.1 The search algorithm in the linear regression approach

As mentioned in Chapter Il, it is noted that existimgrks on the linear regression approach for
circuit simulation have not provided any methodologyelect theM regression nodes [27], [28]. Some
works suggest choosing tid multidimensional nodes of (2.72) from the full tensordpad grid of one
dimensional (1D) Gaussian quadrature nodes. Howewersitessed that blindly choosing the nodes
from the tensor product grid is not guaranteed to giveurate results, and since the linear regression
approach is less accurate because of its nonintrusiueenit would have a poor accuracy. Nevertheless,
various criteria to inteligently select the most impot M quadrature nodes based on
minimizing/maximizing some attribute of the informatiovatrix A'A of (2.74) have been reported in the
literature [63]. Of these, the D-optimal criterion is thest popular and requires choosing thenodes in
such a way that the determinant of the information ma#tfiA is maximized. The selection of the D-
optimal nodes is commonly performed using the clakBiedorov search algorithm [66]. In this section,
first the reasoning for selection of the D-optimal criteri® presented and then the Fedorov search

algorithm for selecting the nodes is described.

3.1.1 D-optimal criterion

Based on the discussion in Section 2.3.2.2 tharlimegression approach tries to solve the

following system of algebraic equation:
AX =E (3.1)

where

G (O Xo(t) X(t,2Y)
A= : : X=|  |E= : (3.2)
G (W™ g (W) X5 (t) X(t, ™)

with | being the identity matrix.
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The importance of the D-optimal criterion to the accyratthe evaluated PC coefficients of

(3.1) is revealed using the followirigemma.

Lemma 1: Assuming that the truncation errgr1<j<M at allM design of experiments (DoE) of (3.1) are

independent of each other and exhibit a normal diitibwf zero mean and same variarégethen in
order to achieve the maximum accuracy of the PC coetficire DoE must be chosen such that the

determinant of the information matix'A of (3.1) is maximized.

Proof: Based on the PC expansion of the network response$8j, (Ris understood that the presence of
the random truncation errermakes the PC coefficients themselves random varidbikesvariance of the

evaluated PC of (3.1) can be computed as
Var ()~() =Var ((A'A)*A'E) = (A'A) 'AVar (E)((A'A) *AY! (3.3)

Knowing that the truncation error for each DoE (&g.is independent and has a constant variance
Var(E) = ¢’l wherel is the identity matrix. Replacing this in (3.3) theiaace of the PC coefficients of

(3.3) can be compactly expressed as
Var (X) = (A'A) '? (3.4)

From (3.4) we understand that to ensure the maximunracy of the PC coefficients we have to reduce

the uncertainty in the solutiorX (i.e. the variance of)~(). Since the variance ok is inversely

proportional to the determinant of the information ma&bd, a simple way to minimize the variance of

X is to maximize the determinant. Therefore, Mh®oE for the linear regression of (3.1) must be chosen
S0 as to maximize the determinant of the informatiotrixad his criterion is referred to as the D-optimal
criterion [63], [65]. It is noted that other optimal criteobesides the D-optimal criterion also exists
although the D-optimal criterion has been deemedribst effective and popular til now [63]. The next
challenge is to develop a search algorithm that ciinieatly identify the D-optimal nodes from

multidimensional random spaces.
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3.1.2 Greedy search algorithm to identify DoE (classical Fedorov)

In this section a detailed description of the greedydealgorithm to identify the D-optimal DoE
from multidimensional random spaces is presented. grasdy search algorithm is based on the Fedorov
algorithm commonly used in the field of estimationailyeand data analysis [66], [73]. This algorithm
begins by considering a set df = 2(P+1) or M = 3(P+1) starting DoE selected from the tensor product
grid of (m+1)" multidimensional quadrature nodes and creating the sfmneling information matrpd'A
of (3.1). Thereafter, each DoOE in the starting set is cefldby the best possible substitute DoOE taken
from the remaining ri+-1)"-M quadrature nodes such that the determinant of the &fiormmatrix
increases by the maximum amount in the process. sk@jgby-step refinement of the starting DoE

continues till all the initial set of nodes has beepiaced [39].

As per the above description, at tH& step it is assumed that the firsi nodes have been
replaced by their best possible substitutes. NoweifrthDoE (")) of the starting set is removed frak)

then the new determinant of the information matrix caexpressed as

det@'A), ., = det(A'A) - RA)R (A7)

=detA'A)(L-RA)(A'A)R' (L)) (3:5)

where R(\") is the row vector contributed by th€ DoE ") in A. Simiarly, if any arbitrark" DoE
(A%) from the remainingni+1)’-M quadrature nodes is included ing the new determinant of the
information matrix can be expressed as

det@'A) ., = det(A'A) + R(LO)R (L))

) (3.6)
= det@A'A) L+ RAW)(ATA) R (LW))

Combining the results of (3.5) and (3.6), after exchantjieg™ DoE (") of the starting set with any
arbitrary k™ DoE (%) from the remainingrtt+1)"-M quadrature nodes, the new determinant of the new

information matrix can be mathematically expressed@sarsive function
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Ar = det@tA)new = det@tA)(l_’_ dkk - drr + dk2r - dkkdrr)

(3.7)
dkr — R()\‘(k))\ll(rfl)Rt (;\‘(r))

where ¥ represents the inverse of the information matrix obtasker the previous (i.e.r-1")
exchange. From (3.7) it is understood that in ordechiese D-optimality, th&™ nodei® needs to be so

chosen to satisfy the optimization criterion
max(d,, —d, +dg —d,d,) qB.

Once the best possible nolf& has been found to satisfy (3.8) and the relevant egehlams been made,
the new determinant can be directly updated using £3d the substitution process moves on ta #i&
node. Once alM starting DoE have been replaced the new set of DéEepiesent the D-optimal

selection.

It is noted that the total computational cost of dlearch algorithm is due to two main factors.
Firstly, identifying the D-optimal DoE requires searghthrough (n+1)"-M quadrature nodes for each
DoE in the starting setin other words, a total & ((nm+1)"-M) searches. The associated CPU cost can be

expressed as
C,=2(P+)((m+D)"-2(P+1))C, »2(P+)(m+1)"C, (3.9

whereC;, is the CPU cost of computing the terms in the braa®ef3.7) assuming that the inver#é™is

known. It is noted that based on (3.5) and (8f&)an be expressed as
C,=3k((P+1)*+(P+1) (3.10)

where the first term is the cost of the matrix-vector ipfialation ¥ ’R'(A"), the second term is the cost
of the vector-vector multiplication d®(A"”) with ¥ R'(\"), and the factor 3 is due to the fact that the
above operations needs to be performed for three schladg, andd,, of (3.7). Alsok is assumed to be

the cost of each floating point operation. Combining)(and (3.10), it can be concluded that the overall
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search cost@,) scales in an exponential manner with the number diorardimensionsn(), quantified as

O((P+1)°*(m+1)")) ~O(n*"(m+1)").

The other source of computational effort arises from the tfaadt for each substitution, the

information matrix changes and the inve¥&" has to be reevaluated. This CPU cost is expressed as
C,=2(P+1)C, (3.11)

where C, is the CPU cost of each matrix inversion. Note thadi@ct inversion method€, scales as

O((P+1)’) thereby ensuring that the cumulative cost of the miversions C,) scales a©((P+1)")
zO(n4m)with respect to the number of random dimensiams Given that for typical PC problems

2<m<5, this suggests a near exponential scaling of thecased CPU costs.

The above two features of the search algorithm significalow down its performance for high-
dimensional problems and may even render it infeasdslesome problems. In fact, the cost of
implementing the search algorithm can often becomgnéicant fraction of the cost of performing the
M deterministic SPICE simulations of (3.1) as wil be destrated in the numerical examples section. In
order to address these computational constraints afelech algorithm, in coming sections two main
approaches to expedite the search algorithm for prolferaling high-dimensional random spaces is

presented.

3.2 Development of the proposed SPLINER approach

In this section the proposed SPLINER approach baseganses node selection is described.
Thereafter, the modified Fedorov search algorithm for etipesly locating the sparse nodes from a
high-dimensional random space is presented. Moreover-depth analysis of the computational cost of
the SPLINER approach compared against that of convahton-intrusive PC approaches, is provided.
Finally, this section concludes with numerical exspn order to validate the proposed approach and

study its computational cost scaling rate with resgeoumber of random variables.
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3.2.1 SPLINER with sparse node selection

It is noted that the matrid in (3.1) being time independent, the optimal nodeseds to be
constructed only once and can be stored for future réimsever, the conventional inear regression
approach oversamples the PC expansion of (2.69) resuiti@P+1) or 3P+1) deterministic SPICE
simulations £6]. This may lead to an unsustainably high CPU timg memory costs in order to extract
the PC coefficients of large circuit networks. In order tdd¢hie CPU costs of the SPICE simulations, in
this work only the minimum number of nodes required fosedf-consistent evaluation of the PC
coefficients of (2.69) is selected. This means thantimaber of nodes for the SPLINER approach is set to
M = P+1 whereby the matrid of (3.1) becomes a square matrix. Now, (3.1) can bedsdivectly to
accurately evaluate the PC coefficients of the networkiged the matrixA is full rank, well-
conditioned, and composed of the most imporRrit quadrature nodes. In this work, the D-optifel
nodes extracted by the Fedorov search algorithm isdeoad to represent the most important quadrature
nodes. It is appreciated that the Fedorov search higoidt sufficiently robust such that selecting this
sparse P+1 D-optimal nodes (instead of theP2{) or 3P+1) D-optimal nodes required by the
conventional linear regression approach) will stil ldada very high determinant of the information
matrix A'A. Since the determinant &' is equal to that ofA, this in turn means that the Fedorov
algorithm will automatically ensure that the determinaf A itself is very large. This indicates that the

matrix A is full rank and well-conditioned.
3.2.2 M odified Fedorov algorithm

In the previous section, the characteristics of the peEp&PLINER approach (i.e. use of only a
sparse set oP+1 nodes for the linear regression) was presented. 8iilg a sparse set of nodes
reduces the number of deterministic SPICE simulationsirestjut is noted from Section 32Lthat
locating these nodes from a high-dimensional randauespising the classical Fedorov search algorithm
still remains a time-intensive process. In order to dig@dhe search process, a modified Fedorov search
algorithm based on the following two novel featurgsr@gposed next.
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3.2.2.1 Pruning the search space

Based on the discussion of Section.3.1 is appreciated that one major challenge facieg th
classical Fedorov algorithm is the fact that the seapate for locating the D-optimal nodes consists of
(m+1)" Gaussian quadrature nodes. This means that the sspaick grows exponentially with the
number of random dimensions, thereby slowing down thdofev search algorithm for even small-
dimensional problems. In the modified Fedorov algorittmtially a subset consisting of 1B¢1)
Gaussian quadrature nodes with the largest quadratugbtsvevill be chosen. If the number of random
dimensions rf) is small enough, then the total number of Gaussimdr@ture nodes may be less than
10(P+1) nodes (i.e.rfrl)" < 10P+1)). e.g., ifn = 4, m= 3. In such cases, the total set of quadrature
nodes is small enough to be directly probed to lotlaebest possible substitutes. Once theP40)
nodes are extracted, from this reduced set of nodegathig set oM = P+1 nodes wil be randomly
selected to populate ti#e matrix. The remaining 81) quadrature nodes wil represent the new reduced
search space from which the D-optimal nodes will becsed. Therefore, in this methodology, for each
starting node, the best possible substitute nodebeviselected from the subset oP9() nodes rather

than the massive set afit1)"-M nodes thereby significantly expediting the Fedalporithm.
3.2.2.2 Constrained exchange criterion

It is further noted from Section 3.2.1 that for each refingnaf the starting nodes the
information matrix changes and its inverse needs tebemputed for use in (3.7). This translates to a
maximum ofP+1 inversions of the information matrix for the proposedlISER. SinceP+1 scales in a
polynomial fashion with the number of random dimensidias high-dimensional problems a large
number of matrix inversions needs to be evaluated theoabe again slowing down the classical
Fedorov search algorithm. In the modified Fedorov alguoritrather than simply exchanging a node
from the starting set with one from the reduced searcbestiat yields the maximum increase in the

determinant, an additional constraint criterion
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A, >11A (3.12)

is considered before making an exchange. Based on & 73pnstraint of (3.12) translates to the new

criterion for the substitution of nodes expressed as
d,—d_ +d:-d.d >10 (3.13)

This criterion will ensure that unless and until thbstitute node is able to increase the determinaheof
information matrix significantly (i.e. by more than 1lfnhéis) then that node is not considered to be a
viable replacement. In other words, by adding the canstof (3.12), the exchange criterion of (3.13)
becomes stricter thereby substantially reducing thebeuraf possible substitutions, and consequently,
the number of matrix inversions than what would be reduby the classical Fedorov algorithm.
Nevertheless, the constraint of (3.12) wil stil enstimat the improvement in the determinant of the
information matrix for every vald exchange is large ehosg that the determinant of matk

ultimately reaches a very large value.

Overall, the proposed modified Fedorov algorithm wdbti@ss both the two major sources of
inefficiency of the classical Fedorov algorithm for higmehsional problems the exponential increase
in the search space and the large number of matrix iomerd his along with the reduction in number of
deterministic SPICE simulations will results in a more UCgfficient approach to evaluate the PC

coefficients.
3.2.3 Computational cost analysis

This section quantifies the overall CPU time costsirired by the proposed SPLINER approach
and contrasts that against conventional non-intru3f@eapproaches. It is observed that no comparative
analysis with respect to the intrusive stochasticefBal (SG) approach is performed since it is well-
established that for high-dimensional problems mostimtousive approaches wil outperform the SG

approach45]. This is particularly true for nonlinear circuits where thultidimensional integral of (27)
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using the SG approach has to be represented in SPICGEH uosmssive number of additional

voltage/current dependent sources.

Based on the discussion of Section 3.2.1 and 3t2s2appreciated that the CPU time required
for the proposed SPLINER approach can be divided intopavts— the cost incurred during selecting
the P+1 regression nodes using the modified Fedorov algorthchthe cost incurred while performing

the P+1 deterministic SPICE simulations. Each of these tartspof the algorithm is studied separately.

3.2.3.1 Cost of modified Fedorov search algorithm

The cost of the modified Fedorov search algorithm @afutiher divided into the cost of finding
the suitable exchange nodes and that required for leatimg the inverse of the information matrix.
Beginning with the cost of finding the suitable exaj@modes, for each of tlie+l starting nodes, the
value of A, of (3.7) is computed 1P¢1) times. This makes a total of BO(1)* computations of A, and

the associated time costs can be mathematicalitified as:
C, =10(P+1)*C, (3.14)

where C; is the costs of performing all the matrix-vector andtmeeector multiplications of (3.7)
assuming that the inverse of the information matrixnswkn. Next, assuming that due to the constraint
condition of (3.12)(3.13) onlyR matrix inversions R< P+1) are required, the total time costs required

to implement the modified Fedorov algorithm can bengiied as the sum
C, =10(P+1)°C,+RC, (3.15)

where C, is the time cost to perform one matrix inversion. lajgreciated that the co€y scales as
O(n’™ with respect to the random dimensiom3. (On the other hand, the cd3t scales a®©(n*") or

O(n”™) depending on whether a direct or indirect approach fainimersion is used.

This overall CPU time cost is contrasted with thatiined by the classical Fedorov algorithm

expressed as
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C =KP+)(m+)"-K(P+1))C, +K(P+1C,

(3.16)
~K(P+)(m+D)"C +K(P+)C,; Ke{23}

where the first term on the right hand side of (3r¢fyesents the CPU cost required to compute A, of
(3.7) (m+1)"-K(P+1) times for each node of the starting set while thersterm represents the CPU cost
of the requisite matrix inversions. By comparing (3.13h8.16) and recaling thatmg1)" >> 10P+1)

for even moderate number of random dimensions and aMRy¥K(P+1), it is concluded that the

modified Fedorov algorithm is substantialy more efficidran its classical counterpart.
3.2.3.2 SPICE simulation cost

From the discussion of Section 3.2.1, it is undedstibat the proposed SPLINER approach
requires onlyP+1 SPICE simulations. This is smaller than th®+A() or 3P+1) SPICE simulations
required by the conventional linear regression approadh [[28], [46. Hence, the SPLINER approach
incurs only a fraction of the cost of the conventiona&ainregression approach when performing the

deterministic SPICE simulations.

Overall, the SPLINER approach is demonstrated to be wanignally far more efficient than the
conventional linear regression approach both in impkaten of the Fedorov search algorithm and the
number of SPICE simulations required, especially for higiedsional problems. It is further
emphasized that the proposed SPLINER approach is cagnilii more efficient than the rigorous
pseudo-spectral collocation approach for even modenaensional problems [29]. This is due to the
fact that although the pseudo-spectral collocatioesdoot involve the cumbersome Fedorov search
algorithm, the nodes of the SPICE simulations repregentfull tensor product grid of 1D Gaussian
guadrature nodesAf]. Thus, the number of deterministic SPICE simulationsiired by the pseudo-
spectral collocation approach scales in an expohentmner as ri+1)"where even for moderate
number of random dimensions¥1)" >> P+1. This massive number of SPICE simulations renders this

approach too computationally expensive comparedet&SBPILINER approach even after considering the
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CPU costs incurred for implementing the modified Fedolgerighm. In fact, given that the SPLINER
approach requires the minimuR*+1 number of SPICE simulations to solve for the PC coeiffisi in
(3.1), it is appreciated that this approach is expHotbe more efficient than even the SC approach based

on sparse grids3p]-[33] which requires only a fraction of the total tensordpai nodes.

Among other non-intrusive approaches, that basech@nST approach introduced in Section
2.2.2.3is highly popular and powerful [37]. This approach doesimailve any matrix inversions (i.&R
= 0). Moreover, it is based on a non-optimal nodecsefe criterion which requires a smaller number of
matrix-vector multiplications than the proposed maodifieedorov algorithm, thereby making it relatively
more time-efficient. However, since the modified Fedoedgorithm is stil based on a D-optimal
criterion, it is more accurate than the work of [37] whereom-optimal (relaxed) selection criterion is
used to expedite the ST search algorithm. In addi@nmost problems the SPICE simulation costs
dominate over that of the search algorithm. Since thetiproposed SPLINER and nonintrusive ST based
approaches perform the same number of SPICE simulatiesditference in overall CPU time costs is
usualy small. The comparison of the computationahmexity of the SPLINER approach with existing

nonintrusive PC approaches is further illustrated using noaleexamples in the next section.

3.2.4 Numerical examples regarding the SPLINER approach

In this section, three examples are presented to contpar@ccuracy and scalabiity of the
proposed SPLINER approach against existing non-intrid@eapproaches. All relevant computations
are performed using MATLAB 2013b while the determinist@nsient simulations are performed using
HSPICE [3]. In particular, the transmission line networkshef presented examples are modeled using
the W-element transmission line model provided by KE&Pwhich can consider frequency dependent
per-unit-length parameters [3]. The above simulatamesrun on a workstation with 8 GB RAM, 500 GB

memory and an Intel i5 processor with 3.4 GHz clocledpe
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Fig. 3.1: Multiconductor transmission line (MTL) twmerk for Example 1 in Section 3.2.4.1.
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Fig. 3.2: Geometrical and physical layout of traission lines of Example 1 in Section 3.2.4. (a) isetiwork 1
(b) Subnetwork 2. (c) Subnetwork 3

3.2.4.1 Example 1

The objective of this example is to compare the pedaooa of the proposed SPLINER approach
with the nonintrusive ST based approa8H,[and the conventional linear regression approach [}, [2
For this purpose, the multiconductor transmission(M&L) network of Fig. 3.1 terminated by inverters
made up of SPICE level 49 CMOS transistor models is d@resi. The lengths of the MTL networks are
set to 5 cm and their layout and geometric dimensamasshown in Fig. 3.2. This network is driven by a
voltage source with a trapezoidal waveform of rise/faletiT, = 0.1 ns, pulse widtfif, = 1 ns and
amplitude of 5V. The uncertainty in the network igdduced via six random variables € 6) whose

characteristics are listed in Table 3.1 and a Legdn@expansion of degrae= 3 is considered.
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Table 3.1 Characteristics of random variables afmale 1 in Section 3.2.4 (Fig. 3.1)

Random Mean % Standard Deviation
Variables (Uniform Distribution)
dy 100 pm
d, 140 um
d 70
3 i +- 20 %
W, 130 pm
W3 170 pm
8 1.5

Mean Proposed
——=—Mean Stochastic Testing
—:—-Mean Monte Carlo

—0— Mean +i- 3o proposed

--0- - Mean +I- 3¢ Stochastic Testing
—-0---Mean +i-3c Monte Carle

Mean Proposed
———Mean Stechastic Testing
—:—+-Mean Mente Carlo

—o0— Mean +/- 3o proposed
=-0-- Mean +/- 3o Stochastic Testing |

—-0—-Mean +/- 3o Monte Carlo

Transient response at N1 V)
N
Transient response at N, (V)

o b
0 b
B -0.5
Y1 2 3 14 5 6 7 o 2 4 6
Time (ns) Time (ns)
@) (b)

Fig. 3.3: Comparison of the statistics of the tiansresponse of Example 1 in Section 3.2.4 obthinging th:
proposed SPLINER approach, the nonintrusive ST dhapgroach, and the Monte Carlo approach. (a)s$its!
results of the transient response at (§) Statistical results of the transient respoaishs,.

In order to demonstrate the accuracy of the proposed SHRL_HEYRroach, the mean and standard
deviation ¢) of the transient responses at the output nddemdN, of Fig. 3.1 are computed using the
SPLINER approach where a total®fl = 84 regression nodes are required. These resultsrapaed
against those obtained using the nonintrusive SEddapproach [37] and the brute-force Monte Carlo
approach where 20,000 samples are considered. The riswnpaf the above results is shown in Fig. 3.3
where both PC approaches exhibit good agreement vettMtnte Carlo approach. Furthermore, the
SPLINER approach exhibits good agreement with the M@&@wuelo approach when comparing the
probability distribution function of the transient respenat nodeN, evaluated at the time point of

maximum mean crosstalk$ 1.83 ns) in Fig. 3.4.
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Fig. 3.4 Probability distribution at the time point of maym mean crosstalk £ 1.83 ns) obtained using 20,
samples of Example 1 in Section 3.2.4.

Next, the third order statistical moment (skew) at g nodeN, of Fig. 3.1 is computed using
the proposed SPLINER approach and the nonintrusive S&dbapproach [37]. These results are
compared against the Monte Carlo results as showrgin3/. It is worth noting in this example the
classical Fedorov (Bt+1) nodes) approach exhibits near-perfect agreementMytite Carlo. More
importantly, it is observed from Fig. 3.5 that the SPERN approach is more accurate than the
nonintrusive ST based approach. This is reflectettanfact that the SPLINER approach incursLan
error norm of 1.27xIBwhich is nearly 4 times as small as that incurrednbyrionintrusive ST based

approachl(, error norm of 5.04x1f) when compared against Monte Carlo.
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Example 1 in Section 3.2.4. (a) Third statisticalhment (skew) of the transient response of node(iy Enlarge:
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Finally, the CPU times taken by the SPINER approaehntmintrusive ST based approach, and
the conventional linear regression approach are listdalle 3.2. It is observed from Table 3.2 that both
the SPLINER and the nonintrusive ST based approachweacy similar overall CPU time costs although
the nonintrusive ST approach can identify the nodeterfa3his is due to the fact that the SPICE
simulation costs dominate over the cost of the sealgirithm as noted in Section 3.2.3. On the other
hand, the SPLINER approach is more than 2 times fastar tiiie conventional linear regression
approach. This speedup is due to both the efficienayided by the modified Fedorov algorithm as well

as the smaller number of SPICE simulations involved.

Table 3.2CPU Time costs using SPLINER, conventional linearesgion and stochastic testing for example 1 in

Section 3.2.4.
CPU Time CPU Time CPU Time
Nurmber _ (SPLINER) (Conven.tional Linear Regressio (Stochqstic Testing [33])
of RVs Modified SPICE Classical SPICE Stochastic SPICE
Fedorov (s)| Simulations (s)] Fedorov (s) | Simulations (s)| Testing (s) | Simulations (s)
6 15 56.28 14 112.56 0.012 56.28

3.2.4.2 Example 2

The objective of this example is to compare the perfocmaf the proposed SPLINER approach
with the ST based approach [37], and the conventimesr regression approach [27], [28] for an RF
amplifier. For this purpose, network of Fig. 3.6 is coastd f1]. This LNA utiizes an NXP BFG425W
wideband BJT, which is represented as @&HévGummel-Poon) SPICE model. This network is driven
by a voltage source with a sinusoidal waveform of frequeh GHz and amplitude of 1V. The supply
voltage of the network is set ta; ¥ 4.5 V. The uncertainty in the network is introdue@deight random
variables § = 8). These random variables are the first eight vasigblat of the total 12 variables) whose
characteristics are listed in Table 3.3. A Hermite P@aasion of degreen = 3 is considered for this

example.
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Fig. 3.6: LNA network of Example 2 in Section 3.2(4) Circuit schematic. (b) Cross-section view thé

transmission lines.

Table 3.3 Characteristics of random variables ahge 2 and 3 in Section 3.2.4 (Fig. 3.6)

Random Mean % Standard Deviation
Variables (Normal Distribution)

Wi 200 pm

W> 250 um

Wy 700 pm

Ws 900 pm

B¢ 145

Cis 6675 IF +-20%

Ry 50 Q

R, 100 Q

Rs 15 KQ

R4 22 Q

Rs 84 Q

In order to demonstrate the accuracy of the proposed SHRLHMEroach, the mean and standard
deviation ¢) of the transient response at the output Médef Fig. 6 is computed using the SPLINER
approach where a total f1 = 165 regression nodes are required. These resuko@pared against
those obtained from the nonintrusive ST based appr@tand the Monte Carlo approach using 20,000
samples in Fig. 3.7(a). It is observed from Fig. 3.7(af) hbth PC approaches exhibit good agreement
with the Monte Carlo approach. In addition, , the SPLRNd&pproach exhibits good agreement with the
Monte Carlo approach for the probability distribution @& transient response at nddeevaluated at the

time point of maximum standard deviatidn=(0.91 ns) as shown in Fig. 3.7(b).
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Fig. 3.7: Comparison of the statistics of the tiansresponse of Example 2 in Section 3.2.4 obthinging th¢
proposed SPLINER approach, the ST based approadhth® Monte Carlo approach. (a) Statistical resoftthe
transient response atNb) Probability distribution of the response ata the time point of maximum stand:
deviation { = 0.91 ns) using 20,000 samples.

Next, the third order statistical moment (skew) at thigpwi nodeN; of Fig. 3.6 is computed using
the proposed SPLINER approach and the nonintrusive S@dbapproach [37]. Both these results are
compared against the Monte Carlo results as showngin3B. Similar to Example 1, even for this
example the SPLINER approach is found to be more accthatethe ST based approach. This is
reflected in the fact that the SPLINER approach incur&,a@rror norm of 1.07xI0which is nearly 3
times as small as that incurred by the nonintrusiveb&@Sed approach.{ error norm of 3.23x1%) when

compared against Monte Carlo.

Finally, the CPU times taken by the SPLINER approauh,nonintrusive ST based approach,
and the conventional linear regression approach are listédble 3.4. It is observed from Table 3.4 that
both the SPLINER and the nonintrusive ST based appripaah very simiar overall CPU time costs
although once again the nonintrusive ST approachdeantify the nodes far faster. This is as expected
from the discussion in Section 3.2.3. Additionally, flais example the SPLINER approach is roughly 18

times faster than the conventional linear regressioroapp.
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Fig. 3.8: Accuracy comparison between the propoSBHUINER and the nonintrusive ST based approac
Example 2 in Section 3.2.4. (a) Third statisticalhment (skew) of the transient response of node(itNJEnlargec
plot showing the relative error of the nonintrus&€ based approach.

Table 3.4 CPU time costs using SPLINER, conventibimear regression and nonintrusive ST for exanplia

Section 3.2.4
CPU Time CPU Time CPU Time
(SPLINER) (Conventional Linear Regressior (Stochastic Testing [33])
'\c')‘]fg\tjgr '\Ifggg'ri‘?/ Sin?uFI)fla\(;Ens Classical SPICE Stochastic SPICE
s) (s) Fedorov (s) Simulations (s) Testing (s) Simulations (s)
8 13 38 838 76 0.031 38
3.2.4.3Example 3

The objective of this example is to compare the siigleof the proposed SPLINER approach
against that of conventional non-intrusive PC approacli@r this purpose the same RF low noise
amplifier (LNA) network of Fig. 3.6 is considered]]. The uncertainty in the network is expanded to
include twelve random variablea € 12) whose characteristics are listed in Table 3d3saHermite PC

expansion of degrem = 3 is considered.

In order to demonstrate the scalabilty of the propaeseitk the number of random dimensions is
progressively increased from 3 to 12 as shown in TableF8r the same test cases of Table 3.5, the total
PC problem is solved using three methedthe proposed SPLINER approach, the conventional linear
regression approach [27], [28], and the nonintrusive S&dagpproach [37]. The CPU time incurred by
each approach for each test case is noted in Tableri5scaling of the overal CPU costs is
demonstrated in Fig. 3.9. It is observed from Fig. B2@ the SPLINER and the nonintrusive ST based
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approach are significantly more efficient than the cotimead linear regression approach. This is due to
both the relatively slow classical Fedorov algorithenveell as the fact that conventional inear regression
approach requires twice as many SPICE simulations asetliee approaches. Moreover, while the ST
based approach is much faster than the modified Feddgoxthm in locating the nodes (see Table 3.5),
due to the very large SPICE simulation costs, their V@RI costs turn out to be very similar. For
example, when considering = 12, the nonintrusive ST approach is nearly 118stifiasster than the
modified Fedorov algorithm, although after taking thBIGE simulation into account this speedup
reduced to less than 2 times. Besides, the improvezieeffy of the nonintrusive ST based approach is
counterbalanced by the lower accuracy as demonstratbd previous examples. These results are as

expected from the discussion of Section 3.2.3.

Table 3.5 Scaling of CPU time costs using proposedyentional linear regression and nonintrusivédT
example 3in Section 3.2.4

CPU Tine CPU Time CPU Time
NUmber of RVs (SPLINER) (ConF\Q/entlongl Linear (Stochastic Testing [33])
(Random SPICE egressmsnp)mE SPICE
Variables) Modified | iy jations | C1asSiCal | ginyations | StoChastic | gy iations
Fedorov (s) Fedorov (s) Testing (s)
(s) (s) (s)
3 (W, Wo, W3) 0.014 4.60 0.016 9.20 0.007 4.60
4 (W, Wa, W3, Wy) 0.18 8.10 0.69 16 0.007 8.10
5 (Wi, "\Xf')""& Wa, 0.52 13 2.40 26 0.011 13
5,
6 (Wi, Wo, Wa, Wy,
1.50 19 14 38 0.012 19
Ws, Br)
7 (W, Wo, W, W, 3.40 28 87 56 0.017 28
W51 Bf! QS)
8 (W1, Wo, W3, Wy,
13 38 838 76 0.031 38
W51 Bf! q31 Rl)
9 (W1, Wo, W3, Wy,
30 51 3031 102 0.069 51
W51 Bf; qSl Rll RZ)
10
(W1, Wo, Wa, Wy,
52 66 7432 132 0.179 66
Ws, Bt, Gs, Ry, R,
Rs)
11
Wll W21 W35 W4|
76 84 14803 168 0.417 84
W5! Bf’ qs; Rly RZ;
Rs, Ry)
12
(Wq, Wa, Wa, Wy,
99 105 25911 210 0.839 105
W5! Bf’ QS, Rly RZ;
Rs, R, Rs)
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Fig. 3.9 Scaling of overall CPU time costs for SPLINER, centional linear regression, and the nonintrusive

based approach with increasing number of randoiahias for Example 3 in Section 3.2.4.

3.3 Additional enhancements to the linear regression approach

This section proposes another novel approach for imgrdtie linear regression method. It
begins by the numerical strategies to accelerate dlagcls algorithm for problems involving high-
dimensional random spaces. Then a detailed analydiie improvements provided by the said strategies
over the original search algorithm presented in [39] iwiged. Finally, this section concludes with
numerical examples in order to validate the proposedoaph and study its computational cost scaling

rate with respect to number of random variables.
3.3.1 Expediting the search algorithm for high dimensional random spaces

In this section, two modifications to the original BeaV search algorithm are presented. This
approach is applied to the original linear regressiqmrageh with 2P+1) sample nodes [27], [28], in

order to observe the individual improvement causedéystiggested strategies.
3.3.1.1 Substituting the K worst DoE

This strategy is based on the rationale that ome&sonably large determinant of the information
matrix has been reached, any further enrichment of therrdeant wil translate to only marginal

improvement in the accuracy of the evaluated PC coeffxid hus, instead of substituting MIIDoE (as
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suggested previously), in this strategy only #eworst DoE in the starting set wil be identified and
substituted. The substitution of tHeé worst DoE wil result in a sufficiently large increasé tbe
determinant of the information matrix, thereby eliminatittte need for exchanging the remaining
M —K DoE. Thus, this strategy wil reduce the number ofrcess fromM((m+1)"-M) searches to

K((m+1)"-M) — a reduction of the search cost)©f (3.9) by a factor oM/K.

In this work,K is initially set to M/5] where [.] is the ceiling function. Next, from (3.5}sitnoted
that the depreciation in the value of the determicanised by removing thé” DoE (")) is proportional

to the term
d, =RAV)PORMGLOY (3.17)

where¥@is the inverse of the original information matrix consisbf the startingl DoE. Thus, th&
worst DoE are identified as those DoE in the startriglsgat have the smallest possizdue of the scalar
di;. It is appreciated that computation of tie term of all 2P+1) DoE can be performed cheaply since
the matrix inverseP® needs to be computed only once. Oncektheorst DoE have been identified, the
Fedorov search algorithm is run for only these DoE. Tlittneaa check is made to ascertain if the
determinant of the information matix'A is reasonably high. If not, then the next worst DoE Ki-€1"
worst DoE) is identified using (3.17) and substitutscbafore. This sequential process continues until the
determinant of the information matri'A is deemed to be sufficiently large. It is observed from
numerous examples th&t = [M/5] is a good starting guess fidrand rarely does this value need to be

increased further.
3.3.1.2 Implicit matrix inversion

Although the above strategy  will reduce the numbérsearches, and consequently, the
number of matrix inversions, given that the cost toctlyenvert the information matrix even once scales
in a near-exponential manner with the number of randiomnsions (see (3.11)), the overall cost of

matrix inversions may still remain prohibitively large fagh-dimensional random spaces.
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In this section, a new strategy is adopted whe®8(i.e. inverse of the information matrix for
the starting set of DoE) is computed once and stofeetehfter, the substitution of arfyDoE ") (r <
K) wil change the information matrix. The inverse of tiew information matrix (i.e¥® of (3.7)) wil
now be expressed asRt1 rank correction to the previous inve&™ using the Sherman-Morrison-

Woodbury formula as5g|.

WO = ((A'A)+ R (A9)R(A) ~R (A))R(A))

(3.18)
=P 4w ViV, —wU'U,
where
W = _—%k); V, =¥PR(LY)
L+RAT)IVY)
1 (3.19)

W=—-—-—+——; U = vy wviv R (LY
r (1—R(7u(r))Uk) k ( k VK k) ( )

Based on the recursive expressions of (3.18) and (X 19phserved that for the substitution of ally
DoE (") (r < K) the new invers&® wil be updated efficiently using numerically cheaptriavector

and vector-vector multiplications as opposed tadifect matrix inversions.

3.3.1.3 Numerical efficiency of the modified search algorithm

In this section numerical efficiency of the proposedragph is discussed where only effect of
substituting theK worst DoE and implicit matrix inversion on the claasidnear regression are
considered and improvements of the SPLINER approach #reonsidered. It is emphasized that the
modified search algorithm described above offers twa deaefits. Firstly, the number of searches wil
decrease froltM((m+1)"-M) searches t&((m+1)"-M) whereK = [M/5]. This automatically reduces the

search cost of (3.9) approximately by a factor of 5 to

2(P+1)

CazK((m+1)”—2(P+1))Cl={ }(m+1)”C1 (3.20)
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Secondly, the CPU cost of performing the matrix invessimm the modified search algorithm

will also decrease significantly as quantified using following lemma.

Lemma 2: Utilization of the Sherman-Morrison-Woodbury formula of1& and (3.19) wil
ensure that the total CPU costs to perform the matrerdions in the modified search algorithm wil
scale a©((P+1)}) =~ O(n®") with respect to the number of random dimensio)s (

Proof: Based on (3.19) it is noted that the main commutatiequired in order to evaluaigis a

matrix-vector multiplication of dimensionB+1 where¥" ™ is assumed to be known. The cost of this

operation will beC; = k(P+1)° wherek is the cost of each floating point operation. Nextampute the
matrixV,iVk a vector-vector multiplication of dimensiofs+1 is required. This will incur an additional

CPU cost ofC, = k(P+1)2. Finally, to compute the denominator of the scalamte,, another matrix-

vector multiplication of dimensionB+1 wil be required at the co§l; = k(P+1)°. Thus, the overall CPU

cost to evaluate the second term in (3.18) &/, V, ) wil be

C,+C,+C,=3k(P+1? (3.21)

It is observed that computing the third term in (3.18). (i, U‘rUr) proceeds exactly in the same way as

that of the second term. Hence, the associated amstit equal to that of (3.21). Adding all the above
CPU costs foK substitutions along with the cost of directly inwagtihe starting information matrix (i.e.
computing®®), the total CPU cost incurred to perform the matrix ineassin the modified search

algorithm can be quantified as
C,=C,+6kK(P+1f (3.22)

It is observed that foK = [M/5] both the first and the second terms of (3.22) wills@sO((P+1)%)

zO(nsm)with respect to the number of random dimensianjs Thus, it is concluded that the overall

costs of performing the matrix inversions for the modifiedrsh algorithm will also scale &((P+1)°)
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R O(n3m). Comparing this result with that of (3.11) reveals @indisimprovement in the CPU cost to the

order ofO(n) — a major numerical benefit for high-dimensional probléies for largen).

Finally, it is remarked that the cost of identifyidge tK worst nodes will require the additional

computation of the scalak, in (3.17) for the entire B+1) starting DoE. This cost can be expressed as
G
C, =2(P+1)E (3.23)

where C, is defined in (3.10). Comparing (3.20) and (3.23) itvislent that the cost of identifying the

worst DoE is a negligible fraction of the search c@stand can be safely ignored. Overall, it is
appreciated that the proposed modified search algoritiinbe able to significantly reduce both the
search costC, of (3.9) and the cost of the matrix inversio@s of (3.11), thereby substantially
accelerating the original search algorithm of Sectidn23.This benefit wil be validated in the numerical

examples section.

3.3.2 Comparative analysis of overall CPU costs

In this section, the CPU cost of the proposed D-optingar regression approach is compared
against that of conventional non-intrusive PC appraac@emparison with the intrusive SG approach is
not included since the relative efficiency of non-intreisapproaches over the SG approach is well
documented in the lterature [26], [46]. This is partidulerue for nonlinear circuits where the
mutidimensional integral of (2.37) using the SG approhabe to be represented in SPICE using massive
number of additional voltage/current dependent sourclss (monstrated in Example 2 of Section

3.3.3.2.
3.3.2.1 Proposed linear regression approach

Based on the discussion of Secti®B.1, it is appreciated that the CPU cost required for the

proposed linear regression approach can be dividedwatgarts— the cost incurred by the modified
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search algorithm and the cost incurred to perform the trainistic SPICE simulations to extract tGe

matrix of (3.2). The cost of the modified search algariih expressed using (3.20) and (3.22)
C ~K(m+1)"C,+C, +6kK(P+1y (3.24)

where typicalyK = [M/5]. As for the SPICE simulation cost, it is assumedelaath of theVl simulations
requires the same CPU cost which is a reasonable agsusipce the variation in the unknowns of the
MNA equations of (2.38) from one DoE to another willtigpically small. Thus, the SPICE simulation

cost can be quantified as
Cs=2(P+1)C, (3.25)

where C, is the cost of each deterministic SPICE simulatiorusTlhe overall cost of the SPICE

simulations scales a®(2n™) with respect to the number of random dimensioisl{ is pointed out that

the substantial numerical advantages of this propedgatithm over the work of [36] lies in the

acceleration of the modified search algorithm as e>xqkim details in Sectio.3.1.3.
3.3.2.2 Other approaches

The proposed linear regression approach has some finigfeatures compared to the stochastic
testing algorithm of [40], [41]. Firstly, the modified sela algorithm allows only K substitutions as
opposed to the significantly larglr1 substitutions required by the stochastic testiporihm. Further,
the proposed linear regression approach can directie utle SPICE results of thd DoE without the
need of any intrusive coding or access to the inteofidlee SPICE engine, thereby making the proposed
approach truly non-intrusive in nature. These benefésaffset by the fact that the stochastic testing
algorithm requires only P+1 sample nodes as opposetiet®(P+1) sample nodes required by the
proposed D-optimal linear regression approach. Howewerombining this approach with the one in
Secion 3.2, this issue can be addressed too. Howevieragsumed the proposed D-optimal approach is

applied to the conventional linear regression approéd&ection 2.3.2.
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Furthermore, stochastic collocation (SC) has been apagylar nonintrusive PC approach [32],
[33], [45], [4G. In this approach, if the non-intrusive multidimensiomades are selected to be the full
tensor product of 1D quadrature nodes, therr (m+1)". These nodes can be analytically identified at
negligible computational costs (i.€; = 0). Thus, the cumulative costs of the entire SC agbre equal

to that of the SPICE simulations and is expressed as
Cs=(m+1)"C, (3.26)

This corresponds to an exponential scaling of the tiogts with respect to the number of random
dimensions 1f), quantified asO((m+1)"). This means that for even moderate dimensional propkes
massive cost of SPICE simulations in (3.26) will malkis &ipproach highly cost intensive compared to

the proposed linear regression approach.

In order to mitigate this prohibitive scaling, an ligjent choice of only a sparse subset of the
tensor product nodes guided by the Smolyak algoritas) leen proposed [32], [33], [4569. Once
again, this method allows the fast identificationted sparse nodes (i.€; = 0 compared to the proposed
linear regression approach). This approach results icr@age in the number of multidimensional rede
from M = (m+1)" to approximatelyM = (20)"/mi, thereby improving the CPU time costs of the SC

algorithm from that of (3.26p

Ce= (2:1)m C, (3.27)

For this approach, it is observed that the number arihristic SPICE simulations required scales as
O(2"n™ which is stil 2" times more than that required for the proposed linearssigreapproach (see
(3.25)). Thus, for large variation in the random dimerssi@yuiring high degrees of PC expansim, (
the proposed linear regression approach may stil be custeeffective than even this sparse collocation

approach.
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Among other existingnortintrusive approaches, the pseudo-spectral collochéisrbeen recently
reported for fullwave EM problems [29]. However, this apploauffers from the same exponential
scaling of the SPICE simulation costs as the clasSiCaapproach. Other methods based on the Stroud
low order cubature methods has also recently beearegor packaging problems [26], [34], [36], [38].
This approach can easily locate the multidimensioodes using simple analytic formulas and exhibits
only a linear scaling of the number of SPICE simulatieitk number of random dimensions (i.e. O(n)).
However, this excellent scaling with the number of camalimensions only exists for a second and third

degree PC expansion and cannot be extended to hgiperedexpansions [R6

Finally, we remark the promising non-intrusive stotbaesting based approach which has been
proposed in [37]. In this approach the selection of the-imrusive nodes is determined exactly as
proposed in the stochastic testing approachidt [As a result, this approach too relies on the c@stly
substitutions as opposed to the relative smillsubstitutions used in the modified search algorittm.
the other hand, this approach requires & SPICE simulations as opposed to the+2) simulations
required by the proposed D-optimal linear regression approHowever, this decrease in number of

SPICE simulations comes at the cost of loss of accUédsy

From the above analysis, it is observed that the pempénear regression approach offers clear
benefits over the stataf-the-art non-intrusive PC approaches and this is vaddéhrough multiple

lumped and distributed microwave network examplekennext section.

3.3.3 Numerical examples

In this section, three examples are presented to eentha accuracy and scalability of the
proposed D-optimal linear regression approach againgtingx intrusive and non-intrusive PC
approaches. All relevant PC computations are performed MATLAB 2013b while the deterministic
transient simulations, whether using intrusive or mbrusive PC approaches, are performed using

HSPICE [3]. In particular, for Example 2 and 3 the transomsifie networks are modeled using the W-
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element transmission line model provided by HSPICE hlian automatically consider frequency
dependent per-unit-length parameters [3]. The abawelagions are run on a workstation with 8 GB

RAM, 500 GB memory and an Intel i5 processor with 3.4 Gdek speed.

3.3.3.1 Example 1

The objective of this example is to demonstrateabeuracy of the proposed linear regression
approach. For this purpose, the RF low noise amplifierA)LNetwork of Fig. 3.10 comprising of three
SPICE level-49 CMOS transistor models are considered.RFhénput to the network is a sinusoidal
wave with amplitude of 1V and a frequency of 1 GHz. Theertainty in the network is introduced via
six normally distributed random variables £ 6) whose characteristics are listed in Table 3.BleAmite

PC expansion of degree= 3 is required for this example.

2.3V
2550

N1
40002 Rs J
1.19Vv = Ms
T — I

502 L. iml

Fig. 3.10: Circuit schematic of the CMOS low-no@mplifier network of Example 1 in Section 3.3.3.

Table 3.6 Characteristics of random variables afmpte 1 in Section 3.3.3 (Fig. 3.10)

Random Variables Mean % Standar_d D_ewz_:\tlon
(Normal Distribution)
wy (width of My) 7.5um
ws (width of My) 7.5um
ws (width of Mg) 7.5um +/- 10 %
L, 13 nH
L, 0.9 nH
Rs 120 Q

In order to evaluate the accuracy of the proposed apprttecimean and standard deviatieh (

of the transient response at the output negef Fig. 3.10 is computed using two methedthe proposed
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D-optimal linear regression approach described in $e@&i8.1 and the pseudo-spectral collocation
approach based on Gauss-Hermite quadrature techrjg@esFor the proposed approach, oily=

[2(P+1)/5] = 33 substitutions are performed as describedatioBe3.3.1. The comparison of the above
results is shown in Fig. 3.11(a) where the proposedrlinegression approach is found to exhibit good

agreement with the pseudo-spectral collocation approac

Next, in order to test the accuracy for higher order statisnoments, the probability distribution
function of the transient response at nbdesvaluated at the time point of maximum standardadiemi ¢
= 2.81 ns) is computed using the above two approaghédhe results are displayed in Fig. 3.11(b). As
expected, the probability distribution results for 20,0fnalytically generated samples exhibit good

agreement demonstrating the accuracy of the proposed liegression approach.

v T 3000 T .
. ol ——=Input | [ Pseudo-spectral
> Mean proposed e Proposed
e = = =Mean quadrature b 2500
Z 1.5¢ —&— Mean +- 3o proposed 5
® —& - Mean +- 3o quadrature =3
o 1t e .Y o 2000
® =
S 5 I
@ 05 3 1500
o Z
] 0r % 1000¢
L L
i) 0
E 0.5} o 500f
'_
-1t ; . .
0 1 2 3 4 8204 o5 08 1 12
Time (ns) Output Voltage at N1 at 2.81ns
(a) (b)

Fig. 3.11 Comparison of mean, standard deviation and PDRefttansient response of Example 1 in Section
computed using the proposed linear regression agprand pseudo-spectral collocation approachnfaltl mea
and statistical corners (+Bo) of the transient response at;N(b) Probability distribution function of transi
response at Nat the time point of maxmum standard deviatibn 2.8hs) using 20,000 samples.

Finally, it is noted that the proposed approach reguté seconds for completing the
substitutions and another 13.44 seconds for tR¢13(= 84 SPICE simulations. On the other hand, the
pseudo-spectral collocation approach requires 327.68nde to perform the necessary 4096 SPICE
simulations at the Gauss-Hermite quadrature nodes. arhounts to a speedup of 11.5 provided by the
proposed algorithm over the pseudo-spectral collocatipproach. This is as expected from the

discussion of SectioB.3.2.
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Fig. 3.12: Transmission line network of Examplen2Section 3.3.3. (a) Circuit schematic. (b) Geoynetrcouplec
transmission lines.

Section 1 Section 2 Section 10
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Fig. 3.13: Equivalent lumped RLGC model of nonliné@ansmission lines of Fig. 3.12.

3.3.3.2 Example 2

The objective of this example is to compare the pedoga of the proposed linear regression
approach with the existing intrusive SG approach faargel distributed network. For this purpose, the
multiconductor stripline network driven by nonlinear saission lines shown in Fig. 3.12(a) is
considered. The layout of the stripline network istilated in Fig. 3.12(b). The nonlinear transmission

ines are represented using cascaded lumped nonlinga€ Regments as shown in Fig. 3.13 where the

nonlinear capacitandg(V) is represented as

C(V)=C,(b+1-b)e"'?)) (3.28)

andV is the potential difference across the capacid}. [It is noted that (3.28) is a strongly nonlinear
function used for benchmarking the proposed approachthéonetwork in Fig. 3.12(a), 10 nonlinear
RLGC segments are considered. The input to the net&arkrapezoidal waveform with rise/fall time T

= 10 ns, pulse width J= 400 ns and ampltude equal to 5V. The uncertaintye network is introduced
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via five random variables(= 5) whose characteristics are listed in Table 3.ihiéed Legendre-Hermite

PC expansion of degree= 2 is required for this example.

Table3.7 Characteristics of random variables of example 3awction 3.3.3 (Fig. 3.12)
Random Variables Mean Distribution | % Relative Variation

“a” parameter in NL capacitors of NLETL 1 2.137

“a” parameter in NL capacitors of NLETL 2 2.637 Normal

“a” parameter in NL capacitors of NLETL 1.637 +/- 10 %

“b” parameter in NL capacitors of NLETL 1 | 6.037 e-3
Uniform

“b” parameter in NL capacitors of NLETL 2 | 9.108 e-3

In order to evaluate the accuracy of the proposed apprti@&cmean and standard deviatieh (
of the transient response at the output nddesndN, of Fig. 3.12(a) is computed using two metheds
the proposed D-optimal linear regression approach desciribSectior8.3.1 and the SG approach [18].
For the proposed approach, oKly= [2(P+1)/5] = 8 substitutions are performed as described iticBec
3.3.1. The comparison of the above results is showngin314 where the proposed linear regression

approach is found to exhibit good agreement with tBeafproach.
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= Mean proposed = ———Mean SG
i ———Mean 5G ‘;V 04+ 5 —0— Mean +i- 3o Proposed |
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Fig. 3.14: Comparison of mean and standard dewiatib the transient response of Example 2 in SecBi@&t
computed using the proposed linear regression agprand the stochastic Galerkin approach. (a) Inpe&n an

statistical corners (+3c) of the transient response ai.Nb) Mean and statistical corners (36) of the transient
response at N
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Fig. 3.15: Eye diagram comparison for Example &Bécttion 3.3.3 computed using the proposed linegnessiol
approach and the stochastic Galerkin approachl(@)eye diagram samples analytically produced at (N)
Probability distribution function of the eye height

To further probe the accuracy of the proposed approack,Ghexpansion of the voltage response
at nodeN; is computed using the same above two methods wheréput sources in Fig. 3.12 are
changed to random pulse trains with rise/fall time=T10 ns, pulse width J= 410 ns and amplitude
equal to 1V. From the PC expansion the eye diagragernerated as shown in Fig. 3.15 (a). The
probability distribution function of the eye heighttisen extracted using both the above methods and
compared in Fig. 3.15 (b). It is observed from Fig. 3.)5Hat the proposed linear regression approach

matches very well the result of the SG approach.

It is appreciated that the proposed approach requi@2 keconds for completing the
substitutions and another 23.94 seconds for the-1J(= 42 SPICE simulations. On the other hand, the
SG approach requires 4722.45 seconds to perform thansditigmented SPICE simulation. This is
because the augmented network is 21 times larger ttiwmriginal model and includes an additional
(m+1)" = 243 companion circuits to model the uncertaintgath nonlinear capacitor [18]. Thus, the
proposed approach provides a speedup of roughly 18%lwe8G approach. If the size of the network
and/or the number of random dimensions is increase@ddhieved speedup wil be even higher, thereby
clearly validating the advantage of the proposed rinegression approach over the intrusive SG

approach.
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Fig. 3.16: Circuit schematic of the BJT low-noisepdifier network of Example 3 in Section 3.3.3. @jcuit
schematic. (b) Geometry of transmission lines.

3.3.3.3 Example 3

The objective of this example is to compare the etatipnal complexity of the proposed linear
regression approach against that of conventional iarsive PC approaches as the number of random
dimensions increases. For this purpose the exampleatib®3.2.4.2 is considered once again. Because
of changes in random variables, the low noise amplfigdA) network is presented in Fig. 3.16
againftl]. As a reminder, this LNA utiizes an NXP BFG425W vwadad BJT, which is represented as a
level-1 (Gummel-Poon) SPICE model. This network is driay a voltage source with a sinusoidal
waveform of frequency 2 GHz and amplitude of 1V. The gumiage of the network is set to; ¥ 4.5
V. The uncertainty in the network is introduced viaelwe random variablesn(= 12) whose

characteristics are listed in Table 3.8 and a Hern@teefpansion of degrem = 4 is considered.

First, the number of random dimensions is s&t 108 represented as the first eight dimensions of
Table 3.8. For this case, in order to demonstratedberacy of the proposed linear regression approach,
the mean and standard deviatief ¢f the transient response and output power at theitootpleN; is
computed using two methodsthe proposed linear regression approach describedtiorg8@.1 and the
Monte Carlo approach. For the proposed approachKoal2(P+1)/5] = 198 substitutions are performed
as described in Sectid®3.1. The comparison of the above results is showngin 17 where the

proposed linear regression approach is found to extdbiti ggreement with the Monte Carlo approach.
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Table 3.8 Characteristics of random variables aihiple 3 in section 3.3.3 (Fig. 3.16)

Random Variables Mean % Relative Variation

wi (width of TLy) 0.2 mm

ws (width of TLy) 0.25 mm

ws (width of TLg) 0.3 mm

wy (width of TLy) 0.7 mm

ws (width of TLs) 0.9 mm

B: (Current gain of BJT) 145
Gs (J“”CBtJ"%'; Cap. Of 667.5 fF +- 25%
R 500 Normal Distribution

h; (height of TLy) 0.4 mm

h, (height of TLy) 0.45 mm

hs (height of Tlg) 0.5mm

h,4 (height of TL) 0.55 mm

hs (height of Tls) 0.6 mm

R, 100 Q
‘ 0.25 ;
5 ——=Input | Mean proposed

o Mean proposed ——=Mean Mente Carlo
2 == =Mean Mente Carlo 02+ —&— Mean +l- 3o proposed
= 4r —&— Mean +/-3c proposed | ~ ~@= Mean +-3c Monte Carlo
= 3 =& = Mean +/- 3o Monte Carlo | E;
o b 015
& 2 5
O
2 % 01+
= 2
.E g 0.05¢
o
= 0

0 05 1 15 2
Time (ns)

Time (ns)

(a) (b)
Fig. 3.17: Comparison of mean and standard dewiatib the transient response of Example 3 in SecB@t
computed using the proposed linear regression agpr@and the Monte Carlo approach. l@put, mean an

statistical corners (+/3c) of the transient response at N3. (b) Mean and statistical corners (36) of the output
transient power at N

Next, to demonstrate the efficiency offered by the matlifiearch algorithm over the classical
Fedorov search algorithm of [39], the number of random diloe®s is progressively increased from 4 to
14. For each test case, the original Fedorov searohtfaty of [39] and the proposed modified search
algorithm described in Sectio.3.1 are implemented. The total time cost for eachritigo is
decomposed into two parts the CPU cost incurred in identifying the regression sq@®mpared in

Table 3.9) and the CPU cost incurred in the matrix inwerafter every node exchange (compared in
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Table 3.10). From Table 3.9 it is observed that geedup achieved using tKeworst nodes compared to
the full set of 2P+1) regression nodes are consistently 5. This is gxastlexpected from (3.20) in
Section3.3.1.3. Simiarly, from Table 3.10 it is observed tHa¢ speedup provided by the Sherman-
Morrison-Woodbury method compared to the explicit matnxersion method closely matches the
expected scaling ab(n™) as illustrated in Fig. 3.18(a). This too is as expédtom the comparison of

(21) with (15) in Sectior8.3.1.3.

Table 3.9 Scaling of CPU time for identifying D-apal nodes using proposed and classical searchithlgs for
example 3in Section 3.3.3 (Fig. 3.16)

CPU Time for Proposed Algorithf  CPU Time for Classical Search
Random Variables usingK Worst Nodes (sec) Algorithm using 2P+1) nodes (sec| Speedup
Simulation Cost| Analytic Cost | Simulation Cost| Analytic Cost
4 Wy, Wa, Ws, Wa) 0.0005 0.0003 0.0026 0.0014
gf)(wl, Wa, Ws, W, Ws, 0.0055 0.0077 0.0277 0.0383
8 (Wi, Wo, W3, Wy, Ws,
0.0615 0.1001 0.3074 0.5008
va qsy R)
10 (Wi, W, Ws, Wy,
0.6806 0.8274 3.4034 4.1373 5
W51 va QSI R! hl! hZ)
12 (W, W, Ws, Wy,
ws, B, Gs, R, hy, hy, 6.3336 49714 31.668 24.8570
hs, hy)
14 (W, W, Ws, Wy,
ws, B, Gs, R, hy, hy, 23.6232 23.6219 118.1160 118.1098
h31 h41 h51 RZ)

It is further noted that the simulation CPU cost for kblh modified search algorithm and the
classical Fedorov search algorithm for Tables 3.9 at@ Bave been compared with an analytic
estimation of the CPU cost possible using (13)-(15) (48y(21). The analytic and simulation CPU cost
results of Table 3.9 show good agreement. Even for Balile for higher dimensional problems (ire>
6) the analytic CPU costs are within a factor of -1.B times the simulation CPU costs for the proposed
approach and within a factor of 0.570.80 times the simulation CPU costs for the classieakch

algorithm.
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Fig. 3.18: Comparison of CPU time required by preg@d linear regression approach with staf¢he-ar
approaches for example 3 in section 3.3.3 (Figg)3(h) Speedup achieved during matrix inverse edatpn by
proposed algorithm compared to expected speedlicéling of total CPU time cost of proposed linemressiol
algorithm compared against the pseudo-spectrabagprand the original linear regression approach.

Finally, for the same test cases of Table 3.9 and théQotal PC problem is solved using three
methods- the proposed linear regression approach, the origiedrliregression approach of [39], and
the pseudo-spectral collocation approach [29]. Thé @R& time incurred by each approach is noted in
Table 3.11 and plotted in Fig. 3.18 (b). For all md¢hdhe time costs of the corresponding search
algorithms have been added with the time cost foR{Re1l) SPICE simulation costs. It is observed from
Table 3.11 that the pseudo-spectral collocationbéghan exponential scalability with respect to the
number of random dimensions [29]. Thus, the pseudotsihectiocation approach runs out of memory
for more than 8 random variables. Similarly, for the linemyression approach of [39], the cost of the
original search algorithm quickly becomes very large a@so runs out of memory for more than 8

random variables. The CPU costs ffior 10, 12, and 14 for these methods is estimategeixtiapolation
and added in Fig. 3.18 (b) for completeness. As seenHign3.18 (b), the proposed linear regression
approach which uses the more efficient modified seaguhnitaim provides far superior scalabilty of the
total CPU costs with respect to the number of randamemiions than the original linear regression
approach of [39] or the pseudo-spectral collocation apprf#]. Interestingly, here too the total savings

in CPU times increases with the number of random dimesisthereby validating the benefits of the

proposed linear regression approach for high-dimensiaaélems.
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CHAPTER IV: HYPERBOLIC POLYNOMIAL CHAOS EXPANSION (HPCE)

In this chapter a new methodology for applying the gRé€bry to uncertainty quantification
problems is proposed. In this approach unlike the iwaditgPC theory where orthogonal polynomial
bases are selected based on a linear criterion intr@dac€hapterll, a new hyperbolic criterion is
suggested7d]. This criterion determines the most important polyadrbases based on the sparsity of
effects f7], [48]; thus, it provides an sparse set of polynotbides which is much shorter than the

original set of bases; meanwhile, the loss of accura@sults would be negligible.

This chapter starts with a detailed discussion areiggion of multidimensional polynomial bases
which is necessary for better understanding of the prdpapproach. Then the new criterion for the
hyperbolic approach is introduced and the new pattermpdtynomial bases is presented graphically.
Afterwards, an adaptive methodology for applying thisr@ggh on nonintrusive methods and in
particular the nonintrusive ST based approach is prdpoboreover, an upper bound on the
computational cost of the proposed approach andalmgevith respect to number of random variables is
evaluated and it is compared with other PC methodalyFihe accuracy and computational costs scaling

of the proposed approach is validated through muitiplmerical examples.

4.1 Generation of multidimensional polynomial bases

In Section 2.1.3 we discussed generation of multidiioeal orthonormal polynomial bases

which are obtained as a product of one-dimensiongh@alial bases:
g () =]]¢s (4) (4.1)
j=1

where/; is thej-th random variable) is number of random variablgsrepresents all random variables in

a vector ash = [A4, Az..., 4al', d; is the order of th¢-th one-dimensional polynomiaglé,di shows thg-th

one-dimensional polynomiakl represents afl, values in a vector a8 = [dy, d,,..., d,]', and ¢, is the
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multidimensional polynomial basis made up of oneedisional polynomials whose order is mentioned in

d.

In conventional methods the following criterion from theditional gPC is used to determine

order of each one-dimensional polynomial in a mulddisional polynomial basis:

ldlL=d, +d,+.....d <m (4.2)

where ||.{|represents the;Lnorm, and mis the common maximum expansion order for one dimeaisio

polynomials.
] Bases considered L] Bases considered
o} Bases removed (6] Bases removed
5 ‘T == ]
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15
it ] * L ] L L ]
0s

o
-

L
0 05

g
we
i

L . L
25 358 45 5
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Fig. 4.1: Graphical illustration of the traditiongPC scheme for selection of multivariate polyndsniga) The
case oh =2 andm=5. (b) The case of= 3 andm= 5.

For illustration purposes, Fig. 4.1 (a) demonstrategythphical presentation of a simple example
wherem=5 andn=2, and Fig. 4.1 (b) demonstrates the graphical pre&entd another example where
m=5 andn=3. In these figures filed blue circles represent indafeselected polynomial bases and empty
red circles represent indices of not selected polynomgdes. For instance in Fig. 4.1 (a)

Pay(A) = $(4)d(4,) is selected becaug3l] |,=4<5. However,d, 4(2) = #,(4)4,(4,) is not selected

because||[24] ||=6>5. More examples of the two dimensional case are pregent Table 2.3.
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Likewise, in Fig. 4.1 (b d,.4(A) = 4(1)d,(1,)¢(L;)is selected becausg[2,21] ||=5<5. However,

Praz (M) = $3(4)h,(4,)é, (1) is not selected becaugg322]|,=7>5. It is worth noting the number of

polynomial bases provided by (4.2) and demonstratéigind.1 is equal t&+1 in (2.13) which can be
proved to be right using the following lemma. Themma and its proof are provided for comparison

with the proposed hyperbolic scheme in following smsti

Lemma 4.1: The number of possible combinationsdti £ di+ do+...+d, < m whered; are integer values

is:
m+n ! m
P+1= * =—(m+ n)':o n_ (4.3)
n mnl m
Proof: The equationd|l. < mcan be written as:
[[d[lI=mOR ||d|j=m-10R ....OR ||d||=0 (4.4

Number of possible combinations for each individualditimm in (4.4) is easy to find. It is similar to the
problem where there arma balls and they should be divided betweepeople. In order to divide balls
betweenn people,n-1 barriers are needed, and number of possible permstdtiom bals andn-1
barriers is mn-1)!. Since all balls are simiar to each other andaaliers are similar to each other too,

number of possible combinations in this problem is

(m+n-1)! (m+n-1 (4.5)
m(m-1! | n-1 '

therefore number of possible combinations in (4.4) is

P+l:(m+ n—1]+(m+n—2j+w+(m—(m—1)+n—l}{m—m+n—1] (4.6)
n-1 n-1 n-1

The last tem in the right hand side of (4.6) is equdl thence, (4.6) can be writtas
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P+1=(m+ n—1]+(m+ n—2J+m_+(m—(m—1)+n—1}{n} @7)
n-1 n-1 n-1 n

In order to continue this proof we take advantage of the Pascal’s rule in combinatorics theory [ 76]

(M) oo

The Pascal’s rule can be interpreted as a problem whkrelements are selected out of n elements. The
result can be partitioned into two groups, the onelsdimg a particular elemei and the ones without
this element. Numbers of possible combinations for emobp are the terms on the right hand side of

(4.8) respectivelyq6].

Using (4.8), (4.3) can be written as

P+1:£m+n)z(m+n—lj+(m+n—lj (4.9)
n n-1 n

It is worth noting the first term on the right hand sifig4.9) is equal to the first term on the right hand

side of (4.7). The Pascal’s rule can be applied on the second term on the right hand side of (4.9)

P+1:[m+nJ:(m+n—lj+(m+n—2j+(m+n—2J (4.10)
n n-1 n-1 n

where the second term on the right hand side is eéglaé second term on the right hand side of (4.7).
By continuing this pattern and applying the Pascal’s rule for m times, the produced equation would be

same as (4.7); therefoieemma 4.1 is proved.

Although the conventional scheme provides a relgtgeod scaling of computational cost with
respect to number of random variables, it still facesbemsome computational costs for problems with
moderately high number of random variables since ratealihg is OP+1) =~ O(n"/m!) according to

(4.3). The near-exponential or polynomial increase amputational cost is referred to as curse of
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dimensionality and in order to address this issueva seheme for selection of multidimensional bases is
suggested in this chapter. This scheme is inspiretidogparsity of effects which is reviewed in the next

section.

4.2 Sparsity of effects

Sparsity of effects is a common observatiorfantorial experiments, which are experiments
involving the effect of two or more factors. In other woidsa factorial experiment there are more than
one element such as andB with different levels which can affect the output iffedent ways. The
primary change caused in the response by the indigthaange in a factor is calledreain effect, and
variation caused in impact of a factor by changesherdactors is called amteraction. Furthermore, if
A hasa levels andB hasb levels, the output can be impactediimways, which is number of possible

combinations oA andB. The study of factorial experiments is calladtorial design [48].

Uncertainty problems can be treated as factorial expatsrsince every random variable is a
factor which affects the response individualy and afsanteraction with other random variables.
Likewise, in the PC expansion, each one-dimensipoginomial basis is a factor and its order of
expansion is the level of that factor. In addiion, théeraction between factors is equal to

multidimensional polynomials bases.

A general rule in factorial experiments which can bergmdeuristically is the sparsity of effects.
Based on this rule, in a factorial experiment the nurobeelatively important effects is small, and lower
effects are more likely to be important than higher ortfects; moreover, effects with the same order are
equaly likely to be important[7]. In other words, in a system with several random vasght is more
likely for main effects and low order interactions to priyampact the response since most of the high
order interactions are possibly negligibf/][ This phenomenon is validated through several exasripl

the literature 48],[47).
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The sparsity effect applies to the PC theory too. Ipeciated that in the PC expansion a lot of
interactions are already discarded. In other words, irexample withn random variables and the
common order of expansion af, there are rt+1)" possible combinations. However, the PC expansion
only considersP+1 polynomial bases. Although this number of polysdnbases is practical to
implement in problems with a moderate number of randariables, it increases in a near exponential
rate when the number of random variables is further ineceathis problem is called the curse of
dimensionality and prohibits application of the gP@otly in problems with relatively high number of

dimensions. Therefore, further reduction in number of paljalobases is desired.

Using the sparsity of effects, it is possible to disaaoie polynomial bases without a major loss
in accuracy. In general lower degree polynomials hakigher impact on the output. For instance, in a
case with 10 dimensiong=10, and fourth order of expansion:4, whereP+1=1001, Table 4.1 shows
number of polynomial bases with degrees 0 to 4. Howedivenly the polynomials faling into the first
two or three rows of this table are used, it is notiplesg accurately report statistics of outputs with a

fourth degree behavior.

Table 4.1 Number of polynomial bases with degretsDfor the case of n=10 and m=4

Degree Number of polynomial bases
0 1
1 10
2 55
3 220
4 715
Total 1001

In order to reduce number of polynomial bases withost ddsaccuracy, the works of [77] and

[78] suggest considering the rank of polynomials, when& i defined as the number of dimensions in a

polynomial basis, for exampled, , ,(A) = ¢, (4)8,(4,)4.(4,)is a rank 3 whiled;, oA) = #;(4) is a

rank 1. Table 4.2 shows number of polynomial basesnaitks O to 4. Although, this scheme provides an

improvement in efficiency of the gPC theory, for a geneamintrusive approach since higher order
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interactions will be missing, it fails to converge ttte true model respons@y. Inspired by these

approaches and’| another sparse selection scheme is introduced imetktesection.

Table 4.2 Number of polynomial bases with ranke @ for the case of n=10 and m=4

Rank Number of polynomial bases
0 1
1 40
2 270
3 480
4 210
Total 1001

4.3 Hyperbolic scheme for truncation of the PC expansion

As stated before, based on the sparsity of effects Iotezaction polynomial bases have a higher
impact on the response; therefore, in this sectionltaration on the conventional scheme of (4.2) for
truncation of the PC expansion is suggested to ofitaimost important polynomial bases. This scheme

results in selection dfl < P+1 polynomial bases which are able to approximatedbponse as
M-1
X(2)= Y ¢4 () (4.11)
i=0

In this approach, the constraint is put on th® norm of the indices’ vector d, whereu < 1, and the L,"
norm is casually defined as theth root of summation of each memberdad the power ofi. Replacing

the L, norm in (4.2) with_," would resutt in
o], =(d*+ 0 +.. 40 " <m (4.12)
In this scheme, the indices are limited betweenipesixis and a hyperbola which is represented by
(@ +d+.+df =m (4.13)

Hence, this scheme is called hyperbolic, an@é called the hyperbolic factor. This technique would

significantly reduce number of selected indices whiesprving the accuracy in PC approaches. For
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instance, in the case of 10 dimensioms10, and fourth order of expansiam=4, whereP+1=1001,

Table 4.3 shows number of added polynomial bases wberasing the hyperbolic factar

Table 4.3 Number of added polynomial bases whemasing the hyperbolic factor u for the case ofthafhd m=4

Hyperbaolic factor u Number of added polynomial bases
u=0,u>0 41
0.5 45
0.7 90
0.8 120
1 705
Total 1001
® Bases considered ® Bases considered
o Bases removed o] Bases removed
451
A o] O o e}
351
e . o o 4
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Fig. 4.2: Graphical illustration of the proposedpleybolic scheme withu=0.76 for selection of multivariate
polynomials. (a) The case nf=2 andm = 5. (a) The case of= 3 andm=5.

In order to further illustrate this truncation scheme, B (a) demonstrates the graphical
presentation of a simple example whene5, n=2, andu=0.73. Fig. 4.2 (b) demonstrates the graphical
presentation of another example when=5, n=3, u=0.76. In these figures filed blue circles represent
indices of selected polynomial bases and empty metesirepresent indices of not selected polynomial

bases. For instance in Fig. 4.2) (¢;,(*)=¢4(4)4(4,)is selected becaus§[31]|,,,=4.98<5.

However, ¢,,()=6¢,(14)#,(4,)is not selected becaudf{2,2]||,,,=5.17>5. Itis worth noting that

89



Table 4.4 Equivalent orthonormal two-dimensionatrilee and Legendre polynomials of specified indizeBig.

4.1 (b)

Bases Orthonormal Hermite Orthonormal Legendre Total Rank Lozs

Polynomial Polynomial degree norm
Po(4) 1 1 0 0 0
20 A V3l 1 1 1
B,(2) 7 V3 /2 1 1 1
D3(2) (a2 -1) IN2 VB (2i® -2 > 1 2
D40) It Az 3%1* I 2 2 2.58
®s(2) (2 -1) IV2 V5 (20523 2 1 2
Ds(A) (1% -311) /1 V6 VT* (2i® -2 ) 3 1 3
D7(2) Ao * (242 -1) IN2 VIS * Jo* (2% -2 3 2 3.82
Dy(0) Ja* (1% 1) IN2 VIS * % (24572 3 2 | 38
Do) (o - 31) /6 VT* (212°-222) 3 1 3
D10(4) (1 -64,°+3) 1 26 1;%5 M- %/112"‘3 4 1 4
D11(4) (3 22-32142) 1V6 V21 * (204%dp-2 21 22) 4 2 4.98

2 2
D12(2) (2% 21 -32271) V6 V2T * (22501 -2 20 01) 4 2 4.98
D13(2) (2" - 61,°+3) | 26 Tt - 4 1 4
Dy4(4) 21° -10 1,3+15,) 1 /30 VIT* (24,°-2 0% 2 2) 5 1 5
8 8 8

D1s() | (35° - 10 4,>+152,) | 230 VIT* (5 22° -2 2 o) 5 1 5

$sy(M) and @, ,(2) both are of the same degree of four, and they also heveame rank of two

therefore they cannot be distinguished using schemggested in previous sections which put the

constraint on the degree or rank. The equivalent orthwiddermite and legendre polynomials of filed

blue circles are presented in Table 4.4. LikewiseFi| 4.2 (b) #,q(M) =#,(1)é,(4,)is selected
because [|[220]||,;=4.98<5.

|1 [222] |l,,6= 558>5. It is worth noting that,,(*) and ¢,, ,(*) both are of the same degree of four;
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therefore, they cannot be distinguished by putting tdwnstraint on the degree. Moreover,
Py = A(A) A (1,)8(L) s selected because || [111]||,,= 4.24<5. However,
Puzy(M) = A(1) 8, (4,)é (4,) is not selected becaufigL21] ||,,.=5.58>5. In this case, both, , ,,(») and
¢, .(2) have the same rank of 3; hence, they cannot begdistied using the approach which puts the

constraint on the rank of polynomials.

It is worth noting that the proposed HPCE approach am¢sdepend on which uncertainty
guantification approach is used. In fact all PC appraachentioned in Chaptdt, either intrusive or
nonintrusive, could be used. This is merely becaul®€His another orthonormal expansion and does not
affect the process of finding the coefficients and extigdtatistics. However, the rest of this thesis is
focused on nonintrusive approaches and particularfmiser regression and the nonintrusive stochastic

based approaches because of their superior charactengilag;ed in previous chapters.

It can be interpreted from (4.12) and examples providddsirsection that different values of the
hyperbolic factoru result in different number of polynomials. This is destated in Fig. 4.3 for the case
with n=5 andnm~=4, where the conventional truncation scheme is tipion the left side of the figure and
the two other plots show that decreasinggsults in a sparser set of polynomial bases. In otbedsu=1
is equivalent to the conventional PC expansion smitte u=1 (4.12) converts to (4.2); besides, a langer
results in a higher number of polynomial bases an@baticuracy whie a smaller results in a lower

number of polynomials and lower accuracy.

Based on this argument, the main goal in HPCE is ralathe hyperbolic facton beacuse it
determines accuracy and efficiency. Since the effeatimfa particular example is not known beforehand,
this is not a trivial task. Therefore, this thesis ps@soa novel adaptive approach for obtaininghich is

described in the next section.
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Fig. 4.3 Graphical interpretation of the truncatisnshemes using a 2D example £ 2, m = 5), showing th
traditional linear truncation scheme, the proposggerbolic truncation scheme, and the effect ofrelzging th:
hyperbolic factor on the proposed approach, frdmderight.

4.4 Derivation of statistical information using HPCE coefficients

The main goal in this thesis is the derivation d@ftistical information of the response. When
using the HPCE this task is done simiar to conveati®C approaches which is discussed in Section
2.1.4; nevertheless, in this approach a more limietdo$ polynomial bases is used. As for the first
statistical moment or the arithmetic mean, (4.11) &red in the integration formula of (2.17) and by
considering the definition of inner product and the antinmality condition it is simplified to the very
first coefficient

E(x(1)) = j X()p(I =Y [cd ) p(a)dn= Z<c¢(z> #(A)) =G (4.14)

i=0 O

In order to find variance and standard deviation (4.11) is entered into the variance’s integration
formula of (2.20), and again by considering the definitad inner product and the orthonormality

condtion it is simplified to summation of square cépvcoefficient up ta@y, except the first one.

Var (x0) = EL0XG) ~ EGOI)] = [ (6 0) o)
o = (4.15)

=336 00,64, 09) = 33 (0 (1)) - icf

=1 j=1 i=1

For finding the PDF and higher order statistical momelkts skewness and kurtosis, the

technique similar to Monte Carlo, introduced in Secioh4.3 is taken. In this method, fiQtrandom
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sample nodes are generated. The number of dimensiohdistiibution of these samples is same as
random variables. in the system. By having coefficients, polynomigjsto ¢,, ,, and random samples,

the right hand side of (4.11) is known; therefore, aftefinindoefficientsc, to G, the result ofQ

instances of the experiment can be approximated. Makstep is computing the PDF and higher order

statistical moments from these approximated results.
4.5 Development of the adaptive HPCE approach

This section takes advantage of the scheme intrddinc&ection 4.3 to develop an efficient
uncertainty quantification methodology to derive stetl information of the stochastic MNA equation
of (2.38). One of the main contributions of this approadhe adaptive selection of the hyperbolic factor
u; hence, it starts with discussing the possible rarfige and then proposes technigues to find candidate
hyperbolic factors which play an important role in thasge. Afterwards, an iterative approach for
application of the HPCE scheme on the nonintrusiveb&Jed approach is introduced, and then an
accuracy constraint in the form of HPCE coefficients’ enrichment for stopping the algorithm is suggested.
Having all the required tools, the overall program flow le# HPCE approach is discussed next. And at
the end the computational cost of the proposed apprieamomputed and compared with other state of

the art uncertainty quantification approaches.
4.5.1 Range of the hyperbolic factor u

The hyperbolic factou has a great influence on the accuracy-sparsity traseodinstructing the
HPCE. As itis mentioned before, wher 1 the HPCE converges to the full-blown PCE whichghiy
accurate but computationally expensive to constfntthe other end of the spectrum, if the value of
very small then only the one-dimensional bases aresidered and all multidimensional bases are
neglected. This leads to the sparsest expansiois Woiited in its predictive accuracy. Here by one-
dimensional bases we mean polynomial bases whighdeank up to 1. These bases are the ones located

on the multidimensional axis in the graphical pres#@on. Since the common order of expansiam &nd
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there aren dimensions, the total number of one-dimensional bssesn+1, where the single basis at the
center of the graphical presentation is loosely defaedne-dimensional too. Therefore, the spectrum of
the hyperbolic factanis equal to (0,1], where 0 is excluded because (4.@@pwhave no answer at0.

The variation ofu on its spectrum is presented in Fig. 4.4. Basedisrdédmonstration and the previous
explanation it is safe to say the main chalengéefproposed PC approach is how to adaptively tune the

hyperbolic factou for a general circuit problem. In the next section gleirapproach is suggested.

Az

Increasing u in the
range of (0,1]

Fig. 4.4 The effect of increasing the hyperbolictfa u on selection of polynomial bases, wheis increase
from a near zero value to 1.

4.5.2 Determining the hyperbolic factor by gradually increasing it

In the work of f9 we have suggested a greedy iterative approach tdiabajincrease the
hyperbolic factor from a very small starting valugtil the HPC expansion becomes enriched enough to

satisfy a predefined error tolerance. Thus, for jineration, the value af is increased as

U, =u;, +Au (4.16)
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where the subscrigt is the iteration count and Au is a fixed step size. This increaseuins intended to
translate to the enrichment of the expansion from theique (-1)" iteration by adding new PC basis

terms.

Although this technique is proven to be practicdl7#, it is not the most efficient approach. The
main reason is if Au is very small there would be no difference in numberabfnomial bases at some
steps, and if Au is too big there would be a big change in nhumberofyinpmial bases at some steps
which could be broken down into two steps by takingr steps. For instance, in the casenct 10 and
m = 4, five hyperbolic factors and their corresponding remd$ polynomial bases are presented in Table
4.3, thesel values can be placed in a vectouas|uo, 0.5, 0.7, 0.8, 1] when& ~ 0 and greater than zero,
this wil result inM = [41, 86, 176, 296, 1001] polynomial bases respdgtidy considering a very fine
Au, it can be proved that it is impossible to distislgupolynomial bases to groups smaller than what is
mentioned in the second column of TaWl®. Therefore, if Au is smaller than 0.1 there would be
iterations with no change in the expansion; moreover, if Au is greater than 0.1, number of selected
polynomials might directly jump from 86 to 296 and fotbe algorithm to do extra computations. This is
due to the fact that multidimensional indices areatied on integer coordinates. Hence, it is possible to
meet all indices’ coordinates using a limited number of hyperbolas. In this example only five hyperbolas
are needed, and they can be described using (4.13)ypadbolic factors ofi = [u,, 0.5, 0.69, 0.79, 1];

thus, we call these values critical hyperbolic factors.

Since u values are unknown, the safest practice is to choose a very small Au and check for
enrichment only when there is a change in number ghgaiials. However, this approach results in
unnecessary computational costs and it fails to pra®icdtrong argument to prove it has not missed any
critical hyperbolic factor. In order to address this isaudosed-form technique for finding these critical

hyperbolic factors is suggested in the next section.
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4.5.3 Closed-form technique for determination of the critical hyperbolic factors

In this section a closed-form technique is suggetstaitially find critical hyperbolic factors i.e.
u values which by crossing them there would be a ahamgumber of polynomial bases. As mentioned
in the previous section, all integer coordinates shgwiultidimensional bases can be met with a limited
number of hyperbolas; therefore, all critical hyperboliddes can be found by solving (4.13) farlt can
be done since in a specific exampl@ndm are known andi; values are selected from tRe 1 indices
which are selected by the conventional PC schemd4i2). For instance whem= 3, m=5 andd =

[1,2,1] we solve the following equation
u u u \/u
@0 +d,+d0f" =5 (4.17)

Where the answer isi = 0.8248. Therefore, the polynomial basf, ;(A) = #(14)8,(1,)é(4,) is

discarded whenu = 0.76, but it is selected whem = 0.83. Inspired by this characteristic of
multidimensional indices, we solve (4.1B}1 times for alld values which were originally selected by
the conventional PC scheme i.e. (4.2). The resultliisitad set ofu values which is common for many
of the equations. Thesevalues are the critical hyperbolic factors, they caoriganized in a new vector

u
u=[Uy,Uu,....u] (4.18)

wherek is number of critical hyperbolic factorgnd it is guaranteed when moving from to u;, with 1
<j <k, there would be a change in the number of selectigdgoaial bases. In other words, if every
polynomial basis is tagged with an index veatgrby moving to the next critical hyperbolic factor there

would be one or more polynomial basis index where

[di],,>m |d], <m (4.19)
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Therefore, unlke the scheme in the previous sectien dbmputational cost for classification of

polynomial bases is minimized and it is proved tlgerdhm does not miss any critical hyperbolic factor.
4.5.4 Application of HPCE on the nonintrusive ST based approach

As mentioned before the HPCE scheme can be appliedytd®C approach; however, in this
chapter the focus is on the nonintrusive ST based appid7], introduced in Section 2.2.2.3, because of

its efficiency. This technique starts with setting byperbolic factor tai, = 0 and u, > 0. Based on the
discussion in Section 4.5.1 this will resulthfy = m# n+1 polynomial base®, to @,. Then, the system

of linear algebraic equations in %2) is modified for this number of polynomial bases:
AX,=E, (4.20)

with

GO g, O
- : . : X, =

Xo(t) X(t,2%)
L LE, = : (4.21)

A, :
X (t, ™M)

¢o(;"'(M))I Pu (k.(““)I XM‘(t)

wherel represents the identity matrld is the length of the PC expansion which in this daseé n+1,

X; is PC coefficient of thé-th polynomial basis, and(t,\") is the response probed at the sample node
A%, These sample nodes are selected by exploiting th@o@e selection technique introduced in Section
2..2.2.2, where instead of the conventional PC exmpansih P+1 bases onl* n+1 one-dimensional

bases are used in the selection process®or1 nodes.
In the next step, the hyperbolic factor is setitowhich in turns results iM; polynomial bases

¢, to ¢M1_1, whereM; > M,. Afterwards,M; sample nodes are generated using the ST technique of

Section 2.2.2.2 with one small change. This tingteiad of starting with one single node with the tighe
guadrature weight, the node selection technique stéthitshe My nodes that it had chosen in the previous

step and generates the vector space of (2.51) usiid;thew polynomial bases
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V={HQ®),...HA™)} (4.22)

where

HA®) =[g5 (7). ,0.0),... 4, 0O (4.23)

Then the remaining/; — M, are selecting by continuing the ST node selectipraach in the regular
way and selecting nodes which have16.") vector with a large enough component orthogonal.to
Next, (420) is written forM; polynomial bases and nodes. It is worth notingtilme we already have the
first M,y elements irE, which means onfv; — My new SPICE simulations are needed since theMigst
SPICE simulations are already done in the previous Btegides the firsM, columns in the firsM, rows

of matrix A are in common with the previous step and the resisné® be computed. Moreover, all
coefficients inX are recomputed and the fitdi coefficients are not necessarily the same as coefficient

in the previous step. Therefore, the new version of sysfdinear algebraic equations can be written as

AX, =E, (4.24)

where
%, = XX,y a0} E =[BT X02™)] (4.25)

c oo 409 ]
Ao :
A — L] e L] ﬂ\/‘l—l(;\'(MO))
l—

A0 e e L0 e e e gLt

This process can continue fas, Us, ... Uy, by expanding theA matrix, doing more SPICE
simulations and solving for the new set of HPCE coeffisign the same way. In other words the general

format of system of linear algebraic equations at gtegn be written as
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AX =E. (4.26)

where

X, =Xl Xy 10} B =[E T x@2™] (4.27)

However, between each two steps an accuracy chedk tebe done to stop the algorithm if the desired
accuracy is met. This is done by computing the narethlenrichment of PC coefficients gained by

increasing the hyperbolic factor fram, tou;. This process is explained in the next section.

4.5.5 Enrichment of the adaptive HPCE approach

Knowing the critical hyperbolic factors, we have arreool to distinguish between polynomial
bases and divide them to smaller groups. The deasidrow many of these groups should be exploited
in a particular example is based on the desired acguhathis section, the accuracy measures used in

making this decision are introduced.

Adding each group of the nodes to the process, rasaltsincrease in the accuracy. This is due
to the fact that, by solving (4.26) and using the leasiare technique the new HPCE coefficients are so

chosen to minimize the residual error of the approximatio other words

X, (0) = argminX (t,1) - > X, (0P, (1) (4.28)

2
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when (4.28) converges to zero it results in the errordmtviwo set of coefficients from two subsequent
steps to be very small too, which in practice traeslab coefficients of new polynomial bases be close to

zero and the change in coefficients of old polynomasds be trivial.

This thesis suggests putting the accuracy constairithe variation of the response, since this
statistical moment is usually requested and is mensitize to changes in HPCE coefficients comparing
the arithmetic mean. Once coefficients of Stgjp> 1, are evaluated, the normalized enrichment of the
variance of the circuit responses due to the additioeal bases can be analytically measured as

Ml
(K) (412
> X% )

k=M _;+1

En(t) =+

i Mj

QX+ 2 X0 *q,

k=1 k=M, ;+1

(4.29)

whereq; = M; — M_; is the number of added polynomial bases atjstal it is placed in the enrichment
formula to show the average value of added polynorasé®. It is worth noting that at later steps of the
algorithm, g; increases anén(t) decreases since on average the contribution of eaieu gublynomial
basis reduces. Provided the time average of this emitthi: greater than a prescribed tolerance, the
teration will continue. Once the enrichment measti@.@9) falls below the tolerance, it is assumed that
the point of diminishing return has been reached aed the iterations are stopped. The resultant PC

expansion is referred to as the HPCE.

4.5.6 The program flow of the adaptive HPCE approach

In this section a summary of the overall program flow haf &lgorithm which controls the
adaptive HPCE approach is presented. Flowchart ofribi®eps is demonstrated in Fig. 4.5, this approach
starts with setting the hyperbolic factor as~ 0 and finding the corresponding polynomial bases, then
using the nonintrusive ST approabh sample nodes are selected and SPICE simulations aecato
these nodes. Afterwards by replacing the simulationitseisu(4.20) and solving the equation in the least

square manner, the first set of coefficients Xg.are found. In the next step, the hyperbolic factor is
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updated tou;, M; corresponding polynomial bases and sample nodes and &nd by doingl; — My
SPICE simulations and placing them in (4.24) the newda$ coefficients are calculated. Then, the
normalized enrichment from step one to step two is atedpusing (4.29) and the result is compared
against a prescribed scalar accuracy threshold whiggt iby user and depends on the example. If time
average of the normalized enrichment is greater tharthtieshold, the process is stopped afdis
reported as the HPCE coefficients. However, if the norethliemrichment is less than the threshold, the
algorithm continues to update the hyperbolic factah&nextu value. This process continues until time
average of the normalized enrichment falls below thesktimid or the hyperbolic factor reaches 1 which
means HPCE is converted to the conventional PC expankiowever, through multiple numerica
examples at the end of this chapter it is observediftithe threshold is set realistically, it will be me
before the hyperbolic factor reaches 1. It is noted thatided u < 1 when the iterations are stopped,
sparsity in the HPCE is guaranteed. Moreover, since all experiments’ results are reused the total number

of SPICE simulations stays as a fraction of the corweadtP C approach.

Start Report results
Yes
\ 4
u=0 .
7 SPICE sim. .
SPICEsim., 131 Update u Find HPCE |—»|  Find
Find 1-D . Enrichment
. Coefficients
Coefficients -
No

Fig. 4.5 Flowchart of the algorithm controlling thdaptive HPCE approach.
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4.5.7 Computational cost of the proposed adaptive HPCE approach

This section starts with finding an upper bound for lmeimof polynomial bases in the adaptive
HPCE approach, and then it quantifies the CPU time coghis approach and contrasts that against
conventional non-intrusive PC approaches. Based odigdhassion of Section 4.5.4 it is appreciated that
the CPU time required for determination of nodes is rielgligompared to computations cost of SPICE
simulations since the nonintrusive ST based apprimalsed for node selection. This node selection
technigue is very time efficient because it does maihie any matrix inversion when studying candidate
nodes. This can also be verified from numerical exanmgflgshapterll and particularly CPU times of
the nonintrusive ST approach presented in Table 3i&hvwainows the CPU time of the node selection
approach to be less than one percent of SPICE simslafidrerefore, only the CPU cost of SPICE

simulations is considered in this section.
4.5.7.1 Upper bound on number of polynomial bases in the HPCE approach

Based on the discussion of Section 4.1 laevdma 4.1 we proved that the number of polynomial
bases in the conventional PC approach is equa+is=C(mtn, n). However, the same technique cannot
be used to find number of polynomial bases as a funofia because the left hand side of (4.12) might
involve non-integer values. Therefore, assuming 1, in this section we propose an upper bound on
number of polynomial bases in the proposed approadbhwstill shows a great speed up comparing to

the conventional PC. This upper bound is found byodixg the following Lemma.

Lemma 4.2: An upper bound on number of possible combinationl|l, = (d;"+ dy*+...+d,")"" < m

whered; are integer values andk 1, is:

I\ﬁz(m+n_lJ+n=M+n (4.30)
n (m=1!In!

Proof: By observing the graphical presentation of two ancetldimensional indices of the conventional

PC approach, demonstrated in Fig. 4.1, it is notedtliganodes located on the surface, except the ones
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which are also on one-dimensional axes, cannot sénglished using the HPCE approach, and in
general this is true for any dimensional PC expansion. It is merely because tperhgla described in
(4.13) withu=1, is the first hyperbola to cross all these nodeslwitieans in the HPCE approach they
are considered to have the same value and by sldgtkeasing: all of them would be discarded from
HPCE. The nodes which are also on the axes are excdpitause they represent the one-dimensional

polynomials; hence, they would be selected evemavitear zero hyperbolic factor.

Since wheru is less than one all nodes on the surface, excepbrias in common with one-
dimensional axes, are discarded, and in a succesBfOEHl is always less than 1, we can argue by
subtracting number of these nodes frél it is possible to find an upper bound on the nundfe

polynomial bases in the HPCE approach.

Number of nodes on the surface can be determined lmygfindmber of possible combinations

fordin
ld]|=d,+d,+...4d,=m (4.31)

Thus, based on (4.5) number of nodes on the surface is

(m+n-1)! (m+n-1
m(n-1)! _( n-1 j @

And since there are nodes in common with one-dimensional axes, numbdisoarded nodes for &

which is slightly less than 1 would be

(m+n-1)!

oD (4.33)

Therefore, after subtracting number of discarded nodes frombatuof total nodes in the conventional

PC, the upper bound can be found as
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~ _(m+n—1)!+n=(m+n)!—n(m+n—1)!+rl

M=P+1
m(n-1)! mnl
(m+n-n)(m+n-1! (m+n-1)! m+n—1 (4.34)
- - L - '+n=( }Ln
mn! (m=-!n! n

Hence Lenmma 4.2 is proved.

It is worth noting, (4.33) also shows number of polyiabrbases for the penultimate critical
hyperbolic factor inu since based on the discussion in Section 4.5.3 tverdd be no difference in

HPCE ifu is greater than or equaltR, and smaller than 1.

4.5.7.2 Comparing computational cost of HPCE with other nonintrusive PC approaches

This section quantifies the CPU time cost of the pregoadaptive HPCE approach, and
compares it with conventional non-intrusive PC appreaclit is observed that no comparative analysis
with respect to the intrusive SG approach is performedesit is wel-established that for high-
dimensional problems most non-intrusive approachdsoutperform the SG approachtq. This is
particularly true for nonlinear circuits where the multgimional integral of (2.37), using the SG
approach, has to be represented in SPICE using massnenof additional voltage/current dependent

sources.

4.5.7.2.1 Total computational cost of the adaptive HPCE approach

As mentioned before, the major computational coshénadaptive HPCE approach is spent on
SPICE simulations and the CPU time for node selectioregigible. In this section we calculate the
CPU cost in the upper bound case of HPCE iitholynomial bases. Based on the discussion in Section

4.5.7.1 1t is known that the CPU cost is always equiess than this upper bound case.

For the SPICE simulation cost, it is assumed that @idhe M simulations requires the same

CPU cost which is a reasonable assumption sinceattigtion in the unknowns of the MNA equations of
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(2.38) from one SPICE simulation to another wil be @iyicsmall. Thus, the SPICE simulation cost or

in other words the total computational cost can lantified as
C; =MC, (4.35)

where C, is the cost of each deterministic SPICE simulatiorusThhe overall cost of the proposed

approach scales a@(nm) with respect to the number of random dimensian)s This scaling can be

easily derived by simplification of (4.34).
4.5.7.2.2 Stochastic collocation approach

Stochastic collocation (SC) has been a very populantnasive PC approach [32], [33], [45],
[46]. In this approach, if the non-intrusive multidimensil nodes are selected to be the full tensor
product of 1D quadrature nodes it wil result b = (m+1)" sample nodes. These nodes can be
analytically identified at negligible computatior@dsts (i.e. CPU time of node selection = 0). Thus, the

cumulative costs of the entire SC approach is equbatoof the SPICE simulations and is expressed as
C, =(m+1)"C, (4.36)

This corresponds to an exponential scaling of the tiosts with respect to the number of random
dimensions 1f), quantified asO((m+1)"). This means that for even moderate dimensional propkes
massive cost of SPICE simulations in (4.36) wil matkie aipproach highly cost intensive compared to

the proposed adaptive HPCE approach.

In order to mitigate this prohibitive scaling, an ligjent choice of only a sparse subset of the
tensor product nodes guided by the Smolyak algoritaeldeen proposed [32], [33], [45], [69]. Once
again, this method allows the fast identificationhaf sparse nodes. This approach results in a decrease in
the number of multidimensional nodes frakh = (m+1)" to approximatelyM = (2n)"/mi, thereby

improving the CPU time costs of the SC algorithm from thd#.36)to
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C = o (4.37)

For this approach, it is observed that the number arihtistic SPICE simulations required scales as
O(2"n"™) which is stil 2'ntimes more than that required for the proposed adapf€E approach. Thus,

adaptive HPCE still remains more cost effective tham évie sparse collocation approach.
4.5.7.2.3 The conventional linear regression approach

The conventional linear regression approach, introdic&ection 2.3.2, takes advantage of the
traditional Fedorov search algorithm and needs to d&€BRimulations at +1) or 3P+1) sample
nodes 27, [28]. In this approach the computational cost ofifigdhe nodes cannot be neglected because
of the high number of the matrix inversions and matrsxtememuliplications. In fact this process might
cause a computational cost comparable to the CPU dim®PICE simulations in a moderately high

number of random variables.

Based on the discussion of Section 3.1.2, the caipnal cost of the node selection process for

the conventional linear regression approach is

C =2(P+)((m+1)"-2(P+1))C, +k(P+1)C,

(4.38)
~2(P+)(m+)"C +k(P+)C,; ke{23}

where the first term on the right hand side of (4:88yesents the CPU cost required to compute A, of
(3.1) M+1)"-k(P+1) times for each node of the starting set W@thas the costs of performing all the
matrix-vector and vector-vector multiplications of (343suming that the inverse of the information
matrix is known, the second term represents the CPUbtdse requisite matrix inversions with, as the
time cost to perform one matrix inversion. It is appredidhat the cost, scales a®©(n*™") with respect
to the random dimensions))( On the other hand, the cd3t scales a®©(n*") or O(n°™) depending on

whether a direct or indirect approach for matrix inversionsied.

Furthermore the cost &f(P+1) SPICE simulations would be
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C. =K (P+1)C, (4.39)

It is clear from (4.38) and (4.39) that the proposed adagiP CE approach is far more efficient than the
conventional linear regression approach since its CRe tor node selection is negligible compared to
(4.38) and in SPICE simulations it isn times more efficient than the conventional linear regjoas

approach.
4.5.7.2.4 Nonintrusive stochastic testing based approach

The promising nonintrusive stochastic testing baeggatoach which has been proposed3r [
and reviewed in Section 2.2.2.3 is one of the mostiefiti available approaches. However, as described
in Section 4.5.4, the proposed adaptive HPCE apprioashmproved the efficiency of this method even

further.

The nonintrusive ST based approach requires By SPICE simulations as opposed to the
2(P+1) simulations required by the linear regression appraaehsince the cost for selecting the nodes

is negligible the total computational cost of thig@ach would be

C, =(P+1G, (4.40)

This in turns translates to a total scaling raté@f™) for computational cost of the nonintrusive ST based

approach which can be derived by simplification of (4A3.it can be seen, the proposed adaptive HPCE

approach is about times faster than the nonintrusive ST based approach.

Among other existingnorrintrusive approaches, there is the pseudo-spectiat&imn approach
which is introduced in Section 2.3.1. However, tiipraach suffers from the same exponential scaling of
the SPICE simulation costs as the classical SC appr@abber methods based on the Stroud low order
cubature methods, introduced in Section 2.3.4, hiseebeen reported. This approach can easily locate
the multidimensional nodes using simple analytic fdas and exhibits only a linear scaling of the

number of SPICE simulations with number of random dimasasfoe. O(n)). However, this excellent
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scaling with the number of random dimensions onlytexisr a second and third degree PC expansion

and cannot be extended to higher degree expansidns [26

From the above analysis, it is observed that the pempadaptive HPCE approach offers clear
benefits over the stataf-the-art PC approaches and this is validated throudtiplenexamples in the

next section.

4.6 Numerical examples

In this section, three examples are presented to contbaraccuracy and scalabiity of the
proposed adaptive HPCE approach against state of theowirttrusive PC approaches. All relevant
computations are performed using MATLAB 2013b while tegerministic transient simulations are
performed using HSPICE [3]. In particular, the transmisgmenrietworks of the presented examples are
modeled using the W-element transmission line maqulelided by HSPICE which can consider
frequency dependent per-unit-length parameters [3].ableee simulations are run on a workstation with

8 GB RAM, 500 GB memory and an Intel i5 processor withG-# clock speed.

4.6.1 Example 1

The objective of this example is to compare the perfocmaof the proposed adaptive ST based
approach with the nonintrusive ST based approach [3@}. tRis purpose, the multiconductor
transmission line (MTL) network of Fig. 4.6 terminatedilyerters made up of SPICE level 49 CMOS
transistor models is considered. The lengths of the M&tworks are set to 5 cm and their layout and
geometric dimensions are shown in Fig. 4.7. This adws driven by two voltage sources with a
trapezoidal waveform of risef/fall timé& = 0.1 ns, pulse widtfl,, = 1 ns and amplitude of 5V. The
uncertainty in the network is introduced via ten rangamables § = 10) whose characteristics are listed
in Table 4.5 where the last four random variables ardecklto characteristics of NPN and PNP
transistors used to construct inverters in the termmakor this example a Legendre PC expansion of

degreem= 4 is considered.
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Fig. 4.6: Multiconductor transmission line (MTL) meork for Example 1 in Section 4.6.
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Fig. 4.7: Geometrical and physical layout of traission lines of Example 1 in Section 4.6

Table 4.5 Characteristics of random variables afgte 1 in Section 4.6 (Fig. 4.6 and Fig. 4.7)

Random Variables Mean % Standard Deviation
h 100 um
W 90 um
d 30 um
s 200 pm
Transmission line conductivity 5.8e7 +/- 30 %
Permittivity 4.1 Uniform Distribution
NPN channel length 0.1 um
NPN channel width 10 pm
PNP channellength 0.2 pm
PNP channel width 20 um

In order to demonstrate the accuracy of the proposedisd&i®® CE approach, the mean and
standard deviations] of the transient responses at the output nddesdN, of Fig. 4.6 are computed
using the methodology described in Section 4.5. Byingnthe closed-form technique of Section 4.5.3,
five critical hyperbolic factors are obtained, these eslareu=[u,~0, 0.5, 0.69, 0.79, 1]. In this example,
the threshold on the accuracy constraint of standardtievis set as 5e-3; hence, the adaptive HPCE

approach runs until it meets this accuracy. Tablesko8vs the enrichment at different steps. This table is
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filed by finding the time average of (4.29) at differetatps. As it can be seen, the accuracy is met when
the hyperbolic factor is equal to the penultimatecaiithyperbolic factor i.eu = 0.79. Nevertheless, we
have continued the approach for= 1 for ilustrations purposes. The penultimate criticgerbolic
factor u=0.79 is results in selection M = 296 sample nodes whie the nonintrusive based ST approach

needsP+1 = 1001 sample nodes.

Table 4.6 Time average of enrichment of respon$esammple 1 in Section 4.6 at different steps.

After step 2W. 86 | Afterstep 2W. 176| Afterstep 2W. 296| Afterstep 2W.
bases bases bases 1001 bases
Enrichment of 0.0134 0.0064 0.0038 9.04e-4
response atl;
Enrichment of
response all, 0.0146 0.0057 0.0033 9.14e-4

Next the mean and standard deviation results are ecedh@egainst those obtained using the

nonintrusive ST based approach. The comparison ofiveaesults is shown in Fig. 4.8 where both PC

approaches exhibit good agreement.

Mean Proposed HPCE
——=—Mean Full-blown PC

—O— Mean +i- 3 Proposed HPCE |
--0-~ Mean +i- 3o Full-blown PC

Mean Proposed HPCE 06}
——=—Mean Full-blown PC
—0O— Mean +i- 3o Proposed HPCE |
--0-~ Mean +i- 3o Full-blown PC

Transient response at N, (V)
%]

Transient response at N, (V)
o]

0 0.2
0.4
_2-
-0.6
5 1 2 3 4 0 1 2 3 4 5

Time (ns) Time (ns)
CY (b)

Fig. 4.8: Comparison of the statistics of the tians response of Example 1 in Section 4.6 obtaingitig th¢
proposed adaptive HPCE approach and the noninguSivbased approach. (a) Statistical results ofrdresien
response at \ (b) Statistical results of the transient respoatsis,.

Next the PDFs of the transient response at oufgutsndN, are obtained at the time point of
maximum standard deviation of transient responsl; gt = 1.5ns) and at the time point of maximum
standard deviation of transient respons@&aft = 2.26ns) respectively. The PDF at these timetgdsn

obtained using resultant coefficients of the proposexbtag HPCE approach and the nonintrusive ST
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based approach and by taking advantage of the aaaligichnique explained in Section 2.1.4.3. Using
this technique, 30000 analytical samples are gerteeate the PDFs are generated from them. The result

is presented in Fig. 4.9, where both approaches démratms good agreement.

2500 . w 3000 — w .
= Proposed HPCE = Proposed HPCE ;i
Full-bl PC — Full-bl PC
~ a000l [ IFuli-blown ’A | ., 2500} [ IFull-blown 7 \k
= 7 \ = / Ce-_j
N Vs S 2000}
& 1500} A T8
g T g 1500}
Z 1000t 2
e} © 10001
o fa
o 500 [ o 500 L
C-)'I 0 1 2 3 4 5 0 -0.6 -0.4 -0.2 0
Voltage (\) Voltage (V)

(@) (b)
Fig. 4.9: PDFs of Example 1 in Section 4.6 obtainkséhg 30,000 samples. (a) PDF of responsélaat the timi
point of maximum standard deviation of respons@&laft = 1.5 ns). (b) PDF of responseNy at the time point ¢
maximum standard deviation of responsé&laft = 2.26 ns).

Finally, the CPU times taken by the proposed adapii? CE approach and the nonintrusive ST
based approach are 65 seconds and 220 seconds wedpeittis observed that the HPCE approach is
more efficient compared to the nonintrusive ST approachrepresents a speedup greater than 3 over

this method. This speedup is due to the smaller auwbSPICE simulations involved.

4.6.2 Example 2

The objective of this example is to compare the pedane of the proposed adaptve HPCE
approach with the nonintrusive ST based approach.hisoptrpose, the multiconductor transmission line
(MTL) network of Fig. 4.10 terminated by inverters madeouSPICE level 49 CMOS transistor models
is considered. The lengths of the MTL networks aretse6 cm and their layout and geometric
dimensions are shown in Fig. 4.11. This network isedriby a voltage source with a trapezoidal
waveform of rise/fall timeT, = 0.1 ns, pulse width,, = 1 ns and amplitude of 5V. The uncertainty in the
network is introduced via thirteen random variables=(13) whose characteristics are listed in Table 4.7.

For this example a Legendre PC expansion of degred is considered.
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Fig. 4.10: Multiconductor transmission line (MTLetwork for Example 2 in Section 4.6.

W; W; w; W; W;
>
n ONENN $#EEE BB B B 00w
— —
d; Dielectric Layer 150 um 150 um 150 um 150 um
€r=4.1

20 um < |

Fig. 4.11: Geometrical and physical layout of traission lines of Example 2 in Section 4.6 where[1,2,3] refer
to thei-th subnetwork.

In order to demonstrate the accuracy of the proposediad&i® CE approach, the mean and
standard deviatiorns{ of the transient responses at the output nddendN, of Fig. 4.10 are computed
using the methodology described in Section 4.5. Byingnthe closed-form technique of Section 4.5.3,
five critical hyperbolic factors are obtained, theseeslare same as the case of ten random variables and
equal tou=[u~0, 0.5, 0.69, 0.79, 1]. In this example, the thresholthe accuracy constraint of standard
deviation is set as le-4; hence, the adaptive HRgpEbach runs until it meets this accuracy. Table 4.8
shows the enrichment at different steps. This tabllled by finding the time average of (4.29) at

different steps. As it can be seen, the accuracy iswhen the hyperbolic factor is equal to the
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penultimate critical hyperbolic factor i.e.= 0.79. Nevertheless, we have continued the apprfoaci=
1 for illustrations purposes. The penultimate critigdebolic factoru=0.79 results in selection off =

573 sample nodes while the nonintrusive based Sioapp need®+1 = 2380 sample nodes.

Table 4.7 Characteristics of random variables afmpte 2 in Section 4.6 (Fig. 4.10 and Fig 4.11)

Random Variables Mean % Standard Deviation
d; 100 um
do 140 um
ds 70 um
W, 150 pm
W, 130 pm
W 170
— - “r? +/- 30 %
! a Uniform Distribution
h2 20 Hm
h3 40 pm
Transmission line conductivity 5.8e7
G 1pF
(o) 0.5 pF
Gs 15 pF
Table 4.8 Time average of enrichment of respon$esample 2 in Section 4-6 at different steps.
After step 2W. 131| Afterstep 2W. 287| After step 2W. 573| After step 2 W. 2380
bases bases bases bases
Enrichment of 7.52E04 3.36E04 6.95E05 2.55E05
response dtl;
Enrichment of 9.18E04 4.11E04 7.67E05 1.91E05
response &,

Next the mean and standard deviation results are cedh@gainst those obtained using the
nonintrusive ST based approach. The comparison oftixeaesults is shown in Fig. 4.12 where both

PC approaches exhibit good agreement.

Next the PDFs of the transient response at outgusndN, are obtained at the time point of
maximum standard deviation of transient responsh;at = 2.89ns) and at the time point of maximum
standard deviation of transient respons®&aft = 2.01ns) respectively. The PDF at these timetgdsn
obtained using resultant coefficients of the proposexptae HPCE approach and the nonintrusive ST

based approach and by taking advantage of the analigichnique explained in Section 2.1.4.3. Using
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this technique, 30000 analytical samples are gerteeaite the PDFs are generated from them. The result

is presented in Fig. 4.13, where both approaches ddratga good agreement.

Mean Full-blown PC
——=Mean Proposed HPC |
—0— Mean +/- 3o Full-blown PC

Mean Full-blown PC

——=Mean Proposed HPC
6 o~ —0— Mean +- 3o Full-blown PC |
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Transient response at N1 V)
Transient response at N2 (V)

_40 2 4 6 8 10 0 2 4 6 8 10
Time (ns) 1t Time (ns) £
(@ (b)
Fig. 4.12: Comparison of the statistics of the $iant response of Example 2 in Section 4.6 obtaingidg thi
proposed adaptive HPCE approach and the noninguSivbased approach. (a) Statistical results ofrttmsien
response at \ (b) Statistical results of the transient respoatsis,.
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Fig. 4.13: PDFs of Example 2 in Section 4.6 obtdimsing 30,000 samples. (a) PDF of responsis;at the timi
point of maximum standard deviation of respons8laft = 2.89ns). (b) PDF of responseNyt at the time point ¢
maximum standard deviation of responsé&laft = 2.01ns).

Finally, the CPU times taken by the proposed adaptR€E approach and the nonintrusive ST
based approach are 974 seconds and 4046 secondsivelypdicis observed that the HPCE approach is
more efficient compared to the nonintrusive ST approachrepresents a speedup greater than 4 over

this method. This speedup is due to the smaller aumbSPICE simulations involved.
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Table 4.9 Scaling of CPU time costs using adagP€E and nonintrusive ST for example 3 in Secti@n 4

. CPU Time (Proposed CPU Time (Nonintrusive
Number of RV (Random Variables) adaptive HPCE approach) (( ST based approach) (s)
5 (dy, dp, dzwy, Wo) 104 214
6 (d11 d21 d3,\N1! W21 W3) 153 357
7 (O, Oy, dz W1, Wy, W3,hy) 216 561
8 (01, do, D3 W1, Wa, W3,hg,h) 294 841
9 (dh, do, d3 w1, Wa, W3,hg,hp,h3) 389 1215
lo (d11 d2! dS,Wll Wo, W3:h1:h2,h3,g*) 503 1701
11 (dlv d2! d3W]_, W21 W31h1,h2,h3,gycl) 637 2320
12 (dy, dp, dawy, Wy, Wa,hy,h2,h3,9,C1,Cp) 794 3094
13 (dy, dp, dzwy, Wo, Wg,h1,h,03,9,C1,5,G3) 974 4046
5000 . .
—&— Full-blown PC
— —&— Proposed HPLC
< 4000} >
i k]
£
E 3000+
(&
LI
O 2000+
oo
75
£ 1000} )
|_

6 8 10 12
Number of Random Variables

Fig. 4.14: Scaling of overall CPU time costs foample 3 in Section 4.6 for the proposed adaptivEEHP
approach, and the full-blown PC nonintrusive STdshapproach with increasing number of random visab

4.6.3 Example 3

The objective of this example is to compare the sdinlaof the proposed adaptive HPCE
approach against that of the nonintrusive ST basembagm For this purpose the same multiconductor
transmission line (MTL) network of Fig. 4.10 is consider&he uncertainty in the network is expanded
to include between five and thirteen random varialbtes 6...13) whose characteristics are listed in

Table 4.7 and a Legendre PC expansion of demgred is considered.

In order to demonstrate the scalabilty of the proposeik wthe number of random dimensions is
progressively increased from 5 to 13 as shown in TaBleér the same test cases of Table 4.9, the total

PC problem is solved using both of the adaptive HP Qioaph and the nonintrusive ST based approach.
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The CPU time incurred by each approach for each testcasted in Table 4.9 and scaling of the overall
CPU costs is demonstrated in Fig. 4.14. It is obseinard Fig. 4.14 that the proposed HPCE approach
outperforms the nonintrusive ST based approach whenamupibrandom variables is relatively high.
This is due fact that based on (4.35) and (4.40) tbpoped approach is in the ordeiQth) faster than

the ST based approach, which is more visible wherbauwf random variables increases.
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CHAPTER V: CONCLUSION

With the advent of sub-90 nm technology, the efféaandom manufacturing process variations
and unpredictable operating conditions on the performasfc microwave and radio-frequency (RF)
circuits can no longer be neglected. In order to ieclid impact of such parametric uncertainty in the
design optimization process, numerical methods toigirélte effect of this uncertainty on the circuit
response are required. The generalized polynomial drE@stheory has emerged as a highly robust and
versatile approach for the statistical analysis of bigbed circuits and electromagnetic (EM) systems.
Typically, PC approaches model the uncertainty in agkwesponses as a polynomial expansion of

predefined orthonormal functions of the input random viesab

In this thesis, a number of techniques for advanceafdhC approaches are suggested. The first
mayjor contributions is a novel sparse linear regresgiproach for the fast multidimensional uncertainty
guantification of high-speed circuits within a SPICE iemment. The next contribution is another
approach which exploits and expedited version of Daptdesign of experiments to accurately evaluate
the PC coefficients of the network responses. This approawvides fast search algorithms to identify
the design of experiments from large multi-dimensionatioen spaces. Both approaches are based on
modified versions of the Fedorov search algorithm thaklgjulocates a small set of regression nodes
within the random space. By probing the PC expansiaheofcircuit current and voltage quantities at
these sparse nodes the uncertainty in the circuit mespoan be efficiency quantified. Overall, the
proposed approaches provides excellent CPU savingsgfordimensional circuit problems compared to

contemporary intrusive and nonintrusive PC methods.

Next a novel improvement on truncation of the polyiablrases in the generalized PC theory is
suggested. This approach promises to alleviate thgonextial or near exponential scaling of
computational costs with respect to number of randamahlas, by adopting a new hyperbolic truncation

scheme in place of the conventional linear truncagcimeme used for PC expansions. This scheme is
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based on the sparsity of effects principle which st#tas the low-degree interactions between the
random variables are statistically more significant tthenhigher-degree interactions. This suggests that
if the high-degree multidimensional bases can be prérmn the ful-blown PC expansion, a sparser
expansion can be achieved without significantly §aiog the accuracy. In order to adaptively generate
such a sparse PC expansion based on only the lowedégezactions, an adaptive methodology is

proposed in this thesis. All contributions in thiegls are validated through multiple numerical examples
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