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ABSTRACT 
 
 
 

INFLUENCE OF PROSODY AND EMOTIONAL CONGRUENCE IN EMOTION 

PERCEPTION 

 
 
 

Vocal emotion, or emotional prosody, is conveyed via suprasegmental changes to the 

acoustic qualities of a speaker’s voice. Prosody is essential to affect perception as it can 

independently and instantaneously convey emotion. Prosody normally coincides with affective 

facial expressions and other non-verbal cues to form holistic emotional percepts. Prior research 

pairing emotional voices with affective faces found that emotion perception may be biased by 

emotional prosody, as affective faces presented with a happy voice were rated ‘happier’ than faces 

presented with an angry or neutral voice. While these findings indicate that emotion perception is 

biased by voice prosody, the precise mechanism of this bias remains unclear. Since vision 

predominates perception, much like in the more well-known McGurk effect, it is likely that visual 

cues in the speaker influence the prosodic bias. Visual modality cues in the face may moderate this 

bias via increased fixations to the mouth or eyes, potentially changing the influence of prosody as 

the perceiver is or is not directed to visual cues associated with auditory information. Thus, 

increased visual attention to moving mouths may increase the perceptual bias created by prosodic 

voices. Visual attention patterns will be directed to fixate on either the mouth or eyes of speaking 

faces paired with either emotionally congruent or incongruent voices. The current study will use 

behavioral measures, electroencephalography, and magnetoencephalography to assess the neural 

and behavioral correlates underlying the effects of emotional congruency and visual attention on 

prosodic perceptual biases. 
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CHAPTER 1 – GENERAL INTRODUCTION 
 
 
 

The ability to make inferences about the emotional state of another individual is facilitated 

by the decoding and identification of concurrently presented facial and vocal information. Deriving 

the contribution or role of each modality in affect perception is difficult as both faces and voices 

provide sufficient information to convey emotions independently (Ekman & Friesen, 1976; 

Schröder 2003; Belin, Fillion-Bilodeau, & Gosselin, 2008). Darwin (1872) was the first to 

recognize the innate correspondence of facial movements to the condition of one’s internal 

emotional state. Ekman and Friesen (1976) expounded upon this concept, identifying six basic 

emotions (anger, happiness, sadness, disgust, fear, and surprise) which are associated with the 

stereotyped movements of groups of facial muscles (Bartlett, Viola, Sejnowski, Golomb, Larsen, 

Hager, & Ekman, 1996; Ekman, 1984). These facial expressions appear to be highly salient, as 

performance on tests evaluating the recognition and characterization of others’ emotional state is 

consistent across cultures (Darwin, 1872; Ekman, 1993; Ekman, Friesen, & Wallace, 1971; Ekman 

& Frisen, 1976). This conservation implies that facial expressions are inherent and play an 

essential role in human communication. Yet, faces are rarely experienced naturally in silence; 

rather, they are typically accompanied by a vocal counterpart. 

Vocal emotion, or emotional prosody, is conveyed via suprasegmental changes to the 

acoustic qualities of a speaker’s voice (Belin, Fillion-Bilodeau, & Gosselin, 2008; Juslin & 

Laukka, 2003; Patel, Scherer, Björkner, & Sundberg, 2011), which can be combined to form 

auditory gestalts of emotion. Prosody is essential to affect perception as it can independently and 

instantaneously convey emotional information (Johnson, Emde, Scherer, & Klinnert, 1986). 

Prosody normally coincides with emotional facial expressions and other non-verbal cues to form 
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holistic emotional percepts. Thus, prosody appears to be embedded in human communication and 

may be considered the vocal analog of the six basic emotions originally identified by Ekman & 

Friesen (Ekman & Friesen, 1976; Schröder, 2003). These findings make intuitive sense, as 

vocalizations are produced through the coordinated action of vocal and facial muscles, which result 

in distinctive facial expressions (Schröder, 2003; Belin, Fillion-Bilodeau, & Gosselin, 2008). This 

congruency implies that vocalizations and facial expressions may be innately linked as visceral 

responses, simultaneously communicating affective audiovisual information to the eyes and ears 

of an observer. Previous research pairing emotional voices with emotional faces found that 

emotion perception may be biased by the prosody of a speaker’s voice, as faces presented with a 

happy voice were rated ‘happier’ than faces presented with an angry or neutral voice (Becker & 

Rojas, submitted). Moreover, this perceptual bias was associated with a distinct anterior-posterior 

distribution of neural activity, with affective faces paired with angry voices exhibiting activity in 

right frontal areas and happy voices showing activity over right posterior parieto-occipital areas 

(Becker & Rojas, submitted). 

The instantaneous and automatic integration of visual information with vocal information 

is best illustrated during speech communication, wherein auditory information from a speaker’s 

voice is directly linked to the movements of a speaker’s face to form one coherent percept (McGurk 

& MacDonald, 1976). One of the most influential experiments examining aberrant audiovisual 

integration is evidenced by the illusory percept formed (hearing /da-da/) by the fusion of two 

mismatched visual (spoken /ga-ga/) and auditory inputs (voiced /ba-ba/), commonly known as the 

McGurk Effect (McGurk & MacDonald, 1976). This phenomenon has been replicated in 

experiments of affect perception, where the vocal and facial cues of a stimulus contain conflicting 

emotional information (Massaro & Egan, 1996; de Gelder & Vroomen, 2000). These studies have 
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shown that while both facial expressions and affective vocalizations can bias emotion perception 

(Massaro & Egan, 1996; de Gelder & Vroomen, 2000), faces appear to have the greatest effect 

(Massaro & Egan, 1996; de Gelder & Vroomen, 2000; Abelin, 2007). Since vision predominates 

the perception, it is likely that visual cues in the speaker influence the prosodic bias. Faces are 

highly salient sources of information with visual attention focusing on three core facial regions: 

the eyes, nose, and mouth (Luria & Strauss, 1978; Stacey, et al., 2005). Visual fixations to these 

core regions may moderate the influence of prosody on bimodal emotion perception, as the 

perceiver may or may not be directed to cues strongly associated with auditory information. 

Increased visual attention to mouths may thus increase the perceptual bias created by prosodic 

voices by increasing the gain on vocal auditory information processing. 

The vast majority of emotion perception research has only employed silent static face 

images to study affect recognition (de Gelder & Vroomen, 2000, Massaro & Egan, 1996; Ekman 

& Friesen, 1976; Bartlett, Viola, Sejnowski, Golomb, Larsen, Hager, & Ekman, 1996; Ekman, 

1984; Ekman, 1993; Bruce & Young, 2000). These stimuli fail to accurately simulate affective 

states as emotions are multidimensional and fluid, accompanied by physiological changes that can 

instantaneously change the emotional prosody of a person’s voice, their facial expression, and 

body language (Schirmer & Adolphs, 2017). Static faces present emotions as single frames 

representing one fixed point in time. These frozen images miss the unique information rich 

configural changes that differentiate emotions as they unfold across time (O’Toole, Roark, & Abdi, 

2002). This difference is meaningful as motion facilitates face recognition by imparting 

supplementary information not provided by two-dimensional faces (O’Toole, Roark, & Abdi, 

2002; Jiang, Blanz, & O’Toole, 2009; Lander & Bruce, 2003). Moreover, the brain differentially 

processes changeable and invariant facial features via a distributed network of neural areas 
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(Haxby, Hoffman, & Gobbini, 2000). These findings underscore the importance of using dynamic 

faces in affect perception research as they convey perceptual advantages that are associated with 

distinct neural substrates. This experimental oversight undermines our current understanding of 

emotion perception, as it predicates itself on the use of ecologically invalid silent static face 

images. This literature is further complicated as countless studies have used these stimuli in 

experiments which identified deficits in emotion perception in multiple clinical populations: 

autism spectrum disorder, schizophrenia, bipolar disorder, post-traumatic stress disorder, and 

depression. Many of these findings are confounded by the nature of their stimuli as they may reflect 

deficits in recognizing static faces rather than impairments in making holistic judgments about 

multimodal emotions encountered in the real world, as several studies have indicated that dynamic 

faces may convey a perceptual advantage regardless of an individual’s clinical diagnosis as 

typically developing individuals (Ambadar, Schooler, & Cohn, 2005) and persons with autism 

spectrum disorders (Gepner, Deruelle, & Grynfeltt, 2001) were more accurate at recognizing 

dynamic faces over static ones. 

This study contributes to the current literature by using dynamic face stimuli to investigate 

the neural and behavioral correlates underlying the effects of visual attention on prosodic 

perceptual biases, as well as the influence of emotional congruency on such biases. In the first 

experiment, visual attention was directed to different facial locations while viewing speakers’ faces 

paired with either emotionally congruent or emotionally incongruent voices. Hypothesis 1: The 

authors predicted that individuals cued to the mouths of speaking faces would exhibit larger biases 

for each prosody condition as measured through two psychophysical measures of perception (the 

point of subjective equality (PSE) and the just noticeable difference (JND)). Functional 

neuroimaging was used to identify the underlying neural activity associated with this prosody-
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related bias using electroencephalography (EEG) and magnetoencephalography (MEG). In the 

second experiment, subjects were presented with affective faces, voices, and emotional faces and 

voices paired together while their brain activity is measured using EEG. This activity was 

decomposed using independent component analysis to better deconstruct and localize this activity. 

Hypothesis 2a: Neural activity will be localized to the parietal, temporal, and occipital areas in the 

right hemisphere. Hypothesis 2b: Select neural components will be correlated with the conditions 

(happy, angry, neutral prosody) and/or stimulus types (face, voice, face and voice) of the 

experiment. In the third experiment, MEG was used to assess the effects of emotional congruency 

on right hemisphere activity. Hypothesis 3a: Emotionally incongruent face-voice pairs will exhibit 

greater activity in the right posterior superior temporal sulcus than emotionally congruent face-

voice pairs. Hypothesis 3b: Neural activity will exhibit a posterior-anterior distribution of activity 

in the right hemisphere with emotionally congruent angry face-voice pairs being localized to 

anterior areas of the right hemisphere and congruent happy face-voices pairs being localized to 

posterior areas of the right hemisphere. 
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CHAPTER 2 – THE ROLE OF SPATIAL ATTENTION IN BIMODAL AFFECT 
PERCEPTION 

 

 

 

2.1 Introduction 

2.1.1 Affective Faces and Voices. Facial expressions and vocalizations instantaneously convey 

information about the emotional state of another individual. In natural settings, these modalities 

are almost always experienced concurrently, but in lab settings, faces and voices provide sufficient 

information to effectively convey emotion independently (Ekman & Friesen, 1976; Schröder 2003; 

Belin, Fillion-Bilodeau, & Gosselin, 2008). Darwin (1872) was the first to identify the strong 

correspondence between an individual’s facial movements and their internal emotional state. 

Ekman and Friesen (1976) further developed and refined this concept, identifying that affective 

states can be categorized into six basic emotions (anger, happiness, sadness, disgust, fear, and 

surprise), which are associated with the stereotyped and coordinated movement of specific groups 

of facial muscles (Bartlett, Viola, Sejnowski, Golomb, Larsen, Hager, & Ekman, 1996). Facial 

expressions appear to be highly salient, as  these emotional states have been shown to be 

consistently identified and recognized across cultures (Darwin, 1872; Ekman, 1993; Ekman, 

Friesen, & Wallace, 1971; Ekman & Frisen, 1976). These findings indicate that facial expressions 

appear to be universally conserved, implying that facial expressions are inherent to and play an 

essential role in the basic foundation of human communication. However, emotion is multimodal, 

and faces are rarely experienced in silence but rather are typically paired with vocal information. 

The vocal system transmits emotional information via changes in the articulatory gestures 

which alter the volume, stress, and intonation of a speaker’s voice (Schröder, 2003; Grandjean, et. 

al, 2005). Vocal emotion, or emotional prosody, conveys emotion via the grouping of 

suprasegmental acoustic vocal features (amplitude, rhythm, and fundamental) to produce distinct, 
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unique, affective vocalizations (Belin, Fillion-Bilodeau, & Gosselin, 2008; Juslin & Laukka, 2003; 

Patel, Scherer, Björkner, & Sundberg, 2011). Linguistic cues appear to be processed independently 

from these acoustic vocal qualities as subjects can accurately identify and recognize a speaker’s 

mood when semantically neutral sentences are read in different prosodies (Johnson, Emde, 

Scherer, & Klinnert, 1986) or spoken in a foreign language (Pell, Monetta, Paulmann, & Kotz, 

2009; Scherer, Banse, & Wallbott, 2001; Thompson & Balkwill, 2006). Moreover, affective 

prosody has been considered the vocal analog of the six basic emotions originally identified by 

Ekman & Friesen (Ekman & Friesen, 1976; Schröder, 2003). These findings highlight the inherent 

correspondence between facial expressions and vocalizations, as changes in emotional prosody are 

produced through the coordinated action of vocal and facial muscles which result in distinctive 

facial expressions (Schröder, 2003; Belin, Fillion-Bilodeau, & Gosselin, 2008). This physical 

correspondence implies that vocalizations and facial expressions may be innately linked as visceral 

responses to external events, communicating complementary affective information to the eyes and 

ears of an observer. 

2.1.2 Integration of Voices and Faces. The instantaneous and automatic integration of 

concurrently presented visual information and vocal information is best illustrated during speech 

communication, wherein auditory information from a speaker’s voice is directly fused to the 

movements of a speaker’s face to form one coherent multimodal percept (McGurk & MacDonald, 

1976). One of the seminal experiments in aberrant audiovisual integration is evidenced by the 

illusory percept formed (hearing /da-da/) by the fusion of two mismatched auditory inputs (voiced 

/ba-ba/) and visual (spoken /ga-ga/), commonly known as the McGurk Effect (McGurk & 

MacDonald, 1976). This illusory percept has been replicated in experiments of bimodal affect 

perception, where the vocal and facial cues of a stimulus contain incongruent emotional cues 
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(Massaro & Egan, 1996; de Gelder & Vroomen, 2000). More recent studies have shown that while 

both facial expressions and affective vocalizations have the propensity to bias emotion perception 

(Massaro & Egan, 1996; de Gelder & Vroomen, 2000), each study reported that faces appear to 

have the greatest effect (Massaro & Egan, 1996; de Gelder & Vroomen, 2000; Abelin, 2007). This 

effect appears to be malleable, as the efficacy of each channel to bias perception appears to vary 

as a function of stimulus content, instructions, and response directions (Massaro & Egan, 1996; de 

Gelder & Vroomen, 2000; Abelin, 2007). Understanding how simultaneously presented 

conflicting visual and auditory input distorts perception may hold special significance when 

integrating nonverbal affective information. 

Variations on the emotional McGurk experiment have provided critical insights into the 

integration of verbal and nonverbal affective vocal information with emotional faces. These studies 

typically utilize morphed continua created from two oppositely valenced, static end-point face 

images and a variation of semantically emotional sentences or affectively voiced prosodic stimuli 

(Massaro & Egan, 1996; de Gelder & Vroomen, 2000; Roberson, Damjanovic, & Pilling, 2007). 

Emotional facial expressions are perceived categorically (Ekman & Friesen, 1976; Calder, Young, 

Perrett, Etcoff, & Rowland, 1996; Young, et al., 1997; de Gelder & Vroomen, 2000; Fujimura, et 

al., 2012), which enables researchers to capture the perceptual changes that occur as stimuli 

incrementally change in equal physical amounts across a morphed continuum. Interestingly, 

people do not perceive linear morphs of physical stimuli as a continuum. Rather, morphed stimuli 

are perceived as belonging to one of two discrete categories, meaning that their responses exhibit 

what is known as categorical perception (Harnad, 1987). This phenomenon is pertinent to studies 

of audiovisual integration, where the perceptual boundary between two emotions can be quantified 

by a subject’s identification responses, (Fujimura, et al., 2012; Calder, Young, Perrett, Etcoff, & 
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Rowland, 1996) with faces nearest to the center of the morph continuum being the most ambiguous 

and hardest to identify (Calder et al., 1996).  

To characterize the perceptual boundary between two emotional categories, this study 

assessed two psychophysical measures, the point of subjective equality (PSE), associated with 

category identification and the just noticeable difference (JND), related to category discrimination. 

This study defined the PSE as the point at which a stimulus is equally likely to be judged as happy 

or not happy. The JND was measured as the percentage value of the amount of physical change 

needed to discriminate between two stimuli 50% of the time. The magnitude of the JND serves as 

an indication of the variance in subject responses, which can be interpreted as the participants’ 

level of confusion in each condition.  

These measures were used to assess the cross-modal effects of simultaneously presented 

affective vocal and facial expressions in emotion perception, with the intent of expanding upon a 

literature of bimodal emotion perception studies using nonverbal stimuli. Several studies have 

suggested that emotional prosody interferes with face perception, as subjects’ identification of 

facial expressions becomes biased towards the emotion expressed in the vocal utterance (de Gelder 

& Vroomen, 2000; Massaro & Egan, 1996; Pourtois, de Gelder, Vroomen, Rossion, & 

Crommelinck, 2000; Campbell, 1996) and this effect persists even when instructed to ignore the 

auditory stimuli (de Gelder & Vroomen, 2000). Further, verbal interference appears to degrade the 

categorical perception of faces more than interference with incongruent faces during a vocal 

categorical perception task (Roberson & Davidoff, 2000). Findings from de Gelder & Vroomen 

(2000) indicated that the perception of affective faces is biased in the direction of a simultaneously 

presented prosodic voice, and that the impact of the voice increases as the emotions of the facial 

expressions become more ambiguous (Vroomen et al., 2001). Molholm and colleagues (2002) 
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suggested that these data indicate that early processing of visual inputs is modified by auditory 

inputs. Massaro & Egan (1996) found that while both facial expressions and affective vocal cues 

are effective in biasing responses from happy to angry, faces appear to exert a greater influence in 

bimodal integration emotion perception. Similarly, other findings have suggested that faces appear 

to play a greater role in biasing affect perception in bimodal conditions (Hess, Kappas, & Scherer, 

1988), however this may vary by age (Bugenthal, Kaswan, Love, & Fox, 1970), emotion (Li, et 

al., 2013), directions (de Gelder & Vroomen, 2000), choice of stimuli, and subject characteristics 

(Massaro & Egan, 1996). 

While the precise mechanism of this audiovisual perceptual bias is not clear, it seems that 

visual cues in the speaker’s face may play a major role in influencing the prosodic bias. Faces are 

highly salient with individuals focusing visual attention on three core facial features: the eyes, 

nose, and mouth (Luria & Strauss, 1978; Stacey, Walker, & Underwood, 2005). Directing visual 

attention to these core regions may moderate the influence of prosody on bimodal emotion 

perception, as the perceiver may focus on both the visual and auditory channels associated with 

the vocal stimulus. Redirecting visual attention to fixate on moving mouths may thus increase the 

perceptual bias created by prosodic voices by increasing the focus on both the visual and auditory 

components of vocal auditory information processing. 

2.1.3 The Current Study. This study investigated bimodal emotion perception using 

emotionally congruent and emotionally incongruent faces and voices paired together and preceded 

by fixation crosses placed at either the eyes or mouth. The authors elected to use short nonverbal 

affective bursts as vocal stimuli, as they are paralinguistic to avoid unintentionally engaging any 

additional cognitive processes (Schröder, 2003; Belin, Fillion-Bilodeau, & Gosselin, 2008). 

Additionally, these stimuli may be more ecologically valid as they were evoked by the actors so 



 

15 

 

that the actors’ voices match their articulatory patterns and facial gestures (Schröder, 2003; Belin, 

Fillion-Bilodeau, & Gosselin, 2008). This study utilized a two-alternative forced choice task where 

subjects were instructed to indicate if the overall emotion they perceived for each trial was “happy” 

or “not happy” with no reference to attend to the voice or face.  

We predicted that reaction times will be slowest for all conditions when they are at the 

category boundary or most ambiguous portion of the continuum (Massaro & Etcoff, 1996; de 

Gelder & Vroomen, 2000). Further, we hypothesized that reaction times for each prosody 

condition would vary as a function of their congruency with the emotion of the simultaneously 

presented face, with reaction times being faster when the faces and voices expressed the same 

emotion and slower when they are mismatched (de Gelder & Vroomen, 2000). The authors 

predicted that the PSEs for each condition would not only be biased in the direction of the 

simultaneously presented prosody, but that PSE values would indicate a stronger bias in the 

direction of the voice when cued to look at the mouths of face stimuli. JND values were interpreted 

as the level of confusion in subjects’ responses, which together with the reaction time data could 

be used as indicators of how well defined the perceptual boundaries were between the two emotion 

categories. Additionally, JND values would be largest when subjects were cued to look at the eyes 

of stimuli. 

2.2 Methods 

2.2.1 Participants. Seventy participants, approximately half female were recruited 

 from using the online survey platform MTurks (MTurks, Amazon, Seattle, Washington, United 

States). Subject demographics are shown in table 2.1. Subjects were compensated with $10.00. 

The protocol was approved by the Colorado State University Institutional Review Board and all 

participants will be provided informed consent before taking part in the procedures. 
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2.2.2 Power Analysis. Mean point of subjective equality (PSE) values and standard 

deviations from the face only (M = 4.2, SD = 0.6) and neutral face+voice (M = 4.7, SD = 1.0) 

conditions were taken from an identical psychophysical experiment (Becker & Rojas, 

unpublished) and entered into an a priori power analysis to compute the required sample size in 

G*Power 3.1 (r = .299; Faul, Erdfelder, Lang, & Buchner, 2007; Faul, Erdfelder, Buchner, & Lang, 

2009). The results of this analysis indicated that a sample size of N = 55 will be sufficient to detect 

a large effect (Cohen’s dz = 0.50, power of .95 and alpha of .05 (two-tailed)). 

2.2.3 Stimuli. Videos of two nonprofessional actors saying the vowel sound /a:/ in an angry 

or happy tone of voice were used to create morphed continua ranging from 100% happy to 100% 

angry. Means and standard deviations for the valence and arousal ratings for each stimulus are 

shown in table 2.2, analysis details in appendix A. The table also shows that there are no significant 

differences in the arousal and valence ratings of each stimulus depending on whether the videos 

n 
Age  Gender  

M(SD)  M F  

70 36.21(8.82)  33 37  

Actor Emotion 
Valence 

p-value 
Arousal 

p-value 
AV Silent AV Silent 

Male Happy 4.28(0.74) 4.39(0.68) 0.278 3.52(0.96) 3.52(0.94) 0.423 

 Angry 1.78(0.73) 1.48(0.76) 0.388 3.72(1.09) 3.95(0.97) 0.056 

Female Happy 4.16(0.80) 4.19(0.79) 0.727 3.28(0.98) 3.39(1.05) 1.000 

 Angry 1.56(0.79) 1.69(0.69) 0.359 3.09(1.00) 3.39(0.94) 0.092 

Table 2.1 Subject Demographics 

Table 2.2 Arousal and Valence Rating for Male and Female Dynamic Models 

Note: Means and standard deviations are shown in parentheses for each emotion video for both 
the male and female dynamic video models. Ratings for each video presented with voices are 
indicated by the audiovisual (AV) stimulus condition and silent video ratings are indicated by the 
‘Silent’ column. p-values are the result of dependent samples t-test between the AV and Silent 
conditions, alpha = .05. Arousal was rated on a 5-point scale (1-5), with 1 being the least arousing. 
Valence was rated on a 5-point scale (1-5), with 1 being the most negative valence. 
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arepaired with a congruent emotional voice or shown alone. Videos were filmed with actors sitting 

behind a green screen to eliminate any hair or clothing that may have been visible. All videos were 

created and edited at Colorado State University by Katherine Becker. Each continuum consists of 

two end-point prototype videos (angry or happy), which were morphed together to create seven 

videos. The seven videos contained two endpoint prototype videos and 5 morphs, which were 

morphed by approximately 16.67% per step so that the mid-point video was a 50% combination 

of each prototype video (Figure 2.1). 

To create each continuum, two videos (one angry and one happy video) were selected from 

each actor (1 male) and edited in Adobe Premiere Pro (Adobe Premiere Pro CC 2019 release, 

Adobe, San Jose, CA, United States). Videos were exported as 40 frames to Adobe Photoshop 

(Adobe Photoshop 2019 release, Adobe, San Jose, CA, United States), saved as bitmaps, and 

imported to Psychomorph (Tiddeman, Burt, & Perrett, 2001; Tiddeman & Perrett, 2002). Within 

Psychomorph, each frame was associated with a unique template map made up of approximately 

190 hand placed points outlining the actor’s face shape and other major facial features (eyes, nose, 

lips, teeth). There was a total of 80 frames, 40 from each video sequence, each with their own 

template. Templates were used to spatially align each angry and happy frame for subsequent 

morphing to create one seven-step continuum of static images, ranging from 100% happy to 100% 

angry. This process was repeated 40 times, once for each frame in the video sequence.     

Fourteen emotional videos were generated, one for each continuum step for each actor, 

face videos were paired with an angry or happy voice or shown in silence. These stimuli were 

preceded by a written cue (mouth, eyes) to pay attention to the mouth or eyes of the stimulus to 

create six conditions. Each written cue was followed by a fixation cross placed at the location 

indicated by the written cue (mouth, eyes). 
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2.2.4 Experiment. Auditory stimuli were presented through computer speakers or audio 

headphones. Visual stimuli were presented on a computer or laptop monitor located in front of 

the subject. Morphed face stimuli were either shown in silence or simultaneously presented with 

an emotional voice using a custom experimental program created using JavaScript, CSS, and 

API. A password protected link to the experiment was published on the MTurks survey database 

Figure 2.1: Exemplar timeseries created from seven frames taken from each morphed video 
from the angry-happy continua created from two end-point angry and happy videos for the 
female model. Time is shown on the x-axis. Videos becoming increasingly composed of happy 
physical features when moving from video 1 (top) to video 7 (bottom) on the continuum. 
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(MTurks, Amazon, Seattle, Washington, United States).  Each trial began with a verbal cue 

(mouth, eyes) presented for 300 ms, which directed subjects to pay attention to either the eyes or 

mouth of the stimulus. This slide was followed by a white fixation cross on a black background 

which lasted 200 ms. The location of the fixation cross corresponded to the area of the face 

indicated by the verbal cue after which an audiovisual video clip of a morphed face video was 

presented for 1100 ms. 

A black screen appeared for 750 ms after the stimulus ended, creating trials which totaled 

2350 ms in duration (Figure 2.2a). All blocks contained 10 trials. Each block condition was 

indicated by the trial type that is in the majority. Seven of the trials were the same as the block 

emotion-fixation cue condition, and the remaining three trials were divided equally between the 

three-remaining emotion conditions preceded by the opposite cue. Each condition was shown in 

12 blocks. The hybrid block design experiment contained a total of 720 trials (10 trials x 6 

conditions x 12 blocks). Trials and blocks were presented in a pseudo-randomized order, to prevent 

subjects from easily predicting the condition within the blocks (Figure 2.2b). Each block was 23.5 

seconds in duration with one 30 second break located halfway through the experiment. The total 

duration of the experiment was 28.5 minutes. Subjects were instructed to identify if the emotion 

expressed by the actor was “happy” or “not happy” for every trial in a 2-alternative forced choice 

procedure using keys 1 to indicate “happy” and 2 to indicate “not happy” on a keyboard with no 

specific reference to the face or voice. Subjects were asked to respond quickly, to ensure that their 

responses occurred within the stimulus window. 
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2.3 Results 

To analyze the hypothesized bias effects, data were fit using a logistic function to calculate 

point of subjective equality (PSE) and just noticeable difference (JND) values (calculations in 

appendix B), which were analyzed using two identical linear mixed effects models with fixation 

cue (mouth, eyes) and prosody (happy, angry, silence) entered as fixed factors and subjects entered 

as a random factor, see appendix C. Results for the first linear mixed model showed that mouth 

fixation cue (beta = 0.126, t(68) = 2.21, p < .05), happy prosody (beta = 0.338, t(68) = .95, p < 

Figure 2.2: Experimental organization for the psychophysical experiment. a) Example of a 
single trial. Each trial begins with a word cue to either the Eyes or Mouth, followed by a fixation 
cue in the corresponding location, that was shown prior to viewing the morph stimulus. There 
was a 500 ms interstimulus interval. b) Diagram illustrating the pseudorandom trial and hybrid 
block organization for the six experimental conditions created from the Happy, Angry, and 
Silent voice conditions paired with either the Eyes or Mouth cue. One blank black rest block is 
situated in the middle of the blocks, at the mid-point of the experiment. Block height is arbitrary 
and is only meant to better differentiate between successive blocks. 
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.000), and silent prosody (beta = 0.535, t(68) = 9.28, p < .000) were linearly related to PSE values. 

All voice-fixation cue conditions will be referred to by their prosody and their associated fixation 

cue location (i.e, Happy Eyes). Neither the Happy Mouth interaction (beta = -0.120, t(68) = -1.50, 

p = .136) nor the Silent Mouth interaction (beta = -0.117, t(68) = -1.45, p = .148) were linearly 

related to PSE values. Post hoc comparisons were performed using the Tukey HSD test and 

multiple comparisons were corrected  

  

 

 

 

 

 

 

 

 

 

by FDR set at q = .05. PSE values for the Angry Eyes condition (M = 3.51, SD = 0.59) were 

significantly lower than the Angry Mouth condition (M = 3.64, SD = 0.60). There were no 

significant differences in PSE values between the Eyes and Mouth fixation cue conditions for 

either the Happy Eyes (M = 3.82, SD = 0.50) and Happy Mouth (M = 3.85, SD = 0.58) or Silent 

Eyes (M = 4.02, SD = 0.52) and Silent Mouth (M = 4.05, SD = 0.57) conditions were not 

Contrast Estimate Std. Error z-value p-value 

 Angry M – Angry E 0.126 0.057 2.23 0.030 

 Happy E – Angry E 0.338 0.056 5.99 0.000 

 Happy M – Angry E 0.344 0.057 6.02 0.000 

 Silent E – Angry E 0.535 0.057 9.36 0.000 

 Silent M – Angry E 0.544 0.057 9.53 0.000 

 Happy E – Angry M 0.212 0.057 3.75 0.000 

 Happy M – Angry M 0.218 0.057 3.82 0.000 

 Silent E – Angry M 0.409 0.057 7.13 0.000 

 Silent M – Angry M 0.418 0.057 7.32 0.000 

 Happy M – Happy E 0.006 0.056 0.10 0.917 

 Silent E – Happy E 0.197 0.057 3.46 0.001 

 Silent M – Happy E 0..206 0.057 3.64 0.000 

 Silent E – Happy M 0.191 0.057 3.32 0.001 

 Silent M – Happy M 0.200 0.057 3.49 0.000 

 Silent M – Silent E 0.009 0.057 0.16 0.917 

Table 2.3 Multiple Comparison Tukey HSD PSE Contrast Results 

Note: Results of the post hoc pairwise comparisons for the PSE linear mixed model results. 
Fixation cue names have been abbreviated for each contrast to simplify the table and conserve 
space. Happy, Angry, and Silent indicate the voice condition. (E = “Eyes”, M = “Mouth”) 
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significantly different. However, both the Happy and Silent Eyes conditions exhibited significantly 

higher PSE values than the Angry Eyes condition, see table 2.3. This difference was also present  

for the Mouth condition, with the Happy and Silent conditions having higher PSE values than the 

Angry Mouth condition. When compared against one another, the Happy prosody condition 

exhibited significantly lower PSE values than the Silent prosody condition when paired with the 

Eye fixation cue, and this difference in PSE values was true for the Happy-Silent Mouth fixation 

cue comparison. Condition means and individual PSE scores are depicted as boxplots in Figure 

2.3. 

JND values were analyzed in a second identical linear mixed effects models with fixation  

cue (mouth, eyes) and prosody (happy, angry, silence) entered as fixed factors and subjects entered 

as a random factor. Results showed that Mouth fixation cue (beta = -0.713, t(68) = -7.96, p < .000), 

Happy prosody (beta = -0.537, t(68) = -5.72, p < .000), and Silent prosody (beta = -1.38, t(68) = -

14.67, p < .000) conditions were linearly related to JND values. Both the Happy Mouth interaction 

(beta = 0.831, t(68) = 6.52, p < .000) and Silent Mouth (beta = 0.549, t(68) = 4.33, p < .000) 

interactions were linearly related to JND values. JND values for the Angry Eyes condition (M = 

3.65, SD = 0.74) were significantly greater than the Angry Mouth condition (M = 2.97, SD = 0.82). 

The JND for the Happy Eyes (M = 3.08, SD = 0.76) condition was not significantly different than 

the Happy Mouth (M = 3.23, SD = 0.65). The difference between the Silent Eyes (M = 2.27, SD = 

0.89) and the Silent Mouth (M = 2.13, SD = 0.85) condition was trending, but did not reach 

significance. The JND for Happy Mouth condition was significantly larger than both the Angry 

Mouth and Silent Mouth conditions. The Angry Eyes condition exhibited a significantly larger 

mean JND compared to all other conditions (p < .000). Conversely, the Silent Mouth condition 

exhibited a significantly smaller mean JND than every condition (p < .000) except for the Silent 
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Eyes condition (p = .917). Condition means and individual JND scores are depicted as boxplots in 

figure 4. A complete listing of all post hoc test results is listed in Table 2.4. 

A third linear mixed model was used to assess the effect of continuum step, voice prosody, 

and fixation cue on predicting reaction times, see appendix D. Results showed that Mouth fixation 

cue (beta = 18.47, t(68) = 2.03, p < .05), Step two (beta = 92.29, t(68) = 10.29, p < .000), Step 

three (beta = 46.95, t(68) = 5.23, p < .000), Step four (beta = 90.41, t(68) = 10.12, p < .000), and 

Step five (beta = 69.62,  t(68) = 7.81, p < .000) were linearly related to JND values. Additionally, 

the interactions: Happy Mouth (beta = -25.52, t(68) = -2.02, p < .05), Step two Mouth (beta = -

38.76, t(68) = -3.06, p < .01),  

Figure 3.3: Group means and individual point of subjective equality (PSE) values for the 
Happy, Angry, and Silent voice conditions broken down by cue condition. Higher PSE values 
indicate that the stimuli were perceived to be happier than lower PSE values.  Significance 
values indicated by p <.000 = ***, p < .05 = *. 
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Happy Step two (beta = -27.00, t(68) = -2.14, p < .05), Silent Step two (beta = -31.94, t(68) = -

2.52, p < .05), Happy Step three (beta = -96.02, t(68) = -7.56, p < .000), and the three-way 

interaction Happy Mouth Step three (beta = 66.57, t(68) = 3.071, p < .001) were significantly 

linearly related to JND values. Reaction times for each prosody condition across the seven-step 

continuum are presented in five box plot figures. The mean of each condition is shown as a line 

drawn through the middle of each box and the raw values are displayed as markers. The size of 

each box indicates the standard deviation and the whiskers represent the 95% confidence interval. 

Two of the figures depict the average reaction times for all three prosody conditions across the 

seven steps of the morph continuum, separated by fixation cue condition. Mouth cue reaction times 

are displayed in figure 2.5 and Eyes cue reaction times are shown in figure 2.6. Across the 

continuum, reaction times appeared to be significantly longer for the Angry condition compared 

Contrast Estimate Std. Error z-value p-value 

 Angry M – Angry E -0.694 0.088 -7.89 0.00 

 Happy E – Angry E -0.563 0.090 -6.24 0.000 

 Happy M – Angry E -0.422 0.091 -4.64 0.000 

 Silent E – Angry E -1.371 0.091 -15.14 0.000 

 Silent M – Angry E -1.537 0.091 -16.93 0.000 

 Happy E – Angry M 0.131 0.089 1.46 0.144 

 Happy M – Angry M 0.272 0.91 3.00 0.003 

 Silent E – Angry M -0.677 0.090 -7.52 0.000 

 Silent M – Angry M -0.844 0.090 -9.34 0.000 

 Happy M – Happy E 0.141 0.089 1.59 0.120 

 Silent E – Happy E -0.808 0.090 -8.95 0.000 

 Silent M – Happy E -0.974 0.091 -10.76 0.000 

 Silent E – Happy M -0.949 0.091 -10.43 0.000 

 Silent M – Happy M -1.115 0.091 -12.22 0.000 

 Silent M – Silent E -0.166 0.089 -1.87 0.071 

Table 2.4 Multiple Comparison Tukey HSD JND Contrast Results 

Note: Results of the post hoc pairwise comparisons for the PSE linear mixed model results. 
Fixation cue names have been abbreviated for each contrast to simplify the table and conserve 
space. Happy, Angry, and Silent indicate the voice condition. (E = “Eyes”, M = “Mouth”) 
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to either the Happy or Silent prosody conditions, with the Silent prosody condition exhibiting the 

fastest reaction times for the Mouth cue condition. Reaction times for the Happy prosody condition 

were significantly faster than the Angry prosody condition at steps one, two, three, five, six, and 

seven, but were not significantly different at the midpoint of the continuum 

Reaction time differences between the Angry and Happy prosody conditions were less 

consistent for the Eyes cue condition, with the Angry prosody condition exhibiting significantly 

longer reaction times than the Happy prosody condition at steps two and three, figure 2.6. Besides 

the first step of the continuum, both the Happy prosody and Angry prosody conditions were 

consistently significantly longer than the silent condition when the Eyes were cued. The one 

exception to this pattern was at step three where the average reaction time for the Happy prosody 

Figure 2.4: Group means and individual just noticeable difference (JND) values for the Happy, 
Angry, and Silent voice conditions separated by fixation cue. Higher JND values indicate 
greater variance in subjects’ responses. Significance values indicated by p <.000 = ***, p < .01 
= **. 
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Figure 2.5: Mean reaction times for each prosody (Happy, Angry, Silent) condition across the 
morph continuum for the Mouth fixation cue. Means are plotted as horizontal bars, boxes 
indicate the size of the standard deviation, raw scores are plotted as circle markers, and 
confidence intervals are depicted by the whiskers above and below each box. Significance 
values indicated by p <.000 = ***, p < .01 = **, p < .05 = *. 

Figure 2.6: Mean reaction times for each prosody (Happy, Angry, Silent) condition across the 
morph continuum for the Eyes fixation cue. Means are plotted as horizontal bars, boxes indicate 
the size of the standard deviation, raw scores are plotted as circle markers, and confidence 
intervals are depicted by the whiskers above and below each box. Significance values indicated 
by p <.000 = ***, p < .01 = **, p < .05 = *. 

Angry Happy 

Angry Happy 



 

27 

 

condition was lower than the Silent prosody condition. 

Individual graphs comparing the average reaction times for each fixation cue condition for 

each prosody are shown in figure 2.7. All three prosody conditions exhibited the longest reaction 

times at the midpoint of the continuum for both fixation cue conditions. The reaction times for the 

first and last steps of the continuum were significantly faster than the midpoint for all prosody and 

fixation cue conditions. The average reaction time for the Mouth fixation cue condition was 

significantly longer than the Eyes fixation cue condition for steps one, three, four, and five for the 

Angry prosody condition (Figure 2.7a). Reaction times for steps four and seven were also longer 

for the Angry Mouth fixation cue condition, but these differences did not reach significance. 

Reaction times for the Eyes fixation cue condition were only longer than the Mouth fixation cue 

for step two. Reaction times for the first and last step of the Angry prosody condition were not 

significantly different between fixation cue conditions. Reaction times significantly increased 

between steps one and four for both the Happy Eyes and Happy Mouth conditions and significantly 

decreased between steps four and seven (Figure 2.7b). Only two steps (two, three) of the Happy 

prosody condition exhibited significant differences between the Eyes and Mouth fixation cue 

conditions. The Silent prosody condition also exhibited an initial increase, peak, and then decrease 

in reaction times for both fixation cue conditions across the continuum (Figure 2.7c). Reaction 

times only differed at the second step of the continuum, where reaction times for the Eyes fixation 

cue were significantly slower than the Mouth fixation cue condition. 
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Figure 2.7: Mean reaction times for each fixation cue (Eyes, Mouth) for each prosody (Happy, 
Angry, Silent) condition across the morph continuum (100 % Angry to 100% Happy). Means 
are plotted as horizontal bars, boxes indicate the size of the standard deviation, raw scores are 
plotted as circle markers, and confidence intervals are depicted by the whiskers above and 
below each box. Significance values indicated by p <.000 = ***, p < .01 = **, p < .05 = *. 
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2.4 Discussion 

 The authors predicted that the PSEs for each condition would not only be biased in the 

direction of the simultaneously presented prosody, but that PSE values would indicate a stronger 

bias in the direction of the voice when cued to look at the mouths of face stimuli. Results showed 

that all three prosody conditions exhibited an increase in PSE values when cued to look at the 

mouth, with increased PSE values indicating a shift in the subjective judgments of affect 

perception to that morphed faces were perceived to be ‘happier’ than their physical condition. 

While these findings partially support the authors’ hypothesis for the Happy condition, they were 

somewhat unexpected for the Angry prosody condition, as the authors had anticipated a decrease 

in PSE values between the Eyes and Mouth conditions as subjects were being presented with both 

the visual and auditory components of the vocalization (Figure 2.7b). Conversely, while both the 

Happy and Silent conditions exhibited an increase in PSE values, only the Angry prosody 

condition showed a significant increase between the Eyes and Mouth fixation cue conditions. 

These findings may reflect two a priori findings: 1) Visual information predominates perception 

(McDonald & McGurk, 1976) and 2) Mouths of happy faces are inherently more salient than other 

facial features across emotions (Calvo & Nummenmaa, 2008). These points indicate that happy 

faces may have given faces a greater advantage in biasing perception towards the happy end of the 

morph continuum, especially when subjects were cued to look at the mouths of stimuli. advantages 

which have been shown to have a detection advantage, as well as  

This valence mediated perceptual bias may partially explain the decreased reaction times 

for both the Happy and Silent prosody conditions, which were perceived to be ‘happier’ based on 

significantly higher PSE values than the Angry prosody condition (Figure 3), with higher PSE 

values indicating a shift towards the happy end of the morphed angry-happy continuum so that 
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morphed faces appeared to be ‘happier’ than their physical composition. However, fixation cue 

location did not appear to effect PSE values for either the Happy or Silent prosody conditions 

(Figure 2.3). Surprisingly, the Silent voice condition exhibited significantly higher PSE values 

than the Happy and Angry prosody conditions for both fixation cues (Figure 2.3). This finding was 

somewhat surprising, as one would expect that faces paired with a Happy prosody would bias 

responses to have a higher mean PSE value than those presented in a silent condition. The Silent 

voice condition may have exhibited the highest PSE as it allowed subjects to view and evaluate 

the continuum based solely on its physical traits, which would have been equally biased by both 

the angry and happy physical features of the stimuli. This theory is supported by a comparison of 

the mean PSE values for the Silent Eyes (M = 4.02, SD = 0.52) and Silent Mouth (M = 4.05, SD 

= 0.57) conditions which occur nearly at the exact physical center of the morph continuum, where 

each video is equally composed of both happy and angry physical features. 

While the authors did not take direct measures of the arousal and valence ratings of the 

actors’ voices, a comparison of the arousal and valence ratings for the audiovisual and silent videos 

showed that these videos were not rated significantly different from one another for either prosody 

condition (Table 2.2). This may indicate that the prosody of the actor’s voice did not determine 

the overall emotional percept conveyed by each video, but rather the video itself may have been 

driving the emotional percept as vision predominates bimodal perception (Hess, Kappas, & 

Scherer, 1988; McGurk & McDonald, 1976; Massaro & Egan, 1996; de Gelder & Vroomen, 2000; 

Abelin, 2007). Suggesting that while the Happy stimuli used in the experiment may have been 

equally as arousing and oppositely valenced as the angry stimuli, the Happy voices may not have 

been positively valenced enough to achieve a PSE that was “happier” than the Silent condition 

when presented without the Happy videos. However, one cannot definitively say that the happy 
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prosodic stimuli were completely ineffective as they did produce a PSE that was significantly 

higher than the angry prosody condition. 

Perceptual confusion can be indexed by the just noticeable difference (JND). JND values 

were smallest for the Silent voice condition for both the Mouth and Eyes fixation cues, which may 

be related to decreased perceptual demands, as subjects are only presented with visual rather than 

mismatched audiovisual stimuli. This effect was somewhat surprising, as previous work has shown 

that morphed static faces presented in silence exhibited the largest JND values when compared to 

audiovisual face-voice stimuli (Becker & Rojas, submitted). The authors’ interpretation had been 

that faces shown alone were perceived as being the most confusing because subjects only received 

one channel of affective information, producing the greatest variation in subjects’ responses 

(Becker & Rojas, submitted). These conflicting results may be due to inherent differences in static 

versus dynamic faces, which differentially effect perceptual processing. Dynamic faces, for 

example, may provide more socially engaging salient features, which facilitate face recognition 

(Lander & Bruce, 2003). Some posit that facial movements are more effective in face recognition 

as they convey more information than static faces, which only provide a two-dimensional 

representation of an individual (Bassili, 1979). These findings necessitate further research using 

bimodal emotion perception paradigms, which employ static and dynamic faces to directly 

compare the perceptual advantages conveyed by using moving faces over static faces. 

Similar to the current findings, Becker & Rojas (submitted) found that morphed static faces 

exhibited reaction times that were significantly faster than all of the bimodal face-voice conditions, 

lending further support to the idea that unimodal visual stimuli are processed more rapidly than 

audiovisual inputs. Collectively, these results indicate that while static and dynamic faces 

presented in isolation are rapidly processed, dynamic faces may have an inherent motion 
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advantage, which facilitates affect recognition, and this could be evidenced through faster reaction 

times and a lower JND score. While both the Angry and Happy prosody conditions exhibited 

greater JND values than the Silent condition for both the Eyes and Mouth fixation cues, the 

interaction between spatial cueing and emotional prosody in biasing response variability is not 

clear. The current results indicate that the size of the JND may be linked to both emotional valence 

and spatial cueing as the Angry prosody condition exhibited greater variability when cued to look 

at the Eyes but not the Mouth, and this pattern was reversed for the Happy prosody condition, but 

did not reach significance. These results may indicate that the most salient facial features used in 

affect recognition may differ by emotional valence. This notion is supported by eye-tracking 

studies, which have shown that individuals tend to spend more time fixating on the eyes of 

negatively valenced emotions and more time on the mouths of happy faces (Eisenbarth & Alpers, 

2011; Bodenschatz, Kersting, & Suslow, 2019). Thus, differences in JND scores may indicate the 

existence of automatic emotion-specific detection mechanisms that are more sensitive to the 

distribution of key facial features. 

Reaction time data results were in agreement with the author’s hypotheses. The silent 

condition had significantly faster reaction times than both the Happy and Angry prosody 

conditions. Reaction times for all three voice conditions exhibited an inverted U shape, with the 

slowest reaction times occurring at the midpoint of the face continuum and the fastest reaction 

times appearing at the two end points. Specifically, reaction times at the two end points were 

significantly lower than the midpoint of the continuum but not significantly different from one 

another. Reaction times significantly increased and decreased as stimuli became more and less 

ambiguous from the beginning to the end of the continuum and this was true for all voice and 

fixation cue conditions (Figures 5, 6). This gradual increase in reaction times for all three voice 
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conditions may indicate greater confusion in responses as stimuli become more ambiguous. 

Additionally, audiovisual stimuli have been linked to longer reaction times as concurrently 

presented facial and vocal cues may require more processing time than faces presented alone 

(Massaro & Egan, 1996; Pell, 2005). This notion complements the current reaction time and JND 

findings, which showed that the Silent voice condition displayed significantly faster reaction times 

for both the Mouth and Eyes fixation conditions (Figures 5, 6) as well as significantly lower JND 

values compared to the Happy and Angry prosody conditions for both fixation cues (Figure 4). 

Indicating that subjects’ responses to the Silent voice condition not only required less processing 

time but also exhibited less variance than subjects’ responses to the Happy and Angry audiovisual 

conditions. 

These findings coincide with those of an identical experiment which utilized static, rather 

than dynamic, faces (Becker & Rojas, submitted). Spatial cueing to the mouth appeared to prolong 

audiovisual processing of face-voice stimuli as faces paired with an Angry voice exhibited longer 

reaction times than both the Happy and Silent prosody conditions. Conversely, differences in 

reaction time for the Happy and Angry prosody conditions only appeared at steps two and three of 

the morph continuum for the Eyes fixation condition, whereas the Angry prosody condition 

displayed significantly longer reaction times than the Silent voice condition at steps two, three, 

four, five, six, and seven. These findings indicate that spatial cues to the mouth may enhance 

perceptual biases when processing emotional faces as they are visually salient and facilitate a 

detection advantage when differentiating between emotional faces (Calvo & Nummenmaa, 2008). 

This may be partially attributed to early attentional resources which direct subjects to fixate on the 

mouths of happy faces (Calvo & Nummenmaa, 2008). Additionally, some studies have suggested 

that happy faces may be inherently more discriminable than negative emotions because its 
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communicative intent is less ambiguous than the handful of emotions which fall under the umbrella 

of negatively valenced emotions (sad, disgust, fear, anger), which can often be confused with one 

another (Calvo & Nummenmaa, 2008; Becker, Anderson, Mortensen, Neufeld, & Neel, 2011). 

This is known as the happy superiority effect (Becker, Anderson, Mortensen, Neufeld, & Neel, 

2011; Bortoloti, de Almeida, de Almeida, & de Rose, 2019) in which happy faces are categorized 

as happy faster than angry faces categorized as angry (Leppänen & Hietanen, 2003). 

Given these findings, it is important to evaluate both the vocal and facial stimuli used in 

the current study, as it is imperative that both the angry and happy stimuli be equal in arousal and 

intensity, and oppositely valenced. This dynamic can be inherently difficult to achieve when using 

positively and negatively valenced stimuli (Tottenham, et al., 2009), especially under conditions 

where the emotional properties and overall intensity of each emotion (‘hot anger’ verses ‘cool 

anger’) are poorly defined or differentially produced (posed versus evoked), increasing variation 

in actors’ portrayals (Gur, et al., 2002; Schröder, 2003). Thus, a limitation of the current study may 

have been that the emotions expressed by the actors were not as ‘happy’ as they needed to be, 

which may account for the differences in reaction times between the Angry and Happy prosody 

conditions, and the happy bias for the Silent voice condition. Moreover, video editing procedures 

may have prohibited the selection of videos with the most extreme intensity, arousal, and valence 

ratings, as these videos often featured dramatic differences in the physical features (face shape or 

length, number of teeth displayed, wincing or blinking) of the two end-point videos, which made 

them difficult to edit and morph together. Implementing such restrictions may have affected the 

ability of each face and voice to effectively convey the target emotion (Belin, Fillion-Bilodeau, & 

Gosselin, 2008), as affect recognition rates vary as a function of emotion, duration, (Pell, 2005; 

Cornew, Carver, & Love, 2009), valence, intensity, and arousal (Tottenham, et al., 2009). 
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These potential limitations may be more related to the prosody of the speaker’s voice as 

they did not appear to hinder the formation of categorical boundaries for the morphed face continua 

when the faces were presented in silence. This point is supported by the pattern of subjects’ 

reaction times, which were significantly faster one step before and after the most ambiguous point 

of the continuum for nearly every prosody-fixation cue condition (the Angry Mouth condition was 

not significantly different after), indicating a perceptual turning point at the most ambiguous point 

of the morphed continuum that was consistent for nearly every condition. These results suggest 

that, regardless of prosody or fixation cue, the video stimuli were effective in providing a set of 

dynamic visual stimuli that could be perceived categorically. Thus, the absence of a stronger 

‘happy’ bias for the Happy prosody condition over the Silent condition may be linked to both the 

salient visual features of happy faces and the low arousal or valence ratings of the current prosodic 

stimuli. To gain more definitive insight into these findings the authors must collect arousal and 

valence ratings for each prosodic stimulus to evaluate their efficacy in accurately conveying the 

target emotions. 

Additionally, it should be emphasized that this experiment was presented to subjects using 

an online research platform, which prevented the authors from controlling interindividual 

differences in viewing (screen size, resolution, distance from screen) and listening (sound level, 

binaural or monaural presentation, environmental noise) conditions during stimulus presentation. 

Differences in listening volume or environmental noise between-subjects may have attenuated or 

distorted the emotion-specific acoustic signatures that differentiate emotional voices (Scherer, 

1986, Scherer, 2003; Belin, Fillion-Bilodeau, & Gosselin, 2008). Distortions to the acoustic profile 

of a particular vocalization may have made voices more emotionally ambiguous (Scherer, 1986; 

Scherer, 2003), potentially limiting the ability of a vocal utterance to positively or negatively bias 
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an emotional percept. These factors may have further confounded the ability of the happy prosody 

condition to produce a perceptual bias that was greater than the silent condition. Similarly, an 

inability to control the viewing conditions (screen or window size, resolution, distance from 

screen) may have limited the efficacy of the fixation cue to bias subjects’ visual attention to either 

the eyes or mouth. This situation is further complicated as the author was unable to monitor 

subjects’ eye movements during the task to verify that they were gazing at the correct facial 

features cued by the fixation crosses. Future studies should employ eye tracking to capture 

subjects’ eye fixation patterns. 

 Overall, the findings of this study fit within a broader literature of affect perception 

research (Massaro & Egan, 1996; Etcoff & McGee, 1996; de Gelder & Vroomen, 2000; Pourtois, 

et al., 2000; Molholm et al. 2002; Campbell, 1996) which has demonstrated that auditory inputs 

modify the processing of visual stimuli. These findings add to the current literature as they showed 

that these perceptual biases persist when morphed dynamic stimuli are used in place of static faces. 

Moreover, reaction times showed that cueing spatial attention to the eyes hastens reaction times 

for all prosody conditions and this effect was most apparent for angry prosody. Additionally, visual 

cues to the mouth appear to differentially convey a detection advantage for happy voices over the 

angry and silent conditions. Although the arousal and valence ratings of the prosodic stimuli used 

in the current study are unknown, results showed that the processing of bimodal stimuli can be 

biased in the direction of a simultaneously presented affective voice. Additionally, this study adds 

to the current literature in showing that while two emotions may be oppositely valenced, and 

exhibit similar arousal ratings, the full efficacy of these emotions and sensory channels may 

depend on the stimuli of the experiment (Massaro & Egan, 1996, de Gelder & Vroomen, 2000). 
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CHAPTER 3 – DISENTANGLING THE INTEGRATION OF EMOTIONAL FACES AND 
VOICES IN MULTIMODAL EMOTION PERCEPTION: AN INDEPENDENT COMPONENT 

APPROACH TO ELECTROENCEPHALOGRAM (EEG) DATA ANALYSIS 
 

 
 

3.1 Introduction 

3.1.1 Affective Faces and Voices. Emotion is multimodal, communicated via the fusion of 

audiovisual cues arising from the coordinated action of multiple facial muscles and concurrently 

expressed vocalizations (Schirmer & Adolphs, 2017). This correspondence is underscored by the 

fact that both vocalizations and facial expressions have been categorized as belonging to one of 

six basic emotions (happiness, sadness, fear, anger, surprise, and disgust; Ekman & Friesen, 1976; 

Schröder, 2003; Belin et al., 2008). This indicates that an individual's emotional state may be 

expressed via separate complementary modalities, which can independently impart the same, or 

similar, holistic perceptual experience to the observer (Schirmer & Adolphs, 2017). This 

perceptual convergence suggests that multimodal emotional stimuli may engage a constellation of 

spatially segregated and functionally diverse areas associated with sensory, perceptual, and 

cognitive processes (Schirmer & Adolphs, 2017). 

3.1.2 Electroencephalography and Emotion. The neural correlates of audio, visual, and 

tactile dimensions of emotion have been characterized by research using electroencephalography 

(EEG). Alternatively, the blood oxygenation level dependent (BOLD) response measured by 

functional magnetic resonance imaging (fMRI) (Ogawa, Lee, Nayak, & Glynn, 1990; Belliveau et 

al., 1991; Kwong et al., 1992) has been used to localize patterns of brain activity with excellent 

spatial resolution. However, the temporal resolution of fMRI is relatively poor compared to EEG 

due to the inherent delay in the hemodynamic response, which is offset by several seconds relative 

to the onset of neural activity (Logothetis et al., 2001; Lewin, 2003). Due to its superior temporal 
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resolution EEG has enabled researchers to study these features as temporally distinct event-related 

potentials (ERPs). These events are stimulus specific with a collection of ERPs being selectively 

evoked by faces (Roisson et al., 2003; Hajcak, Weinberg, MacNamara, & Foti, 2011; Eimer & 

Holmes, 2007), voices (Hajcak, Weinberg, MacNamara, & Foti, 2011), and emotional stimuli 

(Cacioppo et al., 1993; Foti & Hajcak, 2008; Bernat, Bunce, & Shevrin, 2001). These components 

are temporally coincident, occurring within one to two hundred milliseconds of one another and 

sometimes sharing similar spatial distributions (Pratt, 2011; Hajcak et al., 2011). 

3.1.3 ERPs of Face Processing. Visual processing of affective faces is principally 

characterized by two ERP components occurring between 100-200 ms after stimulus presentation. 

The first component, P100, appears as a positive deflection over parieto-occipital electrodes, 

peaking between 100-130 ms post stimulus presentation (Hajcak et al., 2011). The P100 has been 

attributed to the early coarse analysis of low-level facial features (Rossion & Caharel, 2011; 

Regan, 1989; Lou et al., 2010). Higher order face processing has been linked to the N170 

component, which occurs approximately 130-200 ms after stimulus onset over a network of 

parieto-temporal-occipital areas in the right hemisphere (Hajcak et al., 2011). The N170 has been 

associated with more fine-grained visual analysis the configural changes which characterize 

different emotions as the amplitude and latency of the N170 may be mediated by the emotionality 

of a facial expression (Batty & Taylor, 2003; Luo et al., 2010).  

 3.1.4 ERPs of Voice Processing. Vocalizations can enhance or alter the meaning of a facial 

expression (de Gelder & Vroomen, 2000) and are processed and represented via a series of discrete 

neural events (Pell et al., 2015; Jiang, 2017). Early acoustic analysis occurs approximately 100 ms 

after stimulus presentation appearing as a negative going deflection over fronto-central electrodes 

and has been associated with sensory-perceptual processing of vocal stimuli (Paulmann & Kotz, 
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2008). Acoustic attributes appear to be integrated shortly after initial perceptual processing as the 

amplitude of the fronto-central P200 response differs between vocal emotions (Paulmann, Seifert, 

& Kotz, 2010; Paulmann, Bleichner, & Kotz, 2013; Pell et al., 2015). Emotional evaluation of 

vocalizations has been linked to the N300, which peaks in frontocentral electrodes (Paulmann & 

Kotz, 2008). Later elaboration of emotional meaning been associated with the sustained activity 

of the late centro-positivity (LPC), which peaks approximately 500 ms after stimulus onset 

(Paulmann, Bleichner, & Kotz, 2013). 

3.1.5 Multimodal ERPs. Several components appear to respond more generally to affective 

stimuli and may reflect attentional processes associated with the motivational significance of 

stimuli. The N2 appears 200-300 ms post stimulus onset over occipital sites and is associated with 

increased selective attention to emotional content (Hajcak et al., 2011). The P300 has been 

associated with processing the motivational significance of emotional stimuli, occurring 300-500 

ms post stimulus onset over midline parietal electrodes (Hajcak et al., 2011). Emotional faces, 

words, and pictures elicit a late positive potential (LPP) that appears to migrate from parietal to 

midline electrodes, appearing 300 ms after stimulus presentation and persisting even after stimulus 

removal (Hajcak & Olvet, 2008; MacNamara & Hajcak, 2010). These ERPs represent the complex 

perceptual and cognitive processing that occurs after initial audiovisual analysis and categorization 

of affective stimuli. 

3.1.6 Multimodal Perception. The complexities of this dynamic process are underscored 

by research on multimodal integration in emotion perception, wherein emotional voices are shown 

to bias the perception of simultaneously presented affective faces in the direction of the emotion 

presented in the speaker’s voice (de Gelder & Vroomen, 2000). This perceptual bias was reversed 

when subjects were instructed to pay attention to the emotional faces, as voices were perceived to 
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be more similar to the emotion of the simultaneously presented facial expression (de Gelder & 

Vroomen, 2000). These findings illustrate that faces and voices are integrated in the brain in a 

bidirectional manner that appears to be mediated by attention. Indicating that unimodal influences 

can shape multimodal perception. 

3.1.7 Neural Correlates of Emotion Perception. While the neural activity associated with 

the independent processing of these two channels is well defined (Hajcak et al., 2011), the when 

and where of the concomitant processing and integration of multimodal stimuli remains unclear. 

This question is further complicated by EEG’s relatively poor spatial resolution as ERPs are a 

measure of the summed activity of field potentials (Zhukov, Weinstein, & Johnson, 2000; Pascual-

Marqui, 2009). Findings from fMRI suggest that face-voice integration may occur in the posterior 

superior temporal sulcus (pSTS), which has been shown to be sensitive to unimodal and 

multimodal representations of emotion (Beauchamp, 2004; Campanella & Belin, 2007). These 

findings may reflect fMRI’s superior spatial resolution as multiple temporally coincident ERPs 

appear in parietal-temporal-occipital areas surrounding the pSTS (Hajcak et al., 2011). 

3.1.8 Independent Component Analysis. Independent component analysis has been used to 

resolve the subtle differences in evoked responses by differentiating the spatiotemporal patterns 

underlying several sensory and perceptual processes (Onton, Westerfield, Townsend, & Makeig, 

2006; Vigario et al., 2000). However, it should be emphasized that EEG components do not 

represent isolated neural processes even when stimuli are unimodal. This issue is further 

complicated by the presentation of multimodal stimuli, which exacerbates the spatiotemporal 

overlap typically seen during the processing of unimodal stimulus. Source localization techniques 

have been used to further increase the spatial resolution of this activity and dissociate the neural 

responses associated with processing emotional images (Liu & Tian, 2007). The temporally 
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coincident, and sometimes spatially overlapping, functionally separable subprocesses underlying 

face and voice processing necessitates the use of advanced data reduction and source localization 

techniques to disentangle and further characterize the neural underpinnings of multimodal emotion 

perception. 

3.1.9 The Current Study. The current study sought to identify the neural substrates 

underlying multimodal emotion integration using a two-step ICA-sLORETA analysis. To examine 

the unimodal and multimodal aspects of affect perception, subjects were presented with affective 

faces and voices, presented separately or simultaneously. Subjects’ responses were used to 

quantify changes in emotion perception using two psychophysical metrics: the point of subjective 

equality (PSE) and just noticeable difference (JND). These metrics can be used to evaluate the 

magnitude of the perceptual biases elicited by each prosody condition and estimate the variance in 

subjects’ responses. We hypothesized that the perception of emotionally ambiguous faces paired 

with prosodic voice would be biased in the direction of the emotional voice, with faces appearing 

‘happier’ with happy voices and ‘angrier’ or ‘less happy’ than when presented with an angry or 

neutrally toned prosodic voice. Moreover, reaction times were expected to be fastest to the face 

only condition compared to the bimodal conditions and subjects would exhibit the lowest variance 

in responses for the bimodal conditions, as they convey more affective information than the face 

only condition. We hypothesized that ICA components would be lateralized to parietal-temporal-

occipital areas in the right hemisphere surrounding the pSTS, as this region has been identified as 

a major locus of multimodal integration (Beauchamp, 2004; Campanella & Belin, 2007). Further, 

these component time-courses would be correlated with one or more stimulus modalities (face, 

voice, or face and voice) or emotional prosody conditions (happy, angry, neutral).  
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3.2 Methods 

3.2.1 Participants. Thirty undergraduate students (15 female) from Colorado State 

University participated in this study. The mean age for participants was 21.03 (3.35) years. All 

participants were provided informed consent before taking part in the procedures. All participants 

filled out three brief questionnaires regarding general and mental health, as well as drug and 

alcohol use. The Duke health profile (DUKE) was used to gauge subjects’ perceived level of 

physical, mental, social, and overall health (Parkerson, Broadhead, & Tse, 1990). One subject 

chose not to complete the DUKE general health questionnaire; this is indicated under the 

questionnaires completed column. Alcohol use was measured using the Alcohol Use Disorders 

Identification Test (AUDIT; Babor, de la Fuente, Saunders, & Grant, 1992), and drug use was 

assessed using the Drug Abuse Screening Test (DAST-10; Skinner, 1982). Questionnaire results 

and scoring cutoffs are shown in table 3.1. The protocol was approved by the Colorado State 

University Institutional Review Board and the experiment was conducted in accordance with all 

relevant guidelines and regulations. Exclusion criteria were based on self-report and included: past 

or current neurological or psychiatric diagnosis, history of developmental disability or traumatic 

brain injury, current tobacco use, visual acuity of worse than 20/20 without correction, and chronic 

or current substance abuse within three months of taking part in the experiment. 

3.2.2 Face Stimuli. Face stimuli consisted of a set of nonprofessional actors with natural 

hair and makeup taken from the NimStim database (Tottenham et al., 2009). One happy and one 

angry closed-mouth image were selected from a subset of 20 actors (10 men) from the database. 

Images were transformed to grayscale and cropped so that only the actor’s face was visible. 

Psychomorph software was used to generate two continua, one for each actor (Tiddeman, Burt, &  
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Perrett, 2001; Tiddeman & Perrett, 2002). continuum consisted of two end-point prototype images 

(angry or happy), Each which were morphed together in seven steps (two endpoints and 5 morphs, 

in 12.5% steps) so that the image at the mid-point step would be a 50% combination of each 

prototype image (Figure 3.1).  

 

Scale Variables 
 Age Score 

 M SD M SD 

DUKE  n = 29(15) 21.10 3.38   

Health Measures      

 Physical health    83.45 13.17 

 Mental health    82.50 15.78 

 Social health    84.83 15.26 

 General health    83.57 9.99 

 Perceived health    83.93 23.78 

 Self-esteem    87.50 11.10 

Dysfunction Measures      

 Anxiety    20.69 14.88 

 Depression    22.50 17.56 

 

Anxiety-

depression    19.39 14.53 

 Pain    17.24 24.19 

 Disability    3.45 12.89 

DAST-

10  n = 30(15) 21.03 3.35   

 Drug abuse    1.74 1.44 

AUDIT  n = 30(15) 21.03 3.35   

 Alcohol use    3.84 2.85 

Table 3.1 Mean Questionnaire Scores Concerning Drug and Alcohol Use, and 

General Physical and mental health. 

Note: Parentheses indicate number of female participants. Scores for the DUKE are raw scores 

from a scale of 0.0-100.0. High scores for health measures indicate good health, high scores 

for the dysfunction measures equates to poor health. DAST-10 contains 10 items with scores 

ranging from 0.0-10.0, lower scores (1-5) indicating lower to moderate drug use, and higher 

scores (6-10) suggesting substantial to severe drug use. Total AUDIT scores greater than 8 

indicate dangerous and harmful alcohol consumption, with scores ranging from 0.0-40.0. 
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Individual morphing templates were created from each end-point image using 182 

manually placed control points. Closed mouth images were selected to facilitate morphing. Face 

stimuli were presented on an LED monitor with a 240 Hz refresh rate located 45 cm in front of the 

subject. Face stimuli subtended 7.62 degrees of visual angle vertically and 5.72 degrees 

horizontally. 

3.2.3 Voice Stimuli. Auditory stimuli consisted of short, nonverbal affective interjections 

of the vowel /a:/ “ah” obtained from the Montreal Affective Voices database (Belin, Fillion-

Bilodeau, & Gosselin, 2008). These vocalizations were produced by professional actors in spoken 

English. These stimuli were chosen because they effectively convey emotion, are created from 

authentic human voices, and are paralinguistic rather than linguistic. Three vocalizations expressed 

in an angry, happy, and neutral prosody were chosen for each actor (1 male and 1 female), resulting 

in six unique vocalizations. These stimuli have previously been matched and validated for valence 

(negative, positive), arousal and perceived intensity (Belin, Fillion-Bilodeau, & Gosselin, 2008). 

All vocal stimuli were cropped to be 993 ms in length (Audacity Team (2017), Audacity(R): Free 

Audio Editor and Recorder; 32-bit float, 44100 Hz, see table 2.2 for individual SPL values) and 

were attenuated individually in E-Prime 2 presentation software (Psychology Software Tools, 

1 7 2 3 4 5 6 

100% 

Angry 

100% 

Happy Static Face Morph Continuum 

Figure 3.1: Example of one morphed continuum created from two static end-point angry and 

happy images, which are represented by two 100% Angry and Happy images. Individual 

images were taken from these continua and used as the visual face stimuli for the experiment 

and were either shown alone or presented with an Angry, Happy, or Neutral prosody. The image 

at the center of the continuum is a 50/50 composite image of the Angry and Happy face images. 
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Pittsburgh, Pennsylvania, United States). Auditory stimuli were delivered binaurally (70 dB SPL) 

via EAR 3a foam insert earphones. 

3.2.4 EEG Experiment. Participants were presented with three classes of stimuli, face only 

(FO), voice only (VO), and face+voice (F+V), to create seven conditions, one for each prosody 

(happy, angry, neutral) for the F+V and VO conditions with one condition for the FO stimuli 

(Figure 3). Morphed face stimuli were presented concurrently with auditory stimuli or were shown 

alone. Each trial began with a white fixation cross on a black background for 300 ms, followed by 

a 200 ms pause, after which a VO, FO, or F+V stimulus was presented for 993 ms, followed by a 

500 ms inter-stimulus interval, which featured a blank black screen, for a total trial time of 1993 

ms (Figure 3.2a). For each trial, subjects were instructed to indicate if the emotion expressed by 

the actor was “happy” or “not happy” using a X-box controller (Microsoft, Inc., Redmond, 

Washington, United States) without specific reference to the face or voice. Button press responses 

were analyzed for the proportion of happy responses and reaction times for each prosody condition 

and face. Reaction times were measured at the onset of each stimulus presentation. Reaction times 

were excluded if they were less than 200 ms or greater than 994 ms.  

Emotion Sex SPL (dB) 

Happy Female -23.33 

Angry Female -13.44 

Neutral Female -10.81 

Happy Male -19.21 

Angry Male -14.20 

Neutral Male -14.62 

Stimuli were presented in blocks of 14 trials defined by their condition (Happy F+V, Angry 

F+V, Neutral F+V, Happy VO, Angry VO, Neutral VO, FO) and stimulus type (FO, F+V, VO). 

Block condition was indicated by the trial type that was in the majority. For the three F+V 

conditions, and the VO conditions, 70% of the trials were the same as the block prosody condition, 

Table 3.2 Sound Pressure Level (SPL) for Individual Vocal 

StimuluiValues. 
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with the remaining 30% being divided equally between the two remaining prosody conditions. 

Each condition was repeated in 10 blocks, for a total of 70 blocks (7 conditions x 10 blocks) (Figure 

3.2b). Faces and voices were matched for gender for the F+V conditions. The total experiment 

therefore comprised 980 trials (20 actors x 7 conditions x 7 faces on a continuum), with VO, FO, 

and F+V condition blocks presented pseudo-randomly (14 trials per block x 70 blocks = 980 trials). 

The total duration of the experiment was 32.5 minutes.3.2.5 EEG Acquisition and 

Preprocessing. Electrophysiological data were continuously acquired from 39 passive, sintered 

Figure 3.2: Experimental organization for the multimodal emotion perception EEG 

experiment. a) Example of a single trial showing the Face+Voice (F+V) condition. Each trial 

begins with a fixation cross, followed by a short blank black period, and then a stimulus (Voice 

only (VO), F+V, Face only (FO)), and then a 500 ms interstimulus interval. b) Diagram 

illustrating the pseudorandom trial and hybrid block organization for the seven experimental 

conditions. Block height is arbitrary and is only meant to better differentiate between 

successive blocks. 

a) 

b) 
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Ag/AgCl ring electrodes using a Neuroscan SynAmp 2 amplifier (Compumedics USA, El Paso, 

Texas, United States). Electrodes were arranged in the standard 10-10 system (Nuwer, Comi, 

Emerson, Fuglsang-Frederiksen, Guerit, et al., 1998). A conductive gel was injected into each 

electrode in order to minimize impedances, which were kept at 10 kΩ or less for the experiment. 

Data were sampled at 1000 Hz. The open source EEGLAB toolbox (eeglab13_6_5b, Delorme & 

Makeig, 2004) and custom Matlab code was used to analyze the data, see appendix E. Vertical and 

horizontal EOG electrodes were simultaneously recorded and used in eye artifact removal. The 

data were re-computed to an average reference, excluding EOG channels, and any remaining eye 

artifact remnants were removed using the independent component analysis (ICA) algorithm runica 

(Makeig, Jung, Ghahremani, Bell, & Sejnowski, 1997). EEG recordings were divided into 2000 

ms epochs (-500 ms pre- to 1500 ms post-stimulus presentation) and baseline corrected for the 

entire 2000 ms time period and band-pass (0.1-35.0 Hz, linear finite impulse response (FIR)) and 

notch (60.0 Hz) filtered. 

3.2.6 Behavioral Data Analysis. Reaction times were analyzed using a two-way, 3 

(prosody) x 7 (face) repeated measures ANOVA with Greenhouse-Geisser correction for both the 

prosody and condition factors. Significant main effects and interactions were subsequently 

examined using Bonferroni adjusted Fisher LSD post-hoc tests at alpha = .05. Response choices 

to each face were analyzed in a classical psychophysical framework. A logistic function was 

applied to the percentage happy face classifications for the 7 faces to determine the point of 

subjective equality (PSE, or 50% angry/happy point) and just-noticeable difference (JND, or 

25+75% points, divided by 2). PSE and JND were entered into two, separate one-way, repeated 

measures ANOVAs with a single factor of prosody to examine the potential bias of voice prosody 

on face perception in SPSS (IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY). 
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3.2.7 Independent Component Analysis and Correlations. Individual preprocessed data 

files were merged into a common time series for group ICA using the Infomax ICA algorithm in 

EEGIFT (Eichele, Rachakonda, Brakedal, Elkeland, & Calhoun, 2011) implemented in Matlab 

(Matlab 2016b, The MathWorks, Inc., Natick, Massachusetts, United States). Components were 

then back reconstructed into the individual data. ICA decomposition resulted in 37 independent 

components. While the data were acquired using 39 passive recording electrodes, the top two eye 

components were removed from the dataset so only 37 components were specified in the ICA 

decomposition. Individual component time courses were correlated (Pearson’s r) with each 

stimulus type (FO, VO, F+V) and emotion condition (Happy, Angry, Neutral), see appendix F. 

Multiple comparisons were corrected by FDR set at q = .05. Components were selected for further 

analysis based off of their significant correlation with either the emotion or stimulus condition and 

physiological plausibility as discussed by Delorme and colleagues (2012). Physiological 

plausibility was defined by the approximate number of dipoles that could be realistically fit to each 

component, as each individual component, in theory, should only have one singular source of 

activity generating each component (Delorme, Palmer, Onton, Oostenveld, & Makeig, 2012). 

Additionally, t-tests were used to eliminate components, which exhibited no significant changes 

from baseline between 100-600 ms post stimulus onset, see appendix G. This time period was 

selected based off of a priori literature, which has indicated that processes related to auditory, 

visual, multimodal integration, and emotion processing appear to occur between these two time 

points (Hajcak, Weinberg, MacNamara, & Foti, 2012; Rossion & Jacques, 2012).3.2.8 Component 

Source Localization. sLORETA analysis was performed using the scalp component topographies 

generated from EEGIFT. Component time courses were exported as text files to LORETA-KEY 

(Pascual-Marqui, Michel, & Lehmann, 1994; Pascual-Marqui, 1999) using the LORETA-KEY 
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plugin in EEGLAB. Electrode positions were based on a subset of channels from the spherical 10-

10 BESA coordinate system (BESA Research, BESA GmBH, Gräfelfing, Germany; PO7, FC5, 

CPz, POz, P1, PO3, AFz, FT7, T3, AF7, C3, F3, CP5, TP7, FC1, T5, P5, P3, FC2, P2, FC6, PO4, 

FT8, AF8, T4, T6, C4, F4, CP8, TP8, PO8, P6, P4, AF4, O1, Fz, O2, AF3, Cz). A transformation 

matrix was calculated using the electrode coordinates, which were warped into Talairach space. 

The EEG electrode coordinates were warped into Talairach space using a transformation matrix 

created from the EEG electrode coordinates. Current source density values were calculated for 

each voxel in the reference brain, under the assumption that spatially adjacent voxels should show 

similar patterns of electrical activity. These values were then saved into a LORETA file which 

could be mapped onto the standardized brain. 

3.3 Results 

3.3.1 Behavioral Results. To analyze the hypothesized bias effects of prosodic voices on 

emotion perception, the data were fit using a logistic function (Fechner, 1966) to calculate the 

point of subjective equality (PSE) and just noticeable difference (JND) values, which were 

analyzed using two identical one-way repeated measures ANOVAs with condition (F+V prosody, 

face) as the within-subjects factor. Results showed that there was a significant difference in PSE 

values between conditions F(3,115) = 8.48, p = .000 with the Happy F+V condition exhibiting the 

lowest PSE, which was significantly different (3.78 ± .946) than both the Angry (4.87 ± 1.14, p = 

.000) and Neutral (4.70 ± .966, p = .000) F+V conditions. The PSE for the Face Only 

condition(4.15 ± .628) was also significantly different than the Neutral (p = .028) and Angry (p = 

.003) F+Vconditions, but it was not significantly different from the Happy F+V condition (p = 

.132), see figure 3.3. 
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The ANOVA for JND revealed a statistically significant difference in JND values between 

conditions F(3,115) = 13.39, p = .000. The Face Only condition exhibited a significantly larger 

JND (3.32 ± .939) than all F+V conditions (Happy, 1.77 ± .689, p = .000; Angry, 2.04 ± 1.20, p = 

.000; Neutral, 2.16 ± 1.20, p = .0 (3.32 ± .939). The JND for the Happy F+V condition was not 

significantly different from the Angry (p = .313) or Neutral (p = .149) F+V conditions, which also 

did not significantly differ from one another (p = .656), see figure 3.4. 

Figure 3.3: Group means and individual point of subjective equality (PSE) values for the Face 

Only, Happy, Angry, and Neutral Face+Voice (F+V) conditions. Lower PSE values indicate 

that the stimuli were perceived to be happier than higher PSE values. Horizontal lines indicate 

condition means, boxes illustrate the standard error of the mean, individual PSE values are 

shown as circles, and confidence intervals are shown as whiskers. Significance values 

indicated by p <.000 = ***, p < .005 =**, p < .05=* 
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Subject reaction times were analyzed using an ANOVA with the same within subjects 

factors and levels, which revealed a significant main effect for face step F(6,162) = 2.89, p = .010, 

ηp2 = .301, condition F(3,81) = 20.01, p = .000, ηp2 = .426, and a significant interaction between 

face step and condition F(18,486) = 3.15, p = .000, ηp2 = .105. 

 Pairwise comparisons revealed significantly faster reaction times for the Face Only condition 

when compared to all F+V conditions (Happy, 709.53 ± -51.08, p = .000; Angry, 709.53 ± -40.57, 

Figure 3.4: Group means and individual just noticeable difference (JND) values for the Face 

Only, Happy, Angry, and Neutral Face+Voice (F+V) conditions. Lower JND values indicate 

less variance in responses than higher JND values. Horizontal lines indicate condition means, 

boxes illustrate the standard error of the mean, individual PSE values are shown as circles, and 

confidence intervals are shown as whiskers. Significance values indicated by p <.000 = ***, p 

< .005 =**, p < .05=*   
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p = .000; Neutral, 709.53 ± -44.20, p = .000). There were no significant differences between the 

F+V conditions. 

While there were no significant differences in the average reaction times for each F+V 

condition, three one-way within subjects ANOVAs, one for each F+V condition, with face step as 

the within subjects factor were used in an exploratory analysis to see if gains in reaction time 

across the continuum varied as a function of the emotional congruency of the face and voice. 

Reaction times for the Happy F+V condition (F(6,199) = .774, p = .591) and the Neutral F+V 

condition (F(6,196) = 1.51, p = .177) were not significantly different across the face continuum 

(Figure 3.5). However, while the ANOVA for the Angry F+V condition did not reach significance 

(F(6,203) = 2.02, p = .064), post hoc comparisons revealed that reaction times for the first face 

step were significantly faster than steps five (731.39 ± -46.25, p = .05) and six (731.39 ± -46.35, 
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Figure 3.5: Mean reaction time (ms) values for each face step across the face morph continuum. 

Confidence intervals are plotted as vertical bars. Reaction times are shown for tconditions of the 

experiment containing face stimulus (Face Only, Happy, Angry, and Neutral F+V).  

Mean Reaction Times 
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= .05) and reaction times for the second step were significantly faster than steps four (718.28 ± -

55.87, p < .05), five (718.28 ± -59.36, p < .01), and six (718.28 ± -59.46, p < .01). 

3.3.2 ICA Component Results. While 39 passive electrodes were used to acquire the EEG 

data, only 37 components were used in the final analysis because the top two eye components were 

removed from each subjects’ data after running the runICA algorithm to identify eye artifacts. All 

37 components are shown in figure 3.7. 

.  

 

 

 

 

 

 

 

 

3.3.3 Stimulus Type and Prosody Condition Correlation Results. Individual component 

time courses were correlated (Pearson’s r) with each stimulus type (FO, VO, F+V) and emotion 

condition (Happy, Angry, Neutral). Multiple comparisons were corrected by FDR set at q = .05. 

Significant correlations and significant changes from baseline time periods are listed in tables 3.3 

and 3.4.

Figure 3.7: Results of the independent component analysis decomposition. Thiry-seven scalp 

topographies show the spatial distribution of increases (red) and decreases (blue) in activity 

collapsed across time. Component numbers are shown above each topoplot for organizational 

purposes. Component numbers are used only to numerically label each component. 
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Component # Condition Significant Time Periods (ms) 

 1 Face Only 0-10; 330-363; 460-465; 895-911 

 

5 
Face Only 149-192; 252; 345-850; 868-930; 961-1010; 1037-1075; 1131-1157; 1219-1280; 1313-1333; 1220-1491 

 Face+Voice 400-458; 497-514; 567-629; 685-712; 1138 

 

7 

Face Only 0-1500 

 Face+Voice 0-36; 100-1500 

 Voice Only 0-1500 

 Angry 59-123; 197-234; 378-431; 498-518; 1232-1245; 1431 

 Happy 79; 105-150; 300-106 

 Neutral 40-405; 692-704; 1232-1245; 1432 

 

8 

Face Only 
17-35; 67-71; 141-169; 208-415; 437-527; 556-579; 639-661; 684-711; 918-954; 1021-1030; 1149-1184; 1219-1238; 

1292-1371; 1397-1481 

 Face+Voice 133-155; 208-346; 366-386; 447-458 

 Happy 257-271 

 9 Face+Voice 
32-47; 152-177; 218-258; 310-375; 411-431; 662; 689-731; 847-899; 912-970; 983-1069; 1088-1149; 1213-1249; 1284-

1348; 1365-1386; 1396-1473;1487-1500 

 

12 
Face Only 172-204 

 Face+Voice 156-185; 263-495 

 

15 

Face Only 12-53; 325-690; 707-720; 1346 

 Face+Voice 12-619 

 Voice Only 260-290 

 Angry 0-24; 79-146; 171-690; 711-736; 761-828; 847-875; 939-965; 1036-1059; 1318-1338 

 Happy 421-687; 722; 767-779; 815-829; 855-971 

 Neutral 90-127; 497-524; 641-651 

Note: Each component is listed with the experimental element(s), which it was significantly p < .05 correlated with (Pearson’s r), 

corrected for multiple comparisons using FDR, q = .05. Significant time periods for each correlation are listed on the right. 

 

Table 3.3 Significant Correlation Time Periods Between Each Component Time-course and Condition. 
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Component # Condition Significant Time Periods (ms) 

 18 Face+Voice 163-189 

 
21 

Face Only 177-237; 256-316 

 Angry 816 

 

25 

Face Only 44-96; 119; 121-163; 250; 467 

 Face+Voice 
0-68; 112-171; 183-218; 312-395; 439-481; 610-687; 737-760; 832; 854; 1020-1066; 1122-1136;1221; 1248-1261; 1313-
1333 

 Voice Only 75-104; 121-163; 655-690 

 Angry 58-101 

 Happy 54-82; 111-154; 314-342; 357-384; 452-537; 548-623; 653-745; 780-817; 834-901; 944-963; 974-989 

 

28 

Face+Voice 
123-153; 167-174; 481-762; 767-804; 808-836; 856-893; 922-951; 968-1046;1073-1133; 1160-1178; 1234-1260; 1292-

1299; 1323-1333; 1356-1379; 1439-1453 

 Angry 
37-46; 100-198; 580-636; 655-678; 711-747; 794-862; 886-837; 956; 1011-1040; 1054-1101; 1119-1196; 1209-1257; 

1272-1300; 1321-1500 

 

31 

Face+Voice 57; 130-155; 185; 334-409; 447-491; 503-630; 651-666; 

 Voice Only 
48-62; 136-149; 178-190; 226; 268-422; 448-625; 637-713; 781-798; 853-864; 903; 963-980; 1045; 1109-1139; 1186-

1211; 1224-1250; 1304-1321; 1344-1361; 1424 

 Angry 121-153; 1041-1062; 1123-1146 

 

35 

Face Only 155-252 

 Face+Voice 138-202; 275-307; 328; 1283-1299; 1364-1376 

 Happy 130-159 

Table 3.4 Significant Correlation Time Periods Between Each Component Time-course and Condition (Continued). 

Note: Each component is listed with the experimental element(s), which it was significantly p < .05 correlated with (Pearson’s r), 

corrected for multiple comparisons using FDR, q = .05. Significant time periods for each correlation are listed on the right. 
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3.3.4 Component Baseline Comparison and Source Localization Results. Dependent t-tests 

comparing component time-course activity to baseline activity were performed on this final 

thirteen components, which had exhibited a significant correlation with one or more experimental 

elements (stimulus type or prosody condition). Results were corrected for multiple comparisons 

using a Bonferroni correction set at alpha = .01. Periods of significant change from baseline are 

highlighted in red on each component time-course as shown in the second column of figures 3.8 

and 3.9. All components exhibited a significant increase or decrease from baseline activity prior 

to 300 ms as shown in figures 3.8 and 3.9. 

These components were then source localized using the standardized low brain 

electromagnetic tomography (sLORETA; Pascual-Marqui, 2002) algorithm using LORETA-KEY 

(Pascual-Marqui, Michel, & Lehmann, 1994; Pascual-Marqui, 2002). Scalp topography, time-

courses, and source localization results are shown in figures 3.8 and 3.9. Component activity was 

primarily lateralized to the right hemisphere, with some anterior frontal, occipital, and parietal 

activity appearing in components: 5, 8, 15, and 31. The majority of components exhibited activity 

in bilateral somatosensory or parietal areas: 1, 7, 12, 15, 18, 21, 25, 28, 31, 35. Only two 

components (5 and 12) exhibited activity in anterior temporal and inferior areas in the right 

hemisphere and these components were significantly correlated with both the face only and face 

and voice stimulus conditions. These components were significantly correlated with the face only 

condition during an overlapping time period (149-204 ms) that’s strongly associated with face 

processing in the EEG literature (Hajcak, Weinberg, MacNamara, & Foti, 2012). Additionally, 

both components showed a brief significant decrease in activity between approximately 260-270 

ms. Activity for components exhibiting significant activity post 300 ms (1, 7, 9, 15, 35) were 

primarily localized to somatosensory and parietal association areas
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Figure 3.8: Component numbers shown on far left. Component topographies in column one 

show the spatial distribution of component activity collapsed across time. Column two shows 

component time-courses, time periods (ms) significantly different from baseline are shown in 

red, Bonferroni corrected at p < .01. Source localization results are shown in the third column. 

Time (ms) 
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Figure 3.9: Component numbers shown on far left. Component topographies in column one 

show the spatial distribution of component activity collapsed across time. Column two shows 

component time-courses, time periods (ms) significantly different from baseline are shown in 

red, Bonferroni corrected at p < .01. Source localization results are shown in the third column. 
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3.4 Discussion 

  

Emotion perception is the seemingly instantaneous integration of vocal and facial cues that 

together form a whole percept. While affective information can be gleaned from and identified in 

either modality independently, the relative contribution and interaction of these channels is 

unclear. While the brain processes underlying the independent processing of voices and faces has 

been well documented (Kanwisher, McDermott, & Chun, 1997; Schirmer & Kotz, 2006 Adolphs, 

Damasio, & Tranel, 2002; Belin, Zatorre, & Ahad, 2001) less research has focused on 

disentangling the neural correlates underlying bimodal emotion perception. Moreover, even fewer 

studies have focused on the role of emotional valence in mediating the combination of multimodal 

stimuli in the brain (Pourtois, de Gelder, Vroomen, Rossion, & Crommelinck, 2000). The current 

study confirmed the authors’ hypotheses that activity would be localized to the pSTS and 

surrounding occipital, temporal, and parietal areas in the right hemisphere.  

Three components (5, 7, 15) were localized to the right pSTS, an area which has been 

identified as the locus of affective multimodal integration (Adolphs, Damasio, & Tranel, 2002; 

Beauchamp, Argall, Bodurka, Duyn, & Martin, 2004; Robins, Hunyadi, & Schultz, 2009; 

Campanella & Belin, 2007). Two of the three components exhibited significant correlations with 

all of the stimulus types and prosody conditions. These findings are in accordance with the results 

of a high-resolution fMRI study that showed that voices, faces, and simultaneously presented 

voices and faces elicited physically distinct but spatially adjacent patterns of activation within the 

pSTS (Beauchamp, Argall, Bodurka, Duyn, & Martin, 2004). Affective vocal and facial 

information is relayed to the pSTS via a diverse constellation of direct and indirect connections 

between the amygdala and occipital, temporal (Blank, Anwander, & von Kriegstein, 2011; Haxby, 
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Hoffman, & Gobbini, 2000), and fronto-parietal areas of the right hemisphere (Pelphrey & Carter, 

2008). This widespread connectivity may indicate that the pSTS works as a multifaceted hub for 

several components of social communication including: affect recognition (Haxby, Hoffman, & 

Gobbini, 2000; Campanella & Belin, 2007), social perception (Isik, Koldweyn, Beeler, & 

Kanwisher, 2017), and emotion cognition (Burnett & Blakemore, 2009). Moreover, the pSTS 

responds to both domain specific (faces and voices, language, emotion) and more general socially 

relevant (theory of mind, biological motion) stimuli (Deen, Koldewyn, Kanwisher, & Saxe, 2015). 

Tasks involving emotion perception may engage several perceptual and cognitive processes 

simultaneously, which may jointly and differentially recruit the pSTS. This general yet specialized 

processing capability may partially explain how two components localized to the pSTS could be 

significantly correlated with every prosody condition and stimulus modality as the pSTS may act 

as a point of multimodal convergence where information gleaned from affective facial expressions 

and vocalizations is integrated to enable holistic emotional judgments (Schirmer & Adolphs, 

2017). 

In addition to activity in the right pSTS, several other areas of brain activity emerged in 

the left hemisphere, which may reflect the interaction between emotion, attention, and perception 

in the brain. Components 5 and 8 exhibited activity in left intraparietal sulcus, orbitofrontal cortex, 

the superior frontal gyrus, and occipital lobe (Figure 3.8). These brain areas have been associated 

with the visceral modulation of emotion (Price, 2006), cognitive evaluation functions and 

attentional mechanisms which modulate visual processing (Pessoa & Ungerleider, 2004). 

Additionally, these regions are connected via subcortical structures including the amygdala 

(Vuilleumier & Driver, 2007), basal forebrain, and hypothalamus (Pessoa & Ungerleider, 2004). 

These structures are thought to exert top-down attentional and emotional modulation on visual 



 

66 

 

processing by evaluating the affective value of incoming stimuli (Pessoa & Ungerleider, 2004; 

Vuilleumier & Driver, 2007). The top-down modulatory effect of these areas on visual processing 

complements the conceptual correlations between components 5 and 8 and the visual Face Only 

and audiovisual Face+Voice conditions. The current study invoked both attentional and emotional 

modulation of visual processing as subjects were required to attend to and evaluate the affective 

properties of each visual stimulus. This top-down modulation may have led to increased or 

prolonged brain activity in the visual cortices while processing the emotional images (Vuilleumier 

& Driver, 2007), with attentional and emotional influences ultimately shaping the formation of 

each emotional percept. This pattern of activity appeared manifest in components 8, 15, 18, and 

31, all of which exhibited occipital activity that was significantly correlated with the Face+Voice 

stimulus condition. 

 Several components were localized to right somatosensory areas (components: 5, 18, 21, 

28, figures 3.8, 3.9) with multiple components exhibiting bilateral activity (components: 1, 7, 12, 

15, 25, 31, figures 3.8, 3.9). While these results were not hypothesized, they fit within a wider 

literature indicating that the right somatosensory cortex plays an essential role in embodied 

emotion (Kragel & LaBar, 2016). Embodied emotion is the visceral bodily experience of an 

emotion. Representations in the somatosensory cortex have been associated with linking emotion 

perception to the subjective experience of observing affective vocal and facial expressions (Kragel 

& LaBar, 2016). One theory posits that the somatosensory cortex contains neural representations 

of emotional vocal and facial expressions, which facilitate affect recognition by connecting 

external emotional stimuli to internal emotion categories (Damasio, 1996). This viewpoint is 

bolstered by findings that damage to or interruption of activity in right somatosensory areas 

appears to interfere with the recognition of both vocal (Adolphs, Damasio, & Tranel, 2002; 
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Banissy et al., 2010) and facial (Adolphs, Damasio, Tranel, Cooper, & Damasio, 2000; Pitcher, 

Garrido, Walsh, & Duchaine, 2008) expressions of emotion. Additionally, one fMRI study showed 

that multivoxel activations were correlated with self-report measures of emotional experiences 

when viewing or hearing affective stimuli (Kragel & LaBar, 2016), indicating that the 

somatosensory cortex exhibits emotion-specific patterns of activity that coincide with subjects’ 

subjective emotional states. In this study, 11 of the final 13 components showed some activity in 

either primary or secondary somatosensory cortices. 

 These findings are complemented by the behavioral data, which showed that happy and 

angry prosodic voices appear to shift subjective judgments of emotion perception so that morphed 

faces will appear to be ‘happier’ or ‘angrier’ than their physical composition. These results indicate 

that subjects may have experienced some form of emotional embodiment as their internal 

representation of each emotion was biased by the prosody of the simultaneously presented voice. 

While there were no significant differences between the Happy Face+Voice and Face Only 

condition (Figure 3.4) this may have been due to the highly salient nature of happy faces, which 

may not have benefited from the presence of a prosodic voice. Additionally, the PSE values 

between the Neutral and Angry Face+Voice conditions were not significantly different (Figure 

3.4). These data could suggest an inherent negativity bias which made the voices for the Neutral 

and Angry Face+Voice conditions appear ‘angrier’ than the Happy Face+Voice and Face Only 

conditions. Further, a negativity bias may account for a potential ceiling effect that prevented the 

Angry Face+Voice condition from being perceived as ‘angrier’ than the Neutral Face+Voice 

condition. 

 The current study used JND values and reaction time scores to quantify both the variance 

in subjects’ responses, as well as, the perceptual processing speed for each Face+Voice and Face 
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Only stimulus category. Results showed that although the Face Only condition exhibited the lowest 

reaction times (Figure 3.6), they also exhibited the highest JND values. Indicating that while 

bimodal stimuli may require more perceptual processing time than faces shown in isolation, faces 

and voices appear to increase sensitivity to differences in emotional expression. Additionally, the 

Happy Face+Voice condition had the lowest mean JND value, which may be related to the 

increased emotional salience of happy stimuli. These behavioral data illustrate that unimodal and 

multimodal stimuli are differentially perceived and processed, and that this perceptual processing 

may not only be dependent on the modality of the stimulus but also upon its emotional valence. 

Additionally, these results may suggest that emotional embodiment is facilitated by the 

presentation of affective faces as voices, with voices playing an essential role in the subjective 

experience of emotion recognition.  

 If replicated in a future study, these results may suggest that embodied emotion may be an 

essential element of emotion identification, as subjects were presented with affective audio, visual, 

and audiovisual stimuli and then asked to make subjective ratings of each stimulus. Thus, 

regardless of the stimulus modality or prosody condition subjects were presented with some form 

of emotional content, which would have been internally associated with an emotional category 

represented in the somatosensory cortex (Damasio, 1996; Kragel & LaBar, 2016). These effects 

may have resulted in multiple seemingly identical areas of activation that are differentially 

involved in the subjective experience of emotion. While difficult to physically parse apart, this 

notion of component specialization may be supported by differences in the component time-course 

correlations, which often varied in both the number and type (stimulus modality or emotional 

valence) of correlation between components with similar spatial distributions. However, due to the 

inferior spatial resolution of the imaging modality employed in the current study these nuanced 
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patterns of activity may have gone undetected. Future work with brain stimulation methods could 

experimentally manipulate suppression or enhancement of somatosensory brain regions in 

conjunction with presentation of multimodal emotional stimuli. 

 Collectively, these components characterize distinct aspects of multimodal integration, 

emotion perception, and the subjective experience of emotion. While multiple components (7, 8, 

15, 21, 25, 28, 31, figures 3.8, 3.9) were significantly correlated with either the Happy or Angry 

prosody condition it was uncertain which neuroanatomical regions or cognitive, perceptual, or 

attentional processes these emotions were associated with. While the localization of emotional in 

the brain was somewhat ambiguous, studies of emotional prosody have provided invaluable 

evidence as to how affective voices are represented in the brain. Previous functional near-infrared 

spectroscopy (fNIRS) work using an identical task showed that happy and angry voices paired 

with affective faces exhibited a posterior-anterior distribution of activity in the right hemisphere 

that appeared to be dependent on the valence of the spoken prosody (Becker & Rojas, submitted). 

This functional organization parallels that described for prosodic language (Ross & Monnot, 2008) 

with posterior parietal areas being associated with the reception and comprehension of prosody 

and anterior frontal areas being associated with the expression of prosody. Of the 13 components, 

only component 5 appeared to exhibit a similar posterior-anterior distribution of activity, but it 

was not correlated with either prosody condition.   

One of the goals of the current study was to use EEG and independent component analysis 

to isolate and source localize activity to structures that may be involved in multimodal affect 

recognition and which may be specialized to a single modality. These results reaffirm previous 

work showing that unimodal and multimodal information processing and integration occurs within 

a distributed network of brain areas within the right hemisphere (Adolphs, Vuilliemier & Driver; 
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Kragel & LaBar, 2016). Additionally, they build upon the current literature by demonstrating that 

neural activity can be decomposed and correlated with task elements (sensory modality and 

emotional valence) to further refine the role of each component.  Limitations of the current study 

include an inability to record subcortical structures, which may serve as important components in 

the networks underlying bimodal affect recognition. In particular, the results presented herein 

could have benefitted from imaging the amygdala as multiple studies have identified it as a core 

structure in models of emotion perception (Baxter & Croxson, 2012; Adolphs, Damasio, & Tranel, 

2002; Price & Friston, 2005), as it plays an essential role in the elaboration of emotion for higher 

cognitive functions (Baxter & Croxson, 2012; Price & Friston, 2005). The use of dynamic as 

opposed to static faces could have furthered the ecological validity of the current study as dynamic 

faces have been shown to specifically engage anterior areas of the pSTS (Robins, Hunyadi, & 

Schultz, 2009). This may have aided in the differentiation of the specialization of areas within the 

parietal lobe. The current study represents an important step toward furthering our understanding 

of the neural basis of dynamic emotion perception. 
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CHAPTER 4 – THE EFFECT OF EMOTIONAL CONGRUENCY ON MULTIMODAL 

EMOTION PERCEPTION: AN MAGNETOENCEPHALOGRAPHY (MEG) STUDY 

 

 

 

4.1 Introduction 

 

4.1.1 Perceptual Integration of Affective Faces and Voices. Emotion is communicated via the 

simultaneous integration of affective facial and vocal expressions, which provide complementary 

or incongruent information that can influence emotion perception (Kayser & Logothetis, 2007; de 

Gelder & Vroomen, 2000) and behavioral performance (de Gelder & Vroomen, 2000; Schröger & 

Widmann, 1998). These two channels appear to be strongly connected as illustrated by the famous 

McGurk Effect (McGurk & MacDonald, 1976), in which an illusory auditory percept is formed 

through the simultaneous presentation of two mismatched visual (spoken /ga-ga/) and auditory 

inputs (voiced /ba-ba/). The aberrant percept underscores the dynamic interplay of these two 

channels in bimodal perception and suggests that faces and voices are not processed independently 

in the brain. Rather, simultaneous presentation of incongruent audio and visual stimuli may disrupt 

the neural processes underlying normal multimodal integration to distort or bias perception (de 

Gelder & Vroomen, 2000) to form a third illusory percept that does not match the information 

presented in either the visual or auditory modality alone (McGurk & MacDonald, 1976). While 

this phenomenon has been well established in the behavioral literature (Campanella & Belin, 2007; 

de Gelder & Vroomen, 2000; McGurk & MacDonald, 1976; Schröger & Widmann, 1998), 

research examining the neural correlates of incongruent audiovisual integration in emotion 

perception has been lacking (Chen, Edgar, Holroyd, Dammers, Thönneßen, Roberts, & Mathiak, 

2010). 

4.1.2 Neural Substrates of Multimodal Emotion Perception. Affective information gleaned 

from faces and voices appears to be processed via a distributed network of brain regions which 
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exhibit connections involve fusiform gyrus (FG), occipital face area (OFA), the amygdala, the 

orbitofrontal cortex, and  the posterior superior temporal sulcus (pSTS) of the right hemisphere 

(Gainotti, 2019), which lies at the intersection of primary auditory and visual cortices (Adolphs, 

Tranel, & Damasio, 2003;  Adolphs, 2002). This lateralization appears to be related to the direct 

(orbitofrontal cortex, amygdala) and indirect (FG, OFA) connections to areas in the right 

hemisphere associated with processing affective socially relevant stimuli (Leppänen & Nelson, 

2008; Adolphs, 2002).  

Neuroimaging findings have provided ample evidence that the pSTS may be at the center of 

this network as it has been strongly associated with the convergence and integration of affective 

auditory and visual information (Beauchamp, Argall, Bodurka, Duyn, & Martin, 2004; Hagan, 

Woods, Johnson, Calder, Green, & Young, 2009; Hagan, Woods, Johnson, Green, & Young, 2013; 

Kreifelts, Ethofer, Grodd, Erb, & Wildgruber, 2007). Evidence from high resolution functional 

magnetic resonance imaging (fMRI) further refines the role of the pSTS in multimodal perception 

as it showed that the pSTS exhibits a patchy organization of separate groups of cells that are 

maximally responsive to both unimodal (auditory-only, visual-only) and multimodal inputs 

(Beauchamp, Argall, Bodurka, Duyn, & Martin, 2004). Non-human primates exhibit a 

homologous pattern of partially overlapping and nonoverlapping cortical projections connecting 

polysensory and unisensory brain regions to the pSTS (Seltzer, Cola, Gutierrez, Massee, Weldon, 

& Cusick, 1996), Cyto- and myeloarchitectonic parcellation of the pSTS in the rhesus monkey 

also demonstrated a similar pattern of afferent cortical connections arising in primary auditory and 

visual cortices, with some ventral areas of the pSTS receiving input from multiple cortical sources 

(Seltzer & Pandya, 1978). This organization may facilitate the integration of multimodal inputs 
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derived from auditory and visual brain areas (Seltzer, Cola, Gutierrez, Massee, Weldon, & Cusick, 

1996; Beauchamp, Argall, Bodurka, Duyn, & Martin, 2004). 

This physiological convergence supports the notion that the pSTS is essential to audiovisual 

integration and social communication, with one model of face processing hypothesizing that the 

pSTS is specialized in processing the dynamic changeable features of faces (eye gaze, mouth and 

cheek movements), which characterize not only visual speech but also the minute physical changes 

that differentiate different affective facial expressions (Haxby, Hoffman, & Gobbini, 2000). This 

model is further reinforced by fMRI studies which have shown that physically distinct, but 

overlapping areas of the STS respond to both the visual and auditory features of moving faces, 

with activations appearing while viewing dynamic faces, listening to emotional voices (Hoffman 

& Haxby, 2000; Yang, Rosenblau, Keifer, & Pelphrey, 2015), or during silent lip reading (Calvert, 

et al., 1997). Thus, the pSTS may play an integral role in combining separate sources of 

information to detect the physical changes in facial and vocal expressions that characterize 

different emotions (Calder & Young, 2005; Calder, Young, Keane, & Dean, 2000). These results 

reinforce the idea that the pSTS may possess a more holistic representation of emotion, which 

responds to both the changeable aspects of faces and their concomitant vocalizations. Such 

findings indicate that while the pSTS responds to both unimodal and bimodal sources of affective 

information, the pSTS exhibits heightened expertise in analyzing concurrently presented affective 

visual and auditory information conveyed by simultaneously presented faces and voices.  

4.1.3 Neural Correlates of Emotional Congruence Detection. The initial processing and 

integration of faces and voices has a rapid time course, with electroencephalogram (EEG) findings 

showing that early (<100 ms post-stimulus onset) auditory processing of a vocal stimulus may be 

modulated by a concurrently presented affective facial expression (Pourtois, de Gelder, Vroomen, 
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Rossion, & Crommelinck, 2000). Additionally, two studies have reported that the amplitude of the 

auditory N1 and N140 components is greater when the emotion conveyed by the face is congruent 

with that communicated by the voice (Pourtois, de Gelder, Vroomen, Rossion, & Crommelinck, 

2000; Puce, Epling, Thompson, & Carrick, 2007), suggesting that auditory processing is enhanced 

when presented with a congruent visual stimulus as visual context may modulate how auditory 

information is processed. Interestingly, while visually evoked N170 face component was elicited 

in one study it was not affected by the congruency manipulation (Puce, Epling, Thompson, & 

Carrick, 2007). Some researchers have suggested that later visual components may be less affected 

by manipulations to audiovisual stimuli as auditory information gleaned from the stimulus has 

already been processed via other sensory pathways or in unisensory auditory brain areas 

(Ghazanfar & Schroeder, 2006; Ghazanfar, Chandrasekaran, & Logothetis, 2008).  

While only a subset of neuroimaging studies has directly examined the neural underpinnings 

of emotional congruence this study will touch on a related aspect of emotional cognition known 

as emotional conflict. Emotional conflict refers to situations in which the emotional expression 

displayed by the face is not congruent with that expressed in the voice (Müller, Habel, Derntl, 

Schneider, Zilles, Turetsky, & Eickhoff, 2011). Few studies have focused on the effects of 

emotional conflict (Müller, Habel, Derntl, Schneider, Zilles, Turetsky, & Eickhoff, 2011), which 

have been associated with increased cognitive processing and longer reaction times for 

incongruent bimodal stimuli (de Gelder & Vroomen, 2000; Wittfoth, Schroder, Schardt, Dengler, 

Heinze, & Kotz, 2010). Emotional conflict may take many forms and can be studied using a variety 

of paradigms which examine emotional and cognitive control mechanisms (Xu, Xu, & Yang, 2016; 

Song, Zilverstand, Song, d’Oleire Uquillas, Wang, Xie, Cheng, & Zou, 2017). Meta-analyses 

examining the effect of strong emotional conflict during emotional Stroop tasks have consistently 
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reported activity in the dorsolateral prefrontal cortex (DLPFC), inferior frontal gyrus, and dorsal 

anterior cingulate cortex (dACC), which has been associated with conflict detection (Xu, Xu, & 

Yang, 2016; Song, Zilverstand, Song, d’Oleire Uquillas, Wang, Xie, Cheng, & Zou, 2017). 

Additionally, one fMRI study reported that incongruent affective face-voice stimuli were 

associated with increased activity in a network of cingulate-fronto-parietal areas, which appear to 

be involved in conflict monitoring and resolution (Müller, Habel, Derntl, Schneider, Zilles, 

Turetsky, & Eickhoff, 2011). 

4.1.4 Limitations of Existing Neuroimaging Findings. While a number of fMRI (Müller, Habel, 

Derntl, Schneider, Zilles, Turetsky, & Eickhoff, 2011; Kreifelts, Ethofer, Grodd, Erb, & 

Wildgruber, 2007) and EEG (Pourtois, de Gelder, Vroomen, Rossion, & Crommelinck, 2000; 

Puce, Epling, Thompson, & Carrick, 2007) studies have provided critical insights into the neural 

substrates underlying multimodal emotion perception, few studies have utilized 

magnetoencephalography (MEG; Hagan, Woods, Johnson, Calder, Green, & Young, 2009; Chen, 

Edgar, Holroyd, Dammers, Thönneßen, Roberts, & Mathiak, 2010). MEG measures the minute 

magnetic fields emanating from populations of active neurons in the cortex unencumbered by the 

effects of volume conduction which complicate interpretation of EEG results (Baillet, 2017).  

Additionally, MEG boasts excellent temporal precision and good spatial resolution, enabling 

researchers to delineate the neural activity underlying emotion perception on a fine time scale with 

reasonable spatial accuracy (Baillet, 2017). Experimentally, other studies investigating multimodal 

integration of affective faces and voices have used static stimuli (Hagan, Woods, Johnson, Calder, 

Green, & Young, 2009; Müller, Habel, Derntl, Schneider, Zilles, Turetsky, & Eickhoff, 2011; 

Chen, Edgar, Holroyd, Dammers, Thönneßen, Roberts, & Mathiak, 2010), which may have limited 

not only their ecological validity but also differentially effected the pSTS as it responds to 
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changeable, rather than invariant, facial features (Haxby, Hoffman, & Gobbini, 2000). This 

limitation may detract from the interference effects associated with incongruent dynamic stimuli 

as static stimuli lack the articulatory changes that normally coincide with affective vocalizations. 

4.1.5 Current Study. The current study investigated the neural substrates involved in processing 

congruent and incongruent affective voices paired with dynamic faces. Dynamic face stimuli were 

used to increase both the ecological validity of the study and to potentially further engage the pSTS 

during the congruent and incongruent conditions as it is specialized in processing dynamic facial 

expressions and articulatory speech (Haxby, Hoffman, & Gobbini, 2000). Participants were 

presented with videos of actors portraying a happy or angry face while saying the vowel /:a/ in an 

emotionally congruent or emotionally incongruent tone while their brain activity was measured 

using MEG. Based on prior studies, a beamformer approach was used to analyze evoked and 

induced broadband responses across space and time between 0.1 and 80 Hz (Hagan, Woods, 

Johnson, Green, & Young, 2013; Hagan, Woods, Johnson, Calder, Green, & Young, 2009). This 

frequency range was chosen as both low (theta, alpha) and high (gamma) oscillations have been 

linked to integrating multimodal affective stimuli. Increased gamma activity (30-80 Hz) in the 

right STS has been implicated in integrating affective faces and voices (Hagan, Woods, Johnson, 

Calder, Green, & Young, 2009), sensorimotor integration (Roelfsema, Engel, König, & Singer, 

1997; Senkowski, Schneider, Foxe, & Engel, 2008), and top-down attentional control related to 

auditory processing (Kaiser, Lutzenberger, Ackermann, & Birbaumer, 2002; Debener, Herrmann, 

Kranczioch, Gembris, & Engel, 2003). Multimodal integration may be modulated by attentional 

mechanisms associated with alpha band activity (Fu, Foxe, Murray, Higgins, Javitt, & Schroeder, 

2001) that also subserve working memory processes and short-term memory retention (Palva & 

Palva, 2007; Senkowski, Schneider, Foxe, & Engel, 2008). Frontal theta oscillations have been 
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associated with working memory, emotional arousal, and may even facilitate communication 

between neuronal populations to promote sensory integration (Senkowski, Schneider, Foxe, & 

Engel, 2008). Given these findings, the authors predicted that emotional congruency of the 

simultaneously presented face-voice pair would impair the participant’s perception of the stimulus 

and that this would be evidenced by increased gamma activity in right pSTS to both the 

incongruent angry and happy face-voice combinations compared with the congruent face-voice 

pairings. The gamma and theta frequency bands will exhibit overlapping patterns of activity in 

frontal and visual cortices for the congruent face-voice condition. Additionally, the authors 

hypothesized that the incongruent condition would show increased activity in the theta and alpha 

bands would appear in bilateral DLPFC, and ventral occipitotemporal and inferior frontal areas of 

the right hemisphere when compared to the congruent condition. 

4.2 Methods 

4.2.1 Participants. Twenty-four subjects were recruited from Denver, Fort Collins, and 

their surrounding areas. Subjects were excluded if they reported any history of developmental, 

learning, psychiatric, or neurological disorder, traumatic brain injury, current substance abuse, 

metal implantations, or were not native English speakers. Additionally, in order to participate, 

subjects were required to have normal or corrected-to-normal vision and hearing. Subjects filled 

out several questionnaires to gather information about current or past previous drug (Drug Abuse 

Screening Test (DAST), Gavin, Ross, & Skinner, 1989) and alcohol use (Alcohol Use Disorders 

Identification Test (AUDIT), Saunders, Aasland, Babor, de la Fuente, & Grant, 1993), as well as, 



 

86 

 

information about general mental and physical health Duke Health Profile, Parkerson, Broadhead, 

& Tse, 1990). Questionnaire results and scoring cutoffs are shown in table 4.1.  

 4.2.2 Face Stimuli. Face stimuli consisted of a set of nonprofessional actors with natural 

hair and makeup taken from the NimStim database (Tottenham et al., 2009). Sixteen (8 men) were 

selected from the NimStim database.  Two images were selected for each actor, one closed- and 

open-mouth happy and one angry facial expression. Images were transformed to grayscale and 

Scale Variables 
 Age Score 

 M SD M SD 

DUKE  n = 24(13) 30.43 6.32   

Health Measures      

 Physical health    80.43 11.22 

 Mental health    80.83 14.11 

 Social health    77.08 17.06 

 General health    79.45 11.19 

 Perceived health    91.67 19.03 

 Self-esteem    85.83 14.12 

Dysfunction Measures      

 Anxiety    23.61 13.82 

 Depression    22.92 14.88 

 

Anxiety-

depression    22.32 14.02 

 Pain    29.17 25.18 

 Disability    2.08 10.21 

DAST-

10  n = 24(13) 30.43 6.32   

 Drug abuse    0.46 .66 

AUDIT  n = 24(13) 30.43 6.32   

 Alcohol use    4.38 3.66 

Note: Parentheses indicate number of female participants. Scores for the DUKE are raw scores 

from a scale of 0.0-100.0. High scores for health measures indicate good health, high scores 

for the dysfunction measures equates to poor health. DAST-10 contains 10 items with scores 

ranging from 0.0-10.0, lower scores (1-5) indicating lower to moderate drug use, and higher 

scores (6-10) suggesting substantial to severe drug use. Total AUDIT scores greater than 8 

indicate dangerous and harmful alcohol consumption, with scores ranging from 0.0-40.0. 

Table 4.1 Mean Questionnaire Scores Concerning Drug and Alcohol Use, and 

General Physical and mental health. 
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 cropped so that only the actor’s face was visible. Psychomorph software was used to 

generate 32 continua, one for each actor and each emotion (Tiddeman, Burt, & Perrett, 2001; 

Tiddeman & Perrett, 2002). Each continuum consisted of two end-point closed- and open-mouth 

prototype images of the same emotion, which were morphed together in seven steps (two endpoints 

and 5 morphs, in 16.6% steps, Figure 4.1), so that it appeared as though the actor was opening 

their mouth when the images were combined. Morphed images were created as described 

previously in Experiment 1 using individual morphing templates made up of manually placed 

control points. Morphed images were then concatenated in and exported using iMovie (iMovie 

10.1.12, Apple Inc., Cupertino, California, United States). Face stimuli were presented on an LCD 

projector onto a screen located 45 cm in front of the subject. Face stimuli subtended 6.02 degrees 

visual angle vertically and 7.27 degrees horizontally4.2.3 Voice Stimuli. Auditory stimuli consisted 

of short, nonverbal affective interjections of the vowel /a:/ “ah” which were identical to those used 

in Experiment 2 (see Table 2). One happy and one angry vocalization was taken from each actor 

(1 male and 1 female), for a total of four vocal stimuli. Auditory stimuli were individually 

Figure 4.1: Morphed video stimuli presented during the MEG experiment. Two exemplar 

morphed continua created from one open mouth and one closed mouth image taken from the 

same actor expressing either a happy (top) or angry (bottom) face. The faces were combined 

together to create short videos so that it appeared as though the actor was opening and closing 

their mouth. These videos were then paired with voices saying /a:/ in either an angry or happy 

tone. 
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attenuated in E-Prime 2 presentation software (Psychology Software Tools, Pittsburgh, 

Pennsylvania, United States) and delivered binaurally (70 dB SPL) via EAR 3a foam insert 

earphones (VIVOSONIC Inc., Toronto, Ontario, Canada). 

4.2.4 MEG Experiment. Subjects were presented with a series of affective faces and voices 

while laying supine on a table while their brain signals were acquired using a MEG. During the 

scan, subjects were instructed to indicate if their overall impression of each trial was “happy” or 

“angry”, with no reference to the face or voice. Each trial consisted of a 300 ms blank black screen, 

a 300 ms black screen with a vertically and horizontally centered white fixation cross, followed by 

a 1000 ms affective face-voice stimulus which was shown for 1900 ms, and a 500 ms interstimulus 

interval. Each stimulus contained a dynamic affective face and an emotional voice, which was 

either happy or angry, which resulted in the creation of two congruent (happy-happy and angry-

angry) and two incongruent (happy-angry, angry-happy) stimulus conditions. Each of the four 

stimulus conditions was shown 150 times for a total of 600 trials. The experiment lasted 30-

minutes with a two-minute break occurring halfway through the experiment, for a total duration 

of 32-minutes. There was a 34 ms auditory delay. 

Figure 4.2: A standard head model is shown positioned within a three-dimensional rendering 

of the arrangement of the 248 first-order axial-gradiometers along the inner surface of the 4D 

Magnes magnetoencephalogram helmet, shown as gold vertices. 
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4.2.5 MEG Instrumentation. Data were acquired using a Magnes 3600 WH whole-head 

MEG instrument (4-D Neuroimaging, San Diego, California, United States). The helmet array 

consisted of 248 first-order axial-gradiometers (Figure 4.2). Changes in head position during the 

MEG scan were monitored using five head position indicator (HPI) coils, which were attached to 

the participant’s scalp. The five coils were placed at the naison, left and right preauricular points 

and two non-fiducial points. Coil positions and a trace of the scalp surface were digitized using a 

3D digitizer device (Polhemus, Colchester, Vermont, United States). MEG data were acquired 

within a 0.1-200 Hz bandwidth and sampled continuously at 508 Hz. 

4.2.6 MEG Preprocessing. MEG data were pre-processed and analyzed using the Fieldtrip 

toolbox in Matlab (2016b, MathWorks, Inc., Natick, Massachusetts, United States). Data were 

bandpass filtered from 0.1-80.0 Hz, with a notch filter applied at 60 Hz to eliminate electrical 

powerline noise. Continuous data were segmented into 1.25 s epochs, with a 250 ms baseline (-

250-0 ms) and 1000 ms post-stimulus active period. Epochs were adjusted for a 34 ms auditory 

delay. Eye blinks and saccades were removed using independent component analysis using the 

FastICA algorithm (Hyvarinen, 1999). Data were baseline corrected and epochs containing 

amplitudes exceeding ±3000 fT were rejected from further analysis (appendix H). 

4.3.7 MEG Source Analysis. Time-frequency analysis was performed in Fieldtrip and data 

were decomposed into six frequency bands of interest: delta (0.1-3.5 Hz), alpha (4-7 Hz), theta (8-

12 Hz), beta (13-30 Hz), gamma 1 (31-55 Hz), and gamma 2 (56-80 Hz), appendix I. Power spectra 

were based on a fast Fourier transformation (FFT) after application of a discrete prolate spheroidal 

sequences (dpss) taper. Prior to source localization, the MEG sensors were co-registered to a 

standard T1 structural image in MNI (SPM8, Wellcome Centre for Human Neuroimaging, United 

College London, London, United Kingdom). A single sphere head model was calculated and lead 
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fields were computed with a resolution of 1 cm. Source analysis was performed on each frequency 

band using a partial and canonical correlation (PCC) common filter beamformer, which calculates 

phase information and allows for higher specificity in post-processing of source activity. Sources 

were combined and then separated by condition and contrasted (i.e., ((Happy Face and Happy 

Voice)+(Angry Face and Angry Voice)-((Happy Face and Angry Voice)+(Angry Face and Happy 

Voice)) is equivalent to (HH+AA)-(HA+AH)), see appendices J and K. Condition comparisons, 

condition-congruency comparisons, and main effects for each frequency band were statistically 

compared using cluster-based nonparametric dependent samples t-tests that were cluster-corrected 

for multiple comparisons, with alpha set at .05. Statistically significant positive and negative 

sources were then interpolated and plotted onto a standard brain in MNI space, see appendix L. 

4.3 Results 

4.3.1 Beamformer Results. Cluster-based nonparametric statistical maps were generated 

from face-voice congruency pair comparisons [i.e., ((Happy Face and Happy Voice) + (Angry 

Face and Angry Voice)) – (Happy Face and Angry Voice) + (Angry Face and Happy Voice)) = 

((HH+AA) – (HA+AH))] to localize the neural sources of increases and decreases in power 

observed between 0.1–80 Hz, broken down into six frequency bands of interest: delta (0.1-3.5 Hz), 

alpha (4-7 Hz), theta (8-12 Hz), beta (13-30 Hz), gamma 1 (31-55 Hz), and gamma 2 (56-80 Hz) 

across the entire duration of the stimulus. 

Dependent samples t-tests set at alpha 0.05 showed that Angry Faces paired with Angry 

Voices exhibited significantly less activity in the upper gamma 2 band in the posterior superior 

temporal sulcus of the left hemisphere when compared to Happy Faces paired with Happy Voices 

(t = -627.65, p < 0.05), see figure 4.3a. Brain structures were identified using coordinates generated 

in the Automated Anatomical Labelling (AAL; Tzourio-Mazoyer, et al., 2002) atlas in FieldTrip. 
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A significant increase in theta band activity appeared in the left ventrolateral prefrontal cortex (t = 

403.39, p = 0.01), with another area of increased theta activity appearing over the right middle 

right superior temporal gyrus. see figure 4.3b. While the peak cluster did appear in the brainstem 

those results are not presented below as MEG cannot measure subcortical activity, and this 

activation is most likely an artifact of MEG source localization. One positive cluster appeared in 

the alpha band for the (Angry Face Angry Voice) – (Happy Face Happy Voice) comparison, but 

this difference did not research significance (p = 0.074). No other Face-Voice congruency 

condition comparisons reached significance for any frequency band. All results were cluster-

corrected to control for multiple comparisons. No frequency band exhibited a significant main 

effect. Dependent t-tests between emotional congruency and emotion were also not significant for 

any frequency band. 

Figure 4.3: DICS beamformer source localization results for the congruent-congruent and 

incongruent-incongruent face-voice comparisons. Positive and negative clusters plotted across 

cortical surface maps for the Angry face Angry voice-Happy face Happy voice comparison 

within the gamma band (30-80 Hz) frequency (Top) and Angry face Happy voice-Happy face 

Angry voice comparison within the theta frequency band (8-12 Hz). Clusters significant at alpha 

= .05, cluster-corrected for multiple comparisons. 

3        2        1       0      -1      -2       -3 

t-values 
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4.4 Discussion 

 

 The current study compared the neural activity underlying the integration of congruent and 

incongruent affective stimuli. The authors expected that the emotional congruency of the 

simultaneously presented face-voice pair would disrupt subjects’ perception of the audiovisual 

stimuli and that this distortion would be evidenced by increased gamma activity in right pSTS for 

both the incongruent angry and happy face-voice conditions compared with the congruent face-

voice pairings. This hypothesis was not supported by current findings, which only showed 

increased gamma band activity for the Happy Face Happy Voice (HH) over the Angry Face Angry 

Voice (AA) condition in the left pSTS. While significant activity did appear in the theta and 

gamma bands these patterns of activity were not spatially overlapping. Additionally, there were 

no significant differences in activity between the congruent and incongruent face voice pairs for 

any frequency bands. The differences that did appear came from comparisons that were within, 

rather than between, congruency conditions. These results suggest that emotionally congruent and 

incongruent stimuli may be differentially processed by spatially distinct brain areas within specific 

frequency bands. 

This theory is partially supported by findings of supra-additivity to dynamic audiovisual 

stimuli in the pSTS for both congruent and incongruent emotional displays within 250 ms after 

stimulus presentation (Hagan et al. 2009; Hagan, Woods, Johnson, Green, & Young 2013). While 

these findings are not in complete agreement with those of the current study, it should be 

emphasized that the authors analyzed the entire stimulus window, rather than beamforming distinct 

periods of time during stimulus presentation. This methodological difference may have washed 

out temporally discrete differences between conditions, as one mismatch MEG study reported that 

analyzing short post-stimulus windows revealed increased theta power for mismatch conditions, 
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but these effects disappeared when larger time windows were analyzed (Garrido, Barnes, 

Kumaran, Maguire, & Dolan, 2015). The congruent conditions may have elicited activity in the 

pSTS as congruent audiovisual speech enhances speech comprehension (Crosse, Butler, & Lalor, 

2015). Increased activity in the pSTS may represent the supra-additive response to bimodal 

affective inputs (Hagan et al. 2009; Hagan, Woods, Johnson, Green, & Young 2013). This 

sensitivity to multimodal stimuli may have been greater for the Happy Face Happy Voice condition 

due to the increased salience of happy faces relative to negatively valenced emotions leading to 

increased power in the gamma band (Calvo & Nummenmaa, 2008).  

While only a subset of neuroimaging studies has directly examined the neural 

underpinnings of emotional congruence this study may have touched on a related aspect of 

emotional cognition known as emotional conflict. Emotional conflict refers to situations in which 

the emotional expression displayed by the face is not congruent with that expressed in the voice 

(Müller, Habel, Derntl, Schneider, Zilles, Turetsky, & Eickhoff, 2011). Few studies have focused 

on the effects of emotional conflict (Müller, Habel, Derntl, Schneider, Zilles, Turetsky, & 

Eickhoff, 2011), which have been associated with increased cognitive processing and longer 

reaction times for incongruent bimodal stimuli (de Gelder & Vroomen, 2000; Wittfoth, Schroder, 

Schardt, Dengler, Heinze, & Kotz, 2010). Emotional conflict may take many forms and can be 

studied using a variety of paradigms which examine emotional and cognitive control mechanisms 

(Xu, Xu, & Yang, 2016; Song, Zilverstand, Song, d’Oleire Uquillas, Wang, Xie, Cheng, & Zou, 

2017). Meta-analyses examining the effect of strong emotional conflict during emotional Stroop 

tasks have consistently reported activity in the dorsolateral prefrontal cortex (DLPFC), inferior 

frontal gyrus, dorsal anterior cingulate cortex (dACC), and ventromedial prefrontal cortex 

(vmPFC) which has been associated with conflict detection (Xu, Xu, & Yang, 2016; Song, 
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Zilverstand, Song, d’Oleire Uquillas, Wang, Xie, Cheng, & Zou, 2017). Additionally, one fMRI 

study reported that incongruent affective face-voice stimuli were associated with increased activity 

in a network of cingulate-fronto-parietal areas, which appear to be involved in conflict monitoring 

and resolution (Müller, Habel, Derntl, Schneider, Zilles, Turetsky, & Eickhoff, 2011). 

 While the current study did not find activity in the vmPFC, effective connectivity analyses 

have shown that the vmPFC appears to drive theta band oscillations in the hippocampus to 

facilitate automatic mismatch detection (Garrido, Barnes, Kumaran, Maguire, & Dolan, 2015). 

The vmPFC has also been associated with reward and value-based decision-making (Liu, Hairston, 

Schrier, & Fan, 2011; Hiser & Koenigs, 2018), social conduct, and emotion processing (Tranel, 

Bechara, & Denburg, 2002; Hiser & Koenigs, 2018). These cognitive functions appear to be 

strongly right lateralized as subjects with lesions to the right vmPFC met criteria for “acquired 

sociopathy” (Tranel, Bechara, & Denburg, 2002). These results suggest that the vmPFC may be 

an essential component in emotion regulation with some suggesting that the vmPFC may be critical 

for the generation and regulation of negatively valenced emotions (Fullana, et al., 2016; Hiser & 

Koenigs, 2018). This specialization for negative emotions may indicate that Angry Faces paired 

with Happy Voices exhibited increased activity in the vmPFC than Happy Faces paired with Angry 

Voices due their negatively valenced visual content, as vision predominates perception during 

bimodal emotion perception (de Gelder & Vroomen, 2000; McGurk & McDonald, 1976). 

Future studies should incorporate the use of functional connectivity methods to assess the 

potential relationships between these brain areas, which appear to be sensitive to both the 

integration of bimodal stimuli as well as mismatch detection. Communication between posterior 

sensory and frontal executive processing areas has been documented in MEG studies of cross 

frequency coupling, with cross frequency interactions in frontal and visual areas having been 



 

95 

 

reported in the theta and gamma bands during emotional processing (Luo, Cheng, Holroyd, Xu, 

Carver, & Blair, 2014). This dynamic has been equated to the differential involvement of each 

frequency in functionally connected processes underlying the same cognitive functions involved 

in affect perception (Luo, Cheng, Holroyd, Xu, Carver, & Blair, 2014). Collectively, these findings 

demonstrate that oscillations control a mosaic of attentional, cognitive, and perceptual processes, 

which support multimodal integration. 

 The current study had several limitations. While the visual stimuli used in this study were 

dynamic, they were created from two static images, which may have limited their ecological 

validity as they may not have accurately portrayed all of the articulatory configural changes that 

occur during a normal vocalization. Additionally, the voices and faces were not acquired from the 

same group of actors, which may further limit their ecological validity or unintentionally 

introduced timing delays creating asynchronous audiovisual stimuli. Asycnrhonous stimuli have 

been associated with increased activity in the left middle STS (Balk, Ojanen, Pekkola, Autti, Sams, 

& Jääskeläinen, 2010). The introduction of random or varied interstimulus intervals may have 

reduced an anticipatory effects (Gross, which may attenuate low frequency activity (Clementz, 

Barber, & Dzau, 2002). Lastly, although several studies have indicated that MEG can see deeper 

subcortical structures (Attel & Schwartz, 2013; Guitart-Masip, Barnes, Horner, Bauer, Dolan, & 

Duzel, 2013; Cornwell, Arkin, Overstreet, Carver, & Grillon, 2012), MEG is not sensitive to deep 

cortical structures and this may have limited its ability to image activity in deep brain structures 

which have been strongly associated with the processing of emotional stimuli (amygdala, fusiform 

face area). 
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CHAPTER 5 – GENERAL DISCUSSION 

 

 

 

Emotion perception is the seemingly automatic integration of vocal and facial cues that 

together form a whole percept. While affective information can be gleaned from and identified in 

either modality independently (Ekman & Friesen, 1976; Schröder 2003; Belin, Fillion-Bilodeau, 

& Gosselin, 2008), the relative contribution and interaction of these channels is not fully 

understood. One of the most fundamental questions in cognitive neuroscience regards the 

functional and structural organization of multimodal emotion perception in the brain. While an 

abundant amount of research has focused on this topic, most of this work is predicated on the use 

of silent static face images (Johnson, 2011). These one-dimensional stimuli lack ecological validity 

(O’Toole, Roark, & Abdi, 2002; Jiang, Blanz, & O’Toole, 2009; Lander & Bruce, 2003) and are 

ineffective in accurately depicting normal social interactions (Roark, Barrett, Spence, Abdi, 

O’Toole, 2003), which typically involve more than one sensory modality whose activity 

continuously evolves over time (Schirmer & Adolphs, 2017). A similar perceptual constraint is 

exemplified by the transmission of vocal emotion, which unfolds over a relatively fixed time-

course (Pell & Kotz, 2011) and is characterized by distinct acoustical changes in the speaker’s 

voice (Banse & Scherer, 1996; Scherer, 2018). Sampling a single time point of a vocal utterance 

deprives the listener of the rich contextual information, which collectively conveys emotional 

meaning. These methods deprive subjects of the holistic representation of the intended emotion 

and inaccurately ascribe perceptual and neural processes to models of affect perception. Thus, the 

current work investigated the effects of visual spatial attention, stimulus modality and emotional 

valence, as well as, emotional congruency on differentially impacting multimodal affect 

perception. The present findings demonstrate that both stimulus type and emotional are central to 
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affect perception, and the activity associated with these components was localized to a distributed 

constellation of partially overlapping neural structures in the superior temporal sulcus (STS), 

middle superior temporal gyrus (mSTG), orbitofrontal cortex (OFC), somatosensory cortex, 

ventral occipitotemporal areas, and dorsolateral prefrontal cortex (DLPFC). 

The effect of stimulus modality was first investigated using a two-alternative forced-choice 

task, which showed that the Happy Face+Voice condition and the Silent voice condition exhibited 

higher PSE values when compared to the Angry Face+Voice condition. The Silent voice condition 

exhibited a significantly higher, “happier”, mean PSE value than the Happy Face+Voice condition. 

These results indicate that while happy voices may bias responses to be ‘happier’ than the Angry 

Face+Voice prosody conditions, the voices may not have been perceived to be as ‘happy’ as they 

were intended to be. These findings question whether the prosodic stimuli had equal arousal and 

intensity values and were oppositely valenced enough to equally bias multimodal stimuli in 

opposite directions. Interestingly, the Silent condition had the smallest just noticeable difference 

(JND) value when compared to the Angry and Happy prosody conditions and boasted the fastest 

reaction times for both the Eyes and Mouth fixation cues. These results indicate that unimodal 

presentation of dynamic affective stimuli may facilitate emotion recognition as the JND has acts 

as a measure of the level of confusion between choices, with smaller values indicating less 

confusion. These results partially replicate the findings of an identical study which used static 

emotionally ambiguous morphed face stimuli (Becker & Rokas, submittted), which showed that 

faces shown alone exhibited the highest JND values and fastest reaction times when compared to 

the bimodal face+voice conditions. Additionally, the mean PSE value for the face only condition 

was significantly ‘happier’ than the Angry or Neutral face+voice conditions, but this value was 

not significantly different than the Happy face+voice condition, which biased faces to be perceived 
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as ‘happier’ than their physical composition, indicating that emotional faces may exhibit an 

inherent perceptual bias for happy facial features (Calvo & Nummenmaa, 2008). Additionally, the 

Silent condition exhibited the fastest reaction times for both the Eyes and Mouth cue conditions, 

but reaction times between these fixation cues were not significant within the Silent condition. The 

authors interpreted these findings as indicating that judgments about ambiguous faces were 

facilitated through the presence of an affective voice. This discrepancy may reflect the significant 

difference in affect recognition between dynamic and static faces, which exhibit higher recognition 

rates over static faces (Lander & Bruce, 2003; Bassili, 1979; Johnson, 2011). Together with 

evidence that the visual channel predominates the perception of multimodal stimuli (McGurk & 

McDonald, 1976),  these data suggest that the affective voices paired with the dynamic faces in 

the current study may have confused subjects, rather than facilitating response choices, as this 

supplementary information was both never completely congruent with the visual stimuli. This 

incongruency may also partially explain the lower mean PSE values for the Happy face+voice 

condition compared to the Silent, face only condition. 

Conditions containing either a Happy or Angry prosodic voice took more processing time 

than silent face videos when subjects were directed to fixate on the eyes of speaking faces (Figure 

2.6). Overall, reaction times for the Happy and Angry prosody conditions were not significantly 

different from one another for the Eyes cue condition (Figure 2.6). Conversely, subjects’ reaction 

times were significantly different between all three conditions for the majority of the steps across 

the morph continuum for the Mouth fixation cue (Figure 2.5). This effect appeared to be strongest 

for the Angry prosody condition as it showed more significant differences between the Mouth and 

Eyes cue conditions across the morph continuum (Figure 2.7b) when compared to Mouth and Eyes 

cues for the Happy (Figure 2.7a) and Silent (Figure 2.7c) conditions. These results indicate that 
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mouths and eyes may differ in their emotional saliency, with eyes selectively facilitating faster 

reaction times for negatively valenced emotions. Thus, some facial features may have a detection 

advantage which appears to be modulated by the emotional valence of a speaker’s voice (Calvo & 

Nummenmaa, 2008). This visual saliency is particularly true for smiling mouths, which are 

associated with increased initial orienting and decreased detection times (Calvo & Nummenmaa, 

2008). Collectively, these findings underscore the dynamic interplay of attentional, perceptual, and 

cognitive processes which may be differentially modulated by emotional valence and spatial 

cueing to different facial features. 

The second experiment focused on parsing apart and localizing the sensory and perceptual 

processes underlying the perception of emotional faces, voices, and faces and voices paired 

together using independent component analysis and source localization techniques. Emotion is 

multifaceted and manipulation of one or more modalities can impact perceptual biases of bimodal 

stimuli, which can be quantified using psychophysical measures and neuroimaging techniques. 

The independent significance of voice (Hajcak, Weinberg, MacNamara, & Foti, 2011), face 

(Roisson et al., 2003; Hajcak, Weinberg, MacNamara, & Foti, 2011; Eimer & Holmes, 2007), and 

emotional stimulus (Cacioppo et al., 1993; Foti & Hajcak, 2008; Bernat, Bunce, & Shevrin, 2001) 

processing has been well studied in the EEG literature (Hajcak, Weinberg, MacNamara, & Foti, 

2011). However, the neural substrates underpinning multimodal perception are poorly defined as 

multiple sensory and perceptual events occur in close temporal and spatial proximity in the brain 

(Hajcak, Weinberg, MacNamara, & Foti, 2011). Results showed that component activity was 

localized to a collection of brain areas including: the posterior STS (pSTS), occipitotemporal and 

inferior frontal areas of the right hemisphere, as well as, bilateral somatosensory areas, and fronto-

parietal areas of the left hemisphere. These areas were significantly correlated with one or more 
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elements of the experiment (stimulus modality or emotional valence). These results underscore the 

multidimensional nature of emotion perception which draws upon cognitive, perceptual, and 

attentional processes as these components were independently localized to a diffuse constellation 

of brain areas. In particular, the three components localized to the right pSTS and occipitotemporal 

cortices most closely aligned with the authors’ hypothesis that areas involved in the processing 

and integration of unimodal and multimodal stimuli would be correlated with unimodal (face, 

voice), bimodal (face+voice), and positively valenced stimuli. Two of the three components were 

significantly correlated with all stimulus types and emotional prosody conditions. These results 

were consistent with reports that the right pSTS possesses cells, which are sensitive to auditory, 

visual, and multimodal input (Beauchamp, Argall, Bodurka, Duyn, & Martin, 2004; Seltzer, Cola, 

Gutierrez, Massee, Weldon, & Cusick, 1996; Seltzer & Pandya, 1978). These findings indicate 

that this area appears to sensitive to emotional prosody, which complements research reporting a 

right lateralization for processing affective speech (Kotz, Meyer, & Paulmann, 2006; Ross & 

Monnot, 2008). This system exhibits a structural-functional organization homologous to 

propositional language areas in the left area with posterior areas being devoted to the receptive 

aspects of speech (comprehending, understanding) and anterior areas being associated with the 

expressive (articulatory) components of vocal emotion (Ross & Monnot, 2008). Thus, posterior 

activations may be a reflection of the task demands as subjects passively listened to and made 

judgments of affective voices. Similarly, occipitotemporal activity may have indicated the 

engagement of brain areas specialized in the detailed processing of changeable and invariant facial 

features (Haxby, Hoffman, & Gobbini, 2000; Pitcher, Dilks, Saxe, Triantaflyllou, & Kanwisher, 

2011), which may have been crucial to making affective judgments about emotionally ambiguous 

visual stimuli. 
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Component activity was also localized to areas that were not hypothesized by the authors, 

which may reflect the concurrent engagement of several attentional and cognitive processes that 

were not directly related to the perceptual processes targeted by stimuli and task demands of the 

current study. Two components exhibited activity in left hemisphere areas including: the 

intraparietal sulcus, orbitofrontal cortex, superior frontal gyrus, and occipital lobe (Figure 3.6). 

These areas are interconnected and are thought to exert top-down attentional and emotional 

modulation on visual processing by evaluating the emotional value of incoming visual stimuli 

(Pessoa & Ungerleider, 2004; Vuilleumier & Driver, 2007). These components were significantly 

correlated with the Face Only and Face+Voice conditions, which may indicate that a top-down 

modulatory system may have been activated during visual processing of emotionally ambiguous 

stimuli as subjects were instructed to attend to and judge the emotional content of each stimulus. 

Additionally, multiple components exhibited unilateral or bilateral activity in somatosensory 

cortices. These areas have been associated with the subjective experience of emotion, which may 

occur as the result of local processing or connections between distributed brain regions involved 

in the discrimination of emotional face and voice stimuli (Kragel & LaBar, 2016; Sel, Forster, & 

Calvo-Merino, 2014). This connectivity may enable the somatosensory cortex to integrate 

affective faces and voices to create emergent internal representations of emotion, which facilitate 

an individual’s subjective experience of emotion. Eleven of the 13 final components exhibited 

some activity that was localized to either unilateral or bilateral somatosensory areas. This 

persistent pattern of activity may reflect the continued self-reflection subjects experienced as they 

made affective judgments about the experimental stimuli. Variations in component activity may 

be attributed to the voice, face, or valence-related component that subjects’ subjective experiences 

were based on. The behavioral results of this study may support this notion as happy and angry 
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prosodic voices were able to bias subjective judgments of emotion perception so that morphed 

faces would appear to be ‘happier’ or ‘angrier’ than their physical composition. This perceptual 

shift may indicate that affective voices were able to bias subjects’ subjective experience of emotion 

and this may be evidenced by multiple spatially, and potentially functionally, overlapping 

components in the somatosensory cortices. 

The emergence of an affective percept occurs via the instantaneous integration of an 

emotional facial expression with a concurrently presented affective vocalization. These channels 

are often complementary, conveying the same emotional message exhibiting supra-additive 

responses in the pSTS (Hagan, et al. 2009). The pSTS appears to be sensitive to both congruent 

and incongruent emotional stimuli (Hagan, et al. 2009). The current MEG results showed that 

Angry faces paired with Angry voices exhibited decreased activity in the gamma band (30-80 Hz) 

in the left pSTS when compared to the Happy face Happy voice condition. This result may be 

related to a timing delay between the presentation of the audio stimulus and the movement of the 

actor’s mouth as asynchronous audiovisual speech stimuli have been shown to elicit increased 

activity in the left middle STS (Balk, Ojanen, Pekkola, Autti, Sams, & Jääskeläinen, 2010).  

Interestingly, the comparison of the two incongruent conditions voice elicited increased activity in 

the right middle superior temporal gyrus for the Angry face Happy voice condition over the Happy 

face Angry voice condition, an area which has been associated with the fine analysis of emotional 

prosody.  

The current findings suggest that both faces and voices possess enough information to bias 

perception in different directions and these audiovisual inputs are integrated and mediated by 

higher order cognitive and attentional processes controlled by a distributed network of bilateral 

brain regions. Together, the EEG source localization results and behavioral findings from that 
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experiment indicate that the somatosensory cortex may play a crucial role in the subjective 

experience of emotion, which can be correlated with different elements of the experiment.  

While the results of the MEG analysis were unexpected, future experiments may be able 

to further disentangle the effects of emotional congruency in multimodal processing by using 

videos of speaking actors to control for any delays between the movements of an actor’s face and 

the presentation of the actor’s voice. Future studies should employ simultaneous (EEG-fMRI) 

imaging methods to maximize both the spatial and temporal resolution of the experiment to better 

delineate the time-course and localize the neural activity associated with multimodal emotion 

perception. Similarly, simultaneous eye-tracking and neuroimaging experiments could provide 

further insights into the physical features that subjects fixate on to assess how spatial biases may 

influence prosodic biases when viewing dynamic faces. 

Lastly, these results showed that emotion perception is closely linked to the prosody of a 

speaker’s voice and that voices can influence emotional decisions and brain activity, but the impact 

of this bias may differ by the faces they are paired with as dynamic faces convey more info than 

static images. The point is tentatively supported by the juxtaposition of the just noticeable 

difference results from the first and second experiment. The first experiment showed that prosodic 

voices appeared to facilitate decision making for emotionally ambiguous static stimuli, but this 

effect was reversed when affective voices were paired with morphed dynamic stimuli. While it 

should be noted that these findings came from two separate experiments, it is striking that two 

identical experiments yielded such contrasting results. Moreover, these findings question how 

effective static images are in conveying authentic emotional experiences as emotional voices 

appear to confuse rather than facilitate emotional decisions when subjects are presented with 

information rich dynamic visual stimuli. This may have crucial implications for emotion 
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perception research in clinical populations, which has predicated itself on the use of static stimuli. 

In these paradigms, subjects are presented with silent static images of facial expressions made at 

one fixed point in time. These images deprive subjects of the essential simultaneous dynamic 

visual and vocal information that is necessary to make accurate judgments about another 

individual’s emotional state. Despite this, thousands of studies have used these artificial stimuli to 

research emotion perception in numerous clinical populations. The results of the current study 

question the legitimacy of these findings and urge future research to use dynamic faces paired with 

emotional voices to more accurately replicate the emotional experiences that an individual 

encounters in the real world. Disregarding these essential components of emotion may predispose 

subjects to inaccurately identify emotional stimuli and these errors may be mistaken as pervasive 

deficits in emotion recognition, when in reality they only reflect deficits in distinguishing silent 

static artificial portrayals of emotion. Future studies should reassess these proposed deficits using 

more realistic stimuli and a freely available database including both static and dynamic images 

taken from the same actors should be created to facilitate this area of research. The inclusion of 

static and dynamic stimuli would allow for the direct comparison of the visual effect of movement 

on emotion perception when all other physical features and the identity of the model are kept 

constant. 

 

 

 

 

  



 

112 

 

REFERENCES 

 

 

 

Balk, M. H., Ojanen, V., Pekkola, J., Autti, T., Sams, M., Jääskeläinen, I. P. (2010). Synchrony 

of audio-visual speech stimuli modulates left superior temporal sulcus. Neuroreport, 

21(12):822-826. PMID: 20588202 

Banse, R., Scherer, K. (1996). Acoustic profiles in vocal emotion expression.  J Personality and 

Social Psychology, 70(3):614-636. PMID: 8851745 

Bassili, J. N. (1979). Emotion recognition: the role of facial movement and the relative 

importance of upper and lower areas of the face. J Personality and Social Psychology, 

37(11):2049-2058. PMID: 521902 

Becker, K. M., Rojas, D. C. (Submitted). The role of prosody in influencing emotion perception: 

a near-infrared spectroscopy study. 

Belin, P., Fillion-Bilodeau, S., Gosselin F. (2008). The Montreal Affective Voices: a validated 

set of nonverbal affect bursts for research on auditory affective processing. Behavioral 

Research Methods, 40(2):531-9. PMID: 18522064 

Calvo, M. G., Nummenmaa, L. (2008). Detection of emotional face: silent physical features 

guide effective visual search. J Experimental Psychology General, 137:471–494. PMID: 

18729711 

Ekman, P., Friesen, W.V. (1976). Pictures of Facial Affect. Palo Alto, CA: Consulting 

Psychological Press. 

Hajcak, G., Weinberg, A., MacNamara, A., Foti D. (2011). ERPs and the Study of Emotion. The 

Oxford Handbook of Event-Related Potential Components. 



 

113 

 

Haxby, J.V., Hoffman, E.A., Gobbini, M.I. (2000). The distributed human neural system for face 

perception. Trends Cognitive Science 4(6):223-233. PMID:10827445 

Jiang, F., Blanz, V., O’Toole, A. J. (2009). Three-dimensional information in face representation 

revealed by identity aftereffects. Psychological Science, 20(3):318-325. PMID: 19207696 

Johnson, A. (2011). Is dynamic face perception primary? In C. Curio, H. H. Bülthoff, & M. A. 

Giese (Eds.), Dynamic faces: insights from experiments and computation (pp. 3-13). The 

MIT Press. 

Kessler, H., Doyen-Waldecker, C., Hofer, C., Hoffmann, H., Traue, H. C., Abler, B. (2011). 

Neural correlates of the perception of dynamic versus static facial expressions of 

emotion. GMS Psycho-Social Medicine, 8, 1-8. PMID: 21522486 

Lander, K., Bruce, V. (2003). The role of motion in learning new faces. Visual Cognition, 

10(8):897-912. DOI: https://doi.org/10.1080/13506280344000149 

McGurk, H., MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588):746-8. 

PMID: 1012311 

O’Toole, A. J., Roark, D., Abdi, H. (2002). Recognition of moving faces: a psychological and 

neural framework. Trends in Cognitive Sciences, 6(6):261-266. PMID: 12039608 

Pitcher, D., Dilks, D. D., Saxe, R. R., Triantaflyllou, C., & Kanwisher, N. (2011). Differential 

selectivity for dynamic versus static information in face-selective cortical regions. 

Neuroimage 56(4):2356-2363. PMID: 21473921 

Pitcher, D., Garrido, L., Walsh, V., Duchaine, B. C. (2008). Transcranial magnetic stimulation 

disrupts the perception and embodiment of facial expressions. J Neuroscience, 

28(36):8929 – 8933. PMID: 18768686 



 

114 

 

Pourtois, G., Sander, D., Andres, M., Grandjean, D., Reveret, L., Olivier, E., Vuilleumier, P. 

(2004). Dissociable roles of the human somatosensory and superior temporal cortices for 

processing social face signals. European J Neuroscience, 20(12):3507–3515. PMID: 

15610183 

Roark, D. A., Barrett, S. E., Spence, M. J., Abdi, H., O’Toole, A. J. (2003). Psychological and 

neural perspectives on the role of motion in face recognition. Behav Cogn Neurosci Rev. 

2(1):15-46. PMID: 17715597 

Ross, E. D., Monnot, M. (2008). Neurology of affective prosody and its functional-anatomic 

organization in right hemisphere. Brain and Language, 104(1):51-74. PMID: 17537499 

Scherer, K. R. (2018). In Frühholz, S. & Belin, P. (Eds.), Acoustic patterning of emotion 

vocalizations (pp.. The Oxford Handbook of Voice Perception. 

Schirmer, A., Adolphs, R. (2017). Emotion Perception from Face, voice, and touch: 

Comparisons and convergence Trends in Cognitive Neuroscience 21(3):216-228. 

PMID:28173998 

Schröder, M. (2003). Experimental study of affect bursts. Speech Communication, 40:99-116. 

doi.org/10.1016/S0167-6393(02)00078-X 

Sel, A., Forster, B., Calvo-Merino, B. (2014). The emotional homunculus: ERP evidence for 

independent somatosensory responses during facial emotional processing. J 

Neuroscience, 34(9):3263-3267. PMID: 24573285 

  



 

115 

 

 APPENDIX A: ANALYSIS OF MTURKS OUTPUT MATLAB SCRIPT 

 

 

 

1. % Extract data from MTurk csv files 
2. % Written by Katherine M. Becker 
3.   
4. clear 
5.   
6. cd '/Users/katherinebecker/Documents/Dissertation/PsychophysicalData'; 
7. csv_list = dir('subject*.csv'); 
8. % Make empty matrices for table 
9. % happy eyes 
10. hap_eyes_resp_1 = zeros(70,1); 
11. hap_eyes_resp_2 = zeros(70,1); 
12. hap_eyes_resp_3 = zeros(70,1); 
13. hap_eyes_resp_4 = zeros(70,1); 
14. hap_eyes_resp_5 = zeros(70,1); 
15. hap_eyes_resp_6 = zeros(70,1); 
16. hap_eyes_resp_7 = zeros(70,1); 
17. % break up reaction time by step 
18. hap_eyes_rt_1 = zeros(70,1); 
19. hap_eyes_rt_2 = zeros(70,1); 
20. hap_eyes_rt_3 = zeros(70,1); 
21. hap_eyes_rt_4 = zeros(70,1); 
22. hap_eyes_rt_5 = zeros(70,1); 
23. hap_eyes_rt_6 = zeros(70,1); 
24. hap_eyes_rt_7 = zeros(70,1); 
25. % angry eyes 
26. ang_eyes_resp_1 = zeros(70,1); 
27. ang_eyes_resp_2 = zeros(70,1); 
28. ang_eyes_resp_3 = zeros(70,1); 
29. ang_eyes_resp_4 = zeros(70,1); 
30. ang_eyes_resp_5 = zeros(70,1); 
31. ang_eyes_resp_6 = zeros(70,1); 
32. ang_eyes_resp_7 = zeros(70,1); 
33. % break up reaction time by step 
34. ang_eyes_rt_1 = zeros(70,1); 
35. ang_eyes_rt_2 = zeros(70,1); 
36. ang_eyes_rt_3 = zeros(70,1); 
37. ang_eyes_rt_4 = zeros(70,1); 
38. ang_eyes_rt_5 = zeros(70,1); 
39. ang_eyes_rt_6 = zeros(70,1); 
40. ang_eyes_rt_7 = zeros(70,1); 
41. % silent eyes 
42. silent_eyes_resp_1 = zeros(70,1); 
43. silent_eyes_resp_2 = zeros(70,1); 
44. silent_eyes_resp_3 = zeros(70,1); 
45. silent_eyes_resp_4 = zeros(70,1); 
46. silent_eyes_resp_5 = zeros(70,1); 
47. silent_eyes_resp_6 = zeros(70,1); 
48. silent_eyes_resp_7 = zeros(70,1); 
49. % break up reaction time by step 
50. silent_eyes_rt_1 = zeros(70,1); 
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51. silent_eyes_rt_2 = zeros(70,1); 
52. silent_eyes_rt_3 = zeros(70,1); 
53. silent_eyes_rt_4 = zeros(70,1); 
54. silent_eyes_rt_5 = zeros(70,1); 
55. silent_eyes_rt_6 = zeros(70,1); 
56. silent_eyes_rt_7 = zeros(70,1); 
57. % happy mouth 
58. hap_mouth_resp_1 = zeros(70,1); 
59. hap_mouth_resp_2 = zeros(70,1); 
60. hap_mouth_resp_3 = zeros(70,1); 
61. hap_mouth_resp_4 = zeros(70,1); 
62. hap_mouth_resp_5 = zeros(70,1); 
63. hap_mouth_resp_6 = zeros(70,1); 
64. hap_mouth_resp_7 = zeros(70,1); 
65. % break up reaction time by step 
66. hap_mouth_rt_1 = zeros(70,1); 
67. hap_mouth_rt_2 = zeros(70,1); 
68. hap_mouth_rt_3 = zeros(70,1); 
69. hap_mouth_rt_4 = zeros(70,1); 
70. hap_mouth_rt_5 = zeros(70,1); 
71. hap_mouth_rt_6 = zeros(70,1); 
72. hap_mouth_rt_7 = zeros(70,1); 
73. % angry mouth 
74. ang_mouth_resp_1 = zeros(70,1); 
75. ang_mouth_resp_2 = zeros(70,1); 
76. ang_mouth_resp_3 = zeros(70,1); 
77. ang_mouth_resp_4 = zeros(70,1); 
78. ang_mouth_resp_5 = zeros(70,1); 
79. ang_mouth_resp_6 = zeros(70,1); 
80. ang_mouth_resp_7 = zeros(70,1); 
81. % break up reaction time by step 
82. ang_mouth_rt_1 = zeros(70,1); 
83. ang_mouth_rt_2 = zeros(70,1); 
84. ang_mouth_rt_3 = zeros(70,1); 
85. ang_mouth_rt_4 = zeros(70,1); 
86. ang_mouth_rt_5 = zeros(70,1); 
87. ang_mouth_rt_6 = zeros(70,1); 
88. ang_mouth_rt_7 = zeros(70,1); 
89. % silent mouth 
90. silent_mouth_resp_1 = zeros(70,1); 
91. silent_mouth_resp_2 = zeros(70,1); 
92. silent_mouth_resp_3 = zeros(70,1); 
93. silent_mouth_resp_4 = zeros(70,1); 
94. silent_mouth_resp_5 = zeros(70,1); 
95. silent_mouth_resp_6 = zeros(70,1); 
96. silent_mouth_resp_7 = zeros(70,1); 
97. % break up reaction time by step 
98. silent_mouth_rt_1 = zeros(70,1); 
99. silent_mouth_rt_2 = zeros(70,1); 
100. silent_mouth_rt_3 = zeros(70,1); 
101. silent_mouth_rt_4 = zeros(70,1); 
102. silent_mouth_rt_5 = zeros(70,1); 
103. silent_mouth_rt_6 = zeros(70,1); 
104. silent_mouth_rt_7 = zeros(70,1); 
105.   
106. % Get average % happy responses and reaction times for each subject 

csv 
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107. for sub = 1:length(csv_list) 
108.     file = readtable(csv_list(sub).name); 
109.     % find & remove trials with negative reaction times & null 

responses 
110.     idx_rt = find(file.subjectReactionTime<0); 
111.     file(idx_rt,:) = []; 
112.     % change string responses to numbers 
113.     

file.subjectResponseValue(strcmpi(file.subjectResponseValue,'Digit1')) 
= {1}; 

114.     
file.subjectResponseValue(strcmpi(file.subjectResponseValue,'Digit2')) 
= {0}; 

115.     
file.subjectResponseValue(strcmpi(file.subjectResponseValue,'Inconsista
nt Response')) = {[]}; 

116.     % if subjects used the number pad then... 
117.     

file.subjectResponseValue(strcmpi(file.subjectResponseValue,'Numpad1')) 
= {1}; 

118.     
file.subjectResponseValue(strcmpi(file.subjectResponseValue,'Numpad2')) 
= {0}; 

119.     % remove inconsistent responses 
120.     F = table2cell(file); 
121.     idx = any(ismember(cellfun(@num2str,F,'un',0),''),2); 
122.     file(idx,:) = []; 
123.     % verbal cues to numbers 
124.     file.VerbalCue(strcmpi(file.VerbalCue,'Eyes')) = {1}; 
125.     file.VerbalCue(strcmpi(file.VerbalCue,'Mouth')) = {2}; 
126.     VerbalCue = cell2mat(file.VerbalCue); 
127.     BlockTrigg = [file.BlockTrigg]; 
128.     TrialTrigg = [file.TrialTrigg]; 
129.     Step = [file.Step]; 
130.     SubResp = cell2mat(file.subjectResponseValue); 
131.     SubRT = [file.subjectReactionTime]; 
132.     file2 = [VerbalCue BlockTrigg TrialTrigg Step SubResp SubRT]; 
133.     file2 = sortrows(file2,[2,4]); 
134.     % break up into conditions 
135.     allBlockTrigg = file2(:,2); 
136.     allStep = file2(:,4); 
137.     allSubResp = file2(:,5); 
138.     allSubRT = file2(:,6); 
139.     M = [allBlockTrigg, allStep, allSubResp, allSubRT]; 
140.     hap_eyes = M(M(:,1) == 1,:); 
141.     hap_mouth = M(M(:,1) == 3,:); 
142.     ang_eyes = M(M(:,1) == 4,:); 
143.     ang_mouth = M(M(:,1) == 9,:); 
144.     silent_eyes = M(M(:,1) == 18,:); 
145.     silent_mouth = M(M(:,1) == 24,:); 
146.   
147.     % ----------HAPPY_EYES----------% 
148.     % break up into steps 
149.     hap_eyes_1 = hap_eyes(hap_eyes(:,2) == 1,:); 
150.     hap_eyes_2 = hap_eyes(hap_eyes(:,2) == 2,:); 
151.     hap_eyes_3 = hap_eyes(hap_eyes(:,2) == 3,:); 
152.     hap_eyes_4 = hap_eyes(hap_eyes(:,2) == 4,:); 
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153.     hap_eyes_5 = hap_eyes(hap_eyes(:,2) == 5,:); 
154.     hap_eyes_6 = hap_eyes(hap_eyes(:,2) == 6,:); 
155.     hap_eyes_7 = hap_eyes(hap_eyes(:,2) == 7,:); 
156.     % break up responses by step & get average 
157.     hap_eyes_resp_1(sub,1) = mean(hap_eyes_1(:,3)); 
158.     hap_eyes_resp_2(sub,1) = mean(hap_eyes_2(:,3)); 
159.     hap_eyes_resp_3(sub,1) = mean(hap_eyes_3(:,3)); 
160.     hap_eyes_resp_4(sub,1) = mean(hap_eyes_4(:,3)); 
161.     hap_eyes_resp_5(sub,1) = mean(hap_eyes_5(:,3)); 
162.     hap_eyes_resp_6(sub,1) = mean(hap_eyes_6(:,3)); 
163.     hap_eyes_resp_7(sub,1) = mean(hap_eyes_7(:,3)); 
164.     % break up reaction time by step 
165.     hap_eyes_rt_1(sub,1) = mean(hap_eyes_1(:,4)); 
166.     hap_eyes_rt_2(sub,1) = mean(hap_eyes_2(:,4)); 
167.     hap_eyes_rt_3(sub,1) = mean(hap_eyes_3(:,4)); 
168.     hap_eyes_rt_4(sub,1) = mean(hap_eyes_4(:,4)); 
169.     hap_eyes_rt_5(sub,1) = mean(hap_eyes_5(:,4)); 
170.     hap_eyes_rt_6(sub,1) = mean(hap_eyes_6(:,4)); 
171.     hap_eyes_rt_7(sub,1) = mean(hap_eyes_7(:,4)); 
172.   
173.     % ----------HAPPY_MOUTH----------% 
174.     % break up into steps 
175.     hap_mouth_1 = hap_mouth(hap_mouth(:,2) == 1,:); 
176.     hap_mouth_2 = hap_mouth(hap_mouth(:,2) == 2,:); 
177.     hap_mouth_3 = hap_mouth(hap_mouth(:,2) == 3,:); 
178.     hap_mouth_4 = hap_mouth(hap_mouth(:,2) == 4,:); 
179.     hap_mouth_5 = hap_mouth(hap_mouth(:,2) == 5,:); 
180.     hap_mouth_6 = hap_mouth(hap_mouth(:,2) == 6,:); 
181.     hap_mouth_7 = hap_mouth(hap_mouth(:,2) == 7,:); 
182.     % break up responses by step & get average 
183.     hap_mouth_resp_1(sub,1) = mean(hap_mouth_1(:,3)); 
184.     hap_mouth_resp_2(sub,1) = mean(hap_mouth_2(:,3)); 
185.     hap_mouth_resp_3(sub,1) = mean(hap_mouth_3(:,3)); 
186.     hap_mouth_resp_4(sub,1) = mean(hap_mouth_4(:,3)); 
187.     hap_mouth_resp_5(sub,1) = mean(hap_mouth_5(:,3)); 
188.     hap_mouth_resp_6(sub,1) = mean(hap_mouth_6(:,3)); 
189.     hap_mouth_resp_7(sub,1) = mean(hap_mouth_7(:,3)); 
190.     % break up reaction time by step 
191.     hap_mouth_rt_1(sub,1) = mean(hap_mouth_1(:,4)); 
192.     hap_mouth_rt_2(sub,1) = mean(hap_mouth_2(:,4)); 
193.     hap_mouth_rt_3(sub,1) = mean(hap_mouth_3(:,4)); 
194.     hap_mouth_rt_4(sub,1) = mean(hap_mouth_4(:,4)); 
195.     hap_mouth_rt_5(sub,1) = mean(hap_mouth_5(:,4)); 
196.     hap_mouth_rt_6(sub,1) = mean(hap_mouth_6(:,4)); 
197.     hap_mouth_rt_7(sub,1) = mean(hap_mouth_7(:,4)); 
198.   
199.     % ----------ANGRY_EYES----------% 
200.     % break up into steps 
201.     ang_eyes_1 = ang_eyes(ang_eyes(:,2) == 1,:); 
202.     ang_eyes_2 = ang_eyes(ang_eyes(:,2) == 2,:); 
203.     ang_eyes_3 = ang_eyes(ang_eyes(:,2) == 3,:); 
204.     ang_eyes_4 = ang_eyes(ang_eyes(:,2) == 4,:); 
205.     ang_eyes_5 = ang_eyes(ang_eyes(:,2) == 5,:); 
206.     ang_eyes_6 = ang_eyes(ang_eyes(:,2) == 6,:); 
207.     ang_eyes_7 = ang_eyes(ang_eyes(:,2) == 7,:); 
208.     % break up responses by step & get average 
209.     ang_eyes_resp_1(sub,1) = mean(ang_eyes_1(:,3)); 
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210.     ang_eyes_resp_2(sub,1) = mean(ang_eyes_2(:,3)); 
211.     ang_eyes_resp_3(sub,1) = mean(ang_eyes_3(:,3)); 
212.     ang_eyes_resp_4(sub,1) = mean(ang_eyes_4(:,3)); 
213.     ang_eyes_resp_5(sub,1) = mean(ang_eyes_5(:,3)); 
214.     ang_eyes_resp_6(sub,1) = mean(ang_eyes_6(:,3)); 
215.     ang_eyes_resp_7(sub,1) = mean(ang_eyes_7(:,3)); 
216.     % break up reaction time by step 
217.     ang_eyes_rt_1(sub,1) = mean(ang_eyes_1(:,4)); 
218.     ang_eyes_rt_2(sub,1) = mean(ang_eyes_2(:,4)); 
219.     ang_eyes_rt_3(sub,1) = mean(ang_eyes_3(:,4)); 
220.     ang_eyes_rt_4(sub,1) = mean(ang_eyes_4(:,4)); 
221.     ang_eyes_rt_5(sub,1) = mean(ang_eyes_5(:,4)); 
222.     ang_eyes_rt_6(sub,1) = mean(ang_eyes_6(:,4)); 
223.     ang_eyes_rt_7(sub,1) = mean(ang_eyes_7(:,4)); 
224.   
225.     % ----------ANGRY_MOUTH----------% 
226.     % break up into steps 
227.     ang_mouth_1 = ang_mouth(ang_mouth(:,2) == 1,:); 
228.     ang_mouth_2 = ang_mouth(ang_mouth(:,2) == 2,:); 
229.     ang_mouth_3 = ang_mouth(ang_mouth(:,2) == 3,:); 
230.     ang_mouth_4 = ang_mouth(ang_mouth(:,2) == 4,:); 
231.     ang_mouth_5 = ang_mouth(ang_mouth(:,2) == 5,:); 
232.     ang_mouth_6 = ang_mouth(ang_mouth(:,2) == 6,:); 
233.     ang_mouth_7 = ang_mouth(ang_mouth(:,2) == 7,:); 
234.     % break up responses by step & get average 
235.     ang_mouth_resp_1(sub,1) = mean(ang_mouth_1(:,3)); 
236.     ang_mouth_resp_2(sub,1) = mean(ang_mouth_2(:,3)); 
237.     ang_mouth_resp_3(sub,1) = mean(ang_mouth_3(:,3)); 
238.     ang_mouth_resp_4(sub,1) = mean(ang_mouth_4(:,3)); 
239.     ang_mouth_resp_5(sub,1) = mean(ang_mouth_5(:,3)); 
240.     ang_mouth_resp_6(sub,1) = mean(ang_mouth_6(:,3)); 
241.     ang_mouth_resp_7(sub,1) = mean(ang_mouth_7(:,3)); 
242.     % break up reaction time by step 
243.     ang_mouth_rt_1(sub,1) = mean(ang_mouth_1(:,4)); 
244.     ang_mouth_rt_2(sub,1) = mean(ang_mouth_2(:,4)); 
245.     ang_mouth_rt_3(sub,1) = mean(ang_mouth_3(:,4)); 
246.     ang_mouth_rt_4(sub,1) = mean(ang_mouth_4(:,4)); 
247.     ang_mouth_rt_5(sub,1) = mean(ang_mouth_5(:,4)); 
248.     ang_mouth_rt_6(sub,1) = mean(ang_mouth_6(:,4)); 
249.     ang_mouth_rt_7(sub,1) = mean(ang_mouth_7(:,4)); 
250.   
251.     % ----------SILENT_EYES----------% 
252.     % break up into steps 
253.     silent_eyes_1 = silent_eyes(silent_eyes(:,2) == 1,:); 
254.     silent_eyes_2 = silent_eyes(silent_eyes(:,2) == 2,:); 
255.     silent_eyes_3 = silent_eyes(silent_eyes(:,2) == 3,:); 
256.     silent_eyes_4 = silent_eyes(silent_eyes(:,2) == 4,:); 
257.     silent_eyes_5 = silent_eyes(silent_eyes(:,2) == 5,:); 
258.     silent_eyes_6 = silent_eyes(silent_eyes(:,2) == 6,:); 
259.     silent_eyes_7 = silent_eyes(silent_eyes(:,2) == 7,:); 
260.     % break up responses by step & get average 
261.     silent_eyes_resp_1(sub,1) = mean(silent_eyes_1(:,3)); 
262.     silent_eyes_resp_2(sub,1) = mean(silent_eyes_2(:,3)); 
263.     silent_eyes_resp_3(sub,1) = mean(silent_eyes_3(:,3)); 
264.     silent_eyes_resp_4(sub,1) = mean(silent_eyes_4(:,3)); 
265.     silent_eyes_resp_5(sub,1) = mean(silent_eyes_5(:,3)); 
266.     silent_eyes_resp_6(sub,1) = mean(silent_eyes_6(:,3)); 
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267.     silent_eyes_resp_7(sub,1) = mean(silent_eyes_7(:,3)); 
268.     % break up reaction time by step 
269.     silent_eyes_rt_1(sub,1) = mean(silent_eyes_1(:,4)); 
270.     silent_eyes_rt_2(sub,1) = mean(silent_eyes_2(:,4)); 
271.     silent_eyes_rt_3(sub,1) = mean(silent_eyes_3(:,4)); 
272.     silent_eyes_rt_4(sub,1) = mean(silent_eyes_4(:,4)); 
273.     silent_eyes_rt_5(sub,1) = mean(silent_eyes_5(:,4)); 
274.     silent_eyes_rt_6(sub,1) = mean(silent_eyes_6(:,4)); 
275.     silent_eyes_rt_7(sub,1) = mean(silent_eyes_7(:,4)); 
276.   
277.     % ----------SILENT_MOUTH----------% 
278.     % break up into steps 
279.     silent_mouth_1 = silent_mouth(silent_mouth(:,2) == 1,:); 
280.     silent_mouth_2 = silent_mouth(silent_mouth(:,2) == 2,:); 
281.     silent_mouth_3 = silent_mouth(silent_mouth(:,2) == 3,:); 
282.     silent_mouth_4 = silent_mouth(silent_mouth(:,2) == 4,:); 
283.     silent_mouth_5 = silent_mouth(silent_mouth(:,2) == 5,:); 
284.     silent_mouth_6 = silent_mouth(silent_mouth(:,2) == 6,:); 
285.     silent_mouth_7 = silent_mouth(silent_mouth(:,2) == 7,:); 
286.     % break up responses by step & get average 
287.     silent_mouth_resp_1(sub,1) = mean(silent_mouth_1(:,3)); 
288.     silent_mouth_resp_2(sub,1) = mean(silent_mouth_2(:,3)); 
289.     silent_mouth_resp_3(sub,1) = mean(silent_mouth_3(:,3)); 
290.     silent_mouth_resp_4(sub,1) = mean(silent_mouth_4(:,3)); 
291.     silent_mouth_resp_5(sub,1) = mean(silent_mouth_5(:,3)); 
292.     silent_mouth_resp_6(sub,1) = mean(silent_mouth_6(:,3)); 
293.     silent_mouth_resp_7(sub,1) = mean(silent_mouth_7(:,3)); 
294.     % break up reaction time by step 
295.     silent_mouth_rt_1(sub,1) = mean(silent_mouth_1(:,4)); 
296.     silent_mouth_rt_2(sub,1) = mean(silent_mouth_2(:,4)); 
297.     silent_mouth_rt_3(sub,1) = mean(silent_mouth_3(:,4)); 
298.     silent_mouth_rt_4(sub,1) = mean(silent_mouth_4(:,4)); 
299.     silent_mouth_rt_5(sub,1) = mean(silent_mouth_5(:,4)); 
300.     silent_mouth_rt_6(sub,1) = mean(silent_mouth_6(:,4)); 
301.     silent_mouth_rt_7(sub,1) = mean(silent_mouth_7(:,4)); 
302. end 
303. % create excel file 
304. sub = [1:70]'; 
305. T = 

table(sub,hap_eyes_resp_7,hap_eyes_resp_6,hap_eyes_resp_5,hap_eyes_resp
_4,hap_eyes_resp_3,hap_eyes_resp_2,hap_eyes_resp_1,hap_eyes_rt_7,hap_ey
es_rt_6,hap_eyes_rt_5,hap_eyes_rt_4,hap_eyes_rt_3,hap_eyes_rt_2,hap_eye
s_rt_1,hap_mouth_resp_7,hap_mouth_resp_6,hap_mouth_resp_5,hap_mouth_res
p_4,hap_mouth_resp_3,hap_mouth_resp_2,hap_mouth_resp_1,hap_mouth_rt_7,h
ap_mouth_rt_6,hap_mouth_rt_5,hap_mouth_rt_4,hap_mouth_rt_3,hap_mouth_rt
_2,hap_mouth_rt_1,ang_eyes_resp_7,ang_eyes_resp_6,ang_eyes_resp_5,ang_e
yes_resp_4,ang_eyes_resp_3,ang_eyes_resp_2,ang_eyes_resp_1,ang_eyes_rt_
7,ang_eyes_rt_6,ang_eyes_rt_5,ang_eyes_rt_4,ang_eyes_rt_3,ang_eyes_rt_2
,ang_eyes_rt_1,ang_mouth_resp_7,ang_mouth_resp_6,ang_mouth_resp_5,ang_m
outh_resp_4,ang_mouth_resp_3,ang_mouth_resp_2,ang_mouth_resp_1,ang_mout
h_rt_7,ang_mouth_rt_6,ang_mouth_rt_5,ang_mouth_rt_4,ang_mouth_rt_3,ang_
mouth_rt_2,ang_mouth_rt_1,silent_eyes_resp_7,silent_eyes_resp_6,silent_
eyes_resp_5,silent_eyes_resp_4,silent_eyes_resp_3,silent_eyes_resp_2,si
lent_eyes_resp_1,silent_eyes_rt_7,silent_eyes_rt_6,silent_eyes_rt_5,sil
ent_eyes_rt_4,silent_eyes_rt_3,silent_eyes_rt_2,silent_eyes_rt_1,silent
_mouth_resp_7,silent_mouth_resp_6,silent_mouth_resp_5,silent_mouth_resp
_4,silent_mouth_resp_3,silent_mouth_resp_2,silent_mouth_resp_1,silent_m
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outh_rt_7,silent_mouth_rt_6,silent_mouth_rt_5,silent_mouth_rt_4,silent_
mouth_rt_3,silent_mouth_rt_2,silent_mouth_rt_1, 
'VariableNames',{'Subject','Hap_eyes_resp_7','Hap_eyes_resp_6','Hap_eye
s_resp_5','Hap_eyes_resp_4','Hap_eyes_resp_3','Hap_eyes_resp_2','Hap_ey
es_resp_1','Hap_eyes_rt_7','Hap_eyes_rt_6','Hap_eyes_rt_5','Hap_eyes_rt
_4','Hap_eyes_rt_3','Hap_eyes_rt_2','Hap_eyes_rt_1','Hap_mouth_resp_7',
'Hap_mouth_resp_6','Hap_mouth_resp_5','Hap_mouth_resp_4','Hap_mouth_res
p_3','Hap_mouth_resp_2','Hap_mouth_resp_1','Hap_mouth_rt_7','Hap_mouth_
rt_6','Hap_mouth_rt_5','Hap_mouth_rt_4','Hap_mouth_rt_3','Hap_mouth_rt_
2','Hap_mouth_rt_1','Ang_eyes_resp_7','Ang_eyes_resp_6','Ang_eyes_resp_
5','Ang_eyes_resp_4','Ang_eyes_resp_3','Ang_eyes_resp_2','Ang_eyes_resp
_1','Ang_eyes_rt_7','Ang_eyes_rt_6','Ang_eyes_rt_5','Ang_eyes_rt_4','An
g_eyes_rt_3','Ang_eyes_rt_2','Ang_eyes_rt_1','Ang_mouth_resp_7','Ang_mo
uth_resp_6','Ang_mouth_resp_5','Ang_mouth_resp_4','Ang_mouth_resp_3','A
ng_mouth_resp_2','Ang_mouth_resp_1','Ang_mouth_rt_7','Ang_mouth_rt_6','
Ang_mouth_rt_5','Ang_mouth_rt_4','Ang_mouth_rt_3','Ang_mouth_rt_2','Ang
_mouth_rt_1','Silent_eyes_resp_7','Silent_eyes_resp_6','Silent_eyes_res
p_5','Silent_eyes_resp_4','Silent_eyes_resp_3','Silent_eyes_resp_2','Si
lent_eyes_resp_1','Silent_eyes_rt_7','Silent_eyes_rt_6','Silent_eyes_rt
_5','Silent_eyes_rt_4','Silent_eyes_rt_3','Silent_eyes_rt_2','Silent_ey
es_rt_1','Silent_mouth_resp_7','Silent_mouth_resp_6','Silent_mouth_resp
_5','Silent_mouth_resp_4','Silent_mouth_resp_3','Silent_mouth_resp_2','
Silent_mouth_resp_1','Silent_mouth_rt_7','Silent_mouth_rt_6','Silent_mo
uth_rt_5','Silent_mouth_rt_4','Silent_mouth_rt_3','Silent_mouth_rt_2','
Silent_mouth_rt_1'}); 

306. writetable(T,'PsychophysicalData.xlsx'); 
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APPENDIX B: FECHNER JND PSE CALCULATIONS MATLAB SCRIPT 

 

 

 

1. % script to produce psychophysical output from 2AFC procedure. PSE and 
2. % 25/75 thresholds are determined and a plot is made 
3. % Based off of fechner script written by Dr. Donald C. Rojas, PhD 
4. % Re-written by Katherine M. Becker 
5.   
6. % NOTE: requires stats toolbox and logistic.m function 
7. clear 
8.   
9. cd '/Users/katherinebecker/Documents/Dissertation/PsychophysicalData' 
10. addpath '/Users/katherinebecker/Documents/MATLAB/stats' 
11. addpath '/Users/katherinebecker/Documents/MATLAB/boxplotGroup' 
12.   
13. id = xlsread('PsychophysicalData_NewSteps3.xlsx','A2:A71'); 
14. age = xlsread('Demographics_Psychophysical.xlsx','B2:B71'); 
15. gender = xlsread('Demographics_Psychophysical.xlsx','C2:C71'); 
16. HE_data = xlsread('PsychophysicalData_NewSteps3.xlsx','B2:H71'); 
17. HM_data = xlsread('PsychophysicalData_NewSteps3.xlsx','P2:V71'); 
18. AE_data = xlsread('PsychophysicalData_NewSteps3.xlsx','AD2:AJ71'); 
19. AM_data = xlsread('PsychophysicalData_NewSteps3.xlsx','AR2:AX71'); 
20. SE_data = xlsread('PsychophysicalData_NewSteps3.xlsx','BF2:BL71'); 
21. SM_data = xlsread('PsychophysicalData_NewSteps3.xlsx','BT2:BZ71'); 
22. HE_rt_data = xlsread('PsychophysicalData_NewSteps3.xlsx','I2:O71'); 
23. HM_rt_data = xlsread('PsychophysicalData_NewSteps3.xlsx','W2:AC71'); 
24. AE_rt_data = xlsread('PsychophysicalData_NewSteps3.xlsx','AK2:AQ71'); 
25. AM_rt_data = xlsread('PsychophysicalData_NewSteps3.xlsx','AY2:BE71'); 
26. SE_rt_data = xlsread('PsychophysicalData_NewSteps3.xlsx','BM2:BS71'); 
27. SM_rt_data = xlsread('PsychophysicalData_NewSteps3.xlsx','CA2:CG71'); 
28.   
29. % matrices to fill 
30. PSE_HE = zeros(70,1); 
31. PSE_HM = zeros(70,1); 
32. PSE_AE = zeros(70,1); 
33. PSE_AM = zeros(70,1); 
34. PSE_SE = zeros(70,1); 
35. PSE_SM = zeros(70,1); 
36. JND_HE = zeros(70,1); 
37. JND_HM = zeros(70,1); 
38. JND_AE = zeros(70,1); 
39. JND_AM = zeros(70,1); 
40. JND_SE = zeros(70,1); 
41. JND_SM = zeros(70,1); 
42. Zp_HE = zeros(70,601); 
43. Zp_AE = zeros(70,601); 
44. Zp_SE = zeros(70,601); 
45. Zp_HM = zeros(70,601); 
46. Zp_AM = zeros(70,601); 
47. Zp_SM = zeros(70,601); 
48. Op_HE = zeros(70,601); 
49. Op_AE = zeros(70,601); 
50. Op_SE = zeros(70,601); 
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51. Op_HM = zeros(70,601); 
52. Op_AM = zeros(70,601); 
53. Op_SM = zeros(70,601); 
54.   
55. % defaults 
56. Np = .01; % steps for prettier figure output 
57. start = 1; 
58. stop = 7; 
59.   
60. % Happy Eyes 
61. for sub = 1:length(HE_data) 
62.     % define column vectors for X and Y here... 
63.     Y = HE_data(sub,:)'; 
64.     X = [1:7]; 
65.   
66.     % calculate the fit 
67.     [B,Dev,Stat] = glmfit(X,[Y 

ones(length(X),1)],'binomial','link','logit'); 
68.     Z = B(1) + X * (B(2)); 
69.     O = logistic(Z); 
70.   
71.     % finer res output 
72.     Xp = start:Np:stop; 
73.     Zp = B(1) + Xp * (B(2)); 
74.     Zp_HE(sub,:) = Zp; 
75.     Op = logistic(Zp); 
76.     Op_HE(sub,:) = Op; 
77.   
78.     % PSE, JND 
79.     [~,ind] = min(abs(Op - .5)); 
80.     PSE = Xp(ind); 
81.     PSE_HE(sub,:) = PSE; 
82.     [~,ind] = min(abs(Op - .25)); 
83.     JND25 = Xp(ind); 
84.     [~,ind] = min(abs(Op - .75)); 
85.     JND75 = Xp(ind); 
86.     JND = JND75-JND25; 
87.     JND_HE(sub,:) = JND; 
88. end 
89.   
90. % Happy Mouth 
91. for sub = 1:length(HM_data) 
92.     % define column vectors for X and Y here... 
93.     Y = HM_data(sub,:)'; 
94.     X = [1:7]; 
95.   
96.     % calculate the fit 
97.     [B,Dev,Stat] = glmfit(X,[Y 

ones(length(X),1)],'binomial','link','logit'); 
98.     Z = B(1) + X * (B(2)); 
99.     O = logistic(Z); 
100.   
101.     % finer res output 
102.     Xp = start:Np:stop; 
103.     Zp = B(1) + Xp * (B(2)); 
104.     Zp_HM(sub,:) = Zp; 
105.     Op = logistic(Zp); 
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106.     Op_HM(sub,:) = Op; 
107.   
108.     % PSE, JND 
109.     [~,ind] = min(abs(Op - .5)); 
110.     PSE = Xp(ind); 
111.     PSE_HM(sub,:) = PSE; 
112.     [~,ind] = min(abs(Op - .25)); 
113.     JND25 = Xp(ind); 
114.     [~,ind] = min(abs(Op - .75)); 
115.     JND75 = Xp(ind); 
116.     JND = JND75-JND25; 
117.     JND_HM(sub,:) = JND; 
118. end 
119.   
120. % Angry Eyes 
121. for sub = 1:length(AE_data) 
122.     % define column vectors for X and Y here... 
123.     Y = AE_data(sub,:)'; 
124.     X = [1:7]; 
125.   
126.     % calculate the fit 
127.     [B,Dev,Stat] = glmfit(X,[Y 

ones(length(X),1)],'binomial','link','logit'); 
128.     Z = B(1) + X * (B(2)); 
129.     O = logistic(Z); 
130.   
131.     % finer res output 
132.     Xp = start:Np:stop; 
133.     Zp = B(1) + Xp * (B(2)); 
134.     Zp_AE(sub,:) = Zp; 
135.     Op = logistic(Zp); 
136.     Op_AE(sub,:) = Op; 
137.   
138.     % PSE, JND 
139.     [~,ind] = min(abs(Op - .5)); 
140.     PSE = Xp(ind); 
141.     PSE_AE(sub,:) = PSE; 
142.     [~,ind] = min(abs(Op - .25)); 
143.     JND25 = Xp(ind); 
144.     [~,ind] = min(abs(Op - .75)); 
145.     JND75 = Xp(ind); 
146.     JND = JND75-JND25; 
147.     JND_AE(sub,:) = JND; 
148. end 
149.   
150. % Angry Mouth 
151. for sub = 1:length(AM_data) 
152.     % define column vectors for X and Y here... 
153.     Y = AM_data(sub,:)'; 
154.     X = [1:7]; 
155.   
156.     % calculate the fit 
157.     [B,Dev,Stat] = glmfit(X,[Y 

ones(length(X),1)],'binomial','link','logit'); 
158.     Z = B(1) + X * (B(2)); 
159.     O = logistic(Z); 
160.   
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161.     % finer res output 
162.     Xp = start:Np:stop; 
163.     Zp = B(1) + Xp * (B(2)); 
164.     Zp_AM(sub,:) = Zp; 
165.     Op = logistic(Zp); 
166.     Op_AM(sub,:) = Op; 
167.   
168.     % PSE, JND 
169.     [~,ind] = min(abs(Op - .5)); 
170.     PSE = Xp(ind); 
171.     PSE_AM(sub,:) = PSE; 
172.     [~,ind] = min(abs(Op - .25)); 
173.     JND25 = Xp(ind); 
174.     [~,ind] = min(abs(Op - .75)); 
175.     JND75 = Xp(ind); 
176.     JND = JND75-JND25; 
177.     JND_AM(sub,:) = JND; 
178. end 
179.   
180. % Silent Eyes 
181. for sub = 1:length(SE_data) 
182.     % define column vectors for X and Y here... 
183.     Y = SE_data(sub,:)'; 
184.     X = [1:7]; 
185.   
186.     % calculate the fit 
187.     [B,Dev,Stat] = glmfit(X,[Y 

ones(length(X),1)],'binomial','link','logit'); 
188.     Z = B(1) + X * (B(2)); 
189.     O = logistic(Z); 
190.   
191.     % finer res output 
192.     Xp = start:Np:stop; 
193.     Zp = B(1) + Xp * (B(2)); 
194.     Zp_SE(sub,:) = Zp; 
195.     Op = logistic(Zp); 
196.     Op_SE(sub,:) = Op; 
197.   
198.     % PSE, JND 
199.     [~,ind] = min(abs(Op - .5)); 
200.     PSE = Xp(ind); 
201.     PSE_SE(sub,:) = PSE; 
202.     [~,ind] = min(abs(Op - .25)); 
203.     JND25 = Xp(ind); 
204.     [~,ind] = min(abs(Op - .75)); 
205.     JND75 = Xp(ind); 
206.     JND = JND75-JND25; 
207.     JND_SE(sub,:) = JND; 
208. end 
209.   
210. % Silent Mouth 
211. for sub = 1:length(SM_data) 
212.     % define column vectors for X and Y here... 
213.     Y = SM_data(sub,:)'; 
214.     X = [1:7]; 
215.   
216.     % calculate the fit 
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217.     [B,Dev,Stat] = glmfit(X,[Y 
ones(length(X),1)],'binomial','link','logit'); 

218.     Z = B(1) + X * (B(2)); 
219.     O = logistic(Z); 
220.   
221.     % finer res output 
222.     Xp = start:Np:stop; 
223.     Zp = B(1) + Xp * (B(2)); 
224.     Zp_SM(sub,:) = Zp; 
225.     Op = logistic(Zp); 
226.     Op_SM(sub,:) = Op; 
227.   
228.     % PSE, JND 
229.     [~,ind] = min(abs(Op - .5)); 
230.     PSE = Xp(ind); 
231.     PSE_SM(sub,:) = PSE; 
232.     [~,ind] = min(abs(Op - .25)); 
233.     JND25 = Xp(ind); 
234.     [~,ind] = min(abs(Op - .75)); 
235.     JND75 = Xp(ind); 
236.     JND = JND75-JND25; 
237.     JND_SM(sub,:) = JND; 
238. end 
239.   
240. % Mean PSE and JND for each condition 
241. HappyEyes_PSE = mean(PSE_HE); 
242. HappyMouth_PSE = mean(PSE_HM); 
243. AngryEyes_PSE = mean(PSE_AE); 
244. AngryMouth_PSE = mean(PSE_AM); 
245. SilentEyes_PSE = mean(PSE_SE); 
246. SilentMouth_PSE = mean(PSE_SM); 
247. HappyEyes_JND = mean(JND_HE); 
248. HappyMouth_JND = mean(JND_HM); 
249. AngryEyes_JND = mean(JND_AE); 
250. AngryMouth_JND = mean(JND_AM); 
251. SilentEyes_JND = mean(JND_SE); 
252. SilentMouth_JND = mean(JND_SM); 
253.   
254. % Reaction time data 
255. %happy-eyes 
256. HE_rt1 = HE_rt_data(:,1); 
257. HE_rt2 = HE_rt_data(:,2); 
258. HE_rt3 = HE_rt_data(:,3); 
259. HE_rt4 = HE_rt_data(:,4); 
260. HE_rt5 = HE_rt_data(:,5); 
261. HE_rt6 = HE_rt_data(:,6); 
262. HE_rt7 = HE_rt_data(:,7); 
263. %happy-mouth 
264. HM_rt1 = HM_rt_data(:,1); 
265. HM_rt2 = HM_rt_data(:,2); 
266. HM_rt3 = HM_rt_data(:,3); 
267. HM_rt4 = HM_rt_data(:,4); 
268. HM_rt5 = HM_rt_data(:,5); 
269. HM_rt6 = HM_rt_data(:,6); 
270. HM_rt7 = HM_rt_data(:,7); 
271. %angry-eyes 
272. AE_rt1 = AE_rt_data(:,1); 
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273. AE_rt2 = AE_rt_data(:,2); 
274. AE_rt3 = AE_rt_data(:,3); 
275. AE_rt4 = AE_rt_data(:,4); 
276. AE_rt5 = AE_rt_data(:,5); 
277. AE_rt6 = AE_rt_data(:,6); 
278. AE_rt7 = AE_rt_data(:,7); 
279. %angry-mouth 
280. AM_rt1 = AM_rt_data(:,1); 
281. AM_rt2 = AM_rt_data(:,2); 
282. AM_rt3 = AM_rt_data(:,3); 
283. AM_rt4 = AM_rt_data(:,4); 
284. AM_rt5 = AM_rt_data(:,5); 
285. AM_rt6 = AM_rt_data(:,6); 
286. AM_rt7 = AM_rt_data(:,7); 
287. %silent-eyes 
288. SE_rt1 = SE_rt_data(:,1); 
289. SE_rt2 = SE_rt_data(:,2); 
290. SE_rt3 = SE_rt_data(:,3); 
291. SE_rt4 = SE_rt_data(:,4); 
292. SE_rt5 = SE_rt_data(:,5); 
293. SE_rt6 = SE_rt_data(:,6); 
294. SE_rt7 = SE_rt_data(:,7); 
295. %silent-mouth 
296. SM_rt1 = mean(SM_rt_data(:,1)); 
297. SM_rt2 = mean(SM_rt_data(:,2)); 
298. SM_rt3 = mean(SM_rt_data(:,3)); 
299. SM_rt4 = mean(SM_rt_data(:,4)); 
300. SM_rt5 = mean(SM_rt_data(:,5)); 
301. SM_rt6 = mean(SM_rt_data(:,6)); 
302. SM_rt7 = mean(SM_rt_data(:,7)); 
303.   
304. % save results 
305. T = 

table(id,age,gender,PSE_HE,PSE_HM,PSE_AE,PSE_AM,PSE_SE,PSE_SM,JND_HE,JN
D_HM,JND_AE,JND_AM,JND_SE,JND_SM, 
'VariableNames',{'id','age','gender','HappyEyes_PSE','HappyMouth_PSE','
AngryEyes_PSE','AngryMouth_PSE','SilentEyes_PSE','SilentMouth_PSE','Hap
pyEyes_JND','HappyMouth_JND','AngryEyes_JND','AngryMouth_JND','SilentEy
es_JND','SilentMouth_JND'}); 

306. writetable(T,'PSE_JND_DataValues_R4.xlsx'); 
307.   
308. T2 = 

table(id,age,gender,HE_rt1,HE_rt2,HE_rt3,HE_rt4,HE_rt5,HE_rt6,HE_rt7,HM
_rt1,HM_rt2,HM_rt3,HM_rt4,HM_rt5,HM_rt6,HM_rt7,AE_rt1,AE_rt2,AE_rt3,AE_
rt4,AE_rt5,AE_rt6,AE_rt7,AM_rt1,AM_rt2,AM_rt3,AM_rt4,AM_rt5,AM_rt6,AM_r
t7,SE_rt1,SE_rt2,SE_rt3,SE_rt4,SE_rt5,SE_rt6,SE_rt7,SM_rt1,SM_rt2,SM_rt
3,SM_rt4,SM_rt5,SM_rt6,SM_rt7,'VariableNames',{'id','age','gender','Hap
E_rt1','HapE_rt2','HapE_rt3','HapE_rt4','HapE_rt5','HapE_rt6','HapE_rt7
','HapM_rt1','HapM_rt2','HapM_rt3','HapM_rt4','HapM_rt5','HapM_rt6','Ha
pM_rt7','AngE_rt1','AngE_rt2','AngE_rt3','AngE_rt4','AngE_rt5','AngE_rt
6','AngE_rt7','AngM_rt1','AngM_rt2','AngM_rt3','AngM_rt4','AngM_rt5','A
ngM_rt6','AngM_rt7','SilE_rt1','SilE_rt2','SilE_rt3','SilE_rt4','SilE_r
t5','SilE_rt6','SilE_rt7','SilM_rt1','SilM_rt2','SilM_rt3','SilM_rt4','
SilM_rt5','SilM_rt6','SilM_rt7'}); 

309. writetable(T2,'RT_DataValues_R4.xlsx'); 
310.   
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 APPENDIX C: LINEAR MIXED MODELS PSE JND VALUES R SCRIPT 

 

 

 

 

# Originally written by Dr. Donald C. Rojas, PhD, adapated by Katherine M. Becker 

1. library(readr) # csv reading 
2. library(nlme) # mixed effects 
3. library(multcomp) # multiple comparisons 
4. library(tidyr) # reformatting from wide to long 
5. library(plyr) # for renaming variables 
6. library(dplyr) # easy subsetting 
7. library(reshape) # for wide to long 
8. library(ggplot2) # fancier plotting 
9. library(Rmisc) # some summary stuff - summarySE and multiplot 
10. library(ggsignif) # for indicating significance on ggplots 
11. library(tidyverse) # box plots 
12. library(gapminder) # box plots 
13.   
14. # read csv file 
15. setwd('/Users/katherinebecker/Documents/Dissertation/PsychophysicalDat

a') 
16. dat <- 

read_csv("/Users/katherinebecker/Documents/Dissertation/PsychophysicalD
ata/PSE_JND_DataValues_R4.csv") 

17.   
18. # reformat data to long rather than wide, creating separate pselong 

and jndlong datasets for PSE and JND values 
19. pse <- 

select(dat,id,age,gender,cFCzdiffA.1:cFCzdiffA.3,lFCzdiffA.1:lFCzdiffA.
3) 

20. pse <- as.data.frame(pse) 
21. pse$id <- factor(pse$id) 
22. pse$age <- factor(pse$age) 
23. pse$gender <- factor(pse$gender) 
24. pselong <- pse %>% 
25.   gather(key, value, -id, -age, -gender) %>% 
26.   separate(key, into = c("FixCue","Prosody"), sep="\\.") 
27. colnames(pselong)[6] <- "PSE" 
28. pselong$Prosody<-revalue(pselong$Prosody,c("1"="Happy")) 
29. pselong$Prosody<-revalue(pselong$Prosody,c("2"="Angry")) 
30. pselong$Prosody<-revalue(pselong$Prosody,c("3"="Silent")) 
31. pselong$FixCue<-revalue(pselong$FixCue,c("cFCzdiffA"="Eyes")) 
32. pselong$FixCue<-revalue(pselong$FixCue,c("lFCzdiffA"="Mouth")) 
33. # descriptives PSE 
34. summary(pselong) 
35.   
36. jnd <- 

select(dat,id,age,gender,cFCzdiffL.1:cFCzdiffL.3,lFCzdiffL.1:lFCzdiffL.
3) 

37. jnd <- as.data.frame(jnd) 
38. jnd$id <- factor(jnd$id) 
39. jnd$age <- factor(jnd$age) 
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40. jnd$gender <- factor(jnd$gender) 
41. jndlong <- jnd %>% 
42.   gather(key, value, -id, -age, -gender) %>%  
43.   separate(key, into = c("FixCue","Prosody"), sep="\\.") 
44. colnames(jndlong)[6] <- "JND" 
45. jndlong$Prosody<-revalue(jndlong$Prosody,c("1"="Happy")) 
46. jndlong$Prosody<-revalue(jndlong$Prosody,c("2"="Angry")) 
47. jndlong$Prosody<-revalue(jndlong$Prosody,c("3"="Silent")) 
48. jndlong$FixCue<-revalue(jndlong$FixCue,c("cFCzdiffL"="Eyes")) 
49. jndlong$FixCue<-revalue(jndlong$FixCue,c("lFCzdiffL"="Mouth")) 
50. # descriptives JND 
51. summary(jndlong) 
52.   
53. # mixed effects - nlme package, anova call is for conventional anova 

table 
54. pselong.lme1<-lme(PSE~FixCue*Prosody, 
55.               random=list(id=pdBlocked(list(~1, pdIdent(~Prosody-1), 

pdIdent(~FixCue-1)))), 
56.               

correlation=corCompSymm(form=~1|id),method="ML",data=pselong,na.action 
= na.exclude) 

57.      summary(pselong.lme1) 
58. jndlong.lme1<-lme(JND~FixCue*Prosody, 
59.               random=list(id=pdBlocked(list(~1, pdIdent(~FixCue-1), 

pdIdent(~Prosody-1)))), 
60.               

correlation=corCompSymm(form=~1|id),method="ML",data=jndlong,na.action 
= na.exclude) 

61.      summary(jndlong.lme1) 
62.   
63. # compute an interaction term manually for next steps 
64. pselong$FxbyCue <- interaction(pselong$FixCue,pselong$Prosody) 
65. jndlong$FxbyCue <- interaction(jndlong$FixCue,jndlong$Prosody) 
66.   
67. # next models are formatted better for multiple comparisons 
68. pselong.lme2 <- lme(PSE~FxbyCue, 
69.                random=list(id=pdBlocked(list(~1, pdIdent(~FixCue-1), 

pdIdent(~Prosody-1)))), 
70.                

correlation=corCompSymm(form=~1|id),method="ML",data=pselong,na.action 
= na.exclude) 

71. jndlong.lme2 <- lme(JND~FxbyCue, 
72.                random=list(id=pdBlocked(list(~1, pdIdent(~FixCue-1), 

pdIdent(~Prosody-1)))), 
73.                

correlation=corCompSymm(form=~1|id),method="ML",data=jndlong,na.action 
= na.exclude) 

74.   
75. # only way to get Tukey for lme/RM ANOVA 
76. summary(glht(pselong.lme2, linfct=mcp(FxbyCue="Tukey")), test = 

adjusted(type = "fdr")) 
77. summary(glht(jndlong.lme2, linfct=mcp(FxbyCue="Tukey")), test = 

adjusted(type = "fdr")) 
78.   
79. # multiple comparisons with paired T (tukey is better, see above) 
80.   
81. # summary variables for reporting 
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82. sumpse <- summarySE(pselong, measurevar="PSE",  
83.   groupvars=c("FixCue","Prosody"),na.rm = TRUE) 
84. sumjnd <- summarySE(jndlong, measurevar="JND",  
85.   groupvars=c("FixCue","Prosody"),na.rm = TRUE) 
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APPENDIX D: LINEAR MIXED MODEL REACTION TIME R SCRIPT 

 

 

 

1. # code originally written by Dr. Donald C. Rojas, modified by Katherine 
M. Becker to perform linear mixed models on the reaction time data from 
the psychophysical data acquired on MTurks for her dissertation. 

2. library(readr) # csv reading 
3. #library(nlme) # mixed effects 
4. library(multcomp) # multiple comparisons 
5. library(tidyr) # reformatting from wide to long 
6. library(plyr) # for renaming variables 
7. library(dplyr) # easy subsetting 
8. library(reshape) # for wide to long 
9. library(lme4) # alternative to lme, but no significance testing - have 

to compare models 
10. library(ggplot2) # fancier plotting 
11. library(Rmisc) # some summary stuff - summarySE and multiplot 
12. library(ggsignif) # for indicating significance on ggplots 
13.   
14. # read csv file 
15. setwd('/Users/katherinebecker/Documents/Dissertation/PsychophysicalDat

a') 
16. dat <- 

read_csv("/Users/katherinebecker/Documents/Dissertation/PsychophysicalD
ata/RT_DataValues_R4.csv") 

17.   
18. # reformat data to long rather than wide, creating a rtlong dataset 

for reaction time values 
19. rt <- 

select(dat,id,age,gender,Hap.E.1:Hap.E.7,Hap.M.1:Hap.M.7,Ang.E.1:Ang.E.
7,Ang.M.1:Ang.M.7,Sil.E.1:Sil.E.7,Sil.M.1:Sil.M.7) 

20. rt <- as.data.frame(rt) 
21. rt$id <- factor(rt$id) 
22. rt$age <- factor(rt$age) 
23. rt$gender <- factor(rt$gender) 
24. rtlong <- rt %>% 
25.   gather(key, value, -id, -age, -gender) %>% 
26.   separate(key, into = c("Prosody","FixCue","Step"), sep="\\.") 
27. colnames(rtlong)[7] <- "ReactionTime" 
28. rtlong$Prosody<-revalue(rtlong$Prosody,c("Hap"="Happy")) 
29. rtlong$Prosody<-revalue(rtlong$Prosody,c("Ang"="Angry")) 
30. rtlong$Prosody<-revalue(rtlong$Prosody,c("Sil"="Silent")) 
31. rtlong$FixCue<-revalue(rtlong$FixCue,c("E"="Eyes")) 
32. rtlong$FixCue<-revalue(rtlong$FixCue,c("M"="Mouth")) 
33. rtlong$Step<-revalue(rtlong$Step,c("1"="Step1")) 
34. rtlong$Step<-revalue(rtlong$Step,c("2"="Step2")) 
35. rtlong$Step<-revalue(rtlong$Step,c("3"="Step3")) 
36. rtlong$Step<-revalue(rtlong$Step,c("4"="Step4")) 
37. rtlong$Step<-revalue(rtlong$Step,c("5"="Step5")) 
38. rtlong$Step<-revalue(rtlong$Step,c("6"="Step6")) 
39. rtlong$Step<-revalue(rtlong$Step,c("7"="Step7")) 
40.   
41.   
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42. # mixed effects - nlme package, anova call is for conventional anova 
table 

43. rtlong.lme1<-lme(ReactionTime~FixCue*Prosody*Step, 
44.               random=list(id=pdBlocked(list(~1, pdIdent(~Prosody-1), 

pdIdent(~FixCue-1)))), 
45.               

correlation=corCompSymm(form=~1|id),method="ML",data=rtlong,na.action = 
na.exclude) 

46.      summary(rtlong.lme1) 
47. anova(rtlong.lme1) 
48.   
49. # compute an interaction term manually for next steps 
50. rtlong$FxbyCuebyStep <- 

interaction(rtlong$FixCue,rtlong$Prosody,rtlong$Step) 
51.   
52. # next models are formatted better for multiple comparisons 
53. rtlong.lme2 <- lme(ReactionTime~FxbyCuebyStep, 
54.                random=list(id=pdBlocked(list(~1, pdIdent(~FixCue-1), 

pdIdent(~Prosody-1), pdIdent(~Step-1)))), 
55.                

correlation=corCompSymm(form=~1|id),method="ML",data=rtlong,na.action = 
na.exclude) 

56.   
57. # only way to get Tukey for lme/RM ANOVA 
58. summary(glht(rtlong.lme2, linfct=mcp(FxbyCuebyStep="Tukey")), test = 

adjusted(type = "fdr")) 
59.   
60. # summary variables for reporting 
61. sumrt <- summarySE(rtlong, measurevar="ReactionTime",  
62.   groupvars=c("FixCue","Prosody","Step"),na.rm = TRUE) 
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APPENDIX E: EEG PREPROCESSING MATLAB SCRIPT 

 

 

 

1. % eeglab script to preprocess prosody dataset 
2. % Based on a script written by Dr. Donald C. Rojas 

3. % Written by Katherine M. Becker 

4.  

5. clear; 
6.   

7. addpath('/Users/katherinebecker/Documents/MATLAB/structfind'); % need function 

8. addpath('/Users/katherinebecker/Documents/MATLAB/insertrows'); % need function 

9. addpath('/Users/katherinebecker/Documents/MATLAB/eeglab13_6_5b'); 

10. cd 
'/Users/katherinebecker/Documents/MATLAB/eeglab13_6_5b/EEG_OrigFiles_Check_lp'

; % main directory 

11. cwd = pwd; 

12.   

13. art_thresh = 75; % +/- amplitude (mV) for trial rejection 
14. passband = [0.1 35]; % band pass filter cutoffs (Hz) 

15. notch = 60; % notch filter 

16. twin = [-0.2 1.5]; % trial window (s) 

17. script_report = 'script_report_preproc_final.txt'; 

18. master = load('masterFile_type_EEG_FILE.txt');   
19.   

20. % output directory 

21. outpath = fullfile(cwd,'averages'); 

22.   
23. % open a file for reporting 

24. fp = fopen(fullfile(outpath,script_report),'a'); 

25. fprintf(fp,'File\tBad-Chans\tICA-

rej\tdup_count\tduplicate_ind\tmissing_missingtrials\tmissingtrial_conditions\

tBad-Trials\tTotal-Trials\n'); 
26.   

27. % run eeglab first to set path, then close 

28. eeglab; 

29. close gcf; 

30.   
31. % find EEGLAB path for files 

32. [pth,~,~] = fileparts(which('eeglab')); 

33. ten_five_positions = 'plugins/dipfit2.3/standard_BESA/standard-10-5-

cap385.elp'; 
34. eeg_path = fullfile(pth,ten_five_positions); 

35.   

36. % list of files to be processed 

37. subFiles = dir('0*_AD_Cz.set'); 

38.   
39. for nsub=1:length(subFiles) 

40.       file = subFiles(nsub).name; 

41.       path = char({subFiles(nsub).folder}); 

42.   

43.       EEG = pop_loadset('filename',file,'filepath',cwd); 
44.       [~,nam,ext] = fileparts(file); 
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45.       fprintf(fp,'%s\t',nam); 

46.   
47.        % events to average separately 

48.        events = {EEG.event.type}; 

49.        events = string(events); 

50.        unique_events = unique(events); 

51.        counts = zeros(1,length(unique_events)); 
52.        for ii=1:length(unique_events) 

53.            counts(ii) = length(find(ismember(events,unique_events{ii}))); 

54.        end 

55.        [Y,I]=sort(counts); 
56.   

57.        % Set chanloc.type labels 

58.        EEG=pop_chanedit(EEG, 'settype',{'1:37 40:41' 'EEG'}); 

59.        EEG=pop_chanedit(EEG, 'settype',{'38:39' 'POL'}); 

60.   
61.        % find all the EEG type electrodes 

62.         allind = find(ismember({EEG.chanlocs.type},'EEG')); 

63.   

64.        % put channel positions in file from standard locations 

65.        EEG = pop_chanedit(EEG, 'lookup',eeg_path); 
66.   

67.        % find bad channels based on 3 * SD of max/min rms amplitude         

68.        EEG = pop_rmbase(EEG,[],[]); 

69.        rmsdata = sqrt(EEG.data(allind,:).^2); 
70.        averms  = mean(rmsdata,2); 

71.        grandaverms = mean(averms); 

72.        stdrms = std(averms); 

73.        max_ind = find(averms > grandaverms + (3*stdrms)); 

74.        min_ind = find(averms < grandaverms - (3*stdrms)); 
75.        badch_ind = unique([max_ind;min_ind]); 

76.   

77.        % interpolate bad channels 

78.        if ~isempty(badch_ind) 

79.            if find(ismember({EEG.chanlocs(badch_ind).labels},'VEOG')); 
80.                % remove instead of interpolate in this case 

81.                vind = find(ismember({EEG.chanlocs.labels},'HEOG')); 

82.                EEG.data(vind,:)=[]; 

83.                EEG.chanlocs(vind)=[]; 
84.            else 

85.                EEG = pop_interp(EEG,badch_ind,'spherical'); 

86.            end 

87.            for chn = 1:length(badch_ind) 

88.                if chn == length(badch_ind) 
89.                    fprintf(fp,'%s',EEG.chanlocs(badch_ind(chn)).labels); 

90.                else 

91.                    fprintf(fp,'%s,',EEG.chanlocs(badch_ind(chn)).labels); 

92.                end 

93.            end 
94.        end 

95.   

96.        % run ica 

97.        EEG = pop_runica(EEG,'icatype','runica','chanind',allind); 

98.    
99.        % compare and remove top EOG components 
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100.        if isempty(find(ismember({EEG.chanlocs.labels},'HEOG'))); 

101.            heog_ind = []; 
102.        else 

103.            heog_ind = find(ismember({EEG.chanlocs.labels},'HEOG')); 

104.        end 

105.        heog = EEG.data(heog_ind,:); 

106.        icdata = eeg_getdatact(EEG); 
107.        icdata = (EEG.icaweights*EEG.icasphere)*icdata(EEG.icachansind,:); 

108.        for ii=1:size(icdata,1) 

109.            [tmp,~] = corrcoef(heog,icdata(ii,:)); 

110.            r(ii) = tmp(2); 
111.        end 

112.        [~,comp_ind1] = sort(abs(r),'descend'); 

113.        top_comp1 = comp_ind1(1); % need top component out of ordered 

components based on corrcoeff val 

114.         
115.        % now VEOG 

116.        if isempty(find(ismember({EEG.chanlocs.labels},'VEOG'))); 

117.            veog_ind = []; 

118.        else 

119.            veog_ind = find(ismember({EEG.chanlocs.labels},'VEOG')); 
120.        end 

121.        veog = EEG.data(veog_ind,:); 

122.        icdata = eeg_getdatact(EEG); 

123.        icdata = (EEG.icaweights*EEG.icasphere)*icdata(EEG.icachansind,:); 
124.        for ii=1:size(icdata,1) 

125.            [tmp,~] = corrcoef(veog,icdata(ii,:)); 

126.            rr(ii) = tmp(2); 

127.        end 

128.        [~,comp_ind2] = sort(abs(rr),'descend'); 
129.        top_comp2 = comp_ind2(1); 

130.        

131.        % subtract top components 

132.        ic_eye = [top_comp1 top_comp2]; 

133.        clear icdata veog* r; 
134.         

135.        % plot and save before subtracting 

136.        M = [EEG.icawinv]; 

137.        [~,col] = size(M); 
138.      

139.        % view components 

140.        pop_topoplot(EEG,0, [1:col] ,'CNT file pruned with ICA pruned with 

ICA epochs',[6 7] ,0,'electrodes','on'); 

141.       % savefig([nam '_ica_topoplots_pre.fig']); 
142.        

143.        % report ica result 

144.        fprintf(fp,'\t%d', ic_eye); 

145.         

146.        % remove top eye component 
147.        EEG = pop_subcomp(EEG,ic_eye,0);              

148.   

149.        % re-reference 

150.        eog_ind = [find(ismember({EEG.chanlocs.labels},'HEOG')) 

find(ismember({EEG.chanlocs.labels},'VEOG'))]; 
151.        EEG = pop_reref(EEG, [],'exclude',eog_ind); % average is default 
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152.       

153.        % custom notch filter out 60 Hz, avoiding potential bug in eegfilt 
with narrow passbands 

154.        fn      = EEG.srate/2; % Niquist 

155.        fR      = notch/fn; % ratio of notch to Niquist 

156.        nW      = .1 * 6; % 6th order width 

157.        n0      = [exp(sqrt(-1)*pi*fR), exp(-sqrt(-1)*pi*fR)]; 
158.        poles   = (1-nW)*n0; 

159.        B       = double(poly(n0)); 

160.        A       = double(poly(poles)); 

161.        data    = EEG.data; 
162.        for chn = 1:EEG.nbchan 

163.            % non-causal filter 

164.            data(chn,:) = filtfilt(B, A, double(data(chn,:))); 

165.        end 

166.        EEG.data = data; 
167.        clear data; 

168.   

169.        % band pass filter EEG 

170.        EEG = pop_eegfilt(EEG, passband(1), passband(2), ... 

171.             [24], [0], 0, 0, 'fir1', 0); 
172.         

173.        % remove last row for subject025 

174.        subject = nam(1:end-14); 

175.        subname = str2num(subject); 
176.        if subname == 25 

177.            [~,col] = size([EEG.event.type]); 

178.            EEG.event(col) = []; 

179.        end 

180.   
181.        % remove duplicates 

182.        [EEG,duplicate_count,duplicate_idx] = rm_duplicates(EEG); 

183.        fprintf(fp,'\t%d',duplicate_count); 

184.        fprintf(fp,'\t%d',duplicate_idx); 

185.          
186.        % extract epochs 

187.        EEG = pop_epoch(EEG,{'16'  '32'  '48'  '128'  '144'  '160'  '240'}, 

twin); 

188.        EEG = pop_saveset(EEG,'filename',[nam '_dup.set']); 
189.    

190.        % remove baseline 

191.        EEG = pop_rmbase( EEG, [-200    0]); 

192.   

193.        % check if first three trials are 160 and remove 
194.        [yn_row_answer] = check_first_type_three_for_160(EEG); 

195.        if yn_row_answer == 1 

196.            [EEG,missingtri_ind,missingtri_con,~] =        

find_rm_missingtrials_160_final2(EEG,nam); 

197.            fprintf(fp,'\t%d',missingtri_ind); 
198.            fprintf(fp,'\t%d',missingtri_con); 

199.        else  

200.        %    [EEG] = check_first_type_miss_160(EEG,nam); 

201.            [EEG,missingtri_ind,missingtri_con,~] = 

find_rm_missingtrials_final2(EEG,nam); 
202.            fprintf(fp,'\t%d',missingtri_ind); 
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203.            fprintf(fp,'\t%d',missingtri_con); 

204.        end 
205.   

206.        % trim out bad trials exceeding +/- 75 uV and average surrounding 

trials to restore bad trial 

207.        [~,badtri] = pop_eegthresh(EEG,1,allind,-art_thresh,art_thresh,-

0.2,1.499,0,1); % stops bad trials from being removed 
208.        fprintf(fp,'\t%d',badtri); 

209.        [EEG] = average_badtrials_final(EEG,badtri); 

210.          

211.        % total trials 
212.        ttrials = [EEG.event.type]; 

213.        fprintf(fp,'\t%d\n',length(ttrials)); 

214.   

215.        % relabel EEG.event.urevent and remove EOG electrodes 

216.        [EEG] = relabel_eeg2(EEG); 
217.        [EEG] = rm_eog2(EEG); 

218.        EEG = pop_saveset(EEG,'filename',[nam '_preprocessed.set']); 

219. end 

220. fclose(fp); 
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APPENDIX F: EEG COMPONENT CORRELATION MATLAB SCRIPT 

 

 

 

1. % Graphs showing correlations between each component and each 
experimental 

2. % element (emotion or stimulus type) 
3. % Written by Katherine M. Becker 
4.   
5. load('PROSODY_FINAL_mean_component_ica_s_all_.mat'); 
6. corrvectors=load('component_correlation_vectors.mat'); 
7. % rearrange order of fieldnames 
8. corrvectors=struct('AN',corrvectors.AN,'HA',corrvectors.HA,'NU',corrvec

tors.NU,'FACE',corrvectors.FACE,'FV',corrvectors.FV,'VO',corrvectors.VO
); 

9. fnames=fieldnames(corrvectors); 
10. npoints=1700; 
11.   
12. for c=1:37 
13.     for vec=1:length(fnames) 
14.         onsets=1:1700:length(timecourse); 
15.         comp1=timecourse(c,:); 
16.         for ii=1:length(onsets) 
17.             trials(ii,:)=comp1(onsets(ii):onsets(ii)+npoints-1); 
18.         end 
19.   
20.         r=zeros(1,npoints); 
21.         for ii=1:npoints 
22.             

[tmpr,tmpp]=corrcoef(trials(:,ii),corrvectors.(fnames{vec})); 
23.             r(ii)=tmpr(2); 
24.             p(ii)=tmpp(2); 
25.         end 
26.         if vec==1 
27.            r1=r; 
28.         end 
29.         if vec==2 
30.            r2=r; 
31.         end 
32.         if vec==3 
33.            r3=r; 
34.         end 
35.         if vec==4 
36.            r4=r; 
37.         end 
38.         if vec==5 
39.            r5=r; 
40.         end 
41.         if vec==6 
42.            r6=r; 
43.         end 
44.   
45.         % FDR correction 
46.         [FDR,~,~,~]=mafdr(p,'Method','polynomial'); 
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47.         if vec==1 
48.             FDR1=FDR; 
49.         end 
50.         if vec==2 
51.             FDR2=FDR; 
52.         end 
53.         if vec==3 
54.             FDR3=FDR; 
55.         end 
56.         if vec==4 
57.             FDR4=FDR; 
58.         end 
59.         if vec==5 
60.             FDR5=FDR; 
61.         end 
62.         if vec==6 
63.             FDR6=FDR; 
64.         end 
65.         
66.         % plot the results accross all subcomponents 
67.         % level for color/style change 
68.         lev=0.05; 
69.         % points below level, find where p < .05 to highlight areas on 

plots, use FDR 
70.         aboveline=(FDR<=.05); 
71.         % create two copies of y 
72.         bottomline=r; 
73.         topline=r; 
74.         % set unwanted values to get drawn to nan 
75.         bottomline(aboveline)=NaN; 
76.         topline(~aboveline)=NaN; 
77.         

plot1=plot(1:npoints,bottomline,'k',1:npoints,topline,'r:','LineWidth',
1,'MarkerSize',4); 

78.         xlim([0 1700]); 
79.         saveas(gcf,[num2str(c) '_all_corr.png']); 
80.     end 
81.   
82.         % Emotion components 
83.         % points below level 
84.         aboveline1=(FDR1<=.05); 
85.         aboveline2=(FDR2<=.05); 
86.         aboveline3=(FDR3<=.05); 
87.         % create two copies of y 
88.         bottomline1=r1; 
89.         topline1=r1; 
90.         bottomline2=r2; 
91.         topline2=r2; 
92.         bottomline3=r3; 
93.         topline3=r3; 
94.         % set unwanted values to get drawn to nan 
95.         bottomline1(aboveline1)=NaN; 
96.         topline1(~aboveline1)=NaN; 
97.         bottomline2(aboveline2)=NaN; 
98.         topline2(~aboveline2)=NaN; 
99.         bottomline3(aboveline3)=NaN; 
100.         topline3(~aboveline3)=NaN; 
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101.         
plot1=plot(1:npoints,bottomline1,1:npoints,topline1,'*',1:npoints,botto
mline2,1:npoints,topline2,'*',1:npoints,bottomline3,1:npoints,topline3,
'*','LineWidth',2,'MarkerSize',4); 

102.         set(plot1(1),'DisplayName','Anger','LineWidth',1,... 
103.             'Color',[0.980392156862745 0.027450980392157 

0.027450980392157]); 
104.         

set(plot1(2),'DisplayName','','Marker','*','LineWidth',2,'LineStyle','n
one',... 

105.             'Color',[0.980392156862745 0.027450980392157 
0.027450980392157]); 

106.         set(plot1(3),'DisplayName','Happy','LineWidth',1,... 
107.             'Color',[0.780392156862745 0.780392156862745 

0.780392156862745]); 
108.         

set(plot1(4),'DisplayName','','Marker','*','LineWidth',2,'LineStyle','n
one',... 

109.             'Color',[0.780392156862745 0.780392156862745 
0.780392156862745]); 

110.         set(plot1(5),'DisplayName','Neutral','LineWidth',1,... 
111.             'Color',[0.286274509803922 0.819607843137255 

0.741176470588235]); 
112.         

set(plot1(6),'DisplayName','','Marker','*','LineWidth',2,'LineStyle','n
one',... 

113.             'Color',[0.250980392156863 0.811764705882353 
0.670588235294118]); 

114.         legend1=legend; 
115.         set(legend1,'Location','northeast'); 
116.         xlim([0 1700]); 
117.         saveas(gcf,[num2str(c) '_emo_corr.fig']); 
118.   
119.         % Condition Components 
120.         % points below level 
121.         aboveline4=(FDR4<=.05); 
122.         aboveline5=(FDR5<=.05); 
123.         aboveline6=(FDR6<=.05); 
124.         % create two copies of y 
125.         bottomline4=r4; 
126.         topline4=r4; 
127.         bottomline5=r5; 
128.         topline5=r5; 
129.         bottomline6=r6; 
130.         topline6=r6; 
131.         % set unwanted values to get drawn to nan 
132.         bottomline4(aboveline4)=NaN; 
133.         topline4(~aboveline4)=NaN; 
134.         bottomline5(aboveline5)=NaN; 
135.         topline5(~aboveline5)=NaN; 
136.         bottomline6(aboveline6)=NaN; 
137.         topline6(~aboveline6)=NaN; 
138.         

plot1=plot(1:npoints,bottomline4,1:npoints,topline4,'r*',1:npoints,bott
omline5,1:npoints,topline5,'b*',1:npoints,bottomline6,1:npoints,topline
6,'k*','LineWidth',1,'MarkerSize',4); 

139.         set(plot1(1),'DisplayName','Face Only',... 
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140.             'Color',[0.603921568627451 0.92156862745098 
0.470588235294118]); 

141.         
set(plot1(2),'DisplayName','','Marker','*','LineStyle','none',... 

142.             'Color',[0.603921568627451 0.92156862745098 
0.470588235294118]); 

143.         set(plot1(3),'DisplayName','Face+Voice',... 
144.             'Color',[0.929411764705882 0.196078431372549 

0.490196078431373]); 
145.         

set(plot1(4),'DisplayName','','Marker','*','LineStyle','none',... 
146.             'Color',[0.909803921568627 0.101960784313725 

0.505882352941176]); 
147.         set(plot1(5),'DisplayName','Voice Only',... 
148.             'Color',[0.690196078431373 0.690196078431373 

0.690196078431373]); 
149.         

set(plot1(6),'DisplayName','','Marker','*','LineStyle','none',... 
150.             'Color',[0.690196078431373 0.690196078431373 

0.690196078431373]); 
151.         legend1=legend; 
152.         set(legend1,'Location','northeast'); 
153.         xlim([0 1700]); 
154.         saveas(gcf,[num2str(c) '_cond_corr.fig']); 
155. end 
156.   
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APPENDIX G: EEG COMPONENT COMPARISON TO BASELINE MATLAB 

SCRIPT 

 

 

 

1. % compare component time-course to baseline for top 26 significant 
components 

2. cd '/Users/katherinebecker/Documents/MATLAB' 
3. addpath '/Users/katherinebecker/Documents/MATLAB/bonf_holm' 
4. load('PROSODY_FINAL_mean_component_ica_s_all_.mat'); 
5.   
6. % make new component matrix 
7. M = reshape(timecourse,[37,1700,944]); 
8. A = mean(M,3); 
9. top_comps = [1 5 6 7 8 9 10 12 13 15 16 18 19 20 21 22 23 25 27 28 29 

30 31 35 36 37]; 
10. A = A(top_comps,:); % select comps with sig corr  
11. Pvals = zeros(1,1500); 
12. sigtime_list = zeros(26,450); 
13. FW_alpha = 0.01; 
14.   
15. for c = 1 
16.     baseline = A(c,1:200); 
17.     active = A(c,201:1700); 
18.     for time = 1:1500 
19.         [~,p,~,~] = ttest2(baseline,active(time),'Alpha',.001); 
20.         Pvals(1,time) = p; 
21.     end 
22.     [BON,~] = bonf_holm(Pvals,(FW_alpha/length(active))); 
23.     % points below level, find where p < .01 to highlight areas on 

plots, 
24.     % use Bonferroni 
25.     aboveline = (BON <= (FW_alpha/length(active))); 
26.     % create two copies of y 
27.     bottomline = A(c,201:1700); 
28.     topline = A(c,201:1700); 
29.     % set unwanted values to get drawn to nan 
30.     bottomline(aboveline) = NaN; 
31.     topline(~aboveline) = NaN; 
32.     figure 
33.     plot(1:1500,topline,'r:','LineWidth',4,'MarkerSize',4); 
34.     hold on 
35.     plot(1:1500,bottomline,'k','LineWidth',1,'MarkerSize',4) 
36.     xlim([0 1500]); 
37.     saveas(gcf,[num2str(top_comps(c)) '_compare2baseline.png']); 
38.     BON_sub = BON(101:600);         
39.     X = find(BON_sub <= (FW_alpha/length(active))); 
40.     ind = X+101; 
41.     sigtime_list(c,1:length(X)) = ind; 
42.     miss_ind = setxor(ind,101:600); % if you want to see which ind are 

missing 
43. end 
44.   
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45. % find final list of all significant components w/ activity btwn 151-
600 ms 

46. sigtime_comps = [top_comps' sigtime_list]; 
47. nonsig_list = zeros(25,1); 
48. for s = 1:length(top_comps) 
49.     if isempty(find(sigtime_list(s,2:end)>0) == 0) == 1 
50.        nonsig_list(s,:) = s 
51.     end 
52. end 
53. nonsig_list(nonsig_list==0) = []; 
54. sigtime_comps(nonsig_list,:) = []; 
55. sigtimes_comp_list = sigtime_comps(:,1); 
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APPENDIX H: MEG PREPROCESSING MATLAB SCRIPT 

 

 

 

1. % clean data and do fft analysis in sensor space on EMOP MEG data 
2. % Used in FieldTrip version: 20171231.zip 
3. % Originally written by Dr. Donald C. Rojas, PhD 
4. % Adapted by Katherine M. Becker 
5.   
6. clear all; 
7.   
8. % default settings to edit 
9. ft_defaults; 
10. chans_all_selection = {'all', '-A139', '-A156',... 
11.     '-A141', '-A195', '-A229'}; % chans deleted 
12. ampthresh = 3; % threshold in +/- SD for bad channels - was 2 
13. nbadchanthresh = 25; 
14. singletrialthresh =  3000/1e15; % +/- artifact threshold in fT 
15. bpcutoffs = [0.1 80]; % band pass filter 
16. interactive = 0; 
17. layoutfile = '4D248.lay'; 
18. datafile = 'c,rfhp0.1Hz,clean'; 
19. qa_suffix = 'qa.jpg'; 
20. [ftver,ftdir] = ft_version; 
21. fttemplatedir = fullfile(ftdir,'template'); 
22. subsinfile = 0; 
23.   
24. ftdir = '/Users/katherinebecker/Documents/MATLAB/fieldtrip-master'; 
25.   
26. % select directories 
27. cwd             = spm_select(1,'dir','Select root directory for 

studies',... 
28.                   '',pwd);            
29. cd(cwd); 
30. if ~subsinfile 
31.     pth_subjdirs    = spm_select([1,Inf],'dir',... 
32.         'Select subject directories to process','',pwd); 
33. else % select subjects from a file 
34.     pthfile = spm_select(1,'mat','Select a subjects file to process'); 
35.     load(pthfile); 
36. end 
37. nsub = size(pth_subjdirs,1); 
38. fprintf('The following %d subject(s) will be examined:\n',nsub); 
39. disp(pth_subjdirs); 
40. save(fullfile(cwd,['emop_meg_EMOP_preproc_script_' date 

'.mat']),'pth_subjdirs','ftver'); 
41.   
42. % load artifact weight file for spatial correlation of ica components 
43. load(fullfile(cwd,'megtools-master/templates/artweights.mat')); % in 

megtools 
44.   
45. % load channel neighbors from file 
46. load(fullfile(ftdir,'template/neighbours','bti248grad_neighb.mat')); 
47.   
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48. % main loop 
49. for sub=1:nsub 
50.     % change working directory 
51.     cd(strtrim(pth_subjdirs(sub,1:end))); 
52.     [~, nam, ~] = fileparts(pwd); 
53.     outfile = [nam '_ft.mat']; 
54.     list=dir('**/*.*'); 
55.     cd(list(10).folder); 
56.      
57.     % get subject id from path 
58.     tmp            = deblank(pth_subjdirs(sub,:)); 
59.     [~, meg_id, ~] = fileparts(tmp); 
60.     fprintf('\nWorking on %s\n', meg_id); 
61.                  
62.     % read continuous data for bad channel identification 
63.     cfg = []; 
64.     cfg.channel = chans_all_selection; 
65.     cfg.continuous = 'yes'; 
66.     cfg.demean = 'yes'; 
67.     cfg.bpfilter = 'yes'; 
68.     cfg.bpfreq = bpcutoffs; 
69.     cfg.bporder = 4; 
70.     cfg.dataset = datafile; 
71.     cfg.dftfreq = [60 120 180]; 
72.     cfg.trialdef.prestim = .25; 
73.     cfg.trialdef.poststim  = 1; 
74.     cfg.trialdef.eventtype = 'TRIGGER'; 
75.     cfg.trialdef.eventvalue = [2 4 6 8]; 
76.     cfg = ft_definetrial(cfg); 
77.     trl = cfg.trl; % use later 
78.     % preprocessing 
79.     ft_bad = ft_preprocessing(cfg); 
80.      
81.     % identify bad channels 
82.     cfg = []; 
83. %    cfg.toilim = [.25 1]; 
84.     cfg.offset = .034; 
85.     ft_bad  = ft_redefinetrial(cfg, ft_bad); 
86.      
87.     badfft = findbadfft(ft_bad,neighbours); 
88.     cfg = []; 
89.     cfg.channel = ['all';badfft]; 
90.     ft_bad = ft_preprocessing(cfg,ft_bad); 
91.     badamp = findbadamp(ft_bad,ampthresh); 
92.     cfg.channel = ['all';badamp]; 
93.     cfg.dftfreq = [60,120,180]; % added 
94.     ft_bad = ft_preprocessing(cfg,ft_bad); 
95.     badchans = sort([badfft;badamp]); 
96.     fprintf('%d bad channels:\n',length(badchans)); 
97.     for ii=1:length(badchans) 
98.         fprintf('%s\t',char(badchans{ii})); 
99.     end 
100.     fprintf('\n'); 
101.     goodmeg = find(ft_chantype(ft_bad.label,'meg')); 
102.     goodchans = ft_bad.label(goodmeg); 
103.     if length(badchans) > nbadchanthresh 
104.         fp = fopen(['Error_' meg_id '.txt'],'w'); 
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105.         fprintf(fp,'Possibly too many bad channels!'); 
106.         fclose(fp); 
107.         save(outfile,'ft_bad','goodchans','badchans'); 
108.         continue; % skip to next subject 
109.     end 
110.      
111.     % order weights appropriately for correlation in case channels are 
112.     % ordered differently from subject to subject from the artifact 

template 
113.     megindeleted = find(ft_chantype(ft_bad.label,'meg')); 
114.     labelsindeleted = ft_bad.label(megindeleted); 
115.     wasdeleted = []; 
116.     for ii=1:length(meglabels) 
117.         tmp = find(ismember(labelsindeleted,meglabels{ii})); 
118.         if isempty(tmp) 
119.             wasdeleted = [wasdeleted ii]; 
120.         end 
121.     end 
122.     nW = W; 
123.     nW(:,wasdeleted) = []; 
124.      
125.     % define 1.25-sec trials in continuous data for jump artifacts 
126.     cfg = []; 
127.     cfg.channel = chans_all_selection; 
128.     cfg.dataset = datafile; 
129.     cfg.trialdef.prestim = .25; 
130.     cfg.trialdef.poststim  = 1; 
131.     cfg.trialdef.eventtype = 'TRIGGER'; 
132.     cfg.trialdef.eventvalue = [2 4 6 8]; 
133.     cfg = ft_definetrial(cfg); 
134.   
135.     % reject jump trials 
136.     cfg.artfctdef.channel = goodchans; % use good chans for artifact 

detection 
137.     cfg.artfctdef.reject = 'complete'; 
138.     [cfg,ar] = ft_artifact_jump(cfg); 
139.     cfg = ft_rejectartifact(cfg); 
140.   
141.     % read data and filter without artifact trials 
142.     cfg.demean = 'yes'; 
143.     cfg.bpfilter = 'yes'; 
144.     cfg.bpfreq = bpcutoffs; 
145.     cfg.bpfiltord = 4; 
146.     cfg.channel = [goodchans; 'EKG']; 
147.     ft_orig  = ft_preprocessing(cfg); 
148.   
149.     % view data 
150.     if interactive 
151.         cfg = []; 
152.         cfg.continuous = 'no'; 
153.         cfg.channel = 'MEG'; 
154.         cfg.viewmode = 'vertical'; 
155.         ft_databrowser(cfg,ft_orig); 
156.     end 
157.   
158.     % for convenient correlations after ica, concatenate trials into 

continuous single trial 
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159.     trial = []; 
160.     time = []; 
161.     for ii=1:length(ft_orig.trial) 
162.         trialtmp = ft_orig.trial{ii}; 
163.         timetmp = ft_orig.time{ii}; 
164.         trial = [trial trialtmp]; 
165.         time = [time timetmp]; 
166.     end 
167.     ft_tmp = ft_orig; 
168.     ft_tmp.trial = {trial}; 
169.     ft_tmp.time = {time}; 
170.   
171.     % downsample for ica 
172.     cfg = []; 
173.     cfg.resamplefs = 150; 
174.     cfg.detrend    = 'no'; 
175.     ft_ds          = ft_resampledata(cfg, ft_tmp); 
176.   
177.     % do ica 
178.     cfg = []; 
179.     cfg.method = 'runica'; 
180.     cfg.channel = 'MEG'; 
181.     cfg.runica.pca = 50; 
182.     comp = ft_componentanalysis(cfg,ft_ds); 
183.      
184.     % identify eye artifact components by temporal correlation, using 

rms of sensitive channels  
185.     % for eog signal to correlate with components 
186.     clear r p; 
187.     heog_ind = 

find(ismember(ft_ds.label,{'A176','A228','A177','A123','A89','A90'})); 
188.     heog = sqrt(mean(ft_ds.trial{1}(heog_ind,:).^2)); 
189.     heog_ic = []; 
190.     for ii=1:size(comp.label,1) 
191.         rmscomp = sqrt(comp.trial{1}(ii,:).^2); 
192.         [tmpr,tmpp] = corrcoef(heog,rmscomp); 
193.         r(ii) = tmpr(2); 
194.         p(ii) = tmpp(2); 
195.         heog_ic = [heog_ic find(r > .35)]; 
196.     end 
197.     heog_ic = unique(heog_ic); 
198.   
199.     % find the ekg indices, if ekg channel exists, by correlation with 

EKG 
200.     % channel 
201.     ekg_ind = find(ismember(ft_tmp.label,'EKG')); 
202.     if ~isempty(ekg_ind) 
203.         ekg = ft_ds.trial{1}(ekg_ind,:); 
204.         for ii=1:size(comp.label,1) 
205.             rmscomp = comp.trial{1}(ii,:); 
206.             [tmpr,tmpp] = corrcoef(ekg,rmscomp); 
207.             r(ii) = tmpr(2); 
208.             p(ii) = tmpp(2); 
209.         end 
210.     end 
211.     ekg_ic = find(r > .35); 
212.      
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213.     % idenfity artifacts based on topographic, or spatial correlation 
214.     topo_ic = []; 
215.     max_corr = []; 
216.     min_pval = []; 
217.     for ii=1:size(nW,1) 
218.         topo = nW(ii,:); % topo = topo - mean(topo); 
219.         for jj=1:length(comp.label) 
220.             normcomp = comp.topo(:,jj)'; % normalize component 

amplitudes 
221.             maxc=max(normcomp); 
222.             minc=min(normcomp); 
223.             normcomp = (normcomp - minc).*((1- -1)/(maxc - minc)) - 

1.0; 
224.             [tmpr,tmpp] = corrcoef(topo,normcomp); 
225.             r(ii,jj) = tmpr(2); 
226.             p(ii,jj) = tmpp(2); 
227.         end 
228.         [val,ind] = max(abs(r(ii,:))); 
229.         topo_ic = [topo_ic ind]; 
230.         max_corr = [max_corr val]; 
231.         pval = p(ii,ind); 
232.         min_pval = [min_pval pval]; 
233.     end 
234.     topo_ic = unique(topo_ic); 
235.     max_corr = unique(max_corr); 
236.     badtopo = find(min_pval>1e3); % components that aren't good enough 

to use by p-val 
237.     badtopo = [badtopo find(max_corr<.5)]; % components that aren't 

good enough to use by correlation 
238.     topo_ic = setxor(badtopo,topo_ic); 
239.      
240.     % plot ica noise components 
241.     ic_to_remove = unique([heog_ic ekg_ic topo_ic]); 
242.     if ~isempty(ic_to_remove) 
243.         h = figure('color','w'); 
244.         pos = get(h,'position'); 
245.         set(h,'position',[pos(1) pos(2) 768 768]); 
246.         cfg           = []; 
247.         cfg.component = ic_to_remove;        
248.         cfg.layout    = layoutfile; 
249.         cfg.comment   = 'no'; 
250.         cfg.marker = 'on'; 
251.         ft_topoplotIC(cfg, comp); 
252.         print(h, '-djpeg', [meg_id '_ica_' qa_suffix]); close(h); 
253.     end 
254.   
255.     % remove eye and ekg artifacts, if present 
256.     if ~isempty(ic_to_remove) 
257.         % decompose the original data as it was prior to downsampling 

to 150Hz 
258.         cfg           = []; 
259.         cfg.unmixing  = comp.unmixing; 
260.         cfg.topolabel = comp.topolabel; 
261.         comp_orig     = ft_componentanalysis(cfg, ft_tmp); 
262.   
263.         % the original data can now be reconstructed, excluding those 

components 
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264.         cfg           = []; 
265.         cfg.component = ic_to_remove; 
266.         ft_clean      = ft_rejectcomponent(cfg, comp_orig,ft_tmp); 
267.     else 
268.         ft_clean      = ft_tmp; 
269.     end 
270.   
271.     % reform 1.25-sec trials with 0.0 s overlap from clean data 
272.     cfg = []; 
273.     cfg.length = 1.25; % 2 
274.     cfg.overlap = 0.0; % 0.5 
275. %    cfg.trl = ft_orig.cfg.trl; 
276.     ft_clean = ft_redefinetrial(cfg,ft_clean); 
277.   
278.     % one more pass to threshold remaining artifact trials 
279.     cfg = []; 
280. %    cfg.trl = [ft_clean.sampleinfo 

zeros(length(ft_clean.sampleinfo),1)]; % could I just change this to 
trials - Do I want zeros? 

281.     cfg.trl = [ft_clean.sampleinfo ft_orig.cfg.trl(:,3:4)]; 
282.     cfg.continuous = 'no'; 
283.     cfg.artfctdef.threshold.channel = 'MEG'; 
284.     cfg.artfctdef.threshold.max = singletrialthresh; 
285.     cfg.artfctdef.threshold.min = -singletrialthresh; 
286.     cfg.artfctdef.reject = 'complete'; 
287.     [cfg, artifacts] = ft_artifact_threshold(cfg,ft_clean); 
288.     ft_clean.trialinfo = [cfg.trl zeros(size(cfg.trl,1),1)]; 
289.     try 
290.         ft_clean = ft_rejectartifact(cfg,ft_clean); 
291.     catch 
292.         fp = fopen(['Error_' meg_id '.txt'],'w'); 
293.         fprintf(fp,'Possibly no good trials left after artifact 

rejection!'); 
294.         fclose(fp); 
295.         

save(outfile,'ft_clean','comp','heog_ic','ekg_ic','topo_ic','goodchans'
,'badchans'); 

296.         clear r p ekg_ic heog_ic ic_to_remove; 
297.         continue; % skip to next subject 
298.     end 
299.     ntrials = length(ft_clean.trial); 
300.     if ntrials < 100 
301.         fp = fopen(['Error_' meg_id '.txt'],'w'); 
302.         fprintf(fp,'Only %d good trials left after artifact 

rejection!',ntrials); 
303.         fclose(fp); 
304.         

save(outfile,'ft_clean','comp','heog_ic','ekg_ic','topo_ic','ic_to_remo
ve','goodchans','badchans'); 

305.         clear r p ekg_ic heog_ic ic_to_remove; 
306.         continue; % skip to next subject 
307.     end 
308.      
309.     % plot headshape and COH result 
310.     sens = ft_clean.grad; 
311.     sens = rmfield(sens,'balance'); % this field causes problems with 

ft_sens_plot 
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312.     hs = ft_read_headshape('hs_file'); 
313.     h = figure('color','w'); 
314.     subplot(2,2,1); 
315.     ft_plot_headshape(hs); hold on; 
316.     ft_plot_sens(sens,'chantype','meg'); view(0,0); % left 
317.     subplot(2,2,2); 
318.     ft_plot_headshape(hs); hold on; 
319.     ft_plot_sens(sens,'chantype','meg'); view(180,0); % right 
320.     subplot(2,2,3); 
321.     ft_plot_headshape(hs); hold on; 
322.     ft_plot_sens(sens,'chantype','meg'); view(0,90); % top 
323.     subplot(2,2,4); 
324.     ft_plot_headshape(hs); hold on; 
325.     ft_plot_sens(sens,'chantype','meg'); view(45,0); % right 
326.     print(h, '-djpeg', [meg_id '_coh_' qa_suffix]); 
327.     close(h); 
328.   
329.     % save results 
330. save(outfile,'ft_clean','comp','heog_ic','ekg_ic','goodchans','badchan

s'); % need to change trials 
331.      
332.     % clean up a bit before next dataset 
333.     clear r p ekg_ic heog_ic ic_to_remove data comp ft_orig ft_clean 

ft_bad; 
334.      
335. end % end main loop 
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APPENDIX I: MEG SPECTRAL PROCESSING MATLAB SCRIPT 

 

 

 

1. % script frequency analysis across emotion MEG dataset 
2. % Used with FieldTrip Version: 20171231.zip 
3. % Originally written by Dr. Donald C. Rojas, PhD 
4. % Modified by Katherine M. Becker 
5.   
6. % clear workspace 
7. clear; 
8.   
9. % default settings 
10. ft_defaults; 
11. megsuffix   = '_ft.mat'; 
12. outsuffix   = '_spec.mat'; 
13. spmdir      = spm('dir'); 
14. [~,ftdir]   = ft_version; 
15. fttemplatedir = fullfile(ftdir,'template'); 
16. qa_suffix   = 'qa.jpg'; 
17. subsinfile  = 0; 
18.   
19. % spectral defaults 
20. bandnames = {'alpha','beta','theta','delta','gamma1','gamma2'}; 
21. bandlimits = [ 8  12; 
22.               13  30; 
23.                4   7; 
24.              0.1 3.5; 
25.               31  55; 
26.               56  80]; 
27.   
28. % select directories 
29. cwd             = spm_select(1,'dir','Select root directory for 

studies',... 
30.                   '',pwd);            
31. cd(cwd); 
32. fidtemplatedir = fullfile(cwd,'templates'); 
33. if ~subsinfile 
34.     pth_subjdirs    = spm_select([1,Inf],'dir',... 
35.         'Select subject directories to process','',pwd); 
36. else 
37.     pthfile = spm_select(1,'mat','Select a subjects file to process'); 
38.     load(pthfile); 
39. end 
40. nsub = size(pth_subjdirs,1); 
41. fprintf('The following %d subject(s) will be examined:\n',nsub); 
42. disp(pth_subjdirs); 
43.   
44. % loop throuh subjects 
45. for sub=1:nsub 
46.     tic; 
47.     % change working directory 
48.     cd(deblank(pth_subjdirs(sub,1:end))); 
49.      
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50.     % get subject id from path 
51.     tmp              = deblank(pth_subjdirs(sub,:)); 
52.     [pth, meg_id, ext] = fileparts(tmp); 
53.     fprintf('\nWorking on %s\n', meg_id); 
54.     list=dir('**/*.*'); 
55.     cd(list(10).folder); 
56.      
57.     % if file has error, skip this subject 
58.     err_files = dir('Error*'); 
59.     if ~isempty(err_files) 
60.         continue; 
61.     end 
62.      
63.     % load preprocessed data 
64.     megfile = [meg_id megsuffix]; 
65.     load(megfile,'ft_clean','goodchans'); 
66.      
67.     % overall power spectra 
68.     cfg              = []; 
69.     cfg.output       = 'pow'; 
70.     cfg.method       = 'mtmfft'; 
71.     cfg.taper        = 'dpss'; 
72.     cfg.pad          = 'nextpow2'; 
73.     cfg.foilim       = [0.1 80];  % was [1 50]                         
74.     cfg.tapsmofrq    = 1;              
75.     cfg.keeptrials   = 'yes'; 
76.     datapow          = ft_freqanalysis(cfg, ft_clean); 
77.      
78.     % get indices of high/low power from median split 
79.     for ii = 1:length(bandnames) 
80.         mfreq =  round(mean(bandlimits(ii,:))); 
81.         ind = nearest(datapow.freq,mfreq); 
82.         tmp = datapow.powspctrm(:,:,ind); % do mean power? 
83.         chanind = find(mean(tmp,1) == max(mean(tmp,1))); 
84.         eval([bandnames{ii} 'low = 

find(tmp(:,chanind)<=median(tmp(:,chanind)))']); 
85.         eval([bandnames{ii} 'high = 

find(tmp(:,chanind)>=median(tmp(:,chanind)))']); 
86.     end 
87.      
88.     % complex Fourier spectra for cross spectral density 
89.     % start with delta 
90.     cfg            = []; 
91.     cfg.method     = 'mtmfft'; 
92.     cfg.output     = 'fourier'; 
93.     cfg.keeptrials = 'yes'; 
94.     cfg.pad        = 'nextpow2'; 
95.     cfg.tapsmofrq  = 1.75; 
96.     cfg.foi        = 2.25; 
97.     cfg.trials     = 'all'; 
98.     delta_all      = ft_freqanalysis(cfg, ft_clean); 
99.     cfg.trials     = deltalow; 
100.     delta_low      = ft_freqanalysis(cfg, ft_clean); 
101.     cfg.trials     = deltahigh; 
102.     delta_high     = ft_freqanalysis(cfg, ft_clean); 
103.     % alpha - do two ways, one using high/low split 
104.     cfg.tapsmofrq  = 2; 
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105.     cfg.foi        = 10; 
106.     cfg.trials     = 'all'; 
107.     alpha_all      = ft_freqanalysis(cfg, ft_clean); 
108.     cfg.trials     = alphalow; 
109.     alpha_low      = ft_freqanalysis(cfg, ft_clean); 
110.     cfg.trials     = alphahigh; 
111.     alpha_high     = ft_freqanalysis(cfg, ft_clean); 
112.     % theta 
113.     cfg.tapsmofrq  = 2; 
114.     cfg.foi        = 6; 
115.     cfg.trials     = 'all'; 
116.     theta_all      = ft_freqanalysis(cfg, ft_clean); 
117.     cfg.trials     = thetalow; 
118.     theta_low      = ft_freqanalysis(cfg, ft_clean); 
119.     cfg.trials     = thetahigh; 
120.     theta_high     = ft_freqanalysis(cfg, ft_clean); 
121.     % beta 
122.     cfg.tapsmofrq  = 8; 
123.     cfg.foi        = 21.5; 
124.     cfg.trials     = 'all'; 
125.     beta_all       = ft_freqanalysis(cfg, ft_clean); 
126.     cfg.trials     = betalow; 
127.     beta_low       = ft_freqanalysis(cfg, ft_clean); 
128.     cfg.trials     = betahigh; 
129.     beta_high      = ft_freqanalysis(cfg, ft_clean); 
130.     % gamma1 
131.     cfg.tapsmofrq  = 10; 
132.     cfg.foi        = 40; 
133.     cfg.trials     = 'all'; 
134.     gamma1_all     = ft_freqanalysis(cfg, ft_clean); 
135.     cfg.trials     = gamma1low; 
136.     gamma1_low     = ft_freqanalysis(cfg, ft_clean); 
137.     cfg.trials     = gamma1high; 
138.     gamma1_high    = ft_freqanalysis(cfg, ft_clean); 
139.     % gamma2 
140.     cfg.tapsmofrq  = 12; 
141.     cfg.foi        = 68; 
142.     cfg.trials     = 'all'; 
143.     gamma2_all     = ft_freqanalysis(cfg, ft_clean); 
144.     cfg.trials     = gamma2low; 
145.     gamma2_low     = ft_freqanalysis(cfg, ft_clean); 
146.     cfg.trials     = gamma2high; 
147.     gamma2_high    = ft_freqanalysis(cfg, ft_clean); 
148.      
149.     % plot results 
150.     h = figure('color','w'); 
151.     pos = get(h,'position'); 
152.     set(h,'position',[pos(1) pos(2) 256 256]); 
153.     megchans = find(ft_chantype(datapow.label,'meg')); 
154.     avgpow = mean(squeeze(mean(datapow.powspctrm(:,megchans,:),1))); 
155.     plot(datapow.freq,avgpow,'b','linewidth',1.5); 
156.     title('Mean channel power'); xlabel('Freq'); ylabel('Power'); 
157.     print(h, '-djpeg', [meg_id '_pow_' qa_suffix]); close(h); 
158.      
159.     % save results 
160.     save([meg_id 

outsuffix],'datapow','alpha_all','alpha_low','alpha_high',... 
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161.         'beta_all','beta_low','beta_high','theta_all',... 
162.         

'theta_low','theta_high','delta_all','delta_low','delta_high',... 
163.         

'gamma1_all','gamma1_low','gamma1_high','gamma2_all','gamma2_low','gamm
a2_high'); 

164.      
165.     % report time 
166.     tlapse = toc; esttime = tlapse * (nsub - sub); 
167.     fprintf('Time elapsed: %.2f s...Est. time remaining: %.2f 

s\n',tlapse, esttime); 
168. end 
169.   
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APPENDIX J: MEG COMMON FILTER MATLAB SCRIPT  

 

 

 

1. % beamformer common filter script for emotion MEG data 
2. % Used in FieldTrip Version: 20171231.zip 
3. % Based off of an example script written by Dr. Donald C. Rojas, PhD 
4. % Modified by Katherine M. Becker 
5.   
6. % --- CONDITIONS --- % 
7. % HH = 2 
8. % AA = 4 
9. % AH = 6 
10. % HA = 8 
11.   
12. clear; 
13. ft_defaults; 
14.   
15. % directories 
16. ftdir = '/Users/katherinebecker/Documents/MATLAB/fieldtrip-master' 
17. fttemplatedir = fullfile(ftdir,'template'); 
18. fidtemplatedir = '/Users/katherinebecker/Documents/MATLAB/fieldtrip-

master/MEG scripts/templates'; 
19. fftsuffix = '_ft.mat'; 
20. subsinfile  = 0; 
21.   
22. % load source and head model info, make sure units same 
23. load(fullfile(fttemplatedir,'headmodel','standard_singleshell.mat')); 
24. vol = ft_convert_units(vol,'mm'); 
25. load(fullfile(fttemplatedir,'sourcemodel','standard_sourcemodel3d8mm.m

at')); 
26. sourcemodel = ft_convert_units(sourcemodel,'mm'); 
27.   
28. % read template coregistration information 
29. load(fullfile(fidtemplatedir,'ch2_fiducials.xfm'), '-mat'); 
30.   
31. % select directories 
32. cwd             = spm_select(1,'dir','Select root directory for 

studies',... 
33.                   '',pwd);            
34. cd(cwd); 
35. fidtemplatedir = fullfile(cwd,'megtools-master'); 
36. if ~subsinfile 
37.     pth_subjdirs    = spm_select([1,Inf],'dir',... 
38.         'Select subject directories to process','',pwd); 
39. else 
40.     pthfile = spm_select(1,'mat','Select a subjects file to process'); 
41.     load(pthfile); 
42. end 
43. nsub = size(pth_subjdirs,1); 
44. fprintf('The following %d subject(s) will be examined:\n',nsub); 
45. disp(pth_subjdirs); 
46.   
47. for sub=1:nsub 
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48.      
49.     % change working directory 
50.     cd(deblank(pth_subjdirs(sub,1:end))); 
51.      
52.     % get subject id from path 
53.     tmp            = deblank(pth_subjdirs(sub,:)); 
54.     [pth, id, ext] = fileparts(tmp); 
55.     fprintf('\nWorking on %s\n', id); 
56.     list=dir('**/*.*'); 
57.     cd(list(10).folder); 
58.      
59.     % load spectral data 
60.     fftfile = [id fftsuffix]; 
61.     load(fftfile,'ft_clean'); 
62.      
63.     % coregister the MEG sensors and headshape to the MNI template 
64.     sensors = ft_clean.grad; 
65.     hshape  = ft_read_headshape('hs_file'); 
66.     sensors = ft_convert_units(sensors,'mm'); 
67.     hshape  = ft_convert_units(hshape,'mm'); 
68.     megfids = hshape.fid.pos(1:3,:); 
69.     mrifids = [transform.mri.nas;transform.mri.lpa;transform.mri.rpa]; 
70.     sform   = spm_eeg_inv_rigidreg(mrifids',megfids'); 
71.     sensors = ft_transform_sens(sform,sensors); 
72.     hshape  = ft_transform_headshape(sform,hshape); 
73.   
74.     % compute leadfields 
75.     cfg             = []; 
76.     cfg.grid        = sourcemodel; 
77.     cfg.headmodel   = vol; 
78.     cfg.channel     = {'MEG'}; 
79.     cfg.grad        = sensors; 
80.     cfg.reducerank  = 2; 
81.     grid            = ft_prepare_leadfield(cfg); 
82.   
83.     % trials 
84.     [HH,~] = find(ft_clean.trialinfo(:,4)==2); 
85.     [HA,~] = find(ft_clean.trialinfo(:,4)==8); 
86.     [AA,~] = find(ft_clean.trialinfo(:,4)==4); 
87.     [AH,~] = find(ft_clean.trialinfo(:,4)==6); 
88.   
89.     % --- DELTA --- % 
90.     % spectral analysis 
91.     cfg = []; 
92.     cfg.channel      = {'MEG'}; 
93.     cfg.method       = 'mtmfft'; 
94.     cfg.taper        = 'dpss'; 
95.     cfg.output       = 'powandcsd'; 
96.     cfg.keeptrials   = 'no'; 
97.     cfg.foi          = 2.25; 
98.     cfg.tapsmofrq    = 1.75; 
99.     delta_all         = ft_freqanalysis(cfg, ft_clean); 
100.   
101.     cfg.trials = HH; 
102.     delta_HH = ft_freqanalysis(cfg, ft_clean); 
103.     cfg.trials = HA; 
104.     delta_HA = ft_freqanalysis(cfg, ft_clean); 
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105.     cfg.trials = AA; 
106.     delta_AA = ft_freqanalysis(cfg, ft_clean); 
107.     cfg.trials = AH; 
108.     delta_AH = ft_freqanalysis(cfg, ft_clean); 
109.   
110.     % source analysis 
111.     cfg                 = []; 
112.     cfg.frequency       = delta_all.freq; 
113.     cfg.headmodel       = vol; 
114.     cfg.grid            = grid; 
115.     cfg.keeptrials      = 'yes'; 
116.     cfg.method          = 'dics'; 
117.     cfg.dics.keepfilter = 'yes'; 
118.     cfg.dics.projectnoise = 'yes'; 
119.     cfg.dics.lambda     = '5%'; 
120.     cfg.channel         = 'MEG'; 
121.     cfg.trials          = 'all'; 
122.     delta_source         = ft_sourceanalysis(cfg, delta_all); 
123.   
124.     % common filter application to individual trials 
125.     cfg              = []; 
126.     cfg.channel      = {'MEG'}; 
127.     cfg.method       = 'dics'; 
128.     cfg.frequency    = delta_all.freq; 
129.     cfg.grid         = grid; 
130.     cfg.sourcemodel.filter  = delta_source.avg.filter; 
131.     cfg.headmodel    = vol; 
132.     cfg.senstype     ='MEG'; 
133.     delta_source_HH  = ft_sourceanalysis(cfg, delta_HH); 
134.     delta_source_HA  = ft_sourceanalysis(cfg, delta_HA); 
135.     delta_source_AA  = ft_sourceanalysis(cfg, delta_AA); 
136.     delta_source_AH  = ft_sourceanalysis(cfg, delta_AH); 
137.      
138.     % --- THETA --- % 
139.     % spectral analysis 
140.     cfg = []; 
141.     cfg.channel      = {'MEG'}; 
142.     cfg.method       = 'mtmfft'; 
143.     cfg.taper        = 'dpss'; 
144.     cfg.output       = 'powandcsd'; 
145.     cfg.keeptrials   = 'no'; 
146.     cfg.foi          = 6; 
147.     cfg.tapsmofrq    = 2; 
148.     theta_all        = ft_freqanalysis(cfg, ft_clean); 
149.   
150.     % spectrum for trials 
151.     cfg.trials = HH; 
152.     theta_HH = ft_freqanalysis(cfg, ft_clean); 
153.     cfg.trials = HA; 
154.     theta_HA = ft_freqanalysis(cfg, ft_clean); 
155.     cfg.trials = AA; 
156.     theta_AA = ft_freqanalysis(cfg, ft_clean); 
157.     cfg.trials = AH; 
158.     theta_AH = ft_freqanalysis(cfg, ft_clean); 
159.   
160.     % source analysis for theta 
161.     cfg                 = []; 
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162.     cfg.frequency       = theta_all.freq; 
163.     cfg.headmodel       = vol; 
164.     cfg.grid            = grid; 
165.     cfg.keeptrials      = 'yes'; 
166.     cfg.method          = 'dics'; 
167.     cfg.dics.keepfilter = 'yes'; 
168.     cfg.dics.projectnoise = 'yes'; 
169.     cfg.dics.lambda     = '5%'; 
170.     cfg.channel         = 'MEG'; 
171.     cfg.trials          = 'all'; 
172.     theta_source        = ft_sourceanalysis(cfg, theta_all); 
173.   
174.     % common filter application to individual trials 
175.     cfg              = []; 
176.     cfg.channel      = {'MEG'}; 
177.     cfg.method       = 'dics'; 
178.     cfg.frequency    = theta_all.freq; 
179.     cfg.grid         = grid; 
180.     cfg.sourcemodel.filter  = theta_source.avg.filter; 
181.     cfg.headmodel    = vol; 
182.     cfg.senstype     ='MEG'; 
183.     theta_source_HH  = ft_sourceanalysis(cfg, theta_HH); 
184.     theta_source_HA  = ft_sourceanalysis(cfg, theta_HA); 
185.     theta_source_AA  = ft_sourceanalysis(cfg, theta_AA); 
186.     theta_source_AH  = ft_sourceanalysis(cfg, theta_AH); 
187.      
188.     % --- ALPHA --- % 
189.     % spectral analysis 
190.     cfg = []; 
191.     cfg.channel      = {'MEG'}; 
192.     cfg.method       = 'mtmfft'; 
193.     cfg.taper        = 'dpss'; 
194.     cfg.output       = 'powandcsd'; 
195.     cfg.keeptrials   = 'no'; 
196.     cfg.foi          = 10; 
197.     cfg.tapsmofrq    = 2; 
198.     alpha_all        = ft_freqanalysis(cfg, ft_clean); 
199.   
200.     % spectrum for trials 
201.     cfg.trials = HH; 
202.     alpha_HH = ft_freqanalysis(cfg, ft_clean); 
203.     cfg.trials = HA; 
204.     alpha_HA = ft_freqanalysis(cfg, ft_clean); 
205.     cfg.trials = AA; 
206.     alpha_AA = ft_freqanalysis(cfg, ft_clean); 
207.     cfg.trials = AH; 
208.     alpha_AH = ft_freqanalysis(cfg, ft_clean); 
209.   
210.     % source analysis for alpha 
211.     cfg                 = []; 
212.     cfg.frequency       = alpha_all.freq; 
213.     cfg.headmodel       = vol; 
214.     cfg.grid            = grid; 
215.     cfg.keeptrials      = 'yes'; 
216.     cfg.method          = 'dics'; 
217.     cfg.dics.keepfilter = 'yes'; 
218.     cfg.dics.projectnoise = 'yes'; 
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219.     cfg.dics.lambda     = '5%'; 
220.     cfg.channel         = 'MEG'; 
221.     cfg.trials          = 'all'; 
222.     alpha_source        = ft_sourceanalysis(cfg, alpha_all); 
223.   
224.     % common filter application to individual trials 
225.     cfg              = []; 
226.     cfg.channel      = {'MEG'}; 
227.     cfg.method       = 'dics'; 
228.     cfg.frequency    = alpha_all.freq; 
229.     cfg.grid         = grid; 
230.     cfg.sourcemodel.filter  = alpha_source.avg.filter; 
231.     cfg.headmodel    = vol; 
232.     cfg.senstype     ='MEG'; 
233.     alpha_source_HH  = ft_sourceanalysis(cfg, alpha_HH); 
234.     alpha_source_HA  = ft_sourceanalysis(cfg, alpha_HA); 
235.     alpha_source_AA  = ft_sourceanalysis(cfg, alpha_AA); 
236.     alpha_source_AH  = ft_sourceanalysis(cfg, alpha_AH); 
237.      
238.     % --- BETA --- % 
239.     % spectral analysis 
240.     cfg = []; 
241.     cfg.channel      = {'MEG'}; 
242.     cfg.method       = 'mtmfft'; 
243.     cfg.taper        = 'dpss'; 
244.     cfg.output       = 'powandcsd'; 
245.     cfg.keeptrials   = 'no'; 
246.     cfg.foi          = 21; 
247.     cfg.tapsmofrq    = 8; 
248.     beta_all         = ft_freqanalysis(cfg, ft_clean); 
249.   
250.     cfg.trials = HH; 
251.     beta_HH = ft_freqanalysis(cfg, ft_clean); 
252.     cfg.trials = HA; 
253.     beta_HA = ft_freqanalysis(cfg, ft_clean); 
254.     cfg.trials = AA; 
255.     beta_AA = ft_freqanalysis(cfg, ft_clean); 
256.     cfg.trials = AH; 
257.     beta_AH = ft_freqanalysis(cfg, ft_clean); 
258.   
259.     % source analysis 
260.     cfg                 = []; 
261.     cfg.frequency       = beta_all.freq; 
262.     cfg.headmodel       = vol; 
263.     cfg.grid            = grid; 
264.     cfg.keeptrials      = 'yes'; 
265.     cfg.method          = 'dics'; 
266.     cfg.dics.keepfilter = 'yes'; 
267.     cfg.dics.projectnoise = 'yes'; 
268.     cfg.dics.lambda     = '5%'; 
269.     cfg.channel         = 'MEG'; 
270.     cfg.trials          = 'all'; 
271.     beta_source         = ft_sourceanalysis(cfg, beta_all); 
272.   
273.     % common filter application to individual trials 
274.     cfg              = []; 
275.     cfg.channel      = {'MEG'}; 
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276.     cfg.method       = 'dics'; 
277.     cfg.frequency    = beta_all.freq; 
278.     cfg.grid         = grid; 
279.     cfg.sourcemodel.filter  = beta_source.avg.filter; 
280.     cfg.headmodel    = vol; 
281.     cfg.senstype     ='MEG'; 
282.     beta_source_HH  = ft_sourceanalysis(cfg, beta_HH); 
283.     beta_source_HA  = ft_sourceanalysis(cfg, beta_HA); 
284.     beta_source_AA  = ft_sourceanalysis(cfg, beta_AA); 
285.     beta_source_AH  = ft_sourceanalysis(cfg, beta_AH); 
286.   
287.     % --- GAMMA 1 --- % 
288.     % spectral analysis 
289.     cfg = []; 
290.     cfg.channel      = {'MEG'}; 
291.     cfg.method       = 'mtmfft'; 
292.     cfg.taper        = 'dpss'; 
293.     cfg.output       = 'powandcsd'; 
294.     cfg.keeptrials   = 'no'; 
295.     cfg.foi          = 40; 
296.     cfg.tapsmofrq    = 10; 
297.     gamma1_all       = ft_freqanalysis(cfg, ft_clean); 
298.   
299.     % spectrum for trials 
300.     cfg.trials = HH; 
301.     gamma1_HH = ft_freqanalysis(cfg, ft_clean); 
302.     cfg.trials = HA; 
303.     gamma1_HA = ft_freqanalysis(cfg, ft_clean); 
304.     cfg.trials = AA; 
305.     gamma1_AA = ft_freqanalysis(cfg, ft_clean); 
306.     cfg.trials = AH; 
307.     gamma1_AH = ft_freqanalysis(cfg, ft_clean); 
308.   
309.     % source analysis for gamma1 
310.     cfg                 = []; 
311.     cfg.frequency       = gamma1_all.freq; 
312.     cfg.headmodel       = vol; 
313.     cfg.grid            = grid; 
314.     cfg.keeptrials      = 'yes'; 
315.     cfg.method          = 'dics'; 
316.     cfg.dics.keepfilter = 'yes'; 
317.     cfg.dics.projectnoise = 'yes'; 
318.     cfg.dics.lambda     = '5%'; 
319.     cfg.channel         = 'MEG'; 
320.     cfg.trials          = 'all'; 
321.     gamma1_source       = ft_sourceanalysis(cfg, gamma1_all); 
322.   
323.     % common filter application to individual trials 
324.     cfg              = []; 
325.     cfg.channel      = {'MEG'}; 
326.     cfg.method       = 'dics'; 
327.     cfg.frequency    = gamma1_all.freq; 
328.     cfg.grid         = grid; 
329.     cfg.sourcemodel.filter  = gamma1_source.avg.filter; 
330.     cfg.headmodel    = vol; 
331.     cfg.senstype     ='MEG'; 
332.     gamma1_source_HH  = ft_sourceanalysis(cfg, gamma1_HH); 
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333.     gamma1_source_HA  = ft_sourceanalysis(cfg, gamma1_HA); 
334.     gamma1_source_AA  = ft_sourceanalysis(cfg, gamma1_AA); 
335.     gamma1_source_AH  = ft_sourceanalysis(cfg, gamma1_AH); 
336.   
337.     % --- GAMMA 2 --- % 
338.     % spectral analysis 
339.     cfg = []; 
340.     cfg.channel      = {'MEG'}; 
341.     cfg.method       = 'mtmfft'; 
342.     cfg.taper        = 'dpss'; 
343.     cfg.output       = 'powandcsd'; 
344.     cfg.keeptrials   = 'no'; 
345.     cfg.foi          = 68; 
346.     cfg.tapsmofrq    = 12; 
347.     gamma2_all       = ft_freqanalysis(cfg, ft_clean); 
348.   
349.     % spectrum for trials 
350.     cfg.trials = HH; 
351.     gamma2_HH = ft_freqanalysis(cfg, ft_clean); 
352.     cfg.trials = HA; 
353.     gamma2_HA = ft_freqanalysis(cfg, ft_clean); 
354.     cfg.trials = AA; 
355.     gamma2_AA = ft_freqanalysis(cfg, ft_clean); 
356.     cfg.trials = AH; 
357.     gamma2_AH = ft_freqanalysis(cfg, ft_clean); 
358.   
359.     % source analysis for gamma2 
360.     cfg                 = []; 
361.     cfg.frequency       = gamma2_all.freq; 
362.     cfg.headmodel       = vol; 
363.     cfg.grid            = grid; 
364.     cfg.keeptrials      = 'yes'; 
365.     cfg.method          = 'dics'; 
366.     cfg.dics.keepfilter = 'yes'; 
367.     cfg.dics.projectnoise = 'yes'; 
368.     cfg.dics.lambda     = '5%'; 
369.     cfg.channel         = 'MEG'; 
370.     cfg.trials          = 'all'; 
371.     gamma2_source       = ft_sourceanalysis(cfg, gamma2_all); 
372.   
373.     % common filter application to individual trials 
374.     cfg              = []; 
375.     cfg.channel      = {'MEG'}; 
376.     cfg.method       = 'dics'; 
377.     cfg.frequency    = gamma2_all.freq; 
378.     cfg.grid         = grid; 
379.     cfg.sourcemodel.filter  = gamma2_source.avg.filter; 
380.     cfg.headmodel    = vol; 
381.     cfg.senstype     ='MEG'; 
382.     gamma2_source_HH  = ft_sourceanalysis(cfg, gamma2_HH); 
383.     gamma2_source_HA  = ft_sourceanalysis(cfg, gamma2_HA); 
384.     gamma2_source_AA  = ft_sourceanalysis(cfg, gamma2_AA); 
385.     gamma2_source_AH  = ft_sourceanalysis(cfg, gamma2_AH); 
386. end 
387.   
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 APPENDIX K: MEG SOURCE AVERAGING MATLAB SCRIPT 

 

 

 

1. % script to gather sources of same condition to do group comparisons 
2. % Used in FieldTrip Version: 20171231.zip 
3. % Written by Katherine M. Becker 
4.   
5. clear; 
6. ft_defaults; 
7.   
8. % GET ROOT DIRECTORY 
9. cwd             = spm_select(1,'dir','Select root directory for 

studies',... 
10.                   '',pwd); 
11. cd(cwd); 
12. % GET SUBJECTS DIRECTORIES 
13. pth_subjdirs    = spm_select([1,Inf],'dir','Select subject directories 

to process',... 
14.                   '',pwd); 
15. nsub = size(pth_subjdirs,1); 
16. fprintf('The following %d subject(s) will be examined:\n',nsub); 
17. disp(pth_subjdirs); 
18.   
19. for sub=1:nsub 
20.     % change working directory 
21.     cd(strtrim(pth_subjdirs(sub,1:end))); 
22.     [~, nam, ~] = fileparts(pwd); 
23.     outfile = [nam '_ft.mat']; 
24.     list=dir('**/*.*'); 
25.     cd(list(10).folder); 
26.     fprintf('\nWorking on %s\n', nam); 
27.      
28.     % --- DELTA --- % 
29.     DeltaHH(sub,:) = load('deltasource_HH.mat','delta_source_HH'); 
30.     DeltaAA(sub,:) = load('deltasource_AA.mat','delta_source_AA'); 
31.     DeltaAH(sub,:) = load('deltasource_AH.mat','delta_source_AH'); 
32.     DeltaHA(sub,:) = load('deltasource_HA.mat','delta_source_HA'); 
33.      
34.     % --- THETA --- % 
35.     thetaHH(sub,:) = load('thetasource_HH.mat','theta_source_HH'); 
36.     thetaAA(sub,:) = load('thetasource_AA.mat','theta_source_AA'); 
37.     thetaAH(sub,:) = load('thetasource_AH.mat','theta_source_AH'); 
38.     thetaHA(sub,:) = load('thetasource_HA.mat','theta_source_HA'); 
39.      
40.     % --- ALPHA --- % 
41.     alphaHH(sub,:) = load('alphasource_HH.mat','alpha_source_HH'); 
42.     alphaAA(sub,:) = load('alphasource_AA.mat','alpha_source_AA'); 
43.     alphaAH(sub,:) = load('alphasource_AH.mat','alpha_source_AH'); 
44.     alphaHA(sub,:) = load('alphasource_HA.mat','alpha_source_HA'); 
45.      
46.     % --- BETA --- % 
47.     betaHH(sub,:) = load('betasource_HH.mat','beta_source_HH'); 
48.     betaAA(sub,:) = load('betasource_AA.mat','beta_source_AA'); 
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49.     betaAH(sub,:) = load('betasource_AH.mat','beta_source_AH'); 
50.     betaHA(sub,:) = load('betasource_HA.mat','beta_source_HA'); 
51.      
52.     % --- GAMMA1 --- % 
53.     gamma1HH(sub,:) = load('gamma1source_HH.mat','gamma1_source_HH'); 
54.     gamma1AA(sub,:) = load('gamma1source_AA.mat','gamma1_source_AA'); 
55.     gamma1AH(sub,:) = load('gamma1source_AH.mat','gamma1_source_AH'); 
56.     gamma1HA(sub,:) = load('gamma1source_HA.mat','gamma1_source_HA'); 
57.      
58.     % --- GAMMA2 --- % 
59.     gamma2HH(sub,:) = load('gamma2source_HH.mat','gamma2_source_HH'); 
60.     gamma2AA(sub,:) = load('gamma2source_AA.mat','gamma2_source_AA'); 
61.     gamma2AH(sub,:) = load('gamma2source_AH.mat','gamma2_source_AH'); 
62.     gamma2HA(sub,:) = load('gamma2source_HA.mat','gamma2_source_HA'); 
63. end 
64.   
65. % GRAND AVERAGE SOURCES 
66. cfg = []; 
67. cfg.parameter       = 'pow'; 
68. cfg.keepindividual  = 'yes'; 
69.   
70. % --- Delta --- % 
71. deltaAAavg = 

ft_sourcegrandaverage(cfg,DeltaAA(1).delta_source_AA,DeltaAA(2).delta_s
ource_AA,DeltaAA(3).delta_source_AA,DeltaAA(4).delta_source_AA,DeltaAA(
5).delta_source_AA,DeltaAA(6).delta_source_AA,DeltaAA(7).delta_source_A
A,DeltaAA(8).delta_source_AA,DeltaAA(9).delta_source_AA,DeltaAA(10).del
ta_source_AA,DeltaAA(11).delta_source_AA,DeltaAA(12).delta_source_AA,De
ltaAA(13).delta_source_AA,DeltaAA(14).delta_source_AA,DeltaAA(15).delta
_source_AA,DeltaAA(16).delta_source_AA,DeltaAA(17).delta_source_AA,Delt
aAA(18).delta_source_AA,DeltaAA(19).delta_source_AA,DeltaAA(20).delta_s
ource_AA,DeltaAA(21).delta_source_AA,DeltaAA(22).delta_source_AA,DeltaA
A(23).delta_source_AA,DeltaAA(24).delta_source_AA); 

72. deltaAHavg = 
ft_sourcegrandaverage(cfg,DeltaAH(1).delta_source_AH,DeltaAH(2).delta_s
ource_AH,DeltaAH(3).delta_source_AH,DeltaAH(4).delta_source_AH,DeltaAH(
5).delta_source_AH,DeltaAH(6).delta_source_AH,DeltaAH(7).delta_source_A
H,DeltaAH(8).delta_source_AH,DeltaAH(9).delta_source_AH,DeltaAH(10).del
ta_source_AH,DeltaAH(11).delta_source_AH,DeltaAH(12).delta_source_AH,De
ltaAH(13).delta_source_AH,DeltaAH(14).delta_source_AH,DeltaAH(15).delta
_source_AH,DeltaAH(16).delta_source_AH,DeltaAH(17).delta_source_AH,Delt
aAH(18).delta_source_AH,DeltaAH(19).delta_source_AH,DeltaAH(20).delta_s
ource_AH,DeltaAH(21).delta_source_AH,DeltaAH(22).delta_source_AH,DeltaA
H(23).delta_source_AH,DeltaAH(24).delta_source_AH); 

73. deltaHHavg = 
ft_sourcegrandaverage(cfg,DeltaHH(1).delta_source_HH,DeltaHH(2).delta_s
ource_HH,DeltaHH(3).delta_source_HH,DeltaHH(4).delta_source_HH,DeltaHH(
5).delta_source_HH,DeltaHH(6).delta_source_HH,DeltaHH(7).delta_source_H
H,DeltaHH(8).delta_source_HH,DeltaHH(9).delta_source_HH,DeltaHH(10).del
ta_source_HH,DeltaHH(11).delta_source_HH,DeltaHH(12).delta_source_HH,De
ltaHH(13).delta_source_HH,DeltaHH(14).delta_source_HH,DeltaHH(15).delta
_source_HH,DeltaHH(16).delta_source_HH,DeltaHH(17).delta_source_HH,Delt
aHH(18).delta_source_HH,DeltaHH(19).delta_source_HH,DeltaHH(20).delta_s
ource_HH,DeltaHH(21).delta_source_HH,DeltaHH(22).delta_source_HH,DeltaH
H(23).delta_source_HH,DeltaHH(24).delta_source_HH); 

74. deltaHAavg = 
ft_sourcegrandaverage(cfg,DeltaHA(1).delta_source_HA,DeltaHA(2).delta_s
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ource_HA,DeltaHA(3).delta_source_HA,DeltaHA(4).delta_source_HA,DeltaHA(
5).delta_source_HA,DeltaHA(6).delta_source_HA,DeltaHA(7).delta_source_H
A,DeltaHA(8).delta_source_HA,DeltaHA(9).delta_source_HA,DeltaHA(10).del
ta_source_HA,DeltaHA(11).delta_source_HA,DeltaHA(12).delta_source_HA,De
ltaHA(13).delta_source_HA,DeltaHA(14).delta_source_HA,DeltaHA(15).delta
_source_HA,DeltaHA(16).delta_source_HA,DeltaHA(17).delta_source_HA,Delt
aHA(18).delta_source_HA,DeltaHA(19).delta_source_HA,DeltaHA(20).delta_s
ource_HA,DeltaHA(21).delta_source_HA,DeltaHA(22).delta_source_HA,DeltaH
A(23).delta_source_HA,DeltaHA(24).delta_source_HA); 

75. save('deltaAAavg.mat','deltaAAavg','-v7.3'); 
76. save('deltaAHavg.mat','deltaAHavg','-v7.3'); 
77. save('deltaHHavg.mat','deltaHHavg','-v7.3'); 
78. save('deltaHAavg.mat','deltaHAavg','-v7.3'); 
79. % --- Theta --- % 
80. thetaAAavg = 

ft_sourcegrandaverage(cfg,thetaAA(1).theta_source_AA,thetaAA(2).theta_s
ource_AA,thetaAA(3).theta_source_AA,thetaAA(4).theta_source_AA,thetaAA(
5).theta_source_AA,thetaAA(6).theta_source_AA,thetaAA(7).theta_source_A
A,thetaAA(8).theta_source_AA,thetaAA(9).theta_source_AA,thetaAA(10).the
ta_source_AA,thetaAA(11).theta_source_AA,thetaAA(12).theta_source_AA,th
etaAA(13).theta_source_AA,thetaAA(14).theta_source_AA,thetaAA(15).theta
_source_AA,thetaAA(16).theta_source_AA,thetaAA(17).theta_source_AA,thet
aAA(18).theta_source_AA,thetaAA(19).theta_source_AA,thetaAA(20).theta_s
ource_AA,thetaAA(21).theta_source_AA,thetaAA(22).theta_source_AA,thetaA
A(23).theta_source_AA,thetaAA(24).theta_source_AA); 

81. thetaAHavg = 
ft_sourcegrandaverage(cfg,thetaAH(1).theta_source_AH,thetaAH(2).theta_s
ource_AH,thetaAH(3).theta_source_AH,thetaAH(4).theta_source_AH,thetaAH(
5).theta_source_AH,thetaAH(6).theta_source_AH,thetaAH(7).theta_source_A
H,thetaAH(8).theta_source_AH,thetaAH(9).theta_source_AH,thetaAH(10).the
ta_source_AH,thetaAH(11).theta_source_AH,thetaAH(12).theta_source_AH,th
etaAH(13).theta_source_AH,thetaAH(14).theta_source_AH,thetaAH(15).theta
_source_AH,thetaAH(16).theta_source_AH,thetaAH(17).theta_source_AH,thet
aAH(18).theta_source_AH,thetaAH(19).theta_source_AH,thetaAH(20).theta_s
ource_AH,thetaAH(21).theta_source_AH,thetaAH(22).theta_source_AH,thetaA
H(23).theta_source_AH,thetaAH(24).theta_source_AH); 

82. thetaHHavg = 
ft_sourcegrandaverage(cfg,thetaHH(1).theta_source_HH,thetaHH(2).theta_s
ource_HH,thetaHH(3).theta_source_HH,thetaHH(4).theta_source_HH,thetaHH(
5).theta_source_HH,thetaHH(6).theta_source_HH,thetaHH(7).theta_source_H
H,thetaHH(8).theta_source_HH,thetaHH(9).theta_source_HH,thetaHH(10).the
ta_source_HH,thetaHH(11).theta_source_HH,thetaHH(12).theta_source_HH,th
etaHH(13).theta_source_HH,thetaHH(14).theta_source_HH,thetaHH(15).theta
_source_HH,thetaHH(16).theta_source_HH,thetaHH(17).theta_source_HH,thet
aHH(18).theta_source_HH,thetaHH(19).theta_source_HH,thetaHH(20).theta_s
ource_HH,thetaHH(21).theta_source_HH,thetaHH(22).theta_source_HH,thetaH
H(23).theta_source_HH,thetaHH(24).theta_source_HH); 

83. thetaHAavg = 
ft_sourcegrandaverage(cfg,thetaHA(1).theta_source_HA,thetaHA(2).theta_s
ource_HA,thetaHA(3).theta_source_HA,thetaHA(4).theta_source_HA,thetaHA(
5).theta_source_HA,thetaHA(6).theta_source_HA,thetaHA(7).theta_source_H
A,thetaHA(8).theta_source_HA,thetaHA(9).theta_source_HA,thetaHA(10).the
ta_source_HA,thetaHA(11).theta_source_HA,thetaHA(12).theta_source_HA,th
etaHA(13).theta_source_HA,thetaHA(14).theta_source_HA,thetaHA(15).theta
_source_HA,thetaHA(16).theta_source_HA,thetaHA(17).theta_source_HA,thet
aHA(18).theta_source_HA,thetaHA(19).theta_source_HA,thetaHA(20).theta_s
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ource_HA,thetaHA(21).theta_source_HA,thetaHA(22).theta_source_HA,thetaH
A(23).theta_source_HA,thetaHA(24).theta_source_HA); 

84. save('thetaAAavg.mat','thetaAAavg','-v7.3'); 
85. save('thetaAHavg.mat','thetaAHavg','-v7.3'); 
86. save('thetaHHavg.mat','thetaHHavg','-v7.3'); 
87. save('thetaHAavg.mat','thetaHAavg','-v7.3'); 
88. % --- ALPHA --- % 
89. alphaAAavg = 

ft_sourcegrandaverage(cfg,alphaAA(1).alpha_source_AA,alphaAA(2).alpha_s
ource_AA,alphaAA(3).alpha_source_AA,alphaAA(4).alpha_source_AA,alphaAA(
5).alpha_source_AA,alphaAA(6).alpha_source_AA,alphaAA(7).alpha_source_A
A,alphaAA(8).alpha_source_AA,alphaAA(9).alpha_source_AA,alphaAA(10).alp
ha_source_AA,alphaAA(11).alpha_source_AA,alphaAA(12).alpha_source_AA,al
phaAA(13).alpha_source_AA,alphaAA(14).alpha_source_AA,alphaAA(15).alpha
_source_AA,alphaAA(16).alpha_source_AA,alphaAA(17).alpha_source_AA,alph
aAA(18).alpha_source_AA,alphaAA(19).alpha_source_AA,alphaAA(20).alpha_s
ource_AA,alphaAA(21).alpha_source_AA,alphaAA(22).alpha_source_AA,alphaA
A(23).alpha_source_AA,alphaAA(24).alpha_source_AA); 

90. alphaAHavg = 
ft_sourcegrandaverage(cfg,alphaAH(1).alpha_source_AH,alphaAH(2).alpha_s
ource_AH,alphaAH(3).alpha_source_AH,alphaAH(4).alpha_source_AH,alphaAH(
5).alpha_source_AH,alphaAH(6).alpha_source_AH,alphaAH(7).alpha_source_A
H,alphaAH(8).alpha_source_AH,alphaAH(9).alpha_source_AH,alphaAH(10).alp
ha_source_AH,alphaAH(11).alpha_source_AH,alphaAH(12).alpha_source_AH,al
phaAH(13).alpha_source_AH,alphaAH(14).alpha_source_AH,alphaAH(15).alpha
_source_AH,alphaAH(16).alpha_source_AH,alphaAH(17).alpha_source_AH,alph
aAH(18).alpha_source_AH,alphaAH(19).alpha_source_AH,alphaAH(20).alpha_s
ource_AH,alphaAH(21).alpha_source_AH,alphaAH(22).alpha_source_AH,alphaA
H(23).alpha_source_AH,alphaAH(24).alpha_source_AH); 

91. alphaHHavg = 
ft_sourcegrandaverage(cfg,alphaHH(1).alpha_source_HH,alphaHH(2).alpha_s
ource_HH,alphaHH(3).alpha_source_HH,alphaHH(4).alpha_source_HH,alphaHH(
5).alpha_source_HH,alphaHH(6).alpha_source_HH,alphaHH(7).alpha_source_H
H,alphaHH(8).alpha_source_HH,alphaHH(9).alpha_source_HH,alphaHH(10).alp
ha_source_HH,alphaHH(11).alpha_source_HH,alphaHH(12).alpha_source_HH,al
phaHH(13).alpha_source_HH,alphaHH(14).alpha_source_HH,alphaHH(15).alpha
_source_HH,alphaHH(16).alpha_source_HH,alphaHH(17).alpha_source_HH,alph
aHH(18).alpha_source_HH,alphaHH(19).alpha_source_HH,alphaHH(20).alpha_s
ource_HH,alphaHH(21).alpha_source_HH,alphaHH(22).alpha_source_HH,alphaH
H(23).alpha_source_HH,alphaHH(24).alpha_source_HH); 

92. alphaHAavg = 
ft_sourcegrandaverage(cfg,alphaHA(1).alpha_source_HA,alphaHA(2).alpha_s
ource_HA,alphaHA(3).alpha_source_HA,alphaHA(4).alpha_source_HA,alphaHA(
5).alpha_source_HA,alphaHA(6).alpha_source_HA,alphaHA(7).alpha_source_H
A,alphaHA(8).alpha_source_HA,alphaHA(9).alpha_source_HA,alphaHA(10).alp
ha_source_HA,alphaHA(11).alpha_source_HA,alphaHA(12).alpha_source_HA,al
phaHA(13).alpha_source_HA,alphaHA(14).alpha_source_HA,alphaHA(15).alpha
_source_HA,alphaHA(16).alpha_source_HA,alphaHA(17).alpha_source_HA,alph
aHA(18).alpha_source_HA,alphaHA(19).alpha_source_HA,alphaHA(20).alpha_s
ource_HA,alphaHA(21).alpha_source_HA,alphaHA(22).alpha_source_HA,alphaH
A(23).alpha_source_HA,alphaHA(24).alpha_source_HA); 

93. save('alphaAAavg.mat','alphaAAavg','-v7.3'); 
94. save('alphaAHavg.mat','alphaAHavg','-v7.3'); 
95. save('alphaHHavg.mat','alphaHHavg','-v7.3'); 
96. save('alphaHAavg.mat','alphaHAavg','-v7.3'); 
97. % --- BETA --- % 
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98. betaAAavg = 
ft_sourcegrandaverage(cfg,betaAA(1).beta_source_AA,betaAA(2).beta_sourc
e_AA,betaAA(3).beta_source_AA,betaAA(4).beta_source_AA,betaAA(5).beta_s
ource_AA,betaAA(6).beta_source_AA,betaAA(7).beta_source_AA,betaAA(8).be
ta_source_AA,betaAA(9).beta_source_AA,betaAA(10).beta_source_AA,betaAA(
11).beta_source_AA,betaAA(12).beta_source_AA,betaAA(13).beta_source_AA,
betaAA(14).beta_source_AA,betaAA(15).beta_source_AA,betaAA(16).beta_sou
rce_AA,betaAA(17).beta_source_AA,betaAA(18).beta_source_AA,betaAA(19).b
eta_source_AA,betaAA(20).beta_source_AA,betaAA(21).beta_source_AA,betaA
A(22).beta_source_AA,betaAA(23).beta_source_AA,betaAA(24).beta_source_A
A); 

99. betaAHavg = 
ft_sourcegrandaverage(cfg,betaAH(1).beta_source_AH,betaAH(2).beta_sourc
e_AH,betaAH(3).beta_source_AH,betaAH(4).beta_source_AH,betaAH(5).beta_s
ource_AH,betaAH(6).beta_source_AH,betaAH(7).beta_source_AH,betaAH(8).be
ta_source_AH,betaAH(9).beta_source_AH,betaAH(10).beta_source_AH,betaAH(
11).beta_source_AH,betaAH(12).beta_source_AH,betaAH(13).beta_source_AH,
betaAH(14).beta_source_AH,betaAH(15).beta_source_AH,betaAH(16).beta_sou
rce_AH,betaAH(17).beta_source_AH,betaAH(18).beta_source_AH,betaAH(19).b
eta_source_AH,betaAH(20).beta_source_AH,betaAH(21).beta_source_AH,betaA
H(22).beta_source_AH,betaAH(23).beta_source_AH,betaAH(24).beta_source_A
H); 

100. betaHHavg = 
ft_sourcegrandaverage(cfg,betaHH(1).beta_source_HH,betaHH(2).beta_sourc
e_HH,betaHH(3).beta_source_HH,betaHH(4).beta_source_HH,betaHH(5).beta_s
ource_HH,betaHH(6).beta_source_HH,betaHH(7).beta_source_HH,betaHH(8).be
ta_source_HH,betaHH(9).beta_source_HH,betaHH(10).beta_source_HH,betaHH(
11).beta_source_HH,betaHH(12).beta_source_HH,betaHH(13).beta_source_HH,
betaHH(14).beta_source_HH,betaHH(15).beta_source_HH,betaHH(16).beta_sou
rce_HH,betaHH(17).beta_source_HH,betaHH(18).beta_source_HH,betaHH(19).b
eta_source_HH,betaHH(20).beta_source_HH,betaHH(21).beta_source_HH,betaH
H(22).beta_source_HH,betaHH(23).beta_source_HH,betaHH(24).beta_source_H
H); 

101. betaHAavg = 
ft_sourcegrandaverage(cfg,betaHA(1).beta_source_HA,betaHA(2).beta_sourc
e_HA,betaHA(3).beta_source_HA,betaHA(4).beta_source_HA,betaHA(5).beta_s
ource_HA,betaHA(6).beta_source_HA,betaHA(7).beta_source_HA,betaHA(8).be
ta_source_HA,betaHA(9).beta_source_HA,betaHA(10).beta_source_HA,betaHA(
11).beta_source_HA,betaHA(12).beta_source_HA,betaHA(13).beta_source_HA,
betaHA(14).beta_source_HA,betaHA(15).beta_source_HA,betaHA(16).beta_sou
rce_HA,betaHA(17).beta_source_HA,betaHA(18).beta_source_HA,betaHA(19).b
eta_source_HA,betaHA(20).beta_source_HA,betaHA(21).beta_source_HA,betaH
A(22).beta_source_HA,betaHA(23).beta_source_HA,betaHA(24).beta_source_H
A); 

102. save('betaAAavg.mat','betaAAavg','-v7.3'); 
103. save('betaAHavg.mat','betaAHavg','-v7.3'); 
104. save('betaHHavg.mat','betaHHavg','-v7.3'); 
105. save('betaHAavg.mat','betaHAavg','-v7.3'); 
106. % --- GAMMA1 --- % 
107. gamma1AAavg = 

ft_sourcegrandaverage(cfg,gamma1AA(1).gamma1_source_AA,gamma1AA(2).gamm
a1_source_AA,gamma1AA(3).gamma1_source_AA,gamma1AA(4).gamma1_source_AA,
gamma1AA(5).gamma1_source_AA,gamma1AA(6).gamma1_source_AA,gamma1AA(7).g
amma1_source_AA,gamma1AA(8).gamma1_source_AA,gamma1AA(9).gamma1_source_
AA,gamma1AA(10).gamma1_source_AA,gamma1AA(11).gamma1_source_AA,gamma1AA
(12).gamma1_source_AA,gamma1AA(13).gamma1_source_AA,gamma1AA(14).gamma1
_source_AA,gamma1AA(15).gamma1_source_AA,gamma1AA(16).gamma1_source_AA,
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gamma1AA(17).gamma1_source_AA,gamma1AA(18).gamma1_source_AA,gamma1AA(19
).gamma1_source_AA,gamma1AA(20).gamma1_source_AA,gamma1AA(21).gamma1_so
urce_AA,gamma1AA(22).gamma1_source_AA,gamma1AA(23).gamma1_source_AA,gam
ma1AA(24).gamma1_source_AA); 

108. gamma1AHavg = 
ft_sourcegrandaverage(cfg,gamma1AH(1).gamma1_source_AH,gamma1AH(2).gamm
a1_source_AH,gamma1AH(3).gamma1_source_AH,gamma1AH(4).gamma1_source_AH,
gamma1AH(5).gamma1_source_AH,gamma1AH(6).gamma1_source_AH,gamma1AH(7).g
amma1_source_AH,gamma1AH(8).gamma1_source_AH,gamma1AH(9).gamma1_source_
AH,gamma1AH(10).gamma1_source_AH,gamma1AH(11).gamma1_source_AH,gamma1AH
(12).gamma1_source_AH,gamma1AH(13).gamma1_source_AH,gamma1AH(14).gamma1
_source_AH,gamma1AH(15).gamma1_source_AH,gamma1AH(16).gamma1_source_AH,
gamma1AH(17).gamma1_source_AH,gamma1AH(18).gamma1_source_AH,gamma1AH(19
).gamma1_source_AH,gamma1AH(20).gamma1_source_AH,gamma1AH(21).gamma1_so
urce_AH,gamma1AH(22).gamma1_source_AH,gamma1AH(23).gamma1_source_AH,gam
ma1AH(24).gamma1_source_AH); 

109. gamma1HHavg = 
ft_sourcegrandaverage(cfg,gamma1HH(1).gamma1_source_HH,gamma1HH(2).gamm
a1_source_HH,gamma1HH(3).gamma1_source_HH,gamma1HH(4).gamma1_source_HH,
gamma1HH(5).gamma1_source_HH,gamma1HH(6).gamma1_source_HH,gamma1HH(7).g
amma1_source_HH,gamma1HH(8).gamma1_source_HH,gamma1HH(9).gamma1_source_
HH,gamma1HH(10).gamma1_source_HH,gamma1HH(11).gamma1_source_HH,gamma1HH
(12).gamma1_source_HH,gamma1HH(13).gamma1_source_HH,gamma1HH(14).gamma1
_source_HH,gamma1HH(15).gamma1_source_HH,gamma1HH(16).gamma1_source_HH,
gamma1HH(17).gamma1_source_HH,gamma1HH(18).gamma1_source_HH,gamma1HH(19
).gamma1_source_HH,gamma1HH(20).gamma1_source_HH,gamma1HH(21).gamma1_so
urce_HH,gamma1HH(22).gamma1_source_HH,gamma1HH(23).gamma1_source_HH,gam
ma1HH(24).gamma1_source_HH); 

110. gamma1HAavg = 
ft_sourcegrandaverage(cfg,gamma1HA(1).gamma1_source_HA,gamma1HA(2).gamm
a1_source_HA,gamma1HA(3).gamma1_source_HA,gamma1HA(4).gamma1_source_HA,
gamma1HA(5).gamma1_source_HA,gamma1HA(6).gamma1_source_HA,gamma1HA(7).g
amma1_source_HA,gamma1HA(8).gamma1_source_HA,gamma1HA(9).gamma1_source_
HA,gamma1HA(10).gamma1_source_HA,gamma1HA(11).gamma1_source_HA,gamma1HA
(12).gamma1_source_HA,gamma1HA(13).gamma1_source_HA,gamma1HA(14).gamma1
_source_HA,gamma1HA(15).gamma1_source_HA,gamma1HA(16).gamma1_source_HA,
gamma1HA(17).gamma1_source_HA,gamma1HA(18).gamma1_source_HA,gamma1HA(19
).gamma1_source_HA,gamma1HA(20).gamma1_source_HA,gamma1HA(21).gamma1_so
urce_HA,gamma1HA(22).gamma1_source_HA,gamma1HA(23).gamma1_source_HA,gam
ma1HA(24).gamma1_source_HA); 

111. save('gamma1AAavg.mat','gamma1AAavg','-v7.3'); 
112. save('gamma1AHavg.mat','gamma1AHavg','-v7.3'); 
113. save('gamma1HHavg.mat','gamma1HHavg','-v7.3'); 
114. save('gamma1HAavg.mat','gamma1HAavg','-v7.3'); 
115. % --- GAMMA2 --- % 
116. gamma2AAavg = 

ft_sourcegrandaverage(cfg,gamma2AA(1).gamma2_source_AA,gamma2AA(2).gamm
a2_source_AA,gamma2AA(3).gamma2_source_AA,gamma2AA(4).gamma2_source_AA,
gamma2AA(5).gamma2_source_AA,gamma2AA(6).gamma2_source_AA,gamma2AA(7).g
amma2_source_AA,gamma2AA(8).gamma2_source_AA,gamma2AA(9).gamma2_source_
AA,gamma2AA(10).gamma2_source_AA,gamma2AA(11).gamma2_source_AA,gamma2AA
(12).gamma2_source_AA,gamma2AA(13).gamma2_source_AA,gamma2AA(14).gamma2
_source_AA,gamma2AA(15).gamma2_source_AA,gamma2AA(16).gamma2_source_AA,
gamma2AA(17).gamma2_source_AA,gamma2AA(18).gamma2_source_AA,gamma2AA(19
).gamma2_source_AA,gamma2AA(20).gamma2_source_AA,gamma2AA(21).gamma2_so
urce_AA,gamma2AA(22).gamma2_source_AA,gamma2AA(23).gamma2_source_AA,gam
ma2AA(24).gamma2_source_AA); gamma2AHavg = 
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ft_sourcegrandaverage(cfg,gamma2AH(1).gamma2_source_AH,gamma2AH(2).gamm
a2_source_AH,gamma2AH(3).gamma2_source_AH,gamma2AH(4).gamma2_source_AH,
gamma2AH(5).gamma2_source_AH,gamma2AH(6).gamma2_source_AH,gamma2AH(7).g
amma2_source_AH,gamma2AH(8).gamma2_source_AH,gamma2AH(9).gamma2_source_
AH,gamma2AH(10).gamma2_source_AH,gamma2AH(11).gamma2_source_AH,gamma2AH
(12).gamma2_source_AH,gamma2AH(13).gamma2_source_AH,gamma2AH(14).gamma2
_source_AH,gamma2AH(15).gamma2_source_AH,gamma2AH(16).gamma2_source_AH,
gamma2AH(17).gamma2_source_AH,gamma2AH(18).gamma2_source_AH,gamma2AH(19
).gamma2_source_AH,gamma2AH(20).gamma2_source_AH,gamma2AH(21).gamma2_so
urce_AH,gamma2AH(22).gamma2_source_AH,gamma2AH(23).gamma2_source_AH,gam
ma2AH(24).gamma2_source_AH); 

117. gamma2HHavg = 
ft_sourcegrandaverage(cfg,gamma2HH(1).gamma2_source_HH,gamma2HH(2).gamm
a2_source_HH,gamma2HH(3).gamma2_source_HH,gamma2HH(4).gamma2_source_HH,
gamma2HH(5).gamma2_source_HH,gamma2HH(6).gamma2_source_HH,gamma2HH(7).g
amma2_source_HH,gamma2HH(8).gamma2_source_HH,gamma2HH(9).gamma2_source_
HH,gamma2HH(10).gamma2_source_HH,gamma2HH(11).gamma2_source_HH,gamma2HH
(12).gamma2_source_HH,gamma2HH(13).gamma2_source_HH,gamma2HH(14).gamma2
_source_HH,gamma2HH(15).gamma2_source_HH,gamma2HH(16).gamma2_source_HH,
gamma2HH(17).gamma2_source_HH,gamma2HH(18).gamma2_source_HH,gamma2HH(19
).gamma2_source_HH,gamma2HH(20).gamma2_source_HH,gamma2HH(21).gamma2_so
urce_HH,gamma2HH(22).gamma2_source_HH,gamma2HH(23).gamma2_source_HH,gam
ma2HH(24).gamma2_source_HH); 

118. gamma2HAavg = 
ft_sourcegrandaverage(cfg,gamma2HA(1).gamma2_source_HA,gamma2HA(2).gamm
a2_source_HA,gamma2HA(3).gamma2_source_HA,gamma2HA(4).gamma2_source_HA,
gamma2HA(5).gamma2_source_HA,gamma2HA(6).gamma2_source_HA,gamma2HA(7).g
amma2_source_HA,gamma2HA(8).gamma2_source_HA,gamma2HA(9).gamma2_source_
HA,gamma2HA(10).gamma2_source_HA,gamma2HA(11).gamma2_source_HA,gamma2HA
(12).gamma2_source_HA,gamma2HA(13).gamma2_source_HA,gamma2HA(14).gamma2
_source_HA,gamma2HA(15).gamma2_source_HA,gamma2HA(16).gamma2_source_HA,
gamma2HA(17).gamma2_source_HA,gamma2HA(18).gamma2_source_HA,gamma2HA(19
).gamma2_source_HA,gamma2HA(20).gamma2_source_HA,gamma2HA(21).gamma2_so
urce_HA,gamma2HA(22).gamma2_source_HA,gamma2HA(23).gamma2_source_HA,gam
ma2HA(24).gamma2_source_HA); 

119. save('gamma2AAavg.mat','gamma2AAavg','-v7.3'); 
120. save('gamma2AHavg.mat','gamma2AHavg','-v7.3'); 
121. save('gamma2HHavg.mat','gamma2HHavg','-v7.3'); 
122. save('gamma2HAavg.mat','gamma2HAavg','-v7.3'); 
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APPENDIX L: MEG SOURCE INTERPOLATION MATLAB SCRIPT 

 

 

 

1. % script to do group comparisons and source localize results 
2. % Used with FieldTrip Version: 20171231.zip 
3. % Written by Katherine M. Becker 
4.   
5. clear; 
6. ft_defaults; 
7.   
8. ftdir = fileparts(which('ft_defaults')); 
9.   
10. % load mri and interpolate for visualization 
11. template_mri = ft_read_mri(fullfile(ftdir,'external','spm8',... 
12.     'templates','T1.nii')); 
13.   
14. cfg = []; 
15. mri = ft_volumereslice(cfg, template_mri); 
16.   
17. cfg            = []; 
18. cfg.downsample = 2; 
19. cfg.parameter  = 'stat'; 
20.   
21. deltaHH_HA_int  = ft_sourceinterpolate(cfg, deltaHH_HA, mri); 
22. deltaAA_HH_int  = ft_sourceinterpolate(cfg, deltaAA_HH, mri); 
23. deltaAH_HA_int  = ft_sourceinterpolate(cfg, deltaAH_HA, mri); 
24.   
25. thetaAA_AH_int  = ft_sourceinterpolate(cfg, thetaAA_AH, mri); 
26. thetaHH_HA_int  = ft_sourceinterpolate(cfg, thetaHH_HA, mri); 
27. thetaAA_HH_int  = ft_sourceinterpolate(cfg, thetaAA_HH, mri); 
28. thetaAH_HA_int  = ft_sourceinterpolate(cfg, thetaAH_HA, mri); 
29.   
30. alphaAA_AH_int  = ft_sourceinterpolate(cfg, alphaAA_AH, mri); 
31. alphaHH_HA_int  = ft_sourceinterpolate(cfg, alphaHH_HA, mri); 
32. alphaAA_HH_int  = ft_sourceinterpolate(cfg, alphaAA_HH, mri); 
33. alphaAH_HA_int  = ft_sourceinterpolate(cfg, alphaAH_HA, mri); 
34.   
35. betaAA_AH_int  = ft_sourceinterpolate(cfg, betaAA_AH, mri); 
36. betaHH_HA_int  = ft_sourceinterpolate(cfg, betaHH_HA, mri); 
37. betaAA_HH_int  = ft_sourceinterpolate(cfg, betaAA_HH, mri); 
38. betaAH_HA_int  = ft_sourceinterpolate(cfg, betaAH_HA, mri); 
39.   
40. gamma1AA_AH_int  = ft_sourceinterpolate(cfg, gamma1AA_AH, mri); 
41. gamma1HH_HA_int  = ft_sourceinterpolate(cfg, gamma1HH_HA, mri); 
42. gamma1AA_HH_int  = ft_sourceinterpolate(cfg, gamma1AA_HH, mri); 
43. gamma1AH_HA_int  = ft_sourceinterpolate(cfg, gamma1AH_HA, mri); 
44.   
45. gamma2AA_AH_int  = ft_sourceinterpolate(cfg, gamma2AA_AH, mri); 
46. gamma2HH_HA_int  = ft_sourceinterpolate(cfg, gamma2HH_HA, mri); 
47. gamma2AA_HH_int  = ft_sourceinterpolate(cfg, gamma2AA_HH, mri); 
48. gamma2AH_HA_int  = ft_sourceinterpolate(cfg, gamma2AH_HA, mri); 
49.   
50. % --- INTERACTIONS --- % 
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51. Add 
52. cfg = []; 
53. cfg.parameter = 'pow'; 
54. cfg.operation = 'add'; 
55.   
56. % --- CONGRUENCY --- % 
57. deltaAAHH = ft_math(cfg,deltaAAavg,deltaHHavg); 
58. deltaAHHA = ft_math(cfg,deltaAHavg,deltaHAavg); 
59.   
60. thetaAAHH = ft_math(cfg,thetaAAavg,thetaHHavg); 
61. thetaAHHA = ft_math(cfg,thetaAHavg,thetaHAavg); 
62.   
63. alphaAAHH = ft_math(cfg,alphaAAavg,alphaHHavg); 
64. alphaAHHA = ft_math(cfg,alphaAHavg,alphaHAavg); 
65.   
66. betaAAHH = ft_math(cfg,betaAAavg,betaHHavg); 
67. betaAHHA = ft_math(cfg,betaAHavg,betaHAavg); 
68.   
69. gamma1AAHH = ft_math(cfg,gamma1AAavg,gamma1HHavg); 
70. gamma1AHHA = ft_math(cfg,gamma1AHavg,gamma1HAavg); 
71.   
72. gamma2AAHH = ft_math(cfg,gamma2AAavg,gamma2HHavg); 
73. gamma2AHHA = ft_math(cfg,gamma2AHavg,gamma2HAavg); 
74.   
75. Subtract 
76. cfg = []; 
77. cfg.parameter = 'pow'; 
78. cfg.operation = 'subtract'; 
79.   
80. % --- CONGRUENCY --- % 
81. delta_con = ft_math(cfg,deltaAAHH,deltaAHHA); 
82. theta_con = ft_math(cfg,thetaAAHH,thetaAHHA); 
83. alpha_con = ft_math(cfg,alphaAAHH,alphaAHHA); 
84. beta_con = ft_math(cfg,betaAAHH,betaAHHA); 
85. gamma1_con = ft_math(cfg,gamma1AAHH,gamma1AHHA); 
86. gamma2_con = ft_math(cfg,gamma2AAHH,gamma2AHHA); 
87.   
88. % --- EMOTION --- % 
89. delta_emo = ft_math(cfg,deltaHHavg,deltaAAavg); 
90. theta_emo = ft_math(cfg,thetaHHavg,thetaAAavg); 
91. alpha_emo = ft_math(cfg,alphaHHavg,alphaAAavg); 
92. beta_emo = ft_math(cfg,betaHHavg,betaAAavg); 
93. gamma1_emo = ft_math(cfg,gamma1HHavg,gamma1AAavg); 
94. gamma2_emo = ft_math(cfg,gamma2HHavg,gamma2AAavg); 
95.   
96. % MAIN EFFECTS 
97. cfg = []; 
98. cfg.method           = 'montecarlo'; 
99. cfg.statistic        = 'ft_statfun_depsamplesT'; 
100. cfg.parameter        = 'pow'; 
101. cfg.correctm         = 'cluster'; 
102. cfg.numrandomization = 1000; 
103. cfg.alpha            = 0.05; 
104. cfg.tail             = 0; 
105.   
106. nsubj=numel(alphaAAavg); 
107. cfg.design(1,:) = [1:24 1:24]; 
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108. cfg.design(2,:) = [ones(1,24)*1 ones(1,24)*2]; 
109. cfg.uvar        = 1; % row of design matrix that contains unit 

variable (in this case: subjects) 
110. cfg.ivar        = 2; % row of design matrix that contains independent 

variable (the conditions) 
111.   
112. delta_main = ft_sourcestatistics(cfg,deltaAAHH,deltaAHHA); 
113. theta_main = ft_sourcestatistics(cfg,thetaAAHH,thetaAHHA); 
114. alpha_main = ft_sourcestatistics(cfg,alphaAAHH,alphaAHHA); 
115. beta_main = ft_sourcestatistics(cfg,betaAAHH,betaAHHA); 
116. gamma1_main = ft_sourcestatistics(cfg,gamma1AAHH,gamma1AHHA); 
117. gamma2_main = ft_sourcestatistics(cfg,gamma1AAHH,gamma1AHHA); 
118.   
119. % interpolate 
120. cfg            = []; 
121. cfg.downsample = 2; 
122. cfg.parameter  = 'stat'; 
123.   
124. delta_main_int  = ft_sourceinterpolate(cfg, delta_main, mri); 
125. theta_main_int  = ft_sourceinterpolate(cfg, theta_main, mri); 
126. alpha_main_int  = ft_sourceinterpolate(cfg, alpha_main, mri); 
127. beta_main_int  = ft_sourceinterpolate(cfg, beta_main, mri); 
128. gamma1_main_int  = ft_sourceinterpolate(cfg, gamma1_main, mri); 
129. gamma2_main_int  = ft_sourceinterpolate(cfg, gamma2_main, mri); 
130.   
131. % INTERACTIONS 
132. cfg = []; 
133. cfg.parameter = 'pow'; 
134. cfg.operation = 'multiply'; 
135.   
136. delta_conxemo = ft_math(cfg,delta_con,delta_emo); 
137. theta_conxemo = ft_math(cfg,theta_con,theta_emo); 
138. alpha_conxemo = ft_math(cfg,alpha_con,alpha_emo); 
139. beta_conxemo = ft_math(cfg,beta_con,beta_emo); 
140. gamma1_conxemo = ft_math(cfg,gamma1_con,gamma1_emo); 
141. gamma2_conxemo = ft_math(cfg,gamma2_con,gamma2_emo); 
142.   
143. % interpolate 
144. cfg            = []; 
145. cfg.downsample = 2; 
146. cfg.parameter  = 'pow'; 
147.   
148. delta_conxemo_int  = ft_sourceinterpolate(cfg, delta_conxemo, mri); 
149. theta_conxemo_int  = ft_sourceinterpolate(cfg, theta_conxemo, mri); 
150. alpha_conxemo_int  = ft_sourceinterpolate(cfg, alpha_conxemo, mri); 
151. beta_conxemo_int  = ft_sourceinterpolate(cfg, beta_conxemo, mri); 
152. gamma1_conxemo_int  = ft_sourceinterpolate(cfg, gamma1_conxemo, mri); 
153. gamma2_conxemo_int  = ft_sourceinterpolate(cfg, gamma2_conxemo, mri); 
154.   
155. % SOURCE COMPARISONS 
156. cfg = []; 
157. cfg.method           = 'montecarlo'; 
158. cfg.statistic        = 'ft_statfun_depsamplesT'; 
159. cfg.parameter        = 'pow'; 
160. cfg.correctm         = 'cluster'; 
161. cfg.numrandomization = 1000; 
162. cfg.alpha            = 0.05; 
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163. cfg.tail             = 0; 
164.   
165. nsubj=numel(alphaAAavg); 
166. cfg.design(1,:) = [1:24 1:24]; 
167. cfg.design(2,:) = [ones(1,24)*1 ones(1,24)*2]; 
168. cfg.uvar        = 1; % row of design matrix that contains unit 

variable (in this case: subjects) 
169. cfg.ivar        = 2; % row of design matrix that contains independent 

variable (the conditions) 
170.   
171. delta_conxemo_dep = ft_sourcestatistics(cfg, delta_con, delta_emo); 
172. theta_conxemo_dep = ft_sourcestatistics(cfg, theta_con, theta_emo); 
173. alpha_conxemo_dep = ft_sourcestatistics(cfg, alpha_con, alpha_emo); 
174. beta_conxemo_dep = ft_sourcestatistics(cfg, beta_con, beta_emo); 
175. gamma1_conxemo_dep = ft_sourcestatistics(cfg, gamma1_con, gamma1_emo); 
176. gamma2_conxemo_dep = ft_sourcestatistics(cfg, gamma2_con, gamma2_emo); 
177.   
178. % interpolate 
179. cfg            = []; 
180. cfg.downsample = 2; 
181. cfg.parameter  = 'stat'; 
182.   
183. delta_conxemo_dep_int  = ft_sourceinterpolate(cfg, delta_conxemo_dep, 

mri); 
184. theta_conxemo_dep_int  = ft_sourceinterpolate(cfg, theta_conxemo_dep, 

mri); 
185. alpha_conxemo_dep_int  = ft_sourceinterpolate(cfg, alpha_conxemo_dep, 

mri); 
186. beta_conxemo_dep_int  = ft_sourceinterpolate(cfg, beta_conxemo_dep, 

mri); 
187. gamma1_conxemo_dep_int  = ft_sourceinterpolate(cfg, 

gamma1_conxemo_dep, mri); 
188. gamma2_conxemo_dep_int  = ft_sourceinterpolate(cfg, 

gamma2_conxemo_dep, mri); 
189.   

  


