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ABSTRACT 

 

 

 

AN ULTRA-HIGH RESOLUTION PULSED-WIRE MAGNET MEASUREMENT SYSTEM  

 

 

 

 The performance of a Free-Electron Laser (FEL) depends in part on the quality of the magnetic 

field in the undulator. Ideally the magnetic field on the axis of the undulator is transverse to the axis and 

sinusoidally varying due to the periodic sequence of alternating field dipole magnets. The resulting ideal 

trajectory of a relativistic electron bunch traveling along the axis is also sinusoidal in the plane 

perpendicular to that of the ideal magnetic field. Imperfections in the magnetic field lead to an 

imperfect electron trajectory, both offset and angle, as well as a relative phase error between the 

oscillation phase of the electrons and the generated electromagnetic field. The result of such errors is a 

reduction of laser gain impacting overall FEL performance. 

 A pulsed-wire method can be used to determine the profile of the magnetic field. This is 

achieved by sending a square-current pulse through a wire placed along the length of the axis that will 

induce an Lorentz-force interaction with the magnetic field. Measurement of the resulting displacement 

in the wire over time using a motion detector yields the first or second integrals of the magnetic field 

and so provides a measure of the local magnetic field strength. Dispersion in the wire can be corrected 

using algorithms, with a resulting increase in overall accuracy of the measurement. Once the fields are 

known, magnetic shims can be placed to correct the magnetic fields to the desired level. In this thesis 

we will describe the design, construction and testing of a pulsed-wire magnetic measurement system 

and use this system to characterize the CSU FEL undulator. 
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INTRODUCTION 

 

 

 

Synchrotron Radiation 

History 

Synchrotrons were first built in the late 1940s for the purpose of high-energy physics 

experiments. In any synchrotron there is a natural byproduct called synchrotron radiation (SR). 

This comes about due to the strong transverse acceleration of the electrons traversing the 

magnetic dipole fields, and it was unwanted by high-energy physicists as it limited the 

maximum energy achievable from an electron synchrotron. It was discovered later that this 

radiated energy could be useful for other experiments and applications. Synchrotron radiation 

experiments became so popular that facilities were built solely for that purpose. Insertion 

devices known as undulators can be used within a storage ring to enhance the light 

characteristics for the synchrotron radiation light users. They create much more 

monochromatic and brilliant light than bending magnets alone [1]. An in-depth description of 

undulator characteristics and emitted light will be discussed in later sections.  

Synchrotron Light Sources 

The performance of an electron, accelerator-based, light-source facility, either a 

synchrotron radiation light source or free-electron laser (FEL), to be more thoroughly described 

later), depends in part on the quality of the magnetic field in an undulator magnet. An example 

schematic layout of a synchrotron light source that exploits the use of undulator devices is 

shown in Figure 1. The accelerator systems in a facility like this increases the total energy, , of 

the electrons to the desired value and maintains the energy at this level. These electrons are 

passed through the fields of the various undulators and the resulting light is then guided to the 

E
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user experiments. Such light sources are used for several research activities including medicine, 

security and defense, discovery science, and industry [3]. These users desire high photon 

brilliance, defined as the number of photons/second/mm^2/mrad^2/(0.1% bandwidth), for 

their experiments, and this is achieved by both ensuring a high quality of electron performance 

as well as high-quality undulator fields. 

 

 

 

 

 

 

Figure 1: An overview of a modern synchrotron light source facility. Many beamlines, shown as 

colored areas and each autonomous to one another, are provided to the large user community 

[2]. 

 

Free-Electron Lasers 

An FEL is another type of synchrotron light source that utilizes coherence effects to 

greatly amplify the light beyond that of more conventional incoherent synchrotron radiation-

based light sources. This amplification is the result of forcing all electrons within a single bunch 

to emit coherently (i.e. in phase). This process comes about by allowing the electrons to 
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interact with the emitted radiation in a manner that forces some electrons to gain energy while 

others to lose energy. This difference manifests itself in a microbunching of the electrons within 

the bunch at a period equal to the resonant wavelength. Once this occurs the electrons within 

each microbunch emit coherently and a very large enhancement of the radiation is achieved. 

[4,5]. Once again both high-quality electron beams and high-quality undulator magnets are 

needed to ensure that the FEL process functions at a high level of performance. 

Radiation Characteristics: Basics 

Dipoles 

The emitted radiation of an electron from a bending magnet has a broad spectral 

bandwidth with a characteristic photon energy of ϵc = Ͳ.͸͸ͷB଴Eଶ[keV], where B0 is the 

ŵagŶetiĐ field stƌeŶgth iŶ Tesla aŶd E is the eleĐtƌoŶ͛s eŶeƌgǇ iŶ GeV [1]. Using nominal 

numbers of 3 GeV and 1 T one readily finds that the characteristic photon energy is roughly 6 

keV, i.e. hard x-rays. As an interesting side comment, consider a storage ring. One can make a 

rough estimate of the energy loss per turn for a single electron propagating around a storage 

ring. The appropriate formula is �଴ = CγEర[GeV]ρ0 [m]  where Cஓ = ͺ.ͺͷ × ͳͲ−ହ [ mGeVయ] [7]. In this 

example case the radius of curvature ρ଴ is roughly equal to 10 m and the energy lost by a single 

electron per revolution is 700 keV. This energy must be replaced every turn or the electron will 

rapidly loose energy and be lost to the machine aperture. One should also note the strong 

quartic dependence on the electron beam energy. This is the primary limitation for the 

operation of electron storage rings at energies above a few hundred GeV. The losses become 

tremendous and it becomes physically impossible on a terrestrial scale to make a machine with 

a large enough radius to compensate adequately the power loss. 
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Undulators 

The desire to use undulator magnets in light sources can be understood by considering 

the radiation emitted by such devices compared to that of an ordinary dipole. Relativistic 

effects cause the emitted radiation to be strongly focused in the forward direction. The 

electromagnetic radiation from a relativistic electron undergoing strong transverse acceleration 

that occurs in an N-period undulator has a basic opening angle of 
ଶஓ√N and is much less than the 

opening angle of a dipole (
ଵஓ), where γ is the is the normalized energy of the electron [8]. The 

differences between undulator and dipole radiation characteristics is shown in Figure 2. 

 

 

 

 

 

 

Figure 2: EM radiation patterns and spectra from a dipole bending magnet (top) and undulator 

magnet (bottom) [8]. 

 

To understand the spectral benefits of undulator radiation, first consider a single dipole 

magnet, where a single very short pulse is generated. If one directs this single short pulse 
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through a spectrometer and views the result one sees a broad continuum with a characteristic 

wavelength. Now consider an undulator magnet. If one places a number of magnets in a row 

that alternate in sign then one gets a series of short pulses of alternating electric field sign. 

Once again if one directs these light pulses into a spectrometer then the once broad continuum 

of the dipole magnet radiation now has a periodic component to it that manifests itself as a 

resonant peak at a wavelength corresponding to parameters of both the undulator magnet and 

the electron beam energy. The net result is a significant increase in photon brightness at this 

resonant wavelength as well as harmonics of this resonant wavelength as can be seen on the 

right side of Figure 2. Utilizing such features of the radiation, undulator magnet-based systems 

can achieve a much higher brightness and flux than bending magnets alone. 

Undulators 

Physical Characteristics and Properties 

Undulator magnets are designed with dipole fields of alternating signs, with the net 

result producing an on-axis sinusoidally varying field along the length of the undulator (Figure 

3). 

 

 

 

 

Figure 3: The basic undulator magnet [9]. 
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Electrons passing along this axis are then transversely accelerated and emit synchrotron 

radiation. The emitted light due to the electron passing through the field of an undulator can be 

desĐƌiďed ďǇ lookiŶg at the ƌelatiǀistiĐ eleĐtƌoŶs͛ iŶteƌaĐtioŶ ǁith the magnetic field. The 

moving electrons witness the undulator in their own frame of reference. The relativistic 

(Lorentz) frame change rules will cause the electrons to witness an oscillating electric field in 

the perpendicular direction, as well as the magnetic field. The electrons will emit light at the 

saŵe ǁaǀeleŶgth as the eleĐtƌoŵagŶetiĐ ǁaǀe iŶ the eleĐtƌoŶ͛s fƌaŵe. The ǁaǀeleŶgth iŶ the 

laboratory frame is altered due to the Doppler Effect and its resulting optical wavelength is:  

௥௡ߣ  = ఒೠଶ௡ఊమ ሺͳ + �మଶ ሻ (1) 

where ߣ௥௡ is the so-called resonant wavelength at harmonic n, ߣ௨ is the period of the undulator 

field, ߛ = �௠௖మ is the relativistic normalized energy of the electron, and � is the normalized 

magnetic field strength of the undulator [11, 12].     

 As can been seen from Equation 1, the wavelength of the radiated light depends on the 

wavelength and field strength of the undulator, as well as the electron energy. Varying these 

parameters will change the wavelength of light that is being emitted.  

There are many types of undulators available depending on the specifications and capabilities 

of the user. The two main types of undulators are constructed using permanent magnets or 

electro-magnets. The undulators energized using permanent magnets can be further separated 

into two primary varieties: pure permanent magnet (PPM) and hybrid undulators. In the case of 

the PPM one uses nothing but permanent magnets to shape the field, while in the case of the 
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hybrid one uses high permeability materials such as vanadium permendur along with the 

permanent magnets to shape the fields. In addition super-conducting, electro-magnet, 

undulators have been used to achieve very high fields while at the same time maintaining a 

reasonable aperture for the electron beam to pass through. Undulators can also be built using 

various field orientations depending on the desire of the end user of the radiation.   

Undulator Errors 

Trajectory Error 

An ideal undulator would provide the perfect field for light generation; however, there 

are always errors in the field. The impact of these errors and how one measures and corrects 

them must be understood. We are concerned with both trajectory errors and phase errors 

within the undulator. Trajectory errors are simple to understand. If one of the dipole fields 

within the undulator has an incorrect strength, then the electron gets an incorrect total kick 

(angle change) upon passage of that dipole. Now pointed in a slightly wrong direction the 

eleĐtƌoŶ͛s aǀeƌage tƌajeĐtoƌǇ staƌts to deviate from the ideal undulator axis and the generated 

light starts to point in a direction different from before therefore reducing the opportunity for 

overlap between the EM wave and the electron bunch. 

Phase Error 

Phase errors are a little more difficult to understand. Imagine the electron following an 

ideal sinusoidal trajectory with fixed amplitude of oscillation. The ultrarelativistic electron is 

moving at essentially the speed of light; however, its average forward velocity is slower due to 

the path length along the sinusoid. The resonant wavelength condition comes about from the 

condition that the light out paces the electron by one optical period for every undulator period 



8 

 

of travel. If, however, there is a period in the undulator that has low field, then the electron will 

have a higher average longitudinal velocity and the phase condition will not be correct for the 

resonant condition. This is a phase error. 

The result of phase errors is important in both incoherent and coherent (such as an FEL) 

sources. In incoherent sources such as the APS facility there is the desire by many users to 

capitalize on the higher harmonics of the radiation. A 20-degree rms phase error at the 

fundamental wavelength is a 180 degree phase error at the 9th harmonic and thus washes out 

emission at the harmonic entirely.  In an FEL the phase errors reduce the effective coupling 

between the electrons and the EM wave causing a reduction in the energy transfer from the e-

beam to the optical field and hence, reduces FEL gain [4,5,7-12]. In fact, a bad phase error can 

result in energy being removed by the electrons from the EM wave resulting in negative gain. 

Thus, minimizing the phase errors in an undulator is extremely important. 

Undulator Characterization 

To minimize errors within the undulator, the magnetic field must first be characterized. 

Traditionally, the fields within these devices have been measured with high accuracy using a 

Gauss meter or Hall probe [13-14]; however, with more complex undulator designs being used 

today, these types of probe systems may not always be a viable option. Undulator topologies 

such as narrow undulator gaps, cryogenic environments in superconducting undulators, or 

other confining configurations restrict measurement access. A pulsed-wire method is an 

attractive option to map the magnetic field in a noninvasive manner [15-17].  

A Hall probe and Gauss meter are typically used to measure the field of an undulator. 

The probe, mounted on a translation stage, is moved along the undulator axis measuring the 
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field as a function of the longitudinal position. Figure 4 shows an example of this process. The 

piĐtuƌe ǁas takeŶ ďǇ the authoƌ͛s adǀisoƌ ;“tepheŶ MiltoŶͿ iŶ “haŶghai, ChiŶa. With this 

information the field and phase errors can be determined. This method has been a proven 

technique to accurately characterize the field in an undulator magnet [14]. However, it does not 

lend itself well to certain mechanical configurations, whereas a pulsed-wire method can be very 

effective.  

 

Figure 4: Hall probe measurement process of an undulator magnet. 

 

In the pulsed-wire method, a current pulse is passed through a tensioned wire that is 

located along the axis of the undulator. Due to the Lorentz force [12], 
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ܨ⃗       = ܧ⃗⃗� + ݒ⃗� × �⃗⃗     (2) 

the amount of local force generated on the wire is proportional to the magnitude of the local 

transverse magnetic field component, �⃗⃗, as well as the current in the wire, ܫ ∝  The wire will .ݒ�

not stay displaced after the pulse, and an acoustic wave will travel along the wire and out of the 

undulator in both directions. This signal is directly related in time to the strength and position 

of the magnetic field. Depending on the length of the pulse introduced in the wire, either the 

first or second integral of the magnetic field can be deduced.  These integrals correspond to 

both the trajectory angle and the position of an electron as it propagates through the undulator 

and can be used to identify both field and phase errors in the magnetic field profile. The first 

and second field integrals can be determined directly by introducing short (microseconds) and 

long (milliseconds) pulses respectively. The length of the long current pulse as well as the 

length of the wire in the setup is based on the length of the undulator. The wire must be long 

enough so that reflections from the end points of the setup do not interfere with the signal 

being measured. For the long pulse to be effectiǀe, the pulse ŵust ďe ͞oŶ͟ loŶg eŶough foƌ the 

acoustic signal to pass the detector. The length of the short pulse is determined by both the 

speed of the acoustic wave and the frequencies we wish to measure. The pulse should be short 

compared to the time it takes for the acoustic wave to move a small fraction of one period of 

the undulator; however, one does not want to make this pulse too short as the total impulse 

imparted to the wire is proportional to the current integral. More details will be provided in the 

coming chapters. 
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THE CSU UNDULATOR 

 

 

 

The undulator being tested here, shown in Figure 5 (left), was previously used in a 

functional FEL system at the University of Twente, Netherlands [19]. The topography is such 

that the use of a Hall probe to measure the field is impossible. From Figure 5 (right), one can 

see the laƌge ďloĐks holdiŶg the uŶdulatoƌ͛s gap steadǇ. These pƌeǀeŶt a Hall probe from being 

readily inserted along the magnetic axis. Here a pulsed-wire method is clearly useful for the 

characterization of the field. Previously, scientists at the University of Twente used the pulsed-

wire method to characterize and correct the fields [15]. However, these measurements did not 

compensate for dispersion, so a more accurate measurement is needed before the undulator 

can be operated with peak performance. Also, the entire FEL system was shipped in a container 

from the Netherlands to the CSU campus. The rigorous journey dislodged some previously 

aligned magnetic shims, requiring the need for new measurements. A well-documented and 

reproducible characterization method is important for future measurements as well as possible 

student experiments. 

 

 

A) 
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Figure 5: Left, C“U͛s uŶdulatoƌ. ‘ight, zooŵ to see gap gauge blocks. 

 

Description of Thesis 

This thesis describes a pulsed-wire magnet measurement system that was developed 

between summer 2013 and spring 2015. The undulator under test is described in a later 

chapter. This pulsed-wire method which we will use overcomes two effects, dispersion in the 

ǁiƌe aŶd fiŶite pulse ǁidth, ǁhiĐh haǀe pƌeǀiouslǇ liŵited this ŵethod͛s aĐĐuƌaĐǇ iŶ 

characterizing the magnetic field in an undulator [20]. The principal concept behind this 

technique is to use a thin current-carrying wire to simulate both the transverse velocity and 

oscillation trajectory of a charged particle passing along the axis of the undulator. We will first 

describe the pulse-wire method giving a bit of history and explaining the essential equations 

used to accurately determine the field from the measurements. We will next give a brief 

description of the undulator we measured, and this will be followed by a detailed description of 

the experimental process and the results of the measurement. And finally we will draw some 

conclusions and provide some recommendations for going forward.  
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PULSED-WIRE METHOD 

 

 

 

Simple History 

The pulsed-wire concept was first developed by R. W. Warren at Los Alamos National 

Laboratory [21]. It has since been used in a variety of specialized cases in the characterization of 

a variety of magnetic fields including undulators. LiŵitatioŶs oŶ the ŵethod͛s aĐĐuƌaĐǇ due to 

dispersive effects in the wire and the finite pulse width can now be corrected using 

mathematical algorithms applied to the data [20]. A simplified setup of a pulsed-wire system is 

shown in Figure 6 [22]. All components and procedures of this system will be explained in detail 

in later sections.  

 

Figure 6: Simplified pulsed wire setup. 
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Basic Understanding 

The vibration of a current-carrying, tensioned, wire due to the Lorentz force is the basis 

of the puled-wire method. The amplitude of these vibrations, or wire displacement, depends on 

the strength of the magnetic field being applied and the amount of current in the wire. Using 

appropriate current pulses both the first and second field integrals can be deduced from 

ŵeasuƌeŵeŶt of the ǁiƌe͛s displaĐeŵeŶt [23,24]. To get an absolute calibration a known 

reference magnetic field is first characterized using both the pulsed-wire method and a Hall 

probe.  

Some specifications must be followed to properly deduce the field integrals. First, the 

setup must be built such that reflections of the acoustic wave from the end wire mounts are 

not measured. Since the disturbance travels in both directions at the same velocity, the wire 

must be twice as long as the undulator. With a total undulator length of 1.25m, the pulsed wire 

setup must be at least 2.50m. However, due to the addition of the reference magnet we did not 

place the undulator directly at one end point of the setup. This increased the total length of the 

setup to 3m. Second, the proper width of the pulses must be set to accurately determine the 

first and second field integrals.  

To measure the 1st field integral one must use a short pulse. The short pulse must satisfy 

the relation �௠�௫ݐߜ < ʹ� [20]. To find ݐߜ, we must determine how long it takes for the pulse 

to traverse one period of the undulator. The wave speed is directly related to the tension of the 

wire in the system. As an example, we will select the wave speed to be ݒ = ͳͲͲ ௠௦  which is 

close to the experimental value found later. Since we want a resolution better than 1/10 of a 

period, we can then determine what the pulse width should be. The undulator has a period of 
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2.5 cm, so we want a resolution greater than 0.25 cm. So, ݐߜ < ௣௘௥�௢ௗ௩ = ଴.ଶହ௖௠ଵ଴଴�ೞ = ʹͷݏߤ. A pulse 

length of ʹͲݏߤ was chosen to fulfill this relation. 

A long pulse must be used to measure the 2nd field integral. The determination of long is 

in terms of the length of the undulator and how long it takes for the acoustic wave to travel the 

length of the undulator. The long pulse must follow:  

ܿ଴ݐߜ > ௨ߣܰ = ͷͲ ∗ ʹͷ�� = ͳ.ʹͷ� 

Where ܿ଴ = ͳ͹Ͳ ௠௦ . So the pulse length must be: 

ݐߜ > ͳ.ʹͷͳ͹Ͳ ݏ > �. ���� 

A value of 12 ms was chosen and sufficient for the length of the long pulse for the experiments. 

Output 

Field Integrals 

As said earlier, the first and second magnetic field integrals of the undulator provide the 

corresponding velocity and position of the electron respectively. To see this, assume that the 

magnetic field on axis in the undulator is in the vertical direction only (we will call this the y 

axis), � =  �௬ሺ�ሻ as seen in Figure 7. Next assume that the electron enters the undulator field 

on the undulator magnetic axis and travels along the z coordinate and that it has a fixed total 

ŵoŵeŶtuŵ. The statiĐ ŵagŶetiĐ field ĐaŶŶot ĐhaŶge the eleĐtƌoŶ͛s total ŵoŵeŶtuŵ, ďut it ĐaŶ, 

through the Lorentz force, change the direction of the momentum. 

 



16 

 

 

Figure 7: Characteristics of the beam in an undulator [11]. 

 

By looking at the forces acting on the electron the velocity and position can be 

determined. As stated earlier, the only force acting on the electron is the Lorentz Force. Thus, 

the work can be written as: 

ܨ⃗      · ݒ⃗ = [�௬ × ሺݒ௫ + [௭ሻݒ · ሺݒ௫ + ௭ሻݒ = Ͳ.    (3)  

This shows that there is no work done on the electron due to the magnetic field. No work 

corresponds to zero energy being added to the electron, so the energy of the electron remains 

constant, implying that |v| is constant and therefore gamma is constant. 

We need to deduce the velocity in the x-direction, ݒ௫ሺ�ሻ. We start with the basic 

equation of motion for an electron 

ܨ⃗      = ௗఘ⃗⃗⃗ௗ௧ = ௗሺ௠೐ఊ௩⃗⃗ሻௗ௧ .     (4) 

Simplifying, the right side of the equation becomes 

 
ௗሺ௠೐ఊ௩⃗⃗ሻௗ௧ → �௘ ௗఊ௩⃗⃗ௗ௧ → �௘ߛ ௗ௩⃗⃗ௗ௧ .    (5) 
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Since the only force acting on the electron is the Lorentz Force the equation of motion becomes 

௘�ߛ ݐ݀ݒ⃗݀ = �(�⃗⃗ ×  (ݒ⃗

Where ⃗ݒ = ̂�௫ݒ +  ௭�̂. Performing the cross product, the equation becomesݒ

௘�ߛ  ௗሺ௩ೣ௫̂+௩�௭̂ሻௗ௧ = �ሺ�௬ݒ௭�̂ − �௬ݒ௫�̂ሻ.   (6)  

The two resulting equations are coupled, but some additional approximations can be made 

based on the fact that the electron velocity in the z-direction is much larger than the resulting 

wiggle motion in the x-direction. As we are interested in the motion in the x-direction we can 

look at that part of the equation first. 

௘�ߛ  ௗ௩ೣௗ௧ = ��௬ሺ�ሻݒ௭.     (7) 

The ݒ௫ derivative can be rewritten as 
ௗ௩ೣௗ௧ = ௗ௩ೣௗ௭ ௗ௭ௗ௧, such that 

௘�ߛ      ௗ௩ೣௗ௭ ௗ௭ௗ௧ = ��௬ሺ�ሻݒ௭.    (8) 

Since 

 
ௗ௭ௗ௧ = ௘�ߛ       ,௭ݒ ௗ௩ೣௗ௭ = ��௬ሺ�ሻ.    (9)  

If equation 9 is integrated one time with respect to z and solved for ݒ௫,  

௫ሺ�ሻݒ  = ௫ሺͲሻݒ + ଵఊ௠೐ ׬ ��௬ሺ�̃ሻ݀�̃௭଴  .    (10) 
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Thus, the x-velocity profile of the electron is based on the first integral of the magnetic field, 

plus a constant. The constant ݒ௫ሺͲሻ can be set to zero if the electron beam is injected on the z-

axis.  

Noǁ that oŶe has the eleĐtƌoŶ͛s hoƌizoŶtal ǀeloĐitǇ ǁithiŶ the uŶdulatoƌ oŶe ĐaŶ 

determine its position by analyzing Equation 10 further, assuming ݒ௫ሺͲሻ = Ͳ, such that:  

௫ሺ�ሻݒ    = ௗ௫ௗ௧ = ଵఊ௠೐ ׬ ��௬ሺ�̃ሻ݀�̃௭଴ .     (11)  

The derivative can be rewritten as 
ௗ௫ௗ௧ = ௗ௫ௗ௭ ௗ௭ௗ௧  so that (11) becomes: 

 
ௗ௫ௗ௩ ௭ݒ = ଵఊ௠೐ ׬ ��௬ሺ�̃ሻ݀�̃௭଴ .     (12)  

This can now again be integrated as a function of z to become: 

    �ሺ�ሻ = ଵఊ௠೐௩� ׭ ��௬ሺ�̃ሻ݀�̃݀�̂௭଴ .     (13)  

This equation shows that within these assumptions the position of the electron within the 

undulator correlates to the second integral of the magnetic field. 

Now that the field integrals have been determined from relativistic electron theory, they 

need to be correlated to the movement of the wire in the pulsed-wire method. As stated 

previously, the first or second integral can be found by introducing a short or long pulse in the 

wire. From Warren, it was shown that the short pulse results in a displacement of the wire, ݑ௦଴ሺݐሻ, that follows 

ሻݐ௦଴ሺݑ  = ூ௖0ఋ௧ଶ� ׬ �ሺ�̃ሻ݀�̃௖0௧଴  ,      (14) 
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where ܫ [A] is the current in the wire in, ܿ଴ [m/s] is the wave speed in the wire, ݐߜ [s] is the 

current pulse width, and �  is the tension in the wire. Similarly a long pulse introduced in the 

wire gives a displacement of 

ሻݐ௦଴ሺݑ     = ூଶ� ׬ ׬ �ሺ�̂ሻ݀�̂݀�̃௫̂଴௖0௧଴ .    (15)   

Equations 14 and 15 are the experimental equivalents to equations 11 and 13 respectively. This 

shows that the 1st and 2nd field integrals can be determined from the pulsed wire method using 

different pulse lengths.  

Limitations 

Unfortunately, finite pulse width and dispersive effects have limited the accuracy of this 

ŵethod͛s ƌesults. This pheŶoŵeŶoŶ Đauses the aĐoustiĐ ǁaǀe speed ǁithiŶ the ǁiƌe to ďe 

dependent on frequency. The effect on the measured signal is shown in Figure 8. Here the 

signal should look like a single unipolar pulse, but as is seen, with the velocity frequency 

dependent the pulse loses its unipolar-like signal and the signal shape changes as a function of 

the time dependence on the distance between the signal source and the detector. 
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Figure 8: Dispersion effects in the wire. As the detector get further away from the source, the 

effects become larger. 

 

Dispersion Correction 

Precisely correlating the electron beam motion to that of the wire is a crucial aspect of 

the pulsed-wire concept. To do this the dispersion must be compensated for.  Recently, an 

efficient algorithm was developed by D. Arbelaez et al. at Lawrence Berkley National Laboratory 

[20]. The dispersion corrected results were shown to match very closely the field profiles of 

those measured with a Hall pƌoďe, pƌoǀiŶg the ŵethod͛s effeĐtiǀeŶess. 
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Dispersion Correction Equations 

 The algorithm derived by D. Arbelaez et al. is described in more detail in appendix A. The 

key features needed for the Matlab code are given in this section. Here we only give a summary 

of the essential components of the correction algorithm. 

First the wave speed needs to be determined. This can be, and will be, done 

experimentally, but theoretically, using the Euler-Bernoulli theory for the bending of thin rods, 

a value of the wave speed as a function of wavenumber is found to be 

     ܿሺߢሻ = ܿ଴√ͳ + �ூ�ೢ   ଶ.    (16)ߢ

Where , T is the wire tension,  is the density of the wire, E is the ǁiƌe͛s YouŶg͛s 

modulus, E  is the flexural rigidity of the wire, and  is the wave number. This is what we 

expect to find; however, we do not have absolute measurements of  or . An experimental 

determination of c is therefore needed. 

 The experimental value for the wave speed, c, uses two pulsed-wire measurements 

displaced some  away from each other. These signals are transferred into the frequency 

domain by use of an FFT. The conjugate of the first measurement is then multiplied by the 

displaced measurement and yields 

௦Δ௭ሺ�ሻݑ௦∗ሺ�ሻ̅ݑ̅ =   ሺ�ሻ|ଶ݁�఑Δ௭.    (17)ܩ|

 This says that the product has an amplitude, |ܩሺ�ሻ|ଶ, and phase, � =  Δ�. By using theߢ

relation that � =  :the wave speed can be found ,ߢܿ

0 /c T  
wI 

 wEI

z
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     ܿ = ఠΔ௭�       (18)  

 This experimental wave speed determination can be compared to the theoretical 

values. In fitting the data to the form of equation 18 one can find both  and Co. 

The short pulse case will be analyzed first. For calculational purposes a more useful 

description of the displacement of the wire due to the short pulse is 

ሻݐ௦௦ℎ௢௥௧ሺݑ  = ூఋ௧ଶఓ ׬ �఑௖0మ �̅ሺߢሻ݁−�ఠ௧݀�+∞−∞ .   (19) 

Here we will define 

ሻߢ௦ℎ௢௥௧ሺܪ  = ூఋ௧ଶఓ �఑௖0మ �̅ሺߢሻ.    (20) 

The scaling factor needed to obtain a dispersion corrected solution for the short pulse is  

ሻߢ௦ℎ௢௥௧ሺܨ    = ு0ሺ఑ሻுሺ఑ሻ = ቀ௖ሺ఑ሻ௖0 ቁ ቆ௖ሺ఑ሻ+఑೏೎೏�௖0 ቇ �ఠሺ఑ሻఋ௧௘��ሺ�ሻ�೟−ଵ.   (21)  

The non-dispersive wire displacement becomes 

ሻݐ௦଴ሺݑ  = ׬ ∞−∞+�ሻ݁−�ఠ௧݀ߢሺܪሻߢሺܨ = ׬ ∞−∞+ሻߢ଴ሺܪ ݁−�ఠ௧݀�.   (22) 

This equation is used for both the short and long pulse, with different scaling factors for each. 

For the long current pulse, the scaling factor is defined as 

ሻߢ௟௢௡௚ሺܨ  = ு0ሺ఑ሻுሺ఑ሻ = ቀ௖ሺ఑ሻ௖0 ቁଶ ௖ሺ఑ሻ+఑೏೎೏�௖0 .    (23) 

wEI
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The local magnetic field profile can then be found from the dispersion corrected displacement 

due to a short pulse gained from equation 22. The ݑ௦଴ሺݐሻ term is utilized in equation 14 to find 

the magnetic field as a function of distance.   
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THE CSU FEL AND UNDULATOR 

 

 

 

Our system at Colorado State University (CSU) utilizes a linear accelerator (linac) to raise 

the electron beam energy up to its desired level. Linacs utilize a single pass of the electron 

bunch along a straight line instead of many passes around a ring such as the APS accelerator 

system. In a linac system, the undulator is placed at the end of the beamline to create to 

generate the light.   

The linac system at CSU is a part of the Advanced Beam Laboratory (ABL) which 

incorporates both accelerator and laser technologies. By utilizing both in a single facility, the 

two technologies can be used in a synergistic manner to perform unique experiments. The ABL 

will train all levels of students as well as engineers and physicists in beam science and 

accelerator engineering. The goal of the ABL is to realize current trends and desires in 

accelerator technology. These include creating a small, efficient and cost effective accelerator. 

The CSU linac has specifications as described in Table 1 [19].  

Table 1: CSU Linac Characteristics 

Energy 6 MeV 

Number of Cells 5 ½ 

RF Frequency 1.3 GHz 

 

The C“U uŶdulatoƌ͛s speĐifiĐatioŶs aƌe desĐƌiďed iŶ this Đhapteƌ, iŶĐludiŶg the desigŶ 

features from the University of Twente. This undulator is a hybrid-type permanent magnet 

device containing 50 periods. Each period has a length of ʄu =25mm. A hybrid undulator is made 
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up of alternating high permeability poles and permanent magnets. The magnetic material is 

Sm1Co5 and the poles are vanadium permendur. This results in a peak on-axis magnetic field of 

0.61T at an 8mm gap. The optimized design parameters are listed in Table 2 [15]. The undulator 

poles were shaped to utilize parabolic pole focusing. The circular pole shape adds a sextupole 

contribution to the conventional undulator field and creates equal focusing in both transverse 

directions. This transverse focusing is essential for our low energy beams in order to ensure 

proper guiding of the beam along the length of the undulator and prevent beam losses within 

the undulator [25, 26]. The curvature of the pole can be seen in Figure 9. 

 

Figure 9: Half period of the CSU undulator showing curved pole face (near the bottom) [15]. 

 

 

 

Magnetic Material (Sm1Co5) 

Pole 



26 

 

 

Table 2: Undulator Design Parameters [mm] 

Undulator Wavelength ߣ௨  25.0 

Half Gap ℎ௦  4.0 

Overhang of magnet O 6.0 

Half thickness of pole D2 2.0 

Half thickness of magnet h2 4.25 

Height of pole D3 40.0 

Height of magnet h3 45.0 

Half width of pole D1 15.0 

Half width of magnet h1 21.0 

 

The CSU system is designed for use as an FEL in the terahertz (THz) regime. To achieve 

THz ƌadiatioŶ, the ǁaǀeleŶgth of eŵissioŶ, ʄ͛, ŵust ďe ďetǁeeŶ Ϭ.ϭ-1mm. From Table 1, the 

kinetic energy (KE) of the linac is 6 MeV. However, to obtain good emittance of the beam, only 

5 MeV will be generated, corresponding to a relativistic gamma of: 

ܧ� = ሺߛ − ͳሻ ∗ �଴ܿଶ = ͷ݁ܯ� = ሺߛ − ͳሻ ∗ ሺͲ.ͷͳͳ݁ܯ�ሻ → ߛ = ͳͲ.8 

The equation to find the wavelength of emitted radiation from Equation 3 is: 

′ߣ  = ଶߛʹ௨ߣ ሺͳ + �/ʹଶሻ = Ͳ.Ͳʹͷ�ʹ ∗ ሺͳͲ.ͺሻଶ ሺͳ + ͳଶሻ = ʹͳͷߤ� 
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This corresponds to a frequency of ݂ = ௖௙ = ͳ.͵ͻ ��z. 

 When the FEL was operational at the University of Twente, the measured wavelength of 

light was ߣ = ʹͷʹ.ʹߤ�, for a frequency during the pulse of 1.57 THz [19]. These experimental 

results are on the same order as the values calculated above, verifying operation in the THz 

regime. 
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PULSED-WIRE SYSTEM DETAILS 

 

 

 

Setup 

The pulsed-wire technique requires a few key elements to function. These include a 

pulse generator, laser and photo-detector system, a wire, pulley and weight, a way to 

accurately position the wire, and a data acquisition system. This chapter explores the various 

designs and equipment used as well as the procedures involved. The entire life cycle of the 

project will be discussed, from preliminary concepts to the completed product. Much of the 

design was built from scratch and fabricated in-house. Two intern students, Josh Smith and Jon 

Hoffman, created some of the procedures and circuits in the summer of 2014 under the 

authoƌ͛s guidaŶĐe. 

Pulse Generation 

Obviously an important part of the pulsed-wire method is the generation of the actual 

pulse delivered to the wire. The circuit needs to provide enough current amplitude for the 

photodetector and oscilloscope to detect the displacement of the wire over the noise level. For 

a magnetic field of 0.61 T, such as the CSU undulator, the amplitude of the pulse must be over 1 

A. Such a current pulse and field would displace the wire by 4.13 µm. In our setup and 

photodiode gain levels, 1 µm of wire displacement corresponds to a 0.13 V change on the 

oscilloscope, and the signal is easily detected over noise. 

To measure the first field integral a power amplifier circuit capable of providing a short, 

20 us, square current (1 A) pulse with short rise and fall times was developed. The circuit was 

actually designed and built as an undergraduate design project at CSU and the schematic is 
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shown in Figure 10. Later, it was optimized and a second circuit was added capable of creating a 

high-quality long, ~ms, pulses.  

 

Figure 10: Schematic of the pulsing circuit. The 47 ohm resistor is the wire load. 

 

 The circuit utilizes the precise timing of a DG535 pulse generator, capable of producing 

4V square waves into a 50 Ohm load with a duty cycle of 99.998% at the desired repetition rate, 

1Hz. This wave passes through an inverting 741 op-amp with a gain of -1, creating a 4 V pulse 

with a width of 20 µs. The pulse subsequently arrives and triggers a high voltage NMOS 

transistor to tuƌŶ ͞oŶ.͟ At the souƌĐe teƌŵiŶal of the MO“FET is a laƌge ĐapaĐitoƌ ďaŶk, charge 

to 61 V, and the charges are dumped while the MO“FET is ͞oŶ͟ uŶtil the ϮϬ µs pulses passes 

aŶd the tƌaŶsistoƌ tuƌŶs ͞off.͟ Theƌe is a ĐuƌƌeŶt liŵitiŶg ƌesistoƌ ďetǁeeŶ the Đapacitors and 

power supply for protection of the capacitor charging circuit. The current passing through the 
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MOSFET also must pass through the BeCu wire (the resistor marked Rw) and also passes 

through a small resistor at the drain used for measurement with an oscilloscope of the signal. 

The RC time constant, consisting of the capacitance and resistance values of the circuit, is 

important for decent pulse shapes. Depending on the length of the pulse, long or short, a 

different RC circuit is used for its speĐifiĐ tiŵe ĐoŶstaŶt, τ. A shoƌteƌ tiŵe ĐoŶstaŶt diŵiŶishes 

the ƌise aŶd fall tiŵes of the pulse, ďut ĐaŶ͛t sustaiŶ a loŶg pulse due to the quicker draining of 

the capacitor. The short pulse is shown in Figure 11. 

 

Figure 11: The short current pulse; ϮϬʅs. 

 

In Figure 11, large turn on and turn off transients can be seen. This circuit was hand 

soldered by the author as well as another student without much experience. I believe the 

transients come from parasitic capacitances and inductances in the circuit caused by the 

electrical pulse from the switch. These parasitic effects most likely come from imperfect 
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soldering and resonate at their characteristic frequency. This ringing of unwanted current has 

some detrimental effects on the pulsed-wire measurements and will be discussed further in the 

͞“Ǉsteŵ DiffiĐulties͟ section of this paper.  

A longer time constant has worse rise and fall times but is capable of creating quality 

millisecond pulses. The circuit was designed with a switch to choose whichever RC circuit is 

desired for the different pulse lengths. The shape of a 12ms pulse is shown in Figure 12.  

 

Figure 12: The long current pulse; 12ms. 

 

Laser/Photo-Detector 

This section describes the laser, slit and photodetector system used to detect the 

motion of the pulsed wire. A 635 nm fiber laser is used with an amplified Si photodetector. A 

thin, 40-µm slit is placed over the photo-detector and aligned, using a precision cage rotation 

stage, paƌallel to the ǁiƌe͛s aǆis. The ǁiƌe is plaĐed ďetǁeeŶ the Đolliŵated laseƌ aŶd the slit 

and is positioned such that the wire, as shown in Figure 13 covers half the slit. This is done by 

ŵouŶtiŶg the photodeteĐtoƌ oŶto a diffeƌeŶtial ϭ͟ tƌaŶslatioŶ stage and moving it so that the 
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wire passes completely over it. The oscilloscope will show a constant reduction in voltage, or 

laser light being detected, as the wire covers more of the slit.  

 

Figure 13: The wire positioned over the slit. 

 

A documented procedure for positioning the wire over the slit is important for creating 

reproducible results. Having reproducible results is important in finding the magnetic center of 

the undulator, described in a later section. First, the voltage is documented in the lab notebook 

when the wire is completely off of the slit, the maximum signal being detected. When the wire 

is completely covering the slit, a small signal is still detected due to refraction of the laser light 

from the wire, and the minimum voltage value is noted. The difference between these 

minimum and maximum values is calculated and the detector is positioned such that half the 

slit is covered by the wire, or the signal voltage is halfway between the noted maximum and 

minimum values. By placing the wire halfway over the slit, it allows for the largest amplitude of 
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deflections that can be detected before saturation. Saturation occurs when the wire is 

completely off the slit and larger movements of the wire cannot be detected.  

Presets on the oscilloscope were utilized to obtain even more accuracy from this 

method. The value of the signal with the wire covering half the slit was offset to zero on the 

vertical axis of the oscilloscope, such that when the wire is at the correct position, the signal is 

in the center of the screen. Utilizing this process saved a great deal of time attempting to center 

the wire over the slit before every measurement. 

Wire Positioning 

Precise positioning of the wire within the undulator is a major requirement of the 

pulsed-wire method. Further, because our undulator has electron beam focusing properties in 

both directions finding the center is critical to ensure that measurements are done at a location 

where the beam is supposed to be. Also, the measurements will be used in the fiducialization 

process required in the survey procedure to locate the undulator precisely into the beamline.  

This section describes the different methods tested to accurately position the wire. All 

of the methods utilized an x,y translation stage appaƌatus, ǁith Ϭ.ϬϬϭ͟ ƌesolutioŶ, ĐoŶŶeĐted to 

a vertically positioned structural rail, as in Figure 14. Two of these positioning stages were 

placed at either end of the pulsed-wire setup.  
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Figure 14: Wire positioning system. 

 

The first positioning method developed involved using a laser, with a 100-µm spot size, 

to aďlate holes iŶ ďƌass disks. These ďƌass disks ǁeƌe iŶseƌted iŶ ϭ͟ optiĐal ŵouŶts aŶd plaĐed 

inside locking optical holders, shown in Figure 15. These were mounted, perpendicular to the 

wiƌe͛s aǆis, oŶ ǆ,Ǉ tƌaŶslatioŶ stages. UsiŶg a high ƌesolutioŶ ŵiĐƌosĐope, the ďƌass disks ǁeƌe 

then inspected. Focusing on the ablated holes, non-uniformity in shape and differences in the 

size of the holes, ranging from 100-300 µm, were found. The major accuracy issues discovered 

were too great for the disks to be used in the setup.  
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Figure 15: Laser ablated holes in a brass disk for wire positioning. 

 

Foƌ ŵoƌe pƌeĐise positioŶiŶg of the ǁiƌe, the ͞V-ďloĐks͟ shoǁŶ iŶ Figuƌe 16 were 

developed. These were machined from aluminum by the CSU machine shop. The tensioned 

wire was moved back and forth to be sure it settled in the bottom of the cradle. The V-blocks 

were mounted to x,y translation stages with electrically isolated bolts to prevent grounding of 

the wire. The wire was moved in the plus and minus direction in both the vertical and 

horizontal planes to check for any slipping of the wire in the cradle. This design was verified 

ǁheŶ theƌe ǁas Ŷo ŶotiĐeaďle ŵoǀeŵeŶt of the ǁiƌe iŶ the ďottoŵ of the ͞V.͟ Thus, the 

accuracy of the location of the wire is based solely on the resolution of the x,y translation 

stages; Ϭ.ϬϬϭ͟ (25 µm). 
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Figure 16: V-Blocks for precise wire placement within the undulator. 

 

Tension 

The pulley and weight, shown in Figure 17, have two main functions in the pulsed wire 

setup. First, the tensioned wire and pulley dampen the reflections of the pulse within the wire. 

One pulse must dissipate before the next pulse can be introduced. Faster dissipations of the 

reflections lead to a higher possible repetition rate of the signal. The tension on the wire also 

assists with dispersion issues. Increased wire tension reduces dispersive effects. Thus, the wire 

tension, initially at 0.431 N, was increased to 2 N. The reduction in dispersion effects from 

increased weight can be seen in Figure 18. 
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Figure 17: Pulley and weight for tensioning of the wire. 

 

Figure 18: Difference in dispersive effects with increased tension in the wire. 
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Procedures 

Reference Magnet Measurement 

The pulsed-wire measurements of the undulator field do not provide an absolute 

measurement of the field and so must be calibrated. This can be done with a Gauss meter and 

an easily measured reference magnet. Once an accurate absolute measurement of the 

reference magnet is made it can be measured simultaneous with the undulator magnet thus 

establishing the overall absolute scale of the pulsed-wire measurement. 

A reference magnet with field strength similar to the undulator was desired so that the 

wire displacement due to the magnetic field could be seen on the oscilloscope at the same 

scale. Many concepts for this reference field were developed, including electromagnet designs 

and using a single permanent magnet acting as a dipole. Ultimately, two high-field permanent 

magnet dipoles were put together with alternating field directions to simulate one period of the 

undulator. The reference magnet is shown in Figure 19. 

 

Figure 19: The final reference magnet designed with two high field permanent magnets. 
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The measurement process for mapping the magnetic field of the reference magnet 

consisted of a Gauss meter used in conjunction with a Hall probe. The probe itself was mounted 

oŶ a Ϯϰ͟ tƌaŶslatioŶ stage ǁith ŵoǀeŵeŶt iŶ a diƌeĐtioŶ paƌallel to ǁheƌe the ǁiƌe͛s aǆis would 

later be (z-axis). The probe was also mounted to both vertical (y-axis) and horizontal (x-axis) 

translation stages. This setup can be seen in Figure 20. Measurements were taken at an interval 

of Ϭ.ϱ͟ uŶtil the field Đould ďe deteĐted, theŶ ŵeasuƌeŵeŶts ǁeƌe ĐhaŶged to Ϭ.ϭ͟. OŶĐe this 

base measurement was taken, with the Hall probe near the magnet face (2 cm), the probe was 

raised and measurements were taken at different heights above the magnet. All measurements 

were taken at the exact same locations along the z-axis.  

 

Figure 20: The Hall probe and Gauss meter setup for reference magnet measurement. 

 

Next, the hall probe was set at a height of 5 cm and mounted on a 360 degree rotational 

translation stage. The 0 degree position corresponded to the angle directly down the z-axis. 
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Measurements were taken at various angles from the z-axis in both the vertical and horizontal 

directions. The results of the Hall probe measurements can be seen in Figure 21.  

 

Figure 21: Hall probe data for the reference magnet at various angles (top) and heights 

above the magnet surface (bottom).  
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The results show an obvious inverse correlation between the height of the 

measurement above the magnet͛s face and the strength of the magnetic field. The quality of 

the measurements degrade above 10 mm, so the final wire height will need to be below this. 

One can also see that an angle between  had no noticeable impact on the field 

profile. The difference in field within these angles are at a level below the resolution of the 

detection system. This gives us confidence that the wire itself can be setup and aligned in a way 

such that and residual angle has no impact on the measurement. 

 The next step was to actually take pulsed-wire measurements. The measurements 

could then be compared to the Hall data to generate an absolute scale for further 

measurements with the pulsed-wire system. 

Measurement Process/Data Acquisition 

Data acquisition is a key area of the pulsed-wire process. A Tektronix TDS 3054b  

oscilloscope was used for this purpose. The oscilloscope has network connectivity via an 

Ethernet cable for direct downloading of measurements to the computer. With a sample rate of 

5 GS/s, the horizontal (time) resolution is more than sufficient. The oscilloscope starts sampling 

via an external trigger, which is connected to the DG535. The start of the pulse, rising edge, 

triggers the oscilloscope to begin to take data. The horizontal axis was set to measure the signal 

clearly, without any reflections being measured, so a 10-ms window was used. The vertical 

window (voltage) is set differently depending on the pulse length. To reduce signal noise, 

averaging was used on the oscilloscope. For accuracy, 512 samples were averaged, the 

osĐillosĐope͛s ŵaǆiŵuŵ ĐapaďilitǇ. Liŵitations of the oscilloscope are discussed in a later 

section. 

5 5   
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Finding the Center of the Undulator 

Determining the center, specifically the magnetic center, of the undulator is important. 

To accurately simulate the electron beam, the wire must be precisely in the magnetic center of 

the undulator. Thus, a method needed to be developed to accomplish this. 

The obvious starting place was to locate the mechanical center of the undulator and 

move on from there. Finding the mechanical center is relatively straightforward as the design 

parameters of the magnet are stated; see table 2. Once the mechanical center was found, 

fiducialization marks could be placed on the undulator to easily find the exact point again in the 

future. The magnetic center could then be found based off the mechanical center and noted for 

future reference. 

Mechanical Center 

The design of the undulator was such that the physical center of the undulator should 

also be the magnetic center of the field [10]. The original thought was that very small changes 

iŶ the ǁiƌe͛s positioŶ iŶ the uŶdulatoƌ gap, aƌouŶd ϭ mm, would cause large changes in the 

displacement of the wire due to increasing magnetic field strength. Therefore, the goal was to 

position the wire to within 100 µm of the geometric center on either axis while keeping the 

process as simple and easy to recreate as possible. Many different methods were contemplated 

and tested before determining one that provided accurate and consistent results. 

Fiƌst, a ͞Đƌosshaiƌ͟ ŵethod ǁas tested. This idea Đame from J.W.J. Vershuur as a 

possible method that was originally used at the University of Twente. This design consisted of 

wrapping fishing line in a figure-eight pattern around four screws that protruded from the 
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screw holes used for connecting the undulator to the vacuum system of the beamline. The 

center point, where the wires cross, should be the mechanical center of the undulator. The next 

step was to position the copper beryllium wire as close to the center point as possible. Since 

the crosshairs were sitting at a 45° angle to the ground, it was very difficult to observe whether 

the wire was touching just off center and sliding along the fishing line to the center point or 

not. Trying to prevent this from happening, the wire was first leveled by eye and then moved 

horizontally into the center. A magnifying glass and later surveying equipment were used to try 

and determine the point when the wire just touched the crosshair, as in Figure 22.  

 

Figure 22: Different views of the crosshair method. 

 

Once the wire was barely touching, the fishing line was removed and the wire was 

ŵoǀed toǁaƌds the ĐeŶteƌ ďǇ half of the fishiŶg liŶe͛s thiĐkŶess, aƌouŶd ϱϬµŵ. Hoǁeǀeƌ, theƌe 

were some insurmountable issues that arose with this method. First, the point where the wire 

just touched the fishing line was almost impossible to observe, even with the surveying 
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equipment. Second, there was no documentation that actually described the screw holes as 

being some distance from the center of the undulator. This greatly reduced the confidence in 

the accuracy of the results so another method needed to be implemented.  

The next method involved using the surveying equipment, as seen in Figure 23. First, the 

scope was focused on one end of the undulator, where the pole profiles can be seen clearly. 

The scope can be tilted upward and downward with precise angle measurement. The angle 

aďoǀe the hoƌizoŶtal at the loĐatioŶ of the ďottoŵ of the uŶdulatoƌ͛s top pole ǁas Ŷoted. TheŶ, 

the angle at the location of the top of the bottom pole was found. The location in between the 

two angles was the physical center in the vertical axis. The wire could then be raised or lowered 

to aligŶ ǁith the sĐope͛s Đƌosshaiƌs at this loĐatioŶ. Due to the uŶkŶoǁŶ aŶgle of the 

uŶdulatoƌ͛s aǆis fƌoŵ the table, the wire needed to be aligned on both sides and rechecked 

after any movement. The reproducibility of this method was very good and the surveying 

equipment was simple to setup and use. However, the scope had fine angle measurement 

capabilities on the vertical axis, but not on the horizontal. It was impossible to utilize this 

method to find the horizontal center. 



45 

 

 

Figure 23: Josh using the survey equipment to verify the position of the wire. 

 

The method that was ultimately used to find the horizontal center was a combination of 

different ideas that had been developed. First, two translation stages with micron resolution 

were combined with an angle bracket and aligned in the vertical and horizontal axis. A third 

smaller translation stage in the longitudinal axis was attached with an ohmmeter probe locked 

onto it. This gave accurate movement in all needed directions. A simplified version of the setup 

is shown in Figure 24, without the vertical stage. The entire setup was placed on a fourth 

translation stage, ǁith Ϯϰ͟ of ŵoǀeŵeŶt iŶ the loŶgitudiŶal diƌeĐtioŶ. This alloǁed foƌ the 

entire apparatus to be moved in and out of the undulator opening efficiently. To find the 

horizontal center, the test probe was moved along the horizontal axis to the point where the 
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conductive pole meets the non-conductive aluminum plate. The other ohmmeter probe was 

held on the conductive pole. When the tip of the test probe alternated between the conductive 

and non-conductive sections, the ohmmeter would switch between having a valid resistance 

value as an output and having infinite resistance. When the circuit was open, or the test probe 

was touching the aluminum, the ohmmeter would emit a beeping noise. The location of the 

edge of the pole was documented and repeated for the other edge of the pole. The difference 

between the two measurements was halved, giving the horizontal center of the pole and 

undulator.  

 

Figure 24: Simplified version of the method to find and mark the geometric center of the 

undulator. 
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The probe was then used to physically marked the center. The probe was positioned to 

the calculated horizontal center and the probe tip moved in the longitudinal direction towards 

a piece of tape that was placed on the undulator where it would slowly punch a hole. This 

created a visible mark that could be used in conjunction with the survey scope to position the 

ǁiƌe. The pƌoĐess ǁas ƌepeated a feǁ tiŵes to Đƌeate a seƌies of ͞dots͟ iŶ a liŶe as seeŶ iŶ 

Figure 25, above and below the gap of the undulator. This helped to both verify that the 

method was consistent and also provided an easy way to center the wire in the future by 

creating permanent fiducialization marks. This method is easily the most accurate and 

reproducible method that was used and should therefore be replicated in the future if the 

center needs to be found again. 

 

Figure 25: Fiducialization marks being placed with a probe onto the undulator. 
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As stated earlier, Ŷoise issues haǀe ďeeŶ the ŵajoƌ liŵitiŶg faĐtoƌ iŶ this pƌojeĐt͛s 

accuracy. Most issues were overcome throughout the lifecycle of this project. However, ground 

vibrations at 60Hz are still slightly apparent in the measurements, with amplitude around 30 

mV. (We suspect these are coming from the synchronous pumps used in the adjacent hydrology 

lab.) Using the oscilloscope and averaging helped to reduce this effect to around 5 mV, but it 

was not eliminated completely. The final limitation of this project was the 9-bit vertical 

resolution of the oscilloscope. It was determined that the resolution should be at least 12-bits 

to more accurately discriminate different signals in order to find the magnetic center and make 

sufficient assumptions about the fields in the undulator. 

Magnetic Center 

As stated earlier, the wire needs to be aligned as close to the magnetic center of the 

undulator as possible to accurately simulate the electron bunch. The undulator was designed 

with a parabolic pole shape, and thus has a field strength profile that is quadratic in strength 

such that the minimum peak field resides in the horizontal center of the undulator along the 

undulator axis. As will be demonstrated later, the differences in magnetic field strengths within 

1 mm of the magnetic center are small. Interpolating the data far away from the center and 

with the knowledge that the field is quadratic, the center can be found with relatively high 

confidence. 

To determine the magnetic center of the undulator, the wire was first placed onto the 

mechanical center (described later). Measurements were then taken at different locations 

across the gap of the undulator in both the x- and y- directions. To see the peak fields at the 

different locations, the root-mean-squared (RMS) value of each measurement was taken. These 
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‘M“ ǀalues aƌe plotted agaiŶst the ǁiƌe͛s position in the gap. As seen in Figure 26 the peak 

magnetic field changes when the wire is placed in different locations within the undulator gap. 

To eliminate noise issues in the peak field measurements, a high-pass filter was used. Any effect 

the filter had on the data was constant over every measurement taken. Thus, the filter was 

helpful for finding the peak fields, but is not an accurate representation of the actual field 

integrals.  

Alignment of the wire directly along the axis of the undulator with no angle was 

important for precise measurements. A solid method for aligning the wire was determined by 

looking at the field profiles of the wire at different locations across the gap. Misalignment of 

the wire (not parallel to the undulator axis) is a problem for accurate measurements. Two 

pulsed-wire measurements are needed to witness any wire misalignment. If the wire is parallel 

to the undulator axis, the two measurements will have an amplitude difference that is constant. 

If the wire is misaligned, the difference in amplitude will not be constant. One may have a 

larger amplitude at the entrance of the undulator and smaller amplitude at the exit. This is due 

to a combination of the parabolic field profile as a function of horizontal position and an 

undesired yawing of the wire with respect to the true undulator field axis.  
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Figure 26: The difference in displacement (magnetic field) amplitudes for locations closer and further 

from the magnetic center of the undulator. The smaller amplitude corresponds to a location closer to 

the magnetic center. Also seen is a zoom of a specific section of the plot. 
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We performed the following process to determine the magnetic center of the wire with 

respect to the mechanical center. Using the mechanical center as the reference axis the wire 

was moved +/- 3 mm in the x- and y-planes in increments of 0.025 inches (0.635mm) while at 

the same time measuring the RMS field. The RMS value of the peaks of the oscillations within 

the undulator for given locations in the gap are shown in Figure 27, with the zero point being 

the mechanical center. Analysis of the data using fit parameters gives a high confidence result 

for the location of the magnetic center, within tens of µm. The hypothesis that the mechanical 

center and the magnetic center being at the same location is correct. Thus, the wire only needs 

to be aligned in the already marked mechanical center before measurements are taken. This 

greatly reduces setup time and effort. 

 

Figure 27: RMS field strength of the undulator at specific locations away from the 

geometric center of the undulator with a quadratic fit added. 
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Final Results 

Wave Speed  

As stated earlier, the wave speed in the wire is a function of frequency and follows the 

Euler-Bernoulli equation. The theoretical value for the wave speed should follow equation 18; 

ܿሺߢሻ = ܿ଴√ͳ + �ூ�ೢ  ଶ. However, due to errors in manufacturing, an experimental method wasߢ

implemented to find the correct values of  and . By taking two measurements with the 

pulsed-wire method, one with the reference field close to the detector and another displaced 

30cm away, one can find the experimental value for the wave speed and the coefficient of the 

quadratic term. The raw data of the two signals, overlapped for comparison, can be seen in 

Figure 28. 

 

0c WEI
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Figure 28: Reference Magnet measurements taken 30 cm from each other used to 

calculate the dispersive wave speed in the wire; 2.3N (top) and 0.85N (bottom). 

 

One can now determine the FFT of both the original and displaced measurements 

(Figure 29). It is important to dissect this data because it will show the frequency components 

that are contained in the signal. We can then make a more accurate fit of the wave speed 

because frequencies not contained in the signal are just noise and do not need to be fit to. 
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Figure 29: FFTs of the measured signals; 2.3N (top) and 0.85N (bottom). 

 

In Figure 29, it can be seen that the maximum frequency components in both tension 

schemes is around 10 kHz. A more accurate wave speed curve can be obtained from a signal 
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with higher frequency components. Some ideas are presented to accomplish this in a later 

section. 

Determining the wave speed was accomplished by implementing equations 17 and 19 

into a Matlab script. Analyzing the phase of the result from equation 17 and using this phase in 

equation 19 allowed for the determination of the wave speeds in the wire. The results can be 

seen in Figure 30 and is compared to the theoretical value of the wave speed as described 

above.  

 



56 

 

 

Figure 30: Wave speed determination from two measurements, 30cm apart; 2.3N (top) 

and 0.85N (bottom). 

 

From the figure 30, one can see that for higher frequencies, above 2kHz, the 

experimental results follow the theoretical fit extremely well. However, at lower frequencies, 

the two graphs differ wildly. This is due to major low frequency noise issues and equipment 

limitations that will be explained later. In figure 30 (bottom), a dip in the wave speed occurs at 

~6 kHz. To understand this, we see that the full width of the pulse is approximately ͳ.ͷ × ͳͲ−ସ  
s. This corresponds to a frequency of ݂ = ଵଵ.ହ×ଵ଴−ర ௦  = ͸.͹ �ܪ�. The signal is only a single pulse 

so there should be a modulation of the signal from the effective window. The pulse can be 

thought of as a perfect sine wave that is modulated with a square wave window with amplitude 

1 and duration ͳ.ͷ × ͳͲ−ସ s. The two together, the perfect sine wave and the square pulse 

window, would then make a single positive pulse. If the FFT of that combination is taken, you 
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get a signal that is modulated by a 
௦�௡ሺ௫ሻ௫  term where the first zero of the sinc function is at 

around 6 kHz. 

The experimental results for the wave speed parameters (Eq. 18) are shown below for 

the two different tensions. The errors shown are within ±1 standard deviation and show that 

the fit is very accurate and a strong representation of the data. 

Table 3: Wave Speed Parameters 

Tension (N) 0.85 2.3 

C0 (m/s) 147.82 ± 0.0614 241.96 ± 0.0159 

EI_W (Nm2) 2.13*10-7 ± 1.3*10-8 2.38*10-7 ± 1.22*10-9 

 

Dispersion Corrected Dipole  

Using the wave speed in the wire determined by equation 26, dispersive effects can be 

removed from the wave signal. This was done using another Matlab script. The dispersive wire 

displacement for the short pulse is described as  where

. The dispersive solution is related to the non-dispersive 

solution by the scaling factor ; equation 23. The short or long pulse scaling factor is 

inserted into equation 24 to obtain a non-dispersive solution depending on which pulse wave is 

being analyzed. The process is described in more detail in Appendix A. The original wire 

displacement and dispersion corrected wire displacement from a short pulse, aka the first 

integral of the reference magnet, can be seen in Figure 31. The correccted signal has only small 
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distortions in the signal due to the low frequency noise in the measurements, and so provides a 

good representation of the non-dispersive solution. 

 

 

Figure 31: Uncorrected vs. corrected signal of the reference magnet for a short,  pulse.  

 

20 s
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Distinguishable in both tension categories in Figure 31, is the removal of the dispersive 

components from the measured signal. However, the low tension measurement has much 

more dispersive effects and the correction is much more noticeable. Once corrected, the signals 

have a single specific wave speed over all frequency components; c0. 

 The algorithm should function adequately for any tension. To verify this, a comparison 

of two different weighted signals was performed. Both signals were corrected for dispersion 

individually and then placed on a single plot (Figure 32). The corrected signals needed to be 

scaled such that the axis would line up correctly. The lower weight signal had greater amplitude 

and a stretched time axis due to a slower wave speed. 

 

Figure 32: Dispersion corrected 1st field integral of 2.3N and 0.85N wire tension (scaled). 

 

Comparing the corrected measurements from the low and high tension in Figure 32 one can see 

that the signals align nicely. This verifies the correctness of the algorithm for both tension 

schemes. For all final pulsed-wire measurements, the lower tension will be used.  
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 The dispersive and non-dispersive wire displacements due to a long pulse (the second 

field integral) across the reference magnet are shown in Figure 33. The Matlab script created 

for dispersion correction in this case utilizes the scaling factor for a long pulse; Equation 25.  

 

Figure 33: Uncorrected vs. corrected signal of the reference magnet for a long, 12ms, pulse. 

 

In order to show that the algorithm works for both the long and short pulses. The 

corrected wire displacement due to the short pulse is compared to the first derivative of the 

corrected wire displacement due to the long pulse in Figure 34.  
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Figure 34: Corrected 1st field integral; short pulse compared to derivative of long pulse (scaled 

for comparison). 

 

From Figure 34, the signal shapes agree nicely although the derivative signal is very 

noisy. This proves the effectiveness of the algorithms to remove dispersion from the signal and 

can now be used with high confidence for final measurements. 

PW vs. Hall probe  

The associated local magnetic field can be found by taking either the first or second 

derivative of the dispersion corrected signal, , depending on whether a short or long current 

pulse was applied. Once the B-field is found from this corrected displacement it needs be 

compared to the Hall probe data for accuracy and absolute scaling. Figure 35 shows the 

corrected pulsed-wire data as it compares to the Hall probe measurements. 

0su
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Figure 35: Comparison of the Hall probe and dispersion corrected pulsed wire measurements. 

 

 Note, the derivative of the short pulse measurement is compared to the Hall probe data 

in Figure 35. The experimental absolute scaling factor for the magnetic field was found to be ͷ ∗ͳͲ−ସ, compared to the value calculated from Equation 24;  
Ic0ஔtଶT = ͸.ͷ ∗ ͳͲ−ସ. Again, the noise 

from the derivative calculation is visible but low enough such that the wave clearly keeps the 

true field profile. The comparison of the two data sets show that the pulsed-wire method can 

be used as an accurate representation of the local magnetic field with the correct scaling factor 

applied. 

Dispersive and Corrected Pulsed-Wire Measurements of the Undulator  

The uncorrected measured field of the undulator with a short pulse is shown in Figure 

36 as well as the signal with the correction algorithm applied. This is the raw data collected 

from the oscilloscope due to a 20 ʅs current pulse.  
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Figure 36: Uncorrected undulator and reference magnet measured signal due to the short 

pulse. 

 

Here one can clearly see the dispersive effects in the measured signal, specifically at the 

tail end of the undulator. With the correction algortithm applied, the dispersion is removed. 

However, a small noise component is visible between the tail end of the undulator and the 

reference dipole. This, we believe, is an artifact due potentially to a small kink in the wire 

located midway into the undulator magnet. 

 

The measured field from a long pulse is shown in Figure 37. Again, the raw data 

obtained from a 12ms current pulse is shown along with the dispersion corrected signal.  
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Figure 37: The measured signal from the long pulse.  

 

  As can be seen in Figure 37, there are no major deviations in the overall slope of the 

signal; however, there is a significant kick at the entrance to the undulator indicating that there 

is a mistuning present at that location. It is hard to see the correction of the dispersion as the 

slope dominates the scale. 

Magnetic Field: Undulator 

The final step in this thesis was to find the local absolute magnetic field of the CSU undulator 

magnet. The derivative of the dispersion corrected signal from Figure 36 was taken and then 

multiplied by the final scaling factor to gain the final magnetic field profile. This field is plotted 

in Figure 38. 



65 

 

 

Figure 38: Local magnetic field of the undulator and reference magnet. 

 

 The final local magnetic field profile of the undulator is shown in Figure 38. Again, noise 

can be seen in the signal, but the exact shape of the profile can be easily determined. Thoughts 

on how to make more accurate and minimize noise even further are presented in a later 

section. This data will be used later for determining errors as well as in the verification of field 

corrections. 

Next Steps 

Determining the Errors and Shimming 

 The non-dispersive first and second field integrals have been determined. Now the 

trajectory and phase errors can be found using this data. These errors need to be within specific 

constraints, not covered here, for the FEL to function efficiently. To reduce errors that are 

outside these bounds, problem poles must be corrected. 
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The uŶdulatoƌ deǀiĐe that is ďeiŶg ŵeasuƌiŶg is ͞poǁeƌed͟ ďǇ peƌŵaŶeŶt ŵagŶets. 

Thus, we can merely shunt field away from locations and direct it elsewhere. This is done using 

ferromagnetic shims (Figure 39-left). By utilizing different shim placement techniques, one can 

solve angular, phase, and offset errors. The corrected fields can then be verified using the 

pulsed wire method.   

                       

Figure 39: Shims can be placed on magnet or pole faces for desired effect (left). Dislodged shim 

on the CSU undulator (right). 

 

By inspection (Figure 39-right), it can be seen that a previously placed shim has been 

dislodged from its original orientation during transport. Thus, at least one location on the 

undulator needs correction before operation [27]. 

System Difficulties 

Noise Issues 

Noise within the pulsed wire measurement has been a major hurdle for this project. Due 

to the sensitivity of the detector, environmental noise easily shows up on the measurements. 

The first noticeable area that affected the data was air flow within the lab. This air flow 

Shims on Magnet 
Shim on Pole 
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perturbed the wire significantly and readily showed up as an erroneous random displacement. 

To oǀeƌĐoŵe this, a ϭ͟ Đoppeƌ pipe ǁas iŶseƌted aƌouŶd the ǁiƌe to shield it as ŵuĐh as 

possible from air currents.  

Due to equipment constraints, the setup was mounted across two separate optical 

tables. Differential movement between the tables during measurements was a valid concern. 

Therefore, a thiĐk ϭ͟ aluŵiŶuŵ plate ǁas Đƌeated to loĐk the tǁo taďles togetheƌ to pƌeǀeŶt 

any separate movement of the tables. The plate was designed in SolidWorks and used 50 

optical screws to lock the two tables together. Connecting the plate was a delicate process 

because of the amount of force that can be exerted by the tables. 

Another area that contracted a significant amount of noise was due to poor isolation of 

the optical tables from the ground. The room in which the system was housed was right next to 

the CSU engineering research center hydrology laboratory where they regularly flow thousands 

of gallons of water a minute for measurement of a multitude of hydrologically interesting 

things. The net result is significant ground vibrations and these vibrations were readily 

observable in the data. Many techniques to more efficiently isolate the tables were attempted, 

such as lifting the table off the isolating pneumatic cylinders using a jack and repositioning the 

legs to be more centered. Moving the undulator to displace the weight across the two separate 

tables equally was also tried. However, this made matters worse as it moved the center of 

gravity away from the center of the larger table and made the system more prone to sensing 

the ground vibrations. Ultimately, adjusting the tables͛ legs and increasing the air pressure of 

the table isolation mounts proved to best dampen vibrations.  



68 

 

Even with all these adjustments, low-frequency noise components are significant in the 

measurements. Specifically, a large 60 Hz signal is contained within the wave as seen in Figure 

40. Possible causes of these low-frequency components are electrical noise from cabling or 

other equipment, the pulse shape from the pulsing circuit not being adequate, or possibly still 

poor table isolation. Averaging on the oscilloscope can be used to reduce these noise effects, 

but they can still be seen in the wave speed calculation in an earlier section.  

 

Figure 40: Noticeable noise in the pulsed wire measurements. 

 

 

 

System Limitations  

Along with the noise issues are limitations on the system due to available equipment. To 

get the resolution desired, 1 Gauss, the oscilloscope must have the capacity to take 
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measurements at the correct level. Thus, for a field of 0.61T, an oscilloscope must have at least 

a 12-bit resolution. The current TDS model being used is only capable of 10-bits.  

Higher accuracy measurements can also be obtained by using different techniques not 

possible at this time. The use of two detectors, one upstream and one downstream of the 

undulator, can be used for more precise measurements. Here, one takes two measurements of 

the same wave at different locations and averages them.  

Another area of improving noise issues is to place the entire system under vacuum, 

which would eliminate most of the air flow noise of the system. However, this would be 

extremely costly and not practical for our current experiments. 

The final area of improvement is with the reference magnet characteristics. Having net 

zero first and second field integrals will make measuƌeŵeŶts easieƌ. Foƌ a loŶg pulse, the ͞step͟ 

in the signal would be removed. After the reference signal, the voltage level will be returned to 

the original position, ready for the undulator signal to be measured more accurately. Next, by 

having a reference magnet with top and bottom poles, the distance of the wire above the 

magnet never needs to be measured. This can be done by placing fiducialization marks on the 

reference magnet to quickly and accurately place the wire at any time. The final reference 

magnet improvement is making the poles skinnier. This will create higher frequency 

components in the wave speed calculation resulting in more accurate dispersion correction. 

These improvements can be utilized for higher accuracy and better overall measurements.  

Conclusions 
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A pulsed-wire method has been developed and used to characterize the magnetic field 

of C“U͛s uŶdulatoƌ ŵagŶet. A ƌefeƌeŶĐe ŵagŶet ǁas ďuilt aŶd ŵapped thoƌoughlǇ usiŶg a Hall 

probe. Measurements of the reference magnet were done with the pulsed-wire technique for 

comparison and absolute scaling. The mechanical and magnetic centers of the undulator have 

been found and final measurements were taken at the latter. Algorithms were developed in 

Matlab to determine the dispersive wave speed in the wire and also correct the data for 

dispersion and finite-pulse width errors. These algorithms were applied to both the reference 

magnet and undulator fields respectively as well as in conjunction with each other. For future 

work, the magnetic field errors need to be corrected using small magnetic shims. The results 

given are reproducible, within the noise error, and the method can be used for many different 

types of magnets in the future for ultra-fast field characterization. 
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APPENDIX A: PULSED WIRE THEORY 

 

 

 The following section follows [20] closely and is the theoƌǇ ďehiŶd the ͞ǁaǀe speed 

deteƌŵiŶatioŶ͟ aŶd ͞dispeƌsioŶ ĐoƌƌeĐtioŶ͟ algoƌithŵs iŵpleŵeŶted iŶ Matlaď. The 5-step 

algorithm used to correct for dispersion and finite pulse widths in this thesis can be found at 

the bottom. 

The velocity and position of an electron in an undulator are described by the first and 

second integrals of the magnetic field. Since the result of a pulse in the a magnetic field in a 

pulsed-wire system produces an acoustic wave, the displacement of the wire can be described 

by a general traveling wave equation: 

,�ሺݑ  ሻݐ = ׬ ሻ݁−�ሺ఑௭−ఠ௧ሻߢଵሺܦ] + ∞−∞ߢ݀[ሻ݁−�ሺ఑௭+ఠ௧ሻߢଶሺܦ       (A1) 

 Here, ݑሺ�,  is the wave number, � is ߢ .ሻ is the wire displacement at some location z and time tݐ

the frequency and are related to the wave speed by the relation  ܿ = ఠ఑ . D1 and D2 are functions 

and are found by initial conditions. When dispersion is present in the wire, c is no longer a 

constant and becomes a function of the wave number, � = ܿሺߢሻߢ. If a square pulse is sent 

through the wire at time t=0, the displacement of the wire due to a magnetic field is 

ሻݐ௦ሺݑ     = ூଶఓ ׬ ௘���೟−ଵఠమ+∞−∞ �̅ሺߢሻ݁−�ఠ௧݀ߢ 

 = ூଶఓ ׬ − �̅ሺ఑ሻఠమ+∞−∞ ݁−�ఠ௧݀ߢ + ூଶఓ ׬ �̅ሺ఑ሻఠమ+∞−∞ ݁−�ఠሺ௧−ఋ௧ሻ݀ߢ = ሻݐ௦ଵሺݑ +  ሻ      (A2)ݐ௦ଶሺݑ
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Here, ݑ௦ሺݐሻ is the displacement of the wire in the time domain, ߤ is the density of the wire, I is 

the amplitude of the current pulse,and �̅ሺߢሻ = ℱ[�ሺ�ሻ] is the Fourier transform of the 

magnetic field, B. Here, we assume that the magnetic field is positioned at some location z>0 

and the sensor lies at z=0. 

   For the non-dispersive case, the wave frequency is � = ܿ଴ߢ, where ܿ଴ = √�ఓ . T is the 

tension of the wire. Assuming the displacement and velocity of the wire are zero at the sensor, 

Equation A2 becomes: 

ሻݐ௦଴ሺݑ  = ூଶ� ׬ ׬ �ሺ�̂ሻ݀�̂݀�̅௭̅଴  ௖0௧௖0ሺ௧−ఋ௧ሻ     (A3) 

The subscript 0 indicates the non-dispersive case. As ݐߜ → Ͳ and keeping ݐߜܫ constant, (A3) 

becomes: 

ሻݐ௦଴ሺݑ  = ூ௖0ఋ௧ଶ� ׬ �ሺ�̅ሻ݀�̅௖0଴       (A4) 

Equation A4 shows that the motion of the wire is proportional to the first integral of the 

magnetic field and thus, the velocity of a charged particle traveling through the wire. This is 

used foƌ the ƌepƌeseŶtatioŶ of a ͞shoƌt͟ ĐuƌƌeŶt pulse iŶ the ǁiƌe. To fiŶd the effeĐt of a ͞loŶg͟ 

pulse, ܿ଴ݐߜ must be larger than the magnetic field of the undulator, or ݐߜ >  ௨. So, (A3)ߣܰ

reduces to:  

ሻݐ௦଴ሺݑ     = ூଶ� ׬ ׬ �ሺ�̂ሻ݀�̂݀�̅௭̅଴௖0௧଴      (A5) 
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This equation describes the position (trajectory) of a charged particle traveling along the wire is 

pƌopoƌtioŶal to the seĐoŶd iŶtegƌal of the ŵagŶetiĐ field of the uŶdulatoƌ. “o, a ͞loŶg͟ ĐuƌƌeŶt 

pulse will give information about the second field integral and the position of the particle. 

 It was assumed previously that ݐߜ → Ͳ, but in reality ݐߜ will have some finite width. 

Dispersion, due to the finite flexural rigidity of the wire, was also assumed to be nonexistent. To 

accurately determine the movement of the wire due to the magnetic field, these need to be 

incorporated into the equation of motion. For dispersion correction, the wave speed in the wire 

must be determined and related to the frequency. First, Equation (A2) is transformed from the ߢ-domain to the �-domain: 

ሻݐ௦ሺݑ    = ூଶఓ ׬ ௘���೟−ଵఠమሺ௖+఑೏೎೏�ሻ+∞−∞ �̅ሺߢሻ݁−�ఠ௧݀� = ׬ ∞−∞+�ሺ�ሻ݁−�ఠ௧݀ܩ . (A6) 

and 

ሺ�ሻܩ      = ூଶఓ ௘���೟−ଵఠమሺ௖+఑೏೎೏�ሻ �̅ሺߢሻ.      

 .ሻݐ௦ሺݑ ሺ�ሻ is introduced for simplicity and can be found by taking the Fourier transform ofܩ

To calculate the wave speed, two experimental measurements of a reference magnet 

must be made. Where the second measurement is taken with the magnetic field, or detector, 

displaced a distance Δ� from the location of the first. The wire displacement with the displaced 

magnet is: 

ሻݐ௦Δ௭ሺݑ  = ூଶఓ ׬ ௘���೟−ଵఠమ+∞−∞ �̅ሺߢሻ݁�఑Δ௭݁−�ఠ௧݀ߢ 
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  = ׬ ∞−∞+�ሺ�ሻ݁�఑Δ௭݁−�ఠ௧݀ܩ       (A7) 

Where ̅ݑ௦Δz =  ሻ into. Multiplyingݐ௦Δ௭ሺݑ ሺ�ሻ݁�఑Δ௭ is found by taking the Fourier transform ofܩ

the conjugate of ̅ݑ௦ሺ�ሻ by ̅ݑ௦Δ௭ሺ�ሻ gives 

௦Δ௭ሺ�ሻݑ௦∗ሺ�ሻ̅ݑ̅  =   ሺ�ሻ|ଶ݁�఑Δ௭    (A8)ܩ|

 This says that the product has an amplitude, |ܩሺ�ሻ|ଶ, and phase � =  Δ�. By using theߢ

relation that � =  :the wave speed can be found ,ߢܿ

     ܿ = ఠΔ௭�       (A9)  

This equation shows the wave speed as a function of frequency for experimental results by 

moving the detector or reference magnet by Δ�.  

Using the Euler-Bernoulli theory for the bending of thin rods, a theoretical value of the 

wave speed can be found. The transverse wave motion, ݑ, for a Euler-Bernoulli beam 

(tensioned) is described as:  

     � డమ௨డ௭మ − ௪ܫܧ డర௨డ௭ర = ߤ డమ௨డ௧మ      (A10) 

ǁheƌe E is the YouŶg͛s ŵodulus of the ǁiƌe ŵateƌial (in this case BeCu) and ܫ௪ is the moment of 

inertia of the wire. The traveling wave solution, ݁−�఑ሺ௭−௖௧ሻ, can be added to Equation A10 and 

the Euler-Bernoulli dispersion relation can be found: 

     ܿሺߢሻ = ܿ଴√ͳ + �ூ�ೢ  ଶ     (A11)ߢ



78 

 

This equation is used as a fit for the experimental data, because it is a general dispersion 

equation. However, the ܫܧ௪ parameter has high uncertainty and may need updating for correct 

fitting. 

 Now that the dispersion characteristics have been determined, a correction algorithm 

can be implemented to improve the accuracy of the method. The algorithm will be different for 

ďoth the ͞shoƌt͟ aŶd ͞loŶg͟ pulse leŶgths. The algoƌithŵ foƌ the ͞shoƌt͟ pulse also ĐoƌƌeĐts 

errors due to the finite pulse width. Equation A2 can be rewritten to become 

ሻݐ௦ሺݑ  = ூଶఓ ׬ ௘��೎�೟−ଵ(఑௖ሺ఑ሻ)మቀ௖+఑೏೎೏�ቁ+∞−∞ �̅ሺߢሻ݁−�ఠ௧݀� = ׬ ∞−∞+�ሻ݁−�ఠ௧݀ߢሺܪ   (A12) 

Where: 

ሻߢሺܪ     = (ሻߢሺ�)ܩ = ூଵఓ ௘0��೎�೟−ଵ(఑௖ሺ఑ሻ)మሺ௖+఑೏೎೏�ሻ    

For the non-dispersive case, Equation A12 is: 

ሻݐ௦଴ሺݑ     = ூଶఓ ׬ ௘��೎0�೟−ଵ఑మ௖0య+∞−∞ �̅ሺߢሻ݁−�ఠ௧݀� = ׬ ∞−∞+�ሻ݁−�ఠ௧݀ߢ଴ሺܪ  

 = ׬ ∞−∞+�ሻ݁−�ఠ௧݀ߢሺܪሻߢሺܨ        (A13) 

From equations A12 and A13, ܨሺߢሻ = ு0ሺ఑ሻுሺ఑ሻ  where ܪ଴ = ூଶఓ (௘��೎0�೟−ଵ)఑మ௖0య  ሻ is a scaling functionߢሺܨ .

that correlates the dispersive (ݑ௦ሺݐሻ) and non-dispersive (ݑ௦଴ሺݐሻ) solutions. To determine the 

non-dispersive solution, the Fourier transform of ݑ௦ሺݐሻ is taken to find ܪሺߢሻ. Then ܪ଴ሺߢሻ can 

then be found by multiplying ܨሺߢሻ and ܪሺߢሻ. The non-dispersive solution, ݑ௦଴, can then be 



79 

 

acquired by applying the inverse Fourier transform.  The scaling function, F, will be determined 

for both short and long pulses. 

In order to use equation A13, ݑ௦ሺݐሻ first needs to be transformed into the ߢ domain. So 

a Fourier transform needs needs to be applied. 

ሻߢሺܪ       = (ሻߢሺ�)ܩ = ଵଶగ ׬ ∞−∞+�݀�௦ሺ�ሻ݁�ఠሺ఑ሻݑ       (A14) 

To implement this in software, a discrete transform is needed with evenly spaced values of �, ��. Equation A14 becomes 

(ሺ��ሻߢ)ܪ       = ሺ��ሻܩ = ଵଶగ ׬ ∞−∞+�݀��௦ሺ�ሻ݁�ఠݑ    (A15) 

 Using the appropriate scaling function, a discrete form of equation A13 can be used to 

determine the non-dispersive displacement. 

ሻ�ݐ௦଴ሺݑ  = ܿ଴ ׬ −+ߢ݀�ሻ݁଴−�௖0఑௧ߢ଴ሺܪ      (A16) 

For a short current pulse, taking the limit as ݐߜ → Ͳ to account for finite pulse width 

errors, Equation A13 becomes: 

ሻݐ௦଴௦ℎ௢௥௧ሺݑ  = ூఋ௧ଶఓ ׬ �఑௖0మ �̅ሺߢሻ݁−�ఠ௧݀�+∞−∞      (A17) 

Where �̅ሺߢሻ is related to ܪ଴ሺߢሻ by: 

ሻߢ଴௦ℎ௢௥௧ሺܪ      = ூఋ௧ଶఓ �఑௖0మ �̅ሺߢሻ     (A18) 

Comparing Equation A12 and A18, the scaling factor for the short pulse is: 
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ሻߢ௦ℎ௢௥௧ሺܨ  = ு0ሺ఑ሻுሺ఑ሻ = ቀ௖ሺ఑ሻ௖0 ቁ ቆ௖ሺ఑ሻ+఑೏೎೏�௖0 ቇ �ఠሺ఑ሻఋ௧௘��ሺ�ሻ�೟−ଵ    (A19) 

The length (ݐߜ) of the short pulse must be chosen such that �௠�௫ݐߜ < ʹ� to prevent 

singularities. �௠�௫ is the maximum frequency of the pulsed wire signal.  

For the case of a long pulse, where ܿ଴ݐߜ is greater than the total length of the 

undulator, Equation A12 can be rewritten as: 

ሻݐ௦௟௢௡௚ሺݑ   = − ூଶఓ ׬ ଵ(఑௖ሺ఑ሻ)మቀ௖+఑೏೎೏�ቁ �̅ሺߢሻ݁−�ఠ௧݀�+∞−∞ = ׬ ∞−∞+�ሻ݁−�ఠ௧݀ߢሺܪ  (A20) 

By comparison, Equation A13 (non-dispersive) becomes:  

ሻݐ௦଴௟௢௡௚ሺݑ  = − ூଶఓ ׬ ଵ఑మ௖0య �̅ሺߢሻ݁−�ఠ௧݀�+∞−∞ = ׬ ∞−∞+�ሻ݁−�ఠ௧݀ߢ଴ሺܪ    (A21) 

In order to get ܪ଴ሺߢሻ from ܪሺߢሻ from the previous two equations, the scaling factor can be 

found to be: 

ሻߢ௟௢௡௚ሺܨ  = ு0ሺ఑ሻுሺ఑ሻ = ቀ௖ሺ఑ሻ௖0 ቁଶ ௖ሺ఑ሻ+఑೏೎೏�௖0       (A22) 

The scaling factor for both the long and short pulses will make it possible to get a non-

dispersive solution from the dispersive solution. 

Correction algorithm Summary [20]:  

͞1. Set evenly spaced �� over a large enough range to correctly capture  �ሺߢሺ�ሻሻ. 

 2. For all �� numerically integrate Equation A15 to obtain ܩሺ��ሻ.  

3. Calculate unevenly spaced ߢ values, ߢ� = ሻ�ߢሺܪ ሺ��ሻ, which are associated withߢ =  .ሺ��ሻܩ
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 4. Multiply ܪሺߢ�ሻ by ܨሺߢ�ሻ to obtain ܪ଴ሺߢ�ሻ (use Equation A19 for short pulse and A22 for long 

pulse). 

5. For each time ݐ� numerically integrate Equation A16 to determine the non-dispersive 

displacement solution ݑ௦଴ሺݐ�ሻ.͟ 


