

THESIS

APPLICATIONS OF DIGITAL ADAPTIVE FILTERS TO TIME-RESOLVED OPTICAL

MICROSCOPY

Submitted by

Saurabh Gupta

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2020

Master’s Committee:

Advisor: Jesse W. Wilson

Ali Pezeshki

Douglas Thamm

Copyright by Saurabh Gupta 2020

All Rights Reserved

ii

ABSTRACT

APPLICATIONS OF DIGITAL ADAPTIVE FILTERS TO TIME-RESOLVED OPTICAL

MICROSCOPY

Phosphorescence lifetime imaging is used on several fronts, such as, skin cancer or melanoma

diagnosis, and estimation of tissue oxygenation among others. Oxygen profiling is critical for mapping

brain activity, apart from its use to monitor several metabolic activities, and often employs oxygen tagging

molecules/probes. In this work, we describe a novel technique to recover phosphorescence lifetime using a

real-time digital adaptive filter running on a field-programmable gate array (FPGA) and conclude with an

important takeaway.

We also describe our strategy to mitigate relative intensity noise (RIN) in ultrafast fiber lasers,

which are an attractive alternative to bulk lasers for non-linear optical microscopy due to their compactness

and low cost. The high RIN of these lasers poses a challenge for pump-probe measurements such as

transient absorption and stimulated Raman scattering, along with modalities that provide label-free contrast

from the vibrational and electronic structure of molecules. Our real-time approach for RIN suppression uses

a digital adaptive noise canceller implemented on a FPGA. We demonstrate its application to transient

absorption spectroscopy and microscopy and show compatibility with a commercial lock-in amplifier.

Lastly, we report the noise estimates specific to our current experimental setup.

iii

ACKNOWLEDGEMENTS

Many people have played a crucial role in this work from the beginning to the end and I would like

to extend my sincere and heartfelt gratitude through this opportunity. First and foremost, I would like to

thank my advisor Jesse Wilson, for infinite help and support in the lab, for his patience, guidance and belief

in me. Thanks to my peers Erkang Wang, Arya Mugdha, and Patrick Stockton for hands-on assistance with

optics, my friend Hieu Bui for helping with sample prep, my mentor William Hudson for his advice and

support on a large number of topics, and my graduate committee members for their time and cooperation.

Next, thanks to my amazing collaborators: Steven Derrien, Jason Killgore, Randy Bartels, Neil Adames,

Kevin Lear and Erin Flater. Thanks are due for Wilson and Bartels lab members for their general help

around the lab. And at last but not the least, thanks to my well-wishers, friends, and family for their love

and support in making this work possible.

iv

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS .. iii

CHAPTER 1 – PHOSPHORESCENCE LIFETIME IMAGING ..1

Introduction ...1

Theory..2

Implementation and Experimental Setup..4

Results ...7

Discussion .. 10

Key Takeaway ... 10

CHAPTER 2 – RINS: THE REAL-TIME RELATIVE INTENSITY NOISE SUPPRESSOR....................................... 13

Introduction ... 13

Theory.. 14

Implementation .. 15

Experimental Setup ... 17

Results ... 19

Spectroscopic (Non-Imaging) Measurement Result ... 19

Imaging Result .. 21

Compatibility with Commercial Lock-In Amplifiers ... 22

Conclusion .. 23

Thermal Noise, Shot Noise and Quantization Noise ... 23

Future Directions .. 24

REFERENCES ... 25

APPENDIX A.. 30

APPENDIX B.. 35

APPENDIX C.. 36

APPENDIX D ... 38

1

CHAPTER 1 – PHOSPHORESCENCE LIFETIME IMAGING

Introduction

 Fluorescence/phosphorescence is a phenomenon wherein a material absorbs incident radiation and emits back

light either instantly or after a short time duration. It continues to do so at a rate which reduces with time and is called the lifetime

decay. Different materials/pigments have an associated characteristic lifetime which distinguishes them from one another. We can

use this information to identify different types of pigments such as, a clump of melanin from skin. It can be an effective way of

diagnosing melanoma or skin cancer by observing the phosphorescence lifetime of malignant melanocytes.

 Optical luminescence and diffuse scattering lifetimes are conventionally measured in either the time domain or

frequency domain. Time-domain techniques apply a narrow time, broad frequency excitation, while frequency-domain techniques

apply a broad time, narrow frequency excitation. In principle these methods are equivalent, being related through the Fourier

transform [1]. But in practice, there are numerous trade-offs between time and frequency-domain in terms of speed, signal-to-noise

ratio (SNR), characterization of multi-exponential and non-exponential responses, and separability of similar lifetimes [2], [3].

 Recently, a hybrid technique has emerged, which applies a pseudo-random excitation sequence that is broad in

both, time and frequency[4]–[6], and has the potential to combine advantages from both approaches (Fig. 1.1). This has been

implemented by storing a time series of the emission and correlating it with the excitation sequence to recover the optical impulse

response [4], [5]. A faster implementation uses a high-resolution timing module to time-tag each photon arrival [7], but none of

these pseudo-random approaches are fast enough for typical for laser-scan imaging framerates. This speed limit can be overcome

by implementing the correlator with real time digital signal processing on a field-programmable gate array (FPGA) [8], and we

note that FPGAs have also been used to improve frequency-domain lifetime imaging far beyond what is possible with analog

approaches [9]. In this paper, instead of using a correlator, we recover the lifetime response of the sample with an adaptive filter

[10] running on an FPGA. The adaptive filter models the optical response in real time, adjusting the model until its output matches

the measured optical response. DAFT-LSM is distinct from the digital frequency domain FPGA solution in the use of pseudo-

random illumination and operation of the PMT in the analog integration (not photon counting) mode. Generation of a pseudo-

random binary sequence (PRBS) using a linear feedback shift register (LFSR) is shown in fig. 1.2. Here, we characterize the

instrument response of the adaptive filter with a short lifetime fluorophore, AFC (7-Amino-4-trifluoromethyl coumarin), measure

2

the phosphorescence lifetime decay of an oxygen sensing probe, Ru(dpp)3(PF6)2, and demonstrate lifetime imaging of Ru(BPY)3

crystals.

Fig. 1.1. Time domain methods use a stimulus which is narrow in time but contains a broad range of frequencies.

Frequency domain methods use a stimulus with a narrow frequency spectrum but is broad in time. Pseudo-random

excitation sequences are broad in both, time and frequency. Represented numbers are for illustration purpose only.

Fig. 1.2. A 16-bit Fibonacci LFSR for PRBS generation. Source: Wikipedia

Theory

 In DAFT-LSM, an adaptive filter searches for an impulse response function, ℎ[𝑛𝑛], that transforms the pseudo-

random sequence, 𝑥𝑥[𝑛𝑛], through a convolution, 𝑦𝑦 = 𝑥𝑥 ⋆ ℎ, to match the measured output of the optical system, 𝑑𝑑[𝑛𝑛]. Our

implementation follows the standard least mean squares (LMS) algorithm [11] as shown in fig. 1.3. After convergence, the filter

coefficients are a direct time-domain representation of the impulse response of the phosphorescent material at the focal spot of the

laser beam.

3

Fig. 1.3. Block diagram of the Adaptive Filter

The derivation of update factor by steepest descent is as follows:

Let the coefficients be defined by, 𝑓𝑓(𝑛𝑛) = 1, 2, .. , 𝑀𝑀 − 1

Then the output of the filter is given by the convolution, 𝑦𝑦 = 𝑥𝑥 ∗ 𝑓𝑓 = ∑ 𝑓𝑓(𝑘𝑘).𝑥𝑥(𝑛𝑛− 𝑘𝑘)𝑀𝑀−1𝑘𝑘=0

If the desired signal is represented by d, then the error is given by, 𝑒𝑒 = 𝑑𝑑 − 𝑦𝑦

Let the error performance index 𝐽𝐽(𝑛𝑛) be defined by: 𝐽𝐽(𝑛𝑛) = 𝑒𝑒2(𝑛𝑛)

It is described by a quadratic surface and has a single minimum

To minimize 𝐽𝐽(𝑛𝑛) using the steepest-descent method we move by
𝜕𝜕𝜕𝜕(𝑛𝑛)𝜕𝜕𝜕𝜕(𝑛𝑛)

 every iteration

Which is given by, 𝜕𝜕𝐽𝐽(𝑛𝑛)𝜕𝜕𝑓𝑓(𝑛𝑛)
=
𝜕𝜕𝑒𝑒2(𝑛𝑛)𝜕𝜕𝑓𝑓(𝑛𝑛)

= 2. 𝑒𝑒(𝑛𝑛).
𝜕𝜕𝑒𝑒(𝑛𝑛)𝜕𝜕𝑓𝑓(𝑛𝑛)

= 2.𝑒𝑒(𝑛𝑛).
𝜕𝜕(𝑑𝑑(𝑛𝑛)−∑ 𝑓𝑓(𝑘𝑘).𝑥𝑥(𝑛𝑛 − 𝑘𝑘)𝑀𝑀−1𝑘𝑘=0)𝜕𝜕𝑓𝑓(𝑛𝑛)

= −2.𝑒𝑒(𝑛𝑛).𝑥𝑥(𝑛𝑛− 𝑘𝑘)

Thus, the coefficient update is given by:

𝑓𝑓(𝑛𝑛 + 1) = 𝑓𝑓(𝑛𝑛) +
𝜕𝜕𝐽𝐽(𝑛𝑛)𝜕𝜕𝑓𝑓(𝑛𝑛)

= 𝑓𝑓(𝑛𝑛)− 2. 𝑥𝑥(𝑛𝑛 − 𝑘𝑘).𝑒𝑒(𝑛𝑛).𝜇𝜇

Where 𝜇𝜇 is the learning rate or the convergence factor.

4

Implementation and Experimental Setup

 The Verilog code used for our adaptive filter is based on a textbook 2-tap 8-bit coefficient design[12]. This

design was modified and extended to accommodate 16-bit coefficients and 16 taps. All arithmetic is performed in signed fixed-

point format, and bit truncation was replaced with signed rounding operations to achieve stable convergence behavior[13]. Source

code is attached for reference in Appendix A and the bit-widths of signals are mentioned in table 1.4. We implemented this design

on a DE2-115 development board (Terasic) with a Cyclone IV FPGA with a compatible AD/DA Data Conversion Card (Terasic).

The design utilizes only 6% of the logic elements and 18% of the DSP multipliers on the FPGA and can be clocked at a maximum

frequency of 26.95 MHz as reported by the timing analyzer.

Table 1.4. Signals and their bit-widths in 𝑄𝑄𝑄𝑄.𝑛𝑛 notation where 𝑄𝑄 is the total number of bits including the sign bit and 𝑛𝑛 is

the number of fractional bits.

Signal name Format 𝑥𝑥 Q12.11 𝑓𝑓 Q16.10 𝑦𝑦 Q32.21 𝑑𝑑 Q14.11 𝑒𝑒 Q33.21 𝑒𝑒𝑄𝑄𝑒𝑒 Q33.21 𝑥𝑥𝑒𝑒𝑄𝑄𝑒𝑒 Q45.32

 A system diagram of the experimental setup is shown in Fig. 1.5. A 405nm laser diode (Thorlabs LP405-SF10

on CLD1011LP mount) was modulated using a pseudo-random binary sequence generated by the FPGA. The modulated laser

beam was focused on the specimen, which was placed on top of a Nikon Eclipse Ti-S microscope base, through a combination of

mirrors, X-Y galvanometers (Cambridge Technology), scan lens, and tube lens. A coverslip directed a small portion of the

modulated beam onto a photodetector (Thorlabs PDA36A2), which served as an input, 𝑥𝑥[𝑛𝑛], to the adaptive filter. The adaptive

filter is linear shift-invariant and cannot model non-linearities and hysteresis in the laser diode. Hence, resampling the modulated

beam was necessary. The emitted light from the specimen was collected by a microscope objective lens (Nikon fluor 10x/0.3 NA),

and routed to a photomultiplier tube (PMT) by a dichroic mirror (Edmund 450 nm shortpass) and a long-pass filter (Chroma

AT465LP) followed by a focusing lens (𝑓𝑓 =2.5 cm), and filtered with an iris (~2 mm diameter) for confocal detection. The current

generated by the PMT (Hamamatsu R928) was amplified by a trans-impedance amplifier (Thorlabs TIA60) and fed to the Analog-

5

to-Digital Converter (ADC) connected to the FPGA board. For each experiment, the PMT gain and optionally RF attenuators were

used to scale the input signal amplitude to match the 512 mV peak-to-peak ADC range.

 The adaptive filter implementation was first validated on an internal finite impulse response (FIR) filter to

confirm convergence and find a reasonable feedback gain, 𝜇𝜇. This test-bench FIR was programmed with an impulse response

given by: {400, 300, 200, 100, 400, 300, 200, 100, 400, 300, 200, 100, 400, 300, 200, 100}. Feedback coefficients 𝜇𝜇 in decreasing

powers of 2 given by,
18 ,

116 ,
132, and so on were tested. Adaptive filter performance for each case was monitored by recording the

evolution of the filter impulse response after resetting its coefficients to zero. For 𝜇𝜇 ≥ 18, the feedback gain was too large, and the

filter was unstable. For 𝜇𝜇 ≤ 18192, the correction factor, 𝜇𝜇 𝑥𝑥[𝑛𝑛]𝑒𝑒[𝑛𝑛], rounded to zero under our finite-precision implementation,

and the filter failed to adapt at all. For
116 ≤ 𝜇𝜇 ≤ 14096, convergence behavior of the first adaptive filter coefficient is shown in Fig.

1.6, as it adapted to the first test-bench FIR coefficient, which was set to 400. We found that on setting the feedback gain, 𝜇𝜇 =
116,

the filter converged in ~250 samples or ~12.5 μs at 20 MHz sample rate (50 ns/sample). All subsequent experiments were

performed with 𝜇𝜇 =
116.

Fig. 1.5. Adaptive filter confocal imaging system. A Linear-Feedback Shift Register * (LFSR) on the FPGA generates a
pseudo-random binary sequence, which modulates a laser and is focused on a specimen. The measured phosphorescence

response is digitized using an ADC and serves as desired signal, 𝑑𝑑, for the adaptive filter. The modulated excitation beam

is sampled by a second ADC channel and is used as the input, 𝑥𝑥, for the adaptive filter. The adaptive filter updates its
impulse response to match its output, 𝑦𝑦, to the measured phosphorescence, 𝑑𝑑. After convergence, its coefficients, ℎ,

represent the impulse response of the specimen. The coefficients are downsampled to the pixel clock using a CIC filter and
stored in SRAM. NI DAQmx is used to control the galvanometers and send a frame trigger to the FPGA. Final image stack

(𝑛𝑛𝑥𝑥 ×𝑛𝑛𝑦𝑦 × 16) stored on the SRAM is transferred to the PC using a JTAG-Avalon-MM interface.

6

Fig. 1.6. Effect of feedback gain 𝜇𝜇 on adaptive filter convergence.

 To validate the adaptive filter on luminescence lifetime measurement, we prepared a solution of a short lifetime

fluorophore (109 μM AFC in DMSO, fig. 1.7), and in contrast, a relatively long lifetime dye (180 μM Ru(dpp)3(PF6)2 in ethylene

glycol, fig. 1.8)[14]. A few drops of each solution were placed in silicone wells on two separate glass slides and cover slipped.

After bringing the sample into focus with 1.63 mW of modulated laser illumination, we adjusted the PMT gain and used appropriate

attenuators to not exceed the range of the ADC and ran the ADC and adaptive filter at 2 MHz sample rate (0.5 µs/sample). The

laser was parked at the same spot during the whole measurement. We acquired 1024 samples of the signals 𝑥𝑥,𝑑𝑑,𝑦𝑦,𝑒𝑒, and ℎ, using

Quartus Signal-tap II utility. These coefficients were then averaged and plotted using MATLAB.

Fig. 1.7. Molecular structure of AFC from Sigma-Aldrich.

7

Fig. 1.8. Molecular structure of Ru(dpp)3(PF6)2 from Sigma-Aldrich.

Results

 Figure 1.10 depicts 𝑥𝑥,𝑑𝑑, 𝑦𝑦 𝑎𝑎𝑛𝑛𝑑𝑑 𝑓𝑓 for AFC. Due to a short lifetime of AFC ~5 ns[15], the emitted fluorescence

closely follows the modulation (Fig. 1.10b). The adaptive filter closely mimics this response (Fig. 1.10c) by adjusting its

coefficients to values shown in Fig. 1.10d. As expected for a short lifetime fluorophore, the coefficients represent a delta function.

 Similarly, the time domain signals for Ru(dpp)3(PF6)2 are shown in Fig. 1.11. In this case, the long lifetime of

the dye acts as a low-pass filter on the excitation sequence, as can be seen from Fig. 1.11b, appearing smoother than in Fig. 1.11a.

The adaptive filter output closely matches the phosphorescence emission from the sample (Fig. 1.11c) and corresponding impulse

response, ℎ, is shown in Fig. 1.11d. An exponential resembling decay trend can be seen in the coefficients with 𝜏𝜏 = 2.1 µ𝑠𝑠, in

reasonable agreement with the published data[14]. Note the negative baseline in ℎ, which is a consequence of the DC-blocking

transformer on the ADC front end shown in the schematic in fig. 1.9.

Fig. 1.9. Schematic of the ADC front-end from Terasic.

8

Fig. 1.10. Adaptive filter tracking and recovery of impulse response of AFC. (a) Sampled excitation signal. (b) Desired

signal/phosphorescence. (c) Adaptive filter output mimics (b). (d) Retrieved impulse response resembles a delta function.

Fig. 1.11. Adaptive filter tracking and recovery of impulse response of Ru(dpp)3(PF6)2. (a) Sampled excitation signal. (b)
Desired signal/phosphorescence. (c) Adaptive filter output mimics (b). (d) Retrieved impulse response and coefficients fit

to a mono-exponential function with an estimated 𝜏𝜏 = 2.1 µ𝑠𝑠.

9

For an imaging test case, we scattered Ru(BPY)3 crystals (fig. 1.12) on a slide followed by a coverslip and performed

imaging, while the ADC and adaptive filter operated at a sample rate of 20 MHz (50 ns/sample). Average laser power incident on

the sample was 245 µW with a pseudo-random modulation. The coefficients were averaged at every pixel using a Cascaded

Integrator-Comb (Intel CIC filter IP core) by setting the averaging factor to be a multiple of number of channels i.e. 992. This gave

us a pixel dwell time 49.6 µs. The scan line-rate for a 256 x 256 image was set using ScanImage (Vidrio Technologies), such that

one set of averaged coefficients are produced per pixel by the CIC filter. A start-of-frame trigger was exported out through the NI

BNC-2090A board and fed to the FPGA through GPIO pins which signaled an internal state machine to start recording coefficients.

The impulse response recovered at each pixel was sequentially logged to an on-board SRAM while a pair of galvanometers raster-

scanned the excitation spot through the specimen. After a frame was recorded, the SRAM contents were transferred to a host

computer through a JTAG-AvalonMM interface[16], and reshaped into an image stack of dimensions 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦 × 16. This stack

then went through two rounds of fitting: first, by being fitted to a mono-exponential model, 𝐴𝐴 +𝐵𝐵𝑒𝑒−(𝑡𝑡−𝐶𝐶)𝜏𝜏 . Then for a second

round, by choosing the obtained fit parameters from first round of the pixel with least sum-squared error within a 3 x 3

neighborhood of the pixel of interest, as the initial guess. A resulting mono-exponential fit false color image of 𝜏𝜏 (emission lifetime)

is shown in Fig. 1.13. The goodness-of-fit of the individual pixels within the image have been evaluated using the Coefficient of

Determination (𝑅𝑅2). Pixels with 𝑅𝑅2 < 0.6 have been masked in black to only display pixels with a reliable fit. The observed

~100—200 ns lifetime consistent with prior measurements of dried films of Ru(BPY)3 [17]. The fact that the solid state lifetime is

shorter than the ~350 ns lifetime in liquid solution may be a consequence of temperature-dependent quenching [14].

Fig. 1.12. Molecular structure of Ru(BPY)3 from Sigma-Aldrich.

10

Fig. 1.13. (a) Mono-exponential fit false color phosphorescence lifetime image of Ru(BPY)3 crystals. Pixels with goodness-
of-fit parameter 𝑅𝑅2 < 0.6 are masked black and pixels with lifetime ≥ 300 ns are marked in red. (b) Mono-exponential

fit of averaged filter coefficients in a selected region with an estimated 𝜏𝜏 = 135 𝑛𝑛𝑠𝑠.

Discussion

 We have shown adaptive filter measurement of luminescence lifetimes on order of 100 to 2,100 nanoseconds—

enough for imaging oxygen-sensing phosphors. It does this by modeling the time-domain optical response to a pseudo-random

excitation with a FIR filter, iteratively adjusting its impulse response until its output tracks the optical measurement. By

implementing the adaptive filter on an FPGA, the feedback loop can operate on a 20 MS/sec data stream and converge well within

the 50 μs pixel dwell time of a laser-scan imaging scenario with a 3.3 sec/frame rate. We anticipate this approach can be extended

to lifetimes shorter than 10 ns by implementing a D-LMS adaptive filter, which uses pipelining to reduce the critical path delay in

the feedback loop [12].

Key Takeaway

 We used MATLAB to observe the system identification capability of the LMS algorithm on the unknown non-

linear quantity i.e. phosphorescence, using the following photoexcitation rate equation [18], 𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑥𝑥𝐿𝐿(𝑑𝑑)(1 −𝑛𝑛)− �𝑘𝑘0 + 𝑘𝑘𝑞𝑞𝑄𝑄�𝑛𝑛

11

Where 𝑛𝑛 = 𝑁𝑁/𝑁𝑁𝑇𝑇 is the fraction of phosphor in excited form, 𝑘𝑘𝑥𝑥 is the rate coefficient of excitation, 𝐿𝐿(𝑑𝑑) is the excitation light

intensity, and 𝑘𝑘0, 𝑘𝑘𝑞𝑞 and 𝑄𝑄 are traditional Stern-Volmer parameters.

Fig. 1.14. Effect of changing step size on the recovered impulse response. Variability in the recovered impulse response

shows that the method cannot recover the lifetime correctly.

12

Solution to the ordinary differential equation (ODE) using a PRBS stimulus showed that the adaptive filter tracked the time domain

phosphorescence very well. The recovered impulse response though, was dependent on the step-size, implying that the method is

inconsistent and cannot be relied upon (figure 1.14). In another experiment, we programmed a FIR filter to match the correct

theoretical phosphorescence lifetime and observed the time domain response. It was found that the time domain response of the

FIR filter was very different from that obtained by solving the ODE (figure 1.15). Thereby implying that a FIR system cannot

model non-linear phenomena correctly. This study sets the stage for exploration of non-linear system identification methods in this

domain.

Fig. 1.15. Using a FIR filter to understand the time domain tracking behavior. On preloading FIR with the correct impulse
response, its time domain response is very different from that obtained by solving the ordinary differential equation (ODE).

Thereby indicating that non-linear phenomena cannot be modeled using FIR systems.

13

CHAPTER 2 – RINS: THE REAL-TIME RELATIVE INTENSITY NOISE SUPPRESSOR

Introduction

 Transient absorption and stimulated Raman scattering microscopy are nonlinear optical methods that obtain

chemical contrast from electronic and vibrational dynamics [19]. Applications have ranged from label-free molecular contrast in

biological tissues to defect characterization and charge transport mapping in novel 2-dimensional nanomaterials [19]–[22]. Both

techniques rely on sensing miniscule perturbations to a probe laser beam, induced by a pump beam, and are thus highly susceptible

to laser relative intensity noise (RIN). In the case of bulk laser sources (e.g. a Ti:Al2O3 ultrafast oscillator), most of the RIN can be

rejected by modulating the pump at > 1 MHz and employing lock-in detection on the probe [23]. In the case of fiber laser sources,

however, broad bandwidth and high-frequency RIN [24]–[26] necessitates active noise cancellation through balanced detection,

for example, custom radio frequency (RF) analog electronics involving a variable-gain amplifier and PID controller [27].

Compensating for such noise by slow scanning and long averaging at each pixel introduces other problems. This averaging strategy

precludes high-speed imaging and is ineffective on 1/𝑓𝑓 noise [28]. In addition, the heat deposited by long pixel dwell times can

damage the sample. Recently, we introduced a software-based scheme which uses a high-speed analog to digital converter (ADC)

and adaptive filtering for active RIN cancellation [29]. Compared with the analog electronics solution, the software approach is

convenient in terms of sharing, replication, and fine-tuning and requires neither custom analog circuits, nor a dedicated hardware

lock-in amplifier (LIA). However, as it was limited by ADC noise and based on post-processing of acquired data, it was

impractically slow for all but proof-of-concept imaging tests. These speed limitations can be overcome by implementing the

adaptive filter on a field-programmable gate array (FPGA) for real-time noise cancellation [30]. FPGAs, due to their capacity for

low latency and high bandwidth computations, are well-suited for real-time signal processing on data streams directly from high-

bandwidth (i.e. 10-500 MSPS) ADCs, enabling for example, low cost and energy efficient software-defined radio [31] and lock-

in amplifiers for scientific applications [8], [32]–[34].

(Note: the information presented here appears with permission from the author’s and in accordance with the publisher’s license,

reference [29] and [35].)

 Here, we implement adaptive laser RIN suppressor (RINS) in real-time on a development board (Red Pitaya

STEMlab 125-14) that includes high-speed ADC and digital-to-analog (DAC) converters alongside an FPGA with an on-board

microprocessor (Xilinx Zynq 7010 SoC). The device is set up as a drop-in denoiser that is inserted between the photodetectors and

a lock-in amplifier and coded using high-level synthesis (HLS). For this implementation, we performed lock-in detection in

14

software and show compatibility with a commercial lock-in amplifier. We demonstrate its application to transient absorption

microscopy of a crystalline powder. Compared to our previous all-software implementation [29], this FPGA implementation has

a lower noise floor and provides real-time RIN cancellation, reducing the image acquisition time from ~6 hours down to ~35

minutes.

Theory

 A balanced detector can eliminate noise that is correlated between the signal and reference arms (common-mode

noise) such as laser RIN. When the electronic noise floor is below the shot noise floor, a balanced detector will reduce the overall

noise floor to 3 dB above the shot noise floor [36]. This limit arises from the separate shot noise contributions of the two detectors.

Unlike the RIN, these add together at the balanced detector’s output because they are uncorrelated. Likewise, electronic noise

(photodiode amplifier noise, ADC input noise) is also uncorrelated. Therefore, when the electronic noise floor is above the shot

noise floor, a balanced detector will reduce the overall noise floor to 3 dB above the electronic noise floor. We take this theoretical

limit into consideration when tuning the adaptive filter’s performance.

 For a given adaptive filter length 𝐿𝐿 we select a step size 𝜇𝜇 such that the noise floor of 𝑒𝑒 = 𝑦𝑦 − 𝑑𝑑 is at 3 dB

above the electronics noise floor (the theoretical limit for an electronic noise limited balanced detector), which we estimate from

the power spectrum at 𝑓𝑓 > 15 MHz, above the photodetector cutoff. This turns out to be 𝜇𝜇 ≈ 0.8/𝐿𝐿 for our conditions from our

software-based study. As can be seen in fig. 2.1 below, larger 𝜇𝜇 has an advantage in tracking transmitted probe intensity more

closely, but also erodes the signal and increases high-frequency noise. This increased noise for large 𝜇𝜇 is also a symptom of the

LMS gradient descent overshooting and oscillating about the optimum filter coefficients[11]. The best SNR enhancement appears

to be at 𝐿𝐿 = 8, 𝜇𝜇 = 0.1. Filters with 𝐿𝐿 ≥ 16 (not shown) were found to be less stable under our conditions and fail to further

enhance SNR.

15

Fig. 2.1. ANC-enhanced PSDs for BGO particle imaging experiments. PSDs shown are max projections across all scan lines

of the image, for a single repetition. The adaptive filter noise canceling performance is evaluated with respect to different

filter lengths 𝐿𝐿 and step sizes 𝜇𝜇.

Implementation

Fig. 2.2. System diagram of IP components and interconnects placed on the FPGA. Digitized datastream from ADC is

downsampled, passed through an LMS adaptive filter, upsampled, then passed to the DAC for an analog output. Clock
domain crossings are handled with FIFO buffers. The on-chip CPU controls parameters of the LMS module through an AXI-

lite interface and can be accessed through a command-line terminal.

 We made use of Pavel Demin’s software-defined radio project as a starting point [37]. A high-level system

diagram of our implementation is shown in fig. 2.2. An 8-tap digital adaptive noise canceller (ANC) was implemented using the

least mean squares (LMS) algorithm. Individual modules were connected using an IP integrator (Xilinx Vivado Hlx 2018.2). All

signals pass between modules using the AXI streaming protocol. Flow of data within the FPGA modules is as follows: Two 14-

bit ADCs on-board operating at 125 MSPS digitize 𝑥𝑥 and 𝑑𝑑 which are low-pass filtered with cut-off at ~8.2 MHz then decimated

16

(Xilinx FIR compiler 2; M=5). The resulting 25 MSPS datastream is then passed to individual FIFOs for a clock domain conversion

from 125 MHz to 25 MHz. The HLS produced adaptive filter IP (called LMS module) is clocked at 25 MHz, which receives this 𝑥𝑥 and 𝑑𝑑. The IP produces an error output at 25 MSPS which is passed through a FIFO to convert clock domain from 25 MHz to

125 MHz. Clock domain crossing FIFOs are implemented using Xilinxs’ FIFO generator (BRAM implementation with

independent clocks using 8-sync stages). An interpolator (Xilinx FIR compiler 2; L=5) is used to upsample the error output before

passing to a DAC on-board operating at 125 MSPS. A gain setting is implemented by right shifting a 14-bit window, effectively

amplifying the error signal before outputting via a DAC. This serves the purpose of bringing the signal above the noise floors of

the DAC and the next physical device downstream (i.e. a lock-in amplifier). The LMS algorithm step-size and output gain is

manipulated using registers controlled by the CPU. A program running on the CPU in a loop continuously reads/updates these

registers as provided by the user via a command-line terminal. The LMS module constantly reads these parameters every clock

cycle through an AXI-lite interface.

 The LMS module was coded in C/C++ using the HLS methodology, which speeds hardware design by making

it easier to validate the algorithm, automatically handling pipelining and loop unrolling to meet timing requirements and reducing

the effort to change parameters and explore design space. Pre-processor directives (#pragma) were used to convey to the HLS

compiler details about parallelization and logic implementation. #pragma HLS pipeline 𝐼𝐼𝐼𝐼 = 1 sets the design throughput to one

sample per clock cycle, and ensures the adaptive filter updates its output and filter coefficients before the next sample arrives at the

input. #pragma array_partition maps arrays (i.e. the tapped delay line 𝑥𝑥[𝑛𝑛] …𝑥𝑥[𝑛𝑛− 7] and filter coefficients 𝑓𝑓[0] …𝑓𝑓[7]) into

multiple registers rather than one large memory (block RAM) for simultaneous access. #pragma HLS unroll exposes parallelism

by enabling all the filter taps to be executed in the same clock cycle.

 Internal details of the LMS module are illustrated in fig. 2.3 using a signal flow diagram. The bit-widths are

represented in a 𝑄𝑄𝑛𝑛.𝑄𝑄 format where 𝑛𝑛 is the total number of bits and 𝑄𝑄 is the number of fractional bits after an assumed decimal

position. Arithmetic was performed in signed fixed-point format using Xilinxs’ ap_int datatype. While fixed-point arithmetic is

significantly faster than floating-point, it comes at the risk of round-off and overflow errors due to limited precision and range. To

minimize this risk, the number of integer and fractional bits for the filter coefficients, products, and accumulators were selected

with the assistance of the MATLAB fixed-point toolbox. We selected the minimum bit-widths that closely matched the output of

a floating-point simulation of LMS filtering on pre-recorded pump-probe data. This approach generally prevented overflow, except

in areas where transmissivity was significantly higher than the pre-recorded data. To address it, an additional guard bit can be added

17

to the coefficients or electronic (after sample) / optical (before sample) attenuation of the probe beam can avoid coefficient

overflow.

Fig. 2.3. Signal flow diagram of the LMS module.

 The HLS design was simulated using C/C++ test-benches to verify functional correctness, and that the output

matches the MATLAB simulation. The HLS tool synthesized a hardware description of the module and a register-transfer level

(RTL) model of the logic implementation. This generated RTL was then verified using C/C++ test-benches via co-simulation,

which simulates the behavior of the scheduled hardware as it would run on the FPGA in the presence of a clock. The timing report

showed that the module could run at a clock rate of 25 MHz with the requested sample initiation interval (II) of 1 clock cycle.

Experimental Setup

 The pump-probe microscope setup is shown in figure 2.4 below. Pump and probe pulses at 530 nm and 480

nm, respectively, with a cross-correlation of 800 fs, were generated by a two-color laser source described in reference [38]. Pump

and probe power out of the two-color laser source were both 10 mW. The pump was modulated with a square wave at 1.5 MHz

with an acousto-optic modulator (AOM). Before the microscope, a 50/50 beam splitter directed a portion of the probe beam towards

a reference photodiode (PDA36A, Thorlabs), which was connected to ADC CH1. After the microscope, the transmitted probe

beam was detected with a second photodiode and connected to ADC CH2. In all the experiments using RINS, the feedback

coefficient was set to, 𝜇𝜇 = 2 × 10−6 and total gain from ADC to DAC was 25 = 32.

18

Fig. 2.4. A conventional pump-probe microscope is employed to generate probe signal, 𝑑𝑑(𝑛𝑛), and reference, 𝑥𝑥(𝑛𝑛). The
probe and reference signals feed into the FPGA to produce the output 𝑒𝑒(𝑛𝑛), which contains the pump-probe signal minus

estimated RIN. Then a software LIA and CIC filter are used to demodulate the pump-probe signal from 𝑒𝑒(𝑛𝑛).

The Red Pitaya DAC output was then either re-digitized by a data acquisition (DAQ) device (Analog Discovery Studio,

Digilent) for processing with a software lock-in algorithm or fed into a hardware lock-in device (Moku, Liquid Instruments). For

image acquisition, we used TTL synchronization from y-scan mirror to trigger the DAQ acquisition while a 3.5 KHz resonant scan

mirror completed the x-scan. Translation along y-axis was achieved by stepping a mechanical stage by 1 µm after one acquisition,

repeated for 100 lines. Image field of view was 75 x 100 µm2. To further improve SNR, we captured and averaged data for a total

of 10 passes. Data without RINS was obtained by directly digitizing the output using DAQ, from the probe photodetector.

 A MATLAB script was used as a lock-in amplifier (LIA) to extract modulated amplitude at the modulation

frequency. The modulation reference was derived from the TTL sync output of the function generator driving the pump AOM.

The pump modulation TTL sync was captured on the DAQ analog CH2. This square wave was then converted to in-phase (I) and

quadrature (Q) sinusoids by a narrow band-pass FIR filter at the fundamental, followed by a Hilbert transform and a normalization

step to eliminate amplitude variations. The resulting complex vector was rotated by multiplication with 𝑒𝑒𝑖𝑖𝑖𝑖 to bring the lock-in X

channel in phase with absorptive signals (i.e. two-photon absorption, excited-state absorption). The real and imaginary parts of the

reference oscillator were then individually mixed with the output to obtain the I and Q products. These I and Q products were then

passed through a CIC decimator with 𝑅𝑅 = 128,𝑀𝑀 = 4, and 𝑁𝑁 = 2 to yield X and Y lock-in channels. A simple MATLAB

code snippet that demonstrates this process is as follows:

% Setup CIC filter

decimator = dsp.CICDecimator(128,4,2);

% Band-pass parameters

Fs = 50; % Sampling Frequency

N = 100; % Order

Fstop1 = 1.4; % First Stopband Frequency

19

Fpass1 = 1.45; % First Passband Frequency

Fpass2 = 1.55; % Second Passband Frequency

Fstop2 = 1.6; % Second Stopband Frequency

Wstop1 = 1; % First Stopband Weight

Wpass = 1; % Passband Weight

Wstop2 = 1; % Second Stopband Weight

% Calculate coefficients using FIRLS function and obtain filter object

b = firls(N, [0 Fstop1 Fpass1 Fpass2 Fstop2 Fs/2]/(Fs/2), [0 0 1 1 0 0], [Wstop1

Wpass Wstop2]);

Hd = dfilt.dffir(b);

. . .

filt_TTL = filter(Hd, TTL); % filter TTL sync

filt_TTL_hilbert = hilbert(filt_TTL);

% Normalize each data point

filt_TTL_hilbert_norm = filt_TTL_hilbert./abs(filt_TTL_hilbert);

osc_shifted = filt_TTL_hilbert_norm * exp(i*phase_offs);

% Lock-in

I = Signal.*real(osc_shifted);

Q = Signal.*imag(osc_shifted);

decimator.reset();

lia_x = decimator(I);

decimator.reset();

lia_y = decimator(Q);

Results

Spectroscopic (Non-Imaging) Measurement Result

 Figure 2.5 shows the pump-probe delay scan of a single, uniform Bi4Ge3O12 crystal, acquired with and without

RINS in place. At each probe delay, we acquired a 327.68 𝜇𝜇𝑠𝑠 window of the signal using DAQ and calculated the power spectral

density (PSD) with MATLAB’s pwelch() function with a Blackman window of length 4096. During these measurements, the

resonant x-scanner was enabled to prevent heat from building up at the focal spot and give the adaptive filter some minor

transmissivity variations to keep up with. As expected for our conditions (530 nm pump, 480 nm probe), the signal at the pump

modulation frequency (1.5 MHz) indicates a non-degenerate two-photon absorption that traces the cross-correlation of the pump

and probe pulses [29].

20

Fig. 2.5. Pump-probe delay scan of 2-photon absorption response in BGO. a) Power spectral density (PSD) of probe
photodiode signal with respect to pump-probe delay, without RINS. b) PSD at 1.5 MHz pump modulation frequency,

without RINS. c) PSD of probe with RINS, showing lower noise floor and making the 4.5 MHz pump modulation harmonic

visible. d) PSD with RINS at 1.5 MHz pump modulation frequency.

 Figure 2.6 shows the power spectrum of the RINS output along with the electronics noise floor and shot noise

floor. The total SNR of the pump-probe signal after RINS is +15 dB. The total gain (32x) through the FPGA places the shot noise

floor on par with the input noise of the DAQ. But as can be seen from the red line, the overall noise floor of the Red Pitaya ADC,

DAC and LMS module places the electronics noise floor around 12 dB above the shot noise floor. From this we conclude that the

Red Pitaya ADC noise floor is the limiting factor in shot noise limited detection.

21

Fig. 2.6. Power spectra of RINS output, electronics noise floor, and shot noise floor. Units in dBc/Hz, referenced to the RINS

system electronics noise floor.

Imaging Result

 To demonstrate the ability of RINS to maintain balance during a high-speed imaging scenario, a sample of

crushed BGO was placed under the objective, then a spacer was placed around the particles with a coverslip on top. Figure 2.7

shows imaging results at 0 ps and 2 ps probe delays, both with and without RINS in place. Each scan line was acquired for 10

repetitions, and the resulting lock-in outputs and PSDs for each scan line were averaged across all repetitions. Consistent with our

previous findings, the lock-in, without ANC, sees a significant amount of high-frequency RIN within its passband (magenta box,

Fig. 2.7 b, d). As a result, an image is formed of the sample transmissivity and has no dependence on probe delay (Fig. 2.7 a, e).

By contrast, with RINS, noise is significantly reduced across a broad range of RF frequencies (Fig. 2.7 d, h), making the 1.5 MHz

pump modulation and its 4.5 MHz harmonic clearly visible in the PSD. In addition, the lock-in output recovers a clear dependence

on probe delay (Fig. 2.7 c, g), consistent with the delay scan (Fig. 2.5).

22

Fig. 2.7. Imaging results at 𝝉𝝉 = 𝟎𝟎 𝒑𝒑𝒑𝒑 probe delay (top row) and at 𝝉𝝉 = 𝟐𝟐 𝒑𝒑𝒑𝒑 probe delay (bottom row).

Compatibility with Commercial Lock-In Amplifiers

 Finally, we tested the RINS system as a drop-in pre-filtering device in front of a commercial lock-in amplifier

(Moku, Liquid Instruments). As before, the sample is monolithic BGO, and probe delay is set to 𝜏𝜏 = 0. From fig. 2.8, the pump-

probe signal is noticeably stable after RIN has been removed from the probe, corresponding to a significant reduction in noise.

Fig. 2.8. RIN suppression prefiltering effects on output of commercial lock-in amplifier. a) Lock-in configuration. b) Probe,

reference connected to RINS, RINS output then connected to lock-in, pump beam blocked. c) Pump unblocked, showing

pump-probe signal through RINS. d) Pump unblocked, probe detector connected directly to lock-in, without RINS.

23

Conclusion

 To summarize, our results on BGO visibly show an enhancement in SNR, obtained in real-time using the RINS

system which produces an analog output compatible with a conventional lock-in amplifier. Though the front-end ADC noise floor

of Red Pitaya prevented shot noise-limited detection, the device enabled transient absorption imaging under conditions that are

impossible to image using a lock-in amplifier alone (i.e. high levels of RIN combined with effects due to fast, resonant scanning of

the beam). Data collection time was pronounceably reduced from ~6 hours down to ~35 minutes compared to our previous all-

software implementation. We anticipate this plug-and-play RIN denoising device to find applications in any experimental

technique that relies on detecting small perturbations to a probe laser, such as transient absorption, stimulated Raman scattering,

and photothermal microscopy.

Thermal Noise, Shot Noise and Quantization Noise

 The ADC on the Red Pitaya 125-14 is LTC2145-14 (Linear Technology) which has an input impedance, 𝑅𝑅 =

1 𝑀𝑀Ω. The thermal noise at 45°𝐶𝐶 is calculated as follows [39], 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑄𝑄𝑎𝑎𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒 = 4𝑘𝑘𝐵𝐵𝑇𝑇𝑅𝑅 = 1.76 ∗ 10−14 𝑉𝑉2/𝐻𝐻𝐻𝐻

Where 𝑘𝑘𝐵𝐵 is Boltzmann constant in joules/kelvin.

Shot noise for 𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼 = 245 𝜇𝜇𝐴𝐴 [Iavg = 0.37 Vavg / PDA36A TIA gain factor 1510 V/A] is given by [40], 𝑆𝑆ℎ𝑛𝑛𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒= 2𝑒𝑒𝐼𝐼 ∗ 𝐼𝐼𝑎𝑎𝑛𝑛𝑛𝑛2 = 1.79 ∗ 10−16 𝑉𝑉2/𝐻𝐻𝐻𝐻

And the quantization noise approximated by a sawtooth error is given by [41],

𝑄𝑄𝑒𝑒𝑎𝑎𝑛𝑛𝑑𝑑𝑛𝑛𝐻𝐻𝑎𝑎𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒=
𝑞𝑞2

12 ∗ 60 𝑀𝑀𝐻𝐻𝐻𝐻 𝐴𝐴𝐴𝐴𝐶𝐶 𝑏𝑏𝑎𝑎𝑛𝑛𝑑𝑑𝑏𝑏𝑛𝑛𝑑𝑑𝑑𝑑ℎ = 2.1 ∗ 10−17 𝑉𝑉2/𝐻𝐻𝐻𝐻

Where 2−13 𝑉𝑉 is the quantization step.

The pixel dwell time is 2.56 𝜇𝜇𝑠𝑠/𝑝𝑝𝑛𝑛𝑥𝑥𝑒𝑒𝑒𝑒 , which is a bandwidth of 390.625 KHz. The RMS values of the quantities above, within

this bandwidth are, 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑄𝑄𝑎𝑎𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒, 𝑒𝑒𝑄𝑄𝑠𝑠 = 82.9 𝜇𝜇𝑉𝑉 𝑆𝑆ℎ𝑛𝑛𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒, 𝑒𝑒𝑄𝑄𝑠𝑠 = 8.36 𝜇𝜇𝑉𝑉 𝑄𝑄𝑒𝑒𝑎𝑎𝑛𝑛𝑑𝑑𝑛𝑛𝐻𝐻𝑎𝑎𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒, 𝑒𝑒𝑄𝑄𝑠𝑠 = 2.86 𝜇𝜇𝑉𝑉

These calculations show that our experimental setup is currently limited by thermal noise.

24

Future Directions

 To achieve shot noise limited detection, an ADC which has its effective noise floor below the shot noise limit is

a must. An appropriate ADC can be selected by carefully taking into consideration the noise contribution from the following

sources: thermal noise, quantization noise, differential non-linearity noise, and ADC jitter noise.

25

REFERENCES

[1] C. M. McGraw, G. Khalil, and J. B. Callis, “Comparison of time and frequency domain methods

for luminescence lifetime measurements,” J. Phys. Chem. C, vol. 112, no. 21, pp. 8079–8084,

2008, doi: 10.1021/jp711867u.

[2] E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the

two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt., vol. 8,

no. 3, p. 381, 2003, doi: 10.1117/1.1586704.

[3] A. T. N. Kumar, S. B. Raymond, B. J. Bacskai, and D. A. Boas, “Comparison of frequency-

domain and time-domain fluorescence lifetime tomography.,” Opt. Lett., vol. 33, no. 5, pp. 470–

472, 2008, doi: 10.1364/OL.33.000470.

[4] N. G. Chen and Q. Zhu, “Time-resolved optical measurements with spread spectrum excitation,”

Opt. Lett., vol. 27, no. 20, p. 1806, 2002, doi: 10.1364/ol.27.001806.

[5] Q. Zhang, H. W. Soon, H. Tian, S. Fernando, Y. Ha, and N. G. Chen, “Pseudo-random single

photon counting for time-resolved optical measurement,” Opt. Express, vol. 16, no. 17, p. 13233,

2008, doi: 10.1364/oe.16.013233.

[6] Q. Zhang and N. Chen, “Pseudo-random single photon counting system: a high speed

implementation and its applications,” Des. Qual. Biomed. Technol. IV, vol. 7891, no. 1, p.

78910G, 2011, doi: 10.1117/12.874390.

[7] Q. Zhang, L. Chen, and N. Chen, “Pseudo-random single photon counting system: a high speed

implementation,” Biomed. Opt. Express, vol. 1, no. 1, p. 41, 2010, doi: 10.1117/12.874390.

[8] J. W. Wilson, J. K. Park, W. S. Warren, and M. C. Fischer, “Flexible digital signal processing

architecture for narrowband and spread-spectrum lock-in detection in multiphoton microscopy and

26

time-resolved spectroscopy,” Rev. Sci. Instrum., vol. 86, no. 3, p. 033707, 2015, doi:

10.1063/1.4916261.

[9] R. A. Colyer, C. Lee, and E. Gratton, “A Novel Fluorescence Lifetime Imaging System That

Optimizes Photon Efficiency,” Microsc. Res. Tech., vol. 71, no. 3, pp. 201–213, 2008.

[10] B. Friedlander, “System Identification Techniques for Adaptive Signal Processing,” Circuits Syst.

Signal Process, vol. 1, no. I, pp. 3–41, 1982.

[11] P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, 4th ed. New York:

Springer, 2013.

[12] U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, 4th ed. New

York: Springer, 2014.

[13] W. T. Padgett and D. V. Anderson, Fixed-Point Signal Processing. San Rafael, CA: Morgan &

Claypool, 2009.

[14] K. J. Morris, M. S. Roach, W. Xu, J. N. Demas, and B. A. DeGraff, “Luminescence lifetime

standards for the nanosecond to microsecond range and oxygen quenching of ruthenium(II)

complexes,” Anal. Chem., vol. 79, no. 24, pp. 9310–9314, 2007, doi: 10.1021/ac0712796.

[15] B. R. Gayathri, J. R. Mannekutla, and S. R. Inamdar, “Effect of binary solvent mixtures

(DMSO/water) on the dipole moment and lifetime of coumarin dyes,” J. Mol. Struct., 2008, doi:

10.1016/j.molstruc.2008.02.020.

[16] D. W. Hawkins, “Altera JTAG-to-Avalon-MM Tutorial,” 2012. .

[17] E. L. Sciuto et al., “Photo-physical characterization of fluorophore Ru(bpy)32+ for optical

biosensing applications,” Sens. Bio-Sensing Res., vol. 6, pp. 67–71, 2015, doi:

10.1016/j.sbsr.2015.09.003.

27

[18] A. S. Golub, A. S. Popel, L. Zheng, and R. N. Pittman, “Analysis of Phosphorescence Decay in

Heterogeneous Systems: Consequences of Finite Excitation Flash Duration,” Photochem.

Photobiol., vol. 69, no. 6, pp. 624–632, Jun. 1999, doi: 10.1111/j.1751-1097.1999.tb03338.x.

[19] Y. Zhu and J. X. Cheng, “Transient absorption microscopy: Technological innovations and

applications in materials science and life science,” J. Chem. Phys., vol. 152, p. 020901, 2020, doi:

10.1063/1.5129123.

[20] M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-

probe microscopy,” Rev. Sci. Instrum., vol. 87, no. 3, p. 031101, 2016, doi: 10.1063/1.4943211.

[21] C. Zhang, D. Zhang, and J. X. Cheng, “Coherent Raman Scattering Microscopy in Biology and

Medicine,” Annual Review of Biomedical Engineering. 2015, doi: 10.1146/annurev-bioeng-

071114-040554.

[22] E. M. Grumstrup, M. M. Gabriel, E. E. M. Cating, E. M. Van Goethem, and J. M. Papanikolas,

“Pump-Probe Microscopy: Visualization and Spectroscopy of Ultrafast Dynamics at the

Nanoscale,” Chem. Phys., vol. 458, pp. 30–40, 2015, doi: 10.1016/j.chemphys.2015.07.006.

[23] P. Tian and W. S. Warren, “Ultrafast measurement of two-photon absorption by loss modulation.,”

Opt. Lett., vol. 27, no. 18, pp. 1634–1636, 2002, doi: 10.1364/OL.27.001634.

[24] N. Coluccelli, V. Kumar, M. Cassinerio, G. Galzerano, M. Marangoni, and G. Cerullo,

“Er/Tm:fiber laser system for coherent Raman microscopy,” Opt. Lett., vol. 39, no. 11, pp. 3090–

3093, 2014, doi: 10.1364/OL.39.003090.

[25] P. Qin et al., “Reduction of timing jitter and intensity noise in normal-dispersion passively mode-

locked fiber lasers by narrow band-pass filtering,” Opt. Express, vol. 22, no. 23, pp. 28276–28283,

2014, doi: 10.1364/OE.22.028276.

[26] I. L. Budunoğlu, C. Ülgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber

28

lasers,” Opt. Lett., vol. 34, no. 16, pp. 2516–2518, 2009, doi: 10.1364/OL.34.002516.

[27] C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu,

“Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics, vol. 8,

no. 2, pp. 153–159, 2014, doi: 10.1038/nphoton.2013.360.

[28] J. W. Wilson and R. A. Bartels, “Rapid birefringent delay scanning for coherent multiphoton

impulsive raman pump-probe spectroscopy,” IEEE J. Sel. Top. Quantum Electron., vol. 18, no. 1,

pp. 130–139, 2012, doi: 10.1109/JSTQE.2011.2106113.

[29] E. Wang, S. Gupta, and J. W. Wilson, “Adaptive noise cancelling for transient absorption

microscopy,” J. Biomed. Opt., no. Accepted., 2020.

[30] R. Finger, F. Curotto, R. Fuentes, R. Duan, L. Bronfman, and D. Li, “A FPGA-based Fast

Converging Digital Adaptive Filter for Real-time RFI Mitigation on Ground Based Radio

Telescopes,” Publ. Astron. Soc. Pacific, vol. 130, no. 984, p. 25002, 2017, doi: 10.1088/1538-

3873/aa972f.

[31] R. Akeela and B. Dezfouli, “Software-defined Radios: Architecture, state-of-the-art, and

challenges,” Computer Communications. 2018, doi: 10.1016/j.comcom.2018.07.012.

[32] E. Flater et al., “Error estimation and enhanced stiffness sensitivity in contact resonance force

microscopy with a multiple arbitrary frequency lock-in amplifier (MAFLIA),” Meas. Sci.

Technol., 2020.

[33] G. A. Stimpson, M. S. Skilbeck, R. L. Patel, B. L. Green, and G. W. Morley, “An open-source

high-frequency lock-in amplifier,” Rev. Sci. Instrum., 2019, doi: 10.1063/1.5083797.

[34] D. M. Harcombe, M. G. Ruppert, and A. J. Fleming, “A review of demodulation techniques for

multifrequency atomic force microscopy,” Beilstein J. Nanotechnol., vol. 11, pp. 76–91, 2020, doi:

10.3762/bjnano.11.8.

29

[35] S. Gupta, E. Wang, S. Derrien, and J. W. Wilson, “RINS: A FPGA-based Real-time Relative

Intensity Noise Suppressor in Pump-probe Microscopy,” Rev. Sci. Instrum.

[36] P. C. D. Hobbs, “Reaching the shot noise limit for $10,” Opt. Photonics News, vol. 2, no. 4, pp.

17–23, 1991, doi: 10.1364/OPN.2.4.000017.

[37] P. Demin, “Red Pitya Notes.” .

[38] S. R. Domingue, R. A. Bartels, A. J. Chicco, and J. W. Wilson, “Transient absorption imaging of

hemes with 2-color, independently tunable visible-wavelength ultrafast source,” Biomed. Opt.

Express, vol. 8, no. 6, pp. 2807–2821, 2017.

[39] “Johnson noise.” https://en.wikipedia.org/wiki/Johnson–Nyquist_noise.

[40] “Shot noise.” https://en.wikipedia.org/wiki/Shot_noise.

[41] “Quantization noise.” https://www.analog.com/media/en/training-seminars/tutorials/MT-001.pdf.

30

APPENDIX A

Verilog code for LMS adaptive filter in chapter 1

module adaptive_fir

#(parameter W1 = 12,W2 = 32,L=16)

(input clk,

input reset,

input signed [11:0] x_in,

input signed [13:0] d_in,

input [7:0] mu_in,
output reg signed [31:0] y_out,

output reg signed [32:0] e_out,

output reg signed [15:0] f_0,

output reg signed [15:0] f_1,

output reg signed [15:0] f_2,

output reg signed [15:0] f_3,

output reg signed [15:0] f_4,

output reg signed [15:0] f_5,
output reg signed [15:0] f_6,

output reg signed [15:0] f_7,

output reg signed [15:0] f_8,

output reg signed [15:0] f_9,

output reg signed [15:0] f_10,

output reg signed [15:0] f_11,

output reg signed [15:0] f_12,

output reg signed [15:0] f_13,

output reg signed [15:0] f_14,
output reg signed [15:0] f_15

);

//regs and wire declarations:

reg signed [11:0] x [0:L-1];

reg signed [15:0] f [0:L-1];

reg signed [13:0] d ;

wire signed [31:0] d_extended;
reg signed [27:0] p [0:L-1];

wire signed [32:0] emu;

reg signed [44:0] xemu [0:L-1];

reg signed [15:0] xemu_truncd [0:L-1];

reg signed [16:0] xemu_round [0:L-1];

wire signed [31:0] y;

wire signed [32:0] e;

wire signed [29:0] delta_round_factor = (mu_in == 8'd0) ? 30'sd0 : 30'sd1 <<<

(mu_in - 1'd1);

initial begin

 d <= 14'd0;

 x[0] <= 12'd0;

 x[1] <= 12'd0;

 x[2] <= 12'd0;

 x[3] <= 12'd0;

 x[4] <= 12'd0;
 x[5] <= 12'd0;

31

 x[6] <= 12'd0;

 x[7] <= 12'd0;

 x[8] <= 12'd0;

 x[9] <= 12'd0;
 x[10] <= 12'd0;

 x[11] <= 12'd0;

 x[12] <= 12'd0;

 x[13] <= 12'd0;

 x[14] <= 12'd0;

 x[15] <= 12'd0;

 f[0] <= 16'd0;
 f[1] <= 16'd0;

 f[2] <= 16'd0;

 f[3] <= 16'd0;

 f[4] <= 16'd0;

 f[5] <= 16'd0;

 f[6] <= 16'd0;

 f[7] <= 16'd0;

 f[8] <= 16'd0;
 f[9] <= 16'd0;

 f[10] <= 16'd0;

 f[11] <= 16'd0;

 f[12] <= 16'd0;

 f[13] <= 16'd0;

 f[14] <= 16'd0;

 f[15] <= 16'd0;

 f_0 <= 16'd0;
 f_1 <= 16'd0;

 f_2 <= 16'd0;

 f_3 <= 16'd0;

 f_4 <= 16'd0;

 f_5 <= 16'd0;

 f_6 <= 16'd0;

 f_7 <= 16'd0;

 f_8 <= 16'd0;
 f_9 <= 16'd0;

 f_10 <= 16'd0;

 f_11 <= 16'd0;

 f_12 <= 16'd0;

 f_13 <= 16'd0;

 f_14 <= 16'd0;

 f_15 <= 16'd0;

end

always @(posedge clk or negedge reset)

if (!reset)

begin

 d <= 14'd0;

 x[0] <= 12'd0;

 x[1] <= 12'd0;

 x[2] <= 12'd0;
 x[3] <= 12'd0;

 x[4] <= 12'd0;

 x[5] <= 12'd0;

32

 x[6] <= 12'd0;

 x[7] <= 12'd0;

 x[8] <= 12'd0;

 x[9] <= 12'd0;
 x[10] <= 12'd0;

 x[11] <= 12'd0;

 x[12] <= 12'd0;

 x[13] <= 12'd0;

 x[14] <= 12'd0;

 x[15] <= 12'd0;

 f[0] <= 16'd0;
 f[1] <= 16'd0;

 f[2] <= 16'd0;

 f[3] <= 16'd0;

 f[4] <= 16'd0;

 f[5] <= 16'd0;

 f[6] <= 16'd0;

 f[7] <= 16'd0;

 f[8] <= 16'd0;
 f[9] <= 16'd0;

 f[10] <= 16'd0;

 f[11] <= 16'd0;

 f[12] <= 16'd0;

 f[13] <= 16'd0;

 f[14] <= 16'd0;

 f[15] <= 16'd0;

 f_0 <= 16'd0;
 f_1 <= 16'd0;

 f_2 <= 16'd0;

 f_3 <= 16'd0;

 f_4 <= 16'd0;

 f_5 <= 16'd0;

 f_6 <= 16'd0;

 f_7 <= 16'd0;

 f_8 <= 16'd0;
 f_9 <= 16'd0;

 f_10 <= 16'd0;

 f_11 <= 16'd0;

 f_12 <= 16'd0;

 f_13 <= 16'd0;

 f_14 <= 16'd0;

 f_15 <= 16'd0;

end

else begin

 d <= d_in;

 x[0] <= x_in;

 x[1] <= x[0];

 x[2] <= x[1];

 x[3] <= x[2];

 x[4] <= x[3];
 x[5] <= x[4];

 x[6] <= x[5];

 x[7] <= x[6];

33

 x[8] <= x[7];

 x[9] <= x[8];

 x[10] <= x[9];

 x[11] <= x[10];
 x[12] <= x[11];

 x[13] <= x[12];

 x[14] <= x[13];

 x[15] <= x[14];

 xemu_round[0] <= xemu [0][37:21] + 1'b1 ;

 xemu_round[1] <= xemu [1][37:21] + 1'b1 ;

 xemu_round[2] <= xemu [2][37:21] + 1'b1 ;
 xemu_round[3] <= xemu [3][37:21] + 1'b1 ;

 xemu_round[4] <= xemu [4][37:21] + 1'b1 ;

 xemu_round[5] <= xemu [5][37:21] + 1'b1 ;

 xemu_round[6] <= xemu [6][37:21] + 1'b1 ;

 xemu_round[7] <= xemu [7][37:21] + 1'b1 ;

 xemu_round[8] <= xemu [8][37:21] + 1'b1 ;

 xemu_round[9] <= xemu [9][37:21] + 1'b1 ;

 xemu_round[10] <= xemu [10][37:21] + 1'b1 ;
 xemu_round[11] <= xemu [11][37:21] + 1'b1 ;

 xemu_round[12] <= xemu [12][37:21] + 1'b1 ;

 xemu_round[13] <= xemu [13][37:21] + 1'b1 ;

 xemu_round[14] <= xemu [14][37:21] + 1'b1 ;

 xemu_round[15] <= xemu [15][37:21] + 1'b1 ;

 xemu_truncd[0] <= xemu_round[0][16:1];

 xemu_truncd[1] <= xemu_round[1][16:1];

 xemu_truncd[2] <= xemu_round[2][16:1];
 xemu_truncd[3] <= xemu_round[3][16:1];

 xemu_truncd[4] <= xemu_round[4][16:1];

 xemu_truncd[5] <= xemu_round[5][16:1];

 xemu_truncd[6] <= xemu_round[6][16:1];

 xemu_truncd[7] <= xemu_round[7][16:1];

 xemu_truncd[8] <= xemu_round[8][16:1];

 xemu_truncd[9] <= xemu_round[9][16:1];

 xemu_truncd[10] <= xemu_round[10][16:1];
 xemu_truncd[11] <= xemu_round[11][16:1];

 xemu_truncd[12] <= xemu_round[12][16:1];

 xemu_truncd[13] <= xemu_round[13][16:1];

 xemu_truncd[14] <= xemu_round[14][16:1];

 xemu_truncd[15] <= xemu_round[15][16:1];

 f[0] <= f[0] + xemu_truncd[0];
 f[1] <= f[1] + xemu_truncd[1];

 f[2] <= f[2] + xemu_truncd[2];

 f[3] <= f[3] + xemu_truncd[3];

 f[4] <= f[4] + xemu_truncd[4];

 f[5] <= f[5] + xemu_truncd[5];

 f[6] <= f[6] + xemu_truncd[6];

 f[7] <= f[7] + xemu_truncd[7];

 f[8] <= f[8] + xemu_truncd[8];

 f[9] <= f[9] + xemu_truncd[9];
 f[10] <= f[10] + xemu_truncd[10];

 f[11] <= f[11] + xemu_truncd[11];

 f[12] <= f[12] + xemu_truncd[12];

34

 f[13] <= f[13] + xemu_truncd[13];

 f[14] <= f[14] + xemu_truncd[14];

 f[15] <= f[15] + xemu_truncd[15];

 f_0 <= f[0];

 f_1 <= f[1];

 f_2 <= f[2];

 f_3 <= f[3];

 f_4 <= f[4];

 f_5 <= f[5];

 f_6 <= f[6];

 f_7 <= f[7];
 f_8 <= f[8];

 f_9 <= f[9];

 f_10 <= f[10];

 f_11 <= f[11];

 f_12 <= f[12];

 f_13 <= f[13];

 f_14 <= f[14];

 f_15 <= f[15];

 y_out <= y;

 e_out <= e;

end

always @(*) begin

integer i;

for (i=0; i<L; i=i+1) p[i] <= x[i] * f[i];
end

assign y = p[0] + p[1]+ p[2] + p[3] +p[4]+ p[5] + p[6] + p[7] + p[8] + p[9]

+ p[10] + p[11] + p[12] + p[13] + p[14] + p[15] ;

assign d_extended = d <<< 10;

assign e = (d_extended-y);

assign emu = ((e + delta_round_factor) >>> mu_in); //Delta control

always @(*) begin

integer i;

for (i=0; i<L ; i = i+1) xemu[i] <= emu * x[i];

end

endmodule

35

APPENDIX B

System diagram from chapter 2.

36

APPENDIX C

Adaptive filter HLS code from chapter 2

//**** IP designer: Saurabh Gupta, CSU, 2020 ****************

#include <stdint.h>

#include <string.h>

#include <stdio.h>

#include <hls_stream.h>

#include <ap_int.h>
#include "./include/LMS.h"

//#define SIMULATE 1

void LMS(hls::stream<ap_uint<16> > &x_in, hls::stream<ap_uint<16> > &d_in,

 hls::stream<ap_uint<16> > &e_out,

 volatile ap_int<32> gain, volatile ap_int<32> mu) {

#pragma HLS INTERFACE ap_ctrl_none port=return
#pragma HLS INTERFACE axis off port=x_in

#pragma HLS INTERFACE axis off port=d_in

#pragma HLS INTERFACE axis off port=e_out

#pragma HLS INTERFACE s_axilite port=gain

#pragma HLS INTERFACE s_axilite port=mu

 ap_int < 8 > j;

 static ap_int < 33 > y;

 static ap_int<14> x[L];
 #pragma HLS array_partition variable=x

 static ap_int<16> f[L];

 #pragma HLS array_partition variable=f

 static ap_int <34> emu;

 static ap_int<34> e;

 ap_int < 14 > x_input;

 ap_int < 14 > d_input;

 ap_uint < 16 > read_x;
 ap_uint < 16 > read_d;

 static ap_int < 29 > rescaled_d;

 ap_int<32> shift_factor;

 static ap_int<32> MU;

 static ap_int<16> correction_factor;

 static ap_int<47> xemu[L];

 #pragma HLS array_partition variable=xemu

 static ap_int<17> xemu_round[L];

 #pragma HLS array_partition variable=xemu_round
 static ap_int<16> xemu_truncd[L];

 #pragma HLS array_partition variable=xemu_truncd

#ifdef SIMULATE

 int i = 0;

 do {

#endif

#pragma HLS pipeline II=1
 shift_factor = gain;

37

 MU = mu;

 // 1) tapped delay line

 read_x = x_in.read();
 read_d = d_in.read();

 x_input = read_x.range(13, 0);

 d_input = read_d.range(13, 0);

 for (j = L - 1; j > 0; j--) {

#pragma HLS loop_tripcount min=7 max=7

#pragma HLS UNROLL

 x[j] = x[j - 1];

 }
 x[0] = x_input;

 // 2) convolution

 y = 0;

 for (j = 0; j < L; j++) {

#pragma HLS loop_tripcount min=8 max=8

#pragma HLS UNROLL

 y+= x[j] * f[j];
 }

 // 3) error calculation

 rescaled_d = (d_input.to_int() << 15); // rescale d

 e = rescaled_d.to_int() - y.to_int();

 // feedback loop update of coefficients

 correction_factor = (MU==0? 0 : 1 << (MU-1));

 emu = (correction_factor.to_int() + e.to_int()) >> MU;

 for (j = 0; j < L; j++) {

#pragma HLS loop_tripcount min=8 max=8

#pragma HLS UNROLL

 xemu[j] = x[j] * emu; // Q14.11 * Q34.26 = Q47.37

 xemu_round[j] = xemu[j].range(37,21).to_int() + 1;

 xemu_truncd[j] = xemu_round[j].range(16,1);

 f[j] = f[j].to_int() + xemu_truncd[j].to_int();

 }
 printf("%d, ", e.to_int());

 e_out.write(e.range(28-shift_factor, 15-shift_factor).to_int());

#ifdef SIMULATE

 i++;

 } while (i < N_SAMPS);

#endif

}

38

APPENDIX D

C code for a CIC filter

// Partial code for CIC filter with R=10 , N=4 , M=1

// By: Saurabh Gupta, CSU, 2020
 integrator1 = integrator1 + input ;

 integrator2 = integrator2 + integrator1 ;

 integrator3 = integrator3 + integrator2 ;

 integrator4 = integrator4 + integrator3 ;

 downsample_clock++ ;

 if ((downsample_clock % 10) == 0) //modulo 10

 {
 comb1 = integrator4 - last_integrator4 ;

 comb2 = comb1 - last_comb1 ;

 comb3 = comb2 - last_comb2 ;

 output = (int)((comb3 - last_comb3)>>1) ; // scaling factor

 last_integrator4 = integrator4 ;

 last_comb1 = comb1;

 last_comb2 = comb2;

 last_comb3 = comb3;

 }

	ABSTRACT
	ACKNOWLEDGEMENTS
	CHAPTER 1 – PHOSPHORESCENCE LIFETIME IMAGING
	Introduction
	Theory
	Implementation and Experimental Setup
	Results
	Discussion
	Key Takeaway

	CHAPTER 2 – RINS: THE REAL-TIME RELATIVE INTENSITY NOISE SUPPRESSOR
	Introduction
	Theory
	Implementation
	Experimental Setup
	Results
	Spectroscopic (Non-Imaging) Measurement Result
	Imaging Result
	Compatibility with Commercial Lock-In Amplifiers

	Conclusion
	Thermal Noise, Shot Noise and Quantization Noise
	Future Directions

	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D

