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I. INTRODUCTION

Every year man makes increased demands on the natural resources.
These demands may be energy resource acquisition, timber harvesting,
recreational developments, or mining activities. As these demands
increase, man's influence will greatly affect the equilibrium of the
natural environment. If care is not taken, such infringements may
induce natural disasters that can interfere with man's activities as
well as impact other existing systems. One such hazard is landslides.

In hilly and mountainous terrain of the United States, landslides
are often a common occurrence. When a landslide does occur it not only
disrupts the activities of man but also has an impact on other natural
processes. One such impact is the effect of landslides on sediment
production from watersﬁéas. In this case a landslide may act as a
direct or an indirect source of sediment. As a direct source, a. land-
slide may enter a streaﬁ channel where the landslide material is rapidly
transported downstream as a mud flow or mud flood, or is slowly eroded
by the stream flow; thus increasing the sediment load. Although the
former type of action is extremely destructive, the latter action is
more common.

As an indirect source, a landslide can substantially disturb the
ground surface making it susceptible to gully and rill erosion that will
eventually transport the eroded material into the stream channel. Land-
slide hazards may be treated in many ways. Generally, after the land-
slide has occurred, man responds with tremendous expenditures of time,
effort, and money to clean up the results. A better method is to deter-

mine landslide hazards before their occurrence through the delineation



of potential landslide areas. Landslide potential delineation assists
the land use planner before proposed activities are initiated in an area
and assists the forest engineer in deciding where potential sediment
sources may occur.

Landslide potential delineation is defined here as the use of
landslide producing factors to demark areas where combinations of such
factors indicate a relatively more hazardous landslide situation. Com-
plementary to landslide potential is landslide probability. Factors
affecting landslide occurrence are quite variable. Since it is almost
impossible to assign every factor a single representative value, the
uncertainty in the value selected must be considered. This leads to
landslide probability or given imperfect, uncertain knowledge of land-
slide producing factors, the chance that a combination of factors will
occur leading to a landslide. Methods for estimating landslide potential

and probability are presented in this report.

Factors Influencing Landslides

Landslides encompass a variety of types, each having a different
form or character. There have been several previous classification
systems (e.g., Ladd, 1935; Sharpe, 1938) that attempted to relate land-
slide form to underlying causes. Varnes (1958) related rate of landslide
movement, earth material involved in the slide, and water to develop a
system for describing landslide types. Varnes' system is widely used
and is adopted in this report.

Cleveland (1971) presented landslide producing factors that could
be used on a regional basis for delineating landslides. Simons and Ward

(1976) have divided landslide controlling factors into two broad groups:



static factors and dynamic factors. Static factors are those physical
quantities that have little variation in real time and include: 1) slope
characteristics, 2) geologic characteristics, 3) soil characteristics,
and 4) vegetation characteristics. Dynamic factors are variable in

real time and include: 1) hydrologic characteristics, 2) man-induced
characteristics, and 3) miscellaneous characteristics.

Slope characteristics include inclination and aspect. Slope
inclination is a significant factor in determining stability, however,
it is not the only factor. Because slope angle is the result of many
factors such as erosional processes and strength of the earth materials,
it can be used as an indicator of stability. There are certain limits
within which landslides often occur. Blanc and Cleveland (1968) suggest
a lower limit of 10° in their study, while Radburch and Crowther (1970)
suggest 15° as a lower limit. An upper limit may be near 35°, about the
angle of repose for most earth materials. Slopes with inclinations less
than the lower limit have small forces acting to produce landslides
while slopes with inclinations above the upper 1limit lack a landslide
material supply since it is continually being eroded. Slopes between
these limits are subject to an ever changing continuum of forces. Slo?e
aspect affects stability through changes in soil moisture and vegetation.
Olson (1974) in Colorado and Beaty (1956) and Radburch and Weiler (1963)
in California noted that north and east facing slopes usually showed
more landslide activity. Usually, north and east facing slopes (in the
northern Hemisphere) are wettér_than south facing slopes because less
solar radiation reaches the ground. Increased vegetative growth tends

to affect increases in soil moisture if the vegetation is a beneficial

type.



Geologic characteristics that are important to slope stability are
rock strength and structure. Rock strength is a result of mineral com-
position, grain size and shape, porosity and permeability, and the type
of binding agent in the rock. In general, fine grained nonporous rocks
composed of strong, weather resistant grains and binding agents will be
stronger than other types. Rock structure influences slope stability
on two scales. On the microscale, structure affects rock strength through
cleavage planes, foliations, fractures, or grouping of weak minerals.
Similarly on the macroscale, the integrity of rock masses can be de-
creased by fractures, jointing, bedding planes, or strata of weaker
rocks.

Important soil characteristics are those that influence soil shear
strength. These include soil type, porosity and permeability, and soil
depth. Clay is prevalent in many landslides. Clay chemistry is such
that changing environmental conditions can either beneficially or
adversely affect the clay structure and thus the soil strength. Changes
of strength can, in time, lead to landsliding. Porosity and permeability
control the buildup of pore pressure and level of soil moisture, and
they also control shear resistance. Soil depth is important since shallow
soils are less susceptible to sliding. Fife (1971) found that soils at
least one and one-half feet thick were sufficient to cause soil slips
when subject to other influences. Swanston (1967, 1969) reported data
showing debris avalanches in soils at least one foot thick. This is
probably a minimum depth.

Vegetation plays an extremely important role in landslide occurrence.

Gray (1970) and the Building Research Advisory Board (1974) indicate that



vegetation enhances slope stability by 1) dissipating rainfall energy

in the vegetative canopy, 2) lowering soil moisture levels, 3) anchoring
surface materials to underlying strata with roots, and 4) binding surface
materials together (Figure 1).

Vegetative caﬁopy is composed of trees, brush, grasses, and other
small plants. The areal distribution and type of canopy affects the
rainfall intensity and the volume of water reaching the ground. Areas
with high canopy cover will be less likely to be subject to raindrop
impact and rapid saturation; thereby lessening the possibility of mass
erosion.

Vegetation can significantly lower soil moisture content through
transpiration (Perpich et al., 1965; Hammer and Thompson, 1966). As
soil moisture is lowered, water pore pressures and chemical weathering
decrease leaving shear strength intact.

According to Rahn (1969), vegetation makes surface materials more
resistant to gravitational forces by joining the materials into larger
units and anchoring these units to underlying strata. In all cases,
the type of vegetation and areal distribution are important measures
influencing how effective vegetative cover is in enhancing stability.
Plant types that develop deep extensive root systems, deplete soil
moisture by transpiration, and possess foliage that dissipates rainfall
enhancing slope stability.

There are some deleterious effects from vegetation. Trees can
produce a surcharge load on the slope and transmit shear loads during
windstorms (Brown and Sheu, 1975). Grasses and other shallow rooted

undergrowth can detain water on slopes, allowing more infiltration with
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Figure 1. Important effects of vegetation on slope stability
(Simons and Ward, 1976).

resultant deleterious effects. Root systems cause discontinuities in
soil layers that disrupt the soil structure and provide large infiltra-
tion channels (Gaiser, 1952). When vegetation dies or is killed, the
decaying root systems make a smaller and smaller contribution to soil
stability (Bethlahmy, 1962;. Gray, 1970; O'Loughlin, 1974; Brown and Sheu,
1975; Burroughs and Thomas, undated). Despite this, vegetation generally
enhances slope stability.

Dynamic factors vary rapi&ly in real time. These factors fall into
three major groupings: hydrologic, man induced, and miscellaneous.

Because dynamic factors can vary in time, it is often difficult to



quantify the influence a dynamic factor has on slope stability (Thomson,
1971; Vandre, 1975). The relationship between dynamic factors and static
factors must be understood in order to ascertain their effects on slope
stability (Cleveland, 1971; Simons and Ward, 1976).

Hydrologic factors include precipitation, surface flow, and
subsurface flow or soil moisture. Soil moisture and groundwater occur-
rence are the most important hydrologic factors with regards to slope
stability (Simons and Ward, 1976; Nilsen and Turner, 1975).

Soil moisture weathers earth materials, alters strength, and
produces pore water pressures. Pore water pressures produced by soil
moisture or groundwater can decrease the resistance of the earth materials
to sliding. Simultaneously, the increase in the unit weight of the soil
usually increases the tendency for the earth materials to slide.

Man-induced factors include those that decrease landslide
resistance, increase the failure forces, or a combination of the two
(Simons and Ward, 1976).‘ Placement of fill on the head of a slope is
a common factor in man-induced landslide occurrences. Oversteeping
slopes, removing vegetation, and altering the hydrologic system are
also common factors. Landslide literature is filled with case
histories of man upsetting the balance between forces (Kiersch, 1964;
Wahlstrom and Nichols, 19693 Williams and Armstrong, 1970, Bolt et al.,
1975).

Miscellaneous factors include seismic vibration and fires. Seismic
vibrations can be caused by blasting, heavy machinery operation, sonic
booms, or earthquakes (Conlon, 1966; Seed and Wilson, 1967; Voight,

1973). Seismic vibrations produce horizontal acceleration of slope



materials that increase horizontal stresses (Okamoto, 1973). Seismic
vibrations can also alter the physical properties of the slope materials
by compaction or fragmentation, or the production of liquefaction phe-
nomena (Youd, 1973; Martin et al.,.1975).

Generally, landslides resulting from the effects of fires are
probably more prevalent than seismic triggered landslides but are not as
widely noticed or reported. Fires remove vegetation and alter slope
materials. When the rainy season returns, the slope materials are not
as resistive to erosion or sliding. This situation can produce numerous
landslides and mud flows (Woolley, 1946; De Bano et al., 1967; Cleveland,
1973; Hay, 1975). Landslides subsequent to fires are probably more
prevalent than seismic produced landslides since not all landslide
regions are subject to seismic disturbance but all are usually subject
to fire.

Two types of factors affecting slope stability exist. Static
factors are physical quantities relatively constant in real time.
Dynamic factors are harder to quantify since they can vary in real time.
Because dynamic factors alter static factors, static factors are mea-
sured preferentially to dynamic factors. This enables delineation of
potential landslide areas on the basis of variables that can be measured

and can be altered by dynamic factors.

Previous Work

There are many approaches to landslide potential delineation. These
approaches include on-ground monitoring, remote sensing techniques,
factor overlay methods, statistical models, and geotechnical process

models.



On-ground monitoring consists of utilizing installed measuring
devices such as strain gages and down hole tilt meters. This type of
approach is extremely useful for checking suspected landslide zones but
is limited in aerial coverage because of cost of installation and main-
tenance. Chang (1971) summarized many of these techniques. Takada
(1968) and Takenchi (1971) provided two examples of applications of
different methods.

Remote sensing coupled with pattern recognition techniques provide
a means for surveying large areas. In this approach, remotely sensed
data, particularly aerial photography such.as black and white, color
infrared, and multiban spectral, can be analyzed for features distinctive
of landslide hazards (Liang and Belcher, 1958; Poole, 1969, 1972;

McKean, 1977). This analysis, a type of the more general pattern recog-
nition, can be quite effective if landslide hazards are manifested in
surface characteristics that can be photographed. However, this is not
always the situation since landslides often result from deep seated
factors not visible on the ground surface.

The most -common delineation method currently in use is factor
overlay or a combination of landslide producing elements. Krynine and
Judd (1957) noted that landslides occur in a regional framework, or that
certain factors common to a region contribute to landsliding. Baker
and Chieruzzi (1959) expanded this concept to develop a physiographic
classification of landslide hazards based on topography, erosional devel-
opment, and associated rock types. Blanc and Cleveland (1968) were two
of the first to attempt delineating landslides by use of selected factors.

Evans and Gray (1971) presented a methodology for mud slide risk
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delineation in Southern Ventura County, California. Cleveland (1971)
summarized and presented those factors important in regional landslide
prediction. His factors include precipitation, rock strength, vegeta-
tion effects, slope, and stream pattern. The approaches described by
Nilsen and Brabb (1973) and the Building Research Advisory Board (1974)
follow this systematic methodology using landslide factors. In this
approach, certain factors related to landslide occurrence are individ-
ually delineated. For example, if landslides occur where steep slopes,
weak earth materials, and water are all coincident, then these factors
should be used as slope stability indicators. Areas where factors
coincide can then be classified as a hazard potential. Simons and Ward
(1976) summarized this approach as the factor overlay method or set
theory approach to hazard delineation as presented in Figure 2. Although
not explicitly stated in delineation schemes, this idea is the basis
for most techniques.

The factor overlay approach is conceptually correct since it
recognizes that landslides are a combination of different factors. How-
ever, this approach is subjective and nonsensitive to dynamic inputs.
Subjectivity results from a lack of defined guidelines for developing
and weighting various factors. Nonsensitivity occurs because static
factors are usually considered while dynamic factors, such as groundwater
fluctuations, are excluded. Factor overlay can be improved if standard-
ized guidelines are developed, dynamic factors are incorporated, and
realistic weighting functions are used. Simons and Ward (1976) presented
a numerical approach to the factor overlay technique that may help

quantify the relative importance of each factor.
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Figure 2. Set theory approach to landslide potential classification
(from Simons and Ward).

Another method of potential delineation is use of empirically
developed models. These models, developed through statistical analyses
of measurable data, attempt to provide a numerical value related to
slope sstability. Multiple regression and discriminant function analyses
are common techniques for developing such relationships (Jones, Embody
and Peterson, 1961; Waltz, 1971). Empirically derived relationships
have a major drawback since they require large amounts of data to devel-
op the equations. Such data is usually temporally and spatially static.
Temporally static implies the developed relationship is applicable to

a limited time span during which data was collected and, therefore, does
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not represent changing conditions. Spatially static implies the method
is applicable to a limited area and transfer to other areas may not be
warranted.

A final type of landslide hazard delineation methodology is based
on geotechnical models. Geotechnical models are derived from observed
natural phenomena and basic laws of physics, and are representative of
the physical process being studied. Geotechnical models of slope sta-
bility relate the forces acting on a hill slope. One set of forces,
predominated by gravity, acts to move earth materials downslope. The
other set of forces, predominated by the shear strength of the earth
materials, resists the driving gravity forces. When driving forces
exceed resisting forces, a landslide occurs. Geotechnical models have
been developed and modified to account for primary factors in landslide
occurrence such as soil strength, groundwater influences, vegetative
effects, and slope inclination. Because geotechnical models represent
actual field conditions they can be used to analyze the response of a
hill slope to temporally and spatially varying factors. Simplifying
assumptions can yield a method for determining the probability of a
landslide. Because of the ability to account for several temporally
and spatially varying contributing factors in a nonsubjective, physically
meaningful manner, geotechnical models are a promising method for land-

slide potential delineation.



IT. LANDSLIDE HAZARD DELINEATION MODEL

Model Selection

The analysis presented in this report is applicable to slide and
flow types of landslides. Rock masses are a more complex problem
because of their dependence on the geometry of failure planes. Data
needed for a thorough study of rock masses is often difficult to obtain
for most forest engineers.

Various types of-slope stability models exist. The two basic
types are infinite slope and finite slope models, each with a different
set of assumptions (Lambe and Whitman, 1969). Common to both types
is the method of formulation into a factor of safety equation. 1In
the factor of safety equation a ratio of resisting to driving forces

is formed as

FS = (1)

| =

where FS 1is the factor of safety, R is the resistive forces, and
D 1is the driving forces. Resistive forces are related to soil
strength and vegetative parameters while the primary driving force

is the downslope weight of the soil mass. If resistance is less than
the driving force then the factor of safety is less than one which
indicates failure.

Finite slope models are used to analyze slopes of finite length
and known geometry, such as slump landslides with curvilinear failure
planes. Analysis of finite slopes relies on methods such as the
ordinary method of slices or the Bishop method of slices (Lambe and

Whitman, 1969). Methods of slices are needed since the geometry of
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The model used in this report represents the consolidation and
refinement of ideas presented by Swanson, et al. (1973), O'Loughlin
(1974), Brown and Sheu (1975), and Simons, Ward, and Li (1976). These
developments were further refined by Ward (1976) into the model's

present form.

Model Formulation

The infinite slope factor of safety model used in this study

for estimating landslide potential is

Al ] +[9°_ +(Ysat -1) M+ L (1-1\1)] tan4

T .
e ywH sin2B ywH i Yog tan B8

5
_C&J((_SE)M + YL (1-M)

T H Yw W

where Cs is soil cohesion, expressed as a pressure; Cr is effective

root cohesion, expressed as a pressure; T is unit weight of water;

; d 1is soil depth; B is

. < h m
H 1s a soil depth measure equal to cosh

slope inclination; 9 is tree surcharge expressed as a pressure;

Yiesn: is saturated unit weight of soil; M 1is relative groundwater
height; y 1is unit weight of the soil; and ¢ 1is angle of interval
friction for the soil. A complete derivation of this model is
presented in Appendix A. Equation 2 defines the landslide potential
of a slope in terms of a factor of safety value. For relative rankings
of hazards, limits of factor of safety values can be established.

Relative error in factor of safety values can be approximately 20 to

30 percent (Ward, 1976). This range agrees with Feld (1965) and
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Singh (1971). A realistic set of relative hazard levels is:

1) high potential where FS < 1.2,
2)  medium potential where 1.2 £ F8 < 1.7, and
3) low potential where FS > 1.7.

These values are used in this study although other limits could be
selected.
Equations used for determining landslide probability are derived

from Equation 2. The average factor of safety, FS, is

FS = L1 (Cs + Cr) + L2 (tan ¢) (3)

The variance or standard deviation squared of the factor of safety,

Var[FS], is formulated as

Var[FS]

le {Var [Cs] + (EE)Z_+ 2(Cs) (Cr) + Var[Cr] + (E;ﬁz}

+

L2 (Var[tan 6] + (Tan $)°) + 2L,L,(Fan ¢) (T5 + TD)

o (ﬁgjz 4)

In Equations 3 and 4, Cs, Cr, and tan ¢ are average values and
Var[ -] is the variance of the variable inside the brackets. The

constants L1 and L2 are

L. = = 5
L . qo Y Y 2
ywH sin 28 [ + M+ — (1-M)]
Y, H Y
w w w
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and

y
Jﬂl-+.( iat . 1) M o+ éL-(l-M)]

YwH W W
2" o  (Ysat i
[$—H+(-————>Nl+ X (1-M)] tan3
W Tw Tw
where the other variables were previously defined. A complete
derivation is presented in Appendix A. The mean and variance
computed from Equation 3 and 4 can be used to estimate failure
probability. This is written as
P[FS < 1] = p ©)

where p 1is the probability of failure and P[FS < 1] is the
cumulative probability that FS 1is less or equal to one. A
reasonable distribution of failure probabilities is a normal or
Gaussian distribution. Making this choice allows computation of the
failure of probability. First, a non-dimensional variate, U, is

computed as

U = 1 - FS 73 (8)
(Var [FS])
The value of U 1is used to compute another variable, p, the
cumulative failure, as
p = 0.4|U| if |U| < 0.13 (9)
or " 3
p = -0.01314 + 0.49494|U| - 0.15804|U|" + 0.01661|U]

if |u] > 0.13 (1)
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Equations 9 and 10 are approximations with errors less than one percent.

From U and B the failure probability is found as

P[FS < 1] = 0.5+ p if U > 0 (11)
P[FS < 1] = 0.5 - p if U <0 (12)
P[FS < 1] = 0.5 if U=0 (13)

Similar to potential rankings, probabilities can be grouped into
three hazard classes:

1) high probability when P[FS < 1] > 60%,
2) medium probability when 30% < P[FS < 1] < 60%, and
3) 1low probability when P[FS < 1] < 30%.

These limits are abritrary and can be modified.

The means and variances of Cs, Cr, and tan ¢ must be known
or estimated in order to find the failure probability. Usually this
type of information is not available to the forest engineer without
extensive testing. Ward (1976) and Ward, Li, and Simons (1978)
suggest that the input variables be assumed as uniformly distributed
random values. With this assumption the mean of a random number is

found as

X = —— (14)

and the variance as

X, - X))

Var [X] = i

(15)
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where X, and Xb are the lower and upper limits on the variable X.
Ward, Li, and Simons (1978) used Monte Carlo generation techniques

to demonstrate that in their example the assumption of a uniform
distribution provided a more conservative estimate (over estimate) of
failure probability. Another appealing aspect of the uniform distribu-
tion assumption is that a range of values can be chosen as input.
Ward (1976) presented a set of ranges for Cs, ¢, and Cr based on
the Uniform Soil Classification and vegetative characteristics
(Tables 1, 2, and 3). These values are just guidelines and are
subject to modification by the user. Tree root cohesion representing
the tensile and shear resistance of the roots may vary significantly.
"Although the table indicates values up to 250 psf, Burroughs and
Thomas (undated) present tree root strengths of 2856 psf for Douglas
fir growing in Tyee sandstone basins. This value is extremely high,
much higher than the cohesion of most soils (Ward, 1976) and is

also higher than values presented by O'Loughlin (1974). It should
be noted that tree roots‘are only effective if the failure surface
passes through them. Ié‘deep seated slides, the failure surface is
often below the rootsutbln instances of planar type landslides, the
roots are effective 6ﬁ1y if they connect the soil mass to the under-
lying stable strata. Although considered as a beneficial influence
to slope stability, tree roots will only enhance stability under

certain conditions.



Table 1. Estimates of (s

Unified Soil Classification

GW

GP

GM

GC

SW

SP

SM

SC

ML

CL

OL

MH

CH

OH

PT

20

values based on Unified Soil Classification
System (tentative values).

Range in

Values (psf)

50

100

50

100

100

400

200

500

400
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Table 2. Selection of ¢ values based on Unified Soil Classification
System (extracted from Moore, 1969).

Unified Soil Classification Range of ¢ Values (°)

GW 38.3

GP 36.5

GM 33.8

GC 31.0

SW 37.6-39.0
SP 35.8-37.2
SM 30.6-36.1
SC 27.9-33.8
ML 30.1-33.4
CL 26.6-30.1
OL - -
MH 22.9-27.5
CH 14.6-23.8
OH ==

PT - - -
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Table 3. Estimates of Cr values based on vegetation characteristics

(tentative).
Vegetation Characteristics Range of Cr Values (psf)
Well developed forest 40-125
stands, forest area >75% (extreme at 250)

of total area

Forest-brush mixtures 20-80
forest area 50-75% of

total

Brush-forest-grass mixtures 0-60
forest area 25-50% of

total

Grass-brush mixtures 0-40
forest area < 25% of

total

Grass 0




Model Sensitivity

An important aspect of any mathematical model is its sensitivity
to the various input variables. Often a user desires to know how
accurately an input must be measured or similarly if an input, such as
stand density, changes by a certain percentage, how it will affect the
model's output. Ward (1976) used partial differentation of the factor
of safety equation to demonstrate model response to changes in each of

the input variables. Table 4 summarizes those results.

Table 4. Change in FS produced by increasing value of input

variable.
Input Variable Change in_FS Value*

Cs +

Cr +

o} +
qo +, 0, -
B =
H -y 0
M -

Y + U, -
Y +, 0, -

sat

*
+ = 1increase, - = decrease, 0 = change
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As Table 4 indicates, under certain conditions an increase in the
value of certain input variables can produce positive, negative, or
no change in the FS value. These types of relationships occur for

Y, Y , qo, and H. The soil depth measure, H, usually has a

sat
negative influence on FS except for a dry cohesionless slope where

tand

FS 1is equal to the ratio EanE

It can be demonstrated mathematically

that increasing the '"loading'" terms of vy, ¥y and qo may have

sat’
a beneficial effect on slope stability under certain conditions.

Mathematically, this would occur when
. 2
Cs + Cr < Yy Hw tan¢ cos B (16)

When conditions exist that satisfy this inequality, uniform loading of
a slope should theoretically increase stability. This result indicates
that in some cases forests also aid stability by adding a uniform load
to the soil. Although Table 4 indicates the direction of change that
may be produced by altering input variables, it does not provide

an indication of the relative importance of each variable. A method
for doing this is through numerical computation of the FS values,
then graphical display of the result. This approach is conducted

in four steps.

First, a realistic range of values is selected for each input
variable. Second, a base FS value is computed using the median
values for each variable. Third, the value for one input at a time
is varied across the range of values, and a new FS value is computed
for each altered input. Fourth, the results are plotted as a

relative percentage shown in Figure 3. Figure 3, for a selected set
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— =100

Figure 3. Percent change in FS versus percent change in variable.
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of conditions, shows that some inputs have a linear effect on FS
values while others, notably H and B8, have strongly nonlinear
effects. Graphs such as Figure 3 are useful in that they show the
relative importance of each variable compared to the others. Although
Figure 3 is for a selected set of values, computations for other

input sets show the same relative shapes. Sometimes Cs and Cr
reverse their relative importance and qo, not shown here, becomes
slightly more important. In most cases Yy has only a slight affect,

as do vy and qo. These three variables have smaller effects

sat
for reasons as explained before but also because they are included

in the numerator (resisting force) and denomim#tor (driving force)

of Equation 1. This type of analysis becomes important when apply-

ing the model to each new area, since it indicates which input variables

may be the most important to measure and what changes in a slope may

most affect slope stability.



III. COMPUTER MAPPING OF WATERSHED LANDSLIDE HAZARDS

General

The landslide potential and probability model together with a
realistic range of input values allows the land manager to analyze
slope stability. Such an approach is adequate for small areas but for
large areas these models must be computer based in order to process
large quantities of input data and to simulate short- and long-term
changes in the area being studied. Another desirable feature of
computer based system response models is the ability to process and
utilize information from remote sensing sources.

The emphasis -on use-of computer based models to analyze physical
systems has received special attention im the last several years.
Turner and Coffman (1973) made use of computer based information to
demonstrate land-use classification algorithms. Although presented
as a review of how computer mapping can become a powerful tool, the
authors clearly demonstrated some basic applications. A landslide
potential delineation application was presented that utilized logical
overlay techniques. Potentially hazardous areas were delineated by
the computer and displayed by a printed output. The output utilized
different intensities of computer print to shade hazardous areas on the
output map. No suggestion was made that the algorithm used provided
an accurate delineation. Tom et al. (1974) utilized remotely sensed
data to predict growth patterns in the Denver, Colorado area by
use of a computer based algorithm and a Markovian state matrix.
Results were displayed on computer output. Tom and Getter (1975)
developed a wildfire mapping algorithm that utilized slope and aspect

information. Coincident with this effort was the development of a
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watershed response model by Li (1974). Subsequent study led to a
watershed segmentation model (Simons and Li, 1975). Simons and Li
suggested using a grid system that conforms to the watershed boundary
to subdivide the watershed into response units. These response units,
usually squares or rectangles, are also called cells. The cell size
should depend on the accuracy required for the output data. In the
case of landslide potential delineation this size will depend on the
size of the area to be mapped, quality of input data, use of the output,

and whether or not the mapping is to reflect effects of land-use changes.

Watershed Segmentation

The segmentation model (WASEG) that is used to prepare input to
the landslide potential delineation model was developed by Simons and
Li (1975). The method of data input is fairly general. A cell size
is selected and the grid corresponding to this size is overlayed on
the raw data maps (Figure 4). Some raw data maps are composed entirely of
code numbers keyed to characteristics related to that code. For
example, if the raw data are vegetation types, a code number 1 may
indicate a type that possesses high root strength while type number 2
may indicate vegetation of low root strength. The codes then allow
assignation of values to the respective variables, in this case Cr.
The code data is input at the grid line intersections or nodes. This
procedure is followed for vegetation and soil. Other types of data
such as elevation data or canopy density, a measure of relative amount
of vegetation, are input as raw numbers and not coded. With the data
input and stored, the segmentation model then computes several useful
quantities. The elevation data is used to compute the slope inclination

and aspect of the cell. The aspect indicates the direction the cell
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1
2
Figure 4. Input format to segmentation model.

slopes or the direction of landslide movement if there i1s a landslide
in the cell. The watershed segmentation program organizes data on a
cell by cell basis for the watershed. For example, the vegetation

code (like the soil code) for the cell shown in Figure 4 would be 1221
reading counterclockwise from the lower left corner. The average slope
of the cell would be a single value similar to the average canopy cover
density. These coded and averaged values are then output to a mass
storage device (permanent file) where they are accessed by the landslide
hazard mapping program. More details on program WASEG can be obtained

from Simons and Li (1975).

Landslide Hazard Mapping

Output from program WASEG is used as input to the landslide hazard
mapping program LSMAP (LandSlide MAPping). The basic program is presented
in Appendix B. In the basic version LSMAP requires input from program
WASEG and the user. A more advanced version incorporates WASEG,

LSMAP, gray map printing routines, and other analyses features into a
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complete method for delineating landslide hazards as well as numerous
other watershed characteristics. This more complex model is not
presented here because the gray map printing routines are specific to
Colorado State University's CYBER computers, and inclusion and full docu-
mentation of the entire complex program is beyond the scope of this
report. The complete model, once thoroughly checked and upgraded, will
be presented at a later date.

Program LSMAP views the watershed on a cell by cell basis. Choice
of cell size is left to the user. In the program, output information
from WASEG is decoded before use or directly incorporated into computa-
tions. Other required input is related to characteristics for the
different soil and vegetation types, typical soil unit weight, typical
soil porosity, and the relative groundwater level, M. Although M must
presently be input, it is anticipated that the landslide potential map-
ping program will eventually be linked with a realistic long-term water
balance model so a more dynamic view of landslide hazard fluctuation
may be obtained. Only relative hazards under slected groundwater
conditions can be provided at this time to aid the land manager in
planning activities. Soil and root strength values as well as soil
depths are averaged for each cell. Therefore, the factor of safety is
based on the averaged values for each cell and not on the average of
the factors of safety at each node point.

The landslide hazard mapping model presented here can provide a
rapid means of assessing the impacts of various land use changes on
slope stability. Such an application using actual field data is

presented in the following section.



IV. APPLICATION OF MODEL

Site Selection

A heavily forested, landslide prone watershed was selected for
application of the landslide hazard delineation model. This watershed,
number 2 (Figﬁre 5), is located in the H. J. Andrews Experimental Forest.
about 50 miles east of Eugene, Oregon on the western edge of the
Cascade Range.

Watershed 2, located in the southwest corner of the Experimental
Forest, has an area of about 149 acres. Elevations range from 1730 to
about 3500 feet above mean sea level. Slopes in the area are often in
excess of 80 percent. Two companion watersheds, numbers 1 and 3 were
not modeled because of man-induced landslides resulting from road con-
struction or because of a lack of adequate data (Fredricksen, 1965,
1970).

The vegetation of the watershed is typical of the area. The canopy
is primarily Douglas-fir in the 125-year age class (second-growth),
450-year age class (old-growth), or a combination of the two age classes
(Hawk and Dyrness, undated). ' In some locations, however, Western Red
cedar and Hemlock are also present. In contrast, Watershed 1 was com-
pletely clear cut between the fall of 1962 and the fall of 1966 using
skyline logging. Watershed 2 remains as a control watershed with no
logging activity. The geology of the watersheds has been described by
Swanson and James (1975) as being characterized by lava flows, welded
and unwelded tuffs and pyroclastic flows, and water worked volcanic
sediments. Almost all of the landslide activity is confined to the

altered volcaniclastic rocks with little activity occurring in the lava



32

AT ‘—’—f\\‘;—::;':‘_f/[\l\\’f / }
RN P
; F§\\\f§$~ 2\ N5
AN G

D % P ;\f

J 5 M"
o Y — \

1500

IScale in Feet |

i
| l

Figure 5. Topographic map of Watershed 2 showing landslide scars
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flows (Swanson and Dyrness, 1975). Soils in this area are weathered
from the underlying volcanic rocks and have been described by Dyrness
(1969), Paeth et al. (1971), and Hawk and Dyrness (undated). The soils

can be roughly grouped into five broad classes as shown in Table 5.

Table 5. Soil classes for Watershed 2.

Class Description
1 Rock outcrop
2 Andesite series
3 Budworm, Limberlost

(slope < 20 percent),
Andesite (slope < 20 percent)

4 Limberlost, Flunky

5 Frissell
Five groups were used to account for subtle but important variations in
soil depth and relative stability that produced unrealistic results
when three original groupings were used.

The estimated Unified Soil Classifications for the soils shown in
Table 5 were ML, CL, and CH. These assumed classifications were used
for initial estimates of soil strength parameters as outlined by Ward
(1976). The distribution of these soil classes is shown in Figure 6
which indicates that group 2 and 3 soils predominate the watershed.

Watershed 2 was left as a control watershed and is characterized
by abundant canopy, understory, and ground cover vegetation. A vegeta-
tion grouping was conducted on Watershed 2. Because the canopy is well
developed, it is assumed the root system is also well developed. There-
fore, the classification of vegetation as to characteristic root strength

is based on a combination of the canopy cover densities of the overstory
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and understory growth. If the understory growth consists principally
of Douglas-fir or Western hemlock, the canopy cover density is computed

as

%

s Cover density =

3

% overstory density +

0,

% understory density

- (% overstory density x understory density)
100

(17)
If the understory is composed principally of vine maple, rhododendran,

or sword fern communities then the cover density is

0,

% Cover density =

0,

% overstory density (18)

This approach allows for differentiation between areas with predominately
timber growth versus those with mixed timber and brush growth. The
resultant cover percentages provide a method of classification as shown

in Table 6.

Table 6. Vegetation classification based on cover density.

Group % Cover
1 > 75%
2 50-75%
3 25-50%
4 5-25%
5 - 0-5%

Most of Watershed 2 was characterized by vegetation groups 1, 2, and 3
as shown in Figure 7.

Runoff from the watershed is controlled by groundwater discharge.
Precipitation in the area averages near 90 inches per year with about

90 percent of the total occurring as rainfall from October to April.



Second and Old Growth Mix Cover 275 %
0ld Growth Cover 50-75 %

V772 Second Growth Community Cover

Old Growth Less than 25%

4?0 800 | IZPOﬂ
1

1
Scale

Figure 7. Vegetation classification map of Watershed 2 (after Hawk and Dyrness, undated).
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Storms may last several days producing rainfall of several inches.
Rainfall intensities are usually low and soil infiltration rates high
so that overland flow seldom occurs. Streamflow is fed primarily by
saturated and unsaturated groundwater flow. Because of the importance
of groundwater in slope stability, it was recognized that fluctuations
in the groundwater‘table during a storm were important. Unfortunately,
an acceptable, easy to use groundwater model was not available for use
at this time. Therefore, only selected levels were utilized for

comparison.

Watershed Segmentation

Watershed 2 was segmented using program WASEG. Figure 8 shows
the watershed with the superimposed grid system. Figure 9 shows an
enlargement of a microfilm plot of the grid system and computed flow or
aspect directions for the watershed. Code values were input for the
five soil classes and vegetation types along with elevations and cover
densities.

Figures 10 and 11 show computer printed base maps for the cell by
cell soil and vegetation codes. Each cell is represented by a set of
four code numbers in these plots. Similarly, gray map plots for slope
and canopy cover density are presented in Figures 12 and 13.

Basic input data from WASEG were decoded and processed in LSMAP.
Other input data required were soil and vegetative characteristics.
These values were chosen from previously presented tables or were
supplied by U.S. Forest Service personnel and available literature.

Once the model was supplied with the necessary data, preliminary

computations were made to pinpoint any adjustments that may be needed
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in the data. These initial runs immediately indicated a data organization
problem. Therefore, the number of soil classes was increased to better
reflect the important soil characteristics. However, the initial runs
indicated that failure potential was high in the cells where landslides
had occurred. In Watershed 2, 78.5 cells (0.5 cells for a cell near a
stream channel) out of a total of 181 cells in the segmented watershed
were denoted as having mappable landslide scars and deposits (Figure 8).
These cells were used as a guide to model performance and adjustment.
It was assumed that such cells are hazard cells. If the model predicted
a potential landslide hazard in these cells then it is accepted as a
correct result. Overestimation or underestimation of the number of
hazardous cells indicates that a) some hazardous cells may have charac-
teristics undetected on this mapping scale and are mapped as being non-
hazardous, b) cells mapped as hazardous but not containing landslides
may not yet have failed, or c) the model is incorrect for other reasons
such as erroneous data. Comparison of the number of correct classifica-
tions with incorrect classifications for initial runs indicated the
physical process model did reflect the correct slope stability conditions.
The model was adjusted through soil and root strength parameters
to better match the observed data. Two criteria were established to
help in this adjustment. First, under typical soil moisture conditions
no cell should fail. Second, under saturated conditions all the land-
slide cells should fail. Although failure may occur in all the landslide
cells before saturated conditions are reached, there is no data to indi-
cate at what saturation failure did occur. Using these two criteria,
the input values were adjusted over rcalistic ranges. These values plus

others not used in model adjustment are listed in Table 7.
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Table 7. Input values for LSMAP.

Soil porosity = 0.60

Vegetative surcharge =

= 66.1 pounds per cubic foot
Saturated unit weight of soil = 103.6 pounds per cubic foot

50 pounds per square foot

Typical

Cohesion Range, Friction Angle Depth,

Soil Class Pounds per Square Foot Range, Degrees Feet
1 1000-2000 35-40 S
2 20-50 5-20 8
3 0-5 2-5 10
4 150-200 25-28 5
5 350-400 30-33 4

Vegetation Class

1

2

Root Strength Range,
Pounds per Square Foot

290-360

220-260

5-25

100-125

15-65

Low values of cohesion and friction angle for soils classes 2 and

3 were used to insure that the model indicated failure for these soils.

Higher values for the other three soil classes reflect the relative

stability associated with those groupings.

used when trying to select proper ranges of root strengths.

Similar considerations were

No formal

methodology was used for arriving at the adjusted values in Table 7.

The values do, however, reflect the relative stability of groups they

repres

ent.
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Comparison of Model with Observed Landslides

The adjusted model indicated a total of 81.5 hazardous cells, 69
of which corresponded with the assumed hazardous cells, an 87.9 percent
match. A total of 9.5 cells were classed as safer than they were assumed
to be and 12.5 were classed as more hazardous. This is an encouraging
comparison as it indicates that the model represents the physical pro-
cesses controlling landslide occurrence.

The adjusted model was then used to demonstrate its usefulness in
studying dynamic changes in the watershed. The first application is
the change in landslide hazard under varying groundwater conditions.
Figure 14 and 15 shows the potentially hazardous landslide areas and
their estimated failure probabilities for a relative groundwater level
of 0.0. Even under these conditions there are numerous areas where the
potential is quite high because of the overwhelming driving forces
brought about by the steep terrain. Figures 16 and 17 for M = 0.5 and
Figures 18 and 19 for M = 1.0 show that, as expected, rising groundwater
levels increase landslide hazards. If a real time groundwater level
model were available, daily or seasonal fluctuations in landslide hazards
could be determined. Use of the model in determining relative hazards
in terms of groundwater levels is important in planning watershed activ-
ities. Based on model results, scheduling of activities may be better
determined to coincide with lower landslide hazards. Roadways may also
be better planned to avoid consistently hazardous areas or to provide
stability enhancement where indicated.

Timbering is another dynamic watershed activity that can be
assessed with the model. Figure 20 shows the landslide potential for

a 50 percent clearing of the canopy cover. Comparison of Figure 20
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for Watershed 2 with relative groundwater level of 0.0.
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Figure 19. Gray map of estimated failure probabilities of landslide areas

for Watershed 2 with relative groundwater level of 1.0.
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Figure 20. Gray map of potentially hazardous landslide areas for a

50 percent clearing of canopy cover with relative groundwater
level of 0.5.
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with Figure 16 shows adverse effect on slope stability produced by
vegetation removal.‘ Similarly, if the watershed is clear cut, as shown
in Figure 21, even more instability is produced. However, an instanta-
neous drop in root strength is assumed, which is incorrect. A more
realistic approximation would be a decay of strength with time. The
end result, however, is represented by Figures 20 and 21. Again, the
model has provided a method for assessing the impact of one type of
timbering activity on the watershed.

An important aspect of the model as demonstrated above is that of
estimating landslide probability. Joint use of the potential and
probability maps can provide the land use manager with another means for
making decisions on watershed activities. The probability map is valuable

in analyzing the potential map.
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V. SUMMARY AND CONCLUSIONS

A physically based mathematical model was developed that estimates
landslide potential. Because uncertainty exists in the input variables,
a probability of failure reflecting this situation is also computed.

The model was applied to a forested watershed in Oregon. Results
indicate the model provides a realistic approach for determining land-
slide hazards. A limitation of this method is encountered in providing
actual input data for soil parameters and vegetative strength. Although
these values are often hard to obtain, realistic estimates can provide a
relative classification of landslide hazards in the watershed. Examples
demonstrated the use of the model in delineating hazards under varying
groundwater and timbering activities. The landslide hazard delineation
model can provide an effective methodology for assessing the relative

stability of a watershed under various dynamic conditions.
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APPENDIX A

Derivation of Model Equations

Derivation of the equations of static equilibrium for an infinite
slope are relatively easy to compute (Lambe and Whitman, 1969; O'Loughlin,
1974; or Brown and Sheu, 1975). The derivation presented here is
similar in form to those presented by the above authors but with changes
in the formulation and simplification of the basic model. An idealized
infinite slope is shown in Figure A-1 that consists of a single soil
type with isotropic properties resting on a bedrock interface. This
is a situation similar to residual soil slopes found in forested water-
sheds and most hilly or mountainous terrain. Symbols in Figure A-1
will be used in the Factor of Safety model (F.S.).

The shear strength of a soil can be represented by the Coulomb
equation of

T=c+ 0 tan ¢ _ (A-1)
where T is shear strength, ¢ 1is effective* cohesion intercept, o
is effective normal stress, and ¢ is effective angle of internal
friction. Equation 2 is applicable to situations under consideration
here, drained soil strength conditions, and represents resisting forces
contributed by the soil mass. Components of ¢ and ¢ (hereafter,
the overbar will be dropped) are intrinsic soil strength characteristics
of soil and represent interaction of soil factors.

Inspection of Figure A-1 aids evaluation of o. Normal stress on

plane A' - B' at some position Z in the soil mass can be easily

*effective refers to measurements that have taken into account pore
water pressure effects.
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Cr

slope inclination

Root cohesion

actual soil depth = HcosB

unit weight of soil

saturated unit weight of soil

height of soil mantle above bedrock surface
height of water table above bedrock surface
H - Hw

tree surcharge

elevation coordinate

Figure A-1. TIdealized infinite slope.
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solved if the plane is assumed to be parallel to soil and bedrock
surfaces and lies between z =0 and Z = Hw. The total normal stress,

r, on this plane can be written as
n
o= L vy. Az, (A-2)

In this case n = 2 for the saturated and unsaturated soils but can

be expanded to a multi-layer case. However, in many soils assumption of
a single soil type is often representative (Lumb, 1970). The geometry
and important factors presented in Figure A-1 can be used to evaluate

o. The normal stress on plane A' - B' 1is composed of stresses from
soil weight and tree surcharge. Soil weight per area component is

Ha cos B vy for the soil above water table level and (HW—Z) cos B ysat
for soil below water table. Normal force per area supplied by tree
surcharge is q, cos B. Assuming a unit square area allows the normal
stress to be written as

o = [qO cos B + (HW-Z) cos B ysat + Hu cos B y] cos B (A-3)

In Equation A-3 the area that normal force acts on is taken as cos B
times a unit area. Since Hu =H - Hw’ Equation A-3 can be converted
to

o = H cos® B [a/H + ysat (M-2*) + y (1-)] (A-4)
H _

where M = 7? is relative to groundwater height and Z* = é is
relative position from bedrock surface. Because groundwater is present
the buoyancy effect of pore water pressures must be accounted for in
Equation A-3. From the effective stress concept the relationship

between total and effective normal stress in soil mass components is

o=0 -u (A-5)
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where wu 1s the pore water pressure. Hydrostatic pressure can be

formulated as

u = H(M-Z*) (cos8)y (A-6)

Combining Equations A-4, A-5 and A-6 yields, after simplification,
- = 2 _ _7% = -
o = Heos™8 [q /H + (v_ . - v, ) (M-Z*) + y(1-M)] (A-7)
The shear resistance equation now becomes
T =cC + Hcoszs [qo/H + (Ysat - Yw) M-Z*) + y(1-M)] tan¢ (A-8)

The cohesion term, c, in Equation A-1 has two components in forested
watersheds, soil cohesion, and tree root cohesion. Gray (1970)
described several ways that vegetation enhances slope stability. One of
these is anchoring soil to underlying strata. Endo and Tsuruta (1968)
and O'Loughlin (1974) showed that this anchoring can be represented in
the F.S. equation as a cohesion term, Cr. The cohesion term, C, can
now be replaced by terms for soil cohesion, Cs, and root cohesion, Cr.
A similar analysis can be made for shear stresses induced on the
plane. Shear stress is composed of loads resulting from weight of
soil mass, tree surcharge, and wind shear in trees that is imparted
to the soil mass. Seismic loading is not considered but can be added.
Because air flow ususally conforms to ground or tree top surface, wind
shear will be directed parallel to the failure plane. Downslope
components of tree and soil loadings are used with one exception. If
groundwater flow is assumed parallel to the failure plane then pore
water pressure does not enter shear force computation. Shear stress

can now be represented as
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q

T' = Hsin B cos B [7§-+ <L

Hg;;g—ggg“g * Ygue M-2%) + y(1-M)]  (A-9)
Resisting forces are equivalent to shear strength as formulated in
Equation A-8. Driving forces are equivalent to shear stress as formu-
lated in Equation A-9. If Tr is overall shear resistance and Td
is overall shear stress than the Factor of Safety equation can be

written as

T

= T _
FS = T, (A-10)

where FS is the Factor of Safety. Substituting shear strength and
shear stress Equations A-8 and A-9 into Equation A-10 yields a Factor

of Safety equation of

2 qo0. _ _7% -M
. Cs+CrHeos™B{(p) + (v, - v, ) (M-Z%) + vy(1-M)} tand (A-11)

H{(%%J + (Tsw/HsinBcosB)+ysat(M-Z*)+Y(1—M)}sinBCOSS

The parameters in Equation A-11 can be placed into nondimensional groups.

Multiplying by ; , noting that sinBcosB = %-sinzs, and multi-
Y. Hcos™ tanB
. w
plying by ?ﬂ produces the Factor of Safety model as
w
Y
2(Cs+Cr) qo sat - A raa tano
YstinZS * [ywH # 4 Y, - 1) (M-Z%) + Yy, (1-M)] tang
FS = - (A-12)
qQ . 2Tsw £ ( sat) (M-Z*) + :L-(l-M)
1?2
ywH ywH51nh8 Yw

As Equation A-12 shows, the basic model contains variables for four
factors present in a forested area. Representing soil factors are v,
ysat, Cs, and ¢, all determined by soil type, H, a measure of soil
depth. Topography is included as 2, slope inclination. Vegetative

factors are qo, Cr, and Tsw. Finally, a dynamic factor for relative
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groundwater level is included as M. This basic equation is used to
derive a more simplified form. Using sensitivity and order of magnitude,
analysis techniques, Ward (1976) demonstrated that the Factor of Safety
equation (A-12) could be reduced to an accurate, simpler form. Ward
determined that certain variables were relatively unimportant and others
could be assumed as constants. Relative depth Z* was set at zero for
the worst case. Wind shear, Tsw, was found to be insignificant in
magnitude, and soil mass and tree loading terms had little effect on
equation sensitivity. Ward did find that soil and tree loading could
have either positive or negative effects on slope stability depending

on other factors.

Derivation of Statistical Parameter Equations

Soil and root strength parameters have the highest variability or
uncertainty. Other parameters such as soil depth, slope angle, unit
weight of soil, and groundwater depth can be readily estimated and set
at some conservative value. If groundwater level M 1is assumed as
steady state and H, B, and <y are known then the factor of safety

equation can be simplified to

FS = Ll(CS) + Ll(Cr) + Lz(tan¢) (A-13)
where
Ly = % - (A-14)
. qo saty,, Y
y Hsin2B (=) + (M + () (1-M)
= YwH Tw Yw
and
qo .  Isat , Y .
[( = —— - 1M % (5 (1—14)]
L = Ty Yy Y (A-15)
2

:
2+ f{at - u o+ e
YW \ w

If Equation A-13 is rewritten in terms of random variables it becomes
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S = le + L2Y + L32 (A-16)
where S, X, Y, and Z are random variables. The expected value or

mean of a linear equation such as A-16 is (Benjamin and Corrall, 1970)

E[S] = L, E[X] + LE[Y] + L,E[Z] (A-17)

If the strength parameters are considered independent (Lumb, 1970;
Holtz and Krizek, 1971) the variance or standard deviation squared

becomes

var[S] = E[(S - E[S])?] (A-18)

or

var[s] = E[S? - 2E[S]S + E°[S]] (A-19)

1}

Following the form of Equation A-17, Equation A-19 becomes

var[S] = E[S?] - 2E[S] - E[S] + E°[S] (A-20)
because

E[E[S]] = E[S].
Equation 20 reduces to |

Var[S] = E[S?] - E°[S] (A-21)
The term 82 is

2

2 e
s° = L12 X2+ 2XY + Y*] + L 2,2 (A-22)

LZZZ[X + Y] + L2 y/

1
Substitution of Equation A-22 into A-21 yields
VAR[S] = L, [E[X] + 2E[X]E[Y] + E[¥"]]
+ 2L L,E[2] [E[X] + E[Y]] + L22 E[z°] - EX[S]  (A-23)
Following the form of Equation A-21, the substitution for E[Xz] can be
made as

E[Xz] = Var[X] + EZ[X] (A-24)

Similar substitutions are made for Y and Z yielding
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Var[S]

L12[Var[x] + E2[X] + 2E[X]E[Y] + Var[Y] + EZ[Y]]

+

2L LE[2] [[E[X] + E[Y]] + L% [Var(z] + E°[Z]]

E2[S] (A-24)
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APPENDIX B

PRUGHRAM LSMAP (INPUT QU IPUT yPUNCHs TAPESSINPUL y TAREOSUUIPUT o | AFEBEFU
INCHe TAFE G
LSMAP IS iHE MALN CALLING PROGRAM FOR THE

FACTUR CF SAFeTY PRUGKAM ANL TnE LANUSLIUE PrUBAsILITY

SUBRUUTINE PrROURAM

LapELLED CUMMON FUR FACTUR OF SAFEIY CUMPUNENT
CUMMUN/ZFSUATIZRISI(LI0) oRiS2(10)9CS1LLI0)9CSC10)sSULLLY)
COMMUN/FSUATZ/PHILTLLU) oPHIZ(1U) oCSALICSACIdUAWPHIRLYPRIAZ
COMMUN/FSDAI37QUsSAT yHMw e FSC(2000) 9 PESL(ZUULY) yPURD

COMMUN/ZFSDAT4/CK1sCreCREgyCLLIICL2yFSS
CUMMUN/FSUATS/CSAWRTSAIFHIAYRTISALIRISAZyFCLS LI WFLCLS29PLLS)yPCLSE
CUMMUN/ CONTROL/MNESmyinF SP e LESPUSTITLE(2U) sKCO s TenV T

LABELLED CUMMON FUK THE INFORMATION FrUM WASEG
COMMUN/SEGIN/SLUPE (~2000) 9 CANOP (2000) 9JvEGE (2V00) 9 USUIL (2V00)

LIST OF FACTOR UF SaAFelY EWUATION VARIABLES

RTS=KOOT STRENLTH

SUA=SUIL DEPTH

CS=SuIL CORESION

PHI=ANCGLE UF INTEKRNAL FRICTIUON OF Idt SOIL

BETA=SLOPE AaiNGLE

HAW=KELATIVE HEIGhT UF GRUUNDWATER TABLE

OCAMS=SPECIFIC WEIwHT UF IHE SOIL
PORO=AVERKAGE PURUSITY OUF Thne SOIL

I= CeblL INUeA
INPUT VARIAHBLES

FCLS1 LOweR LIMIT ON ASSIONING LANUSLIDE CLASS
FCLS2 UPPER LIMIT O ASSIOGNING LANDSLIVE CLASS
PCLS] LOacR LIMIT PROBASILITY
PLLSZ UPPek LIMIT PRUBABILILTY

PRINT CUNTROLS

PRINI OUT
NFSw 6TaU FACTUR UF SAFETY MAPFING FUR EACH RESPUINSE CELL
NFSwW LE.U NOTHING FOR EpACH CELL
NFSP Glaeu HxZAKD RainkD FACIUr OF SAFETY AND FrubasILITIES
NF SP LEeU FACTUR SAFETY VALUESyFAILUXE PrROBABLILITIES IN PErCENT
IFSPU GT.0 PUNCHED CARUS ARE GtwneRATED

InPUT TITLE OF wATERSAED
CALL ULATAIN

INPUT LAND USE OR UTHER CELL DATA CRANGES AS NEEUED
CALL DATCKG

THIS CALL SRINGS IN THE COEFFICIEMT CALCULAIION SuBkruulINE
CaLL FSCO
KE=KCS
DO 111 I=lenkE
CALL AVERAG(I)
CALL FSEUN(LeFSlsPFralL)
Fvi=FSl
Fve=rFalL

LF(NFSP.0T40) CALL FSPULSI(FV1sFV2eFSLlePFAIL)
FSC(I)=FSI
PESC (L) =PFAIL
CUNTINUE

PRINT TITLES
WRITE (6y126) TITLE
FORMAT (4UXycVAGY/)
CaLL PrQuUI
STup

END
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SUHBRUUT INE UATAIN
CUMMUN/ZFSDATL/ZRTISLILIU) oRTSZL1V) «CS1(L0)#CS2(20)9S0LCLY)
CUMMUN/FSUDATZ/PHIL1(10)9PH1Z(10) 9TSALICSACISUAWPHIALYPHIAZ
COMMGI FSOAT3/700eSATeHMw e SC(c00C) 9 PFSCL20UUUI 9 PORO
CUMMUN/FSDAT4/CR]19CLR2e(n39CLLIICLLIFDS
CUMMUN/FSUATS/CSAsRISAsPHIARISALaRISACIF LS 9FCLSZ9PLLS1PCLSE
COMMUN/SEGIN/SLUPE (2000) s CANOP (20002 s JVEGE (2U00) 9JSVIL (200V)
CUMMONZ CONTROUL/NFSWaNFSP o JFSPUs TITLEIRCSsnnSTanNVT
THIS SuskOUITINE INPUIS DATA FKOM USER
PRUGRAM WASEG AND FkOM Iht
REAU (59120) TITLE
FURMAT (2UA4)
InNPUT DATA QUTPUT CONTHROL
KEAD(Ss116) NFSWeNFSPyFCLS19FCLS29PLLSY1PCLSey [FSPU
FUKMAT (21544F5eVU915)
InPUl NUMbseR OF RESPOSE UNITS (IDENITIFIED AS
OVERLAND FLUW UNITS liv wASEG) s NOT CHANNEL UNITS AND NUMBEKR
UF SUIL ANU VEGETATION TYPES
ALSO INPUT CUDE IF READING FROM [APE
wHICH CUN)IALNS CHaANNEL UNITS
REAU(S9131) RCSeNSTeNVIsNSKEAU
FORMAT (4]110)
1wPUT TOTAL NUMBER UF UNLITS INCLUDING
CHANNEL UNLTS IF REWUESTED
IF (NSKREADGT«U) READ(S5977/7) NS
FORMAT (110)
INPUT UATA FHOM WASEG
READ (4) (SLUPE (L) 9 I=1enS)
REAU(4) (USUIL (L) sl=1eNS)
READ(4) (uveGe (1) s1=19iS)
READ(4) (CANUP (1) 9l=19NS)
INPUT CROUNUWATER LEVELS
KEAU (59 118) nMw
FURMAT (F5.0)
INPUl DAIA FOR FACTUR UF SAFETY CUNSTANIS
READ(59132) SATswOPURL
FORMAT (SFS5.0)
KEAD VEGETAIIVE AND SUIL FHRUFPERTIES
READ(S59113) ((RTS1(IT) sRTS2(1IT)) o 1T=49NVI)
KEAD(59113) ((CSLI(LSS)sCS2(ISS))e1SS=19NST)
READ(59113) ((PAI1(ISS) 9PALIZ(1SS)) 9155=1enST)
FORMAT ((lUX9n(2F740)))
READ(S9119) (SU1(1SS) 915S=1yNST)
FORMAT (JUX21U0F740)
RE | URN
END

SUBKUUT INE UATCHG
COMMUN/ZESDATI/ZRISLI(I0) sRTSZ(10)9CS1 010D sCS2010)9SULLLIL)
COMMUN/ZFSDATZ/PHILT(LIU) sPHIZILU) 9CSALICSACYSUAFriTALPHILAL
COMMUN/F50A13/GUsSATsHMWFSC(2000) 9#FSLICOLU) 9 FORO
CUMMUN/FSUIAT4/CKRI9CR2yTNRI9CLLICLEYFSS
COMMUN/FSDATS/CSAvRTSAIPNIAIRTISAL RISALYFCLSI«FCLSZIPLLSLyPCLSE
COMMON/SEGIN/SLOME (2000) 9 CANOF (2000) 9 JVEGE (2V00) s JSULL (2000)
TAIS SUBRUUTINE IS USEU TU TRANSFER UATA
INTO LSMAP w]THOUI KEUREATING A NEw UATA FILE FRUM wWASEG
THIS IS uSEFUL IF CERIALN LAND USE CRANGES ARE CUNSiUbrEU
INPUT ANY CHANOLES OF CELL DATA SuCh AS CHANLES
IN VEGETATIUNS SLUPEs UR SUIL PRUPERTIES.
RE TURN
END
SUBRUUTINE FSCU
ITHIS SUHKOUTINE CALCULATES CUNSTANIS FUR THE rACTUR UF SaFETY
EQUATION
CUMMUN/FSUAT3/WUSAT sHMasr SCLZ0U0) 9 FFSL(2UVV) 4 PURL
COMMUN/ZFSDAIG/CK]LyCr29CR39CLLICLLIFDS
VUIDRAT=PURU/Z (1=POKO)
CRl=QU/6C.s
CK2=(2+63+VUINRAT)/Z (1+VOIDRAT)
CR3= (Zeo+SAl®VUIUKAT)I/Z Li+VOLDRAT)
FETURN
Efiv



ao

DOHOD

1l¢

142

—

SUBRUUTINE avERAG(I)

CUMMUN/FSOATI/ZRTIST(10) o5TS2 (1) 9CSLLLLYeCSE(L0)9SUILLI0)

CUMMUN/ZFSUATZ/PHLIL(10) oPrI2(1U) 9CoaleCSACsSUAWPHIALPALAL

COMMUN/FSUATS/CSAsRTSAsPHIASHISALIRISAcYFLILSLaFCLSCPLLELFCLSE

COMMUN/SEGIN/SLUPE (2000) »CANUP (2000) vJVELE (Z2000) »USUIL(LCVOV)

COMMUNZCUNTRULZ/NFSwoNFOP s LFSFUSTITLEIRCS NS env]

DIMENSION [U(4)

THIS SUBHRUUTINE AVERAGES ImE SOIL AND VEGETAITIVE PrUFERTIES

FOrR THE CELL

m=JVEGE ()

CALL IDEN(Mysel91D)

K1=0.0

KZ2=0,0

DU 112 J=1lse

K=IV(J)

IF(KalLToleORemoGToNVI) PRINT 141y ToJsK

FORMAT (SX®*ERROR IN VEGETATION INPUT AT CELL®IS®COLE®LZs]12)
AVEHAGE THE LOw AND HIGH RANGE VALUES FOR THE

FACTUR OF SAFETY 1nPUT DATA

R1=R1+rTS1(R)

RE=R2+RT1S2(n)

CUNTINUE

rRISAl=R1/4

RISAZ=KE/4

RISAL=RTSal1#CanNOP (1)

KISAC=RTSAZ#*CaNUP (])

M=JSulIL (1)

CALL JVEN(Myayl9lD)

Cl=0.0

C2=0.0

51=0.0

Pl=v.0

FZ2=0.0

IF(ReLTeleUNeKaGToNSTIPRINT 1429 141U

FURMAT(SX e #ERROR IN SOIL InPUT AT CeLL¥IS*CULE#4]Z)

DO 113 J=lye

K=10D(v)

Ci=Cl+CSi(K)

Ce=Ce+(52(K)

S1=51+S01(K)

P1=Pi+rnll(R)

P2=P2+Phlic(K)

CUNT INUE

Csal=Cl/4

CSae=Ce/s

SUA=S1/4

PHIAL=P1/4

PH1AZ=F2/4

RE TURN

END

SUBRUOUTINE LUEN(MeLSyivsylU?

THIS SUBRUUTINE JDENTIFY A STHING OF SIGNALS
M=STRING OF ImTEOEr D1GLT

LOS=LENGTH CF STRING (NU. OF SIGNAaL)
NS=LENGTH UOF SIONAL (NUe OF DIGIY wnICH CUNSIRUCTS A SIGNAL)
VDIMENSION TU(4)

DU 1 R=14LS

NE=NS® (LS=K)

Iv(K)=m/]l0%9NE

M=M=TD(K)®lU%eNE

CONT LiNnUE

HE TUKRN

END
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SU3RUVUTINE FSEQUN(IsFSIsrFFAIL)
THES ~OUTINE COMPUIES AN AVFRAGE FACIUR OF SaFETY FUR THE ChLL
8Y USING AN INFINITe SLOPE APPRUKALIMATION APPROACH

CUMMUN/FSUATZ/PHIIsPHICICSA1+CSACySUAYFHIALYFH]IAZ

COMMON/ZFSUATI/QUeSATerMWFSC(2000) s PFSCI20UV) 9 PORD
COMMUN/FSUATA/CRIyCR2oLKIsCLLIWCLZorSS

CUMMUN/FSUAIb/CSAoHISA-Vh[A,NlSAllebkcerLblcFCLSZ-PCLSL.PCLSZ

CUMMUN/SEGIN/SLOPE (2000) s CANUF (20U0) 9 JVEGE (000) »JSULL (2U00)

HEAL M

M=HMwW

KADS=57.29577951

PHIAL=FRIAL/RADS

PHIAZ=SPHIAZ2/KADS

Prla=z(Prl1Al+PRIAZ2) /2

BETA=ATAN(SLOPE (1))

IF(BETASLE.Vs0) GO TU 333

SUA=SDA/CUS(BETA)

Al=¢2%HETA

CSA=(CSAL+CSA2) /2

HISA=(HTSAL+KTSA2) /2.

A=2# ((CSA+HISA)I /7 (62.4%50A®SIN(AL)))

E=TAN(FPHIA) /TAN(BETA)

UF=(CR1/SUA+CKR2¥M+CK3® (1=M))

CL1=Ce0/(62,4%SPDARSINIAL) *UF)

CL2=(DF=M)/(DF2*TAN(BETA))

FSS=CL1®(CSA+RTSA) +CL2®*(TAN(PHIA))

CALL FSPROH (PFS)

PFAIL=PFS®100,

GLU T 555

FSS=99,9

FS1=FSS

RETURN

END

SUBKUUTINE FSPRUB(PFS)
THIS SUEKOUITINE DEVERMINES THE FAJiLuUWe PRUBABLILITY
FUOR ThHE CELL USING A NURMAL LISIKIBUTION LDEIEAMINED BY A
FOLYNOMIAL LQUATION
CUMMUN/FSUDATZ/PHIL{10) 9PH1(10) 9CSALsCS5A2sSLLyPHIALIPRIAL
COMMUN/FSUATG/CKT 9 CREoUR3pLLLIICLEZFSS .
CUMMUN/FSUATS/CSAWRISAsFHLAsRISALarISAZIFCLOL9FCLSZIPLLSL s FLLS2
ES=FSS
eA=CSA
EY=RTSA
EZ=TAN(PHLA)
VA= ((CSAZ=CSAl)®#e2) /12
VY= ((RTSAC=RTSAL)#a2,) /12
VZ=((TAN(PHLIAZ) =TAN(PHIAL))®a2) /12
VISVASEXSER$Z (FEAREYeVYSEYRLEY
Ve=VZ+EL*EL
V3I=EX+EY
ES=CLI*EX*CLI®EY+CL2"EL
VS=CL1®CLI*V1+CL2¥(LLPV2+c#CL1%CLZYELHVI=EDYES
U=(1s0=ES)/50URT(VS)
A=ABS (L)
IF (AsLbEeVel3) Z=a%U.4
IF(AeGTeleld) Z==Ue01314+0,49494%0=0s]1b804%A%A+0,0]10bL AYASA
IF (UeGToUa0) PFSNz=ULB L
IF(UeLTa0s0) PFSN=u.5=2
IF (UsEWeUU) PFSN=UWD
FS1=CL1#(RTSALI+CSAL)+CLZ¥*(TAN(PRIAL))
IF(FSleGlalel)l PFSN=ULU
FS2=CLLI® (RTSA2+CS5A2) +CL2* (TANIPHIAZ))
IF(FS2eLEsle) PFSI=1.00
PFS=PFSN
RETURN
END
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SUFRUUTINE FSPCLS(FVY1srveerSIsPHAILL)
ITrlS SUBROUTINE CLASSLIFIES THE FACIUR OF SAFETY
AND FallLukb PROBABILITLIES IN1D 3 GRUUPS wltH
1 HBEING THE HEST AND 3 obING THE wUKST.
CLASSIFICATIONS AKE SeT s8Y CHOLCE

COMMUN/ZFSUATS/COA m I SAYPHIAWRTSALeRISAZeFCLS L FLLSEy L1y PCLS2
CLASSIFY Int FACTur JF SAFETYS

FSi=3.0

1P (FV1aGToFCLS1eARNDeFV]1al1oFCLSZ) F31=¢eu

IF (FV1leGEWFLLS2)FSI=1ev

IF(FV1eGTe9Ue) FSI=2G99,9

CLASSIFY Trt FAILUKE PRUsABILITIES

PFAIL=340

IF(FV2.GToPCLS1eANUSFVZebLtFCLS2) PrAIL=Z2.0
IF(FV2.LE.PLLS]) PrAIL=1WU

RE TURN

ENU

SURRUUTINE FPrROUT
CUMMUN/ZFSOATLI/RTISIC(10) snrTS2(1U) 4CSLLLIU) 9CS21LU2e501L10)
COMMUNZFSUATZ/PHELI(10) 2»Pnic(lU) +CSALICSARYSUAWPHIALYPHIAZ
CUMMUN/FSDATS3/7U0.SATyREMWs b ST{2U00) s PFSCI200U) ¢ =0RU
COMMUNZFSDATA/CK]3CR2eCh39CLLICLEYFSS
CUMMUN/ZFSDUAID/CoAWRTSAYFRIAYRISALeRISAZIFCLS1oFULSZyPCLSLPCLS2
COMMOUN/SEGIN/SLOPE(2000) 9 CANODF (200U0) 2 JVELE (CU0GN) 9JUSUIL L2UUL)
CUMMUNZCUNTHULZINFSneNFOP s LFSFUSTITLEIRLS s iiSTanv T
THIS SusrUUTINE FRINTS ThHE COMPUTED FALIUKS UF SAFETIES anNv
PROSABILITIES Ok Thelk mAZawy CLASSES
IF (nFSwelEau) WwrRITE (69137

137 FORMAT(1UA2NU DATA PrRINI KREWQUESTED OTHER OUTPUTS AS FULLUWS®/)
IF (NFSW.G1,0) wWKiTE(bel2e)

122 FORMAT(3uxer RCTUR UF SAFLTY MAPPING FOK baln RESPONSE CELL%/)
IF (NFSPeLELU) WRITE(O9s1c3)

123 FURMAT (35X#r ACTUR OF SAFETY VALUES, UVIMENSIUNLESS®#/35A%FAILURE PRU
IBAGILITIES N PERCENT®/)

1F (NFSPeLT.U) WRITE(Byl24)

124 FURMAT (35x#F ACTURS OF SAFETY AND FAILURE PRUSABILITIES BUTH HRAZARD
1 KANRED®/354% 1=LUWEST HAZAKD 2=MEDIUM . 3=pnlUHEST nAZA
2RL®/)

PUNCH UATA IFf REWUESTED
IF(IFSPULGTa0) wKIIE(69136)
136 FOXMAT (1lux#QUTPUT PUNCHED UW DATA CARUS#®)
IF (NFSweLELU) GU TU SV
PRINT FACTURS OF SaAFETY VALUES AnND FaILURE FROBABILLIIIES
WRITE(69117)
117 FORMAT (/30XA®CELL NUMBEK®SA#FACTOKR UF SAFETY®SXx#FAILURE PRUBAolLIT
Y2/)
KSKIP=0
KbE=XCS
LU 95 I=1l,KE
WRITe(bella) L[eFSC(I)ePFSCLI)
114 FORMAT (3149 15916X9F642910K1FF42)
KSKIP=KSKIF+1
IF(RSKIP.GEe5) mrITE (D9 13Y)
139 FOUORMAT (/)
IF (KRSK1IP.GEW5) KSKIP=0
95 CUNTINUE
9u CONTINUE
IF(IFSPU.GTeU) wWRITE(Bs125) ((FSC(1)aPFSCIL))sI=lere)
125 FURMAT (S{Z2F8e2))
RETURN
END
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