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ABSTRACT OF THESIS 

IDENTIFICATION AND CHARACTERIZATION OF DENDRITIC, PARALLEL, 
PINNATE, RECTANGULAR, AND TRELLIS NETWORKS BASED ON 

DEVIATIONS FROM PLANFORM SELF-SIMILARITY 

Geomorphologists have long recognized that the geometry of channel network 

planforms can vary significantly between regions depending on the local lithologic and 

tectonic conditions. This tendency has led to the classification of channel networks using 

terms such as dendritic, parallel, pinnate, rectangular, and trellis. Unfortunately, 

available classification methods are scale dependent and have no connection to an 

underlying quantitative theory of drainage network geometry or evolution. In this study, 

a new method is developed to classify drainage networks based on their deviations from 

self-similarity. The planform geometry of dendritic networks is known to be self-similar. 

It is our hypothesis that parallel, pinnate, rectangular, and trellis networks correspond to 

distinct deviations from this self-similarity. To identify such deviations , three measures 

of channel networks are applied to ten networks from each classification. These 

measures are the incremental accumulation of drainage area along channels, the 

irregularity of channel courses, and the angles formed by merging channels. The results 

confirm and characterize the self-similarity of dendritic networks. Parallel and pinnate 

networks are found to be self-affine with Hurst exponents around 0.8 and 0.7, 
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respectively. Rectangular and trellis networks are approximately self-similar although 

deviations from self-similarity are observed. Rectangular networks have more sinuous 

channels than dendritic networks across all scales, and trellis networks have a slower rate 

of area accumulation than dendritic networks across all scales. Such observations are 

used to build and test classification trees, which are found to perform well in classifying 

networks. 

Alfonso I. Mejfa 
Civil and Environmental Engineering Department 

Colorado State University 
Fort Collins, CO 80523 

Fall 2006 
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1 Introduction 

Geomorphologists have long recognized that channel networks can appear quite 

distinct between different regions. Usually channel networks appear tree-like with 

irregular stream courses and tributaries that form acute angles at their junctions [Zernitz, 

1932]. In some cases, however, channel networks can have rather different properties. 

For example, some networks appear lattice-like with tributaries joining at nearly right 

angles and channels oriented primarily in two orthogonal directions [Howard, 1967]. In 

other cases, networks appear more feather-like with many short tributaries joining the 

major channels at regular intervals [Parvis, 1950]. 

These differences have led geomorphologists to develop classification systems for 

channel networks. The first classification system was proposed by Zernitz [1932] based 

on inspection of channel network geometry on maps. This classification system is two 

tiered with a set of basic patterns and a set of modified patterns. Patterns are considered 

basic if they exhibit a distinct set of characteristics from other basic patterns. Modified 

patterns exhibit some similarities to a particular basic pattern but also some differences. 

Parvis [1950] expanded this classification system by introducing fifteen new modified 

patterns based on an analysis of aerial photos. Howard [1967] further expanded the 

classification system by introducing two new basic patterns, seven modified patterns, and 

a third tier of classification called drainage varieties . In his view, modified patterns can 

be distinguished based on larger-scale regional characteristics while drainage varieties are 



distinguished based on smaller-scale internal characteristics of the networks. He 

suggested that the actual number of drainage varieties in nature could be quite large 

because of the level of detail used to distinguish them. These classifications are now 

widely reproduced, at least in part, in introductory geomorphology and physical geology 

textbooks [Gregory and Walling, 1973; Plummer and McGeary, 1993; Knighton, 1998] . 

Classifications consider either disconnected, distributional, or aggregating 

networks. Disconnected networks do not exhibit continuously-connected channels from 

the stream sources to the edges of the region. Disconnected patterns include the so-called 

multibasinal and collinear networks. Distributional patterns, such as radial and 

distributary, tend to distribute flow from a relatively small number of sources to a 

relatively large number of outlets at the edge of the region. Aggregating networks tend to 

collect water from many sources and transport it to relatively few outlets. 

In this study, we focus on a set of classifications for aggregating patterns, 

specifically the dendritic , parallel, pinnate, rectangular, and trellis classifications. Figure 

1.1 shows examples of these network types . A dendritic network is tree-like with 

balanced branching among channels of different sizes, somewhat irregular stream 

courses, channels oriented in many directions, and tributaries that merge at acute angles 

[Zemitz, 1932; Parvis, 1950; Howard, 1967]. A parallel network has stream courses that 

tend to be very straight, major channels that tend to be parallel, and tributaries that merge 

at very acute angles [Zemitz, 1932; Parvis, 1950; Howard, 1967]. A pinnate network 

appears feather-like with a major channel that tends to be very straight and aligned in a 

single direction and many small tributaries joining the major channel at regular intervals 

and acute angles [Zemitz, 1932; Parvis, 1950; Howard, 1967]. In a rectangular network, 
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channel sinuosity is introduced by a large number of right angle bends and tributaries that 

sometimes merge at nearly right angles [Zemitz, 1932; Howard, 1967]. Finally, a trellis 

network appears lattice-like because small channels tend to be numerous and short in 

comparison to the large channels. Channel sinuosity is low, and tributaries often merge 

at nearly right angles [Zemitz, 1932; Howard, 1967]. All of these classifications were 

considered basic patterns by Howard [1967] except for the pinnate classification, which 

was considered a modification of the dendritic pattern by Zemitz [1932] and Howard 

[1967], and a modification of the parallel pattern by Phillips and Schumm [1987]. 

Drainage pattern classifications are also thought to be related to the conditions 

under which the networks formed. Parvis [1950] developed his classification system as 

part of a process to infer soil and bedrock types from aerial photos. Howard [1967] 

compared the network characteristics with known geological properties of regions and 

concluded that the analysis of drainage patterns can provide useful information about 

structural features and the types of underlying materials. In fact, many researchers have 

documented relations between drainage patterns and underlying bedrock [Zemitz, 1932; 

Horton, 1945; Parvis, 1950; Howard, 1967; Abrahams and Flint, 1983], soils [Parvis, 

1950], tectonics [Cox, 1989; Burbank, 1992], climate [Daniel, 1981], and erosional 

processes [Dunne, 1980]. Dendritic networks typically occur in regions with little 

tectonic control, gentle regional slopes, and relatively uniform lithology [Zemitz, 1932]. 

Parallel networks generally occur in regions with moderate to steep regional slopes or 

where elongated landforms such as drumlins restrict flow to parallel paths [Zemitz, 1932; 

Howard, 1967]. Phillips and Schumm [1987] used physical experiments to show that 

experimental channel networks can become parallel if they develop on surfaces with 
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initial slopes above 2-3%. Various explanations have been proposed for the origins of 

pinnate networks. Zemitz [1932] suggested that they occur when tectonic controls result 

in steep and uniform valley walls along the major channel. Parvis [1950] suggested that 

deep loess deposits tend to have low parallel ridges and valleys due to aeolian processes, 

and that these valleys may tend to fix the locations of the main channels and produce 

pinnate networks. Phillips and Schumm [1987] suggested that pinnate networks may 

occur when the regional slope is extremely steep. Rectangular patterns are produced by 

systems of joints and/or faults that meet at right angles. Joints and faults represent zones 

of weakness that the channels exploit during their growth [Howard, 1967]. Trellis 

patterns are commonly found in regions of folded or tilted strata where a series of parallel 

faults [Parvis, 1950] are present or in dissected, belted coastal plains [Zemitz, 1932]. 

Several authors have sought to quantify the differences between drainage network 

classifications using either the orientations of the channels or the angles formed by 

merging tributaries. Channel orientations are usually studied by constructing a histogram 

or rosette in which the magnitude for each direction is determined by the number of links 

or the total length of channel oriented in that direction [Milton, 1965]. Morisawa [1963] 

examined the orientations of first order Strahler [1957] streams for different network 

types. For dendritic networks, the distribution is nearly uniform. For parallel networks, 

the streams tend to be oriented in a single direction. For rectangular networks, the 

streams tend to be oriented in two approximately orthogonal directions. Phillips and 

Schumm [1987] analyzed the junction angles of several parallel networks in Colorado and 

Wyoming. They found that the junction angles among the major channels are typically 

around 40°, whereas the junction angles among lesser channels are typically about 61 °. 
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Abrahams and Flint [1983] quantitatively analyzed both the stream orientations and 

junction angles of trellis networks. They found a preference for streams to be oriented in 

the down-dip and down-plunge directions and an increased occurrence of obtuse junction 

angles. 

Methods have also been developed to classify networks using quantitative 

attributes. Argialas et al. [1988) proposed a quantitative classification method for third 

order networks. They digitized networks using aerial photos and maps and identified 

network elements such as the main stream, which they defined as the stream with the 

longest flow path, as well as the first, second, and third order Strahler streams. Strahler 

streams were further decomposed into links and nodes, where nodes are junctions or 

sources and links are stream segments that connect two nodes . Using this decomposition, 

they calculated approximately 15 attributes such as the source-outlet angle, which is the 

angle formed by a line from the center of gravity of the basin to the outlet and a line from 

the center of gravity to the main stream source. Then, the values of these attributes were 

classified into categories. For example, the source-outlet angle can be considered large 

or small, based on an empirical threshold of 105° [Argialas et al., 1988]. These 

categories were then used in a classification tree to label a given network as either 

dendritic, parallel, pinnate, rectangular, trellis, angular, radial, or annular. Each of these 

network types consists of a unique combination of categories, which together define its 

place on the classification tree. Argialas et al. [ 1988] tested this classification method 

with twenty natural and artificial networks that were previously classified by visual 

inspection, and the method successfully classified all twenty networks. Hadipriono et al. 

[1990) developed an expert system to classify channel networks based on the method of 
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Argialas et al. [1988] . The expert system uses the same attributes and categories, but it 

also allows the user to incorporate their own qualitative observations into the 

classification process. Ichoku and Chorowicz (1994] proposed another quantitative 

classification method using digital elevation models (DEMs). This method can classify a 

network as either dendritic, parallel, pinnate, rectangular, or trellis based on 14 

characteristics. Five of these characteristics are quantitative measurements, while the 

other nine are combinations of quantitative measurements and qualitative descriptions of 

the network. These characteristics are used in a classification tree with empirical 

thresholds to classify networks. For example, the first attribute that the classification tree 

considers is the mean length of exterior links. If the mean length is greater than 10 

pixels, the network can be dendritic, parallel, rectangular, or remain unclassified. 

Otherwise, the network can be trellis, pinnate, or remain unclassified. lchoku and 

Chorowicz [1994] do not state the method's rate of success in reproducing visual 

classifications, but they indicate that the method rnisclassifies networks that are much 

less than or greater than 6th order, especially if they are composed of several network 

types . For very small order networks, Ichoku and Chorowicz [1994] recommend the use 

of visual classification, and for large order networks, they recommend subdividing the 

network into smaller order networks to reduce rnisclassifications. 

Although these methods objectively classify networks in a way that is consistent 

with visual inspection, they also have two significant weaknesses. First, the classification 

methods are scale dependent because they are designed for networks of a particular size. 

Argialas et al. (1988] explicitly considered 3rd order networks, while the method devised 

by Ichoku and Chorowicz (1994] works best for networks around 6th order. This 
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limitation can be problematic if the network of interest does not have the appropriate size. 

Furthermore, Ichoku and Chorowicz [1994] noted that the same network can be classified 

as rectangular or trellis if only the scale on the map is changed. Second, none of the 

available classification methods, whether visual or quantitative, are tied to an underlying 

quantitative theory of drainage network geometry or evolution [Ichoku and Chorowicz, 

1994]. Quantitative methods, for example, require one to calculate large numbers of 

seemingly unrelated geometrical properties. As a result, it is difficult to establish 

quantitative connections between the drainage network types and the underlying tectonic 

and lithologic conditions. This lack of theory also leads to ambiguity in the classification 

hierarchy. For example, it is not clear why pinnate should be considered a modified 

pattern while contorted should be considered a basic pattern. 

In this paper, we aim to distinguish different network types using a method that is 

more directly tied to an underlying theory for channel network geometry. In this 

approach, dendritic networks are considered as the single basic network type because 

they are known to develop when few topographic, lithological, and tectonic constraints 

impact the development of the network. Such networks have also been observed to 

conform to a type of planform self-similarity [Rodriguez-Iturbe et al., 1992; Peckham, 

1995; Rigon et al., 1996; Dodds and Rothman, 1999; Veneziano and Niemann, 2000a, 

2000b; Niemann and Hasbargen, 2005], which has been directly linked to a broad class 

of fluvial erosion models [Veneziano and Niemann, 2000a]. The central hypothesis of 

this paper is that parallel, pinnate, rectangular, and trellis networks represent distinct 

deviations from self-similarity that can be captured with relatively few measures. These 

particular network types are considered for two reasons. First, they all describe 
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aggregating patterns and can be identified by considering a single network and its sub-

networks. Second, these patterns are relatively common in nature, so numerous examples 

of each type can be readily identified. In the next section (Section 2), we describe the 

planform self-similarity condition that applies to dendritic networks and develop three 

measures of drainage networks using this condition (drainage area increments, stream 

course irregularity, and tributary junction angles) . Section 3 contains a discussion of the 

dataset used in this analysis including the process used to identify the channel networks. 

In Section 4, we describe the main results obtained using these measures for the various 

network types. In Section 5, we develop simple classification methods based on these 

measures and evaluate their performance. Finally, Section 6 contains the main 

conclusions from the analysis. 
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Rectangular 

Figure 1.1. Examples of the five network classifications analyzed in this paper. The 

dots in the figure identify the basin outlets. 
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2 Planform Self-similarity 

Numerous empirical and theoretical results suggest that the planforms of many 

channel networks are approximately self-similar [Rodriguez-Iturbe et al., 1992; Peckham, 

1995; Rigon et al., 1996; Dodds and Rothman, 1999; Veneziano and Niemann, 2000a, 

2000b; Niemann and Hasbargen, 2005]. Planform self-similarity means that horizontal 

properties of a small sub-basin appear statistically identical to the same properties of a 

large basin if the small sub-basin is isotropically rescaled to appear the same size. This 

type of self-simi larity refers mainly to the channel network and basin boundary, which 

are properties that can be represented in the horizontal plane. It is understood that thi s 

condition applies to a limited range of scales [Montgomery and Dietrich, 1992] . 

Peckham [1995] considered the topological self-similarity of stream networks using 

Strahler stream ordering to determine the scales of channels. For streams of order w, he 

found that the average number of side tributaries of order ~i for a selected i ( i < w) was 

constant irrespective of the value of w. This result, which he demonstrated for two large 

river basins , supports the occurrence of topological self-similarity for dendritic basins. 

Rigon et al. [1996] considered whether the planform geometries of basins are self-similar 

by examining the behavior of the basin width as the basin length increases. They found 

that the width increases with length according to a power law with an exponent around 

0.93, which suggests that the shapes of basins tend to be approximately self-similar. 

Furthermore, Rig on et al. [ 1996] and Dodds and Rothman [ 1999] demonstrated that 
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many of the power laws observed for natural basins are consistent with channel network 

self-similarity, fractality or self-affinity of channel courses , and uniform drainage density. 

It should be noted that in most cases , these authors considered "typical" networks, 

implying they are not strongly constrained by lithologic or tectonic properties and 

therefore would be considered dendritic. 

Several specific conditions have been proposed to describe the planform self-

similaiity of networks [Peckham, 1995; Dodds and Rothman, 1999; Veneziano and 

Niemann, 2000a] . One such condition can be written mathematically as : 

(1 ) 

where ((L) is a horizontal property of a network or basin with a linear size L and 

( (rL) is a horizontal property of a network with linear size rL. r relates the linear sizes 

of the two networks, and Dis the dimension of the network property (e.g., D = 1 if <; is a 

linear property and D = 2 if {; is an area) [Veneziano and Niemann, 2000b; Niemann and 

Hasbargen, 2005] . The linear measure of network size can be determined in many ways. 

In this paper, we use the Euclidean di stance between the basin outlet and the mainstream 

source. The mainstream is identified by starting at the outlet and following the tributary 

with the larger drainage area at every junction of tributaries . The symbol = d indicates 

that the left and right sides of the equation are statistically identical. Equation (1) implies 

that any chosen horizontal property of a basin of size L is drawn from the same 

distribution as the same horizontal property of a basin of size rL if the latter basin is 

isotropically rescaled to be the same size. The scaling is isotropic because the scaling 

exponent depends only on the dimension of the measure ( , not on the orientation of the 

property. Because the rescaling is isotropic , the condition implies self-similarity. This 
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condition differs from traditional self-similarity because it requires one to compare small 

scale properties of small sub-basins to large scale properties of large basins. Traditional 

self-similarity allows one to select properties of any sub-region for comparison to any 

larger sub-region. 

This condition of horizontal self-similarity is derived from a more general three-

dimensional self-affinity condition for river basin topography in Veneziano and Niemann 

[2000a; 2000b]. Importantly, Veneziano and Niemann [2000a] showed that a 

detachment-limited model [Howard, 1994] with an erosion equation based on either shear 

stress or stream power usually does not destroy this three-dimensional self-affinity if 

present. Veneziano and Niemann [2000b] also demonstrated that this condition is 

consistent with numerous power-laws that are commonly observed for dendritic networks 

including the slope-area law [Hack, 1957; Flint, 1974] and Rack' s law [Hack, 1957] . 

It is possible that some other network types exhibit horizontal self-affinity instead 

of self-similarity. Self-affinity would mean that horizontal properties of a small sub-

basin appear statistically identical to the same properties of a large basin if the small sub-

basin is anisotropically rescaled to appear the same size. If self-affinity applies, then the 

scaling exponent in Equation (1) depends on the orientation of the measure being 

considered. Thus, one must restrict the condition to apply to linear measures and 

generalize the condition by allowing different scaling exponents for different directions. 

If we assume that the axis of anisotropy occurs perpendicular to the axis formed by the 

mainstream source and the basin outlet, then Equation (1) can be written: 

Si1(L) = d r-1Si1(rL), 

( .L (L) =d r -H ( .L (rL), 
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where (i
1
(L) is a linear property measured parallel to the axis formed by the mainstream 

source and the outlet, '1_ (L) is a linear property measured perpendicular to (i
1 
(L), and H 

is the self-affinity parameter or Hurst exponent, which describes the degree of anisotropy. 

If H = 1, the anisotropy disappears and the equations imply self-similarity. Although the 

conditions in Equations (2) and (3) are restricted to apply to linear measures, one can 

easily deri ve conditions for areas as well. For example, the area of a basin 

A(L) = LW(L), where W(L) is the width of the basin (measured perpendicular to L). 

The scaling of L and W(L) are governed by Equations (2) and (3), respectively, so a 

condition for the area can also be derived. The self-affinity condition could also be 

generalized to a multifractality condition by replacing H with a carefully selected random 

variable. This generalization allows more flexibility in explaining the hi gher moments of 

the variable across scales, specifically allowing non-linear variation with moment order 

[Schertzer and Lovejoy, 1987; Gupta and Waymire, 1993; Veneziano and Niemann, 

2000a]. 

2.1 Drainage Area Increments 
Ichoku and Chorowicz [1994) observed that the average lengths of channels 

between junctions (i.e. link lengths) were different for certain network types. For 

example, they found that parallel networks tend to have very long exterior links. In 

contrast, pinnate and trellis networks were found to have shorter exterior links and low-

order Strahler streams. If a channel has long links or widely-spaced tributary junctions, it 

also has less frequent increases in its drainage area because area is accumulated primarily 

where tributaries join. Thus, the first measure we use to characterize the network types is 
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the incremental accumulation of drainage area along a channel. This measure was 

previously considered by Veneziano and Niemann [2000b], who deri ved it from the 

planform self-similarity condition, and Niemann and Hasbargen [2005] , who used a 

similar measure to compare experimental and dendritic basin shapes. If the horizontal 

characteristic in the self-similarity condition (Equation (1)) is chosen to be basin area A, 

then D = 2, and one can write: 

(4) 

If one chooses the length in Equation (4) to be L-bL where bis a constant (whjch we 

call the ruler factor), then one can also write: 

A(L-bL) =d r -2 A[r(L-bL)]. (5) 

Taking the difference between Equations (4) and (5) gives: 

A(L)-A(L-bL) = d r-2 [A(rL)-A(rL-rbL)]. (6) 

The left side of the equation is the drainage area increment between points identified by 

L and L-bL. L is the size of the larger basin measured linearly from outlet to the 

mainstream source and L -bl is the size of the sub-basin or smaller basin measured in 

the same way. To simplify notation, the left side of the equation can be written M (L) 

where the term in the parentheses indicates the size of the basin at the downstream point 

and the subscript indicates the size of the segment over which M is measured. With this 

notation, Equation (6) can be rewritten: 

(7) 

This relation holds for all L , so one can choose L = 1. In that case, r takes on the meaning 

of L, and the equation can be written: 
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(8) 

The left side of this equation is simply a random variable if b is held fixed. Thus, the 

right side must have the same probability distribution as the left side for any choice of L. 

If we plot ML (L)/ L2 (for a fixed value of b) as we choose points in the basin with 

different values of L , we should observe a stationary process. Self-similarity requires 

stationarity in all moments of this process including the mean and the variance, but it 

does not specify the values of the moments. 

Figure 2. la illustrates the terms used in Equation (8) and the way in which 

M L (L) and L are measured in practice. Each cell in a network of interest is selected as 

the outlet of a sub-basin, and the sub-basin's area A(L) and Euclidean length L are 

measured. The drainage area A(L-bL) is obtained by moving a Euclidean distance bL 

upstream of the point along the mainstream and measuring the area at the new point. The 

normalized increase in the drainage area over this distance M L (L) I L2 can be calculated 

once A(L) , A(L-bL) , and Lare known. This procedure is repeated for each grid cell in 

the basin, and the values of ML (L) are plotted against L in log-log to evaluate whether 

self-similarity is observed in the drainage area increments. 

If a basin is self-affine, one can use Equations (2) and (3) to obtain a similar 

condition for the drainage area increments. As noted earlier, the area of a basin is 

proportional to the Euclidean basin length multiplied by the Euclidean basin width , so 

one can write: 

A(L) oc LW(L). (9) 
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If the characteristic in Equation (2) is chosen to be the basin length and the characteristic 

in Equation (3) is chosen to be the basin width, then one can write: 

(10) 

(11) 

Substituting these relationships in for L and W(L) in Equation (9) and noting that 

L(rL)W(rL) oc A(rL), one can obtain: 

A(L) =" r-,-H A(rL). (12) 

This relationship can then be used instead of Equation (4) to derive the following scaling 

condition for the area increments in a self-affine basin: 

(13) 

This expression suggests that a plot of M,,L (L)I 1_;+H against L should be stationary. 

Because H is not generally known in advance, such a plot is not convenient to develop. 

Instead, we note that if we plot M,,L (L) I L2 against L and observe a slope, then one can 

estimate the Hurst exponent as H =slope+ 1. 

2.2 Stream Course Irregularity 
Ichoku and Chorowicz [1994) also observed that the sinuosity of channels varies 

between different network types. In particular, small channels in parallel and trellis 

networks tend to be unusually straight, whereas channels in rectangular networks are 

unusually sinuous. Dendritic self-similarity also has implications for stream course 

irregularity. This measure was developed by Veneziano and Niemann [2000b] and used 

by Niemann and Hasbargen [2005] . Instead of selecting ( to be the drainage area of a 
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basin, we choose it to be the standard deviation of the stream course. From Equation (1 ), 

one can obtain : 

(14) 

where we have used D = 1 because the standard deviation is a linear measure. The 

subscript on a indicates the upstream length over which the standard deviation is 

measured, and the term in the parentheses indicates the linear size of the associated 

network. The standard deviation is measured in the direction perpendicular to the stream 

segment under consideration. Following the same procedure that was used for the 

accumulation of area, one can determine that the distribution of abL(L)I L (where bis 

held constant) should be constant irrespective of the choice of L. Again, self-similarity 

does not constrain the mean or variance of a; it only requires that these moments remain 

constant for all L. 

Figure 2.lb illustrates the way that the terms in Equation (14) are measured. The 

general approach is quite similar to the approach for the drainage area increments. Each 

cell in the network is selected as the outlet of a sub-basin, and the Euclidean length of the 

sub-basin L is measured. One then identifies the point that is a Euclidean distance bL 

upstream from the outlet and measures the standard deviation of the stream course 

between the two points. Mathematically, the standard deviation is simply: 

(15) 

where n is the number of grid cells available between the two endpoints and y is the 

offset of each grid cell measured perpendicular to the line connecting the two endpoints. 

Strictly speaking, n should be held constant for all outlets considered. However, because 
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the networks will be obtained from DEM data, the available resolution is limited, and n 

will be determined by the number of available grid cells within the segment being 

characterized. Once a bL (L) IL is calculated for all locations, it can be plotted against L 

in log-log to identify potential deviations from self-similarity. 

One can derive a similar expression using the self-affinity condition. In this case, 

one only needs to use Equation (3) because the standard deviation is measured 

approximately perpendicular to L. If we select S1- (L) in Equation (3) to be the standard 

deviation, one can obtain: 

This express10n implies that plot of a bL (L)I LH against L is stationary. More 

conveniently, it implies that a plot of abL (L) IL against Lhasa slope, and H =slope+ 1. 

2.3 Tributary Junction Angles 
Abrahams and Flint [1983] , Phillips and Schumm [1987], and Ichoku and 

Chorowicz [1994] all observed differences in the tributary junction angles for different 

network types . In particular, parallel networks seem to have an abundance of very small 

junction angles, whereas rectangular and trellis networks seem to have an abundance of 

right and obtuse junction angles, respectively. Although it has not been considered 

previously, planform self-similarity also applies to the angles at which tributaries join the 

mainstream. In this case, ( is selected to be the angle formed between the primary 

tributary and the secondary tributary at a junction, which we denote by 1/f. By primary 
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tributary, we mean the extension of the mainstream upstream from the junction. In this 

case, self-similarity implies: 

1//b,b (L) = d 1//,b ,rb (rL), (17) 

where the subscripts on If/ indicates the chord lengths that are used on the primary and 

secondary tributaries to measure the junction angle. If Lis chosen to be one, then r takes 

on the meaning of L and: 

(18) 

where the left side is simply a random variable, which suggests that the lf/bL,bL (L) has the 

same distribution irrespective of L. For a self-similar network, the distribution of 

secondary tributary sizes is expected to scale with L. This means we can also measure 

the junction angle using a chord length of bL on the primary tributary and bL1 on the 

secondary tributary, where L1 is the Euclidean length of the secondary tributary's basin . 

In this case, the measured angle is denoted lf/bL,bL, (L) . Figure 2. lc illustrates the 

measurement of lf/bL,bL, (L) . Each point in the network is considered as a possible 

junction location. If a junction is present, then the junction angle is measured. The chord 

length used to measure the orientation of the primary tributary is bL, and the chord 

length used to measure the orientation of the secondary tributary is bL1 • Notice if b is 

near zero, the junction angle is measured more locally, and if b is near one, the junction 

angle is measured using the entire lengths of the tributary basins. 

It has been suggested by numerous authors that junction angles (at least in 

dendritic basins) depend on the ratio of the two tributary sizes. Lubowe [1964] showed 

that the junction angle increases as the ratio of the two tributary orders increases, and 
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Pieri (1984] found the junction angle increases as the ratio of the tributary magnitudes 

increases. Similarly, Horton [1932] suggested that the tributary angle tends to increase as 

the ratio of the two tributary slopes increases, and several studies have found this to be 

true for natural networks (e.g., Schumm [1956], Lubowe (1964], and Howard (1971]) . 

Horton's model is consistent with the other results because channel slope generally varies 

with drainage area [Hack, 1957; Flint, 1974]. 

These empirical results are compatible with an infinite self-similar network 

because the distribution of the ratio of tributary sizes is expected to remain constant 

throughout the network. For networks that are finjte in size, however, the distribution is 

expected to change with L. When L is large, a wide range of tributaries sizes are 

possible, but when Lis small, only tributaries that are relatively large in comparison to L 

are possible. This tendency might impact a plot of 1/fbL,bL, (L) against L. To evaluate self-

similarity under these circumstances, one could consider only junctions where the 

secondary tributary faJls within a range of sizes that is specified relative L. SpecificaJly, 

one can consider tributaries with c1L < L, < c2L where c1 and c2 are constants (both must 

be between O and 1). 

It is important to note that the methodology described above cannot be directl y 

generalized for the case of self-affinity. If self-affinity applies, then the appropriate 

chord length for the secondary tributary depends on the junction angle itself. If the angle 

is 90°, this chord length should scale according to LH, if it is 0°, then it should scale with 

L. Thus, one cannot use plots of the junction angles against L to infer self-affinity or a 

value of H. 
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Figure 2.1. Illustration of the measurement of (a) the drainage area increments, (b) the 

stream course irregularity, and (c) the junction angles . 
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3 Dataset 

Ten networks were identified for each network classification as shown in Table 1. 

These networks were selected because they were explicitly classified previously or they 

are located in regions where a certain network type is known to predominate. Where 

possible, basins were selected from regions with higher resolution DEM data. The 

dendritic basins were previously classified by Zernitz [1932] and Lubowe [1964]. Zernitz 

[1932] identified the Allegheny Plateau in West Virginia and the southern part of the 

Atlantic coastal plains in Georgia and South Carolina as regions where dendritic 

networks commonly occur. Lubowe [1964] and De Serres and Roy [1990] also identified 

dendritic drainages in sections of the Appalachian Plateau and the interior low plateaus in 

Kentucky that are underlain by sedimentary rock and horizontal strata. The parallel 

networks were previously classified by Zemitz [1932] and Phillips and Schumm [1987]. 

Zernitz [1932] identified several locations in Utah where parallel networks can be 

observed, and Phillips and Schumm [1987] characterized parallel networks in several 

areas in Colorado and Wyoming. Pinnate networks were selected mainly based on the 

observations of Zernitz [1932]. From visual inspection, Zernitz [1932] identified pinnate 

networks in portions of Romania (now Moldova and Ukraine). The selected pinnate 

networks are tributaries to the Dniester River in western Ukraine and ttibutaries to the 

Nistru River in eastern Moldova. The rectangular networks were originally classified by 

Zernitz [1932]. They are all from northern New York in the vicinity of Elizabethtown. 
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The trellis networks are all from the ridge and valley sections of the Appalachians in 

Maryland, Pennsylvania, Tennessee, Virginia, and West Virginia. The drainage networks 

of this region were classified as trellis by Zernitz [1932], Mock [1971], and Abrahams 

and Flint [1983] . 

For each of the selected basins, DEM data were obtained through the SeamJess 

Data Distribution System (SDDS) from the United States Geological Survey. For basins 

within the United States, the National Elevation Dataset (NED) was used to obtain data in 

raster format with resolution of 1 arc second (approximately 30 meter grid cells). For the 

rest of the globe, the finished dataset from the Shuttle Radar Topography Mission 

(SRTM) was used to obtain data with resolution of 3 arc seconds (approximately 90 

meter grid cells). For simplicity, the grid cell size was assumed to be constant within 

each basin considered. The cell size for each basin was determined by computing an 

average grid cell dimension using the extreme north , south, east, and west boundaries of 

the basin [Maling, 1992; Van Sickle, 2004]. After filling pits, flow directions were 

computed by examining the eight surrounding cells and determining the direction of 

steepest descent [O'Callaghan and Mark, 1984; Tarboton et al., 1991]. From the flow 

directions , the drainage areas were computed by summing the total areas draining 

through each grid cell [O 'Callaghan and Mark, 1984; Tarboton et al., 1991]. 

Because our analysis considers only the channel network, a method is required to 

identify the channel network from the DEM topography. Three general methods have 

been proposed to determine the initiation of channels. Horton (1932; 1945] initially 

suggested that channels begin after a threshold in hillslope length is surpassed. More 

recently, Tarboton et al. (1991] suggested the use of a threshold drainage area. Grid cells 
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are assumed to a contain a channel if their drainage area exceeds a specified threshold. 

Montgomery and Foufoula-Georgiou [1993] suggested the use of a threshold shear stress, 

where shear stress is calculated as a function of both drainage area and slope. For the 

purposes of our analysis, the drainage density does not need to be estimated very 

accurately. It is more important to conservatively estimate the extent of the channel 

network so that the analyzed channels are larger with respect to the DEM resolution. 

Furthermore, the approach should not introduce biases in the consideration of scaling 

invariance. Given these criteria, the best method is to use a length threshold because we 

use basin length as our linear measure of basin size (Section 2). If a threshold area is 

used to identify the extent of channelization, it implicitly places a constraint on the basin 

shapes that are allowed for small basin lengths. Similar problems would arise if a 

threshold shear stress were used. Because length is likely the least reliable method for 

estimating the extent of the channel network, this approach should be regarded as a 

pruning of the channel network rather than an estimation of the actual extent of the 

drainage network. 

The value of the length threshold was identified using the slope-area plot (i.e. a 

log-log plot of the channel slopes against the associated drainage areas). In this plot, a 

reversal point is usually observed where the relationship between the average slope and 

drainage area changes from positive to negative. Montgomery and Foufoula-Georgiou 

[1993] suggested the use of this point to distinguish the hillslopes and channels. This 

area is divided by the smallest grid cell dimension to determine an associated length 

threshold. This length is the longest possible hillslope that can occur for the area 

threshold. If this length threshold is used, the network typically exhibits a feathered 
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appearance where adjacent parallel channels are observed near the channel heads. The 

feathering likely occurs because the channelization has become finer than the resolution 

of DEM, but it may also suggest the occurrence of planar or divergent hillslopes. Either 

way, such points should be excluded from the analysis. The length threshold was 

increased until the feathering disappeared. When the feathering disappears, the resulting 

network is used for analysis. The example networks shown in Figure 1 were obtained 

following the procedure outlined above. 
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Table 3.1. Basins analyzed including the author who previously classified the basin. 
Network T:yee Stream Name Outlet Lat. and Long. (Deg.) Area (km2

) 

Dendritic Bluestone Creek, WV* 39.302083, -80.778750 324 
Buckeye Run, WV* 29.3 19860, -80.806528 318 
Buffalo Creek, WV* 40.250973, -80.597639 419 
Captina Creek, OH* 39.870694, -80.819306 460 
Cedar Creek, AL* 31.671251, -81.504861 219 
Little Saluda River, SC* 34.077362, -81 .594028 565 
Tenrnile Creek, PA- 39.980418, -80.024028 512 
Turkey Creek, SC* 33.777363, -82.160694 550 
Tygarts Creek, KY- 38.392639, -82.960139 291 
Wheelin° Creek, WV* 40.050696, -80.667361 739 

Parallel Albert Creek, WY+ 41.506527, -110.60958 438 
Black Sulphur Creek, CO+ 39.867639, -108.29319 266 
Duck Creek, CO+ 39.978750, -108 .38208 142 
Greasewood Creek, CO+ 40.130139, -108.41264 61 
Hill Creek, UT* 39.665140, -109.730690 388 
Picceance River, Trib. 1, CO+ 39.888472, -108.39597 74 
Picceance River, Trib. 2, CO+ 39 .862094, -108.299860 259 
Sheep Creek, WY+ 41.564583, -110.61542 487 
Willow Creek, UT* 39.422363, -109.629310 350 
Yellow Creek, CO+ 39.965417, -108.38986 85 

Pinnate Dniester River Trib. 1, Ukraine* 47.914581, 30.636250 2114 
Dniester River Trib. 2, Ukraine* 48.124581, 30.006250 1356 
Dniester River Trib. 3, Ukraine* 46.354579, 28.941250 1005 
Dniester River Trib. 4, Ukraine* 46.793749, 29.980417 1573 
Dniester River Trib. 5, Ukraine* 46.614582, 29.284583 1084 
Dniester River Trib. 6, Ukraine* 47.139580, 28.906250 761 
Nistru River Trib. 1, Moldova* 47 .379580, 30.506250 697 
Nistru River Trib. 2, Moldova* 47 .389580, 30.556250 589 
Nistru River Trib. 4, Moldova* 46.111249, 28.612917 723 
Nistru River Trib. 5, Moldova* 46.052916, 28.758750 350 

Rectangular Boquet River, NY* 44.242360, -73 .462083 239 
Boreas River, NY* 43.832085, -74.070972 218 
Cold River, NY* 44.103751, -74.312639 218 
Hudson River, NY* 43.968193, -74.052639 198 
Saint Regis River, NY* 44.532083 , -74.472361 344 
Salmon River, NY* 44.867361 , -74.297083 475 
Schroon River, NY* 43.955693, -73.733750 239 
Summer Brook, NY* 44.407638, -74.083750 147 
Walker Brook, NY* 44.000416, -73 .712639 133 
West Branch St Regis River, NY* 44.438749, -74.591250 304 

Trellis Aughwick Creek, PA/ 40.298750, -77.887361 823 
Cacapon River, WV* 39.253356, -78 .454931 477 
Evitts Creek, MD* 39.664028, -78 .732083 240 
Jackson River, VA* 39.165140, -79.750972 251 
Juniata River, PA/ 40.507083, -77.438194 530 
Lick Branch, TN* 35.245140, -84.656528 339 
Middle Creek, PA* 40.764306, -76.884583 219 
Peters Run, WV* 38.722917, -79.304306 609 
Sleepy Creek, WV* 39.620694, -78. 145972 294 
Ston:r Run, WV* 38.745140, -79.287639 828 

* Zernitz [ 1932] - Lubowe [ 1965] + Phillips and Schumm [1987] / Abrahams and Flint [ 1983] 
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4 Results 

4.1 Selection of Ruler Factor 
One very important step in the calculation of the drainage network properties is 

the selection of an appropriate ruler factor b. Figure 4.1 considers how the choice of b 

affects the results of the three measures . To generate this figure, the three properties 

were calculated for all possible sub-basins in a dendritic network (Turkey Creek). The 

average value of each property was then calculated for small ranges of basin length. In 

Figure 4.1, these averages are plotted as a function of basin length. This process was 

repeated for each measure using three values of b. In Figure 4.la and 4.lb, the same set 

of b values are used for both the drainage area increments and the stream course 

irregularity. For the junction angles in Figure 4. lc, smaller values of b are used in order 

to measure the angles using chords that remain relatively close to the junction. 

Figure 4.1 demonstrates two important limitations that constrain the choice of b. 

First, as one chooses larger values of b, one restricts the range of basin sizes that can be 

evaluated. This is particularly evident in Figures 3a and 3b where the values of b are 

relatively large. As b becomes large, the properties are measured over longer channel 

segments for a given sub-basin size. As the segment length increases, there is a greater 

likelihood that the upstream end of the segment will encounter a hillslope grid cell and 

thus be removed from consideration. Second, as one chooses smaller values of b, one 

tends to observe deviations from a horizontal line for small basin lengths. This tendency 
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is particularly evident in Figures 3b and 3c. As b becomes small, one measures the 

properties over shorter channel segments. For small basin lengths , these segments might 

include only a few grid cells, so the grid resolution has a strong impact on the measures . 

For the analyses that follow , we want to consider the largest number of sub-basin sizes 

possible without encountering significant biases due to the grid resolution. Based on 

Figure 4.1 and similar plots from other basins, we selected b = 0.2 for the drainage area 

increments, b = 0.4 for stream course irregularity, and b = 0.1 for the junction angles. It 

should also be noted from Figure 4.1 that the average values of the drainage area 

increment and stream course irregularity are sensitive to the choice of b. In both cases, 

these properties increase as one considers longer stream segments. The junction angles 

remain relatively constant over the range of b values considered (the junction angle lines 

have been offset in Figure 4.1 for clarity). 

4.2 Dendritic Networks 
In this section, we apply the three measures to dendritic basins. Our objectives 

are to confirm that self-similarity applies to dendritic basins and (if it does) to use the 

normalized properties from each of the measures to characterize dendritic basins. The 

three measures were applied to the 10 dendritic basins, and Figure 4.2 shows the results 

for 4 typical basins. Figure 4.2 was generated in the same manner as Figure 4.1 , but uses 

only one value of b for each measure. As discussed in Section 2, all of the normalized 

measures should produce horizontal lines if self-similarity applies. Overall , the plots in 

Figure 4.2 are close to horizontal although some fluctuations are observed at large basin 

scales. These fluctuations occur because fewer channels are available to calculate the 
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average measures for large basin lengths. To assess the significance of the observed 

slopes, regression lines were fitted to the plots in log-log and are shown by the dashed 

lines. Furthermore, T tests were performed to test the null hypothesis that the slope of the 

regression line is zero at the 95% confidence level. If the null hypothesis is rejected, the 

slope is considered significant. It should be noted that the T test relies on the 

assumptions that the errors are independent, normally distributed, and have homogenous 

variance. Because the regression was performed on average drainage area increment 

values, which are calculated from non-overlapping bins of basin length, the first two 

assumptions are reasonable. However, the number of observations used to calculated the 

average changes with basin length, so the error variance is expected to be heterogeneous. 

Thus, the T test results provide informative but inexact evaluations of the significance of 

the slopes. For the drainage area increments , the average slope estimate from all 10 

basins is -0.007, and the range of slopes is -0.079 to 0.041. In all cases , the slope is 

small , and the T test confirms that none of the slopes is statistically different from zero at 

the 95% confidence level. For the stream course irregularity, the average slope from all 

the basins is 0.0303 with a range from -0.028 to 0.080. Again , none of these slopes are 

considered significant by the T test. Finally, the average slope of the junction angle plots 

is -2.95 with a range from -11.28 to 7.25. The slope is considered significant for 3 of the 

10 basins at the 95% confidence level. Overall , the results support the hypothesis that 

dendritic basins are self-similar. 

Given the stability of the normalized measures across a range of basin sizes, it is 

also worth examining the values of these measures to characterize dendritic basins. To 

this purpose, we estimated the average value for the drainage area increments to be 0.147 
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among the 10 dendritic basins. Because this value was determined with b = 0.2, loosely 

speaking, it means that a 14.7% increase in drainage area typically occurs in the lower 

20% of a basin's length. This value ranges from 0.139 to 0.157 for the individual basins, 

which is only 12% of the average calculated from all ten basins. This small range 

suggests that the area accumulation process is similar for all of the dendritic basins that 

were analyzed. The average for the stream course irregularity is 0.0151 , with values 

ranging from 0.0135 to 0 .0164 for the ten basins analyzed. The range in this case is 19% 

of the average, which suggests that this measure is also relatively constant between the 

dendritic basins analyzed. The average tributary junction angle is 65.5 degrees (the range 

is 57.8 to 71.4 degrees, which is 21 % of the average). These results are consistent with 

values found in the literature. For example, Lubowe [1964] found that the average 

junction angles ranged from 60 to 80 degrees among 4 different dendritic basins, and 

Ichoku and Chorowicz [1994] also found that the average angle is close to 60 degrees. In 

both cases, the junction angles were measured with different chord lengths than those 

used here. 

4.3 Parallel Networks 
We now tum our attention to parallel networks to determine whether they exhibit 

deviations from dendritic self-similarity. The three measures were applied to the 10 

parallel networks, and the results for four typical networks are shown in Figure 4.3. The 

figure shows that negative slopes are usually observed for both the drainage area 

increments and for the stream course irregularity. For the area increments, the average 

value of the slope is -0.188, and the range is -0.325 to -0.062. Using the T test, these 
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slopes are considered significantly different from zero for 8 of the 10 basins. The 

negative slopes imply that larger basins accumulate less drainage area relative to their 

size than small basins or equivalently that large basins are more elongated. Referring 

back to Section 2, it also suggests that the basins may be self-affine. The Hurst exponent 

H can be estimated from the slope of the drainage area increment plots as H =slope+ 1 , 

so from the slopes estimate H = 0.81 on average, with a range of estimates from 0.68 to 

0.94. Similar behavior is observed for the stream course irregularity. The average slope 

for this measure is -0.16 (the range is -0.356 to -0.020) and the slopes are statistically 

different from 0 for 8 of the 10 basins. The negative slopes for this measure indicate that 

the sinuosity is decreasing with respect to the basin size as the basin size increases. The 

average slope implies that H = 0.84 (the range is 0.64 to 0.98), which is consistent with 

the H from the drainage area increments. 

It should be noted that these results are also consistent with multifractality. The 

usual method to evaluate whether self-affinity or multifractality occurs is to examine the 

scaling behavior of different moments of the variable. If the exponents increase linearly 

with the moment order considered, then self-affinity occurs. If they increase nonlinearly, 

then multifractality occurs. We plotted the first four initial moments for the stream 

course irregularity and found a strongly linear behavior with moment order, which 

confirms that self-affinity occurs. 

The junction angle measure typically has a positive slope, which suggests that the 

average tributary junction angle increases as one moves downstream. The average slope 

for this measure is 10.9 (the range is 0.7 to 18.2). This result is counter-intuitive because 

one expects more acute junction angles if basin shapes are becoming more elongated. 
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However, most tributaries are small relative to the main channel, especially at large basin 

sizes, and these tributary junction angles may not reflect the elongation. To test thi s 

interpretation, Figure 4.4 plots the average junction angles for one dendritic basin and 

one parallel basin when the included tributaries are restricted to the range 

0.6L < L, < 1.0L. When the range of tributary sizes is restricted, the average angle for 

the dendritic network increases slightly from 71.1 to 73.6 degrees. For the parallel 

network, however, the average angle decreases considerably from 65.6 to 49.9 degrees . 

Thus, the junction angles formed by large tributaries decrease as expected from visual 

inspection , but this decrease is masked in the measure by the large number of small 

tributaries with larger angles. 

4.4 Pinnate Networks 
The three measures were also applied to the set of 10 pinnate networks, and the 

results for 4 typical networks are shown in Figure 4.5. Like parallel networks, the 

drainage area increments and the stream course irregularity exhibit negative slopes. For 

the area increments, the average slope among the 10 basins is -0.283, and the range of 

slopes is -0.394 to -0.133. The slopes are considered significant for all 10 basins by the 

T test. These slopes are typically more negative than the slopes for parallel networks, 

whjch suggests that more significant self-affinity may occur in the pinnate case. The 

average slope implies H = 0.72, and the range of slopes corresponds to a range of H 

from 0.61 to 0.87 . Similar behavior is observed for the stream course irregularity. The 

slope is negative (average is -0.308, range is -0.514 to -0.117) and significant for all 

basins. The average slope implies H = 0.69 with a range of H estimates from 0.49 to 
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0.88. Here again, we see close agreement in the H estimates obtained from the area 

increments and the stream course irregularity, which supports the contention that a single 

H applies to both network characteristics. Note that the higher moments of the stream 

course irregularity were examined and found to vary linearly with moment order, which 

confirms that the scaling is self-affine. 

One important difference from parallel networks is the slope of the tributary 

junction angle measure. For pinnate networks, the average junction angle tends to 

decrease with increasing Euclidean basin length . Specifically, we find an average slope 

for the junction angle measure of -8.11 (the range is -0.68 to -17 .26). The negative slope 

is expected because larger basins tend to be more elongated. The difference in the 

junction angles of parallel and pinnate networks can also be confirmed by a visual 

inspection in Figure 1. For the parallel network, small tributaries tend to join the major 

channels with nearly orthogonal junction angles , whereas larger tributaries have more 

acute junction angles. For the pinnate network, all tributary sizes seem to have acute 

junction angles. 

4.5 Rectangular Networks 
The three measures were also applied to characterize the 10 rectangular networks , 

and Figure 4.6 shows the results for 4 of these networks. In this case, most of the plots 

are approximately horizontal, although relatively large fluctuations are observed. For the 

drainage area increments, the average slope is -0.0462, and the range of slopes is -0.272 

to 0.451. The slope is considered significant for only 3 of the 10 basins. For the stream 

course irregularity, the average slope is 0.0472, and the range is -0.0192 to 0.1622. The 
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slope is considered significant for only 1 of the 10 basins. For the junction angles, the 

average slope is 16.68, and the range is 10.79 to 34.39. The slope is considered 

significant in 2 of the 10 basins. One can see from Figure 4.6 that the non-zero slopes are 

usually produced by deviations that occur at various basin sizes. The importance of these 

deviations can be evaluated by calculating the variance of the residuals, which is also the 

mean square error of the regression line. For the area increments, the average variance of 

the residuals is 0.0289 compared with 0.0114 for the dendritic networks. For the stream 

course irregularity, the average residual is 0.0127 compared to 0.0066, and for the 

junction angles, the average is 12.11 compared to 7.47. Overall, these results suggest that 

rectangular basins are approximately self-similar, but that significant deviations occur in 

all three measures at various scales. 

If these networks are considered self-similar, then the average values of the 

measures can be compared to those of dendritic networks. The average of the drainage 

area increment is 0.138 with a range from 0.111 to 0.171. This range overlaps with the 

one for dendritic basins but is slightly smaller. The average of the stream course 

irregularity is 0.0194, and the range is 0.0184 to 0.0217. These values are notably larger 

than those observed for dendritic basins. In fact, the ranges for these two network types 

do not overlap. This result suggests that every rectangular network that we analyzed has 

more irregular stream courses than any dendritic network we analyzed. The average 

junction angle is 66.0 degrees, and the range is 58.8 to 74.0. Both the average and the 

range are very simi lar to the values found for dendritic networks, which suggests that 

rectangular networks exhibit no abundance of right junction angles using this measure. 

This result seems to hold even if the range of aHowable tributary sizes is decreased. 
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Anomalous junction angles are observed, but they are generally overwhelmed by the 

number of acute junction angles. 

4.6 Trellis Networks 
Ten trellis networks were also analyzed, and the results for 4 of these networks 

are shown in Figure 4.7. Similar to the rectangular networks , the lines are approximately 

horizontal , but significant deviations are observed. Interestingly, these deviations tend to 

occur over wider ranges of basin sizes than the deviations observed for rectangular 

basins. This tendency makes sense because the ridges that ultimately produce these 

deviations tend to persist for longer distances than the lineate features visible in 

rectangular networks (see Figure 1, for example). The average slope of the area 

increment measures is -0.142, with a range from -0.288 to 0.075. The slope is judged to 

be significant for 4 of the 10 basins, although the variance of the residuals is 0.0236, 

which is almost twice that of dendritic basins. For the stream course irregularity, the 

average slope is -0.084, and the range is -0.2440 to 0.0447. The slope is significantly 

different from zero in 3 of the 10 basins. The variance of the residuals is 0.0195 

compared to 0.0066 for dendritic networks. For the junction angles, the average slope is 

10.6, and the range is 1.5 to 21.5. The slope is considered insignificant for the 10 

networks. The variance of the residuals is 9.1 compared to 7.5 for dendritic. In the end, 

the slopes of most of the lines are not considered significantly different from zero, so 

trellis basins appear to be self-similar, at least in approximation. It is possible that some 

degree of self-affinity is present, but this self-affinity would require a much larger dataset 

to reliably quantify. 
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The average values of the measures can be used to distinguish these basins from 

dendritic basins. More importantly, the average of the drainage area increment measure 

is 0.111 and the range is 0.087 to 0.131. This range is lower than and does not overlap 

with the range for dendritic basins. This suggests that the rate of drainage area 

accumulation is significantly reduced for trellis networks in comparison to unconstrained 

networks. For the stream course irregularity measure, the average is 0.0153 , with a range 

of values from 0.0130 to 0.0166. These values are slightly larger than those of dendritic 

networks. This result is expected. Although the channels in trellis networks tend to have 

low sinuosity between junctions, they also tend to join at less acute junction angles, 

which increases the overall irregularity of the courses. The average junction angle in 

trellis networks is 67.6 degrees, with a range of 60.6 to 77.0 degrees between different 

networks. The average is a little larger than dendritic , but the ranges overlap. Analogous 

results were determined by Ichoku and Chorowicz [1994]. They found trellis networks 

always had average angles greater than 60 degrees. 
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5 Classification Method 

In this section, the results from Section 4 are used to develop and test a 

classification method for drainage networks. Various methods can be used for 

classification such as principal component analysis, artificial neural networks, support 

vector machines, cluster analysis, and classification trees [White, 1997; Jaynes et al., 

2003; Munoz and Felicisimo, 2004]. A classification tree technique was selected because 

it is hierarchical , which is consistent with the traditional view of drainage network 

classifications [Zemitz, 1932; Parvis, 1950; Howard, 1967] as well as previous 

quantitative classification methods [Ichoku and Chorowicz, 1994]. The results of 

classification trees are also relatively simple to interpret, and classification trees can 

handle non-linear and high-dimensional classification problems [Vayssieres et al., 2000]. 

This technique has been applied in many disciplines [Balk and Elder, 2000; De'ath and 

Fabricius, 2000; Vayssieres et al., 2000; G6mez-Chova et al., 2003; Bittencourt and 

Clarke, 2004]. 

To develop the classification tree for drainage networks , one must first specify the 

classifications to be considered (dendritic, parallel , pinnate, rectangular, and trellis) and 

the variables that can be used to distinguish these classifications. The variables we use 

are the averages, slopes, and residual variances from the regression lines for each of the 

three measures (shown for all networks in Figures 10, 11, and 12). The entire dataset for 
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the classification problem consists of 5 classifications, 9 variables, and 50 networks (10 

networks for each classification). 

The development of the classification tree begins by dividing the dataset of 50 

networks into two groups using a set of thresholds for the supplied variables. In our case, 

we require the method to use a threshold on a single variable in order to simplify the 

interpretation of the tree. The threshold that achieves the maximum reduction in the 

"impurity" of the dataset is selected. Mathematically, the method aims to maximize 

!::i.i(s,t) , which is calculated: 

(19) 

where s is an index of possible thresholds , t is an index for the node in the classification 

tree, i(t) is the impurity of the dataset before it is split at the node, i(tL) is the impurity 

of the subset of the data that goes to the left branch of the tree after the di vision, i(t R) is 

the impurity of the subset of the data that goes to the right branch after the division, and 

PL and PR are the portions of the dataset that are sent down the left and right branches of 

the tree, respectively. Ultimately, this condition aims to find the threshold that produces 

two pure subsets of the data. Several measures of impurity have been proposed [Breiman 

et al., 1984]. One common measure is the so-called Gini index of diversity [Breiman et 

al., 1984], which can be calculated: 

n 

i(t) = L,P(t) i [l- p(t) i ] (20) 
j=l 

where j is an index of the possible classifications (i .e. the five network types), n is the 

total number of possible classifications, and p(t) i is the portion of the networks in the 

dataset at t that belong to classification j. 
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Once the first split in the dataset is determined, each of the branches and their 

associated subsets of data are considered. New splits are determined separately for each 

of the branches that produce the least impure subsets. This procedure is continued until 

the full tree is developed. If the dataset is very complex, one usually needs to include a 

stopping condition after which further divisions of the data are ignored and some 

impurity in the resulting dataset is allowed. 

Figure 5.4a shows the classification tree that was developed using all 50 of the 

drainage networks and the 9 variables described above. This tree is quite simple and 

successfully classifies all 50 drainage networks. The first condition it considers is the 

average value of the stream course irregularity measure. If this value is below a threshold 

value, then the network is either parallel or pinnate. Otherwise, it is dendritic , 

rectangular, or trellis. One can see why this measure was selected in Figure 5.2. The 

values for this measure fall within narrow ranges for any given network type, and parallel 

and pinnate networks have much lower values than the other networks. The classification 

method distinguishes between parallel and pinnate networks using the slope of the 

junction angle measure. From Figure 5.3 , one can see that all the parallel networks have 

positive slopes whereas all of the pinnate networks have negative slopes . Rectangular 

networks are identified by considering the average stream course irregularity measure 

again. One can see from Figure 5.3 that rectangular networks have higher values for this 

measure than any other network type. FinaJly, the classification tree distinguishes 

dendritic and trellis networks by considering the average value of the drainage area 

increment measure. Figure 5.1 shows that trellis networks always have lower values than 

dendritic networks . 
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The classification tree in Figure 5.4a can be tested using a standard cross-

validation procedure [Breiman et al. , 1984]. In this procedure, the 50 networks are 

divided into two groups, a training group consisting of 40 networks and a testing group 

consisting of 10 networks. The groups are selected randomly with the condition that the 

proportion of networks from each classification remains constant. Thus, the training 

group always has 8 networks from each classification, and the testing group always has 2 

networks from each classification. The training group is used to develop the 

classification tree, and the tree is then used to predict the classifications of the 10 testing 

networks. We repeated the procedure using 50 randomly selected networks and found 

that the average number of misclassified networks is 0.7 out of 10, indicating that the 

classification method performs relatively well. It should also be noted that the structure 

of the classification tree is relatively robust. The variables used, the number of terminal 

nodes, and branches remain constant for the majority of the trees tested. 

Although the tree in Figure 5.4a performs quite well, it does not strictly meet the 

objectives of the paper. In particular, significant slopes were observed for the parallel 

and pinnate network measures in Section 4, which we interpreted to be self-affinity. 

Thus, the average values of these measures are expected to depend on the scales of the 

parallel and pinnate networks. In order to develop a more scale invariant classification 

method, we explored the possibility of using the slopes of these measures by disallowing 

consideration of the average values of the parallel and pinnate networks. The 

classification tree is shown in Figure 5.4b. This classification method performs more 

poorly with the dataset we collected. Specifically, when developed from all 50 networks, 

it misclassifies 6 of the 50. In particular, two parallel networks are incorrectly identified 
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as trellis networks and four trellis networks are incorrectly identified as parallel networks. 

However, if one considered a dataset with a wider range of basin scales, this approach is 

expected to be superior because it is not dependent on scale. 
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6 Conclusions 

In this paper, we attempted to distinguish dendritic, parallel, pinnate, rectangular, 

and trellis networks using three measures of network properties derived from planform 

self-similarity. Based on this analysis, we can conclude the following: 

1. The planform characteristics of dendritic networks conform to self-similarity as 

suggested by previous authors. The self-similarity in the drainage area increments is the 

most robust, while the self-similarity of the junction angles is least robust among the 

measures considered. 

2. The planform features of parallel networks are self-affine. The average estimate for 

the Hurst exponent is 0.81 using the drainage area increments and 0.84 using the stream 

course irregularity. The self-affinity suggests that large parallel basins accumulate less 

drainage area and have less stream course irregularity in comparison to their size than 

small basins. These results offer a quantification of the response of drainage networks to 

an imposed regional slope, which could be used to test long-term erosion models . 

3. The planform features of pinnate networks also exhibit self-affinity. The drainage 

area increments produce an average estimate of H around 0.72, while the stream course 

irregularity produces an average estimate of 0.69. These results suggest that pinnate 

networks are more self-affine than parallel networks. 

4. Rectangular networks are best approximated by self-similarity, although deviations 

are observed in all three of the measures used in this paper. The normalized stream 
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course irregularity for all the rectangular networks analyzed is larger than the irregularity 

for any of the other networks considered. The increase in sinuosity that is observed in 

response to jointing in the underlying bedrock represents another pathway that could be 

used to test and improve long-term fluvial erosion models. 

5. Like rectangular networks, trellis networks are approximately self-similar, although 

deviations are observed in all three measures. The deviations for trellis networks tend to 

occur over broader ranges of basin sizes than those for rectangular networks and might 

produce some degree of self-affinity. The most distinguishing feature of trellis networks 

is the reduced average value of the drainage area increment measure. This result suggests 

that trellis networks accumulate drainage area at a slower rate than dendritic networks, or 

equivalently are more elongated than dendritic networks. 

6. A classification tree was developed using the average, slope, and residual variance for 

the regression lines fitted to the three measures. If this classification tree is allowed to 

use the average values for the stream course irregularity for all network types , it 

successfully classifies all of the networks. However, the use of this measure for self-

affine networks renders the method scale dependent. If the use of these measures is 

disallowed, then the classification is scale invariant but it successfully classifies only 44 

out of 50 networks. Both of the trees developed here are much simpler than those used in 

previous quantitative classification methods. 
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