
DISSERTATION 
 
 

 
ANDROGEN SIGNALING IN THE PLACENTA 

 
 
 
 
 

Submitted by 
 

Ellane Rachael Cleys 
 

Department of Biomedical Sciences 
 

 

 

 

 

In partial fulfillment of the requirements 
 

For the Degree of Doctor of Philosophy 
 

Colorado State University 
 

Fort Collins, Colorado 
 

Summer 2014 
 
 
 
 
Doctoral Committee: 
 
 Advisor:  Gerrit Bouma 
 Co-Advisor: Colin Clay 
 
 Stuart Tobet 
 Santiago Di Pietro 

 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by Ellane Rachael Cleys 2014 
 

All Rights Reserved 
 
 
 

  



 ii

ABSTRACT 
 
 
 

ANDROGEN SIGNALING IN THE PLACENTA 
 
 
 

Placental estrogen signaling is known to regulate placental trophoblast function and 

differentiation. However, the role of placental androgen signaling has never been investigated, 

despite the rise of maternal serum androgens throughout gestation. Recent findings have shown 

increased maternal serum androgen in patients with the placental induced disorder preeclampsia. 

Preeclampsia, a maternal hypertension and proteinuria condition instigated by insufficient 

trophoblast differentiation and invasion into maternal spiral arteries, is also associated with 

increased placental expression of androgen receptor and an increased risk of incidence in patients 

with polymorphisms in androgen receptor that decrease androgen signaling. These findings 

suggest a crucial role for placental androgen signaling. Moreover, research investigating 

androgen’s role in cancer progression has shown that many androgen responsive genes regulate 

cell proliferation, differentiation to invasive phenotypes, and tissue vascularization, all processes 

necessary for normal placental development. Androgen signaling in tumor tissues is further 

regulated by androgen receptor complexes with histone lysine demethylases. These complexes 

are recruited to androgen response elements in DNA and dynamically regulate histone tail 

modifications for transcription initiation. This led us to the overall hypothesis that (1) androgen 

signaling in trophoblast cells is important for placental development, and (2) androgen receptor 

complexes with histone lysine demethylases in the placenta to regulate vascularization, growth 

and invasion factors in trophoblast cells. To test this hypothesis, we utilized a prenatal 

androgenization ewe model as well as human first trimester placental samples and immortalized 
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human trophoblast cell lines. Using the prenatal androgenized ewe model, we report for the first 

time expression of histone lysine demethylases in the placenta. Furthermore, we showed 

androgen receptor complexes with histone lysine demethylases and is recruited to an androgen 

response elements in the 5’untranslated flanking sequence of vascular endothelial growth factor 

in the sheep placenta. We also report that histone lysine demethylase are present in human first 

trimester syncytiotrophoblast and complex with androgen receptor in immortalized trophoblasts. 

Additionally, we demonstrated that androgen receptor complexes with histone lysine 

demethylases are also present in choriocarcinoma ACH-3P and BeWo cells. Dihydrotestosterone 

treatment in these cells led to down-regulation of androgen responsive genes, specifically 

KDM3A and MMP2. Inhibition of androgen receptor through flutamide treatment altered mRNA 

levels for genes regulating vascularization, including HIF1α, PPARα, and PPARy. Hypoxia also 

decreased CYP19 levels, however, further investigation is needed to confirm dihydrotestosterone 

and flutamide effect on protein expression in trophoblast cells. These data suggest that histone 

lysine demethylases complex with androgen receptor to regulate androgen responsive genes, 

including those directing placental vascularization and development. However, further 

experiments are needed to confirm the necessity of histone lysine demethylases for targeted 

androgen signaling in trophoblast cells and to determine if androgen directly regulates 

trophoblast differentiation and invasion. These findings suggest androgen signaling may play a 

critical role in placental development.  
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INTRODUCTION 
 
 
 

The placenta functions as a crucial and transitory organ for the support of the developing fetus, 

providing an intricate network of trophoblast-lined villi interdigitated in maternal decidua and 

blood for nutrient and gas exchange, endocrine signaling, and fetal waste disposal. During the 

first trimester, trophoblast cells from the embryo rapidly proliferate and differentiate for 

placental development, or placentation, to occur. Trophoblast function is regulated by a vast 

array of transcription factors and endocrine signaling. Specifically, the hypoxic environment of 

the uterus regulates estrogen production from trophoblast cells, promoting cytotrophoblast 

differentiation to syncytiotrophoblast and invasive extravillous trophoblasts in the human 

placenta for continued estrogen production and uterine spiral artery remodeling, respectively. In 

the sheep placenta, hormone-secreting binucleate trophoblasts fuse with maternal uterine 

epithelium for formation of a syncytium that functions in endocrine signaling, including 

production and release of sex hormones into maternal circulation.  

 

While estrogen signaling, in particular estriol, estrone and estradiol, is known to aid in 

trophoblast proliferation and differentiation, other factors are necessary for proper placentation to 

occur. Vascular endothelial growth factor (VEGF) aids in trophoblast differentiation and is 

necessary for placental angiogenesis. Matrix metalloproteinases (MMPs) secreted from 

trophoblasts break down uterine extracellular matrix for placental growth and maternal spiral 

artery remodeling. Growth factors such as insulin like growth factors (IGFs), epidermal growth 

factor (EGF), and transforming growth factors (TGFs) are also expressed in the placenta for 

continued proliferation and turnover of trophoblasts throughout gestation. Interestingly, many of 
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the proteins known to regulate angiogenesis, trophoblast function and differentiation are 

androgen responsive genes, including VEGFA, MMPs, IGFs, EGF, and TGFs. 

 

Although androgens are known to regulate a vast array of genes that direct processes necessary 

for normal placentation (i.e. vascularization, growth and differentiation factors), heretofore no 

one has investigated androgens’ role in placental development. This is of particular interest as 

estrogen has been shown to regulate trophoblast differentiation and invasion during the first 

trimester for maternal spiral artery remodel. Additionally, increased maternal serum androgens, 

increased placental androgen receptor (AR), and decreased placental aromatase activity have 

been reported in patients with preeclampsia. Preeclampsia is a placental-derived disorder where 

insufficient trophoblast differentiation and invasion leads to maternal hypertension, fetal growth 

restriction, and can result in fetal and/or maternal death. As AR protein has been 

immunolocalized in human trophoblast cells, these findings suggest that placental androgen 

signaling may have a critical function in regulating placentation through stimulating 

angiogenesis or trophoblast differentiation. 

 

However, to identify the role of androgen signaling in the placenta, it is also necessary to 

investigate the role of histone lysine demethylases (KDMs). KDMs have been shown to form 

complexes with AR to initiate transcription of androgen responsive genes in cancer cells that 

might otherwise be epigenetically silenced. Additionally, several KDMs have been found to be 

androgen responsive, leading to a positive feedback on androgen signaling through KDMs in 

cancer cells. Although KDM presence and function has been primarily investigated in cancer, 

trophoblast function similarly to cancer in that they undergo an epithelial to mesenchymal 
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transition, express angiogenic factors to establish vascularization, and can differentiate to invade 

surrounding tissue. It is therefore of interest to determine if KDMs are present in the placenta 

and if they are capable of complexing with AR to regulate placental androgen signaling. 

 

Identification of placental androgens’ function, as well as demonstrating AR interactions with 

KDMs in the placenta, will aid in clarifying the complex mechanisms driving placentation. In 

addition, by elucidating the mechanisms of placental androgen signaling, a better understanding 

is achieved as to how placental disorders occur, such as preeclampsia. This could potentially lead 

to new opportunities for early diagnosis. 
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CHAPTER I: LITERATURE REVIEW 
 
 
 
Mammalian prenatal development is supported by a multifunctional and transitory organ, the 

placenta (Gude et al., 2004). The placenta functions not only for nutrient transport to the fetus, 

but also for gas exchange, removal of waste, and endocrine functions (Knobil and Neill 1998). 

Through playing such a multifunctional and necessary role in neonatal development, any 

aberrant placentation can lead to severe complications during pregnancy (Gude et al., 2004) as 

well as during postnatal development in humans and agricultural animals (Resnik 2002; Wu et 

al., 2006). In agricultural animals, insufficient placental function can lead to low birth weights, 

reduced efficiency, and decreased lean muscle tissue (Wu et al., 2006). In humans, dysfunctional 

placentation can lead to fetal intrauterine growth restriction (IUGR), preeclampsia (PE), and 

adult onset of diseases such as hypertension, diabetes, and coronary heart disease (Eriksson et al., 

1999; Jaquet et al., 2000; Anderson 2007). In addition to causing fetal mortality and morbidity, 

abnormal placentation can lead to maternal mortality, hypertension, and stroke (Redman and 

Sargent 2003).  

 

One such placental induced disorder in humans is PE, which is a serious pregnancy complication 

characterized by maternal hypertension, proteinuria, that is typically presented with IUGR 

(Redman 1990; 1991) and can only be treated by delivery of the placenta (Ilekis et al., 2007). PE 

develops when there is insufficient trophoblast invasion and remodeling of maternal spiral 

arteries during the first trimester (Redman 1990; 1991; Roberts et al., 1993), possibly as a 

consequence of an overactive maternal immune response to placentation (Redman et al., 1999; 

Moffett and Hiby 2007). Many risk factors for PE have been identified, including maternal 
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obesity, African or Native American descent, smoking, and male fetal sex (James 

1995;2008;2013). PE occurs in approximately 5-7% of pregnancies worldwide (Roberts and 

Cooper 2001; Redman and Sargent 2005), causing 15-20% of maternal deaths in developed 

countries (Roberts et al., 1993; Roberts and Redman 1993; Sibai et al., 2005). IUGR without the 

presentation of PE occurs in approximately 8% of pregnancies worldwide (Resnik 2002). 

Despite the prevalence and severity of these placental disorders, little is understood about their 

etiology, likely due to the multifactorial development of onset (Kaufmann et al., 2003; Ilekis et 

al., 2007). To better understand abnormal placental development, in the hopes of developing 

better diagnostics and treatment, further research into pathways regulating normal placental 

development is necessary.  

 

Placental Development in the Human 

The fertilized human oocyte develops into a 58-cell blastocyst by 96 hours post fertilization and 

enters the endometrial cavity after three days post fertilization (Knobil and Neill 1998). The 

developing blastocyst appositions or aligns next to the uterine endometrium and forms the 

junctional zone where placental cells begin to invade maternal uterine decidua approximately 

one week post fertilization (Knobil and Neill 1998; Kaufmann et al., 2003). The cells 

surrounding the outside of the blastocyst are referred to as the trophectoderm (Kaufmann et al, 

2003). The trophectoderm is composed of trophoblast cells, which differentiate into 

cytotrophoblast cells, functioning as the proliferative bipotential progenitor cells of the placenta 

(Enders 1968; Kaufmann et al., 2003) (Figure 1.1). The cytotrophoblasts can further differentiate 

to a continuous, multinuclear layer of syncytiotrophoblast where continued cell fusion form a 

syncytium that will be in direct contact with maternal blood (Brosens et al., 1967; Pijnenborg et 
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al., 1981; Benirschkle and Kaufmann 2000; Hirano et al., 2002; Guibourdenche et al., 2009). 

Proliferative cytotrophoblast cell columns attach to and interdigitated the junctional zone, 

forming anchoring villi (Enders 1968).  

 

The invasive extravillous trophoblasts (also referred to as interstitial extravillous 

cytotrophoblasts) differentiate from the cytotrophoblast at anchoring villi and invade into the 

maternal decidua, invading up to the first third of the myometrium by the third trimester 

(Brosens 1988; Blankenship, et al., 1993; Kam et al., 1999; Kaufmann et al., 2003). To aid in the 

invasion processes, extravillous cytotrophoblast express an array of genes, including matrix 

metalloproteinases 2 (MMP2) and MMP9, to break down the extracellular matrix, in particular 

during the first trimester when placental vascularization is primarily established (Bass et al., 

1994; Cross et al., 1994). With differentiation into an invasive extravillous phenotype, there is 

also a decrease in expression of transforming growth factor beta-3 (TGF-β3) and tissue inhibitor 

of metalloproteinases-2 (TIMP2) (Lee et al., 2010).  

 

When the extravillous cytotrophoblast invade the maternal decidua, they position themselves 

next to the maternal spiral arteries and form plugs during the first trimester of pregnancy (Hustin 

et al., 1987; Moll et al., 1988; Nanaev et al, 1995; Burton et al., 1999; Guibourdenche et al., 

2009). Endovascular extravillous cytotrophoblasts differentiate from extravillous trophoblasts to 

invade maternal spiral artery walls and lumen (Blankenship et al., 1993; Kaufmann et al., 2003). 

By 10-12 weeks of pregnancy, the plugs are lost and endovascular extravillous trophoblasts 

replace the epithelium, leading to dilation of the arteries, increased blood flow, and reduced flow 

resistance to the placenta by the second trimester (Brosens et al., 1967; Pijnenborg et al., 1981; 
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Benirschkle and Kaufmann 2000; Hirano et al., 2002; Guibourdenche et al., 2009). Endovascular 

extravillous cytotrophoblast invasion and re-modeling of the spiral arteries is highest in the 

middle of the placental bed, forming a discoid region where extensive nutrient and gas exchange 

occurs (Brosens 1988; Blankenship, et al., 1993; Kam et al., 1999; Kaufmann et al., 2003). 

 

Rapid proliferation of the placenta occurs early during pregnancy (Korgun et al., 2006; Kar et al., 

2007). At about 21 days post-conception, fetal-placental vasculogenesis initiates and circulation 

is established by 32 days post-conception (Demir et al., 1989; Zygmunt et al., 2003; Kaufmann 

et al., 2004; Torry et al., 2004; Demir et al., 2004, 2007; Arroyo and Winn 2008; Burton et al., 

2009; van Oppenraaij et al., 2009). Placental vascularization is in part established by villous 

cytotrophoblast cells expressing vascular endothelial growth factor (VEGF) and other angiogenic 

factors during the first trimester (Hildebrandt et al., 2001). 

 

Although the trophoblasts continue proliferation and cell turn-over throughout pregnancy (King 

and Blankenship, 1993; Kaufmann and Castellucci, 1997), there remains three layers of fetal 

tissue (trophoblast syncytium, fetal interstitium, and fetal endothelium) (Leiser and Kaufmann 

1994), that separate fetal portal blood from maternal arterial blood (Leiser and Kaufmann 1994). 

This direct bathing of syncytium in maternal blood gives humans a hemochorial placenta (Enders 

1965; Boyd and Hamilton 1970). Additionally, as the endovascular extravillous trophoblast 

invasion occurs in one concentrated area, this forms a discoid region where the majority of 

nutrient and gas exchange occurs. Therefore, the human hemochorial placenta is also a discoidal 

placenta (Boud and Hamilton 1970; Leiser and Kaufmann 1994), functioning to maintain fetal-
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placental growth with a highly invasive extravillous and endovascular trophoblast invasion and 

arterial remodeling (Kaufmann et al., 2003). 

 

Placental Development in the Sheep 

In contrast to the human placenta, endovascular invasion by trophoblast cells does not occur 

within the sheep placenta (Kaufmann et al., 2003; Spencer et al., 2004; Carter 2007). Instead, the 

maternal endothelium and connective tissue is left intact (Leiser and Kaufmann 1994). Although 

the method of implantation is different in the ewe compared to the human, similarities remain in 

the process of apposition, trophoblast differentiation, and trophoblast function. 

 

In the ewe, the morula enters the uterus at day 4, developing into a blastocyst by day 6 (Spencer 

et al., 2004). By day 8, the blastocyst hatches from the zona pellucida and is located in the 

ipsilateral uterine horn (Rowson and Moor 1966; Spencer et al., 2004). It undergoes a period of 

rapid cell proliferation and elongation, moving to the contralateral horn by day 13 if a singleton 

is present (Rowson and Moor 1966). During this period of elongation, and in contrast to the 

human, the extraembryonic membranes (chorion and yolk sac) form prior to implantation 

(Renfree 1982; Guillomot et al., 1993; Carson et al., 2000; Spencer et al., 2004). Rapid 

elongation of the ovine conceptus continues until day 16, when it adheres to the uterine 

epithelium (Spencer et al., 2004). The ovine conceptus then increases in size approximately 

threefold from gestational day 20 to 30 (Spencer et al., 2004; Grazul-Bilska et al., 2011).  

 

Attachment and implantation begins at embryonic day 16, when mononuclear trophoblast cells 

from the trophectoderm adhere to the endometrial luminal epithelium (Spencer et al., 2004). 
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Between days 14 and 16, when the ovine conceptus is rapidly elongating and beginning to adhere 

to the endometrial luminal epithelium, binucleate trophoblast cells begin to differentiate from the 

mononuclear trophoblasts through consecutive nuclear divisions without cytokinesis (Spencer et 

al., 2004). Mononuclear trophoblasts, comparable to the invasive extravillous trophoblast in 

humans, also express MMP2 and MMP9, likely for improved branching of placental villi (Riley 

et al., 2000). Binucleate trophoblast cells do not adhere to the endometrial luminal epithelium, 

but they can fuse with epithelial cells and form a syncytium or hybrid symplasm that functions 

similarly to the human syncytium for the synthesis and secretion of hormones (Wooding 1992; 

Hoffman and Wooding 1993; Spencer et al., 2004). As giant binucleate cells fuse with 

endometrial luminal epithelium, they form trinucleate cells that further develop into syncytial 

plaques as more binucleate cells migrate and fuse (Wooding 1984; Spencer et al., 2004). Also 

similar to the human syncytium, continued cell turn-over and binucleate cell migration and 

fusion maintains the syncytium in the sheep placenta (Wooding 1984; Riley et al., 2000; Spencer 

et al., 2004). By gestational day 22, the entire trophectoderm has adhered to the endometrial 

luminal epithelium at placentome sites, described below (Boshier 1969; Guillomot et al., 1981; 

Spencer et al., 2004). 

 

In ruminant animals, including sheep, areas along the endometrial luminal epithelium develop 

plaques or caruncles, which form progressively at gestational day 14 with depression of the 

luminal epithelium and crypt formation (Guillomot et al., 1981; Wimsatt 1950; Spencer et al., 

2004). These specialized caruncle regions are the maternal side of the developing placenta at 

attachment sights, called placentomes (Wimsatt 1950; Spenser et al., 2004). Placentomes are 

composed of both a maternal portion (caruncle) and a fetal portion (cotyledon) (Wimsatt 1950; 
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Spencer et al., 2004). Syncytial plaques develop specifically within the placentome, covering the 

surface of caruncles for nutrient and gas exchange by fusion with endometrial luminal epithelium 

(Cross et al., 1994; Spencer et al., 2004). Placentomes are not present in the human placenta, but 

they do maintain a similar structure and function compared to the discoid region of invasion and 

nutrient exchange in the human placenta (Leiser and Kaufmann 1994). Inter-cotyledonary 

regions between placentomes are characterized by smooth chorion where nutrient and gas 

exchange can still occur (Bjorkman 1969; Leiser and Kaufmann 1994; Spencer et al., 2004). 

 

As the sheep placenta has limited invasion of the maternal tissue (Leiser and Kaufmann 1994; 

Kaufmann et al., 2003; Spenser et al., 2004; Carter 2007), there are essentially six layers of 

tissue separating fetal from maternal blood in areas outside of the placentomes: maternal 

endothelium, connective tissue, maternal epithelium, fetal trophoblast, fetal connective tissue, 

and fetal endothelium (Leiser and Kaufmann, 1994). This type of placenta in sheep is called 

synepitheliochorial placenta (Wooding 1992; Leiser and Kaufmann 1994; Carter 2007), which is 

capable of transferring nutrients and gas across more tissue layers than are present in the human 

placenta (Cross et al., 1994). 

 

Matrix Metalloproteinases in the Placenta 

Matrix metalloproteinases (MMPs) play an important role in tissue remodeling for repair, cell 

migration, vascularization, and placentation. In particular, extravillous cytotrophoblast cells 

secrete MMPs to aid trophoblast differentiation and invasion into maternal decidua, and to 

establish placental vascularization (Huppertz et al., 1998; Solberg et al., 2003; Isaka et al., 2003; 

Munaut et al., 2003; Renaud et al., 2014). There are 28 known members in the MMP family and 
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they all function as calcium-dependent zinc endopeptidases that cleave internal peptide bonds in 

polypeptides and proteins (Bode and Maskos 2003). After translation, MMP pro-protein (pro-

MMP) is processed in the endoplasmic reticulum, where pro-peptide is removed to allow access 

to the catalytic domain. The catalytic domain of MMPs contains zinc ion (Zn2+) that will interact 

with proteins and cleave peptide bonds, primarily through protein interactions at a glutamate 

residue within the MMP to initiate subsequent substrate hydrolysis. Once the pro-peptide is 

removed, active MMPs are secreted into the extracellular space or can be bound to the cell 

membrane. Substrate binding domain of MMPs functions for specificity of targeting proteins for 

degradation. Target proteins for MMPs are primarily extracellular matrix proteins, including 

collagen (types 1 through 10), gelatin, aggrecan, fibronenctin, elastin, and laminin (Bode and 

Maskos 2003; Manzetti et al., 2003). However, each MMP has specificity and affinity for 

specific extracellular matrix proteins (i.e. MMP9 targets gelatin and collagen type 4 and 5) 

(Manzetti et al., 2003). By this mechanism, MMPs can degrade extracellular matrix proteins, 

enabling cell migration or proliferation, vascularization, or other tissue remodeling processes 

(Munaut et al., 2003; Renaud et al., 2014).  

 

During placentation, invading extravillous trophoblasts are known to secret MMPs to cleave 

extracellular matrix proteins in the decidua, aiding in the process of cell migration into maternal 

decidua and establishment of placental vascularization (Huppertz et al., 1998; Munaut et al., 

2003; Solberg et al., 2003; Renaud et al., 2014). However, to control the function of MMPs, cells 

also secrete tissue inhibitors of metalloproteinases (TIMPs). TIMPs function by binding MMPs, 

usually at a 1:1 ration, and block MMP activity by inserting into the active site of the catalytic 

domain (Snoek-van Beurden and Von den Hof 2005; Stephenson et al., 2005). There are four 
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known TIMPs and they play a significant role in regulating tissue remodeling and cell invasion 

(Snoek-van Beurden and Von den Hof 2005). When extravillous trophoblasts of the placenta 

invade maternal decidua during the first trimester, decidual stromal cells secrete TIMPs, possibly 

as a mechanism to limit placental invasion (Hurskainen et al., 1996; Huppertz et al., 1998). 

Furthermore, research suggests that hormone secretion from trophoblasts may function in 

paracrine or autocrine signaling for regulation of placental MMP expression (Lee et al., 2003; 

Liao et al., 2003, Limaye et al., 2008; Comstock et al., 2008) 

 

Steroidogenesis and Hormone Signaling 

While placenta of all species functions for the transport of nutrients and gas for support of the developing 

fetal-placenta unit (Gude et al., 2004), it also has important endocrine functions necessary for fetal 

development and maternal signaling (Knobil and Neill 1998; Guibourdenche et al., 2009). Steroid 

hormone synthesis (steroidogenesis) involves the conversion of cholesterol to various steroid hormones 

through enzymatic processing (Miller and Auchus 2010). Free cholesterol in the cell cytoplasm, obtained 

either from endocytosis or de novo synthesis, is carried to the outer mitochondrial membrane by 

proteins with a StAR-related lipid transfer domain (START), such as StarD4 and StarD5 (Miller 

and Auchus 2010). StAR, the first-described member of the START protein family, plays the 

crucial role in facilitating the movement of cholesterol from the outer mitochondrial membrane 

to the inner mitochondrial membrane (Miller and Auchus 2010). Sterol response element binding 

proteins (SREBPs) and 3-hydroxy-3-methylglutaryl co-enzyme A reductase regulate the 

biosynthesis of cholesterol (Miller and Auchus, 2010). The entire process of steroidogenesis is 

show in Figure 1.2, with the first and rate limiting step being P450scc (CYP11A1 or cholesterol 

side chain cleavage enzyme) conversion of cholesterol to pregnenolone (Miller and Auchus 

2010). This occurs in the inner mitochondrial membrane (Miller and Auchus 2010). Other 
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steroidogenic enzymes that function in steroidogenesis belong to two family groups: cytochrome 

P450 enzymes (P450) or hydroxysteroid dehydrogenases (HSDs) (Miller and Auchus 2010).  

 

Cellular regulation of steroidogenesis occurs with posttranslational modifications of P450 and 

HSD steroidogenic enzymes (Miller and Auchus 2010). The end result is the cell-specific 

production of sex steroid hormones (androgens, progesterone, and estrogens), 

mineralocorticoids, or glucocorticoids (Miller and Auchus 2010). The production of specific 

steroids is determined by the origin of the endocrine tissue or cell type as specific steroidogenic 

enzymes may only be expressed in a given tissue or cell, such as in the adrenal gland or ovary 

(Miller and Auchus 2010). The steroid hormones, once secreted by the cell, can act in a paracrine 

or endocrine manner (Petraglia et al., 1996). For a cell to respond to steroid hormones, however, 

it must express their receptors (Mangelsdorf et al., 1995). For instance, tissue specific expression 

of estrogen receptors 1/alpha (ESR1), estrogen receptor 2/beta (ESR2), and androgen receptor 

(AR) can be seen in multiple cell types and tissues, including the male and female gonads and 

the placenta (Leung and Steele 1992). 

 

Estrogens encompasses a family of sex steroid hormones that have an 18 carbon structure and 

can refer to both naturally occurring and synthetic hormones. All estrogens bind to estrogen 

receptors to initiate a cellular response. The estrogen family includes estrone (E1), estradiol (E2), 

estriol (E3), and 16-hydroxy estrone. The most common biologically active estrogen is estradiol. 

Similarly, androgens are a class of 19 carbon sex steroid hormones that includes the adrenal 

androgens, dehydroepiandrosterone (DHEA) and DHEA-S, as well as androstenedione, 

androstenediol, testosterone, and dihydrotestosterone (DHT). All androgens signal via binding to 
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the androgen receptor (AR), although, similar to estrogens, there is varying affinity of family 

members to the receptor (Senger 2003; Hu et al., 2010; Miller and Auchus 2010). 

 

Steroid hormone receptors possess several domains for functional signaling, including a ligand 

binding domain and a DNA binding domain (Mangelsdorf et al., 1995). The traditional AR DNA 

binding domain or response element (ARE) is AGAACAnnnTGTTCT (Mangelsdorf and Evans 

1995; Mangelsdorf et al., 1995; Comstock et al., 2008) and the traditional ESR1 DNA binding 

domain (ERE) is GGTCAnnnTGACC (Mangelsdorf et al., 1995). Binding of a sex hormone 

ligand to its receptor typically occurs within the cytoplasm or within the nucleus as steroid 

hormones are membrane permeable (Mangelsdorf et al., 1995). The ligand-bound receptor may 

then dimerize and bind directly to DNA where the DNA-response element or half-site is present 

(Mangelsdorf et al., 1995). Binding can also occur at other DNA sequences that are similar in 

sequence or shape to the traditional DNA binding domain (Comstock et al., 2008). The ligand-

bound receptor further recruits other transcription cofactors to initiate transcription (Mangelsdorf 

et al., 1995). As this pathway of steroid hormone signaling initiates gene transcription, the effects 

of steroid signaling are not typically an immediate cellular response (Cooper and Hausman 

2000).  

 

However, studies have shown that steroid hormones also are capable of initiating rapid cellular 

responses, such as increased intracellular calcium (Berridge and Taylor 1988) that would precede 

gene transcription (Cooper and Hausman 2000). This suggests that steroid hormones are capable 

of binding cell membrane receptors to initiate a rapid cellular response via secondary messengers 

(Cooper and Hausman 2000). Indeed, despite traditional signaling via direct binding to DNA or 
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through transcription factor binding, steroid hormones appear to also signal through specific 

membrane receptors (Prossnitz et al., 2008; Thomas 2008). For instance, progesterone and 

estrogen signal through cell membrane receptors mPRα and PGMRC1, and GPR30 (GPER), 

respectively, possibly to initiate a different cellular response than the conventional nuclear 

steroid hormone receptor pathway (Prossnitz et al., 2008; Thomas 2008).  

 

Receptor expression within a cell can also be regulated by tissue specific methylation within the 

promoter region, such as occurs in AR (Kinoshita et al., 2000; Jarrard et al., 1998), ESR1 (Fürst 

et al., 2012), and ESR2 transcription (Xue, et al., 2007). Methylation within the promoter region 

typically blocks gene transcription (Zhang and Meaney 2010), adding a layer of complexity to 

the system that ensures appropriate cellular signaling and response to steroid hormones. 

Additionally, tissue specific response regions may be present within the promoter region to 

regulate mRNA transcription, such as the placental specific promoter region for aromatase 

(CYP19) (Vanselow et al., 1999). 

 

While steroid hormone signaling regulates transcription, circulating and cytoplasmic binding 

proteins can bind specific hormones to decrease their ability to signal while increasing their half-

life (Anderson 2008). For instance, sex hormone-binding globulin (SHBG) is a glycoprotein that 

binds sex steroid hormones, in particular testosterone and estradiol (Bardin et al., 1981; 

Hammond 1990; Petra 1991). Circulating SHBG is further capable of regulating hormone 

signaling by transporting hormones directly to cells or tissue to initiate cellular signaling (Bordin 

and Petra 1980; Stanczky et al., 1986; Larriva-Sahd et al., 1991; Hryb et al., 1990). 
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Mature peptide hormones, in comparison, are composed of less than 50 amino acids and their 

signaling pathway is different from steroid hormones as they only signal via cell membrane 

receptors (Cooper and Hausman 2000). After a peptide hormone binds its membrane receptor, 

secondary messengers, such as calcium, rapidly amplify the signal of ligand binding, typically 

via phosphorylation of cytoplasmic proteins (Cooper and Hausman 2000). Ultimately, this leads 

to binding of transcriptional cofactors or repressors for regulation of gene expression (Cooper 

and Hausman 2000). In both situations, the products of either peptide or steroid hormone 

signaling can initiate gene transcription, resulting in protein products that have the potential to 

further regulated the transcription of other genes, referred to as secondary response genes 

(Cooper and Hausman 2000). 

 

Placental Steroidogenesis and Receptor Expression 

During the first trimester, at approximately the seventh week of pregnancy, sufficient 

syncytiotrophoblast have differentiated from cytotrophoblasts to become the primary hormone 

producing cells in the human placenta (Guibourdenche et al., 2009). The syncytiotrophoblast is 

in direct contact with maternal blood at approximately eleven weeks of gestation; it secretes 

hormones directly into maternal circulation (Guibourdenche et al., 2009). Syncytiotrophoblast 

secrete progesterone (Guibourdenche et al., 2009), human chorionic gonadotropin (hCG), 

placental lactogen (hPL), and placental growth hormone (hGH-v) (Jameson and Hollenberg 

1993; Guibourdenche et al., 2009). While PL and GH function for mobilization of maternal 

nutrients for fetal-placental growth and support (Handwerger and Freemark 2000), progesterone 

and hCG function for uterine quiescence and pregnancy maintenance (Stoffer et al., 1977; 

Spencer and Bazer 2002). 
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As the syncytiotrophoblast is responsible for the production of progesterone in the human 

placenta, research has investigated the mechanisms of steroidogenesis and sex hormone signaling 

in this multinucleated cell layer. The steroidogenic enzymes present in the human 

syncytiotrophoblast include P450scc (pregnenolone production from cholesterol), 3β-HSD 

(progesterone and androstenedione production), 17β-HSD (testosterone production from 

androstenedione), and P450arom (or CYP19, estrogen production from testosterone) (Fournet-

Dulguerov et al, 1987; Payne and Hales 2004; Tuckey et al., 2004; Guibourdenche et al., 2009; 

Sathishkumar et al., 2012). The syncytiotrophoblast in humans does not express P450 17α-

hydroxylase-17:20; therefore, androgen production from pregnenolone and progesterone does 

not occur in the human placenta (Payne and Hales 2004; Tuckey et al., 2004; Guibourdenche et 

al., 2009). This, however, does not appear to be the case for ruminants, as both the goat and 

sheep placenta express P450c17 (Ma et al., 1999; Weng et al., 2005). 

 

The syncytiotrophoblast in the human placenta are still capable of producing testosterone despite 

the lack of P450-17α (Payne and Hales 2004; Tuckey et al., 2004; Guibourdenche et al., 2009). 

To produce testosterone, syncytiotrophoblast endocytose maternal cholesterol via binding to 

lipoprotein receptor, VLDL receptor, or B1 scavenger receptor on the syncytiotrophoblast cell 

membrane (Guibourdenche et al., 2009). Free cytosolic cholesterol is available after lysosomal 

degradation of LDLs occurs (Guibourdenche et al., 2009). In the syncytiotrophoblast, the free 

cholesterol is selectively transported to the outer and inner mitochondrial membrane by sterol 

carrier protein-2 and metastatic lymph node 64 proteins, respectively (Guibourdenche et al., 

2009). Within the syncytiotrophoblast’s mitochondria, cholesterol can be converted into 
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pregnenolone through the action of P450scc, which is further converted into progesterone via 

enzymatic action of 3β-HSD (Guibourdenche et al., 2009). 

 

As androgens cannot be directly produced from pregnenolone or progesterone in the human 

placenta, an extracellular precursor is necessary for syncytiotrophoblast androgen and estrogen 

biosynthesis (Guibourdenche et al., 2009). The precursor dehydroepiandrosterone sulfate 

(DHEA-s) is produced by fetal and maternal adrenals and reaches the placenta from fetal and 

maternal circulation, respectively (Calvin et al., 1963; Guibourdenche et al., 2009). Once DHEA-

s is taken up by syncytiotrophoblast, it is hydrolyzed by sterol steroid sulfatases into 16α-

hydroxy DHEA-s (Guibourdenche et al., 2009). 3β-HSD then metabolizes the hydrolyzed s-

DHA into androstenedione, which can be further converted into testosterone by 17β-HSD 

(Guibourdenche et al., 2009). Placental CYP19 in the endoplasmic reticulum aromatizes 

androstenedione and testosterone in the syncytiotrophoblast for the production of C18-estrone 

and estradiol, respectively (Ryan 1959; Thompson and Siiteri 1974a,b). 

 

While the syncytiotrophoblast is steroidogenic and produces sex steroid hormones, it also 

appears to be regulated by sex-steroid hormones (discussed in more detail below). To respond to 

paracrine and endocrine hormone signaling, trophoblasts must express sex steroid hormone 

receptors (reviewed in Table 1.1). Interestingly, ESR1 does not appear to be expressed in 

differentiated syncytiotrophoblast (Kumar et al., 2009), but is expressed in cytotrophoblasts, 

differentiating cytotrophoblasts, and extravillous cytotrophoblasts (Bukovsky et al., 2003a,b; 

Schiessl et al., 2006; Kumar et al., 2009). AR, in contrast, is immunolocalized in differentiated 

syncytiotrophoblast and has variable immunoreactivity in differentiating cytotrophoblasts 
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(Iwamura et al., 1994; Hsu et al., 2009). ESR2 has relatively low levels of nuclear 

immunolocalization in cytotrophoblasts and differentiating cytotrophoblasts, but can be found in 

the cytoplasm of the syncytiotrophoblast and extravillous cytotrophoblasts (Bukovsky et al., 

2003a,b; Schiessl et al., 2006; Kumar et al., 2009). The localization of AR, ESR1, and ESR2 has 

not yet been determined within the sheep placenta.  

 

Expression of sex hormone receptors and aromatase also appears to be regulated by fetal sex and 

pathological conditions during pregnancy. For instance, higher aromatase is present in placenta 

from male fetuses compared with placenta from females in normal pregnancy, while 

preeclampsia increases aromatase expression in placenta from female fetuses and decreases 

aromatase in the placenta from male fetuses (Sathishkumar et al., 2012). Additionally, ESR1 

expression can also be lost in cytotrophoblast cells, possibly contributing to the reduced placental 

invasion noted in preeclampsia (Bukovsky et al., 2003a,b). 

 

Syncytiotrophoblast regulation of sex hormone signaling is further complicated by the 

expression of sex hormone-binding globulin (SHBG) within the syncytium (Larrea et al., 1993). 

SHBG preferentially binds testosterone and estradiol to potentially limit immediate hormone 

signaling or extend sex-hormone half-life (Bardin et al., 1981; Hammond 1990; Petra 1991).  

 

Steroidogenesis in the Maternal-Placenta-Fetal Unit 

For placental steroidogenesis, maternal cholesterol is first taken up by trophoblast cells via LDL 

receptor-mediated endocytosis or SR-B1-mediated uptake (Guibourdenche et al., 2009; Hu et al., 

2010). Once internalized within the placental cells, it can be stored as esters in lipid droplets, 
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incorporated as free cholesterol into cellular membranes, or, depending on the placental cell, it 

can be utilized for steroidogenesis. In the placenta, syncytiotrophoblast (human), binucleate cells 

(sheep), and giant trophoblasts and spongiotrophoblasts (mouse) are steroidogenic cells, but they 

lack the ability to adequately synthesize cholesterol from acetate via de novo synthesis. 

Therefore, a maternal source of cholesterol is required and, during pregnancy, higher levels of 

circulating cholesterol can be found in the maternal blood (Malassiné et al., 2003; Tuckey et al., 

2004; Guibourdenche et al., 2009). Cholesterol that is taken up via LDL receptor-mediated 

endocytosis is processed in an early endosome, where decreased pH allows for the receptor to 

disassociate and be recycled back to the plasma membrane. The now free cytoplasmic 

cholesterol (including that from SR-B1 mediated uptake) is trafficked to the mitochondria in 

syncytiotrophoblast (human), binucleate cells (sheep), and giant trophoblasts and 

spongiotrophoblasts (mouse), likely following microtubule trafficking. Cholesterol is first loaded 

onto the outer mitochondrial membrane and then transferred to the inner mitochondrial 

membrane via StAR. At the inner mitochondrial membrane, side chain cleavage occurs via 

P450scc enzymatic activity to produce pregnenolone. Pregnenolone (in the above listed cell 

types) is further converted to progesterone via enzymatic activity of 3β-HSD (Guibourdenche et 

al., 2009; Hu et al., 2010). At this point, the progesterone is primarily released back into maternal 

circulation. This is of particular importance in human and sheep, where placental production of 

progesterone maintains pregnancy. Interestingly, the human placenta is more steroidogenic than 

placentas of other mammals in that it produces much greater quantities of progesterone per unit 

volume (Malassine et al., 2003; Senger 2003; Miller and Auchus 2010). 
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In the human placenta, progesterone does not undergo further processing to form estrogens or 

androgens, as discussed above. Instead, the human placenta required maternal and fetal 

contributions of dehydroepiandrosterone sulfate (DHEA-S) (Calvin et al., 1963; Mastorakos and 

Ilias 2003; Payne and Hales 2004; Tuckey et al., 2004; Guibourdenche et al., 2009). In contrast, 

the sheep and rat placenta express 17α-hydroxylase and are capable of producing androgens; this 

would occur in the binucleate cells (sheep and rat) and in the spongiotrophoblasts (rat). The 

mouse placenta is also capable of converting progesterone into androstenedione, but lacks 

aromatase for the production of estrogens (Rembiesa et al., 1971; Arensburg et al., 1999; Ma et 

al., 1999; Mastorakos and Ilias 2003).  In both the human and sheep placenta, DHEA can be 

further processed by 3β-HSD to form androstenedione. Androstenedione is further converted to 

testosterone via 17β-HSD while aromatase activity (which is present in the sheep and human 

placenta) can produce estrone and estradiol from these precursors, respectively (Bousquet et al., 

1984; Strauss et al., 1996; Wooding et al., 1996; Guibourdenche et al., 2009: Hu et al., 2010; 

Mondragón et al., 2012).  

 

In humans, sheep, and rodents, the fetal gonads cannot make progesterone, estrone, estradiol, or 

estriol. This is because the fetus lacks the enzymes 3β-HSD and aromatase, both of which are 

present in the placenta (Ryan 1959; Thompson and Siiteri 1974a,b; Arensburg et al., 1999; 

Guibourdenche et al., 2009). However, if the fetus is a male, there will be production of 

testosterone and dihydrotestosterone (DHT). When this occurs, maternal LDL cholesterol is 

taken up by the fetal gonadal tissue via LDL receptor mediated endocytosis or SR-B1 mediated 

selective uptake. Once inside the cell, cholesterol will be processed as describe above. When 

sexual differentiation of the male testes begins to occur (at the start of the second trimester in 
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humans or at day 30 of gestation in sheep), the differentiating Leydig cells will convert free 

cholesterol into pregnenolone. Conversely, circulating fetal pregnenolone of placental origin may 

also be taken up for steroidogenesis. Pregnenolone in Leydig cells undergoes enzymatic 

processing to produce testosterone and DHT, both of which are necessary for completion of male 

sexual differentiation (Gehani et al., 1998; Senger 2003; Hu et al., 2010). However, fetal derived 

testosterone will travel through fetal circulation, back to the placenta, where aromatase activity 

will convert it to estradiol (Guibourdenche et al., 2009). This agrees with human studies that 

have shown that fetal sex does not alter maternal serum or umbilical cord blood levels of 

testosterone and dihydrotestosterone (Dawood and Sexena 1977; Rodeck et al., 1985). 

 

Additionally, the maternal gonad maintains steroidogenesis throughout pregnancy, though to 

varying degrees in human, sheep, and rodent. To begin with, circulating LDL is also taken up by 

ovarian cells (granulosa, theca, small or large luteal cells) and processed as described above. In 

luteal cells of the sheep, human, and rat ovary, pregnenolone is converted to progesterone via 3β-

HSD. The amount of progesterone produced by the corpus luteum, and the amount of luteal 

tissue, is dependent on the stage of pregnancy. For instance, in early sheep and human 

pregnancy, luteal production of progesterone is high and will maintain pregnancy. However, by 

the second trimester, luteal production of progesterone is supplement by the placental production 

(Nelson et al., 1992; Quirke et al., 2001; Senger 2003; Miller and Auchus 2010). 

 

Placental Estrogen Signaling and Function 

The major estrogens produced by the human placenta are estrone, estriol and estradiol, which 

begin to increase during the third to thirteenth weeks of gestation (Tulchinsky and Hobel 1953; 
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Siiteri and MacDonald 1963; 1966; Loriaux et al., 1972). These estrogens appears to play a very 

crucial and complex role during placental development in humans. Depending on the stage of 

gestation and hypoxic conditions, placental estrogen signals for varying cellular functions and 

physiological effects (Albrecht et al., 2006). Interestingly, oxygen concentration regulates 

aromatase activity in the placenta (Thompson and Siiteri 1974a,b; Goto and Fishman 1977; 

Zachariah and Juchau 1977), which can lead to impaired estrogen biosynthesis in hypoxic 

conditions (Aw et al., 1985; Rodesch et al., 1992). This might contribute to estradiol’s varying 

functions between the first and second trimester, as a more hypoxic environment is present with 

restricted blood flow to the developing placenta during the first trimester when extensive 

differentiation of extravillous cytotrophoblasts and remodeling of the uterine spiral arteries 

occurs (Kaufmann et al., 2003). Additionally, this might lead to greater prominence of androgen 

signaling in syncytiotrophoblast in the first trimester as androgens up-regulates hypoxia 

inducible factors (HIFs) and vascular endothelial growth factor (VEGF) activity in a hypoxic 

environment (Shabisgh et al., 1999; Mabjeesh et al., 2003b; Cheng et al., 2004; Lissbrant et al., 

2004; Boddy et al., 2005; Zhu and Kyprianou 2008). 

 

As early as 11 weeks of gestation, HIF-1α activity is blocked by 2-methoxyestradiol (2-ME), a 

metabolite of estradiol that is present in the human placenta (Berg et al., 1983; Mabjeesh et al., 

2003a; Ricker et al., 2004; Becker et al., 2008; Kanasaki et al., 2008). Under the hypoxic 

conditions that are present during the first trimester, 2-ME induces cytotrophoblast 

differentiation into an invasive phenotype (Lee et al., 2010). Cytotrophoblast differentiation also 

occurs in vitro as treatment of term human cytotrophoblasts with 17β-estradiol leads to 

differentiation into a syncytium of functionally mature syncytiotrophoblast capable of secreting 
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human chorionic gonadotropin (hCG) (Rama et al., 2004). Therefore, estrogen influences 

placental growth in the first trimester (Abdul-Karim et al., 1971) through increased 

syncytiotrophoblast differentiation and, thereby, increased synthesis of progesterone (Solomon 

1994). It is widely accepted that the hypoxic environment during the first trimester leads to the 

trophoblast invasion (Zhou et al., 1993; Graham et al., 2000; Norwitz et al., 2001; Kadyrov et al., 

2003; Bischof and Irminger-Finer 2005; Hayashi et al., 2005; Lyall 2006; Cohen and Bischof 

2007; Lunghi et al., 2007; Robins et al., 2007; Rosario et al., 2008), likely through estradiol 

signaling such as with 2-ME (Lee et al., 2010).  

 

 At the start of the second trimester in primate pregnancy, there is a surge in estrogens that 

blocks the differentiation of cytotrophoblast cells into extravillous trophoblasts (Albrecht et al., 

2006), likely facilitated through down-regulation of VEGF (Bonagura et al., 2008). This shift in 

estrogen function in the placenta during the second trimester, when estrogen levels surge, may be 

regulated by the increase in placental blood flow and oxygen at this time (Albrecht et al., 2006). 

However, once maternal spiral artery invasion has occurred and the high-flow, low-resistance 

blood flow is established to the placenta in the second trimester, high circulating estrogen levels 

are not required to maintain the uteroplacental blood flow that is established (Aberdeen et al., 

2010), primarily because the invasion and establishment of the uteroplacental blood flow occurs 

in the first trimester with differentiation of the extravillous and endovascular cytotrophoblasts 

(Kaufmann et al., 2003).  

 

Interestingly, reduced aromatase activity in the term placenta has been reported in preeclamptic 

patients, significantly reducing placental 17β-estradiol, estrone, and 2-methoxy-estradiol (Hertig 
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et al., 2010). This suggests that aberrant estrogen signaling during the first trimester in the 

preeclamptic placenta may contribute to the reduced placental invasion and pregnancy-induced 

hypertension presented in these patients (Redman and Sargent, 2003). 

 

Placental Androgen Signaling and Function 

Despite the research investigating the critical roles of estrogen in trophoblast cell function, there 

has been very limited research investigating the function of androgen signaling within the 

placenta. The limited research on androgen’s role in placental development has primarily 

focused on its role in preeclampsia (PE). The earliest report from Thoumsin et al. showed that 

there is decreased aromatase activity in preeclamptic placentas compared to the placentas from 

hypertensive patients (1982). Women with PE have increase serum testosterone concentrations 

compared to normotensive pregnancies (Atamer et al., 2004; Ghorashi and Sheikhvatan 2008; 

Hsu et al., 2009), regardless of fetal gender (Lorzadeh and Kazemirad 2012). Preeclamptic 

patients in the third trimester have higher serum total and free testosterone levels when compared 

to normotensive pregnancies, although serum concentrations of DHEA-S, androstenedione, and 

SHBG are not different (Acromite et al., 1999; Serin et al., 2001; Salamalekis et al., 2006). An 

increase in androstenedione, testosterone, and free testosterone has also been reported at 17 and 

33 weeks of gestation in women who eventually developed preeclampsia, while DHEAS was 

elevated at week 17 only (Carlsen et al., 2005). Increased serum total and free testosterone has 

also been reported in pregnancies with placental induced hypertension at 37 weeks of gestation 

(Gerulewicz-Vannini et al., 2006). 
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Increased placental expression of androgen receptor (AR) is also reported in the 

syncytiotrophoblast and stromal cells of preeclamptic placentas compared to placentas from 

normotensive pregnancies (Hsu et al., 2009; Sathishkumar et al., 2012). While increased serum 

testosterone (Atamer et al., 2004; Ghorashi and Sheikhvatan 2008; Hsu et al., 2009; Lorzadeh 

and Kazemirad 2012) and increase placental AR (Hsu et al., 2009; Sathishkumar et al., 2012) 

would suggest that androgen signaling contributes to or is a result of the pathogenesis of PE, 

decreased androgen signaling may also contribute to placental insufficiency (Lim et al., 2011). 

For instance, women are at an increased risk of developing PE if they have a polymorphism of 

greater than 16 GGC repeats in the transcriptional activation domain of the AR gene, leading to 

decreased AR function and expression (Lim et al., 2011).  

 

Interestingly, by six weeks after delivery, serum testosterone and free testosterone levels from 

preeclamptic patients reaches circulating concentrations similar to those of normotensive, control 

patients (Serin et al., 2001), strongly suggesting a placental source for circulating androgen. It 

has been proposed that serum testosterone levels could be used as a marker for predicting late 

onset preeclampsia (Carlsen et al., 2005; Lorzadeh and Kazemirad 2012); however, a conflicting 

study has shown that serum testosterone and SHBG are not significantly different during the first 

and second trimester in patients that later developed preeclampsia compared to matched controls 

(Tuutti et al., 2011). Despite this report, these data suggest that androgen signaling may be very 

important for placental development and function, and that any abnormality in androgen 

signaling may contribute to pregnancy complications like PE. As placental androgen may play 

crucial roles in regulating trophoblast function and differentiation, similar to placental estrogen, 

future studies on androgen’s role in trophoblast function and signaling are imperative. 



 27

Loss of Sex Hormone Signaling in the Placenta 

Rodent knock out models of ESR1 and AR have been shown to be non-lethal (reviewed by 

Couse and Korach 1999; Yeh et al., 2002). ESR1 knock-out mice are infertile given the 

multifactorial functions of estrogen in developmental and reproductive physiology (reviewed by 

Couse and Korach 1999). In AR knock-out mice, only males are infertile while female mice have 

reduced litter sizes (Yeh et al 2002). Additionally, human cases of estrogen resistance have been 

reported, showing that functional loss of ESR1 is viable for fetal development (Smith et al 1994). 

In spite of these findings, the functional loss of ESR1 may be in part rescued with ESR2 function 

in some tissues (reviewed by Couse and Korach 1999). Additionally, infants born with placental 

aromatase deficiency (Harada et al., 1992a,b; Conte et al., 1994; Deladoëy et al., 1999) survived 

prenatal development (Shozu et al., 1991 Morishima et al., 1995; Carani et al., 1997), suggesting 

normal or at least compensatory placental development and function had occurred.  

 

Human fetuses with androgen insensitivity also survive fetal development (Hughes and Evans 

1987; Bangsboll et al., 1992; Brown 1995; Quigley et al., 1995; reviewed by Ahmed et al., 

2000), suggesting that lost or perturbed sex hormone signaling may not be detrimental to 

placental development, despite findings of increased maternal serum androgens in compromised 

pregnancies (Atamer et al., 2004; Ghorashi and Sheikhvatan 2008; Hsu et al., 2009; Lorzadeh 

and Kazemirad 2012). However, other human case studies have suggested that functional loss of 

AR is correlated with multiple miscarriages (Wilson et al., 1974; Decaestecker et al., 2008). 

Heightened androgen signaling is also associated with recurrent spontaneous abortions and 

preterm labor (Karvela et al., 2008; Karjalainen et al., 2012). Given the conflicting reports on the 
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necessity of placental androgen signaling, further research is needed to clarify its role in normal 

placental development and trophoblast function. 

 

Androgen Signaling in Cancer 

To understand possible roles of androgen signaling in the placenta, insights can be obtained from 

studies on androgen signaling in cancer as cancer cells share many similarities to trophoblasts 

(Ferretti et al., 2007). For instance, cytotrophoblast cells undergo rapid cell divisions and are 

capable of maintaining an undifferentiated state; these features are also present in cancer (Ferretti 

et al., 2007). Additionally, cytotrophoblast can invade surrounding tissue, avoiding an immune 

response similar to cancer progression (Ferretti et al., 2007). Most importantly, trophoblasts are 

capable of recruiting maternal spiral arteries and remodeling them for increased vascularization 

of the placenta (Kaufmann et al., 2003). While cancer does not necessarily remodel arteries, 

tumors are capable of initiating vascularization (Ferretti et al., 2007).  

 

Cancer cells and trophoblast cells also undergo an epithelial-mesenchymal transition (EMT). 

Mesenchymal cells are maintained in an undifferentiated state during gastrulation in the 

developing fetus (Vicovac and Aplin 1996). While mesenchymal cells are pluripotent cells 

capable of migration, polar epithelial cells can dedifferentiate to form mesenchymal cells in the 

EMT process. EMT is a normal process during gastrulation (or tissue development) in 

multicellular organisms. For EMT to occur, polar epithelial cells must undergo multiple changes, 

including loss of polarity, loss of specific cellular junctions (such as gap junctions that often 

separate epithelial cells and a basement membrane from underlying tissue), cytoskeletal 

remodeling, loss of E-cadherin expression, and redistribution of organelles. In addition, there are 
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molecular changes that induce epithelial cells to regain a pluripotent, mesenchymal state. Studies 

have shown that multiple signaling pathways are involved, but usually Wnt and Ras signaling, in 

cooperation with transforming growth factor beta (TGFβ) and mitogen activated protein kinase 

(MAPK), are necessary for EMT to occur. Once epithelial cells have returned to the de-

differentiated, pluripotent state of mesenchymal cells, they are capable of migrating and 

proliferating via PI3K signaling, and have increased resistance to apoptosis (Theiry 2003; Kalluri 

and Weinberg 2009). 

 

While EMT occurs primarily during gastrulation, it is also occurs in adult stages of multicellular 

organisms, likely as a mechanism to respond to physiological stress and allow for specific tissue 

repair mechanisms throughout the life of the organism. However, when molecular regulation of 

EMT goes awry, there can be uncontrolled proliferation of undifferentiated mesenchymal cells. 

These cells are capable of migrating to other tissue and cause disease states such as tissue 

fibrosis or cancer (Thiery 2003). 

 

In addition to continuous embryonic and adult EMT, the trophoblasts in the placenta also 

undergoes EMT during development. The polar trophoblast cells surrounding the blastocyst 

undergo EMT to form cytotrophoblasts. Cytotrophoblasts, similar to mesenchymal cells, are 

considered pluripotent as they function as a placental stem cell, capable of migrating and 

differentiating into invasive extravillous cytotrophoblasts, endovascular extravillous 

cytotrophoblasts, and syncytiotrophoblast,. Early reports had suggested that the differentiation of 

cytotrophoblasts was also an EMT, although this is now debated. However, in contrasts to EMT, 

polar syncytiotrophoblast, which functions as an epithelial layer of the placenta, cannot revert 
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back to cytotrophoblast as the differentiation to the syncytiotrophoblast in the human placenta 

requires the loss of individual cell membranes to form the continuous, multinuclear syncytium 

(Vicovac and Aplin 1996).  

 

Although placentation is similar to cancer in that there is rapid cell proliferation and 

migration/invasion, there are differences between the two. Primarily, in contrast to cancer, EMT 

in the placenta is controlled as there is no mutagenic protein or gene expression regulating the 

trophoblast dedifferentiation, proliferation, and invasion. Additionally, environmental signals 

promote EMT in the placenta, such as apposition of the blastocyst with the uterine decidua via 

integrin-integrin or integrin-extracellular matrix interactions (Vicovac and Aplin 1996; Senger 

2003). In cancer, while environmental signals may stimulate EMT, the process is essentially 

uncontrolled and self-propagating (Thiery 2003). It has been suggested that placenta 

development and embryonic gastrulation, with their controlled EMT, are ideal models for 

studying mechanisms to inhibit or reverse EMT in cancer due to their overlapping molecular 

signaling (Kalluri and Weinberg 2009). 

 

Therefore, since cancer cells have overlapping EMT and signaling pathways as trophoblasts 

cells, androgen signaling may function similarly in both the placenta and cancer. Outlined below 

are androgen-regulated pathways in cancer that affect cell invasion/motility, proliferation, 

vascularization, and immune regulation, all of which are crucial for placentation (Ferretti et al., 

2007). 
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Androgens have been shown to regulate cell cycle progression and proliferation, either directly 

or through secondary response genes: cyclin G2, cyclin-dependent kinase 8, tumor protein D52, 

and RAB4A, a member of the RAS oncogene family (Comstock et al., 2008). Androgen signaling 

also increases cell proliferation via up-regulation of insulin like growth factors (IGFs) 

(Constáncia et al., 2002; Zhu and Kyprianou 2008). This occurs via AR-mediated up-regulation 

of IFG1 receptor and also through activation of IGF1 transcription as two androgen response 

elements (AREs) are located on the IGF1 promoter (Wu et al., 2007). Androgen stimulated IGF1 

signaling is self-regulated as both androgens and IGF1 increase IGF binding protein 5 (IGFBP5) 

(Yoshizawa and Ogikubo, 2006).  Additionally, insulin regulates AR expression and 

transcription through activation of the phosphatidylinositol 3-kinase transduction pathway 

(Manin et al., 1992; 2000; 2002). Androgens also regulate epidermal growth factors (EGF), 

transforming growth factors (TGFβ), and fibroblast growth factor (FGF) in prostate cancer (Zhu 

and Kyprianou 2008). In rat prostate epithelial cells, androgens were found to induce 66 genes 

that are immediate-early response genes that are known to regulate cell proliferation, cell 

differentiation, and cell immune/inflammatory response pathways (Asirvatham et al., 2006). 

 

Androgen signaling also appears to regulate cell mobility by increasing expression of fibronectin 

1, fascin homolog 1, myosin heavy chain (type b), tropomyosin 1 (alpha), and 

serum/glucocorticoid regulated kinase (Comstock et al., 2008). In addition, as androgens 

increase expression of matrix metalloproteinases (MMPs) MMP2, MMP9, and MMP16 (Liao et 

al., 2003, Limaye et al., 2008; Comstock et al., 2008), it is likely that androgen signaling may 

increase cell mobility and tissue invasion (Comstock et al., 2008). Androgen further regulates 

immune response via T-cell receptor gamma variable 9 and major histocompatibility complex 
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(Comstock et al., 2008). Additionally, research has suggested that androgen is capable of 

increasing vascularization by up-regulating VEGF-A (Lissbrant et al., 2004; Cheng et al., 2004; 

Shabisgh et al., 1999; Zhu and Kyprianou, 2008) via hypoxia sensing HIF-1α protein (Mabjeesh 

et al., 2003b; Boddy et al., 2005).  

 

Androgen Receptor Interactions with Histone Lysine Demethylases 

Much of androgen signaling for cellular proliferation, motility, and vascularization was 

traditionally believed to occur through direct binding of ligand-bound androgen receptor (AR) to 

DNA for gene transcription (Mangelsdorf et al., 1995). Recent research in prostate cancer has 

shown that increased androgen-dependent transcription likely occurs with the aid of AR-

complexed lysine demethylase 1 family/Jumonji-C domain containing histone lysine 

demethylases (KDMs) (Metzger et al., 2005; Yamane et al., 2006; Wissmann et al., 2007; Shin 

and Janknecht 2007a,b). AR complexing with KDMs appears to aid in localizing KDM activity 

for oxidation of methyl groups on lysines in histone N-terminal tails, leading to demethylation at 

mono-, di-, or tri-methylated lysines near androgen response elements (AREs) (Forneris et al., 

2005; Verrier et al., 2011). While AR binding may not alter KDM conformation, alignment of 

lysine methyl groups to iron (FeII) in KDMs near AREs facilitates hydroxylation and 

demethylation in histone tails, reducing their interaction with DNA for transcription initiation 

(Anand and Marmorstein 2007; Couture et al., 2007; Garcia-Bassets et al., 2007). Additionally, 

the presence of AR-KDM complexes aids in the recruitment of transcription coactivators and 

RNA polymerase II (Perillo et al., 2008). 
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KDMs appear to form heterocomplexes with AR such that complete demethylation of histone 

lysine residues occurs. For instance, KDM1A and KDM3A are capable of demethylating mono- 

and dimethylated histone 3 lysine 9 (H3K9) when complexed with ligand bound AR (Metzger et 

al., 2005; Yamane et al., 2006; Wissmann et al., 2007). AR-KDM1A/KDM3A can further 

complex with the demethylases KDM4A, KDM4C, or KDM4D (Shin and Janknecht 2007b), 

which demethylate trimethylated H3K9 for increased transcription (Klose et al., 2006; Shin and 

Janknecht, 2007a; Wissmann et al., 2007). Interestingly, KDM1A activity has also been shown 

to produce hydrogen peroxide (Forneris et al., 2005), and localized hydrogen peroxide may 

function to amplify AR-KDM receptor signaling (Felty et al., 2005; Yang et al., 2010). Perillo 

suggests that the oxidation of bases with peroxide activity generates nicks that recruit 8-oxo-

guanine-DNA glycosylase 1 (OGG1) and topoisomerase IIβ, relaxing the DNA strands around 

the histone to promote the formation of transcription initiation complexes (et al., 2008). 

 

KDMs appear to play a crucial role in regulating androgen signaling in prostate cells. For 

instance, blocking KDM1A activity with the chemical pargyline in human prostate 

adenocarcinoma cells inhibits AR-KDM1A complex formation, decreases androgen-induced 

transcription, and reduces cell proliferation (Metzger et al., 2005). Additionally, up-regulation of 

KDM4A and KDM4C are associated with increased risk for prostate cancer recurrence (Kahl et 

al., 2006; Cloos et al., 2006). As KDMs regulate histone tail modifications, they also regulate 

localized DNA methylation and recruitment of DNA methyl-binding proteins (discussed below). 

Given this interaction, AR-KDM complexes provide a possible mechanism by which sex steroid 

hormones could regulate gene transcription and/or promoter methylation to direct trophoblast 

function and differentiation. 
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Placental Developmental Programing 

Epigenetics and Methylation 

Inheritance and gene expression on its most basic level follows Mendelian genetics (Cooper and 

Hausman 2000). However, gene expression is much more complex and follows a higher level of 

regulation referred to as epigenetics (Monk 1995). Epigenetic changes in gene regulation and 

expression are heritable, self-perpetuating, and reversible (Bonasio et al., 2010). And, because 

epigenetic changes are heritable and reversible, any environmental factors that change epigenetic 

regulation can lead to developmental programing by changing the regular pattern of gene 

expression (Monk 1995). Epigenetic control of gene expression occurs in multiple ways (Monk 

1995), including DNA coiling, chromatin structure on nucleosomes, and methylation of 

cytosines on CpG islands (Holliday 1987; Monk 1995). For instance, increased gene or promoter 

methylation is heritable and capable of programing decreased gene expression in ensuing 

generations (Wigler et al., 1981; Stein et al., 1982; Doerfler 1983) 

 

Genomic DNA is tightly coiled and bound by histones and an assortment of regulatory proteins, 

forming chromatin. Within the tightly wound chromatin structure lies nucleosomes, which are 

units of 146 base pairs of DNA wrapped around an octamer of histones. There are only four core 

histones, designated H2A, H2B, H3, and H4, that complex to form the octamer in the 

nucleosome (two dimers of H3-H4 and two dimers of H2A-H2B form the octamer). As the DNA 

coils around the histones, the histone N-terminal tails are directed toward the periphery of the 

nucleosome, making them available for modifications. Histone tails are typically modified by 

acetylation, phosphorylation, ubiquitination, or methylation. Histone modifications are regulated 

by an extensive group of enzymes, such as acetyltransferases (HAT1, FIP60, etc.), deacetylases 
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(SirT2), methyltransferases (SUV39H1, G9a, MLL1, etc.), lysine demethylases (KDM1A, 

KDM4A, KDM4D, etc.), arginine methyltransferases (CARM1, PRMT4, and PRMT5), 

serine/threonine kinases (Haspin, MSK1, Mst, etc.), ubiquitinases (Bmi and RNF20), and proline 

isomerases (ScFPR4) (Strahl and Allis 2000; Peterson and Laniel 2004; Kouzarides 2007).  

 

Exactly where these histone modifications occur is important for determining the effects it will 

have on gene transcription. For instance, histone methylation can occur in promoter, insulator, 

and enhancer regions of genes. When methylation occurs on H3K36 (histone 3, lysine36) or 

H3K9 of a coding region, it can promote DNA transcription; but, when H3K36 or H3K9 

methylation occurs within the reading frame of a gene, DNA transcription is silenced. 

Additionally, histone modifications can occur on multiple residues within the histone tails to 

dynamically regulate gene transcription. For instance, while acetylation has primarily been 

described on lysine residues, methylation has been shown to occur on lysine and arginine 

residues (Li 2002; Kouzarides 2007; Barski et al., 2007). As lysine residues can be 

monomethylated, dimethylated, or trimethylated, their methylation status can further regulate 

gene transcription through recruitment of transcriptional activators or repressors (Grunstein 

1997; Jenuwein and Allis 2001; Rice and Allis 2001; Hake and Allis, 2006; Metzger et al., 

2006).  

 

In general, though, methylation on histone tails is considered to be repressive to gene 

transcription by changing the conformation of the chromatin, blocking the binding of 

transcription factors, and by recruiting transcriptional repressors. Acetylation, on the other hand, 

typically promotes gene transcription. Histone acetyltransferases (HDACs) transfer an acetyl 
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group onto a lysine residue in the histone tail. This loosens the binding of the DNA to the 

histones and increases accessibility for transcription. Histone deacetylases remove this acetyl 

group, functioning to retain the close DNA–histone interaction and reduce transcription (Zhang 

and Meaney 2010). While acetylation and phosphorylation were known to be reversible, histone 

methylation was traditionally considered to be a permanent silencer of gene transcription; 

however, it is now known that methylation is reversible and can also occasionally act as a 

transcription promoter (Metzger et al., 2006). Similarly, deamination, ubiquitination, and 

sumoylation modifications on histone tails are usually correlated with gene repression. However, 

ubiquitination has also been shown to increase gene expression, likely through variation in its 

localization or through interaction with other histone modifications and transcriptional proteins 

(Strahl and Allis 2000; Zhang and Reinberg 2001; Kouzarides 2002; Metzger et al., 2006).  

 

Regulation of histone modifications is highly complex, with multiple modifications occurring on 

a single histone tail. These alterations can also regulate further modifications on the same and 

neighboring histone tails. For instance, while methylation is generally considered to be 

repressive to gene transcription, it is also thought to recruit acetyltransferase that can acetylate a 

neighboring histone tail to increase gene transcription. Given that there are multiple residues on 

each histone tail that can be affected, and that a complex assortment of modifications occurs on 

each of the histone tails, it allows for highly complex regulation of the nucleosomes’ interaction 

with DNA, histone tail configuration, protein recruitment, and, ultimately, gene transcription. 

Therefore, the final effects of histone tail modifications are altered chromatin structure on the 

nucleosome and DNA accessibility to transcription factors (Strahl and Allis 2000; Li 2002; 

Kouzarides 2007). 
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Cellular inheritance of histone modification can be accomplished by distribution of modified 

histones to each of the daughter cells during replication. The modified histones are then capable 

of recruiting additional proteins and enzymes to renew the pattern of histone modification in both 

daughter cells such as by using reader-writer remodeling complexes. For example, H3K9 

methylation will recruit the protein HP1. HP1 then functions to recruit methyltransferases that 

continue the H3K9 methylation pattern. Interestingly, HP1 has also been shown to interact with 

DNA methyltransferase (DNMT1) and histone deacetylase (HDAC) to block gene transcription 

(Burgers et al., 2002; Li 2002; Kouzarides 2007; Alberts et al., 2008). 

 

Another form of epigenetic regulation of gene expression occurs with direct methylation on the 

DNA (Zhang and Meaney 2010) through the addition of methyl groups to cytosines in the DNA 

sequences, typically at CpG sites (Razin and Riggs 1980; Bird 1986; Holliday 1989; Bird 2002; 

Shilatifard 2006). These CpG sites usually occur within the promoter region, or in the 5’ flanking 

region of a gene, where areas of heavy methylation can form to prevent genes transcription 

(Razin and Riggs 1980; Bird 1986; Holliday 1989; Bird 2002). Methylated DNA typically 

prevents transcription factor binding and is also capable of binding proteins attracted to 

methylated DNA, such as methyl-binding protein MECP2 and HDACs; this further blocks 

binding of transcription factors (Klose and Bird 2007).  

 

DNA methyltransferases (DNMTs) regulate DNA methylation and are therefore associated with 

transcriptional silencing and imprinting (Hiendleder et al., 2004; Wilson et al., 2007; Beck and 

Rakyan 2008). Maintenance of methylation is regulated by DNMT1 and is required for 

embryonic development (Bird 2002; Gopalakrishnan et al., 2008; Kim et al., 2009; Ross et al., 
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2010). DNMT3a and DNMT3b regulate de novo methylation patterns (Gopalakrishnan et al., 

2008). Genome-wide reprogramming of DNA methylation and histone modifications occurs 

during gametogenesis and embryogenesis in various species (Feng et al., 2010), with massive 

demethylation occurring between the 8 cell embryo and blastocyst in mice (Monk et al., 1987). 

De novo methylation by DNMT3a and DNMT3b occurs at the time of implantation in the mouse, 

detectable first in the inner cell mass and occurring independently in all extraembryonic cell 

lineages (Monk et al., 1987; 1991). Similarly, de novo methylation occurs in the human embryo 

and developing placenta at the time of implantation (Maccani and Marsit, 2009). This also occurs 

with independent de novo methylation patterns in the extraembryonic tissues and developing 

inner cell mass (Monk et al., 1987; Katari et al., 2009). 

 

In addition to histone modification and DNA methylation, a cell can inherit proteins from the 

cytoplasm of the progenitor cell that is self-regulating (i.e. the protein binds to DNA and 

promotes its own transcription). Cells can also inherit cytoplasmic small RNAs, such as 

microRNAs and small interfering RNAs, which regulate gene translation, are associated with 

chromatin-modifying complexes, and can deliver histone-modifying enzymes to chromatin. And, 

because miRNAs can be sequence specific, it is possible for them to deliver chromatin-

modifying complexes directly to a target gene. In summary, all these mechanism of epigenetic 

cell memory work together to create the highly regulated and specific mechanisms for epigenetic 

inheritance of gene expression (Li 2002; Verdel et al., 2004; Buhler et al., 2006; Kouzarides 

2007). 
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It is important to note, however, that genomic imprinting, a form of epigenetic gene regulation, 

occurs when there is differential and preferential expression of a gene from either the maternal or 

paternal allele (Monk 1995). Imprinting is acquired through regulation of DNA methylation and 

is highly regulated in the developing fetus and placenta (Monk 1995). 

 

Imprinting in the Placenta 

Imprinted genes appear to be of great importance for placental development (Georgiades et al., 

2001; Tycko and Morison 2002; Angiolini et al., 2006), especially as many of the imprinted 

genes in the human are specifically imprinted within the placenta (Coan et al., 2005). Placental 

imprinted genes have a parent-of-origin imprint that led to the “Kinship theory” which suggests 

that the paternal imprint occurs on genes that would enable maximal nutrient allocation to the 

fetus and placenta and allow for maximal fetal growth (Moore and Haig 1991;Ferguson-Smith 

and Surani 2001; Reik et al., 2001; Reik and Walter 2002; Reik et al., 2003; Wilkins and Haig 

2003; Haig 2004; Constancia et al., 2004; Angiolini et al., 2006; Myatt 2006; Wagschal and Feil 

2006; Wagschal et al., 2008). For instance, the paternal imprint on long non-coding H19 allows 

for maternal expression that decreases placental surface area whereas H19 imprint loss leads to 

fetal and placental overgrowth (Angiolini et al., 2006; Leighton et al., 1995). Additionally, the 

“Kinship theory” maintains that maternal imprint occurs on genes in the placenta that would 

reduce excessive nutrient partitioning to the fetal-placental unit, such as insulin-like growth 

factor 2 (IGF2), in order to ensure maternal survival of pregnancy (Moore et al., 1997; 

Constancia et al., 2002; Fowden 2003; Constancia et al., 2004; Sibley et al., 2004; Constancia et 

al., 2005; Angiolini et al., 2006). It is therefore through an equilibrium of parent-of-origin 
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imprinting that normal placental growth and nutrient transfer can occur (Angiolini et al., 2006; 

Tycko and Morison 2002; Georgiades et al., 2001; Constancia et al., 2004).  

 

These findings suggest that any change from normal methylation status in genes integral for 

placental growth could lead to abnormal placentation and fetal development. Indeed, studies 

have suggested that this may at least be a partial cause for the development of early onset 

preeclampsia (PE) as increased hypomethylation (Kokalj-Volkac et al., 1998; Katari et al., 2009) 

is seen in thirty-four gene loci compared to control pregnancies (Yuen et al., 2010). Interestingly, 

essentially no changes were observed in global DNA methylation between late onset PE or 

intrauterine growth restriction when compared to control pregnancies at 1505 CpG sites 

associated with 807 genes (Yuen et al., 2010). In addition, increased genomic cytosine 

methylation in the placenta is associated with bovine fetal overgrowth (Hiendleder et al., 2004). 

Alterations in imprinting have been linked to placental pathologies (Tycko 2006; Wagschal and 

Feil, 2006), including increased risk for developing PE when there is maternal inheritance of 

imprinted gene mutations (Oudejans et al., 2004). Also, matrilineal inheritance of imprinted 

genes in preeclamptic patients leads to down-regulation of protein expression similar to that seen 

in placentas from androgenized pregnancies, such as SIRT1 deacetylates and MYST4 histone 

acetyltransferase (Oudejans, et al., 2004). 

 

It now appears that epigenetic regulation of placental phenotype regulates nutrient uptake, 

placental growth, prenatal development, and, consequently, developmental programming 

(Fowden et al., 2010).  
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Sheep Models for Abnormal Placental and Developmental Programming 

Researchers have used multiple animal models to study placental development and function; 

however, no animal model perfectly replicates human placentation (Carter 2007; Barry and 

Anthony 2008). Even the primate species macaque and baboon have less invasive placentas 

compared to humans (Carter 2007). While the sheep placenta has essentially no trophoblast 

invasion (Leiser and Kaufmann 1994), it is still a well-established model for studying maternal-

fetal interactions and nutrient exchange (Carter 2007; Barry and Anthony 2008). There are many 

established ovine models for abnormal placental and fetal development (Anthony et al., 2003; 

Barry and Anthony 2008; Morrison 2008), including maternal over-nutrition, maternal under-

nutrition, hyperthermia, and utero-placental embolism (Anthony et al., 2003; Morrison 2008). 

All of these models are effective at altering developmental programing as they drastically alter 

the intrauterine environment and, in turn, alter fetal-placental gene expression and development. 

And as the placenta regulates nutrient and oxygen supply to the fetus and regulates fetal growth, 

intrauterine developmental programing of the fetus is also likely strongly regulated by the 

placenta (Fowden et al., 2008; Vaughan et al., 2012). Therefore, any aberrant placentation, either 

due to genetic or environmental factors, can lead to changes in developmental programming of 

the fetus (Fowden et al., 2008). For instance, it has been show that perinatal exposure to a variety 

of chemical compounds, including estrogenic hormones, leads to developmental programing and 

can lead to adult onset of disease, such as obesity (Heindel and vom Saal 2009). 

 

One such established model for developmental programing is prenatal androgenization in sheep, 

whereby pregnant ewes receive intramuscular injections of 100mg testosterone propionate 

suspended in cottonseed oil twice weekly during gestational days (GD) 30 to 90, when sexual 
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differentiation of the fetus occurs (Wood and Foster 1998; Robinson et al., 2002). Prenatal 

androgenization has been shown to cause reproductive neuroendocrine, ovarian, and metabolic 

dysfunction in mice, rats, sheep, and monkeys (Padmanabhan et al., 2010; Padmanabhan and 

Veiga-Lopez 2011).  

 

As limited research has investigated the role of placental androgens, the model of prenatal 

androgenization is of particular interest in determining possible prenatal developmental 

programming effects of androgens. Research has shown that maternal exposure to androgen in 

pregnant rats impairs fetal growth due to placental insufficiency, primarily contributed to 

compression of spongiotrophoblast and reduced amino acid transport (Sathishkumar et al., 2009; 

2011) as testosterone does not appear to cross the rat placenta to directly suppress fetal growth 

(Sathishkumar et al., 2011). Prenatal androgenization in pregnant ewes also leads to intrauterine 

growth restriction of female lambs (Manikkam et al., 2004; Steckler et al., 2005; Veiga-Lopez et 

al., 2011). In addition to altered programing during intrauterine growth restriction, prenatal 

androgenization in rats, sheep, and humans programs for increased onset of adult hypertension 

(King et al., 2007; Sathishkumar et al., 2009; 2011; Chinnathambi et al., 2012). 

 

When pregnant ewes are treated with testosterone propionate from gestational day (GD) 30 to 

90, maternal and fetal testosterone levels increase to that of adult male rams and GD65 control 

male fetuses, respectively (Veiga-Lopez et al., 2011). Using this model, prenatal androgenization 

in sheep programs for polycystic ovary syndrome (PCOS) as it is similar to in utero 

developmental programming for PCOS in humans with androgen excess (Recabarren et al., 

2005; Padmanabhan et al., 2006; Veiga-Lopez et al., 2008). Indeed, pregnant women with PCOS 
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have elevated serum androgens, leading to gestational hyperandrogenism and prenatal 

programing (Sir-Petermann et al., 2002). Adult ewes exposed to heightened prenatal androgen 

develop symptoms similar to PCOS, including hyperandrogenism, phenotypic masculinization, 

anovulation, metabolic disruption, hyperinsulinemia, and polycystic ovarian morphology (Abbott 

et al., 2006; Xita and Tsatsoulis 2006; Padmanabhan et al., 2006; Manikkam et al., 2008). 

Prenatal programing for PCOS may be in part due to increased AR expression in granulosa cells 

(Ortega et al., 2009). Interestingly, testosterone treatment reduces Cyp11a1 expression in GD90 

ovaries and the downstream aromatization to estrogen increases Cyp19 and 5α-reductase in 

GD65 lamb ovaries (Luense et al., 2011). Increased follicular recruitment and morphological 

changes in the ovary are seen with both prenatal testosterone and DHT treatment, while changes 

in follicular depletion and follicular growth are found only with prenatal testosterone treatment 

(Steckler et al., 2005), showing that estrogenic programming is also necessary for prenatal 

programming of PCOS in sheep (Smith et al., 2009; Salvetti et al., 2012). 

 

In addition to reduced female ovarian function, prenatal androgenization also leads to reduced 

fertility in male lambs (Recabarren et al., 2007; Manikkam et al., 2008). Reduced fertility in 

males and females may in part be due to reduced estradiol negative (Wood and Foster 1998; 

Sarma et al., 2005; Veiga-Lopez et al., 2009) and positive feedback (Masek et al., 1999; Sharma 

et al., 2002; Unsworth et al., 2005; Veiga-Lopez et al., 2009), and negative progesterone 

feedback (Robinson et al., 1999; Veiga-Lopez et al., 2008). Prenatal conversion of testosterone 

excess to estrogen likely programs the timing of the luteinizing hormone (LH) surge in adult 

sheep, leading to the neuroendocrine disruption reported in prenatally androgenized lambs 

(Manikkam et al., 2008). Reduced fertility may also be due to changes in pituitary gonadotropin-
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releasing hormone (GnRH) and estrogen receptor expression (Manikkam et al., 2008). Prenatal 

androgenization of female lambs leads to increased pituitary GnRH, ESR1, and ESR2 mRNA, an 

amplified GnRH-induced LH response, LH hypersecretion, and acyclicity (Manikkam et al., 

2008). 

 

Prenatal androgenization also causes a change in placentome morphology (Astapova et al., 2004) 

which has also been reported in maternal nutrient restriction in sheep (Vonnahme et al., 2006). 

The changes in gross placentome morphology are defined as follows: type A placentome is 

caruncluar tissue completely surrounding the cotyledonary tissue with a cup-like structure; type 

B placentome is an intermediate form with cotyledonary tissue beginning to grow over the 

surrounding caruncle tissue; type C placentome is a flat intermediate placentome with 

cotyledonary tissue on one surface and caruncle tissue on the other; and type D placentome is an 

inverted or convex placentome with cotyledonary tissue entirely present, resembling bovine 

placentomes (Vatnick et al., 1991; van der Linden et al., 2012; Appendix II). Maternal nutrient 

restriction and prenatal androgenization increase placental placentome preference to type D, C, 

and B placentomes compared to control ewes that have primarily type A placentomes (Astapova 

et al., 2004; Vonnahme et al., 2006). It was suggested that these changes in placentome 

morphology toward a type D possibly compensates for maternal nutrient restriction or placental 

insufficiency, functioning to deliver normal nutrient and gas exchange to the developing fetus 

(Vonnahme et al., 2006). However, nutrient and gas exchange was not measured across 

placentome types and the histology has never been evaluated for changes in pathology. In a 

separate study where all intermediate and convex types of placentomes occurred without nutrient 

restriction or prenatal androgenization, it was found that type B and D placentomes had 
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increased capillary area density compared to type A placentomes, but placentome size, not type, 

may be a better indicator of placental nutrient transfer and vascularization (Vonnahme et al., 

2008).  

 

Additionally, the changes observed in gross placentome morphology in prenatal androgenization 

can be contributed directly to testosterone treatment or placental hormone signaling as 

cottonseed oil contains essentially no phytoestrogens (Grippo et al., 1999). However, it cannot be 

entirely ruled out that estrogenic effects in prenatal androgenization contribute to the placentome 

morphology as testosterone can be aromatized within the placenta (Fournet-Dulguerov et al., 

1987; Payne and Hales 2004; Tuckey et al., 2004; Guibourdenche et al., 2009; Sathishkumar et 

al., 2012) and even DHT can be converted to 3β-diol and signal through estrogen receptor β 

(ESR2) (Handa et al., 2008). Abnormal fetal programing observed with prenatal androgenization 

may also be due to a direct effect on the developing fetus from sex hormone signaling, or it may 

be due to abnormal placental developmental programing (Veiga-Lopez et al., 2011). However, 

further research is needed to determine the effects of placental androgen signaling on programing 

gene expression and placenta development. 

 

Preliminary Data and Conclusion 

Using the model of prenatal androgenization in sheep for abnormal developmental programming 

(Padmanabhan et al., 2006), our lab has also reported a shift to type D placentomes in the 

placenta of androgenized ewes. We also determined that there was a decrease in global DNA 

methylation in androgenized placentomes compared to controls by ELISA (Halleran et al., 
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2011), suggesting that aberrant sex hormone signaling disrupted normal epigenetic regulation of 

placental gene expression and contributed to abnormal placenta development.  

 

As recent studies have shown that ligand bound AR is capable of complexing with demethylases 

for increased transcription (Metzger et al., 2005; Yamane et al., 2006; Wissmann et al., 2007; 

Shin and Janknecht 2007a,b), and since androgens are known to regulate cellular proliferation, 

migration, and vascularization pathways (Comstock et al., 2008), it is of particular importance to 

determine the function of androgen signaling in normal placental development and in placental 

developmental programming. Research into this area will fill a critical gap in our knowledge 

about epigenetic regulation of placental developmental programming that may underlie varying 

prenatal conditions (Fowden et al., 2010). Further investigation of androgen induced placental 

epigenetic programming should increase our understanding of placental induced pregnancy 

complications, in particular preeclampsia, which is associated in increased maternal serum 

testosterone (Acromite et al., 1999; Atamer et al, 2004; Carlsen, et al., 2005; Salamalekis et al., 

2006; Gerulewicz-Vannini et al., 2006; Ghorashi and Sheikhvatan, 2008; Hsu et al., 2009), 

increased placental AR (Hsu et al., 2009), and reduced placental aromatase activity (Thoumsin et 

al., 1982; Hähnel et al., 1989; Hertig et al., 2010).  

 

Given the known mechanisms of estrogen signaling for trophoblast differentiation, and the 

absence of research on androgen signaling within the placenta, this dissertation was directed to 

characterize the role of androgen signaling for placental development through in vivo and in 

vitro molecular approaches.  
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Justification 

Abnormal placental developmental programing during the first trimester can lead to insufficient 

trophoblast remodeling of maternal arteries, leading to placental-induced disorders such as 

preeclampsia (PE) (Kaufmann et al., 2003). PE occurs in approximately 4% of live births in the 

United States, instigating fetal growth restriction and maternal/fetal mortality and morbidity 

(Ilekis et al., 2007). Preeclamptic placentas have reduced aromatase activity (Thoumsin et al., 

1982; Hähnel et al., 1989; Hertig et al., 2010), increased androgen receptor (AR) (Hsu et al., 

2009), and, recently, PE patients have been found to have increased serum testosterone 

(Acromite et al., 1999; Atamer et al, 2004; Carlsen et al., 2005; Salamalekis et al., 2006; 

Gerulewicz-Vannini et al., 2006; Ghorahi and Sheikhvatan, 2008). Additionally, human prenatal 

exposure to heightened testosterone leads to abnormal developmental programing and increased 

incidence of adult-onset of diseases, such as hypertension (Chinnathambi et al., 2012). 

  

Despite these findings, there has been limited research on the physiological role of androgen on 

trophoblast function. In cancer cells, androgens regulate cell invasion by increasing matrix 

metalloproteinases (Liao et al., 2003, Limaye et al., 2008; Comstock et al., 2008). In addition, 

androgen also regulates vascularization and proliferation by interacting with histone lysine 

demethylases (KDMs) to regulate target gene transcription (Metzger et al., 2005; Yamane et al., 

2006; Shin and Janknecht 2007a,b; Wissmann et al., 2007), including increased cellular vascular 

endothelial growth factor (VEGFA) (Lissbrant et al., 2004). This is of particular relevance as, 

similar to cancer cells, trophoblasts undergo an epithelial to mesenchymal transition, invade 

surrounding tissue, and access a blood supply (Ferretti et al., 2007), suggesting that androgens 

may function similarly in the placenta. The overall goal of this project is to determine 
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testosterone’s effect on trophoblast function through its regulation of gene transcription and 

interaction with histone lysine demethylases. 

 

 Hypothesis 

We hypothesize that placental androgen receptor interacts with histone lysine demethylases to 

regulate androgen responsive gene expression, in particular genes that regulate trophoblast 

function, differentiation, and invasion.  

 

Aim 1: Determine the localization of androgen receptor and histone lysine demethylases in 

normal and prenatal androgenized ewe pregnancies, and in human first trimester trophoblasts. 

 

Aim 2: Determine if androgen receptor complexes with histone lysine demethylases at androgen 

response elements in sheep and human trophoblasts to regulate gene transcription and 

trophoblast function. 

 

Data from these experiments will fill a critical gap in our knowledge regarding the role of 

androgen in trophoblast function and differentiation. Specifically, identifying the role of 

androgen in regulating gene expression through interactions with KDMs provides new and 

critical insights on regulation of trophoblast differentiation, and will aid in understanding the 

pathogenesis of placental disorders, such as preeclampsia, that are associated with elevated levels 

of androgens. Importantly, by using both human trophoblast cells as well as sheep placentomes, 

insight obtained from this study will benefit and advance our understanding of placental 

physiology and function in humans and domestic agricultural animals. Ultimately, this 
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knowledge may lead to new avenues for maternal therapy in cases of placental dysfunction to 

improve fetal growth and postnatal health. 
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FIGURE 1.1 Structure of the Primate Placenta. AV, anchoring villi; CT, cytotrophoblasts; ET, 
endovascular extravillous trophoblasts; FC, fetal capillary; FI, fetal interstitium; FV, floating 
villi; IT, interstitial extravillous trophoblasts; IV, intervillous space; SA, spiral artery 
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FIGURE 1.2 Steroid hormone synthesis 
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TABLE 1.1 Trophoblast immunolocalization of sex hormone receptors 
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CHAPTER II: ANDROGEN RECEPOR AND HISTONE LYSINE DEMETHYLASES IN 

OVINE PLACENTA1,2,3 

 
 
 
Summary 

Sex steroid hormones regulate programing in many tissues, including programing gene 

expression during prenatal development. While estradiol is known to regulate placentation, little 

is known about the role of placental testosterone despite its rise in maternal circulation during 

pregnancy and placenta-induced pregnancy disorders. Using androgenized pregnant ewes, we 

investigated the role of testosterone in placental DNA methylation and gene expression. 

Placental androgenization decreased global DNA methylation in gestational day 90 placentomes 

and increased placental expression of genes involved in epigenetic gene regulation, angiogenesis, 

and growth. As androgen receptor (AR) complexes with histone lysine demethylases (KDMs) to 

regulate AR responsive genes in human cancers, we investigated if the same mechanism is 

present in the ovine placenta. AR co-immunoprecipitated with KDM1A and KDM4D in sheep 

placentomes, and AR-KDM1A complexes are recruited to a half-site for androgen response 

element (ARE) in the promoter region of VEGFA. Androgenized ewes also had increased 

cotyledon VEGFA. Finally, in human first trimester placental samples AR, KDM1A, and 

KDM4D immunolocalized to syncytiotrophoblast, with nuclear KDM1A and KDM4D 
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immunostaining also present in the villous stroma. In conclusion, placental androgen signaling is 

capable of altering ovine DNA methylation and gene expression, likely through AR-KDM 

complex recruitment to AREs. AR and KDMs are also present in first trimester human placenta. 

Androgens appear to be an important regulator of trophoblast programing for placental 

development, and aberrant androgen signaling may contribute to the development of placental 

disorders. 

 

Introduction 

Proper placentation is required for normal fetal development and nutrient transport to the fetus. 

Placentation begins as trophoblast cells from the implanting embryo differentiate to form 

cytotrophoblasts and syncytiotrophoblast (Kaufmann et al., 2003). Trophoblast differentiation 

and invasion during the first trimester is essential for establishing placental vascularization for 

prenatal support throughout gestation (Brosens 1988, Blankenship et al., 1993; Kaufmann et al., 

2003). While the placenta is widely recognized as an endocrine organ, sex steroids act on 

placental cells to regulate placental development and function. For example, placental estrone, 

estriol and estradiol signaling has been shown to regulate trophoblast differentiation and invasion 

in a hypoxic environment of first trimester primate placenta (Tulchinsky and Hobel 1953; Siiteri 

and MacDonald 1963; 1966; Loriaux et al., 1972; Albrecht et., 1999; 2004; Rama et al., 2004; 

Albrecht et al., 2006). Estrogen receptor alpha (ESR1) localizes primarily in cytotrophoblast and 

differentiating cytotrophoblast cells (Bukovsky et al., 2003a,b), and estradiol produced by the 

placenta regulates trophoblast invasion by increasing matrix metalloproteinase (MMP) activity 

and promoting angiogenesis (Niklaus et al., 2003; Albrecht et al., 2006). Although estrogen 
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contributes to placentation via trophoblast differentiation and uterine spiral artery remodeling 

(Albrecht et al., 1999; 2006), little is known about the role of placental androgens.  

 

During human pregnancy, maternal peripheral plasma concentrations of androstenedione and 

testosterone increase approximately two-fold and four-fold, respectively (Mizuno et al., 1968). A 

similar increase in serum testosterone is seen in pregnant cows (Gaiani et al., 1984). Plasma 

levels of androgens return to normal, non-pregnant levels a few days postpartum, suggesting the 

placenta as a source of androgen production (Mizuno et al., 1968; Serin et al., 2001). 

Importantly, androgen receptor (AR) is present in trophoblast cells in human, cow, goat, and pig 

placentas (Iwamura et al., 1994; Khatri et al., 2013; Wieciech et al., 2013) and has been 

characterized recently in differentiating bovine invasive trophoblast giant cells (Khatri et al., 

2013). In the human placenta, AR is localized to syncytiotrophoblast and vascular endothelial 

cells, although it also has been reported in cytotrophoblasts and invasive extra villous 

trophoblasts (Horie et al., 1992; Iwamura et al., 1994; Hsu et al., 2009).  

 

Ligand bound AR functions as a dimer by binding androgen response elements (AREs: 

GGA/TACAnnnTGTTCT) in promoter regions of target genes for transcription initiation. 

Androgen signaling in non-placental tissues has been shown to regulate cell proliferation, 

invasion, and angiogenesis (Shabisgh et al., 1999; Mabjeesh et al., 2003; Comstock et al., 2008). 

Recently, AR has been shown to complex with lysine demethylase 1 family and Jumonji-C 

domain containing histone demethylases (KDMs) to regulate AR responsive genes (Yamane et 

al., 2006; Shi and Janknecht 2007; Wissmann et al., 2007). KDMs function to regulate gene 

expression by demethylating mono-, di-, and tri-methylated lysines on histone N-terminal tails 
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(Verrier et al., 2011), increasing DNA access to sex hormone receptors and coactivators for 

transcription initiation (Perillo et al., 2008). Additionally, KDMs have been shown to be co-

activators of AR and ESR1 transcription (Shi and Janknecht 2007; Perillo et al., 2008; Kawazu et 

al., 2011; Garcia-Bassets et al., 2007), and to increase expression of sex hormone responsive 

genes (Metzger et al., 2005; Yamane et al., 2006; Shin and Janknecht 2007; Wissmann et al., 

2007; Coffey et al., 2013). While KDMs appear to play a prominent role in regulating gene 

expression, they have not been identified in placental tissue. 

 

The overall goal of this study was to identify a role for androgen signaling in placental cells. To 

this end, we used a well-established model of prenatal androgenization in ewes that were treated 

with testosterone propionate from gestational day GD30 to GD90 (Robinson et al., 2002). 

Previous studies clearly demonstrate this model leads to abnormal fetal programming and 

intrauterine growth restriction (Manikkam et al., 2004), abnormal placental development 

(Beckett et al., 2011), and offspring with reduced fertility, hyperinsulinemia, and polycystic 

ovarian syndrome (Recabarren et al., 2005; Dumesic et al., 2007; Veiga-Lopez et al., 2008). The 

presence and role of placental AR has not been investigated in this model, and its contribution to 

abnormal placental development and gene expression has not been previously examined. 

 

Materials and Methods 

Prenatal Androgenization and Placentome Collection 

All experiments were approved by the Colorado State University Institutional Animal Care and 

Use Committee. Fourteen crossbred ewes were bred and randomly assigned to one of two 

groups, control or testosterone propionate (TP) treated. Control ewes received intramuscular 
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injections of 2 mL vehicle (cottonseed oil) biweekly from gestational day GD30 to GD90 (n=7). 

TP treated ewes received biweekly intramuscular injections of 100 mg of testosterone propionate 

resuspended in 2 mL of cottonseed oil as previously described (n=7) (Robinson et al., 2002). On 

GD90, ewes were anesthetized, uteri were surgically removed, fetal lambs were weighed, and the 

placentas were collected. Placentomes from each placenta were isolated and classified as either 

type A, B, C, or D based on gross morphology (van der Linden et al., 2012). The total number of 

placentomes, placentome types, and total weight of placentomes were recorded. For placentome 

types A, B, and C, the cotyledon was separated from the caruncle and processed separately; for 

type D placentomes this was not possible. The 5 placentomes closest to the umbilicus were used 

for analysis.  

 

Of the five placentomes closest to the umbilicus, two were randomly selected for fixation in ice 

cold 4% PFA overnight at 4°C. The following day, PFA was removed and the placentomes were 

stored in 70% ethanol at 4°C until embedded in paraffin blocks. Remaining cotyledon and 

caruncle tissue was snap frozen in liquid nitrogen and stored at -80°C until processed. Prior to 

RNA, DNA, and protein isolation, samples were pulverized in liquid nitrogen. Pulverized tissue 

was stored at -80°C until placed directly in appropriate lysis buffer for each isolation protocol. 

To avoid any possible prejudices in data due to fetal sex, placentomes from both male and 

female fetuses from each treatment group were used for analysis. For all experiments, unless 

otherwise noted, there were 4 type A placentomes from controls, 3 type A placentomes from 

testosterone treated ewes.  
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First Trimester Human Placenta Samples 

Human first trimester placental samples were obtained from elective terminations from 

anonymous, non-smoking, non-drug using patients, in accordance with the Colorado State 

University Institutional Biosafety Committee. Samples were stored in sterile PBS upon 

collection and were transferred to ice cold 4% PFA upon receipt. Samples were stored overnight 

at 4°C in PFA, then transferred to 70% ethanol at 4°C until embedded in paraffin blocks. For 

immunohistolocalization, one 8.6 weeks of gestation sample and one 11.5 weeks of gestation 

sample were repeated in triplicate. Tissue sections of 5µm thickness were taken from the center 

of paraffin blocks for immunohistolocalization.  

 

DNA Isolation and ELISA of Global DNA Methylation 

Genomic DNA was isolated using approximately 10 mg of pulverized ovine cotyledon and 

caruncle tissue using Wizard Genomic DNA Isolation Kit (Promega, #A1125) per 

manufacturer’s protocol. Concentration and purity of DNA was determined using a NanoDrop 

1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DE). DNA was stored at -80°C 

until used for analysis. MethylFlash Methylated DNA Quantification Kit (Epigentek, P1034) was 

used for detection of 5-methylcytosine as per the manufacturer’s protocol. 100 ng of DNA from 

each sample was used in duplicate. Standards were used in duplicate from 0.5 ng/µL to 10 ng/µL 

to quantify 5-methylcytosine in samples. Colorimetric readings at 450 nm were recorded on a 

model 680 microplate reader (BioRad). Average absorbance values for the negative control were 

subtracted from each sample to obtain normalized values. A linear equation was calculated from 

standard curve dilutions. Normalized values were divided by the slope of the linear equation 

multiplied by two to obtain the amount of 5-mehtylcytosine present in each sample (ng of 5-mC). 
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Statistical analysis was performed using ANOVA followed by Tukey pairwise comparison 

(Minitab 16). P-values less than 0.05 were considered statistically significant. 

 

Protein Isolation and Western Blot 

Approximately 2 mg of pulverized ovine placentome tissues were added directly to 2mL of ice 

cold lysis buffer containing 0.48M Tris pH7.5, 10mM EGTA pH8.6, 10mM EDTA pH8.0, and 

0.1% (w/v) PMSF and protease inhibitor. Samples were sonicated on ice for 5 minutes and 

centrifuged at 10,000 rpm for 10 minutes at 4°C. Supernatant was collected and frozen prior to 

protein concentration analysis using a Bradford standard curve (BioRad). Supernatant was 

diluted in 6x SDS-DTT loading dye with 0.375M Tris pH6.8, 4M glycerol, 0.21M SDS, 0.6M 

DTT, and 0.06% (w/v) bromophenol blue. β-mercaptoethanol (1.75 µL) and water was added to 

reach a final concentration of 4.29 µg/µL of protein in 35 µL (150 µg total protein). Samples 

were boiled for 5 minutes after addition of β-mercaptoethanol, then electrophoresed at 95 volts in 

10% Tris-HCL polyacrylamide gels (BioRad). For ESR1 blots, 10% Tris polyacrylamide gels 

were made using 10.2% acrylamide/bis solution (BioRad), 3.5mM SDS, 4.5mM TEMED 

(BioRad), and 43.3mM APS. Protein was electrophoresed in an ice cold running buffer 

containing 50mM Tris, 384mM glycine, and 7mM SDS. Protein was transferred onto 0.2 µm 

nitrocellulose membranes (Protran) for 1 hour at 200 milliamps at 4°C in transfer buffer 

containing 2mM Tris, 150 mM glycine, 5M methanol, and 3.5mM SDS. After protein transfer, 

blots were blocked for non-specific binding with 2% milk-TBST for 1 hour at room temperature. 

After blocking, blots were washed with TBST and left overnight at 4°C with primary antibody 

diluted in 2% milk-TBST. Antibodies used for Western blot analysis are listed in Table 2.1 with 

their respective dilutions. After incubation with primary antibody, blots were washed in TBST 
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and incubated for 1 hour at room temperature with secondary antibodies, goat-anti-rabbit-HRP 

(Abcam ab6721, 1:1000) or goat-anti-mouse-HRP (Abcam ab6789, 1:1000). Blots were 

subsequently washed in TBST and ECL Prime Western Blotting Detection System (Amersham 

Biosciences) was applied to detect immunoreactivity. Chemiluminescent bands were detected 

using the Storm Scanner 860 (Amersham Biosciences). AR, ESR2, and KDM1A 

immunoreactive bands were confirmed by preabsorption of antibody with available blocking 

peptides for one hour at room temperature prior to overnight incubation. 

 

Immunoreactive bands were quantified using ImageJ software (NIH). Pixelation for the protein 

of interest was divided by that of β-actin for each sample to normalize for protein loading. The 

average amount of normalized protein was then compared between control and TP treated ewe 

cotyledon and caruncle tissue using an ANOVA followed by Tukey pairwise comparison 

(Minitab 16). 

 

Immunohistolocalization 

To determine cellular localization of selected proteins in ovine type A placentomes from control 

ewes (n=4) and first trimester human placenta (n=2), 5µm paraffin sections were taken from the 

center of the tissue blocks. Slides were deparaffinized with Citra-solve (Fisherbrand) and 

rehydrated with washes of decreasing percentages of ethanol. Slides were boiled for 15 minutes 

in 10mM sodium citrate pH6 for antigen retrieval using 5 minute intervals with 2 minute breaks. 

Non-specific peroxidase activity was inhibited by a 30 minute incubation in 3% hydrogen 

peroxide solution in PBS. Slides were incubated for 1 hour in 2% Superblock Blocking Buffer 

(Thermo Scientific, Waltham, MA) in PBS prior to incubation with KDM1A and KDM4D 
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antibodies, and in 2% goat serum in PBS preceding all other antibodies. After blocking, slides 

were washed in PBS. Antibody dilutions are listed in Table 2.1. AR, ESR1, and ESR2 antibodies 

were diluted in 2% goat serum in PBS. KDM1A and KDM4D antibodies were diluted in 2% 

Superblock Blocking Buffer in PBS. Primary antibodies were incubated overnight at 4°C. 

Control slides were incubated with 2% Superblock or 2% goat serum in PBS with exclusion of 

primary antibody. AR and ESR2 blocking peptides (Santa Cruz sc816-P and Abcam ab3564, 

respectively) were used at a 3:1 and 1:1 ratio with antibody to confirm specific 

immunolocalization. After incubation with primary antibody, slides were washed in PBS and 

incubated with secondary antibody for 30 minutes at room temperature. A goat-anti-rabbit 

polyclonal secondary antibody tagged with HRP (Abcam ab6721, 1:1000) was used for AR, 

ESR2, KDM1A, and KDM4D detection. A goat-anti-mouse polyclonal secondary antibody 

tagged with HRP (Abcam ab6789, 1:2000) was used for ESR1 detection. Slides were washed in 

PBS and stained using avidin-biotin staining with diaminobenzidine (DAB) peroxidase substrate 

kit (Vector Labs, Burlingame, CA) to detect HRP immunoreactivity. Slides were washed again 

in PBS and dehydrated prior to mounting.  

 

Placentome RNA Isolation and Real Time PCR 

Prior to real time PCR amplification, primer specificity was confirmed using DNA sequencing of 

PCR amplicons. Briefly, PCR analysis was performed using a placentome cDNA pool and 

GoTaq (Promega) per the manufacturer’s recommendations. PCR product was electrophoresed 

on a 1% agarose gel with a 100bp ladder (New England BioLabs) to determine the presence of 

expected amplicon sizes. The amplicon band was excised from the agarose gel and DNA was 

isolated using QIAquick Gel Extraction Kit (Qiagen). The resulting DNA was sequenced at the 
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Colorado State University Proteomics and Genomics Laboratory. The sequences were blasted 

using NCBI blast to confirm specificity. Primer efficiency was assessed using serial dilutions of 

a cDNA pool from placentome samples. Standard curves from serial dilutions were analyzed on 

the Roche LightCycler 480 (Roche, Basel, Switzerland), and primer efficiencies used for real 

time PCR assay were calculated and are listed in Supplemental Table 2.1. 

 

Total RNA was isolated from pulverized samples using the RNeasy Mini kit (Qiagen) and were 

treated with RNase-Free DNase (Qiagen) to eliminate any genomic DNA contamination. RNA 

quality and purity was determined with a NanoDrop 1000 Spectrophotometer (NanoDrop 

Technologies) and RNA aliquots were stored at -80° C. Total RNA was processed for reverse 

transcription using qScript (BioRad). 1µg of total RNA was added to each reverse transcription 

reaction with 4µL reverse transcriptase QScript Supermix (Quanta) and nuclease free water up to 

20µL total reaction volume. Reverse transcription of total RNA was performed according to 

manufacturer’s specifications with 5 minutes 25°C, 30 minutes 42°C, 5 minutes 85°C, and 

holding at 4°C for use the same day. Resulting cDNA was used as a template for real time PCR 

quantification. cDNA was diluted 1:4 in nuclease free water prior to loading into real time PCR 

reactions. For real time PCR analysis, 2.5 µl of nanopure water was added to every 5µl of 

LightCycler 480 SYBR Green I Master (Roche, Basel Switzerland). Primer sets were added to 

reach a final concentration of 0.5µM in each reaction and 1µl of diluted cDNA was added for a 

final cDNA concentration of 1.25 ng/µL in a total volume of 10µL. Samples were loaded into 

384 well LightCycler 480 plates (Roche) and analyzed using a LightCycler 480 PCR system 

(Roche Applied Science) in duplicate. Real time PCR cycle conditions were 95°C for 5 minutes, 

proceeded by 45 cycles of denaturing at 95°C for 30 seconds, annealing at 60°C for 15 seconds, 
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and extension at 72°C for 10 seconds. Following real time PCR amplification, melt peaks were 

generated with an incubation at 95°C for 30 seconds to confirm a single amplicon was present. 

Cp values were normalized using the geometric mean of RN18s and GAPDH. Statistical analysis 

between TP treated and control samples used an ANOVA followed by Tukey pairwise 

comparison (Minitab 16). Results reported for real time PCR data use 2-∆Cp values for statistical 

analysis and graphs, and fold changes between 2-∆Cp values in tables for comparison (Schmittgen 

et al., 2008).  

 

Coimmunoprecipitation of AR with KDM1A and KDM4D from Placentomes 

Protein was isolated from pulverized snap frozen cotyledon and caruncle tissue from control and 

TP treated ewes in RIPA buffer containing 10mM Tris-HCl pH 7.5, 140mM NaCl, 1mM EDTA, 

0.5mM EGTA, 1% Triton X-100, 0.1% SDS, 0.1% proteinase inhibitor, and 0.1% 100mM 

PMSF. Protein concentration was determined by a BCA assay (Pierce). 250 µg of cotyledon and 

250 µg caruncle protein were diluted in RIPA buffer to reach a final concentration of 1 µg/µL in 

500 µL RIPA buffer. Antibodies were combined with 500 µL of diluted placentome protein and 

incubated for an hour at 4° C on a rotational mixer. 2 µg of AR antibody (Santa Cruz, sc816), 2 

µg of KDM1A antibody (Abcam, ab17721), 2 µg KDM4D antibody (Abcam, ab93694), or 1 µg 

secondary antibody as a negative control (Abcam, anti-rabbit ab6721) were added to each 

sample. Preabsorption of AR and KDM1A antibodies with their blocking peptides (4 µg) 

occurred at room temperature 1 hour prior to incubation with placentome protein. Following 

antibody incubation, 20 µL of A/G PLUS agarose beads (Santa Cruz, sc2003) were added for an 

hour at 4° C on a rotational mixer. Samples were briefly spun at 2500 rpm for 5 minutes at 4° C. 

Agarose beads were centrifuged and washed two times with RIPA buffer followed by three 
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washes with PBS. Protein was resuspended in 6.67 µL 6x Western blot loading dye (described 

above) diluted with 31.33 µL RIPA buffer, then stored at -80° C overnight. The following day, 

samples were thawed and 2 µL of β-mercaptoethanol was added to reach a final volume of 40 

µL. Samples were immediately incubated at 95° C for 12 minutes and centrifuged at 10,000 x g 

for 1 minute at room temperature. 20 µL of immunoprecipitated protein was loaded per lane on 

10% Tris-HCl gels (BioRad) and electrophoresed. Western blot protocol and antibody dilutions 

followed those described above and in Table 2.1.  

 

Chromatin Immunoprecipitation with AR and KDM1A from Placentomes 

ChIP was performed using ChIP-It Express High Throughput (Actif Motif) following the 

manufacturer’s protocol. Approximately 2 mg of pulverized cotyledon and caruncle tissue from 

control and TP treated ewes was added to 500 µL of ice cold PBS. Cotyledon and caruncle tissue 

was mixed for each ewe and mechanically homogenized by pestle on ice. 14 µL of 37% 

formaldehyde (VWR International) was added, samples were vortexed, then incubated on ice for 

8 minutes. 57 µL of 125 mM glycine was added to quench crosslinking. Samples were vortexed 

and incubated on ice for 5 minutes. Samples were centrifuged for 2 minutes at 10,000 x g at 4° 

C. Supernatant was aspirated off and samples were resuspended in 500 µL ice cold PBS. 

Samples were centrifuged again, supernatant was removed, and samples were resuspended in 

500 µL PBS. 130 µL of lysis buffer containing 50mM Tris HCl pH8.0, 10mM EDTA, 1% SDS, 

and 1:100 proteinase inhibitor was added. Samples were homogenized by pestle, vortexed, and 

incubated on ice for 30 minutes. Samples were homogenized again then sonicated using a 

Biorupter for 30 minutes with cycles of 5 seconds on, 5 seconds off. 400 µL of RIPA buffer was 

added, then samples were centrifuged for 10 minutes at 12,000 x g at 4° C. Supernatant was 
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placed in a new tube and remaining sample was resuspended again in 400 µL RIPA buffer and 

centrifuged. Supernatant was combined and DNA concentration was determined by Nanodrop 

1000 Spectrophotometer (NanoDrop Technologies). 6.3 µg of DNA was placed in a new tube for 

immunoprecipitation.  

 

25 µL of magnetic G-protein beads (Active Motif) were added with 10 µL of ChIP buffer 1 

(Actif Motif) and 1 µL of proteinase inhibitor. 2 µg of AR antibody (Santa Cruz, sc816), 2 µg of 

KDM1A antibody (Abcam, ab17721), or 2 µg anti-rabbit secondary antibody (Abcam ab6721, 

negative control) were added to each sample. RIPA buffer was added to bring the total 

immunoprecipitation reaction volume up to 200 µL. Samples were incubated overnight at 4° C 

on a rotational mixer, and briefly spun at 2500 rpm for 1 minute at 4° C. Magnetic G-protein 

beads were pulled down and washed two times with 200 uL of ChIP buffer 1, then washed 3 

times with 100 µL of ChIP buffer 2 (Actif Motif). Magnetic beads were then resuspended in 

elution buffer AM2 and incubated at room temperature for 15 minutes on a rotational rotor. 

Samples were centrifuged at 2500 rpm for 1 minute at room temperature. 50 µL of reverse 

crosslink buffer was added and samples were vortexed. Magnetic beads were pulled down and 

supernatant was removed and placed in a new tube. 10 µL of input cross-linked DNA was added 

to a tube containing 88 µL of ChIP buffer 2 and 2 µL of 5 M NaCl as a PCR positive control 

(ChIP input DNA). All samples were incubated overnight at 64° C. Samples were cooled to 

room temperature and 2 µL of proteinase K was added. Samples were incubated for 1 hour at 37° 

C, then 2 µL of Proteinase Stop Solution was added.  
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1 µL of ChIP sample was added per each PCR reaction in technical triplicates. Sonicated DNA 

samples and ChIP input DNA were used as positive controls for PCR. PCR and amplicon 

sequencing was performed as described above. Androgen response element (ARE) half-sites 

were identified in a -5000bp region of the 5’ flanking sequence of bovine and human VEGFA as 

the promoter region of ovine VEGFA has not been published. Primers were designed to amplify 

an ARE region of genomic DNA situated between two ARE half-site in bovine VEGFA, 181 

nucleotides away from the upstream ARE and 44 nucleotides away from the downstream ARE, 

and was located 3,118 nucleotides away from the coding region. Primers also were designed to 

span a region 1,774 nucleotides from an ARE half-sites (non-ARE) in the -5,000 5’ flanking 

sequence in the human VEGFA, located 4,786 nucleotides away the coding region (primers listed 

in Table 2.2).  

 

Results 

Placentome Morphology and Fetal Growth 

The total number and weight of placentomes collected from control and TP treated ewes did not 

differ at GD 90 (Figure 2.1A and 2.1B). Placentas from TP treated ewes had a reduced number 

of type A placentomes (P=0.001) and an increased number of type C (P=0.002) and type D 

(P=0.06) placentomes compared to control ewes (Figure 2.1A). There was no difference between 

weight of male and female fetuses in control pregnancies or between male and female fetuses 

from TP treated ewes. However, female fetuses from TP treated ewes weighed less (P=0.022) 

compared to female fetuses from control ewes (Figure 2.1C).  
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Global DNA Methylation in Placentomes 

Colorimetric ELISA revealed a decrease in 5-methylcytosine in type A placentomes from TP 

treated ewes compared to type A placentomes from control ewes at GD90 (P=0.025, Figure 2.2). 

No difference was found in 5-methylcytosine levels between control or TP treated ewe type A to 

type D placentomes.  

 

Changes in Epigenetic Factors and Steroid Hormone Receptors 

Transcript levels for several genes involved in epigenetics (KDM’s, DNA methyltransferases 

(DNMTs), and imprinted long non-coding H19) were assessed in GD90 placentomes from 

control and TP treated ewes (Figure 2.3, Figure 2.4, and Supplemental Figure 2.1). While no 

difference was observed in KDM3A or KDM4A mRNA levels (Supplemental Figure 2.1), 

KDM4C was lower in type A cotyledons from TP treated ewes compared to controls (P<0.001, 

Figure 2.3). H19 mRNA levels increased in cotyledon tissue from type A placentomes from TP 

treated ewes compared to controls (P=0.005, Figure 2.3). DNMT1 levels were increased in type 

A cotyledon tissue from TP treated ewes compared to controls (P<0.001, Figure 2.3). Increased 

DNMT1 protein also was observed in TP treated ewe type A cotyledon and placentome tissue 

(P<0.001, Figure 2.3). No difference was observed in DNMT3a or DNMT3b with TP treatment 

(Supplemental Figure 2.1). TP treatment did not alter placentome AR, KDM1A, and KDM4D 

mRNA levels (Figure 2.4). 

 

Further characterization of AR, KDM1A and KDM4D in GD90 ovine placentomes was 

completed to determine their response to TP treatment (Figure 2.4). AR protein increased in 

caruncle tissue from type A placentomes in TP treated ewes compared to controls (P=0.014) 
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(Figure 2.4). Preabsorption with the complementary AR peptide resulted in loss of 

immunoreactive band (Supplemental Figure 2.2A). No significant difference was observed in 

KDM1A protein. Although TP treatment did not alter KDM4D mRNA levels, KDM4D protein 

levels increased in type A placentome tissue from TP treated ewes when compared to controls 

(P<0.001), but was not different in type D placentomes from TP treated ewes (Figure 2.4).  

 

Localization of AR, KDM1A and KDM4D in GD90 Placentomes 

In type A placentomes from control ewes, nuclear AR immunolocalized to the trophoblast and 

syncytium (Figure 2.5). KDM1A coimmunolocalized with AR to the nucleus of the trophoblast. 

AR and KDM4D coimmunolocalized to the syncytium. Predominate immunostaining for 

KDM1A was localized to the trophoblast nuclei while KDM4D localized to the apical surface of 

the syncytium (Figure 2.5). 

 

mRNA Levels of Androgen Responsive Genes in Placentomes 

Real time PCR of androgen responsive genes (Androgen Responsive Gene Database; 

http://argdb.fudan.edu.cn/) known to regulate placentation was undertaken to determine if TP 

treatment altered relative mRNA levels (Figure 2.6 and Supplemental Figure 2.3). Insulin-like 

growth factor 2 (IGF2) was decreased in cotyledon tissue from type A placentomes from TP 

treated ewes compared to controls (P<0.001, Figure 2.6). IGF2 was increased in type D 

placentomes from TP treated ewes compared to type A placentomes from controls (P<0.001). 

IGF binding protein (IGFBP) 1 and 2 (IGFBP2) both decreased in caruncle tissue from type A 

placentomes from TP treated ewes compared to controls (P<0.001). IGFBP2 also was observed 

to decrease in placentomes from TP treated ewes compared to type A placentomes from control 
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ewes (P<0.001). Aromatase (CYP19) mRNA levels increased in type D placentomes from TP 

treated ewes compared to type A placentomes from controls (P<0.001, Figure 2.6). Vascular 

endothelial growth factor (VEGFA) increased in TP treated ewe type D placentomes compared 

to type A placentomes from control (P<0.001, Figure 2.6). VEGFA monomer increased in 

cotyledon tissue in type A placentomes from TP treated ewes compared to controls (P=0.005, 

Figure 2.6). 

 

AR Complexes with Histone Demethylases and Binds to VEGFA  

Coimmunoprecipitation and chromatin immunoprecipitation were used to determine if AR 

interacts with KDM1A and/or KDM4D in ovine placenta to regulate androgen responsive 

VEGFA. Co-immunoprecipitation and Western blot revealed AR binds to KDM1A and KDM4D 

in GD90 placentomes (Figure 2.7A), and preabsorption with AR or KDM1A blocking peptide 

decreased or inhibited immunoreactive bands, respectively (Supplemental Figure 2.2B). 

Furthermore, both AR and KDM1A protein bind the same DNA region in the 5’ flanking 

sequencing of VEGFA containing an ARE half-site (Figure 2.7B) according to PCR 

amplification. PCR with primers designed for a non-ARE region in the 5’ flanking sequencing of 

VEGFA did not amplify in AR or KDM1A chromatin immunoprecipitation samples, but was 

present in genomic DNA (data not shown).  

 

Immunolocalization of AR, KDM1A, and KDM4D in First Trimester Human Placenta 

In both the 8.6 and 11.5 weeks of gestation samples, AR, KDM1A, and KDM4D 

immunolocalized to nuclei in syncytiotrophoblast (Figure 2.8). Additional KDM1A 

immunostaining was observed in cells in the villous stroma at 8.6 weeks of gestation, but not at 
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11.5 weeks of gestation. KDM4D immunostaining was also observed in villous stroma at both 

8.6 and 11.5 weeks of gestation (Figure 2.8). 

 

Discussion 

Prenatal androgenization models previously have been employed to study abnormal 

developmental programing (Robinson et al., 2002; Manikkam et al., 2004; Recabarren et al., 

2005; Dumesic et al., 2007; Veiga-Lopez et al., 2008; Beckett et al., 2011). In our study, prenatal 

androgenization from GD30 to 90 led to reduced fetal weight of female lambs. Androgen 

induced intrauterine growth restriction has been described in sheep (Manikkam et al., 2004; 

Recabarren et al., 2005) and prenatal androgenized rats (Sathishkumar et al., 2011) along with 

reduced placental weights (Sun et al., 2012). These data strongly suggest androgen as a potent 

regulator of developmental programing for fetal growth and placental function. We also report 

that prenatal androgenization either directly or indirectly leads to abnormal placentome 

morphology. While the increase in type C and D placentomes has been associated previously 

with prenatal androgenization (Vonnahme et al., 2006), increased presence of type C and D 

placentomes in pregnancies complicated by maternal nutrient restriction corresponds to increased 

interdigitated fetal villi, heightened cotyledon proliferation, and capillary density (Hoet and 

Hanson 1999; Osgerby et al., 2004; Ford et al., 2004; Ford et al., 2006; Vonnahme et al., 2006). 

However, it still is unclear how prenatal androgenization contributes to intrauterine growth 

restriction. 

 

In addition to altered ovine placentome morphology, we observed decreased global DNA 

methylation in placentomes from TP treated ewes, suggesting abnormal epigenetic regulation of 
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trophoblast gene expression. DNA methylation is regulated by DNA methyltransferases 

(DNMTs), with DNMT1 functioning to maintain cytosine methylation  while DNMT3A and 

DNMT3B function for de novo cytosine methylation patterns, such as those required during 

reprograming for embryonic development and imprinting (Klose and Bird 2006). Proper 

regulation of DNA methylation in trophoblasts is necessary for normal placenta developmental 

programing. Reduction of DNA methyltransferases (DNMT1, DNMT3a and DNMT3b) in 

choriocarcinoma (BeWo) cells prevents cell migration (Rahnama et al., 2006) and reduced 

placental DNMT1 expression in in vitro produced ovine embryos leads to early embryonic loss 

(Ptak et al., 2013). Loss of DNA methylation imprinting in long non-coding H19 and 

neighboring IGF2 in the placenta also has been associated with Beckwith-Wiedemann Syndrome 

and increased prenatal and placental growth (Angiolini et al., 2006; Weksberg et al., 2010). In 

the prenatal androgenization ewe model, we report up-regulated H19 and IGF2 in placentomes 

from TP treated ewes, suggesting that excess prenatal androgen exposure may lead to 

dysregulated imprinting in the placenta via decreased global DNA methylation, contributing to 

abnormal fetal growth observed with prenatal androgenization (Manikkam et al., 2004; 

Sathishkumar et al., 2011).  

 

DNMTs dynamically regulate gene expression by working in concert with site-specific 

adaptations of amino acids in histone N-terminal tails, including methylation of lysine residues 

(Johnson et al., 2002; Klose and Bird 2006; Ooi et al., 2007; Cedar and Bergman 2009). KDMs 

demethylate lysines in histones to typically increase DNA accessibility and promote transcription 

in the presence of transcription activators, such as ligand-bound nuclear receptors (Johnson et al., 

2002; Klose and Bird 2006;Ooi et al., 2007; Perillo et al., 2008). KDMs interact with sex 
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hormone receptors and regulate androgen and estrogen signaling (Kawazu et al., 2011; Coffey et 

al., 2013). Knock-out of KDM1A in mice results in early embryonic lethality (Wang et al., 2007; 

2009). We report that not only are AR and histone demethylases KDM1A and KDM4D present 

in ovine placenta and first trimester human placenta, but AR co-localizes and complexes with 

KDM1A and KDM4D in ovine placental tissue. This agrees with previous studies that reported 

AR, ESR1, and ESR2 heterocomplexes with KDMs to regulate target genes (Metzger et al., 

2005; Yamane et al., 2006; Garcia-Bassets et al., 2007; Shin and Janknecht 2007; Wissmann et 

al., 2007; Perillo et al., 2008; Kawazu et al., 2011; Verrier et al., 2011; Coffey et al., 2013), 

though this is the first study to our knowledge to show this interaction also occurs in placental 

tissue.  

 

With the decreased DNA methylation observed in placental tissue from TP treated ewes, the shift 

in placentome morphology may be a direct result of altered gene expression, more specifically 

from increased growth and angiogenic factors induced by androgen signaling in placental tissues. 

In GD90 placentomes from TP treated ewes, we observed increased mRNA levels of AR 

responsive genes insulin-like growth factor 2 (IGF2) and vascular endothelial growth factor 

(VEGF), and  increased protein levels of AR and VEGFA. During prenatal development, IGFs 

and VEGFA regulate placentation and fetal growth. IGFs are expressed throughout the placenta 

of various species, including maternal decidualized cells, cytotrophoblasts, and chorionic 

mesoderm (Hill et al., 1993; Han and Carter 2000) and function as a key regulator of prenatal 

growth (Randawa and Cohen 2005). Decreased IGFBP1 and IGFBP2 in caruncle tissue from TP 

treated ewes may be an additional mechanism to heighten local IGF signaling in androgenized 
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placenta (Hill et al., 1993), explaining the rise in placentome overgrowth observed with the 

increase in type C and D placentomes (Hoet and Hanson 1999; Osgerby et al., 2004).  

 

VEGFA also stimulates fetal and placental growth through increased angiogenesis (Zhou et al., 

2002; 2003).  While androgen responsive VEGFA stimulates placental and prenatal 

angiogenesis, it also stimulates differentiation of extravillous trophoblasts that remodel maternal 

spiral arteries in the human decidua for enhanced blood flow to the placenta (Zhou et al., 2002; 

2003; Bdolah et al., 2004). Insufficient extravillous trophoblast differentiation and invasion has 

been associated with placental insufficiency and the development of pregnancy induced 

pathologies, including fetal growth restriction and preeclampsia (Bdolah et al., 2004). Multiple 

studies have also shown that maternal plasma testosterone is increased in cases of severe 

preeclampsia (Acromite et al., 1999; Serin et al., 2001; Salamalekis et al., 2006), with placentas 

from preeclamptic pregnancies expressing increased syncytiotrophoblast and stromal cell 

expression of AR (Hsu et al., 2009; Sathishkumar et al., 2011). Mutations in AR are correlated 

with increased risk for the development of preeclampsia (Lim et al., 2011). As we demonstrated 

AR and KDM1A binding to an ARE in VEGFA’s promoter region in ovine placental tissue, 

placental androgens may have a critical function in regulating trophoblast function in sheep, 

possibly through VEGFA signaling, with increased placental androgen production occurring in 

an effort to correct reduced trophoblast differentiation and invasion. 

 

This proposed mechanism for placental androgen signaling is further supported by evidence that 

hypoxia induces AR activity and expression of androgen-regulated genes, including VEGFA 

(Shabisgh et al., 1999; Mabjeesh et al., 2003; Comstock et al., 2008), while androgen withdrawal 
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leads to hypoxia (Milosevic et al., 2007). Additionally, KDMs also are regulated by hypoxia to 

promote vascularization, invasion, migration, and cell proliferation in cancerous tissues (Metzger 

et al., 2005; Shin and Janknecht 2007; Yang et al., 2010; Coffey et al., 2013). This is of 

particular interest as hypoxia-regulated trophoblast differentiation and invasion in the first 

trimester is required to establish proper placentation (Zhou et al., 1993; Kaufmann et al., 2003; 

Bdolah et al., 2004).  

 

Prenatal androgenization and increased ligand could promote AR-KDM1A complex recruitment 

to AR-target genes in the placenta to stimulate gene transcription by promoting reduced 

methylation signatures near androgen responsive genes (Johnson et al., 2002; Perillo et al., 

2008). Therefore, ligand-dependent recruitment of AR-KDM1A to androgen responsive genes 

could regulate growth, invasion, and angiogenesis and, as such, placental development and 

function. However, despite the observed up-regulation in mRNA levels for androgen responsive 

genes regulating growth, invasion, and angiogenesis, and the advancement in differentiated 

placentome morphology, GD90 prenatal androgenized ewe lambs had reduced fetal weight, 

suggesting that increased androgen signaling, either directly or indirectly, dysregulated fetal 

developmental programing through other factors, such as placental nutrient transport, that were 

not investigated.  

 

However, in this model of prenatal androgenization we cannot rule out the effects of placental 

estradiol as the ovine placenta expresses active aromatase (CYP19) (France et al., 1987) and 

increased CYP19 was observed in type A placentomes from TP treated ewes. Further 

investigation into the interaction of ESRs and KDMs in the placenta also is necessary given the 



 75

known role of estradiol in regulating trophoblast differentiation (Niklaus et al., 2003; Rama et 

al., 2004; Albrecht et al., 2004; 2006) and the ability of ESR1 to complex with KDMs (Garcia-

Bassets et al., 2007; Perillo et al., 2008; Yang et al., 2010; Kawazu et al., 2011). Furthermore, 

our data indicates ESR1 colocalizes with KDM1A in the nucleus of trophoblasts in the villous 

epithelium in GD90 ovine placentomes. 

 

In conclusion, the present study revealed that prenatal androgenization alters ovine placentome 

development through decreased global DNA methylation and altered gene transcription of 

angiogenic and growth factor pathways. Furthermore, we demonstrated that AR complexes to 

KDM’s in ovine placenta, and that AR and KDM1A bind to the same promoter region of 

androgen responsive gene VEGFA in trophoblast cells. These results indicate androgen signaling 

functions jointly with KDMs to play a key regulatory role in placentation and function. These 

findings also have important implications as to androgens’ regulation of human trophoblast 

differentiation and function as KDM1A and KDM4D immunolocalized in syncytiotrophoblast 

and in villous stromal cells in first trimester human placenta. Current studies are underway to 

determine the role of histone demethylases in human placentation and to determine androgen’s 

effects on trophoblast differentiation. 

 



 76

TABLE 2.1. List of antibodies and their dilutions used for Western blot or IHC protocols 

Protein Antibody for Western Blot 
and Dilution Utilized 

Blocking Peptide 
Ratio to Antibody 

Antibody for IHC and 
Dilution Utilized 

AR Santa Cruz sc816 Santa Cruz sc816-P ThermoScientific PA1-110 
1:10 1:500 3:1 

KDM1A  Abcam ab17721 Abcam ab17763 Abcam ab17721 
1:100 1:500 2:1 

KDM4D  Abcam ab93694  Abcam ab93694 
1:2000 1:300  

VEGFA Santa Cruz sc152   
 1:500   

ESR1 
 

ThermoScientific MA1-310 
1:50 

 
 

Abcam ab2746 
1:10 

ESR2 
 

Abcam ab3577 
1:500 

Abcam ab3564 
1:1 

Abcam 3577 
1:50 

DNMT1 Abcam ab92453   
 1:1000   

β-actin Santa Cruz sc47778   
 1:1000   
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TABLE 2.2. List of primer sequences used for PCR of ChIP samples spanning an ARE and non-
ARE region in the -5000bp 5’ flanking sequence of VEGFA. 
 

Gene ARE/non-
ARE 

Region 

Primer Sequence Amplicon 
Size 

VEGFA ARE F-5' CTCTGTCTGGGCTGCTCTCT 179 
 R-5' TCCTCCCATGGACGTAACTC 

VEGFA Non-ARE F-5' GCCTGTAATCCCAGCACTCT 181 
 R-5' GAGCAATTCTCCTGCCTCAG 

 
 

 
 
 
 
 
 
 



 78

 
 

FIGURE 2.1. Placentome morphology and fetal weight. A) Testosterone propionate treatment 
(TP) decreased the number of type A placentomes, and increased type C and type D placentomes 
collected at gestational day 90. B) TP treatment did not affect placental weight while C) female 
fetuses from TP ewes had significantly reduced body weight at gestational day 90 compared to 
female fetuses from controls. * Indicates P≤0.06 
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FIGURE 2.2. Global methylation in ovine GD90 placentomes. Global DNA methylation 
decreased in type A placentomes from TP treated ewes when compared to type A placentomes 
from controls. No difference was observed between control type A placentomes compared with 
type D placentomes from TP treated ewes or between type A and D placentomes from TP treated 
ewes. Different letters indicate statistical difference of P<0.05. 
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FIGURE 2.3. Differential levels of epigenetic regulators with TP treatement. Analysis of relative 
mRNA levels for genes regulating histone and DNA methylation and imprinting in ovine 
placentome tissue from real time PCR. KDM4C was decreased in type A placentomes from TP 
treated ewes compared to controls. H19 was increased in cotyledon tissue from type A 
placentomes in TP treated ewes compared to controls. DNMT1 increased in TP treated ewe type 
A cotyledon tissue compared to controls. DNMT1 increased in TP treated ewe type A 
placentomes (P<0.001). Different letters indicate statistical difference of P<0.05. 
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FIGURE 2.4. Real time PCR and representative Western blot depicting placentome mRNA and 
protein levels in control and TP treated ewes. TP treatment did not alter mRNA for AR, KDM1A, 
or KDM4D. AR was increased in type A caruncle tissue from TP treated ewes compared to 
controls. No difference was found in KDM1A, though KDM4D increased in type A placentomes 
from TP treated ewes compared to controls. Placentome values represent average of cotyledon 
and caruncle quantified mRNA levels in type A cotyledons. Different letters indicate statistical 
difference of P<0.05. 
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FIGURE 2.5. Serial images of immunolocalized AR, KDM1A, and KDM4D in type A 
placentomes from control ewes at GD90. Inserts represent control IHC straining. 
Immunolocalization of AR was present in the trophoblasts of the villous epithelium with 
primarily nuclear staining (arrow). AR immunostaining also was present in the surface of the 
syncytium (white arrow). KDM1A immunolocalized to the nucleus of the trophoblasts in the 
villous epithelium (arrow), while KDM4D immunostaining was prominent in the apical surface 
of the syncytium (arrow). F, fetal cotyledon; M, maternal caruncle 
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FIGURE 2.6. Real time PCR results of androgen responsive genes known to regulate trophoblast 
differentiation and proliferation. IGF2 increased in type D placentomes from TP treated ewes 
compared to type A placentomes from control or TP treated ewes. IGFBP1 and IGFBP2 both 
decreased in caruncle tissue from type A placentomes from TP treated ewes compared to 
controls. IGFBP2 also decreased in type A and D placentomes from TP treated ewes compared 
to control type A placentomes.  CYP19 increased in type D placentomes form TP treated ewes 
compared to type A placentomes from controls. TP treated ewes had increased VEGFA in type D 
placentomes compared to type A placentomes from control ewe. TP treated ewes had increased 
VEGFA monomer in type A placentome cotyledon tissue. Different letters indicate statistical  
difference of P<0.05. 
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FIGURE 2.7. Interaction of KDMs with AR. A) Immunoprecipitation of AR, KDM1A, and 
KDM4D from placentome protein isolated from control and TP treated ewes followed by 
Western blot detection of co-immunoprecipitated protein. Anti-rabbit IP represents pull down by 
secondary antibody used for Western blot immunolabeling. Antibody preabsorption with 
blocking peptide was used as a negative control. B) PCR of an ARE promoter region of VEGFA 
from ChIP samples. IP, immunoprecipitate; ChIP, chromatin immunoprecipitation; ARE, 
primers spanning androgen response element in promoter region 
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FIGURE 2.8. Immunolocalization of AR, KDM1A, and KDM4D in first trimester human 
placenta samples. Inserts are representative images from control slides. AR immunostaining was 
present in the nuclei in the syncytium at 8.6 and 11.5 weeks of gestation (arrow). KDM1A 
immunostaining also localized to the nuclei in the syncytium at 8.6 and 11.5 weeks of gestation. 
KDM1A nuclear immunostaining also was localized in cells in the villous stroma (white arrow) 
at 8.6 weeks of gestation. KDM4D Immunolocalization was similar to KDM1A, with nuclear 
immunostaining present in the syncytium (arrow) and in the villous stroma (white arrow) at both 
8.6 and 11.5 weeks of gestation. 
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SUPPLEMENTAL TABLE 2.1. List of primer sequences used for real time PCR of sheep 
placentomes. 
 

Gene Primer Sequence Amplicon 
Size 

Primer Efficiency 

AR F-5' TCCTGGATGGGGCTTATGGT 150 99.8%  

 R-5' GCCTCATTCGGACACACTGG   

ESR1 F-5' CGCGTCCTGGACAAGATCAC 142 92.4% 
R-5' TGCTCCATGCCTTTGTTGCT  

ESR2 F-5' CTGTCGACTGCGGAAGTGCT 146 87.6% 
R-5' ATGGGTGCACCGTTCCTCTT  

CYP19 F-5' GTTGTGCCTATTGCCAGCAT 137 88.7%  
R-5' AACCTGCAGTGGGAAATGAG  

DNMT1 F-5' TTCTGCAGCAAGAAGAGCAA 229 99.2%  

 R-5' AGAAGTCCTGGAGGCACTCA   

DNMT3A F-5' AGCACAACGGAGAAGCCTAA 180 96.3%  

 R-5' GTTCTTGCAGTTTTGGCACA   

DNMT3B F-5' TGCAGACAGCACCGAGTATC 190 90.1%  

 R-5' CTGCTGGAATCTCGGAGAAC   

H19 F-5' AATAGAAGCCCCCTGGGTGT 152 83.1%  

 R-5' CCCCATCAGATCCCTGTCAT   

KDM1A F-5' ACATTGCAGTTGTGGTTGGA 216 99.1%  
R-5' GACCCCAGAGCCTATGATGA  

KDM3A F-5' GCCAACATTGGAGACCACTT 230 95.6%  
R-5' GCACCTTGTTGGCAGTTTTT  

KDM4A F-5' TGGATCGAGTATGGCAAACA 201 86.0%  
R-5' TCTCAGGGCCAGTTCACTCT  

KDM4C F-5' TGCACTTGCAGGAAAGAC 206 98.1%  
R-5' ACACTGGAAGCTCCTGGATG  

KDM4D F-5' GGCAGAGTACCGCCACTTAG 167 86.3% 
R-5' GGTTCCACTGCTTCGTGTTT  

MMP2 F-5' ACCAGAGCACCATTGAGACC 220 86.5%  
R-5' TGGATCCGAGAAAACCGTAG  

MMP3 F-5' GCAAGCAGGTTACCCAAGAG 156 99.5%  

 R-5' GGCTCCATGGATTGTGTCTT   

MMP9 F-5' CTCCTACTCCTCCTGCACCA 205 99.3% 

 R-5' GCGTCCATCGGAGGTACA   

VEGF F-5' TCACCAAAGCCAGCACATAG 179 97.9%  
R-5' GCGAGTCTGTGTTTTTGCAG  

IGF2 F-5' GACCGCGGCTTCTACTTCAG 202 98.6% 
R-5' AAGAACTTGCCCACGGGGTAT  

IGFBP1 F-5' TGATGACCGAGTCCAGTGAG 248 94.5%  
R-5' GTCCAGCGAAGTCTCACAC  

IGFBP2 F-5' CAATGGCGAGGAGCACTCTG 330 88.3% 
R-5' TGGGGATGTGTAGGGAATAG  

IGFBP3 F-5' CTCAGAGCACAGACACCCA 335 95.7% 

 R-5' GGCATATTTGAGCTCCAC   

GAPDH F-5' GATTGTCAGCAATGCCTCCT 94 94.3%  
R-5'GGTCATAAGTCCCTCCACGA  

RN18s F-5' GAGGCCCTGTAATTGGAATGAG 119 97.2%  
R-5' GCAGCAACTTTAATATACGCTATTGG    
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SUPPLEMENTAL FIGURE 2.1. Real time PCR results for other epigenetic regulators. 
Difference in letter indicates significant difference of P<0.05. 
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SUPPLEMENTAL FIGURE 2.2. Representative Western blot blocking peptide controls. A) 
Loss of immunoreactive band for AR when antibody is preabsorbed with AR blocking peptide at 
a 1:3 ratio. Loss of ESR2 immunoreactive band when antibody is preabsorbed with ESR2 
blocking peptide at a 1:1 ratio. LNCaP, human prostate adenocarcinoma cells. B) Reduced AR 
immunoreactive band in immunoprecipitation of AR when antibody is preabsorbed with 
blocking peptide (1:1 dilution). Loss of KDM1A immunoreactive band in immunoprecipitation 
when antibody is preabsorbed with blocking peptide (1:1 dilution). IP, immunoprecipitation 
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SUPPLEMENTAL FIGURE 2.3. Real time PCR results for other androgen responsive genes 
known to regulate trophoblast differentiation and proliferation. Placentome values represent 
average of cotyledon and caruncle quantified mRNA levels in type A cotyledons. Difference in 
letter indicates significant difference of P<0.05. 
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SUPPLEMENTAL FIGURE 2.4. ESR1 and ESR2 placentome mRNA and protein levels in 
control and TP treated ewes. ESR1 increased in type D placentomes from TP treated ewes. No 
difference was observed in ESR2 mRNA or protein. Difference in letter indicates significant 
difference of P<0.05. 
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SUPPLEMENTAL FIGURE 2.5. Immunolocalization of ESR1 and ESR2 in type A placentomes 
from control ewes at GD90. Inserts are representative images from control IHC slides. ESR1 
immunolocalization was present in the nucleus of the trophoblast layer (arrow), although nuclear 
immunostaining was also present in the syncytium (white arrow). In contrast, ESR2 
immunolocalization was present primarily within the cytoplasm of the trophoblasts (arrow). F, 
fetal cotyledon; M, maternal caruncle 
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CHAPTER III: ANDROGEN RECEPTOR INTERACTS WITH HISTONE LYSINE 

DEMETHYLASES AND REGULATES TRANSCRIPTION IN CHORIOCARCINOMA 

CELLS4,5 

 
 
 

Summary 

Recently, we reported that androgen receptor (AR) complexes with histone lysine demethylases 

(KDMs) in the ovine placenta and that KDMs immunolocalized to the syncytiotrophoblast and 

nuclei of cells in the villous stroma of the human first trimester placenta. While KDMs complex 

with AR and are regulated by androgen signaling, their expression and activity is increased under 

hypoxic conditions. Hypoxia also drives trophoblast differentiation in the first trimester, in part 

through regulation of estrogen signaling in trophoblast cells. Increased AR activity has also been 

reported in hypoxic conditions for other cell types, though hypoxia-mediated regulation of 

androgen signaling in the placenta has not been previously investigated. We therefore 

investigated the response of choriocarcinoma cell lines ACH-3P and BeWo to 

dihydrotestosterone (DHT) treatment with and without androgen inhibition through flutamide 

treatment. Additionally, we investigated if ACH-3P response to DHT treatment was altered 

under hypoxic conditions. We report that DHT treatment increased AR mRNA levels in ACH-3P 

at 48 hours, but down-regulated known androgen responsive genes, such as KDM3A, KDM4D, 

and MMP2 in ACH-3P and BeWo cells. Flutamide treatment affected genes regulating 

                                                        
4
 Paper in progress for submission 

5
 Project supported by Agriculture and Food Research Initiative competitive grant number 2010-38420-

20397 from the USDA National Institute of Food and Agriculture and by the Colorado State University 
College of Veterinary Medicine and Biomedical Sciences College Research Council. 
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vascularization, including increased HIF1α in hypoxic conditions and decreased PPARy in 

normoxic conditions. CYP19 decreased in hypoxic conditions compared to normoxic cells. 

While androgen responsive genes did not appear to respond to DHT as would be predicted, 

protein expression levels in response to treatment have not yet been investigated. Additionally, 

identification of AR and KDMs in the immortalized trophoblast cell line Swan71 suggests an 

alternative, better model than choriocarcinoma cells for future experiments in characterizing 

androgen signaling and interaction with KDMs and HIF1α in human trophoblast cells. 

 

Introduction 

During the first trimester, cytotrophoblast cells in human placental villi differentiate to form 

syncytiotrophoblast and invasive extravillous trophoblasts for placental growth, endocrine 

function, invasion and remodeling of the uterine spiral arteries (Brosens et al., 1967; Enders 

1968; Blankenship et al., 1993; Brosens 1988; Kaufmann et al., 2003). Inadequate trophoblast 

differentiation and invasion leads to placental insufficiency and the development of pregnancy 

induced disorders, including fetal growth restriction and preeclampsia (Knobil and Neill 1998; 

Eriksson et al., 1999; Jaquet et al., 2000; Anderson 2007). Trophoblast differentiation is 

regulated by the hypoxic uterine environment of the first trimester, in particular through 

activation of hypoxia inducible factor 1 (HIF1), increased placental vascularization through HIF1 

target vascular endothelial factor (VEGF), and regulation of estrogen signaling (Brogi et al., 

1996; Kingdom and Kaufmann 1997; Salceda and Cara 1997; Ehleben et al., 1998; Huang et al., 

1998; Shweiki et al., 1992; Adelman et al., 2000; Chandel et al., 2000; Semenza 2000; Tissot van 

Patot et al., 2004; Rama et al., 2004; Albrecht et al., 2004). Estradiol produced by the placenta in 

the hypoxic first trimester is suggested to regulate trophoblast invasion by increasing matrix 
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metalloproteinases (MMPs) and promoting angiogenesis (Kaufmann et al., 2003; Albrecht et al., 

2006). However, the increased uterine-placental blood flow in the second trimester, coupled with 

the rapid rise in estrone, estriol, and estradiol production by the growing placenta, is suggested to 

block further trophoblast differentiation into the invasive phenotype (Tulchinsky and Hobel 

1953; Siiteri and MacDonald 1963; 1966; Loriaux et al., 1972; Aw et al., 1985; Rodesch et al., 

1992; Zhou et al., 1993; Rama et al., 2004; Albrecht et al., 2006; Lee et al., 2010). Although 

these estrogens appear to regulate trophoblast function in the first trimester, no research has 

investigated the role of androgen signaling in trophoblast cells. As hypoxia has been shown to 

increase androgen receptor (AR) activity in other cell lines, there is potential for the hypoxic 

environment during the first trimester to also regulate placental androgen signaling (Shabisgh et 

al., 1999; Mabjeesh et al., 2003; Cheng et al., 2004; Lissbrant et al., 2004; Boddy et al., 2005; 

Zhu and Kyprianou 2008). 

 

Normal trophoblast function and placental health may be controlled by placental androgen 

signaling as maternal serum androgen levels rise rapidly throughout gestation through placental 

production and secretion into maternal vasculature (Mizuno et al., 1968; Serin et al., 2001). By 

the second trimester, maternal plasma concentrations of androstenedione and testosterone reach 

levels two-fold and four-fold greater than non-pregnant women, respectively, (Mizuno et al., 

1968). Additionally, multiple studies have shown that maternal plasma testosterone is increased 

in cases of severe preeclampsia and placenta-induced hypertension (Acromite et al., 1999; Serin 

et al., 2001; Atamer et al., 2004; Salamalekis et al., 2006; Gerulewicz-Vannini et al., 2006; 

Ghorashi and Sheikhvatan 2008; Hsu et al., 2009; Lorzadeh and Kazemirad 2012). In 

preeclamptic patients, serum testosterone raises two to three times higher than normal levels 
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during pregnancy, with increased testosterone detectably higher at 17 weeks of gestation 

(Atamer et al., 2004; Carlsen et al., 2005). As AR is localized in cytotrophoblast, 

syncytiotrophoblast, invasive extravillous trophoblasts and vascular endothelial cells, the 

placental production of androgens has the potential for autocrine or paracrine regulation of 

trophoblast function (Horie et al., 1992; Iwamura et al., 1994; Hsu et al., 2009; Khatri et al., 

2013; Wieciech et al., 2013). 

 

Hypoxia has been shown to increase expression of androgen responsive genes, such as hypoxia 

inducible factor 1α (HIF1α) and vascular endothelial growth factor (VEGF) which function to 

promote angiogenesis and vascularization of the placenta (Shabisgh et al., 1999; Mabjeesh et al., 

2003; Cheng et al., 2004; Lissbrant et al., 2004; Boddy et al., 2005; Zhu and Kyprianou 2008). 

Additionally, androgen withdrawal in prostate cancer has been shown to reduce tissue hypoxia 

(Milosevic et al., 2007). While androgen signaling in trophoblasts may in part be regulated by 

hypoxia, lysine demethylase 1 family and Jumonji-C domain containing histone demethylases 

(KDMs) have been shown to complex with AR to regulate androgen signaling (Metzger et al., 

2005; Yamane et al., 2006; Shin and Janknecht 2007; Wissmann et al., 2007; Cloos et al., 2006; 

Coffey et al., 2013). In addition, KDMs are also regulated by hypoxia to promote 

vascularization, invasion, migration, anti-apoptosis, and cell proliferation (Metzger et al., 2005; 

Shin and Janknecht 2007; Beyer et al., 2008; Yang et al., 2010; Kawazu et al., 2011; Shi et al., 

2011; Coffey et al., 2013).  

 

Recently, we described nuclear immunolocalization of KDM1A and KDM4D in 

syncytiotrophoblast and villous stroma of first trimester human placenta. It was therefore the 
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goal of this study to determine if KDMs were present in choriocarcinoma cells and to investigate 

the response of choriocarcinoma cells to androgen treatment. In particular, we aimed to 

determine the changes in androgen responsive genes that are known to regulate trophoblast 

differentiation and placental angiogenesis: MMPs, insulin-like growth factors (IGFs), HIF1α, 

VEGFA, and VEGFA regulator PPARα/y (Charnock-Jones et al., 1994; Huppertz et al., 1998; 

Lee et al., 2001; Constância et al., 2002; Kudo and Boyd 2002; Solberg et al., 2003 Wieser et al., 

2008; Renaud et al., 2014). Additionally, we tested whether expression of syncytin, syncytin 

receptor (ASCT2), and kisspeptin (KiSS1), genes known to regulate trophoblast fusion and 

invasion, respectively (Pötgens et al., 2004; Dhillo et al., 2006; Hiden et al., 2007a; Armstrong et 

al., 2009; Gauster et al., 2009; Vargas et al., 2009), were increased in choriocarcinoma cells 

following androgen treatment. 

 

Materials and Methods 

Cell Culture Treatment with DHT, Flutamide, and Hypoxia 

Human first trimester choriocarcinoma ACH-3P (Hiden et al., 2007b) and BeWo cells 

(Trowsdale et al., 1980) between passage 13 and 17 were plated on 10cm2 plastic dishes. Cells 

were maintained in phenol red-free Ham’s F12 medium (Caisson) supplemented with 10% 

charcoal stripped FBS (Cellgro), 1% PSA (Cellgro) and cultured at 37°C with 5% CO2 and 95% 

air (normoxic 20% O2) or with 2% O2, 5% CO2, and 92.8% N2 (hypoxic). Immortalized human 

first trimester trophoblast Swan71 cells (Straszewski-Chavez et al., 2009) were maintained in 

normoxic conditions with phenol red-free DMEM/F12 1:1 media (Hyclone) containing 2.5mM 

L-glutamine supplemented with 10% charcoal stripped FBS (Cellgro), 1% PSA (Cellgro), 1mM 

sodium pyruvate (Cellgro), 0.1mM non-essential amino acids (Hyclone). Prior to treatment, 1.5 x 
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106 and 1 x 106 ACH-3P and BeWo cells, respectively, were seeded per dish and allowed to plate 

overnight. Dihydrotestosterone (DHT) and the antiandrogen drug flutamide (Sigma Aldrich) 

were dissolved in 100% ethanol and further diluted in PBS to obtain working stock solutions 

(Nheu et al., 2011).  

 

DHT was added at concentrations of 0.01nM, 0.1nM, and 1nM to mimic a physiological range 

(Dawood and Saxen 1977). Control cells received equal volume and concentration of diluted 

ethanol in PBS (vehicle). When treated with flutamide, 10 µM flutamide in complete phenol red-

free media supplemented with charcoal stripped serum was added to cell culture plates 3 hours 

prior to DHT administration. Cells were maintained up to 48 hours and observed to ensure 

treatments did not result in cell death. With the preliminary treatment of ACH-3P cells, cell 

pellets were collected at 24 and 48 hours post-treatment. In all subsequent cell culture 

experiments, cell pellets were collected at 48 hours post-treatment.  

 

To collect cell pellets, culture plates were first treated with trypsin (Cellgro) and cells were 

collected in complete phenol-red free media containing charcoal-stripped serum in conical tubes. 

Tubes were centrifuged for 3 minutes at 1000 x g and media was removed from cell pellets. Cell 

pellets were then snap frozen and stored at -80°C prior to RNA and protein isolation. Each 

treatment contained at least four biological replicates (n=4 per treatment). For statistical analysis, 

ACH-3P cells collected at 24 hours were analyzed separately from cell pellets collected at 48 

hours. ACH-3P cells kept under hypoxic conditions were compared to cells under normoxic 

culture conditions using an ANOVA with Tukey’s pairwise comparison (Minitab 16) with 

statistical significance at P≤0.05. 
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Cell Pellet RNA Isolation and Real Time PCR 

Primers were designed using Primer3Plus online tool when a previously published primer 

sequence was not readily identified (Table 3.1). Primer specificity was confirmed using DNA 

sequencing of PCR amplicons prior to real time PCR. A pool of cDNA was used for PCR 

amplification with GoTaq (Promega) as per the manufacturer’s specifications. PCR product was 

electrophoresed and the resulting amplicon band was excised from the agarose gel. DNA was 

extracted from the agarose using QIAquick Gel Extraction Kit (Qiagen) and was sequenced at 

the Colorado State University Genomics and Proteomics Laboratory. Sequence alignment with 

androgen responsive genes was confirmed with NCBI blast to verify specificity. Serial dilutions 

of a cellular cDNA pool were used to created standard curves. Standard curves were analyzed on 

the Roche Light Cycler 480 (Roche, Basel, Switzerland) to assess primer efficiency, including 

primer sequences obtained from publications. 

 

The protocol for RNA isolation, cDNA synthesis, and real time PCR follows that described in 

Chapter II. Total RNA was isolated from snap frozen cell pellets using the RNeasy Mini kit 

(Qiagen) followed by treatment with RNase-Free DNase (Qiagen) to eliminate any genomic 

DNA contamination. RNA concentration and purity was determined with a NanoDrop 1000 

Spectrophotometer (NanoDrop Technologies, Wilmington, DE) and RNA aliquots were stored at 

-80° C. Reverse transcription of total RNA utilized qScript cDNA synthesis (Bio-Rad, Hercules, 

CA) according to manufacturer’s specifications. 1µg of total RNA was added to each reverse 

transcription reaction with 4µL reverse transcriptase Supermix (Quanta QScript) and nuclease 

free water up to 20µL total reaction volume. The resulting cDNA was used the same day as a 

template for real time PCR analysis.  



 106

For real time PCR analysis, cDNA was diluted 1:4 in nuclease free water prior to loading into 

real time PCR reactions. 5µl of Light Cycler 480 SYBR Green I Master (Roche, Basel 

Switzerland) and 2.5 µl of nanopure water per reaction was added to an Eppendorf tube to create 

a master mix. Primer sets of forward and reverse primer were added to the master mix to reach a 

final concentration of 0.5µM in each reaction. 1µl of diluted cDNA was added per well with 9 

µL master mix containing primer, water, and SYBR Green I, resulting in a final cDNA 

concentration of 1.25 ng/µL in a total volume of 10µL. Samples were loaded into 384 well Light 

Cycler 480 plates (Roche) and analyzed using a Roche Light Cycler 480 (Roche) in duplicate. 

Real time PCR cycle conditions followed manufacturer’s specifications with primer annealing at 

60°C for 15 seconds. Following real time PCR amplification, melt peaks were generated with an 

initial incubation at 95°C for 30 seconds to confirm the presence of a single amplicon. Cp values 

were normalized to RN18s. Statistical analysis used an ANOVA and Tukey’s pairwise 

comparison (Minitab 16) with statistical significance at P<0.05. Results reported for real time 

PCR data use 2-∆Cp values (Schmittgen and Livak 2008) for statistical analysis and graphs.  

 

Protein Isolation and Western Blot 

Protein isolation and Western blot detection follows the protocol outlined in Chapter II. Protein 

was isolated from cell pellets suspended in 600µL of M-PER (Pierce) containing 0.1% PMSF 

and protease inhibitor. Samples were sonicated on ice for 2 minutes and centrifuged at 10,000 

rpm for 10 minutes at 4°C. Supernatant was collected and protein concentration was determined 

using a Bradford standard curve (BioRad). 50µg total protein was diluted in 6x SDS-DTT 

loading dye with 0.375M Tris pH6.8, 60% glycerol, 12% SDS, 0.6M DTT, and 0.06% 

bromophenol blue with 1.75 µL β-mercaptoethanol and water to reach a final concentration of 
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1.43 µg/µL of protein in 35 µL. After addition of β-mercaptoethanol, samples were boiled for 5 

minutes then electrophoresed at 95 volts in 10% Tris-HCL polyacrylamide gels (BioRad). 

Protein was electrophoresed in an ice cold running buffer containing 1.2% Tris, 5.76% glycine, 

and 0.4% SDS. Protein was then transferred onto 0.2 µm nitrocellulose membranes (Protran) for 

1 hour at 200 milliamps at 4°C in transfer buffer containing 2mM Tris, 150 mM glycine, 20% 

methanol, and 0.1% SDS. After protein transfer, nitrocellulose blots were blocked with 2% milk-

TBST for 1 hour at room temperature to prevent non-specific antibody binding.  

 

After blocking in milk-TBST, blots were washed with TBST. Primary antibody diluted in 2% 

milk-TBST and left overnight at 4°C. The next morning, primary antibody was removed and 

blots were washed in TBST.  Goat-anti-rabbit-HRP (Abcam ab6721, 1:1000) was applied to 

nitrocellulose blots and incubated for 1 hour at room temperature. Blots were subsequently 

washed in TBST and ECL Prime Western Blotting Detection System (Amersham Biosciences) 

was applied to detect immunoreactivity. Chemiluminescent bands were detected using the 

Chemidoc MP System (BioRad). Primary antibodies that were used for Western blot analysis are 

listed in Table 3.2 with their respective dilutions. 

 

Coimmunoprecipitation of AR with KDM1A 

Protein was isolated from snap frozen ACH-3P and BeWo cell pellets as described above. 

Coimmunoprecipitation follows the protocol listed in Chapter II with minor alterations. 250 µg 

of cellular protein was diluted in RIPA buffer to reach a final concentration of 0.5 µg/µL in 500 

µL RIPA buffer containing 5µL PIC and PMSF. Antibodies were combined with the 500 µL of 

diluted cellular protein and incubated for an hour at 4° C on a rotational mixer. 2 µg of AR 
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antibody (Santa Cruz, sc816), 2 µg of KDM1A antibody (Abcam, ab17721), or 1 µg secondary 

antibody as a negative control (Abcam, anti-rabbit ab6721) were added to each sample. 

Following antibody incubation, 20 µL of A/G PLUS agarose beads (Santa Cruz, sc2003) were 

added for an hour at 4° C on a rotational mixer. Samples were briefly centrifuged at 2500 rpm 

for 5 minutes at 4° C. Agarose beads were centrifuged down and washed two times with RIPA 

buffer followed by three washes with PBS. Protein was resuspended in 6.67 µL 6x Western blot 

loading dye (described above) diluted with 31.33 µL RIPA buffer, then stored at -80° C 

overnight. The following day, samples were thawed and 2 µL of β-mercaptoethanol was added to 

reach a final volume of 40 µL. Samples were immediately incubated at 95° C for 8 minutes and 

centrifuged at 10,000 x g for 1 minute at room temperature. 20 µL of immunoprecipitated protein 

was loaded per lane on 10% Tris-HCl gels (BioRad) and electrophoresed. Western blot protocol 

and antibody dilutions followed those described above and in Table 3.2.  

 

Results 

AR and KDM1A Protein Expression and Interaction in Choriocarcinoma Cells 

Immunoreactive bands of 110kDa and 105kDA corresponding to AR and KDM1A, respectively, 

were detected in protein isolated from ACH-3P and BeWo control cells (Figure 3.1A). 

Furthermore, immunoprecipitation with KDM1A antibody in control ACH-3P and BeWo 

cellular protein immunoprecipitated AR (Figure 3.1B). 

 

Gene Expression Levels in Choriocarcinoma Cells 

DHT Response: DHT treatment of ACH-3P (Supplemental Figure 3.1) and BeWo cells (data not 

shown) did not appear to lead to cell death. ACH-3P treatment with 1nM DHT decreased AR 
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compared to 0.01nM DHT at 24 hours (P=0.027, Figure 3.2). 0.1nM DHT increased AR levels at 

48 hours compared to control and 1nM DHT (P=0.024, Figure 3.2). ACH-3P treatment with 

1nM DHT decreased KDM3A at 24 hours compared to all other treatments (P<0.001), but had no 

effect at 48 hours post-treatment (Figure 3.2). 1nM DHT also resulted in decreased KDM4A 

(P=0.049) and KDM4D (P=0.004) levels compared to 0.01nM DHT in ACH-3P cells at 24 hours 

(Figure 3.2). 1nM DHT decreased MMP2 compared to control and 0.01nM DHT at 24 hours 

(P<0.001, Figure 3.2). PPARy also decreased with 1nM DHT treatment at 24 hours compared to 

0.01nM DHT treatment (P=0.046, Figure 3.2). Treatment with DHT in ACH-3P cells at 24 and 

48 hours did not affect relative mRNA levels of other androgen responsive genes (Figure 3.2) or 

genes regulating trophoblast differentiation that were investigated  (Figure 3.3). 

 

In BeWo cells, KDM3A decreased at 48 hours post-treatment with all doses of DHT (P=0.003, 

Figure 3.4). KDM4D decreased in BeWo cells with 0.1nM DHT treatment compared to control 

(P=0.05, Figure 3.4). 0.01nM DHT decreased MMP2 compared to control cells (P=0.03, Figure 

3.4). Similar to ACH-3P cells, DHT treatment did not affect the relative mRNA levels of other 

androgen responsive genes that were analyzed in BeWo cells at 48 hours post-treatment (Figure 

3.4). 

 

Hypoxia and Flutamide Treatment: 10µM flutamide treatment increased HIF1α compared to 

ACH-3P control cells in hypoxic conditions (P=0.023, Figure 3.5). In hypoxic conditions, 

addition of 10µM flutamide to 1nM DHT increased VEGFA compared to 1nM DHT alone 

(P=0.001, Figure 3.5). VEGFA levels were also higher hypoxic conditions compared to normoxic 

when 1nM DHT with 10µM flutamide was present (P=0.001, Figure 3.5). In normoxic 
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conditions, treatment with 10µM flutamide, with or without 1nM DHT, decreased PPARy  levels 

(P=0.017, Figure 3.5). All ACH-3P treatments in hypoxic conditions decreased CYP19 levels 

compared to control normoxic levels (P=0.002, Figure 3.5). Additionally, treatment of normoxic 

cells with 10µM flutamide, with or without 1nM DHT, also decreased CYP19 compared to 

normoxic control (P=0.002, Figure 3.5). 

 

In BeWo cells, 10µM flutamide treatment decreased KDM1A (P=0.013), KDM3A (P=0.023), and 

KDM4A (P=0.001) compared to control and/or 1nM DHT treated cells under normoxic 

conditions (Figure 3.6A). 10µM flutamide decreased MMP2 (P=0.004) and VEGFA (P=0.016) 

compared to control and 1nM DHT treated BeWo cells (Figure 3.6B). Treatment with either 

1nM DHT or 10µM flutamide decreased HIF1α compared to control (P=0.005, Figure 3.6B). 

1nM DHT decreased PPARα in BeWo cells compared to control; 10µM flutamide decreased 

PPARα further compared to control and 1nM DHT treatment (P=0.001, Figure 3.6B). In 

comparison, PPARy decreased with just 10µM flutamide treatment (P=0.013, Figure 3.6B). 

 

AR and KDMs in Telomerase Immortalized Swan71 Cells 

In the human first trimester telomerase-immortalized trophoblast cell line Swan71, AR and 

KDMs transcripts were present as determined by end-point PCR analysis (Figure 3.7A). KDM1A, 

KDM3A, KDM4A, KDM4C, and KDM4D were all amplified via PCR. Western blot 

immunodetection showed the presence of AR, KDM1A, and KDM4D protein in Swan71 cells 

(Figure 3.7B). 
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Discussion 

Previously, we reported that prenatal androgenization altered mRNA and protein levels of 

vascular endothelial growth factor A (VEGFA), a recognized androgen responsive gene that 

regulates placental vascularization and trophoblast differentiation (Chapter II). Here, we report 

that dihydrotestosterone (DHT) treatment in choriocarcinoma cells led to decreased KDM3A, 

KDM4D, MMP2, and PPARy in normoxic conditions and increased HIF1α with flutamide 

treatment in hypoxic conditions. Many of the other androgen responsive genes investigated did 

not show a response to DHT treatment at the mRNA level, including VEGFA, the imprinted non-

coding H19, and insulin-like growth factors (IGFs). The decreased or apparent lack of response 

in androgen responsive genes’ relative mRNA levels contradicts expected results of increased 

transcription in response to DHT treatment. However, due to time constraints, protein expression 

in response to DHT treatment was not investigated, and it is possible effects are observed post-

translation.  

 

This is of particular relevance as androgens’ effect on gene expression may be observed only at 

the protein level, meaning that an androgen-induced response in the expression or activity of 

trophoblast differentiation regulators syncytin, syncytin receptor (ASCT2), or kisspeptin (KiSS1) 

cannot yet be ruled out (Charnock-Jones et al., 1994; Lee et al., 2001; Kudo and Boyd 2002; 

Bilban et al., 2004; Pötgens et al., 2004; Hiden et al., 2007a; Wieser et al., 2008). Similarly, 

while hypoxia did not increase HIF1α or VEGFA relative mRNA levels, hypoxic conditions are 

reported to increase functional protein activity, but not necessarily mRNA levels, of HIF1α and 

HIF1 target genes VEGFA and matrix metalloproteinases (MMPs) (Salceda and Cara 1997; 

Huang et al., 1998; Yu et al., 1998; Chandel et al., 2000; Haddad et al., 2000; Rajakumar and 
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Conrad 2000; Pringle et al., 2010). Therefore, to clarify androgens’ effect on placental gene 

expression and function, detection of altered protein expression in response to DHT treatment 

needs to be completed. 

 

Increased interest is being placed on the role of androgens in placentation, specifically its role in 

the etiology of preeclampsia. Preeclampsia develops with insufficient trophoblast differentiation, 

invasion, and uterine vascular remodeling, leading to a potentially life-threatening disorder of 

maternal hypertension and fetal nutrient and growth restriction (Redman 1990; 1991; Ilekis et al., 

2007). Preeclamptic placentas are reported to have increased syncytiotrophoblast and stromal 

cell expression of androgen receptor (AR) compared to placentas from normotensive 

pregnancies, suggesting that placental AR is dynamically regulated by placental health (Ghidini 

and Salafia 2005; Hsu et al., 2009; Sathishkumar et al., 2011). Additionally, increased maternal 

serum androgens have been characterized in preeclamptic patients (Acromite et al., 1999; Serin 

et al., 2001; Atamer et al., 2004; Carlsen et al., 2005; Salamalekis et al., 2006; Ghorashi and 

Sheikhvatan 2008; Hsu et al., 2009; Lorzadeh and Kazemirad 2012). Although the gestational 

timing of increased placental testosterone is debated, it is suggest that increased maternal serum 

androgens could serve as an early diagnostic for detecting preeclampsia (Dawood and Saxena 

1977; Carlsen et al., 2005; Tuutti et al., 2011).  

 

In light of these reports, placental androgens may crucial regulate trophoblast differentiation or 

placental function. This speculation is further supported by the fact that hypoxia regulates 

trophoblast differentiation and also increases androgen signaling by inducing HIF1α, AR, and β-

catenin complex recruitment to androgen response elements (AREs) for transcription initiation 
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(Adelman et al., 2000; Semenza 2000). In hypoxic conditions, androgens also increase VEGF by 

increasing translation and stability of HIF1α, stimulating angiogenesis (Mabjeesh et al., 2003). 

Placental hypoxia has also been shown to reduce aromatase activity (Thompson and Siiteri 

1974a,b; Goto and Fishman 1977; Zachariah and Juchau 1977). This agrees with our finding of 

reduced aromatase (CYP19) in ACH-3P cells in hypoxic verses normoxic conditions. As 

androgen deprivation reduces hypoxia in prostate cancer (Shabisgh et al., 1999), the increased 

placental androgen production in preeclampsia may be a compensatory mechanism for 

insufficient trophoblast differentiation and sustained placental hypoxia, leading to the heightened 

circulating androgens that cause maternal vascular endothelial cell damage, vasoconstriction, and 

hypertension (Song and Martin 2006; Reckelhoff 2001). However, the absence of androgens is 

suggested to have similar effects on cardiovascular health, signifying a dynamic role of 

androgens in regulating systemic vascularization and vasodilation (Park et al., 2006; Nheu et al., 

2011).  

 

While hypoxia is shown to regulate androgen signaling, it also induces HIF1 complexes with 

histone lysine demethylases (KDMs) (Beyer et al., 2008; Wellmann et al., 2008). KDMs regulate 

gene expression by demethylating mono-, di-, or tri-methylated lysines residues on histone N-

terminal tails (Shi 2007; Verrier et al., 2011). Hypoxia increases KDM expression and increases 

site specific histone lysine demethylation in promoter regions of hypoxia-inducible genes (Beyer 

et al., 2008; Wellmann et al., 2008; Yang et al., 2010). Additionally, HIF1α forms transcription 

initiation complexes with KDMs and sex hormone receptors (Yang et al., 2010). Multiple 

KDMs, including KDM1A and KDM4D, have been shown to be co-activators of AR and 

function to increase expression of androgen responsive genes (Shin and Janknecht 2007, Metzger 
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et al., 2005; Yamane et al 2006; Wissmann et al., 2007; Coffey et al., 2013). By this mechanism, 

KDMs and AR can function dynamically in hypoxic conditions to regulate cellular proliferation 

or differentiation (Cloos et al., 2006).  

 

In additional to regulation by hypoxia and control of androgen signaling, KDM3A has been 

shown to down regulate peroxisome proliferator-activated receptor α (PPARα) (Metzger et al., 

2005; Shin and Janknecht 2007; Beyer et al., 2008; Yang et al., 2010; Kawazu et al., 2011; 

Coffey et al., 2013). PPARs, specifically PPARγ, regulates trophoblast differentiation, 

metabolism, and angiogenesis, and increases placental production of human chorionic 

gonadotropin and placental lactogen (Barak et al., 1999; Kubota et al., 1999; Tarrade 2001a-c; 

Barak et al., 2002; Schild et al., 2002; Pavan et al., 2003; Fournier et al., 2007a-b; Wieser et al., 

2008). Increased placental PPARγ and PPARα has been characterized in pregnancy disorders, 

including preeclampsia with intrauterine growth restriction, gestational diabetes mellitus, and 

placentas from miscarriages (Wieser et al., 2008; Toth et al., 2009; Holdsworth-Carson et al., 

2010). In choriocarcinoma cells, inhibition of AR and treatment with DHT altered PPARγ in 

normoxic choriocarcinoma cells. Together, these findings suggest that androgens may regulate 

PPARs through KDM activity, suggesting another mechanism for androgen regulation of 

trophoblast function and differentiation. 

 

Regulation of gene expression and trophoblast differentiation through AR-KDM-HIF1α 

complexes is of particular interest in the placenta, where hypoxia-regulated trophoblast 

differentiation and invasion in the first trimester is required to establish proper placentation 

(Zhou et al., 1993; Adelman et al., 2000; Semenza 2000; Soares et al., 2012). However, 
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trophoblast response to hypoxia in some in vitro experiments is atypical. Hypoxia was shown to 

inhibit choriocarcinoma cells from differentiating to syncytium and to maintain cytotrophoblast 

proliferation over differentiation into an invasive phenotype (Alsat et al., 1996; Genbacev et al., 

1996; Nelson et al., 1999; Kudo et al., 2003; Hu et al., 2007). In hypoxic BeWo cells, syncytin 

was reduced as opposed to the increase seen in vivo (Kudo and Boyd 2002; Kudo et al., 2003). 

Additionally, the BeWo cell line is heterogeneous, being composed of cells with epithelial and 

fibroblast phenotypes, as well as a minor percentage of multinuclear giant cells; this 

heterogeneous compilation results in altered gene expression and function in a portion of BeWo 

cells, likely contributing the lack of response observed with DHT treatment (Aplin 1991; Martell 

and Ruddon 1990; Alpin et al., 1992).  

 

ACH-3P cells are also composed of a heterogeneous cell population, though the origins are 

suggested to arise from villous and extravillous trophoblasts as the cell line was created from 

fusion of a choriocarcinoma cell line (ACI-I) with trophoblasts isolated from placental villi at 12 

weeks of gestation (Hiden et al., 2007b). Although ACH-3P cells may provide a model for 

studying paracrine signaling in first trimester placental villi (Hiden et al., 2007b), the cell-

specific localization of AR and KDMs in first trimester trophoblasts (Figure 2.8) may result in an 

uneven or inconsistent cellular response to DHT treatment in vitro. As we report the expression 

of KDMs in the immortalized human first trimester trophoblast cell line Swan71, this cell line 

may provide a more suitable model than choriocarcinoma cells for further characterizing 

hypoxia’s effect on AR-KDM signaling in the placenta.  Swan71 cells originated from 7-week of 

gestation primary trophoblasts, immortalize with human telomerase reverse transcriptase 

(Straszewski-Chavez et al., 2009). Swan71 cells appear to have a more homogenous phenotype 
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with limited human chorionic gonadotrophin production, suggesting their maintained 

undifferentiated state (Straszewski-Chavez et al., 2009). Therefore, as Swan71 cells expressing 

AR and KDMs, they may offer a more applicable model for AR-KDM placental signaling for 

trophoblast function and differentiation, albeit an imperfect replacement for primary trophoblasts 

from first trimester placental explants.  

 

In conclusion, these experiments report limited changes in choriocarcinoma mRNA levels in 

response to DHT treatment. Further research is necessary to investigate altered trophoblast 

protein levels and function in response to androgen signaling. As Swan71 cells express AR and 

KDMs, and are derived from first trimester trophoblasts (Straszewski-Chavez et al., 2009), they 

are a potential model for future studies characterizing placental androgen signaling mechanisms. 

By further elucidating the effects of placental androgen signaling, a better understanding of the 

etiology and diagnosis of placental disorders, such as preeclampsia, may be achieved. 
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TABLE 3.1. List of primer sequences used for real time PCR. 
 

Gene Primer Sequence Amplicon 
Size 

Citation 

AR F-5' TCCTGGATGGGGCTTATGGT 150  

 R-5' GCCTCATTCGGACACACTGG   

KDM1A F-5' ATCTGCAGTCCAAAGGATGG 232  
R-5' GCCAACAATCACATCGTCAC   

KDM3A F-5' CAGCCAGCACATCTCCTCTAAAC 144 Cho et al., 2011 
R-5' TGGATTTGCTTAAAGGTGGGAGG  

KDM4A F-5' GGAAGCCACGAGCATCCTATG 134 Kawazu et al., 2011 

 R-5' GGAACTCTCGAACAGTCATGG   

KDM4C F-5' CTGTCACCTAGTGCGGAACAA 133 Kawazu et al., 2011 
R-5' ATGATGGTTAGGGCAGTGTCT  

KDM4D F-5' TTTCCCTATGGCTACCATGC 179  
R-5' TCATAGCGTTCAGGTTGCAG  

MMP2 F-5' AGATCTTCTTCTTCAAGGACCGGTT 225 Munaut et al., 2 003 
R-5' GGCTGGTCAGTGGCTTGGGGTA  

MMP12 
 

F-5' ACACCTGACATGAACCGTGA 392  
R-5' AGCAGAGAGGCGAAATGTGT  

IGF1 
 

F-5' CAGACAAGCCCACAGGGT 520 Bonapace et al., 2012 
R-5' GGTGGGCTTACCTTCTG  

IGF2 F-5' GACCGCGGCTTCTACTTCAG 202  
R-5' AAGAACTTGCCCACGGGGTAT  

VEGFA F-5' TCACCAAAGCCAGCACATAG 179  

 R-5' GCGAGTCTGTGTTTTTGCAG   

HIF1α F-5' CCCAATGGATGATGACTTCC 204  

 R-5' TGGGTAGGAGATGGAGATGC   

PPARy F-5' GCTGTGCAGGAGATCACAGA 225  
R-5' GGGCTCCATAAAGTCACCAA  

CYP19 
 

F-5' CAAACCCACCTGCTAGTGTG 237 Watzka et al., 1996 
R-5' TTGTAGCACAGGCAAGTGGC  

SYNCYTIN1 
 

F-5' GAAGGCCCTTCATAACCAATGA 82 Chen et al., 2006 
R-5' GATATTTGGCTAAGGAGGTGATGTC  

ASCT2 F-5' CCGCTTCTTCAACTCCTTCAA 122 Chen et al., 2006 

 R-5' ACCCACATCCTCCATCTCCA   

KiSS1 
 

F-5' GCCATTAGAAAAGGTGGCCTC 278 Bilban et al., 2004 
R-5' TTGTAGTTCGGCAGGTCCTTC  

H19 F-5' ACCCCCTGCGGTGGACGGTT 427 Takai et al., 2001 

 R-5' TGGAATGCTTGAAGGCTGCT   

18s F-5' GAGGCCCTGTAATTGGAATGAG 119  
R-5' GCAGCAACTTTAATATACGCTATTGG  
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TABLE 3.2. List of antibodies and their dilutions used for Western blot protein detection. 
 

Protein Antibody and Dilution Utilized 

AR Santa Cruz sc816 
                                         1:500 

KDM1A Abcam ab17721 
   1:500 

KDM4D       Abcam ab93694 
 1:300 

 



 119

 
 
FIGURE 3.1. Detection and interaction of AR and KDM1A in choriocarcinoma cells. A) 
Western blot detection of AR and KDM1A in ACH-3P and BeWo cells. B) 
Coimmunoprecipitation of AR with KDM1A in ACH-3P and BeWo cells. Immunoprecipitation 
with rabbit-IgG antibody was used as negative control.  
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FIGURE 3.2. Changes in relative mRNA levels of androgen responsive genes with DHT 
treatment in ACH-3P cells. 
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FIGURE 3.2 Continued. Changes in relative mRNA levels of androgen responsive genes with 
DHT treatment in ACH-3P cells.  
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FIGURE 3.3. Relative changes in mRNA in ACH-3P cells for genes regulating trophoblast 
differentiation with DHT treatment.  
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FIGURE 3.4. Changes in relative mRNA levels of androgen responsive genes with DHT 
treatment in BeWo cells.  
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FIGURE 3.4 Continued. Changes in relative mRNA levels of androgen responsive genes with 
DHT treatment in BeWo cells.  
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FIGURE 3.5. Changes in relative mRNA levels with DHT treatment, hypoxia, and AR inhibition 
48 hours after treatment in ACH-3P cells.  
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FIGURE 3.5 Conintued. Changes in relative mRNA levels with DHT treatment, hypoxia, and 
AR inhibition 48 hours after treatment in ACH-3P cells.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 127

 
 

  
 

FIGURE 3.6. Changes in relative mRNA associated with DHT treatment and AR inhibition in 
BeWo cells. A) AR and KDM response to DHT and flutamide treatment. B) Response to DHT 
and flutamide treatment for androgen responsive genes. 
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FIGURE 3.7. Expression of AR and KDMs in Swan71 Cells. A) Endpoint PCR for AR and 
KDMs B) Western blot detection of AR, KDM1A, and KDM4D. 
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SUPPLEMENTAL FIGURE 3.1. ACH-3P cells at 48 hours post-DHT treatment. Images were 
taken to confirm that noticable cell death did not occur with DHT treatment. 
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CHAPTER IV: DISCUSSION AND CONCLUSIONS 
 
 
 

From the experiments conducted, it is apparent that androgen receptor (AR) and histone lysine 

demethylases (KDMs) are present in ovine and human placenta, as well as choriocarcinoma and 

immortalized human trophoblast cell lines. Additionally, these are the first studies to demonstrate 

AR-KDM complexes are present in placental tissue and choriocarcinoma cells. These findings 

suggest that, similar to previous reports in cancer cell lines (Metzger et al., 2005; Yamane et al., 

2006; Wissmann et al., 2007; Shin and Janknecht 2007a,b), AR-KDM complexes in the placenta 

may function to regulate transcription of androgen responsive genes, including those known to 

regulate cellular proliferation, invasion, and tissue angiogenesis (Liao et al., 2003; Limaye et al., 

2008; Shi 2007; Comstock et al., 2008). However, as of yet, we have not directly addressed the 

functionality of AR-KDM complexes or androgen signaling in the placenta. For instance, the 

altered gene expression observed in the placentas from prenatal androgenized ewes could 

partially be due to placental aromatization of testosterone propionate and it therefore cannot be 

implied solely as the results of placental androgen signaling. Additionally, while 

dihydrotestosterone (DHT) treatment altered relative mRNA levels of KDM3A, KDM4D, PPARγ 

and MMP2 in choriocarcinoma cells, the gene expression change was not as predicted and 

functional protein levels in response to DHT treatment have not yet been investigated. 

Furthermore, androgens’ effect on trophoblast differentiation into an invasive or syncytial 

phenotype should be tested in future experiments.  

 

Data from these experiments put forward additional areas for future investigation. For example, 

while only KDM1A and KDM4D interactions with placental AR were tested, the presence and 
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functionality of other KDMs in the placenta may prove to be of great importance. When 

trophoblast stem cells differentiate, they lose tri-methylation on histone 3 lysine 27 (H3K27me3) 

on the X-chromosome (Plath et al., 2003; Silva et al., 2003), suggesting that other histone 

demethylases also are involved in regulating placentation than the demethylases KDM1A, a 

H3K4me1/me2 and H3K9me1/me2 demethylase (Metzger et al., 2005; Shi and Whetstine 2007; 

Shi 2007), and KDM4D, a H3K9me2/me3 demethylase (Shin and Janknecht 2007b). KDMs may 

also act as corepressors of gene transcription (Wang et al., 2007; Verrier et al., 2011), and could 

function to decrease the expression of key regulatory genes necessary for placentation and 

placental function. Additionally, as estrogen signaling is known to regulate trophoblast 

differentiation (Albrecht and Pepe 1999; Albrecht et al., 2006), characterization of estrogen 

receptor (ESR)-KDM complexes and function in placental tissue could further elucidate the 

mechanisms controlling trophoblast differentiation. 

 

To date, limited research on the function of placental androgen signaling has been directly 

investigated. An experiment using daily injections of flutamide, an AR inhibitor, during porcine 

pregnancy has been completed; however, flutamide was only injected for seven days at two time 

points (GD 83-89 and GD 101-107) near term, after the critical window of placenta formation 

(Spencer et al., 2004; Wieciech et al., 2013). No difference was noted in fetal growth or placental 

pathology, but this is likely due to the brief window of flutamide treatment after placental 

establishment, making it unlikely to affect placental development or fetal growth. Ideally, direct 

inhibition of AR in the placenta prior to implantation and throughout pregnancy would be ideal 

to determine the role of androgen signaling for placentation and fetal growth. Treatment with 

flutamide is unlikely to be with best option to accomplish this as it requires daily injections of 
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doses near 50mg/kg of body weight and would act systemically. Instead, trophoblast specific 

lentiviral knockdown of AR in vivo is ideal to characterize placental androgens’ function at 

different points of gestation in domestic agricultural species (Purcell et al., 2009). Recent 

acquisition of the dominant-negative mutant AR∆142-337 (AR∆TR) provides an excellent 

opportunity for targeted silencing of androgen signaling in future in vitro and in vivo experiments 

as AR∆TR binds ligand, dimerizes with endogenous AR, and prevents transcription of androgen 

responsive genes (Zhou et al., 1995; Palvimo et al., 1993; Titus et al., 2012). 

 

Further characterization of placental androgen signaling is necessary to clearly identify its role in 

regulating trophoblast function and differentiation. There are currently conflicting reports as to 

the likely requirement of androgen signaling for normal placentation and prenatal development. 

For instance, human infants with placental aromatase deficiency have normal fetal growth 

(Shozu et al., 1991; Harada et al., 1992a,b; Conte et al., 1994; Morishima et al., 1995; Carani et 

al., 1997; Deladoëy et al., 1999), as do fetuses with mutations in AR that lead to partial androgen 

insensitivity (Hughes and Evans 1987; Bangsboll et al., 1992; Brown 1995; Quigley et al., 1995; 

reviewed by Ahmed et al., 2000), suggesting normal or at least compensatory placental 

development and function had occurred. Additionally, genetic males with AR mutations leading 

to complete androgen insensitivity (with lack of ligand binding to AR) have normal fetal growth; 

however, bioassays on AR functionality and DNA binding in cases of complete or partial 

androgen insensitivity has not been completed (Ahmed et al., 2000). In contrast, case studies on 

familial androgen insensitivity found that females who are carriers for partial or complete 

androgen insensitivity report multiple miscarriages (Wilson et al., 1974; Decaestecker et al., 

2008) and that heightened androgen signaling through an AR-polymorphism is associated with 
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recurrent spontaneous abortions and preterm labor (Karvela et al., 2008; Karjalainen et al., 

2012).  

 

As androgen production and signaling may be crucial for placental development, redundancy in 

sex-hormone signaling may be present to protect normal placentation, possibly explaining the 

conflicting reports on the requirement of placental androgens. For instance, sex hormones have 

been shown to have similar overlapping functions, including regulation of genes promoting 

cellular proliferation and vascularization (Mueller et al., 2000; Inoue et al., 2002; Marin-Castaño 

et al., 2003; Comstock et al., 2008). Therefore, if there is loss of function in either ESRs or AR, 

the alternate sex hormone may compensate to some extent to rescue placentation and trophoblast 

function. This sex hormone cross-talk may in part be accomplished through androgen binding to 

ESRs to regulate estrogen-responsive genes while estrogens can bind and act through AR to 

initiate physiological effects, although the relative binding affinity is low when sex steroid 

hormones are at physiologic levels (Yeh et al., 1998; 2002; Panet-Raymond et al., 2000). 

Additionally, heterodimerization of AR with ESRs led to decreased transcriptional activity 

(Panet-Raymond et al., 2000). It is therefore unlikely that this mechanism of sex hormone cross-

talk would be capable of rescuing expression of all androgen responsive genes in the case 

abnormal placental androgen levels. Several nuclear receptors, namely glucocorticoid, 

progesterone, and mineralocorticoid receptors (GR, PR, and MR), may also function to partially 

regulate androgen responsive genes as they have a similar response element as AR (Claessens et 

al., 2008). However, while sharing a similar response element in DNA, AR initiation of 

transcription also requires enhancer regions with binding sites for additional transcription 

activators, such as Sp1, with multiple response element repeats, suggesting that sequences 
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flanking DNA response elements regulate AR binding over alternate nuclear receptors to 

maintain specificity of gene response (Claessens et al., 2008). As KDMs have been shown to 

regulate both estrogen and androgen responsive gene transcription, and to recruit sex hormone 

receptors to DNA in the absence of ligand (Metzger et al., 2005; Yamane et al., 2006; Wissmann 

et al., 2007; Shin and Janknecht 2007a,b; Perillo et al., 2008; Kawazu et al., 2011), they may 

offer another level of regulation and/or protection of normal trophoblast function and 

differentiation. However, further research is necessary to clarify this proposed mechanism of 

placental sex hormone signaling. 

 

In conclusion, this dissertation it is the first report of KDMs and AR-KDM complexes in 

placental tissue. Additionally, changes in choriocarcinoma relative mRNA levels in response to 

DHT treatment is reported. These findings, along with the increased maternal serum androgen 

levels throughout gestation (Mizuno et al., 1968; Serin et al., 2001) and increased androgen 

levels in preeclampsia (Acromite et al., 1999; Serin et al., 2001; Atamer et al., 2004; Salamalekis 

et al., 2006; Gerulewicz-Vannini et al., 2006; Ghorashi and Sheikhvatan 2008; Lorzadeh and 

Kazemirad 2012), suggest placental androgen signaling may crucially regulate trophoblast 

function or differentiation. It is therefore of great interest to determine if androgen signaling 

directly regulates human cytotrophoblast differentiation into a syncytial or invasive phenotype. 

Further studies are needed to determine if the presence of KDMs and their interaction with AR 

are required for androgen signaling in trophoblast cells. These findings indicate the necessity of 

continued research in clarifying androgen’s role in regulating trophoblast function.  
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APPENDIX I: MIRNA PROFILE IN SERUM EXOSOMES DURING THE FIRST HALF OF 

PREGNANCY AND MID-GESTATION IN SHEEP6,7,8  

 
 
 

Summary 

While circulating levels of maternal serum exosomes increase during pregnancy, and while 

placental specific microRNAs (miRNAs) have been identified in humans, little is known about 

exosomes and miRNAs during pregnancy in agriculture animals. In this study, we characterized 

the expression of 94 miRNAs in ovine placentomes at gestation day (GD) 90 by real time PCR. 

We also investigated the presence of these 94 miRNAs in exosome samples isolated from 

maternal jugular blood in non-pregnant ewes and at GD30 and GD90, and in umbilical blood 

collected at GD90. In maternal jugular exosome samples, 13 miRNAs were present in lower and 

12 miRNAs were present in higher amounts at GD90 compared to non-pregnant (GD0) or GD30. 

Additionally, 12 miRNAs were present in higher amounts in umbilical venous exosomes 

compared to umbilical arterial exosomes, with only miR-132 amounts being lower in exosomes 

isolated from umbilical venous blood than umbilical arterial blood. In placentome samples, miR-

34c and miR135a amounts were higher in the cotyledon tissue than caruncle, while miR-183 and 

miR-379 amounts were higher in caruncle than cotyledon tissue. Only miR-379 was 

differentially expressed in all serum exosomes and placentome samples. Pathway analysis 

                                                        
6  Paper submitted to Molecular Reproduction and Development 
7 Author list for publication: Ellane R. Cleys, Jennifer L. Halleran, Joanna Hergenreder, Vanessa A. 
Enriquez, Juliano da Silveira, Jason E. Bruemmer, Quinton A. Winger, Gerrit J. Bouma 

8 Project supported by Agriculture and Food Research Initiative competitive grant number 2010-38420-
20397 from the USDA National Institute of Food and Agriculture and by the Colorado State University 
College of Veterinary Medicine and Biomedical Sciences College Research Council. 
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predicted that differentially expressed maternal serum exosomal miRNAs target Cellular Growth 

and Proliferation and Organ Development pathways, while umbilical serum exosomal and 

placentomes miRNAs were predicted to target Cellular Development and Organismal/Embryonic 

Development. This is the first report characterizing serum exosomal miRNAs as well as 

placentome miRNAs in sheep during pregnancy.  

 

Introduction 

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression and 

function by binding complementary sequences in target transcripts to either promote mRNA 

degradation or to inhibit translation (Cai et al 2009). MiRNA target binding to mRNAs occurs 

most commonly in the 3’UTR, but can also occur in the coding region itself or the 5’UTR. It has 

been estimated that miRNAs regulate 30-80% of all genes in the human genome. While a single 

miRNA can regulate hundreds of transcripts, a single transcript can be regulated by many 

miRNAs (reviewed in Lu and Clark, 2012). miRNAs are therefore considered as transcription 

factors responsible for regulating and fine-tuning signaling pathways, with overall effects on cell 

differentiation, proliferation, apoptosis, metabolism, and cellular secretion. MiRNAs also play 

important roles in regulation of gene function in various aspects of reproductive biology, 

including development and function of the reproductive tracts, germ cell development and 

maturation, fertilization, and placental function (Wilfred et al 2007; Sonkoly et al 2008; Morales 

Prieto and Markert, 2011; Laddha et al 2013). 

 

Successful establishment of pregnancy requires placental development and altered maternal 

immune response to fetal-placental cells. While pregnancy involves extensive communication 
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and signaling between cells and tissues, hormones and secreted molecules, such as matrix 

metalloproteinases, are known to regulate cellular signaling for placentation to occur. However, 

one mechanism not often thought of in context of cell communication during pregnancy is the 

release and uptake of extracellular vesicles. Cells secrete a wide variety of membranous vesicles, 

often characterized by size, shape or content. Although their nomenclature still is obscure, with 

vesicles being referred to as microparticles, ectosomes, shedding vesicles, microvesicles, or 

exosomes (Burger et al., 2013), interest in exosomes and microvesicles has expanded greatly 

with recent discoveries that they function also to transfer mRNAs and miRNAs between cells or 

tissues (Valadi et al., 2007).  

 

Exosomes are small, ~40-160nm sized vesicles that are derived through formation of 

intraluminal vesicles inside late endosomes or multivesicular bodies (Keller et al., 2006; Camussi 

et al., 2010). Exosomes are released into extracellular space following fusion of multivesicular 

bodies with the plasma membrane. Due to their origin as intraluminal vesicles in multivesicular 

bodies, exosomes are surrounded by a phospholipid bilayer containing transmembrane proteins; 

additionally, exosomes carry RNAs and proteins, including tetraspanins, heat shock proteins, and 

adhesion molecules (Fevrier and Raposo, 2004; Gyorgy et al., 2011). Studies have shown that 

exosomes aid in regulating immune modulation, and that pregnancy in women is associated with 

increased levels of maternal circulating exosomes (Taylor et al., 2006; reviewed in Théry et al., 

2002; Southcombe et al., 2011). Moreover, small-RNA library sequencing approaches have 

identified numerous miRNAs in human placental tissue, as well as their secreted exosomes (Luo 

et al., 2009). These include placental-specific miRNAs and a large cluster of primate specific 

miRNAs on chromosome 19 called C19MC (Bentwich et al., 2005; Zhang et al., 2008; reviewed 



 178

in Ouyang et al., 2014). Therefore, exosome-mediated delivery of biological material (RNAs and 

protein) during pregnancy is thought to play important roles in trophoblast physiology, immune 

modulation, and maternal-fetal communication. 

  

To date, little is known about exosomes and miRNAs during pregnancy in agriculture animals. In 

this study, we examined the presence of miRNAs in placentomes at gestation day (GD) 90 as 

well as their presence in circulating exosomes during mid-gestation in sheep. More specifically, 

presence of miRNAs was assessed using real time PCR of isolated maternal jugular serum 

exosomes, umbilical artery and vein serum exosomes, and caruncle and cotyledon GD90 

placentome tissue. Differentially expressed miRNAs were further analyzed for their potential 

involvement in regulating cellular pathways using Ingenuity Pathway Analysis.   

 

Results 

Previously we used real time PCR profiling of miRNAs in fetal sheep gonads, taking advantage 

of the fact that many mature miRNA sequences are highly conserved across mammalian species 

(Torley et al., 2011). In this study, we used the same approach and determined the presence of 94 

mature miRNAs in exosomes isolated from maternal serum, as well as umbilical cord serum and 

placental tissues (Appendix Table I.III). Following real time PCR, amplification and melt curve 

analysis was conducted to ensure exponential amplification of single cDNA products. A miRNA 

was considered detected if amplification occurred at crossing-point value (Cp) less than 37 

cycles. Initial profile analysis revealed the presence of 6 mature miRNAs (miR-92b, miR-138, 

miR-206, miR-182, miR-302d, and miR-320) that were detected in all samples at levels that 

were not statistically different between samples with a standard deviation less than 1.4. These 
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miRNAs were selected as internal references and their geometric mean was used to normalize Cp 

values in each sample and experiment (Vandesompele et al., 2002). Statistical difference is 

reported with p≤0.05 (Appendix Table I.II). 

 

Exosomes in Serum of Ewes 

Exosomes were isolated using a combination of differential centrifugation and ExoQuick 

precipitation as described previously (da Silveira et al., 2012; 2014). Western blot analysis 

revealed the presence of distinct 70kDa band for HSP70, a positive marker for exosomes, and 

absence of the predicted 15kDa band for Cytochrome C (Appendix Figure I.I), a negative marker 

for exosomes  (Lancaster and Febbraio 2005).  

 

miRNAs in Exosomes Isolated from Maternal Circulation of Non-Pregnant (GD0), GD30, and 

GD90 Ewes 

In this study we used real time PCR to determine the presence of mature miRNAs in exosomes 

isolated from maternal circulation at GD30 and GD90. As indicated in Appendix Figure I.II and 

I.III, a total of 25 miRNAs were differentially present in exosomes isolated from serum of non-

pregnant, GD30, and GD90 ewes. Of these miRNAs, miR-27a, miR-30c, miR-34c, miR-92b 

miR-125-3p, miR-132, miR-142-5p, miR-143, miR-181a, miR-210, and miR-323-5p were 

significantly (P < 0.05) lower in exosomes isolated from maternal serum at GD90 compared to 

GD30 (Appendix Figure I.II). In addition, exosomal miR-19a and miR379 were significantly 

lower at GD90 compared to GD0 (Appendix Figure I.II). Alternatively, miR-183, miR-196b, 

miR204, miR-206, miR-216a, miR-216b, miR-320, and miR-328 were significantly (P < 0.05) 
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higher in exosomes isolated from maternal serum at GD90 compared to GD30, and miR-181c, 

miR-199a-3p, miR-200b, and miR-302d compared to GD0 (Appendix Figure I.III). 

 

Ingenuity Pathway Analysis (IPA) analysis revealed that several pathways are predicted to be 

regulated by the 13 exosomal miRNAs that are significantly lower in serum at GD90, including 

cell cycle, cellular development, cellular growth and proliferation, and cellular death and 

survival (Appendix Table I.I). Additionally, the miRNAs that decreased at GD90 are associated 

with physiological system development of digestive, hepatic and organ systems and is correlated 

with cancer, organismal injury and abnormalities, reproductive system disease, endocrine system 

disorders, and gastrointestinal disease (Appendix Table I.I). 

 

Conversely, the 12 exosomal miRNAs that were significantly increased at GD90 compared to 

GD30 and/or GD0 are predicted to target pathways related to cell-to-cell signaling and 

interaction, cellular death and survival, and cellular development (Appendix Table I.I). Similar to 

the miRNAs that were decreased at GD90, miRNAs that increased were also associated with 

organ development, though other physiological systems included tissue development, 

cardiovascular, skeletal and muscular system development and function (Appendix Table I.I). 

Diseases that were associated with the 12 miRNAs that increased at GD90 are similar to those 

correlated with the decreased miRNAs, including organismal injury and abnormalities, 

reproductive system disease, cancer, and gastrointestinal disease. 
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miRNAs in Exosomes Isolated from Umbilical Arterial and Venous Serum at GD90 

Real time PCR analysis revealed significant differences in 13 miRNAs in exosomes isolated 

from umbilical arterial compared to umbilical venous serum (Appendix Figure I.IV). 

Interestingly, of the 13 miRNAs that were differentially expressed (P < 0.05), 12 were increased 

in umbilical venous serum exosomes compared to umbilical arterial serum exosomes; miR-23a, 

miR-23b, miR-24, miR-26a, miR-27a, miR-29c, miR-30a, miR-30d, miR-148b, miR-199a-3p, 

miR-223, and miR-379 were present at higher levels in exosomes isolated from umbilical vein 

compared to arterial serum. Only miR-132 was increased (P < 0.05) in exosomes isolated from 

umbilical arterial serum. 

 

Pathway analysis revealed that the differentially expressed umbilical exosomal miRNAs are 

predicted to target pathways related to cell development, cellular growth and proliferation, cell 

cycle and cell-to-cell signaling and function (Appendix Table I.I). Differentially expressed 

umbilical exosomal miRNAs were also associated with organismal, organ and tissue 

development. Similar to the differentially expressed maternal serum exosomal miRNAs, 

umbilical serum exosomal miRNAs are also associated with cancer and gastrointestinal disease. 

Other disorders that are correlated with umbilical exosomal miRNAs include endocrine system 

disorders and metabolic disease (Appendix Table I.I). 

 

miRNA Levels in Cotyledon and Caruncle Tissue from GD90 Placentomes 

Real time PCR analysis revealed that 4 miRNAs were differentially (P<0.05) expressed between 

cotyledon and caruncle tissue at GD90. MiR-34c and miR-135a were lower in GD90 caruncle, 

whereas miR-183 and miR-379 were significantly lower in GD90 cotyledon tissues (Appendix 
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Figure I.V). Pathway analysis of all 4 differentially expressed placentome miRNAs predicted 

cellular development as the primary molecular pathway affect (Appendix Table I.I). 

Additionally, differentially expressed placentome miRNAs are associated with embryonic 

development and connective tissue development and function. All 4 miRNAs were associated 

with organismal injury and abnormalities, endocrine system disease, and gastrointestinal disease 

(Appendix Table I.I). 

 

 Discussion 

In this study we report on the presence of exosomes and their miRNA in maternal circulation 

during pregnancy in sheep. The identification of exosomes containing miRNAs during 

pregnancy itself is not new and has been extensively investigated in women during normal 

pregnancy as well as in pregnancies effected by the placental induced disorder preeclampsia. In 

cattle, cultured uterine epithelial cells secrete exosomes containing the antiviral protein 

myxovirus resistance 1, and sheep exosomes have been isolated from uterine luminal fluid and 

their RNA (including miRNA) and protein content has been characterized (Racicot et al., 2012; 

Burns et al., 2014). Moreover, it has been postulated that these exosomes could play a role in 

conceptus-maternal communication during early pregnancy (Burns et al., 2014). However, to our 

knowledge, this is the first report characterizing exosomal miRNAs from maternal circulation 

during pregnancy (GD30 and GD90), as well as from umbilical artery and vein.  

  

Taylor (et al., 2006) reported that exosomes quantities are greatly increased in serum at term, 

and, based on presence of T-cell activation markers, proposed a role for these “pregnancy 

exosomes” in modulating the immune system. Luo and colleagues (2009) further suggest a 
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possible function of secreted placental exosome miR-517A, based on bioinformatics analysis, in 

regulating tumor necrosis factor signaling. Moreover, the human placenta is enriched in a 

number of specific miRNAs; these miRNAs also are detected in exosomes in circulation, and the 

level of these miRNAs in maternal blood decrease after delivery, suggesting a placental source 

(Luo et al., 2009). Unique to the primate placenta is the presence of a miRNA cluster C19MC on 

chromosome 19, which contains 46 miRNAs. MiRNAs from this cluster have been described in 

placental-secreted exosomes (Donker et al., 2012). Moreover, recent studies indicate that 

C19MC secreted in trophoblast exosomes inhibits viral replication by inducing autophagy in 

recipient target cells (Delorme-Axford et al., 2013). Although the function of placental derived 

exosomes and their biological content in pregnancy is still largely unknown, there remains 

considerable interest in the possible use of extracellular placental miRNAs and protein as 

diagnostic markers of placental disorders (e.g., reviewed in Ouyang et al., 2014; Morales and 

Markert 2011; Redman and Sargent, 2007).  

 

Using a previously published approach, we assessed the presence of miRNAs using real time 

PCR profiling, taking advantage of the conserved nature of mature miRNA sequences between 

mammalian species. Differential expression of miR181a and miR-196 in maternal serum 

exosomes at GD90 could suggest a possible mechanism for regulating maternal immune 

response to the fetal-placental unit, as both miRNAs control immune reaction and inflammation 

signaling pathways (Sonkoly et al 2008). Additionally, miR-143, which was also differentially 

expressed in GD90 maternal serum exosomes, is reported to regulate adipocyte differentiation, a 

process that is highly regulated during pregnancy for proper fetal growth and development 

(Wilfred et al 2007). Furthermore, of the 94 miRNAs examined, 12 miRNAs were lower in 
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exosomes collected from umbilical arterial compared to venous blood. These findings suggest a 

maternal origin for delivery to fetal-placental circulation, or placental filtration. In contrast, miR-

132, which was higher in umbilical arterial exosomes than venous exosomes, may be released 

from the placentomes and carried towards the maternal circulation. Of the 12 miRNAs that were 

lower in umbilical arterial exosomes, several miRNAs, including miR-23a, miR-27a, 26a, and 

miR-199a-3p, have been detected in term placenta (Luo et al., 2009). Interestingly, miR-135a 

was previously reported to be up-regulated in circulation in preterm birth (Montenegro et al., 

2009), and this miRNA was detected in GD90 caruncle tissue. The role of these miRNAs in 

placental function is unknown, however it may be of interest to further characterize these 

miRNA in exosomes as it relates to comprised pregnancies.  

 

miR-379 was significantly lower in exosomes isolated from maternal circulation as well as 

umbilical arterial serum at GD90. Moreover level of this miRNA was increased in caruncle 

compared to cotyledon tissues. miR-379 belongs to the chromosome 14 miRNA cluster 

(C14MC); C14MC is the largest known miRNA cluster in humans, consisting of 54 miRNAs, 

and is widely conserved in placental mammals (Morales Prieto et al., 2014). MiRNAs belonging 

to this cluster are highly expressed in first trimester placenta and decrease by the third trimester, 

similar to our findings of decreased miR-379 in maternal circulation between non-pregnant ewes 

and GD90. Abnormal expression of C14MC contributes to cancer development (Laddha et al., 

2013), and down-regulation of miR-379 has been reported in placentas from women with severe 

preeclampsia (Xu et al., 2014). While these observations suggest a role for miR-379 in 

trophoblast function and pregnancy, our findings of differential miR-379 expression in the 



 185

pregnant ewe may offer a potential in vivo model for further characterization of its role and 

function. 

 

Serum exosomes are actively being pursued as new diagnostic markers, including in pregnancy 

and diseases. However, it is important to note that in most cases (including this study) the source 

of exosomes in maternal circulation is unknown. In addition, although exosomes and other cell-

secreted vesicles, such as microvesicles, are implicated in tissue and cell-communication 

processes, data demonstrating selective packaging and/or transfer of exosome content has been 

lacking. Although uncovering a functional role of exosomal miRNAs was beyond the scope of 

this study, IPA analysis was conducted to reveal potential signaling pathways for further insight 

on the function of pregnancy-related exosomal miRNAs. As maternal serum exosomal miRNAs 

were predicted to target “Cellular Growth and Proliferation” and “Organ Development”, and as 

umbilical serum exosomal and placentomes miRNAs were predicted to target “Cellular 

Development” and “Organismal/Embryonic Development”, the differentially expressed miRNAs 

at GD90 appear to have dynamic functions in possibly regulating fetal/placental growth and 

development. 

 

Finally, it is important to note that all exosomal miRNAs reported in this study were detected in 

the placentome tissue. Because the approach used herein was to profile the presence of 94 

known, conserved miRNAs sequences, it is likely many more miRNAs remain to be identified. 

In future studies, the use of NextGen Sequencing approaches will provide much needed insight 

into the characterization of all placental miRNAs as well as their presence in placental-secreted 

exosomes. 
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In summary, this study presents new data on the presence of miRNAs in exosomes isolated from 

maternal circulation during the approximate first half of pregnancy in the ewe, as well as 

characterizing the presence of miRNAs in exosomes isolated from umbilical cord serum. 

Although the function and possible role of these miRNAs is unknown, exosomal miRNAs serve 

as novel markers that could be used to monitor pregnancy status and placental function, and may 

serve a critical, though still uncharacterized, role in modulating maternal-fetal communication 

for successful pregnancy maintenance. 

 

Materials and Methods 

Animal Care and Serum Collection 

All experiments were approved by the Colorado State University Institutional Animal Care and 

Use Committee. Tissue samples were collected from 4 crossbred ewes that had received 

intramuscular injections of 2 mL vehicle (cottonseed oil) biweekly from gestational day GD30 to 

GD90 as part of a separate study (Chapter 2). Five to seven days after observed estrus, ewes 

were synchronized using 2 intramuscular injections of 1 mL Lutalyse® given four hours apart. 

The day of Lutalyse® injection was designated as gestational day GD0. Forty-eight hours after 

injection, ewes were bred with 2 different intact, fertile rams and checked daily throughout the 

course of the study to ensure they did not return to estrus. Estrus was observed as mounting 

behavior from surgically vasectomized rams. For analysis, each time point of serum or tissue 

collection utilized the same 4 ewes. 
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Serum Exosome Collection and miRNA Isolation 

Maternal jugular blood samples were collected at GD0, 30, and 90. Samples were allowed to clot 

for 1 hour at room temperature and were centrifuged at 2,000 x g for 10 minutes. Serum was 

isolated and differentially centrifuged to remove cell debris, followed by sequential 

centrifugation at 300 x g for 10 minutes, 2,000 x g for 10 minutes, and 10,000 x g for 30 minutes 

(Théry et al 2006). Exosomes were isolated by adding 400 µL of final supernatant to 100 µL of 

Exoquick™ (System Biosciences). Samples were stored overnight at 4 °C. The following 

morning, serum exosomes were pelleted by centrifugation at 1,500 x g for 30 minutes. 

Supernatant was removed and serum exosome pellets were resuspended in 250 µL PBS. After 

resuspending in PBS, 750 µL TRI Reagent BD (Sigma-Aldrich) was added, samples were snap 

frozen and stored at -80 °C until miRNA isolation.  

 

Exosomal miRNAs were isolated using TRI Reagent (Sigma-Aldrich) per manufacturer’s 

instructions with the following adjustments. Samples were thawed at room temperature, 

homogenized, and incubated at room temperature for 5 minutes. Next, 200 µL of chloroform was 

added and samples were vortexed for 15 seconds. Samples were incubated for 5 minutes at room 

temperature, and centrifuged at 12000 x g for 15 minutes. The aqueous phase was removed and 

stored for protein isolation. To each remaining sample, 500 µL isopropanol was added and tubes 

were inverted and placed at room temp for 10 minutes. Samples were centrifuged at 16,100 x g 

for 8 minutes, supernatant was removed, 1 mL of 75% EtOH was added, and samples were 

centrifuged at 16,100 x g for 5 minutes. Supernatant was removed, 1 mL of 75% EtOH was 

added, and samples were centrifuged for another 5 minutes. Supernatant was removed, tubes 

were inverted, and RNA pellets were air dried for 5 minutes at room temperature. The RNA 



 188

pellet was resuspended by adding 20 µL of 55°C nuclease-free water and incubating at 55°C for 

10-15 minutes. Genomic DNA was removed by adding 2 µL of 10X DNase1 Buffer and 1 µL of 

DNAse from DNA-free DNase Treatment (Life Technologies) to each sample. Samples were 

incubated for 30 minutes at 37°C, and the reaction was stopped by adding 3.5 µL of inactivation 

reagent and incubating samples at room temperature for 30 minutes. Total RNA purity and 

concentration was determined with a NanoDrop 1000 Spectrophotometer (NanoDrop 

Technologies). RNA aliquots were stored at -80° C until further use.  

 

Placentome Collection and miRNA Isolation 

Ewes were anesthetized at GD90 and five placentomes closest to the umbilicus were collected. 

Caruncle and cotyledon sections of the placentomes were separated, snap frozen in liquid 

nitrogen, and stored at -80°C. Prior to miRNA isolation, samples were pulverized in liquid 

nitrogen. miRNA was isolated using mirVana™ (Ambion) isolation kit according to 

manufacturer’s protocol. 

 

Real Time PCR Analysis 

From 128 mature miRNA sequences that are conserved between human, mouse, and/or sheep 

(Torley et al 2011), 94 mature miRNAs were selected for analysis due to published reports of 

their expression in (human, murine) placenta or maternal serum or correlation with pregnancy 

disorders (Bentwich et al., 2005; Zhang et al., 2008; 2012; Luo et al., 2009; Seabrook et al., 

2013; reviewed in Ouyang et al., 2014). The relative level of 94 mature miRNAs (Appendix 

Table I.III) was assessed in maternal serum exosomes, umbilical serum exosomes, and 

placentome tissue. Quantifiable, reverse transcribed miRNAs were generated using the miScript 
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II Reverse Transcriptase Kit (Qiagen) with 100 ng RNA, 4 µL 5x miScript HiFlex solution, 2 µL 

10x Nucleic solution, 2 µL of miScript Reverse Transcriptase, and RNase-free water to reach a 

final volume of 20µL. Reverse transcribed miRNAs was loaded into each real time PCR reaction 

containing 0.6 µL of 10x Universal Reverse Primer (Qiagen), 1.5 µL specific forward primer, 3 

µL miScript SYBR Green (Qiagen), and 1.37 µL nuclease-free water for a final reaction volume 

of 6.5 µL per reaction. Real time PCR cycling conditions consisted of an initial incubation at 

95°C for 15 minutes, followed by 40 cycles at 95°C for 15 seconds, 55°C for 30 seconds, and 

72°C for 30 seconds, followed by melt curve analysis to confirm amplification of single cDNA 

products.  

 

Differences in the presence of miRNAs levels were determined by normalizing the raw Cp 

values to the geometric mean of 6 miRNAs (miR-92b, miR-138, miR-206, miR-182, miR-302d, 

miR-320) that were chosen as internal reference as they were present in all samples, showed little 

variability (standard deviation less than 1.4 and standard error of the mean less than 0.255) 

across all samples, and were not statistically different between samples. Statistical analysis was 

performed on normalized data using an ANOVA with Tukey’s pair-wise comparison 

(Minitab16) on maternal serum exosome samples and a two-tailed student’s t-test (Excel) on 

umbilical serum exosome and placentome miRNA samples with statistical significance at p-

values less than or equal to 0.05. To identify possible pathways predicted to be targeted by 

miRNAs, Ingenuity Pathway Analysis was used.  
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Western Blot Analysis 

Serum exosomal protein was isolated using TRI Reagent BD as per the manufacturer’s protocol 

(Molecular Research), resuspended in 8M urea, then quantified with a Bradford assay (BioRad) 

as previously described (da Silveira et al 2012). Placentome protein was isolated from pulverized 

tissue and approximately 2 mg of pulverized tissues were added directly to 2mL of ice cold lysis 

buffer containing 0.48M Tris pH7.5, 10mM EGTA pH8.6, 10mM EDTA pH8.0, and 0.1% (w/v) 

PMSF and protease inhibitor. Samples were sonicated on ice for 5 minutes and centrifuged at 

10,000 rpm for 10 minutes at 4°C. Concentration of placentome protein was determined using 

standard curves by Bradford assay (BioRad).  

 

150µL of serum exosomal protein or 50µL of protein was diluted in 6x SDS-DTT loading dye 

with 0.375M Tris pH6.8, 4M glycerol, 0.21M SDS, 0.6M DTT, and 0.06% (w/v) bromophenol 

blue. β-mercaptoethanol (1.75µL) and water was added to reach a final volume of 35µL. Samples 

were boiled for 5 minutes after addition of β-mercaptoethanol, then electrophoresed at 95 volts in 

10% Tris-HCL polyacrylamide gels (BioRad). Protein was electrophoresed in an ice cold 

running buffer containing 50mM Tris, 384mM glycine, and 7mM SDS. Protein was transferred 

onto 0.2 µm nitrocellulose membranes (Protran) for 1 hour at 200 milliamps at 4°C in transfer 

buffer containing 2mM Tris, 150 mM glycine, 5M methanol, and 3.5mM SDS. After protein 

transfer, blots were blocked for non-specific binding with 2% milk-TBST for 1 hour at room 

temperature. After blocking, blots were washed with TBST and left overnight at 4°C with 

primary antibody diluted in 2% milk-TBST. Rabbit anti-cytochrome-C (SantaCruz sc7159) and 

anti-HSP70 (SantaCruz sc1060-R) were used at 1:200 dilutions in 2% milk-TBST. 
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After incubation with primary antibody, blots were washed in TBST and incubated for 1 hour at 

room temperature with secondary antibodies, goat-anti-rabbit-HRP (Abcam ab6721, 1:1000). 

Blots were subsequently washed in TBST and ECL Prime Western Blotting Detection System 

(Amersham Biosciences) was applied to detect immunoreactivity. Chemiluminescent bands were 

detected using the Chemidoc MP System (BioRad). 
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APPENDIX FIGURE I.I. Western blot of serum exosomal and placentome protein. Cytochrome 
C presence in cellular protein from ovine GD90 placentomes. Hsp70 presence in isolated serum 
exosomal protein fraction from ovine jugular and uterine vein serum. 
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APPENDIX FIGURE I.II. Maternal serum exosomal miRNAs that decrease by GD90 (P<0.05). 
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APPENDIX FIGURE I.III. Maternal serum exosomal miRNAs that increase by GD90 (P<0.05). 
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APPENDIX FIGURE I.IV. Serum exosomal miRNAs that are differentially expressed in 
umbilical vein and artery at GD90 (P<0.05). 
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APPENDIX FIGURE I.V. miRNAs differentially expressed in placentome tissue of fetal 
(cotyledon) and maternal (caruncle) origin at GD90 (P<0.05). 
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APPENDIX TABLE I.I. Pathways associated with differentially expressed miRNAs, their 
associated p-value, and number of molecules in pathway. 
 
Pathways Associated with Down-Regulated Exosomal miRNAs in Maternal Serum at GD90 
Diseases and Disorder p-Value Molecules 
Cancer 5.29E-14 – 4.58E-02 10 
Organismal Injury and Abnormalities 5.29E-14 – 3.45E-02 11 
Reproductive System Disease 5.29E-14 – 3.41-02 9 
Endocrine System Disorders 6.20E-13 – 2.75E-02 11 
Gastrointestinal Disease 6.20E-13 – 3.92E-02 11 
Molecular and Cellular Functions p-Value Molecules 
Cell Cycle 3.33E-07 – 2.90E-02 4 
Cellular Development 1.20E-05 – 4.45E-02 8 
Cellular Growth and Proliferation 4.50E-05 – 4.45E-02 8 
Cellular Death and Survival 9.87E-05 – 4.97E-02 8 
Cell-to-Cell Signaling and Interaction 1.21E-03 – 1.21E-03 2 
Physiological System Development and 
Functions 

p-Value Molecules 

Digestive System Development and Function 6.63E-07 – 6.63E-07 3 
Hepatic System Development and Function 6.63E-07 – 6.63E-07 3 
Organ Development 6.63E-07 – 3.45E-02 6 
Respiratory System Development and Function 6.05E-04 – 6.05E-04 1 
Tumor Morphology 6.05E-04 – 9.04E-03 3 

 
Pathways Associated with Up-Regulated Exosomal miRNAs in Maternal Serum at GD90 
Diseases and Disorder p-Value Molecules 
Organismal Injury and Abnormalities 4.91E-13 – 3.69E-02 11 
Reproductive System Disease 4.91E-13 – 3.69E-02 9 
Cancer 3.30E-12 – 3.69E-02 10 
Gastrointestinal Disease  1.37E-11 – 3.69E-02 9 
Hepatic System Disease 1.27E-06 – 2.49E-03 6 
Molecular and Cellular Functions p-Value Molecules 
Cell-to-Cell Signaling and Interaction 6.05E-04 – 6.64E-03 3 
Cellular Assembly and Organization 6.05E-04 – 6.05E-04 1 
Cellular Compromise 6.05E-04 – 6.05E-04 1 
Cellular Death and Survival 9.59E-04 – 4.97E-02 7 
Cellular Development 1.21E-03 – 4.45E-02 7 
Physiological System Development and 
Functions 

p-Value Molecules 

Organ Development 5.40E-04 – 5.40E-04 2 
Nervous System Development and Function 6.05E-04 – 6.05E-04 1 
Tissue Development 6.05E-04 – 1.26E-02 3 
Cardiovascular System Development and Function 1.21E-03 – 1.92E-02 2 
Skeletal and Muscular System Development and 
Function 

1.21E-03 – 1.02E-02 2 
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APPENDIX TABLE I.I Continued. Pathways associated with differentially expressed miRNAs, 
their associated p-value, and number of molecules in pathway. 
 
Pathways Associated with Differentially Expressed Umbilical Serum Exosomal miRNAs at 
GD90: 
Diseases and Disorder p-Value Molecules 
Cancer 4.36E-15 – 4.62E-02 10 
Endocrine System Disorders 1.79E-12 – 2.75E-02 9 
Gastrointestinal Disease 1.79E-12 – 2.75E-02 11 
Metabolic Disease  1.79E-12 – 2.75E-02 10 
Infectious Disease 9.12E-12 – 4.21E-02 5 
Molecular and Cellular Functions p-Value Molecules 
Cellular Development 1.68E-06 – 4.45E-02 10 
Cellular Growth and Proliferation 1.68E-06 – 4.45E-02 9 
Cellular Compromise 6.05E-04 – 6.05E-04 1 
Cell Cycle  1.21E-03 – 6.64E-03 4 
Cell-to-Cell Signaling and Interaction 1.21E-03 – 6.64E-03 3 
Physiological System Development and 
Functions 

p-Value Molecules 

Organismal Development 9.12E-12 – 2.10E-02 6 
Organ Development 9.98E-04 – 1.80E-02 4 
Tissue Development 1.21E-03 – 1.21E-03 1 
Nervous System Development and Function 1.81E-03 – 1.81E-03 1 
Tumor Morphology 2.42E-03 – 4.83E-03 1 

 
Pathways Associated with Differentially Expressed miRNAs in Ovine Placentomes at GD90: 
Diseases and Disorder p-Value Molecules 
Cancer 1.23E-07 – 4.75E-02 3 
Organismal Injury and Abnormalities 1.37E-05 – 3.09E-02 4 
Reproductive System Disease 1.37E-05 – 3.09E-02 3 
Endocrine System Disease  1.42E-05 – 3.73E-02 4 
Gastrointestinal Disease 1.42E-05 – 4.32E-02 4 
Molecular and Cellular Functions p-Value Molecules 
Cellular Development 1.31E-06 – 4.75E-02 2 
Cell Cycle 2.20E-04 – 5.93E-03 1 
Cell-to-Cell Signaling and Interaction 4.40E-04 – 4.40E-04 1 
Cell Growth and Proliferation 4.40E-04 – 4.75E-02 1 
Cellular Function and Maintenance 1.10E-03 – 1.10E-03 1 
Physiological System Development and 
Functions 

p-value Molecules 

Embryonic Development 1.00E-04 – 4.14E-02 2 
Respiratory System Development and Function 2.20E-04 – 2.20E-04 1 
Tumor Morphology 4.40E-04 – 4.40E-04 1 
Connective Tissue Development and Function 5.65E-04 – 5.64E-04 2 
Cell-mediated Immune Response 1.10E-03 – 1.10E-03 1 
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APPENDIX TABLE I.II. List of p-values associated with differentially expressed miRNAs. 
 

ANOVA p-Values for Differentially Expressed miRNAs in Maternal 
Jugular Serum Exosomes 

miR-19a P=0.035 
miR-27a P=0.027 
miR-30c p=0.001 
miR-34c p=0.009 
miR-92b p=0.003 

miR-125b-3p p=0.007 
miR-132 p=0.002 

miR-142-5p p=0.009 
miR-143 p=0.001 
miR-181a p=0.036 
miR-181c p=0.025 
miR-183 p=0.002 
miR-196b p=0.022 

miR-199a-3p p=0.017 
miR-200b p=0.003 
miR-204 p=0.001 
miR-206 p=0.039 
miR-210 p=0.020 

miR-216a p=0.015 
miR-216b p=0.015 
miR-302d p=0.048 
miR-320 p=0.015 

miR-323-5p p=0.04 
miR-328 p<0.001 
miR-379 p=0.033 

T-Test p-Values for Differentially Expressed miRNAs in GD90 
Umbilical Vein and Artery Serum Exosomes 
miR-23a p=0.036 
miR-23b p=0.029 
miR-24 p=0.012 
miR-26a p=0.018 
miR-27a p=0.044 
miR-29c p=0.063 
miR-30a p=0.012 
miR-30d p=0.057 
miR-132 p=0.003 
miR-148b p=0.024 

miR-199a-3p p=0.007 
miR-223 p=0.001 
miR-379 p=0.059 

List of T-Test p-Values for Differentially Expressed miRNAs in 
GD90 Cotyledon and Caruncle Placentome Tissue 

miR-34c p=0.057 
miR-135a p=0.038 
miR-183 p=0.068 
miR-379 p=0.050 
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APPENDIX TABLE I.III. List of forward primers used in real time PCR. 
 

List of miRNA Forward Primers  
let-7a UGAGGUAGUAGGUUGUAUAGUU 
let-7d AGAGGUAGUAGGUUGCAUAGUU 
let-7e UGAGGUAGGAGGUUGUAUAGUU 
miR-15a UAGCAGCACAUAAUGGUUUGUG 
miR-15b UAGCAGCACAUCAUGGUUUACA 
miR-16 UAGCAGCACGUAAAUAUUGGCG 
miR-17 CAAAGUGCUUACAGUGCAGGUAG 
miR-19a UGUGCAAAUCUAUGCAAAACUGA 
miR-19b UGUGCAAAUCCAUGCAAAACUGA 
miR-20a UAAAGUGCUUAUAGUGCAGGUAG 
miR-20b CAAAGUGCUCAUAGUGCAGGUAG 
miR-21 UAGCUUAUCAGACUGAUGUUGA 
miR-22 AAGCUGCCAGUUGAAGAACUGU 
miR-23a AUCACAUUGCCAGGGAUUUCC 
miR-23b AUCACAUUGCCAGGGAUUACC 
miR-24 UGGCUCAGUUCAGCAGGAACAG 
miR-25 CAUUGCACUUGUCUCGGUCUGA 
miR-26a UUCAAGUAAUCCAGGAUAGGCU 
miR-27a UUCACAGUGGCUAAGUUCCGC 
miR-29b UAGCACCAUUUGAAAUCAGUGUU 
miR-29c UAGCACCAUUUGAAAUCGGUUA 
miR-30a UGUAAACAUCCUCGACUGGAAG 
miR-30b UGUAAACAUCCUACACUCAGCU 
miR-30c UGUAAACAUCCUACACUCUCAGC 
miR-30d UGUAAACAUCCCCGACUGGAAG 
miR-34c AGGCAGUGUAGUUAGCUGAUUGC 
miR-92a UAUUGCACUUGUCCCGGCCUG 
miR-92b UAUUGCACUCGUCCCGGCCUCC 
miR-99a AACCCGUAGAUCCGAUCUUGUG 
miR-100 AACCCGUAGAUCCGAACUUGUG 
miR-101a UACAGUACUGUGAUAACUGAA 
miR-107 AGCAGCAUUGUACAGGGCUAUCA 
miR-122 UGGAGUGUGACAAUGGUGUUUG 
miR-125b-3p ACGGGUUAGGCUCUUGGGAGCU 
miR-132 UAACAGUCUACAGCCAUGGUCG 
miR-135a UAUGGCUUUUUAUUCCUAUGUGA 
miR-138 AGCUGGUGUUGUGAAUCAGGCCG 
miR-142-3p UGUAGUGUUUCCUACUUUAUGGA 
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APPENDIX TABLE I.III Continued. List of forward primers used in real time PCR. 
 

List of miRNA Forward Primers  
miR-142-5p CAUAAAGUAGAAAGCACUACU 
miR-143 UGAGAUGAAGCACUGUAGCUC 
miR-146b UGAGAACUGAAUUCCAUAGGCU 
miR-148a UCAGUGCACUACAGAACUUUGU 
miR-148b UCAGUGCAUCACAGAACUUUGU 
miR-149 UCUGGCUCCGUGUCUUCACUCCC 
miR-150 UCUCCCAACCCUUGUACCAGUG 
miR-152 UCAGUGCAUGACAGAACUUGG 
miR-181a AACAUUCAACGCUGUCGGUGAGU 
miR-181b AACAUUCAUUGCUGUCGGUGGGU 
miR-181c AACAUUCAACCUGUCGGUGAGU 
miR-182 UUUGGCAAUGGUAGAACUCACACCG 
miR-183 UAUGGCACUGGUAGAAUUCACU 
miR-191 CAACGGAAUCCCAAAAGCAGCUG 
miR-192 CUGACCUAUGAAUUGACAGCC 
miR-193 AACUGGCCUACAAAGUCCCAGU 
miR-193b AACUGGCCCACAAAGUCCCGCU 
miR-194 UGUAACAGCAACUCCAUGUGGA 
miR-195 UAGCAGCACAGAAAUAUUGGC 
miR-196a UAGGUAGUUUCAUGUUGUUGGG 
miR-196b UAGGUAGUUUCCUGUUGUUGGG 
miR-199a-3p ACAGUAGUCUGCACAUUGGUUA 
miR-199a-5p CCCAGUGUUCAGACUACCUGUUC 
miR-199b ACAGUAGUCUGCACAUUGGUUA 
miR-200b UAAUACUGCCUGGUAAUGAUGA 
miR-200c UAAUACUGCCGGGUAAUGAUGGA 
miR-204 UUCCCUUUGUCAUCCUAUGCCU 
miR-206 UGGAAUGUAAGGAAGUGUGUGG 
miR-210 CUGUGCGUGUGACAGCGGCUGA 
miR-211 UUCCCUUUGUCAUCCUUUGCCU 
miR-212 UAACAGUCUCCAGUCACGGCCA 
miR-214 ACAGCAGGCACAGACAGGCAGU 
miR-216a UAAUCUCAGCUGGCAACUGUGA 
miR-216b AAAUCUCUGCAGGCAAAUGUGA 
miR-219 UGAUUGUCCAAACGCAAUUCU 
miR-221 AGCUACAUUGUCUGCUGGGUUUC 
miR-222 AGCUACAUCUGGCUACUGGGU 
miR-223 UGUCAGUUUGUCAAAUACCCCA 
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APPENDIX TABLE I.III Continued. List of forward primers used in real time PCR. 
 

List of miRNA Forward Primers  
miR-296-3p GAGGGUUGGGUGGAGGCUCUCC 
miR-296-5p AGGGCCCCCCCUCAAUCCUGU 
miR-301a CAGUGCAAUAGUAUUGUCAAAGC 
miR-301b CAGUGCAAUGGUAUUGUCAAAGC 
miR-302d UAAGUGCUUCCAUGUUUGAGUGU 
miR-320 AAAAGCUGGGUUGAGAGGGCGA 
miR-323-3p CACAUUACACGGUCGACCUCU 
miR-323-5p AGGUGGUCCGUGGCGCGUUCGC 
miR-328 CUGGCCCUCUCUGCCCUUCCGU 
miR-335-5p UCAAGAGCAAUAACGAAAAAUGU 
miR-339-3p UGAGCGCCUCGGCGACAGAGCCG 
miR-340-3p UCCGUCUCAGUUACUUUAUAGC 
miR-342-3p UCUCACACAGAAAUCGCACCCGU 
miR-342-5p AGGGGUGCUAUCUGUGAUUGAG 
miR-377 AUCACACAAAGGCAACUUUUGU 
miR-379 UGGUAGACUAUGGAACGUAGG 
Mouse U6 snRNA UGGCCCCUGCGCAAGGAUG 
RNU43 (snoRNA) CUUAUUGACGGGCGGACAGAAAC 
Hm/Ms/Rt U1 snRNA CGACUGCAUAAUUUGUGGUAGUGG 
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APPENDIX II: SUPPLEMENTARY FIGURES 

 
 
 

 
 
APPENDIX FIGURE II.I. Classification of ovine placentomes collected at GD90 from control 
and prenatal androgenized ewes. 
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APPENDIX FIGURE II.II. End-point PCR for AR and KDMs in GD16/17 sheep conceptus. 
Samples provided by Dr. Quinton Winger. Primers utilized are those reported in Chapter II. 
Order of samples for each primer set: 

1. GD16 Ewe 163 fetus #1 
2. GD16 Ewe 161 fetus #1 
3. GD16 Ewe 145 fetus #1 
4. GD16 Ewe 123 fetus #1 
5. GD17 Ewe 622 fetus #B 
6. PCR control using control from reverse transcription reaction 

 
 

 

 

 

 

 

 

 

AR KDM1A KDM3A 

KDM4A KDM4C KDM4D 
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APPENDIX FIGURE II.III. Immunolocalization of AR, KDM1A, and KDM4D in gestational 
day 17 sheep conceptus. Samples provided by Dr. Quinton Winger. AR immunolocalized to A) 
nuclei of the trophectoderm (arrow), B) cytoplasm of uncharacterized or differentiating cells in 
trophectoderm (arrow), and C) in the nuclei of uncharacterized, specialized cells, possibly 
binucleate cells (arrow). D-F) KDM1A immunolocalized to nuclei of the trophectoderm (arrow), 
G-I)  as did KDM4D (arrows). Inserts represent staining on control slides. Protocol followed that 
described in Chapter II. 
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APPENDIX FIGURE II.IV. Changes in global DNA methylation in testosterone propionate 
treated OTR19 cells. Protocol for DNA methylation ELISA followed that described in Chapter 
II. 
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APPENDIX FIGURE II.V. Changes in relative mRNA in OTR19 cells 48 hours after 
testosterone propionate treatment. Difference in letter represents a statistical difference with 
p<0.05 as determined by ANOVA with Tukey’s pair-wise comparison (Minitab16). 
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APPENDIX FIGURE II.VI. Maternal serum testosterone levels throughout gestation in the ewe 
fed moderate and high nutrient diet. Samples provided by Dr. Russell Anthony. RIA for 
testosterone was performed by Dr. Terry Nett’s lab. 
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APPENDIX FIGURE II.VII. Relative AR mRNA levels with esiRNA treatment. Treatment 
followed protocol in Appendix IX. AR relative mRNA expression was normalized to 18s in 
ACH-3P cells and to the geometric mean of 18s and GAPDH in LNCAP cells. Treatment 
appeared ineffective at altering AR mRNA levels at the doses and times used as described in 
Appendix III. Difference in letter signifies a statistical difference of P<0.05 with absence of 
letters signifies no statistical difference (P>0.05). LNCAP, prostate cancer cell line 
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APPENDIX III. ACH-3P AND LNCAP TRANSFECTION TEST PROTOCOL 
 

 
 

AR: EHUO25951-20UG SIGMA esiRNA 
FLUC: EHUFLUC-20UG SIGMA esiRNA 

 
1. Plate cells overnight in 12 well plate so that they will be 30% to 50% confluent the 

following morning using charcoal stripped, phenol free media 
Plate 150,000 live cells per well (assuming 4x105 cells when confluent) 

2. Gently add desired amount of esiRNA to Opti-MEM I Reduced Serum Medium (Or other 
media without serum and antibiotic) to reach a final volume of 90µL as listed below: 

 
uL of esiRNA [200ng/µl] 

 
ng of 

esiRNA 
 

 
Volume of Opti-MEM I 
Reduced Serum Medium 

0.005 µL 1 ng 89.999 µL 
0.05 µL 10 ng 89.99 µL 
0.1 µL 20 ng 89.98 µL 
0.15 µL 30 ng 89.97 µL 
0.2 µL 40 ng 89.96 µL 
Control  90 µL 

 

3. Gently mix Oligofectamine Reagent before use, then dilute 2µL with 8µL Opti-MEM I 
Medium to reach a final volume of 10µL per reaction. Mix gently and incubate for 5-10 
minutes at room temperature 
 

4. Combine the diluted esiRNA with the diluted Oligofectamine from step 3 to make a total 
volume of 100µL per well. Mix gently and incubate for 15-20 minutes at room 
temperature (the solution may appear cloudy) 

 

5. While complexes are forming, remove the growth medium from the cells and wash once 
with media lacking serum and antibiotics. Then add 400µL of serum/antibiotic-free 
medium to each well. 

 

6. Gently mix the 100 uL of complexes from step 4 to the 400uL of media in each well to 
get 500µL total volume per well 

 

7. Incubate cells at 37°C for 4 hours 
 

8. Add 250µL of growth medium containing 3x the normal concentration of serum 
(charcoal stripped) without removing the transfection mixture 

 

9. Assay for gene activity at 48 hours post transfection 


